Coherent states for the bouncing pendulum and the paddle ball
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The coherent states of the simple harmonic oscillator with an impenetrable barrier at its center are
studied. This half oscillator is the equivalent of a pendulum that bounces elastically off a vertical
wall directly below the point of suspension with the angle of swing sufficiently small. The system
can also be considered as a paddle ball, where the paddle is fixed and the ball is constrained by a
spring attached to the paddle. The coherent states are almost the same as the familiar Gaussian
coherent states of the full oscillator, except when they overlap the barrier. The solutions can be
easily extended to two and three dimensions and gravity can be included if the impenetrable barrier
is vertical. To better understand the form of the expectation values of the position and momentum,
we investigate some general aspects of the effect of impenetrable barriers on the dynamics of

wavepackets. © 2008 American Association of Physics Teachers.
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I. INTRODUCTION

Many textbooks'? and articles™ on quantum mechanics
discuss the coherent states of the simsple harmonic oscillator
in one dimension. Some authors™® mention the half-
oscillator, for which there is an impenetrable barrier at the
potential minimum (here taken to be at x=0), but usually just
mention that its energy eigenstates are the odd eigenstates of
the full oscillator.”

The half oscillator can represent a pendulum bouncing
elastically off a vertical wall directly below the point of sus-
pension with the angle of swing sufficiently small. It can also
be considered as a paddle ball,” where the paddle is fixed and
the ball is constrained by a spring attached to the paddle. For
the pendulum, gravity is necessary; in the simplest model of
the paddle ball, gravity is neglected.

The coherent states of the half oscillator are of interest
because they are mathematically simple (involving only
Gaussians) and, while remaining as narrowly spread in posi-
tion and momentum as possible, they closely follow the clas-
sical motion.

II. COHERENT STATES
OF THE FULL OSCILLATOR

There are many different ways to approach coherent
states."> We give one approach in Appendix A. Here, all we
need is that the coherent state can be taken to be

P(x,1) = Ny exp[— i6(t) + ipx/h — (x — X)*/4d%], (1)

where X and p are the expectation values of position and
momentum, respectively, m is the mass of the ball or pendu-
lum bob, and w is the angular frequency of the oscillation
with d=+h/(2mw). From Ehrenfest’s theorem, X and p
must follow a classical trajectory, and we take X=a cos wt
and p=-mwasin wt. The time-dependent phase is
0(t)=wt/2+px/2h, and the normalizing factor is N
= [ exp(-x?/2d*)dx=d V2.

The special property of these coherent states is that
they remain Gaussian and that the spreads in position Ax
=((x=x)?))"?=d and momentum Ap={((p-p)>))*=#/2d
are constant and have the minimum uncertainty product
AxAp=r/2. As discussed in Appendix A, every state with
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the minimum uncertainty product must have the form given
in Eq. (1), but the coherent states of the oscillator require that

d take the value \fi/(2mw).

III. COHERENT STATES
OF THE HALF OSCILLATOR

The antisymmetric wavefunction

B(x,1) =Ny [ gx, 1) — - x,1)], (2)

is a solution of Schrodinger’s equation for the oscillator
for x>0 and satisfies the required boundary condition that
¢(x,t)—0 as x—0. Therefore, (x,r) is a solution
of Schrodinger’s equation for the half oscillator. The normal-
ization of ¢(x,r) is shown in Appendix B to be N,

:(1—6‘”2/2”’2). To understand the wavefunction ¢(x,7), it is
useful to view it in the whole x-space, where it is the differ-
ence of two Gaussian packets oscillating with the same clas-
sical amplitude but 180° out of phase. Apart from the time
interval during which these packets overlap (and interfere),
only one is in the physical region x>0, and this packet is
then an almost exact approximation to ¢(x,f) because the
exponential tail of the other Gaussian packet is negligible.
When a packet in the physical region returns to overlap the
barrier, it interferes with the other packet, which then
emerges as the physical one. This behavior is essentially the
same as has been described for a free wavepacket bouncing
off an impenetrable barrier,® except that in the latter case
there is no repetition of the bouncing. Figure 1 shows a se-
quence of plots of the magnitude of the wavefunction as it
approaches the barrier.

