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ABSTRACT 
Disturbance is an important ecological driver of plant community composition and adaption. 

My research was in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands in 

Victoria where the primary forms of disturbance are wildfire and clearfell logging. Three large 

conflagrations in 1939, 1983 and 2009 resulted in uniformly aged stands of Eucalyptus regnans. My 

research, comprising four interrelated studies, uses these major fire events and recent logging, to 

compare the recovery attributes of the plants in Mountain Ash forest. 

Chapter one compares plant species richness and functional group responses to logging and 

fire of different intensities. I found species richness declined across a ‘disturbance gradient’ of low 

severity fire (30.1species/site), high severity fire (28.9spp/site), clearfell logging (25.1spp/site) and 

salvage logging (21.7spp/site). The greatest differences between the effects of fire and logging are on 

sprouting species including ferns and midstorey trees, with logging causing a simplification of the 

forest biota. Species losses are attributed to the mechanical disturbance of harvesting and the 

fire/logging disturbance sequence. 

Chapter two studies growth rates of tree ferns, Cyathea australis and Dicksonia antarctica. 

Five years after the 2009 fires, I measured the new growth of 335 tree ferns and found Cyathea 

australis averaged 73(± 22)mm/year of growth, while Dicksonia antarctica averaged 33(± 

13)mm/year. An unexpected finding was higher growth rates in taller tree ferns, increasing with 

height by 5-6mm/yr/m in both species. The non-linear growth is explained by the taller ferns being 

exposed to greater amounts of sunlight as the dense regeneration progressively shaded the shorter 

ferns over the five year period since the fire. 

In Chapter three, I use a chronosequence from the major fire events of 2009, 1983, 1939 and 

1851 to determine how species richness and functional groups differ in forests of different ages. 

Species richness is highest in the youngest cohort (17.1species/plot) when many early successional 

species are still present. The 1983 and 1939 cohorts have the lowest species richness (12.9 and 12.5 

species/plot respectively) while the 1851 cohort has 13.4spp/plot. Sprouting species such as ferns and 

midstorey trees were most common in the older cohorts, while seeding species dominated the 

youngest. The presence of 12 species unique to the two oldest cohorts suggests Relay Floristics may 

best describe the successional pathway of this forest.  

Chapter four examined how forest age prior to a disturbance affects subsequent regeneration 

cohorts. Using forest burned in 2009 that was 26, 70 and 158+ years of age at the time of the fire, I 

found species richness decreased with forest age (25.7, 22.7 and 20.7 species/site respectively). The 

diverse seeding species group, was most abundant in the youngest cohort, while sprouting species 

including ferns were the only functional group to increase with forest age.  

My research concludes that Mountain Ash forests are resilient to fire, however, keystone 

species that resprout, like tree ferns and midstorey trees are susceptible to logging. Sprouting species 
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increase with time since disturbance and as with other biological legacies, sprouting species need to 

be carefully managed for during logging operations. 
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INTRODUCTION 
The research for this thesis was conducted in the Mountain Ash forests in the Victorian Central 

Highlands region, in south-eastern Australia, 60-90km east/north-east of Melbourne. The forests 

being studied are some of the most politically contentious forests in Australia. For over a century, the 

Mountain Ash forests in this region have been prized for their water, wood and scenic beauty, and 

more recently their biodiversity and high carbon storage capacity. The forests are also the primary 

habitat of the Critically Endangered Leadbeater’s Possum (Gynobelideus leadbeateri), one of 

Victoria’s faunal emblems and endemic to the State. 

Eucalyptus regnans (Mountain Ash) is the tallest flowering plant in the world, commonly 

growing to 55-75m tall, and historically over 100m tall. Wildfire is the major natural disturbance in 

these forests, with high severity fires burning the region, on average, every 75-150 years. Eucalyptus 

regnans is an obligate seeder, dying en masse in high severity wildfire and regenerating as a single 

age cohort. Despite the overstorey and many other seeding species regenerating in these key 

disturbance events, many understorey species within the Mountain Ash forests survive fires, often 

through biological legacies that re-sprout, allowing many of the plants to be far older than the 

overstorey eucalypts.  When fires burn these forests at low severity the overstorey survives, but 

another regeneration cohort is typically initiated, leading to multi-aged forests.  

The other major type of high-severity disturbance in these forests is logging. The Mountain Ash 

forests have provided an important supply of wood products to the native forest industry in Victoria 

for over a century and the main silvicultural system has been clearfelling. In this method, all 

merchantable trees are cut and removed and the remaining biomass from non-commercial species and 

tree crowns is burned in a high severity regeneration burn. The area is then seeded with the overstorey 

eucalypt species. Another common logging practice after every major wildfire in the last century has 

been salvage logging, where trees that have died from high severity wildfire are then extracted in 

clearfell operations. 

My research has focused on the responses of vascular plants to the major forms of disturbance, 

fire and logging within the Mountain Ash forests. 

Chapter 1, Disturbance gradient shows logging affects plant functional groups more than fire, 

asks two questions: (1) What is the response of plant species richness to a gradient of disturbance 

severity from undisturbed forest through to post-fire salvage logging? And (2) Are there differences in 

response to the disturbance gradient from different plant functional groups? In this study I compare 

forest burned at low and high severity to forest logged using standard clearfelling techniques (of 

unburned forest) and salvage logging (clearfelling of forest burned at high severity) to determine if 

there is a difference in recovery. I examined the responses of the different life forms and reproductive 

strategy groups to different kinds of disturbance. 
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In Chapter 2: Non-linear growth in tree ferns, Dicksonia antarctica and Cyathea australis, I 

studied the growth of the two most common tree fern species after being burned by wildfire in 2009. I 

asked three questions: (1) What are the rates of growth of D. antarctica and C. australis and do rates 

of growth vary between these two species? (2) What factors, including environmental variables, 

influence the rate of growth of D. antarctica and C. australis? And (3) Are we able to devise a simple 

equation of dividing height by annual growth rate to estimate tree fern age? 

Chapter 3: Testing succession theory using a chronosequence study of Australian Mountain 

Ash forest following wildfire took advantage of two features of the Mountain Ash forests. Firstly, the 

discrete age classes created by high severity wildfires in 2009, 1983, 1939 and 1851 which allow 

comparison of successional change. Secondly, some areas of the Central Highlands forests have been 

protected in closed water catchments for over a century and as such, human disturbance in these 

forests has been very limited. As such, what is observed in these forests should be close to natural 

succession. By studying these four distinct age classes as a chronosequence, I was able to ask two 

questions relating to succession theory: (1) What succession theory, or group of theories, best explains 

observed differences in species richness between the age cohorts? And (2) What trajectories do the 

functional groups (based on life form and reproductive strategy) follow and how does that relate to 

successional theory? With this information, it should be possible to detect whether recovery 

trajectories from either logging or in response to climate change are different from how these forests 

would naturally have recovered after disturbance. 

In Chapter 4 Does forest age influence recovery after fire?, I explored the effect of forest age 

before a large wildfire on the subsequent regeneration after the fire. Specifically, I ask two questions: 

(1) Does forest age at the time of high severity fire affect the species richness of the subsequent 

regenerating forest? And (2) How does forest age at the time of high severity fire affect the different 

plant functional groups ability to persist? 

The Mountain Ash forests of the Central Highlands are subjected to some of the most severe 

and intense wildfires anywhere in the world and part of their geographic range also is subject to 

intense clearfell logging. Understanding the effects of the different disturbance types and how they 

influence the forest’s structure and diversity through the various functional groups is critical for 

managing these important forests. 
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CHAPTER 1 

Disturbance gradient shows logging affects plant functional groups more 

than fire 
 
David P. Blair1 

Lachlan M. McBurney1 

Wade Blanchard1 

Sam C. Banks1  

David B. Lindenmayer1 

 
1Fenner School of Environment and Society, The Australian National University, Canberra, ACT 

2601, Australia. 

Corresponding author: david.blair@anu.edu.au 

 

ABSTRACT  
Understanding the impacts of natural and human disturbances on forest biota is critical for 

improving forest management. Many studies have examined the separate impacts on fauna and flora 

of wildfire, conventional logging and salvage logging, but empirical comparisons across a broad 

gradient of simultaneous disturbances are lacking. We quantified species richness and frequency of 

occurrence of vascular plants, and functional group responses, across a gradient of disturbances that 

occurred concurrently in 2009 in the Mountain Ash forests of southeastern Australia. Our study 

encompassed replicated sites in undisturbed forest (~70 years post-fire), forest burned at low severity, 

forest burned at high severity, unburned forest that was clearcut logged, and forest burned at high 

severity that was clearcut salvage logged post-fire. All sites were sampled two and three years post-

fire.  

Mean species richness decreased across the disturbance gradient from 30.1 spp/site on low 

severity burned sites and 28.9 spp/site on high severity burned sites, to 25.1 spp/site on clearcut sites 

and 21.7 spp/site on salvage logged sites. Low severity burned sites were significantly more species-

rich than clearcut sites and salvage logged sites; high severity burned sites supported greater species 

richness than salvage logged sites. 

Specific traits influenced species’ sensitivity to disturbance. Resprouting species dominated 

undisturbed Mountain Ash forests, but declined significantly across the gradient. Fern and midstory 

trees decreased significantly in frequency of occurrence across the gradient. Ferns (excluding 

Bracken) decreased from 34% of plants in undisturbed forest to 3% on salvage logged sites. High 

severity burned sites supported a greater frequency of occurrence and species richness of midstory 

mailto:david.blair@anu.edu.au
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trees compared to clearcut and salvage logged sites. Salvage logging supported fewer midstory trees 

than any other disturbance category, and were distinctly different from clearcut sites. Plant life form 

groups, including midstory trees, shrubs and ferns, were dominated by very few species on logged 

sites.  

The differences in biotic response across the gradient of natural and human disturbances have 

significant management implications, particularly the need to reduce mechanical disturbance overall 

and to leave specific areas with no mechanical disturbance across the cut area during logging 

operations, to ensure the persistence of resprouting taxa. 

 

Key words: wildfire, regeneration strategies, plant attributes, post-disturbance, clearcut logging, 

species richness, Eucalyptus regnans. 

 

INTRODUCTION 
Disturbance is a primary driver of forest dynamics around the world, with species composition 

and vegetation structure influenced by the type, scale, intensity and frequency of the disturbances 

(Shugart 1984, Ross et al. 2002, Baker et al. 2004, Shea et al. 2004, Leverkus et al. 2014, Zhang et al. 

2014). Because of this, the regeneration and species recovery processes following natural disturbances 

such as fire or wind have been well studied (Turner et al. 1998, Lindenmayer and Franklin 2002) as 

have the same processes following logging, including salvage logging (Lindenmayer et al. 2008, 

Neyland and Jarman 2011).  

Understanding biotic responses to various disturbance regimes is becoming increasingly 

important around the world given the extent and frequency of human disturbance such as logging 

(Millennium Ecosystem Assessment 2005, Hansen et al. 2013, Mackey et al. 2014) as well as 

increases in the frequency and severity of ‘natural’ disturbances due to climate change (Allen et al. 

2010, Williams et al. 2013, Seidl et al. 2014b). To address key questions associated with the effects of 

disturbance on biodiversity, we took advantage of a combination of circumstances that allowed us to 

compare both fire (at two intensities) and logging (clearcutting of green forest and salvage logging of 

burned forest). With extensive stands of even aged forest in the study area (regeneration from large 

fires in 1939), we were able to select sites where the overstory age was uniform, thereby controlling 

for forest age. Due to the broad scale of the fires, yet with continued logging across this period in 

unburnt areas, we were also able to select sites where the disturbances across all treatments occurred 

simultaneously. This led to a powerful analysis of different disturbance types and allowed us to make 

inferences relating to general disturbance theories and the conservation significance of such impacts 

while controlling for many factors that can otherwise influence plant responses. Our work focused on 

the response of vascular plants in the Mountain Ash (Eucalyptus regnans) forests of south-eastern 

Australia. An extensive wildfire in 70 year-old even aged stands in 2009, and ongoing logging in the 
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area, enabled us to document plant responses on sites subject to different kinds of disturbances, 

including: (1) undisturbed forest, (2) forest burned at low severity, (3) forest burned at high 

severity, (4) unburned forest subject to conventional (green) clearcut logging, and (5) forest burned 

at high severity and then clearcut by post-fire salvage logging. We quantified plant species richness 

and the frequency of occurrence of plants in reproductive functional groups and life forms which 

allowed us to consider disturbance theory implications and to address two inter-related questions: 

 

Question 1: What is the response of plant species richness to a gradient of disturbance severity 

from undisturbed forest through to post-fire salvage logging?  

We hypothesised that overall plant species richness would not decline significantly in response 

to wildfire, irrespective of severity. However, we expected the impacts of logging to differ 

qualitatively and quantitatively from those of fire. This is because plants that persist in Mountain Ash 

forests are broadly adapted to infrequent but severe fire (Ashton and Martin 1996). Nearly all the late 

successional species that are found in the cool temperate rainforests further south in Tasmania, have 

already been extirpated from the forests of Victoria by previous fires over thousands of years (Read 

and Hill 1985). Indeed, following more closely to initial floristic composition theory (Wilson et al. 

1992), we predicted overall species richness would increase when compared to undisturbed forest due 

to the influx of early successional species which may be largely absent from long unburnt forest 

(Martín‐Queller et al. 2013, Leverkus et al. 2014).  

Our predictions about the impacts of logging were more tentative. We expected the absence of 

some persistent species that may return in the longer term (Purdon et al. 2004, Lang et al. 2009), 

while transitory, early colonising species may appear in sufficient numbers to replace these species 

(Fedrowitz et al. 2014). We predicted similar results for post-fire salvage logging, but with additional 

persistent species lost due to the order of the rapid double disturbance of mechanical logging 

occurring when the forest is in the early stages of regenerating post wildfire (Van Nieuwstadt et al. 

2001, Lindenmayer and Ough 2006, Brewer et al. 2012). This would lead to more homogeneous 

forest stands (D’Amato et al. 2011) although Kurulok and Macdonald (2007) found this not to be the 

case in boreal forests in Canada, nor did several other studies where wind was the main form of 

natural disturbance (Elliott et al. 2002, Laing et al. 2011). 

 

Question 2: Are there differences in response to the disturbance gradient from different plant 

functional groups?  

All plant species within Mountain Ash forests have evolved in the presence of fire as a major 

form of natural disturbance (Smith et al. 2014). Two key plant response strategies to fire are 

resprouting and germination from seed stored in various locations (e.g. on the plant, in the soil or off 

site) (Pausas and Keeley 2014). We postulated that these different regeneration strategies may make 

some species susceptible to the effects of mechanical disturbance associated with logging, with 
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resprouting species in particular more likely to be negatively affected by conventional logging and 

salvage logging than by fire (McIver et al. 2000, Lindenmayer and Ough 2006, Cannon and Brewer 

2013).  

Not all disturbances in natural forests are equal in terms of their potential effects on plant biota 

(Shea et al. 2004). Salvage logging following disturbances such as fire is common (Lindenmayer et al. 

2008), and likely to increase in future (Seidl et al. 2014b). Our study is therefore important for 

informing forest managers about the response of plant biota to different kinds of disturbances, 

including those of high intensity such as salvage logging. 

 

METHODS 
Study area and forest management 

We conducted this study in the Mountain Ash (Eucalyptus regnans F. Muell) forests of the 

Victorian Central Highlands, 60-120km east of Melbourne in south-eastern Australia (Figure 1). 

These forests receive high rainfall (750-1700mm per annum) and are found at altitudes ranging from 

150-1100m (Boland et al. 2006). Mountain Ash forests are characterised by hot and periodically dry 

summers, and are subject to infrequent, severe wildfires (Victorian Government DELWP 2014). 

Large stand-replacing wildfires in these forests have historically had an average return interval of 75-

150 years (McCarthy et al. 1999). 

 
Figure 1: Maps of study area showing location of sites 
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Mountain Ash is an obligate seeder, with individuals usually killed by large crown fires and 

seedlings establishing in the nutrient rich ash bed (Attiwill and Leeper 1987). One such fire in 1939 

was severe and widespread, burning 79% of the Central Highlands region (Land Conservation 

Council 1994) leading to numerous and widespread stands of trees that are now ~76 years old. In 

February 2009, wildfire burned large areas of forest which had previously burned in 1939 (Cruz et al. 

2012, Burns et al. 2015a).  

The usual silvicultural technique applied in Mountain Ash forests is clearcut logging. This 

involves the cutting of all overstory trees (eucalypts) usually by mechanical harvesters. De-barked and 

de-limbed logs are then dragged along skid trails to a central landing where they are loaded onto 

trucks. The remaining slash (tree heads, bark and non-commercial species) is left broadcast across the 

cutblock and allowed to dry, typically for 6 months, before being burnt in a high intensity 

‘regeneration burn’. The cutblock is then sown with seed of the overstory eucalypt species, usually by 

helicopter (Bassett et al. 2015, Victorian Government VicForests 2015).  

Salvage logging has been conducted in Mountain Ash forests following every major fire since 

1926 (Noble 1977, Lindenmayer and Ough 2006). Salvage logging is clearcut logging which directly 

follows a high severity wildfire. The harvest method is the same with the exception that slash is not 

burnt if regeneration from the initial wildfire is adequate; if it is not, then a broadcast burn is applied 

along with aerial seeding. Slash is not windrowed or heaped. All of our salvage logged sites were 

harvested within 18 months of the 2009 fire.  

 

Study design 

We designed our study around sets of replicate sites in five broad categories of disturbance. 

These were: (1) undisturbed (unlogged and unburned for 70 years); (2) burned at low severity in 

2009; (3) burned at high severity in 2009; (4) green clearcut (not burned before harvesting in 2009); 

and (5) salvage logged after being burned at high severity in the 2009 wildfire.  

We selected our undisturbed and burned sites from amongst 175 long term monitoring sites 

from a larger project, selecting those with uniform eucalypt overstory tree species and age class 

(regrowth from a fire in 1939) and where fire severity was uniform across a given site. We measured 

fire severity on the ground at all sites within two months of the fire in 2009. High severity fire 

resulted in tree death from scorch or the consumption of the majority of the overstory canopy while in 

low severity fire, the overstory canopy remained green. Logged sites also were chosen for uniform 

age class as well as those harvested closest to the date of the fire. 

The 57 sites selected for this study were surveyed between March and June in 2011 and again 

in the same months in 2012 (Table 1). 

 

Table 1: Descriptions of disturbance classes and number of sites per class. 
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Description Undisturbed/ 
Unburnt 

Low severity High 
severity 

Clearcut Salvage 

No. sites 14 7 7 22 7 
Burnt 2009 No, still green Yes, low 

severity 
Yes, high 
severity 

No Yes, high 
severity 

Logging None None None Clearcut in 
2009 

Clearcut in 2009 
or 2010 post fire 

 

A key strength of our research was that we controlled for forest age, which is important as 

forest structure and species composition can vary with forest age (Lindenmayer et al. 2000, 

Lindenmayer and Franklin 2002, Trotsiuk et al. 2012).  

 

Site design and survey methods 

Each of our 57 field sites was established in an identical way. Each site was 1 hectare in size 

(100m x 100m) with a central 100m long transect running perpendicular from the middle of the site’s 

front edge. All sites were buffered around the transect by a minimum of 100m of uniform forest 

disturbance to reduce edge effects from adjacent forest with different disturbance history. We 

established three 10m x 10m plots straddling this transect between 10-20m, 50-60m and 90-100m. 

The first plot (10-20m) was set back from the site’s edge to reduce edge effects. (See Appendix S9 for 

details of the environmental variables of the sites.) We recorded the presence or absence of each 

species from these plots as well as any species within 5m of either side of the central transect. We 

counted only live plants. For logged sites, the 100m transect was located away from uncut edges and 

the log landing, and was positioned without consideration of skid trails, but in a proportion that was 

representative of the overall cut area. 

 

Plant species richness 

To measure species richness, we recorded the presence of all vascular plant species 5m either 

side of the permanent 100 m transect on each site in 2011 and again in 2012. Thus, for the 57 sites, 

the maximum number of occurrences recorded for any particular species could be 114 (57 sites x 1 

transect x 2 years).  

 

Regeneration strategy functional group 

Overall species richness was the count of the total number of species. However, we are aware 

that this measure can be strongly influenced, for example, by a pulse of short-lived invasive species 

immediately post disturbance (Alba et al. 2015). For this reason, we quantified frequency of 

occurrence within functional groups. We examined the responses of plants characterised by different 

reproductive strategies and physical life forms to determine if any particular groups of taxa was 

impacted disproportionately. 
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We assigned plant species to one of nine functional groups based on regeneration strategy 

(including dispersal) and whether they were persistent species (usually capable of persisting for 

decades post disturbance without additional disturbance) or transitory species (flourish with 

disturbance but do not usually persist beyond several years, otherwise known as ruderal species). 

These groups were: (1) transitory, blow-in seed; (2) transitory, on-site seed; (3) persistent, blow-

in seed; (4) persistent, on-site seed; (5) persistent, ‘none’ (no defined strategy); (6) persistent, seed 

and sprout; (7) persistent, sprout; (8) exotic; and (9) edge (see Appendix S7). Seed and sprout 

species regularly reproduce from both seed and resprouting. Due to the low numbers in this group (7 

species), and not wanting to dilute the sprout-only group, we combined them into the larger ‘persistent 

on-site seed’ group. The forests of these areas have very few weeds or alien species. All species in 

groups 1-7 above, are locally native species, including all the ruderals (Mueck 1990). The ‘exotic’ 

group included every exotic (not locally native) species (12 species) irrespective of reproduction 

method. The two ‘edge’ species were excluded from analysis as they occur only on roadsides and not 

more broadly across forested sites. We assigned plant species to categories by field observation, 

consultation with staff from the Melbourne Botanical Gardens and literature review (Walsh and 

Entwisle 1994, 1996, 1997, Costermans 2009, Bull and Stolfo 2014). 