The state ¢ is as coherent a state as can be found for the
half oscillator. It is almost exactly a Gaussian of the same
spread in position and momentum as for the coherent states
of the full oscillator, except when it overlaps the barrier.
During this time it has a smaller spread in position (because
it overlaps its reflected part) but a much larger spread in
momentum (because it is a superposition of one part moving
with speed wa in one direction and the other part moving at
the same speed in the opposite direction. Figure 2 shows how
these spreads behave during the bounce.
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Fig. 1. Graph of |¢/? at three equally spaced times for the half oscillator with
amplitude a=8d. At time t=0, the center of the wavepacket is at rest at x
=8d. For wt=m/2, the wavepacket maximally interferes with its reflected
part. The units for |#|? are 1/d.

IV. EXTENSION TO TWO OR THREE DIMENSIONS

The pendulum can easily be extended to two dimensions
and is then referred to as the conical pendulum. In the small
angle approximation, the pendulum can be modeled by an
isotropic two-dimensional harmonic oscillator. The classical
orbit, and the orbit of the centroid of any quantum wave-
packet, is an ellipse. Because the Hamiltonian is the sum of
two commuting terms, each involving only one Cartesian
coordinate, an appropriate coherent state for the full oscilla-
tor can be written as a product of two one-dimensional co-
herent states:
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Fig. 2. The spreads Ax and Ap of the coherent state of the half oscillator
with amplitude a=8d for one quarter of a cycle. Except for the time where
the wavepacket overlaps the barrier, these spreads almost exactly equal the
minimum uncertainty values of Ax=d and Ap=h/2d.
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Fig. 3. Contours of |¢|? at five equally spaced times (spacing 7/4w) on one
half-cycle of the two-dimensional half oscillator. The elliptical orbit has a
=8d, b=5d, and y=/6. The contour interval is 0.025/d? for the three times
when there is negligible overlap with the barrier, and 0.05/d> for the two
times when there is maximal overlap and the interference produces a maxi-
mum that is about four times larger. The dashed lines show the complete
classical trajectory. Contours of |¢|* are given only for times on one half of
this trajectory (though for the two bounce times, the contours apply equally
to either half of the trajectory).

Y(x,y,1) = Ny exp[— i0(1) + i(px + p,y)/h
—[(x=%)+(y-y)*V4d*] (3a)

=1\TO1 exp[—i6(t) +ip - v/h — (r —¥)*/4d*], (3b)

where I and p are the expectation values of the position and
momentum, respectively, which follow a classical elliptical
orbit, and 6(1)=wt+p-t/2k. In a coordinate system x',y’
that is aligned with the axes of the ellipse, we can take X’
=a cos wt and y’' =b sin wt. If we insert the barrier, the orbit
of the pendulum will, in general, be an ellipse with no
axis parallel to the barrier. Therefore, we take the axes x,y
to be at an angle y to those of the ellipse and the orbit
becomes X=a cos wt cos y—b sin ot sin vy, y=a cos wt sin y
+b sin wt cos 7y, with the barrier at x=0. The part of the el-
lipse with x<<0 is folded into the physical region x>0 via
x——x, and the coherent state wavefunction is

B,y 1) = N, Lgx,y.0) = (= x,,0)]. (4)

In this case the normalizing factor is N,=1-exp[—(a*+b?
+(a*-b?)cos 2y)/4d*]. A typical orbit and some views of the
associated wavefunction are shown in Fig. 3.

The paddle ball is taken to be a fixed plane impenetrable
barrier with a ball constrained by a spring attached to a point
on the paddle. The pendulum is by its nature confined to two
dimensions, but the paddle ball naturally extends to three. If
we ignore gravity, the force on the ball is directed back to a
fixed point on the paddle, and therefore the classical motion
of the ball lies in a plane, which we are free to take to be the
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(x,y)-plane. The z-dependence of the wavefunction is easily
incorporated by multiplying by a stationary one-dimensional
Gaussian: ¢(x,y,z,1)=Ny"? exp[—iwt/2~22/2d*]p(x,y ,1).

V. ADDING GRAVITY TO THE PADDLE BALL

It is not difficult to add gravity to the paddle ball provided
the paddle is vertical. Again take the barrier (that is, the
paddle) to be the plane x=0 and the z-axis to point vertically
upward. Then gravity requires a term mgz to be added to the
Hamiltonian. The coordinate z appears only in the terms
mw212/2+mgz, which can be rewritten as mw?Z2/2-C,
where Z=(z+g/w?) and C=mg?/2w’. This added constant
adds to the energy and can be ignored here. We replace the
variable z by Z and because p,=p,, the solution with gravity
is obtained from the previous solution by replacing z by Z.
Hence, the orbits are lowered by the distance g/ w?”. The dis-
tance g/w’ is also the stretch of the spring due to gravity
when the ball just hangs at rest.