 

Life form/physical functional groups 

We assigned plants to functional groups according to their physical life form, including: (1) 

Eucalypts (overstory); (2) Acacia; (3) midstory trees; (4) shrubs; (5) ferns; (6) herbs; (7) climbers; 

(8) graminoids; and (9) exotic. Again, all species in all groups except ‘exotic’ are locally native 

species. These nine groups were based on classifications by the Victorian State Government 

Department of Environment, Water, Land and Planning (DELWP) Highlands – Southern Fall 

Bioregion Ecological Vegetation Class (EVC) (Victorian Government 2015). Eucalypts (represented 

by species within genera Eucalyptus) and Acacia are not life forms as such. However, we used these 

groups because Eucalyptus is the sole genus represented in the overstory, and while Acacias are a 

midstory tree, they are often taller than other midstory trees and, more importantly, have specific 

ecological roles, such as nitrogen fixation, that we determined would be valuable to identify for this 

study. 

To facilitate analysis of life form and regeneration strategy functional groups, we used data 

gathered at the plot level for each site in 2011 and 2012. This was presence/absence data for each 

species, collected across 3 plots (10m x 10m) per site, to give a measure of frequency of occurrence. 

We did not count individual plants within these plots because we were surveying all vascular plant 

species and, for many species, this would not be feasible due to counts in the hundreds or thousands 

on each plot (e.g. grasses, herbs, ground ferns, seedlings). We then divided the number of occurrences 

of plants within any particular life form group by the overall plant occurrences for that disturbance 

category to estimate the proportion of plants within each group. 
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Statistical analyses 

The analysis for species richness and frequency of occurrence were modelled at the site level 

with values at this level compared among disturbance classes. We quantified overall species richness 

among the five disturbance categories using a Generalised Linear Mixed Model (GLMM) with a 

Poisson distribution and log link to species richness with site as a random effect. The site-level 

random effect allowed for over-dispersion relative to the Poisson distribution. The analysis was 

completed in R (version 3.0.2) (R Core Team 2015) using the lme4 package (Bates et al. 2014).  

A separate analysis (using GLMM with binomial distribution and logistic link function) was 

completed for frequency of occurrence within each functional group where we performed the analysis 

at the plot level within each site (as opposed to transect level as was used for species richness), 

collapsing two years of observations together, resulting in the number of occurrences of the species 

for each site to be a value out of six (3 plots x 2 years).  

We did not formally include model aggregation and spatial dependence in our models; rather we 

assessed the degree of spatial dependence present in the residuals of our model fits. We did this by 

inspecting the variogram (Schabenberger and Gotway 2005) of the residuals for evidence of sill 

effects. Visual inspection of the variograms of the residuals did not reveal any evidence of sill effects. 

We took this as evidence of there not being any appreciable effect of aggregation. We employed 

Fisher’s Least Significant Differences (LSD) to assess significant differences among disturbance 

classes. Formally, this means, we assessed the effect of the disturbance gradient overall and if the 

results were significant at this first stage, we then determined which levels of disturbance were 

different from each other. If the overall effect of the disturbance gradient was not deemed significant, 

we concluded there were no differences among levels of disturbance. 

 

RESULTS 
Species richness and disturbance 

We identified 121 plant species across the 57 sites in our five disturbance classes (Appendix 

S7). A gradient in overall species richness was apparent for the four disturbance categories (i.e. 

excluding stands of undisturbed 1939 regrowth) (Figure 2). Sites subject to low severity fire supported 

the most species (30.1 ±4.2 species/site on average ±SD), followed by sites subject to high severity 

fire (28.9 ±4.1), then clearcut sites (25.1 ±2.1) and salvage logged sites (21.7 ±3.5).  
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Figure 2: Average species richness with 95% confidence intervals of vascular plants per site across a 

gradient of increasing disturbance intensity showing total species richness and species richness for 

functional groups including persistent seeder, persistent sprouter and transitory species. 

 

We identified no significant differences in species richness between low severity burned and 

high severity burned sites, but differences in species richness were significant between low severity 

burned sites and clearcut sites (p=0.045) and low severity burned sites and salvage logged sites 

(p=0.006) (Appendix S2). There also was a significant difference between high severity burned and 

salvage logged sites (p=0.019). Undisturbed sites supported an average of 23.5 (± 2.6) species/site and 

were significantly less species-rich than sites subject to low severity fire (p=0.012) and high severity 

fire (p=0.042), but not significantly different from either clearcut or salvage logged sites. 

With the exception of the undisturbed sites, we identified a clear disturbance gradient for the 

persistent re-sprouting and seeding groups (Figure 2). While transitory species were abundant on 

burnt and clearcut logged sites, the group was not diverse. All disturbance categories were represented 

by relatively few species on average, but the burnt and clearcut sites had greater species richness than 

undisturbed and salvage logged sites (Figure 2; Appendix S1). 

 

Species frequency of occurrence of life form 

The occurrence of eucalypts was uniform with no significant differences between any of the 

disturbance classes, although the physical size of the trees varied from 2-3 year old (3-6m tall) 

saplings (high severity burnt and logged sites) to 75 year old, 65m tall mature trees (undisturbed and 

low severity, see Figure 3 and Figure 4 and Appendix S3 and S4). Acacia spp. trees were significantly 

more abundant on clearcut sites than on low severity burned sites or undisturbed sites (p<0.05), see 



18 | P a g e  
 

Figure 5. The frequency of occurrence of midstory tree species (which includes tree ferns) exhibited a 

significant decline across the disturbance gradient (Figure 6) with high severity burned sites 

supporting a greater proportion of midstory trees than sites subject to either clearcutting (p=0.0005) or 

salvage logging (p=0.0001). Salvage logged sites also supported significantly (p<0.05) fewer 

midstory trees than all other disturbance categories (other than sites which had been clearcut; Figure 

3). Shrubs showed no significant differences in frequency of occurrence across the sites except for 

those subject to salvage logging (Figure 7), which supported a greater frequency of occurrence of 

shrubs than undisturbed sites (p<0.05). Ferns comprised a high proportion of the undisturbed forest 

species composition and showed the strongest decline across the disturbance gradient (Figure 3 and 

Figure 8). Differences in the frequency of occurrence of ferns between the undisturbed category and 

all other disturbance categories were significant (p<0.05). When Bracken (Pteridium esculentum) was 

excluded, high burn severity and conventionally clearcut sites supported significantly fewer ferns 

compared from sites that were undisturbed or subject to low severity fire (p<0.05). Salvage logged 

sites supported significantly fewer ferns than all other disturbance categories (p<0.05) including 

clearcut sites. Bracken was excluded from some analysis (ferns and resprouters) due to it being a 

“weedy colonizer” of open ground, where it can tolerate full sunlight and be extremely abundant 

(Walsh and Entwisle 1994). This is quite different to the other ground ferns which tend to require 

shading. Given the dominance of Bracken on clearcut sites and salvage logged sites, for comparison, 

we removed it from the overall sprouting and fern functional groups to allow us to quantify responses 

without Bracken, particularly when examining fern frequency of occurrence. Herbs were significantly 

less abundant on undisturbed sites (see Figure 9) compared to all other disturbance categories 

(p<0.0001). Low severity burn sites were characterised by a significantly greater (p<0.05) frequency 

of occurrence of herbs relative to high severity, clearcut or salvage logged sites. There was no 

significant difference between these last three of the disturbance categories. Climbers were more 

common in low severity burned sites than either undisturbed or clearcut sites (p<0.05) and salvage 

logged sites had more than clearcut sites (p=0.04, see Figure 10). Graminoids were more abundant on 

high severity burned sites than undisturbed sites (p=0.007, see Figure 11). Exotic species are 

discussed in the following section. 
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Figure 3: Frequency of occurrence of each life form group within each disturbance class as a 

proportion of the total frequency of occurrence (of all functional groups combined for that disturbance 

class) 

 

 
Figure 4: Relative change for Eucalypt life form group with statistical differences between 

disturbance classes indicated by 95% confidence intervals 
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Figure 5: Relative change for Acacia life form group with statistical differences between disturbance 

classes indicated by 95% confidence intervals 

 

 
Figure 6: Relative change for Midstory Tree life form group with statistical differences between 

disturbance classes indicated by 95% confidence intervals 
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Figure 7: Relative change for Shrub life form group with statistical differences between disturbance 

classes indicated by 95% confidence intervals 

 

 
Figure 8: Relative change for Fern life form group with statistical differences between disturbance 

classes indicated by 95% confidence intervals 
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Figure 9: Relative change for Herb life form group with statistical differences between disturbance 

classes indicated by 95% confidence intervals 

 

 
Figure 10: Relative change for Climber life form group with statistical differences between 

disturbance classes indicated by 95% confidence intervals 
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Figure 11: Relative change for Graminoid life form group with statistical differences between 

disturbance classes indicated by 95% confidence intervals 

 

Species frequency of occurrence by regeneration strategy 

We found that plants in the persistent resprouting functional group dominated undisturbed 

forest and members of this group were likewise highly abundant on sites subject to either low or high 

severity fire (Figure 12 and Figure 13; Appendix S5). Sites in non-logged disturbance classes 

(undisturbed, low severity and high severity burned) were characterised by a significantly (p<0.0001) 

greater frequency of occurrence of persistent resprouting species when compared to the two logged 

classes (clearcut and salvage logged sites). Clearcut sites supported significantly greater numbers of 

resprouting species than salvage logged sites (p=0.003). Despite such significant results, effects 

within the sprouting group were masked by the occurrence of Bracken. Bracken was only moderately 

common in long unburnt forest (accounting for 13% of all fern occurrences, compared to 64% on 

clearcut sites and 93% on salvage logged sites). When we removed Bracken from the analysis of 

persistent sprouting species, the overall decline in ferns across the gradient was far more pronounced 

than when Bracken was included (see the comparison with and without Bracken, Figure 12). The 

frequency of occurrence of persistent on-site seeding species varied little between sites in different 

disturbance classes (Figure 14) with the only significant result being on sites subject to high severity 

fire which were characterized by supporting a greater frequency of occurrence of this group than 

undisturbed sites (p<0.05). Persistent ‘other’ species were favoured by low severity burns, and were 

significantly (p<0.05) more abundant on sites in this disturbance class than on sites that were 

undisturbed or subject to clearcutting and salvage logging (see Figure 15). Persistent blow-in species 

showed no variation across disturbance classes for frequency of occurrence (Figure 12 and Figure 16). 
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Exotic species were significantly (p<0.05) more abundant on the logged and high severity burnt sites 

than undisturbed sites and sites subject to low severity fire (Figure 17). 

 

 
Figure 12: Frequency of occurrence of each regeneration strategy functional group within each 

disturbance class as a proportion of the overall frequency of occurrence (of all functional groups 

combined for that disturbance class) 

 

 
Figure 13: Relative change for Persistent sprout reproductive strategy group with statistical 

differences between disturbance classes indicated by 95% confidence intervals 
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Figure 14: Relative change for Persistent on-site seed reproductive strategy group with statistical 

differences between disturbance classes indicated by 95% confidence intervals 

 

 
Figure 15: Relative change for Persistent ‘none’ (no defined strategy) reproductive strategy group 

with statistical differences between disturbance classes indicated by 95% confidence intervals 
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Figure 16: Relative change for Persistent blow-in seed reproductive strategy group with statistical 

differences between disturbance classes indicated by 95% confidence intervals 

 

 
Figure 17: Relative change for Exotic reproductive strategy group with statistical differences between 

disturbance classes indicated by 95% confidence intervals 

 

Results were very similar for the two groups of transitory species, onsite seeders (Figure 18) 

and blow-in seeders (Figure 19)(see also Figure 12). Transitory species (blow-in and on-site seeders), 

were virtually absent on undisturbed sites (0.8% of all plants observed), and were significantly less 

abundant than on the disturbed sites (p<0.0001). We found significantly fewer transitory blow-in 
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seeders on salvage logged sites (p<0.05) compared to other disturbed sites, while clearcut sites 

supported the highest proportional frequency of occurrence of these species.  

 

 
Figure 18: Relative change for Transient on-site seed reproductive strategy group with statistical 

differences between disturbance classes indicated by 95% confidence intervals 

 

 
Figure 19: Relative change for Transient blow-in seed reproductive strategy group with statistical 

differences between disturbance classes indicated by 95% confidence intervals 

 

DISCUSSION 
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The relationship between disturbance and measures of diversity is a central theme for our 

understanding of ecology and management of natural systems. Disturbance is often complex and 

multi-faceted and Diversity-Disturbance Relationships (DDRs) have been found to encompass a range 

of different relationship curves (Miller et al. 2011). The most recognised of these, the ‘peaked’ curve 

of the Intermediate Disturbance Hypothesis where maximum diversity comes from intermediate levels 

of disturbance (Bongers et al. 2009), has a long history (Connell 1978), but also many critics (Mackey 

and Currie 2001). One of the difficulties with determining a DDR is identifying which factors are 

genuinely influential and to which species or functional groups (Shea et al. 2004). Within the context 

of a constant fire history (uniform 70-year most recent inter-fire interval), variation in severity of a 

natural fire event had no significant impact on plant diversity, but disturbance type had significant 

impacts on species richness, functional groups and life forms of plants. Our findings have important 

implications for understanding the ecological impacts of logging, particularly in ecosystems affected 

by fire, and how they relate to variation in disturbance severity within natural forest disturbance 

regimes. 

 

Disturbance gradient and plant species richness 

Through this investigation, we found the existence of a forest disturbance gradient with 

ecological impacts increasing from low severity fire, high fire severity fire to clearcut logging of 

unburnt forest and finally salvage logging. Species richness declined across this gradient with salvage 

logging having the most pronounced negative effect of all the disturbance types we examined. The 

result was an overall simplification of the forest ecosystem due to logging and salvage logging in 

particular. 

As is often the case, our results did not fit neatly into a single DDR, but rather needed a range 

of explanatory factors. These included frequency, intensity and type of disturbance, and also order in 

which disturbances occurred.  

Our study did not test the effects of variation in long-term disturbance frequency, but our 

findings of lower species richness on sites subjected to rapid double disturbance (logging classes) 

were consistent with disturbance theory (Roxburgh et al. 2004). However, frequency alone should 

have resulted in both burned categories being equal and both logged categories being equal, which 

they were not. 

Intensity of the disturbance resulted in a minor separation of the fire severity categories. 

However, the effect of intensity for the two logging categories is far more subjective as we did not 

directly measure this. Both involved clearcutting the forest and a high intensity fire, so it is likely 

disturbance intensity was similar for these two categories. 

Despite the two logging categories having similar disturbance frequencies, disturbance types 

(fire and logging) and presumably intensity, our results clearly showed them to be different. We 

believe the critical difference between green clearcutting and salvage logging was the order in which 
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the disturbances occurred. In the Mountain Ash forests, germination is primarily triggered by fire. On 

our green clearcut sites, fire came after the mechanical disturbance of logging so, once triggered, the 

regeneration was then left undisturbed. On the salvage logged sites however, fire triggered a 

regeneration cohort, which was subsequently mechanically disturbed. It appears this, rather than any 

particular DDR, has separated the two logged categories, as found by others (Greene et al. 2006, 

Lindenmayer and Ough 2006, Palik and Kastendick 2009, D’Amato et al. 2011).  

The decrease in species richness in relation to disturbance intensity appears to be common in 

other ecosystems. For example, Rao et al. (1990) found decreasing diversity and increasing 

dominance by fewer species across human-induced disturbance gradients of clearing for agriculture in 

Indian forests. Brewer et al. (2012) found limited decreases in species richness but a shift from 

persistent species to ruderals after salvage logging post tornado disturbance in Mississippi, USA. 

Leverkus et al. (2014) found decreases in species richness, Shannon diversity, and cover in plant 

communities as a result of salvage logging in the Sierra Nevada of southern Spain. In other forests, 

salvage logging has been used as a management tool to select for certain species (Palik and 

Kastendick 2009) or forest characteristics such as the creation of high stem densities (Greene et al. 

2006) or homogeneous stands (D’Amato et al. 2011). Similar findings for reduced species richness 

have been quantified in Australian grasslands in response to a gradient in grazing pressure by 

domestic livestock (Fensham et al. 1999).  

The fundamental difference between fire and the physical disturbance of logging may explain 

why results from salvage logging after fire disturbances are generally more consistent in the literature 

compared to the highly variable impacts of wind storms and subsequent salvage logging. Some 

studies show negative impacts of salvage logging compared to unlogged areas (Foster and Orwig 

2006, Rumbaitis del Rio 2006), others are characterized by increased values for some diversity 

measures (Elliott et al. 2002, Laing et al. 2011, Morimoto et al. 2011), while yet others show no 

difference between the two disturbance types (Nelson et al. 2008, Lang et al. 2009, Palik and 

Kastendick 2009, Kramer et al. 2014). 

Our data indicated that overall plant species richness increased with fire and logging when 

long-term persisting species were joined by a pulse of ruderal species that either blew in from outside, 

or were present in the seedbank prior to disturbance. However, the presence of these transitory species 

masked the losses of several persistent species, particularly ferns (other than Bracken fern) and 

midstory trees, which were lost primarily from clearcut and/or salvage logged areas (see Appendix 

S3). This is the result of greatest conservation significance as in such tall forests, having midstory 

trees mostly absent creates a vertical gap between overstory eucalypts (with canopies generally 40-

70m above the ground) and the shrub layer (which is generally 5m tall or less). It also reduces food 

variability and availability. This shows that while overall species richness is a useful metric, it does 

not capture changes in plant community composition in response to disturbance type, nor does it 

explain changes that may occur in the dominance of different functional groups or life forms. 
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We suggest that high levels of plant species richness on low severity burned sites was probably 

due to fern dominance being reduced while strong suppression from the tree regeneration cohort seen 

on high severity and logged sites was largely missing from low severity burned sites. Both factors 

allowed the diverse groundstory plants to flourish with reduced competition for light and moisture 

(Walsh and Entwisle 1994, North et al. 2005). 

 

Disturbance gradient, functional groups and frequency of occurrence 

The magnitude of effects of disturbance became more pronounced when we separated plants 

into life forms (Figures 3 to 11) and functional groups based on regeneration strategy (Figures 12 to 

19).  

 

Acacia, herbs, graminoids and climbers 

Acacia occurred least frequently on sites where disturbance was insufficient to trigger a new 

cohort (Figure 5). Undisturbed sites and low severity burned sites had fewer Acacia than the other 

three disturbance classes, and the Acacias on these sites tended to be large old mature trees that were 

senescing. The herb layer appears to respond positively to disturbance, and in particular, intermediate 

levels of disturbance. Long undisturbed sites had fewest herbs present with the ground layer 

dominated by ferns. In contrast, low severity burned sites consistently had the highest herb 

abundance. On these sites, fern cover was reduced and light infiltration increased, but the moderate 

level of disturbance allowed herbs to persist in forms that could rapidly recolonise or recover. High 

disturbance classes of clearcut, high severity burned and salvage logged sites fell between these two 

extremes (see Figure 9). Graminioids were little affected by the different disturbance classes (Figure 

11) with flushes of common post disturbance grasses such as Dryopoa occurring across the majority 

of disturbed sites. Climbers were represented by only 4 species in these forests and showed limited 

trends in response to the different disturbance levels (Figure 10). 

 

Transitory and persistent seeding species 

Transitory species by definition are short lived and do not generally persist on sites in the long 

term. It was unsurprising both the transitory on-site seeding and transitory blow-in seed species were 

significantly less common on the undisturbed sites compared to all other disturbance classes. For the 

on-site seeding species (which were mostly herbs), there were no significant differences between the 

disturbed sites (Figure 18), indicating tolerance to a range of disturbance levels. However, in the 

blow-in transitory species group, in addition to undisturbed sites, sites subject to salvage logging also 

supported significantly fewer of these species than other disturbance classes (Figure 19). All species 

within this group were Senecio (fireweeds) and are usually a strong colonisers of disturbed land. This 

unexpected result may have been due to Senecio plants not being in seed when the salvage logged 

coupes were harvested. 



31 | P a g e  
 

Persistent species generally became more common on the four disturbed site classes due to a 

new cohort having germinated on these sites. On-site seeders all fared equally well across the 

disturbance gradient (Figure 14), while those that blew in (Figure 16) tended to be favored by the 

more highly disturbed sites, presumably those with the greatest reduction in competition. This group 

was represented by five species, all of which are shrubs that behave in an invasive manner, including 

Cassinia and Oleria phlogopappa. Surprisingly, high severity burned sites did not support large 

numbers of these species (similar to undisturbed sites), which may have been due to competition with 

other shrub and midstory species that survived better on these sites than on the logged sites (see 

section below). The persistent ‘none’ group (Figure 15) is a highly diverse group with over 30 species 

and covering all life forms except eucalypts and acacias and, as such, it is difficult to draw strong 

conclusions other than, similar to herbs, they seem to benefit from intermediate disturbance given low 

severity burned sites were the only sites to have significantly greater numbers of this group.  

 

 Exotic species 

Exotic species are relatively uncommon in these forests, but as with transitory species, exotic 

species generally favoured disturbance with lowest occurrences on undisturbed and low severity 

burned sites and high severity burned, salvage logged and clearcut sites all having greater abundance 

of the range of exotic weed species. 

 

Midstory trees, ferns and persistent sprouting species 

Persistent sprouting species (Figure 13), ferns (Figure 8) and midstory trees (Figure 6) were 

significantly negatively affected across the disturbance gradient, with several species such as 

Nothofagus cunninghamii and Pittosporum bicolor that were present in all unlogged categories being 

totally absent from logged areas. Salvage logging had particularly noticeable impacts on otherwise 

common midstory trees such as Bedfordia arborescens, Cyathea australis, Hedycarya angustifolia, 

Lomatia fraseri, Notelaea ligustrina and Tasmannia lanceolata. The loss of these midstory trees from 

logged areas fundamentally changes the structure of the forest; however, provided they are still in the 

surrounding area, these ‘missing species’ may colonize such areas after a period of decades, which 

would be consistent with other studies showing the impact of logging disturbance decline over time 

(Purdon et al. 2004, Lang et al. 2009). Each of these species was absent from salvage logged sites but 

present on sites in all other disturbance classes. Even common ground ferns like Blechnum wattsii that 

were present on all sites, were absent from areas subject to salvage logging. We suggest these results 

are due to the physical uprooting of these species during logging which then makes them prone to 

desiccation or burning in post-logging regeneration burns (Ough and Murphy 2004). This is a similar 

result to what Stuart et al. (1993) found in Douglas-fir (Pseudotsuga menziesii) forests in California, 

USA, Purdon et al. (2004) found in Quebec, Canada, and Van Nieuwstadt et al. (2001) found in 

Indonesian East Kalimantan, all involving salvage logging after fire. Such susceptibility to salvage 
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logging may occur in many forest ecosystems around the world, particularly those where fire is the 

primary type of disturbance.  