If the paddle were not vertical, the solution would be
much more complicated. It would not be obtained from the
full oscillator solution by subtracting the solution reflected in
the barrier, because the potential would no longer be sym-
metric under this reflection. Even dealing with gravity alone
in this situation (leaving out the spring), sometimes referred
to as the quantum bouncer, leads to these complications.9’10

VI. CONCLUSION

The half oscillator, with its physical manifestations as a
bouncing pendulum and a paddle ball, provides a system for
which it is easy to find coherent states that are as compact as
possible and follow the classical trajectories fairly closely.
Apart from the short time that the wavepackets are bouncing
off the barrier, they are approximately simple Gaussian
wavepackets and the behavior during the bounce can be un-
derstood qualitatively. At this level, these coherent states are
suitable for discussion in an introductory course on quantum
mechanics as a simple extension to the standard coherent
states of the oscillator. A more detailed examination of the
system (in particular calculating the expectation values of the
position and momentum and their squares) reveals interest-
ing aspects of the dynamics of particles interacting with im-
penetrable barriers (see Appendix B). This extension could
be a challenging problem for capable students.

APPENDIX A: MINIMUM-UNCERTAINTY
WAVEPACKETS

The theory that is presented in most texts'' leads to the
inequality A,A,=7/2 for any state #, where A2=((#-%)%
with X=(£) and Ai:((ﬁ—ﬁﬁ) with p=(p). Equality will oc-
cur only if ¢ is an eigenfunction of the operator a with

G=3%20, +iA i, (A1)

where [d,a"]=1. The eigenvalue must be a=(d)=x/2A,
+iA,p/h. The solution of the eigenvalue equation d¢=ai) in
Schrodinger’s representation shows that, for any Hamil-
tonian, the wavefunction with the minimum uncertainty
product A, A, =7/2 is

238 Am. J. Phys., Vol. 76, No. 3, March 2008

Plx) = (277'A)26)_”4 explipx/h — (x = %)*/(2A,)%]. (A2)

Such a state will evolve with time and we need to find
whether it will remain a minimum uncertainty state.

An eigenstate ¢ of the operator a, with eigenvalue « will
remain an eigenstate if J(d—a)¥]=0. We will seek mini-
mum uncertainty states that have A, and A, constant in time,
and hence a does not depend on the time. Because ifid, i

=Hy, we have ifd[(G—a)y]=(G—a)Hy—ihap=(GH-Ha
—ifa)ip. For the Hamiltonian H= pr2m+V(%),

. av ik
Hdl=-A—- .
[H.4] x ZmAxp

(A3)

We require that di=ay and [H,a]y=—ifcp, and therefore
we require d,Vocx. This shows that only the harmonic oscil-
lator potential can have minimum uncertainty states with
constant spreads. As usual, we write V=mw’x?/2, and Eq.

(A3) becomes
MR
szx 4 x+lh A pl.

Therefore, we can maintain dy=ay if we require that A,
=d. Then, d=x/2d+idp/h and [I:I,d]:—ﬁwd. Furthermore
iha=howa, so a(t)=a(0)e™™. Ehrenfest’s theorem shows
that X and p must follow a classical trajectory; thus, we take
X=a cos wt, p=—mwa sin wt as the expectation values of po-
sition and momentum. Then, a={(a)=x/2d+idp/h
=e"q/2d.

We have shown that the states for the harmonic oscillator
with the minimum uncertainty product will evolve with both
A, and A, unchanging if A,=d (and therefore A,=%/2d);
that is, they have the same widths as the ground state. These
states are known as coherent states.

[A.d]=- (A4)

Note that the operator A=¢'3 has the constant eigenvalue

a/2d. It can be easily seen that [H,A]=i#d,A, which means

that A is an invariant operator.12 The eigenstates of any in-
variant operator remain eigenstates (with unchanging eigen-
values) as they evolve.

APPENDIX B: EXPECTATION VALUES
FOR THE HALF OSCILLATOR

The exact expectation values of the position and momen-
tum and their squares are not required for a qualitative un-
derstanding of the general behavior of the coherent state, but
are needed to calculate details when the wavepacket overlaps
the barrier (as shown in Fig. 2). These expectation values can
be found by direct integration, but are messy. In what fol-
lows, just one integral will be calculated directly, and the
other expectation values will be found by other means.