We found that the impacts of both clearcutting and salvage logging on particular functional 

groups of plants became increasingly apparent when a range of measures of biotic response were 

explored. 

 

 
Figure 20: Fern and Midstory Tree proportional frequency of occurrence and species richness 

comparison for each disturbance class (conceptual diagram based on our data). The diagram shows 

the simplification of the fern and midstory strata through the loss of species such as Blechnum, 

Tasmannia, Cyathea and Nothofagus when the forest is clearcut or salvage logged compared to burnt 

and undisturbed forest. It also shows the increased relative abundance of a small number of species 

such as Pteridium (Bracken) and Pomaderris on the logged sites that become highly dominant when 

compared to their moderate abundance on burnt and undisturbed sites. 

 

 Figure 20 is a conceptual diagram of the disturbance classes showing the relative frequency of 

occurrence of the dominant fern and midstory tree species, and highlights the primary conservation 

concern drawn from this study, that of simplification of forest across the disturbance gradient. There 

also was a marked shift across the disturbance gradient from species that regenerate by resprouting to 

those that regenerate from seed. On unlogged sites (i.e. those that were undisturbed, or subject to low 

severity and high severity fire) midstory trees were represented by 18 different species with a 

maximum frequency of occurrence of any one species being a quarter (27%) of all plants in this life 

form (Table 2). However, on logged sites, a single species, Pomaderris aspera, accounted for over 

half (56%) of all midstory trees on clearcut sites and more than three-quarters (79%) on salvage 

logged sites. Almost half (45%) of the species on the clearcut sites were represented by a single 

occurrence (i.e. just one individual), while on salvage logged sites, all of these species had been lost 

with the midstory tree group represented by only 3 species, and one of those (Dicksonia, which is the 

only resprouter of the three), by a single individual. Sites in all other disturbance classes supported a 
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minimum of 10 midstory tree species. The other common tree fern, Cyathea australis, was present on 

sites in all other disturbance classes (except salvage logged), although it was reduced on clearcut sites 

– a finding consistent with Ough and Murphy (2004). A similar result characterised the shrub 

category, where logged sites supported a higher frequency of occurrence of shrubs, but the high 

frequency of occurrence was dominated by very few species. 

 

Table 2: Percent frequency of individual midstory tree species, by disturbance classes 

Disturbance Midstory tree species % Frequency 
Undisturbed Dicksonia antarctica 27% 

Nothofagus cunninghamii 15% 
Cyathea australis 14% 
Prostanthera lasianthos 7% 
Tasmannia lanceolata 7% 
Pomaderris aspera 4% 

Low Severity Dicksonia antarctica 25% 
Pomaderris aspera 21% 
Bedfordia arborescens 11% 
Cyathea australis 11% 
Prostanthera lasianthos 11% 
Tasmannia lanceolata 11% 

High Severity Pomaderris aspera 26% 
Prostanthera lasianthos 17% 
Dicksonia antarctica 17% 
Lomatia fraseri 9% 
Hedycarya angustifolia 6% 
Nothofagus cunninghamii 6% 

Clearcut Pomaderris aspera 56% 
Prostanthera lasianthos 20% 
Dicksonia antarctica 10% 
Cyathea australis 5% 

Salvage Pomaderris aspera 79% 
Prostanthera lasianthos 16% 

 

We suggest that the simplification of plant biota observed in this investigation is likely to be 

repeated in other the forest ecosystems globally, where resprouting species comprise an important part 

of the plant assemblage. This includes wet tropical forests such as Brazilian Amazonia (Balch et al. 

2013), dry tropical forests of India (Mondal and Sukumar 2015) and many other nations (Pérez-

Harguindeguy et al. 2013). In contrast, some resprouting species such as Aspen (Populus tremuloides) 

in the boreal forests of North America can respond positively to salvage logging (Boucher et al. 

2014), provided mechanical disturbance of the soil is limited, otherwise stem densities can deline 

(Fraser et al. 2004).  

 

Implications for forest management and plant conservation 
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Our findings have several important implications for forest management around the world. 

First, our study demonstrates that the disturbance effects on plant assemblages from logging, and in 

particular those from salvage logging, often simplifies forest structure and species composition, 

particularly when it follows wildfire. This is likely to be the case for other forest ecosystems affected 

by wildfire (Lindenmayer et al. 2008) and, to a lesser extent, is likely for some other natural 

disturbances such as wind (Foster et al. 1997, Brewer et al. 2012). There will of course be exceptions 

where intense natural disturbances (for example volcanic eruptions) cause far greater impacts on 

diversity than any form of logging (Dale et al. 2005).  

Despite some studies concluding that the impacts of logging may be congruent with the impacts 

of wildfire (Attiwill 1994, Baker et al. 2004, Perera et al. 2007), the disproportionate loss of ferns and 

midstory trees and overall reduction in species richness indicates this is not the case in Mountain Ash 

forests. Post-fire salvage logging resulted in greater simplification of the forest when compared to 

conventional green forest clearcutting (Figure 20).  

Our study uncovered strong evidence of a large reduction in midstory trees from clearcutting 

and salvage logging. The midstory is a critical component of forest structure, providing many faunal 

species such as mammals (Seebeck et al. 1984, Grelle 2003, Lindenmayer et al. 2004) and birds 

(Laiolo 2002, Lindenmayer 2009) with food resources, nesting sites and a conduit for movement 

through the forest. Mechanical disturbance of the midstory and understory appears to be the primary 

factor leading to plant species loss in Mountain Ash forests when we compared logged sites to those 

burned by wildfire. Therefore, a key management strategy to limit impacts on potentially vulnerable 

plant functional groups would be to implement machinery exclusion zones that leave areas of forest 

undisturbed within and between cutblocks (Ough and Murphy 2004, Baker and Read 2011). Such 

undisturbed areas could have a secondary function of buffering old trees with cavities to enhance 

protection of these important habitat elements (Gustafsson et al. 2012, Lindenmayer et al. 2014) 

where they exist. We also recommend that post-logging assessments be broadened to include 

measures of species composition and monitoring of vulnerable species of the functional groups most 

affected by logging. In Mountain Ash ecosystems, there is a greater proportion of ruderal species 

compared to species which will return to a site only after a prolonged period post disturbance. Yet, 

when we closely examined plant functional group responses to determine which species were absent 

from all logged sites, none were transitory species, all were persistent species. Given the limited 

dispersal abilities of some of these persistent species, we predict that it may be many years before 

these species return, if ever. The large decrease in plant species richness following salvage logging is 

consistent with numerous studies from around the world (Van Nieuwstadt et al. 2001, Swanson et al. 

2010, Leverkus et al. 2014). 

Climate-induced natural disturbances are becoming more frequent and severe (Allen et al. 

2010, Seidl et al. 2014b) which is resulting in salvage logging becoming increasingly common 

worldwide. Environmental regulations for salvage logging are often less stringent than for traditional 
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logging (Lindenmayer et al. 2008). This is the case in many countries around the world, as well as in 

important international forest certification schemes (Forest Stewardship Council 2015). Given the 

disproportionately high levels of ecological impact on plant biota from this form of harvesting, we 

suggest that levels of environmental regulation associated with continued widespread salvage logging 

require serious reconsideration. 
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ABSTRACT 
Tree ferns are an important structural component of forests in many countries. However, 

because their regeneration is often unrelated to major disturbances, their age is often difficult to 

determine. In addition, rates of growth may not be uniform, which further complicates attempts to 

determine their age. In this study, we measured 5 years of growth of Cyathea australis and Dicksonia 

antarctica after a large wildfire in 2009 in south-eastern Australia. We found growth rates of these 

two species were unaffected by aspect and elevation but slope had a minor effect with D. antarctica 

growing 0.3mm faster for each additional degree of slope. Geographic location influenced growth in 

both species by up to 12 - 14mm/yr. The most consistent factor influencing growth rate, however, was 

initial height at the time of the 2009 fire; a finding consistent in both species and all geographic 

locations. For both tree fern species, individuals that were taller at the commencement of the study 

had greater overall growth for the duration of the study. This effect did not decrease even among the 

tallest tree ferns in our study (up to 6 metres tall). Overall, Cyathea australis averaged 73 (± 

22)mm/year of growth (± 1SD), with the rate increasing 5mm/yr per metre of additional height. 

Dicksonia antarctica averaged 33 (± 13)mm/year, increasing by 6mm/yr/m. Growth rates dependent 

on initial height were unexpected and we discuss possible reasons for this finding. Variable growth 

rates also suggest that common age estimation methods of dividing height by average growth rate are 

likely to underestimate the age of short tree ferns, while overestimating the age of tall tree ferns, 

particularly if they have been subject to a fire.  
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INTRODUCTION 
Tree ferns are found in wet forests worldwide, from tropical regions to cool temperate forests 

(Conant et al. 1995, Korall and Pryer 2014). Tree ferns are generally considered to be slow-growing, 

long-lived plants that do not require disturbance for reproduction, and as such, become increasingly 

common in the late successional stage of older forests (Ashton and Willis 1982, Lindenmayer et al. 

2000). Tree ferns often fill important physical and ecological roles. In many forests, including those in 

Costa Rica, New Zealand and Australia, tree fern trunks host a wide range of epiphytic ferns and 

bryophytes (Roberts et al. 2005, Pharo et al. 2013, Brock et al. 2016), often supporting a greater 

diversity of such kinds of plants than the other trees in the same forest (Moran et al. 2003). Tree ferns 

influence the presence of other species both positively and negatively, for example, in the forests of 

south-eastern Australia there are positive relationships between the abundance of tree ferns and the 

occurrence of arboreal mammals such as the Mountain Brushtail Possum Trichosurus cunninghami 

(Lindenmayer et al. 1993) with these plant species providing both habitat structure and a food source 

(Seebeck et al. 1984), while in southern New Zealand, tree ferns have been found to negatively 

influence the regeneration success of other trees (Coomes et al. 2005). 

In the cool temperate forests of south-eastern Australia where we completed this study, tree 

ferns are well adapted to the prevailing regime of infrequent but high severity fire (Hunt et al. 2002), 

resulting in these midstorey species often being older than the overstorey eucalypts, the majority of 

which are obligate seeders in this investigation (Mueck et al. 1996, Lindenmayer and Ough 2006). 

The tree fern species in this study can grow to over ten metres in height (Walsh and Entwisle 1994) 

and have been estimated to live more than 500 years (Mueck et al. 1996), while other species in 

Australia have been recorded growing in excess of 15m, including the Norfolk Tree Fern, Cyathea 

brownii, which can grow to 20m (Large and Braggins 2004). Tree ferns also may be an indicator of 

past disturbance history given their ability to survive fire, but susceptibility to logging (Peacock and 

Duncan 1995, Ough and Murphy 2004, Blair et al. 2016b). Because tree ferns regularly survive fire 

but do not require fire to regenerate, their age is not easily determined from the dates of previous 

major fires. While there have been several studies examining the conditions required for tree ferns to 

persist, there have been relatively few investigations of the effects of tree fern age, growth rates, or 

the environmental factors on growth rates, particularly in Australia (Ferwerda 1981, Mueck et al. 

1996, Hunt et al. 2002, Volkova et al. 2010, 2011). 

We studied the short-term growth rates of the two most common species of tree fern occurring 

in south-eastern Australia, the Rough Tree Fern (Cyathea australis) (R. Br.), family Cyatheaceae and 

Soft Tree Fern (Dicksonia antarctica) (Labill), family Dicksoniaceae. The genus Cyathea has Pan-

Tropical origins (Page and Clifford 1981) with approximately 700 species globally (Walsh and 

Entwisle 1994) in the tropics, subtropics, and southern temperate zones (Korall and Pryer 2014) and 

includes 11 species in Australia. The genus Dicksonia is of Gondwanan origin (Page and Clifford 
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1981) with 50 species found in south-eastern Australia, New Zealand, south-east Asia and Central and 

South America. There are three species of Dicksonia in Australia (Walsh and Entwisle 1994). In our 

study region, the distributions of D. antarctica and C. australis overlap, with both found 

predominantly in cool, wet gullies. Cyathea australis is more tolerant of drier micro-climates, and 

commonly found in the mid to lower elevations where it is warmer and drier and away from streams; 

D. antarctica is most often found at mid to higher elevations where annual rainfall is greater, 

particularly at cold, wet sites close to streams (Dignan and Bren 2003).   

Tree ferns grow by producing new fronds which extend from the centre of the apical trunk, 

extending and growing to the outside edge of the trunk.  Over a period of 6-12 months, the older 

fronds gradually deteriorate and die, to be replaced by new layers of fronds with each new layer 

adding to the overall height of the fern’s trunk. The older fronds eventually drop off and leave the 

base of the stipe on the trunk. In the study reported here, we quantified the short-term growth rates of 

D. antarctica and C. australis immediately following the Black Saturday wildfires in 2009 in 

Victoria. Thus, all tree ferns were burnt (with all fronds removed) with trunks of tree ferns blackened 

to the height they were at the time of the fire. New growth was easily distinguishable in the 

subsequent years and it was the height of this new growth that we subsequently measured. Previous 

investigations have measured fern growth following fire (Ferwerda 1981) and made estimates of 

maximum age (Mueck et al. 1996) by focussing on the largest individuals, while other studies 

examined the physiological effects of different temperatures and amounts of light on the 

photosynthetic abilities of tree ferns (Volkova et al. 2009, Volkova et al. 2010), although these factors 

were not then related to resulting changes in growth rate. No previous studies in the wet forests of 

Victoria, and few investigations internationally (Tanner 1983, Arens 2001, Schmitt and Windisch 

2006, Nagano and Suzuki 2007), have measured the growth of tree fern trunks in field conditions, 

spanning a wide range of heights (and therefore ages) to determine if growth rates of overall trunk 

height vary with age. 

We posed three key questions with related hypotheses: What are the rates of growth of D. 

antarctica and C. australis and do rates of growth vary between these two species? What factors, 

including environmental variables, influence the rate of growth of D. antarctica and C. australis? 

Finally, from our results: Are we able to devise a simple equation of dividing height by annual growth 

rate to estimate tree fern age? Given there is no clear consensus within the literature on which species 

grows faster, and at the leaf scale both have equivalent photosynthetic capabilities (Volkova et al. 

2011), we hypothesised that C. australis would have similar growth rates to D. antarctica and that 

growth of both species of tree ferns will be affected by environmental variables. We postulated both 

species of tree ferns will grow most rapidly at higher elevations. In our study area, elevation is 

strongly positively correlated with rainfall and temperature. Previous field studies of these two species 

revealed a lack of effect of seasonal water use efficiency (Volkova et al. 2011), leading us to postulate 

that rainfall would not be a determining factor for growth in this area (which receives some of the 
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highest and most consistent rainfall in mainland Australia (Australian Bureau of Meteorology 2017a, 

b)). Temperature has been found to affect tree fern growth in these two species. Lower elevations (our 

lowest sites were 275m ASL) are subject to periodic very high temperatures during summer, with 

temperatures in excess of 40oC. While Volkova et al (Volkova et al. 2009) found no change in 

photosynthetic capacity in D. antartica with high temperatures (35oC) under shade, when combined 

with high irradiance, severe photoinhibition was witnessed. On our burned sites, high irradiance was 

common, thus the higher temperatures at these lower altitudinal sites were expected to reduce growth. 

Conversely, the lowest temperatures in winter are recorded on our highest sites (up to 985m ASL), 

with snow falling most winters. Such low temperatures were also found to inhibit photosynthesis 

(Volkova et al. 2011). Snow could potentially retard growth by reducing solar interception, however 

snow does not persist for long periods (usually days at most, not weeks). On balance, we postulated it 

was most likely the greater reduction in quantum yield, leading to overall lower trunk height growth, 

would come from the higher temperatures in summer when photosynthetic activity is greatest and is 

the time of year when the tree ferns have their greatest period of growth (Lee et al. 2009, Volkova et 

al. 2011). We further postulated tree ferns growing on sites on hotter and drier northerly aspects were 

likely to grow more slowly than on sites on cooler aspects due to slower growth associated with hotter 

temperatures (Volkova et al. 2009). We did not expect geographic location to affect growth. Given 

most studies on tree ferns in Australia assume a constant growth rate through time (Ferwerda 1981, 

Mueck et al. 1996), we expected to be able to develop a relatively simple growth equation based on 

annual growth increments, however several international studies on other tree fern species suggest this 

may not be possible due to variable growth over the life of the tree ferns (Tanner 1983, Arens 2001, 

Schmitt and Windisch 2006, Nagano and Suzuki 2007). 

 

METHODS 
Our study focused on the forests of the Central Highlands of Victoria, 60-120km east of 

Melbourne in south eastern Australia (Fig 1).  
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Figure 1: Map of study region showing location of sites 

 

Sample areas and fern selection 

We measured tree ferns at 25 sites within four separate geographic locations: Marysville State 

Forest, O’Shannassy water catchment, Toolangi State Forest, and Wallaby Creek water catchment 

(see Fig 1). At each geographic location, we selected 5-8 sites, and then measured up to ten tree ferns 

of each species at each site. In total, we measured 163 stems of Cyathea australis ranging in pre-fire 

height from 0.37m to 6.20m and 172 stems of Dicksonia antarctica, with heights between 0.28m to 

5.03m (Table 1). Each site was selected to allow 10 tree ferns to be measured close to each other 

(each site having a maximum 25m radius) and with limited variation in slope, aspect and elevation.  

While there was uniformity of environmental variables within sites, we specifically chose sites around 

each geographic location that would cover a wide range of environmental variables (aspect, slope and 

altitude) between sites. Each site was a minimum of 1 km apart to minimise the potential for spatial 

depencence to influence our results. 

 

Table 1: Summary of attributes for C. australis and D. antarctica at geographic area and site level 

 C. australis D. antarctica Total for study 
Number of geographic areas 3 4 4 
Number of sites 16 17 25 
Number of ferns measured 163 172 335 
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Height range (time of fire) 0.37 – 6.20m 0.28 – 5.03m 0.28 – 6.20m 
Altitude range 275m – 975m 395m – 985m 275m – 985m 
Slope range 0o – 32o 1o – 28o 0o – 32o 

 

The dominant forest types where our sites were located included mixed (eucalypt) species 

foothill forest dominated by Messmate (Eucalyptus obliqua), Peppermints (E. radiata and E. dives) 

and Stringybarks (predominantly E. macrorhyncha), and at higher elevations, forests dominated by 

Mountain Ash (E. regnans) and Alpine Ash (E. delegatensis). The majority of our sites (21 of our 25 

sites), were in the ash forests. Large wildfires dominate the ecology of these forests with intense, 

stand replacing fires historically occurring on average every 75 – 150 years (McCarthy et al. 1999). 

To ensure all tree ferns had had their trunks burnt at the same time (February 2009) and 

physically blackened uniformly up the trunk (up to 6m tall), we selected sites that had burned at 

moderate to high severity in the 2009 wildfires. We used fire severity maps from the Victorian 

Government GIS layer and local knowledge to identify suitable locations. On the Victorian 

Government fire severity scale, this included areas burned at severity 1-3 (on a scale of 1-6, where 1 

is highest severity) and in which the midstorey was fully scorched (Jemison 2012, Benyon and Lane 

2013).  

At each site, we measured 10 tree ferns of each species unless insufficent tree ferns of either 

species were able to be found. Eight of the 25 sites supported 10 individuals of both tree fern species. 

We measured 10 of the tree ferns nearest to the centroid of each site, ensuring that ferns of differing 

heights were measured. We elected not to measure ferns with multiple trunks, tree ferns with any 

section of the trunk leaning at an angle of 30o or greater, or ferns that had fallen over and continued to 

grow. We located the centre of each site away from road edges to reduce potential effects of 

additional light, temperature differences or water run off. 

 

Determining growth rates 

To determine the growth rates of tree ferns, we located tree ferns with trunks that showed clear 

delineation between the lower part of the trunk which had been burnt by the February 2009 wildfires 

and the unburnt upper section of trunk resulting from subsequent growth in the following 5 years, 

when the ferns were measured between February and April 2014. We measured the overall height of 

each tree fern using a tape measure, while the new growth was measured using callipers. We then 

divided the new growth from the last five years (post fire growth) by five to give an overall annual 

average rate of growth for each individual tree fern. 

We took more than two thousand photographs of the study region progressively over the 5 

years between the time of the fires to the time of measurement and by looking at these and through 

field observations, we were able to determine the majority of tree ferns had visible new fronds within 

1-4 months of the 2009 fire, indicating growth typically did not appear to have paused due to the fires, 

despite rare occurrences where some individuals took up to a year after fire to re-sprout. 
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Statistical analyses 

We used a linear random effects model to explore relationships between annual growth rate and 

geographic region, elevation, slope, aspect and initial height of the tree fern post 2009 wildfire. 

Aspect of each site was allocated to the nearest of the eight major compass points (north, north east, 

east etc.). North, north-west and north-east were collated as ‘northerly aspects’ and analysed against 

all other aspects combined. This was done to ascertain whether the hotter, drier conditions of the 

northerly aspects effected tree fern growth. Rainfall within the study area is highly positively 

correlated with elevation with the summer (November-March) rainfall correlation being 0.910 and 

winter (April – October) being 0.717.  The analysis for both altitude and rainfall resulted in similar 

findings, therefore we excluded rainfall from subsequent analyses. Site was treated as a random effect 

to account for potential correlation among the tree ferns at the same site. We used the MCMCglmm 

package (Hadfield 2010) to fit the models in R 3.2.1 (R Core Team 2015).  The model parameters are 

summarized by the posterior mean, 95% credible intervals and Btail, which gives the fraction of the 

posterior distribution that is to the left or right of zero conditional on whether the posterior mean was 

greater or less than zero, respectively. Small values of Btail indicated support for non-zero parameter 

values, that is, posterior distributions that are shifted away from zero. 

We did not perform model selection, but rather chose to interpret the full model for each tree 

fern species. We also performed a diagnostic analysis to assess the underlying assumption of 

normality and to assess the need to include a site-level random effect. There was very little support for 

the inclusion of the site-level random effect, and hence our results show the models without this term. 