1. (5% AND (%) IN TERMS OF (H)

The full oscillator coherent state i(x, ) is an eigenfunction
of 4 with eigenvalue a=e “a/2d. Because 4 is odd,
(—x,1) is an eigenfunction of @ with eigenvalue —a. Both
(x,t) and yY(—x,t) are eigenfunctions of @*> with the same
eigenvalue o?, and therefore so is the half oscillator coherent

state ¢(x,t)=u(x,t)— y(—x,1). But 4> can be written as
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a +§(£ﬁ +5%), (B1)

where H= p?12m+mw*5*/2, which ignores the barrier. If we
take the real part of the expectation value of Eq. (B1) for a
coherent state (of the full or half oscillator), we find

24% 1
&y = —<H>+2a cos 2wt. (B2)

Because (H) is a linear combination of (£2) and (2), we can
solve for the latter; the results can be expressed as

IS S |
(V)= 5<H> + Ema)za2 cos 2wt (B3a)

| 1
(Ty= 5<H) —mw’*a’® cos 2wt, (B3b)
where V=mw?£2/2 and T= p?/2m. These results are valid for

both the full and the half oscillator; only (1:1) differs. Note
that the expectation values here are taken over (-, ) for
the full oscillator, but only over (0, ) for the half oscillator.

2. THE NORMALIZING INTEGRAL

For the purpose of normalization, the relevant part of the
full oscillator coherent state in Eq. (1) is #(x,)=explipx/h
—(x—X)?/4d?]. Simple algebra gives

d(x,1) = w(x 1) - lﬁ(—x 1)
Lo ol
=2exp| — —(x° +X°) [sinh ox, (B4)
4d
where o=(a/2d?)e ", Then,
f |(x,1)|*dx = 4 exp(— N&2) ], (0, 07), (B5)
0
where, with A\=(24%)7",

I,(o,p) = f M sinh ox sinh px dx

_ Z \/7[ (o + p)2/4N _ olo- p)2/4)\]. (B6)

The integral may be evaluated using 2 sinh ox sinh px
=cosh(o+p)x—cosh(o—p)x, which reduces the problem to
evaluating || (cfe‘“z cosh yx dx. This integration can be ex-
tended to (—o, =), because the integrand is even. We then
express cosh yx in terms of exponentials and complete the
square in the combined exponent as usual

If we substitute o=(a/2d%)e ", p o, and N=(2d%)"!

into Eq. (B6), we obtain 7| ¢|2dx=w277d[1 —exp(—a®/2d%)].
Hence, using [*, | {2dx= \r'ETd, the extra normalization re-
quired for ¢ [and for ¢ in Eq. (2)] is N;=1-exp(—a®/2d>).

It is necessary that Ny=1 when a>>d. When (x,1) is
almost fully in x>0, then (—x,7) has only negligible pres-
ence in x>0, and @(x,7)= ¢(x,t) throughout x>0. There-
fore, if ¢(x,r) is normalized, then so will be ¢(x,?).
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3. EXPECTATION VALUES OF £2 AND H

Because dl,/IN=—[;x* exp(—\x?)sinh ox sinh px dx, it
follows that (&y=(=al,/IN) [, =1/2N+[ >+ p?
+20p coth(ap/2N\)]/4N\%. If we insert the values for o, p,
and \, we obtain

2

1 1
@y =d*+ 2a coth4d2 Eaz cos 2wt. (B7)

The comparison of Eq. (B7) with Eq. (B2) leads to

o1 1a° a?
<H>=Eﬁw 1 +5; Coth@ . (B8)

For the full oscillator H=fw(d'd+1/2), and thus (H)
=(hw/2)(1+a%/2d?) for the coherent state. For a>>d, this

expression for (H) is approached by the value in Eq. (B8), as
expected.

4. EXPECTATION VALUES OF x AND p

To calculate (£) and {p), we need to find the effect of the
barrier potential W(x), where W(x)=0 for x>0 and W(x)
= for x=0. Then the evolution equations for the expecta-
tion values for any wavepacket are md(X)=(p) and d{p)