 

Ethics statement 

Our research required no ethics approvals as we were undertaking non-destructive vegetation 

measuring without collection of any vegetation samples and we were not studying fauna. Our sites 

were all in publicly accessible locations on public land controlled by the Victorian Government, and 

therefore no special permission was required. 

 

RESULTS 
Overall tree fern growth rates 

From our field data, we calculated the overall average growth of C. australis to be 73 (+/- 

22)mm/year of growth (+/- 1 SD) and 33 (+/- 13)mm/year for D. antarctica  (Table 2). 

 

Table 2: Summary of growth rates of C. australis and D. antarctica, for all ferns measured on all sites 

 C. australis D. antactica 
Number of tree ferns measured (n) 163 172 
Average growth (mm/yr) 73 33 
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Standard Deviation (mm/yr) 22 13 
Maximum growth of an individual fern 
(mm/yr) 

135 75 

Minimum growth of an individual fern 
(mm/yr) 

19 7 

Additional growth per m of height (mm) 5 6 
 

Growth rates and initial height 

For both C. australis and D. antarctica, initial height in 2009 was the most significant (Btail 

<0.001) determinant of growth rates. Cyathea australis grew an additional 5mm each year for every 

additional meter in height the tree fern was at the time of the fire. For D. antarctica, the increase in 

growth for taller ferns was even greater with an additional 6mm of additional growth measured each 

year for each meter taller the ferns were at the time of the fire (Table 2). 

 

Growth rates and environmental variables 

Environmental variables had limited influence on growth rates in C. australis with no 

significant effect identified for slope, elevation or aspect. In contrast, D. antarctica grew more rapidly 

on steeper slopes at a rate of 0.3mm/year for each additional degree in slope (Btail = 0.010). Elevation 

and aspect had no influence on the growth rate of D. antarctica and C. australis.  

 

Growth rates and geographic location 

Other than initial height in 2009, geographic location had the largest effect on growth rates.  

Cyathea australis grew most rapidly in the Toolangi region, with the growth rate being 13.8mm/yr 

faster than tree ferns in Marysville (Btail = 0.002). Tree ferns in Wallaby Creek grew 11.7mm/yr 

faster than in Marysville (Btail = 0.009) (Fig 2). There were insufficient numbers of C. australis in the 

O’Shannassy water catchment for statistical analyses of geographic location effects. 
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Figure 2: Annual growth of C. australis by initial height and geographic area (note that height has 

been slightly offset for each geographic region to improve readability), based on modelled data. m = 

Marysville State Forest, t = Toolangi State Forest, w = Wallaby Creek water catchment 

 

Dicksonia antarctica grew most rapidly in the Wallaby Creek water catchment and was 

12.5mm/yr faster than in Marysville State Forest (Btail = 0.002), 10.2mm/yr faster than in Toolangi 

State Forest (Btail = 0.002), and 8.8mm/yr faster than in O’Shannassy water catchment (Btail = 

0.004). There was no significant difference in growth rates between the other three geographic 

locations for this species (Fig 3).  
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Figure 3: Annual growth of D. antarctica by initial height and geographic area (note that height has 

been slightly offset for each geographic region to improve readability), based on modelled data. m = 

Marysville State Forest, o = O’Shannassy water catchment, t = Toolangi State Forest, w = Wallaby 

Creek water catchment 

 

DISCUSSION 
We posed a series of questions relating to the growth of the two most common tree fern species 

in south-eastern Australia, D. antarctica and C. australis, and the factors that influenced their growth. 

We expected that the environmental variables we measured would influence growth with the more 

favourable conditions being in areas at higher elevation, where temperatures are lower. Snow falls are 

common in winter at sites at higher elevation but this was thought to be of little consequence due to its 

limited persistence and occurrence at the time of year when tree ferns grow the least (Lee et al. 2009). 

At lower elevations, high temperatures and drier conditions throughout the summer are common 

which are likely to affect growth rates, especially when combined with high irradiance (Volkova et al. 

2009). At the outset of this investigation, we expected growth of both species to be lower on the hotter 

and drier northern and western aspects compared to cooler southern and eastern aspects. With the 

forests of the four geographic areas having broadly similar rainfall (long term average between 1194-
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1393mm per annum for the 4 areas,(Australian Bureau of Meteorology 2016)), we expected similar 

growth rates across the different geographic locations where other environmental variables such as 

aspect, elevation and slope were the same.  

We found growth rates varied in unexpected ways with initial height at the time of the fire 

being the strongest determinant of growth rate. In the following sections, we discuss possible 

explanations for our findings.  

 

Comparison of tree fern growth rates 

Values for the average growth rate of C. australis and D. antarctica were broadly within the 

range of two other earlier studies in south-eastern Australia (Ferwerda 1981, Mueck et al. 1996) 

(Table 3). Mueck et al (Mueck et al. 1996) used radiocarbon dating from the base of tall specimens of 

C. australis and D. antarctica, dividing height by age to give an average growth rate. Their findings 

were highly variable for D. antarctica with both the highest and lowest growth rates outside 2 

standard deviations of our result. Mueck et al (Mueck et al. 1996) concluded the higher end of their 

results for D. antarctica were probably overestimates. Ferwerda (1981) measured tree fern frond 

spacing on coastal bluffs and new growth after fire in forests similar to our study. Despite the results 

of Ferwerda (1981) being 1.8 standard deviations higher than our own, all of the post-fire 

measurements from that study were taken from tall specimens, for which our study indicates growth 

rates to be above average.  

 

Table 3: Summary of tree fern growth studies in Victoria, south-eastern Australia 

Study Location Method Species Growth rate 
Ferwerda (1981) Western Port Frond spacing C. australis 105 mm/yr 

(n=5) 
Ferwerda (1981) Ferntree Gully NP Regrowth after 

fire 
C. australis 113 mm/yr  

(n=6) 
Mueck et al (1996) Toolangi Radio carbon 

dating 
C. australis 22-38 mm/yr 

(n=2) 
Mueck et al (1996) Toolangi Radio carbon 

dating 
D. antarctica 5-88 mm/yr  

(n=6) 
This study Central Highlands Regrowth after 

fire 
C. australis 73(+/-22) mm/yr  

(n=163) 
This study Central Highlands Regrowth after 

fire 
D. antarctica 33(+/-13) mm/yr  

(n=172) 
 

Environmental variables  

We found only limited effects of environmental variables on growth rates, despite at the outset 

of the study predicting all three variables (elevation, slope and aspect) would be important based on 

results from other studies (Jones et al. 2007, Brock et al. 2016). Our analyses revealed that elevation 

had a very limited effect, with growth rates increasing marginally with increased elevation. This may 

indicate that temperature and rainfall, both of which are highly correlated with elevation in our study 
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area, did not have an effect, or that there were additional factors that masked these effects. A lack of 

effect was unexpected due to temperature, in particular, having been shown to alter quantum yield 

(Volkova et al. 2009, Volkova et al. 2011). In addition, both variables have been identified as 

important determinants of the distribution of C. australis and D. antarctica (Neyland 1986, Fedrigo et 

al. 2014, Brock et al. 2016). It therefore appears that what affects the distribution of tree ferns may not 

influence growth rate. 

 

Geographic location 

We did not measure sufficient or appropriate additional variables to determine why the growth 

rate of tree ferns would vary between different geographic locations. Different local factors are 

important as Toolangi State Forest was the area of fastest growth for C. australis, but slowest growth 

for D. antarctica. Wallaby Creek water catchment seemed very favourable to both species with D. 

antarctica growing significantly more rapidly relative to other locations. In New Zealand, Brock et al 

(Brock et al. 2016) found tree fern growth increased with decreasing latitude. In contrast, the 

geographic range of our study was far more restricted, but also spread more east-west with minimal 

difference in latitude. As such, latitude was unlikely to be a factor affecting our results. 

 

Cyathea grow faster than Dicksonia 

We confirmed that C. australis grows faster than D. antarctica. This is perhaps not surprising 

given Cyathea as a genus has many very fast growing species and, on average, have larger crown 

spread than Dicksonia (Large and Braggins 2004).This may in part be due to C. australis having a 

greater specific leaf area of 10.4m2/kg compared to 8.6m2/kg for D. antarctica (Volkova et al. 2011) 

which provides for greater photosynthetic capability. Physiologically, Cyathea australis also has leaf 

hairs that may reduce UV-B exposure in the post-fire high growth irradiance environment. It is 

thought these leaf hairs also may explain why C. australis has a broader climatic niche that D. 

antarctica (Dignan and Bren 2003, Volkova et al. 2011). Interspecific differences in growth rates also 

may be due to differences in rooting structure or due to resources extracted by bryophytes and 

epiphytes, which are in greater numbers on the moister fibrous trunks of D. antarctica than on the 

drier stipe shielded trunks of C. australis (Ashton 1986). The difference in microclimatic conditions 

of locations where these tree fern species are found also may effect growth rates. 

 

Taller ferns grew more 

Contrary to our expectations at the outset of this investigation of uniform growth rates for ferns 

of different height, we found that taller C. australis and D. antarctica had grown more than shorter 

individuals during the 5 year period of measurement.  We considered four possible reasons for this: 1) 

The size and spread of the rosette of fronds, which increase in diameter as ferns become established; 

2) shorter ferns being more negatively affected by the fire and being less capable of using fire released 



54 | P a g e  
 

nutrients; 3) growth rates for these species were exponential; and 4) following increases in light 

availability due to overstorey canopy removal by fire, taller ferns being exposed to these increased 

light levels for longer as shorter ferns are over taken and shaded by regrowing tree species for a 

greater proportion of the study period. We examine these four explanations in detail below. 

Our first proposition suggested the larger rosettes of older ferns may allow for greater growth 

due to increased capture of light (and therefore photosynthetic capacity) and re-direction of rainfall 

compared to shorter ferns with smaller crowns. Interception of rainfall by tall tree ferns may further 

limit rainfall reaching short individuals when they are situated beneath taller ones. New fronds 

pointing upwards funnel water into the top of the trunk where aerial roots surround the fronds, as well 

as fronds themselves being capable of direct uptake of moisture (Hunt et al. 2002). However, higher 

growth rates achieved through the effect of greater interception of both light and rainfall should taper 

once maximum crown diameter is reached, which from our observations, occurs when ferns are 

approximately one metre in height.  

Given we measured growth following a major wildfire, the second possible explanation for our 

observation of taller ferns growing faster than short tree ferns, was the change in photosynthetic 

capability due to loss of fronds, potentially counter-balanced by a positive effect of increased growth 

due to increased availability of nutrients in the ash bed following fire (Attiwill and Leeper 1987). 

Physical damage from fire could have greater effects on short ferns which have their crown closer to 

ground level and where fuel loads are generally highest. If fire damage was a factor affecting growth 

rates, we would expect aspect and slope to have been important covariates in our models because they 

have a strong influence on fire severity (Berry et al. 2015). It also seems unlikely such effects would 

be influential beyond the first year unless the fire delayed post-fire re-sprouting in shorter ferns. We 

checked for such effects by viewing several hundred post-fire photographs of burned stands but found 

no evidence of retarded resprouting of short ferns compared to tall ones. Increased nutrients may be a 

factor underpinning changes in growth rates pre and post fire. However, as all our measurements were 

post-fire, this does not explain the greater rates of growth among taller ferns, unless dominant 

individuals were able to monopolize resources, which seems unlikely. 