=—mawX(x)—{(d, W). Any contributions to {d, W) must come
from the neighborhood of x=0. To determine these contribu-
tions, multiply Schrodinger’s equation for ¢ by ¢ qS add the
complex conjugate equation, and integrate each term of
the resulting equation over an infinitesimally narrow strip
(—€,e) about the barrier. The only singular terms in
Schrodinger’s equation are the term involving &i(ﬁ, which is
singular because ¢ has a discontinuous derivative at the bar-
rier, and the term 1nV01V1ng W. The first term gives a contri-
bution —(%2/2m)(d,¢" &+ 0, ¢(92¢ )=—(12/2m)d(|0,d[?),
which integrates to —(h%/2m)|d,¢|°_.. The other singular
term is W(x)d(¢" ¢), which 1ntegrates by parts to
[(W(x)| P21 .~ < | #]?0.W(x)dx. The first of these terms is
zero, and we conclude that

hZ
(- aW)= ﬁlwlfzo- (B9)

Therefore, the evolution equations are mdJ{%)=(p) and
d{py=—maw*(X)+f(t) with f(£)=(h>/2m)|d,d|>_,. To solve
these equations, it is helpful to combine them into d/{a)
=—ia{d)+i(d/h)f(t); hence, d,(e'“{4))=i(d/h)e''f(f), and

t

(@) =e7Na),.o + i(d/h)e_i‘”tf ef(r)dr. (B10)

0

The real and imaginary parts of (@) give (£) and (p) valid for
any wavepacket.

For the half oscillator coherent state, |d,#|>,
=N,'N;'a’d* exp(=x?/2d?), from Eq. (B4), and therefore
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a
(@)= N7'a| erf| — cos wt
1 /
\2d

. —d2nd? oa .
+je" erf1<? sin wt)},

(B11)
\2d

where a=X/2d+idp/fh=e""a/2d, erf(z)=(2/\s’7:)ff)e‘“2 du
is the error function, and erfi(z)=(2/\r’,7_r) 66”2 du, so that
erf(iz)=i erfi(z). Because (d)=(%)/2d+id{p)/h, Eq. (B11)
can be used to derive

X 24°
£y =Ny ferf( al )——ﬁe‘“2/2d2

\2a)
-
hd
Xerfi(— \75) , (B12a)
X h 25 2
5y = N7!| perf| —=— | + —= e
<p> 1 per (\"2d> 2d2xe
~
hd
Xerfi(— \75) (B12b)

These results were used to generate Fig. 2. When the wave-
packet is well clear of the barrier, that is, x>>d, then N,
~1, erf(¥/\2d)~1, and the second term is negligibly small
in Eq. (B12). Then, (X)=X and {(p)=p, as expected.

The integral in Eq. (B10) can be carried out by substitut-
ing  u=(a/\2d)coswr into [ osin o7 exp(—(a*/d%)
cos? w7)dT to give an integral with the form of an error func-
tion, and by writing [{cos Texp(-(a®/d*)cos* wT)dT
as =<2 Josin w7 exp((a®/d*)sin® w7)dT, which can be ex-
pressed as an erfi function by the substitution v:(a/\Ed)
sin wT.

5. RELATION OF (52) AND (£2) TO (H)
FOR AN ARBITRARY WAVEPACKET

Because the barrier affects the evolution equations for (x)
and (p), does it also enter the evolution equations for (%)
and (p*)? It will now be shown that the barrier does not
change the form of these equations (although it does affect
the value of (H)), and relations similar to Eq. (B3) hold for
any wavepacket.

Including the barrier potential W, the evolution equations
are md{#*)=2(x), where x=(&p+px)/2, and md{x)
=—mwX(x2)+(p*)/m—{%d W). Reasoning similar to that used
for (p) shows that the last term must be zero. [Multiply
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Schrodinger’s equation for ¢ by xﬁxq‘)*and add the complex
conjugate. Integrating over the term involving a§¢ leads to
€ X000, $)dx=x| 9, $) 2| -~ [ | 9, ) Pdx, which clearly
goes to zero as €é—0 and similarly for the term in . W. A

similgr argument, after multiplying Schrodinger’s equation
by ¢, shows that (W) is zero.]

Therefore, md{(2)=2(%) and md(%)=2(H)-2maw*(52).
Because (I:I> is constant, these equations can be solved to

give mw*(£2)=(H)+A cos 2w(t—1y), where A and 1, are arbi-
trary constants. Therefore,

(V)= %(I:I) + %A cos 2w(t — 1), (B13a)

(T = %<ﬁ1> - %A cos 2w(t — 1), (B13b)

which is similar to Eq. (B3), but now valid for any wave-
packet of the half oscillator.

This type of analysis of the evolution of expectation val-
ues can be done where there is a repulsive barrier together
with any potential that is at most quadratic in x. The potential
must be at most quadratic so that (F(x))=F({x)), where

F(x)=—-0,V(x) is the force.
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