A third possible explanation for our results was that we had measured exponential growth, or 

that taller tree ferns inherently grew faster. Given that initial height of the tree ferns at the time of the 

2009 fire determined how much they grew, and that this apparent increased growth rate did not seem 

to taper over the duration of our investigation (Figs 2 and 3), a possible conclusion was that we had 

discovered exponential growth throughout a plant’s life, a very unusual pattern for any plant species. 

The only example in the literature for tree ferns that suggested this may be possible was a Jamaican 

study on Cyathea pubscens that found stipe interval increased with trunk height, indicating possible 

growth acceleration with time (Tanner 1983), although this was not directly measured. To test this 

explanation, we modelled exponential equations from our data. However, given the longevity of these 
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two species, our equations provided highly unrealistic results for old tree ferns with heights over 50 

metres tall, suggesting another explanation was needed.   

A fourth possible explanation for our results was canopy removal by fire of the surrounding 

trees and shrubs and subsequent sequential shading by dense regeneration. In the forests of the Central 

Highlands, following a high severity fire such as the one at the start of our study period, all strata have 

foliage removed (Lindenmayer et al. 2015) leading to greatly increased light availability. This is 

followed by a pulse of vigorous regrowth of eucalypts and Acacia germinating from seed. From other 

unpublished vegetation data we collected on post fire regrowth, measured across the same period as 

our study, we know the growth rate of this dense cohort of trees is rapid but is relatively uniform 

(Blair et al. 2016a). After a year to establish, the regrowth grows at approximately 1-1.5m/year. The 

regrowth is very dense and provides almost complete shade to plants beneath the canopy. The loss of 

overstorey canopy shading due to the fires created a period of greatly increased light penetration 

reaching the tree ferns, which may have led to an accelerated growth rate (Ash 1987, Brock et al. 

2016). For the shortest ferns in our study, the period of increased light availability due to absence of 

overstorey canopy may have lasted less than 12 months, while the tallest ferns studied would have had 

such conditions for three to five years, giving them more favourable growing conditions for longer.  

Differential growth of individuals in sun, compared to those located in shade, has been 

observed in tree fern studies in Columbia (Arens and Baracaldo 2000). Observations from New 

Zealand found different tree fern species occupy niches along a shade-light spectrum where growth 

varied, but importantly, where recruitment was also effected by shade levels (Bystriakova et al. 2011). 

A series of studies on the physiology of both D. antarctica and C. australis, in greenhouse and field 

conditions, showed high irradiance caused decreases in photosynthetic capacity (Volkova et al. 2009, 

Volkova et al. 2010, 2011). However, these same studies also showed varying ability of these species 

to acclimatise to such changes in irradiance over periods up to 3 months. The one field-based study of 

the three, which was the only one studying tree ferns more than a year old, found the ability for 

seasonal acclimation (Volkova et al. 2011). Lower temperatures in winter were shown to reduce 

photosynthetic capacity, so it may be that the additional warmth of full sun exposure during winter 

allowed additional growth in our study despite our study finding temperature not to be influential. 

Actual growth rates were not measured in these studies. The results from Ferwerda (1981) would 

support our concept of variable growth rates in tree ferns as it was the tallest ferns burnt by fire (and 

therefore exposed to more light for longer) that had the greatest growth rates in that study.  

If tree ferns grow faster with increased available light, this may assist interpretation of the 

results of other studies. For example, a study in Costa Rica which concluded growth rates were related 

to whether the surrounding habitat was primary or secondary forest (Bittner and Breckle 1995), only 

briefly mentioned light levels.  Our study would suggest that increased light levels may have been 

important, with tree fern growth in open secondary forest being up to three times that of closed 

primary forest. The concept of greater growth rates in sun compared to shade was found to hold true 
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in a study from the Andes, where Cyathea caracasana grew more rapidly when exposed to full sun 

compared to closed forest (Arens 2001). The conclusion was that C. caracasana was a species that 

was able to take advantage of gaps in the forest to grow rapidly and produce large volumes of spores, 

then slow down again but persist as shading increased. It would appear that tree ferns in Australia 

may follow a similar ‘sit and wait’ life strategy. However, our findings showing an increase in growth 

rate as ferns became taller was in contrast to a study of five Cyathea species in Costa Rica where 

growth remained constant over time (Bittner and Breckle 1995), or in Japan where growth of Cyathea 

spinulosa slowed gradually over time (Nagano and Suzuki 2007). It was also counter to the 

assumption (without evidence) made by Ferwerda (1981) that growth rates of C. australis would slow 

as the ferns increased in height.  

We do not know if tree ferns in Australia produce additional spores during times of increased 

light exposure and accelerated growth, but if this is the case, it could have significant implications for 

forest management if an aim is to encourage tree fern recruitment in areas where they have been 

reduced in number (such as logged stands or areas where tree fern harvesting occurs). In New 

Zealand, tree ferns rapidly colonise open areas with suitable conditions, however this does not appear 

to be the case in Australia (Pope 1926, Brock et al. 2016). Improved recruitment of tree ferns across 

logged areas may be possible by retaining them around the edge of cutblocks, in undisturbed islands 

of forest retained across harvested areas where they are more likely to survive and where possible, 

within the cut area. By retaining tree ferns in multiple directions, this is likely to enhance post-

disturbance recruitment because the tree fern’s spores are wind dispersed.  

We did not specifically measure light interception, canopy cover or spore production by tree 

ferns. Further research measuring tree ferns in areas subject to different light regimes is required. 

Given D. antarctica tends to grow to a height of ~ 5-6m before collapsing, it should be possible to test 

whether it is age or height (and therefore access to light) that most strongly influences growth rate. If 

old fallen tree ferns grow at the same rate as much younger ferns which are the same height, this 

would lend weight to light being significant driver of growth rates. If however, they continue to grow 

at similar rates to those of the same age, it would indicate age is a more important driver of growth 

rates.  

  

CONCLUSIONS 
Tree ferns are an important element of stand structure and species composition of many forests 

worldwide. They have numerous key ecological roles such as providing food, nesting sites and 

movement pathways for animals and being host sites for a wide diversity of epiphytic plants. Tree 

ferns are long lived and are commonly found in old growth forests. The factors that determine where 

tree ferns persist appear to be different from those that determine growth rates. Accurate estimation of 

their age remains difficult due to growth rates varying through a plant’s life, preventing the 
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development of simple equations such as those that divide height by growth rate. Given our 

measurements were taken across a period when increased growth rates due to the increased light 

availability seems likely, the average growth rate for the two species of tree ferns are likely to be 

above longer term averages when greater shading is the norm. Despite being well adapted to fire, tree 

ferns are highly susceptible to logging (Ough and Murphy 2004, Blair et al. 2016b) and if spore 

production in these species is found to increase with increases in available light, this may have 

important implications for forest management. Our research, while a relatively short term cross-

sectional study of these long-lived organisms, increases our understanding of their ability to grow 

rapidly following fire and may assist with the management of these important species.  
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SUPPORTING INFORMATION 

S1 Table. Summary of locations, number of ferns and variables measured. 

Geographic 
Region Location 

# ferns measured 
Aspect Altitude Cyathea Dicksonia 

Marysville Yellow dog 10  S 500 
Yellow dog + 1k 10 10 S 605 
Olsens  10 SW 840 
Lady Talbot bottom 10 2 flat 395 
Tommys Bend  10 W 985 
Tommys Bend/Yellow dog 1 10 W 975 
Site 805 10 10 N 924 
Paradise Plains Rd, 1.8km below 
Keppel Lookout 10  N 640 

O'Shannassy Poley/Paradise Plains  10 SW 940 
Rd 9 1 10 flat 860 
Rd 9 / 7  10 W 945 
Site 512 1 10 flat 770 
Rd 9 1km from Rd 7  10 flat 830 

Toolangi Nolans 10 10 flat 690 
Chum Creek -5km 10  SW 275 
Chum Creek -3km 10  SW 355 
Blowhard at 277 10  NW 640 
Starlight Rd 10 10 flat/E 715 
Klondyke/Mt Klondyke 10 10 NE 682 

Wallaby 
Creek 

Rd 3, 200m from Rd 10 10  flat/S 530 
Rd 3, 1km from Rd 10 10  S 590 
Rd 3, 0.5km W of Rd 15 10 10 S 670 
Rd 3, 0.7km S of Rd 12 10 10 S 685 
Rd 3 / Rd 14 intersection 10 10 flat 690 
Rd 14, 0.2km E of Rd 2 at the 
creek  10 flat/NE 660 

 

S1 Table 2. Modelling results for the two fern species. Where L-95% CI and U-95% CI are the 

lower and upper end points of the 95% credible interval and Btail is a measure of support (see 

Methods for more detail). 

 

Cyathea australis 

 Posterior Mean L-95% CI U-95% CI Btail 
GR: Marysville, Aspect: North 37.923 15.766 62.391 0.002 
GR:Toolangi vs Marysville 13.856 5.630 22.474 0.002 
GR: Wallaby Creek vs Marysville 11.686 2.055 21.191 0.009 
Elevation 0.019 -0.006 0.044 0.066 
Slope -0.016 -0.443 0.404 0.460 
Aspect: Other 5.502 -4.142 15.134 0.126 
Initial Height (m) 4.902 2.015 7.696 <0.001 
GR: Toolangi vs Wallaby Creek 2.17 -8.914 12.660 0.343 

GR = Geographic Region 
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Dicksonia antarctica 

 Posterior Mean L-95% CI U-95% CI Btail 
GR: Marysville, Aspect: North 3.662 -16.762 24.794 0.360 
GR: O'Shan vs Marysville 3.745 -2.374 9.95 0.118 
GR:Toolangi vs Marysville 2.261 -4.799 9.559 0.273 
GR: Wallaby Creek vs Marysville 12.514 5.934 20.201 0.002 
Elevation 0.016 -0.005 0.036 0.061 
Slope 0.333 0.069 0.637 0.010 
Aspect: Other -0.195 -5.273 5.105 0.475 
Initial Height (m) 6.000 3.188 8.889 <0.001 
GR: O’Shan vs Toolangi 1.484 -6.333 9.329 0.357 
GR: O’Shan vs Wallaby Creek -8.769 -15.393 -2.305 0.004 
GR: Toolangi vs Wallaby Creek -10.253 -16.241 -3.855 0.002 

 GR = Geographic Region 
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ABSTRACT 
The study of succession within forest ecosystems has a long history with the development of 

many explanatory theories over the last century. It is increasingly unusual however, for an ecosystem 

to be free from confounding effects of human disturbance. We studied vascular plants in parts of the 

Mountain Ash (Eucalyptus regnans) ecosystem of the Victorian Central Highlands in south-eastern 

Australia, where major disturbances (other than natural wildfires) have been minimal prior to and 

since European settlement of the region. Using sites in forest of four age classes that regenerated 

following high severity fires (in 2009, 1983, 1939 and 1851), we constructed a ‘space-for-time’ 

chronosequence to quantify differences in overall species richness and the species richness of 

different plant functional groups. We used these to test a range of theories associated with forest 

succession. 

Overall species richness was highest in the youngest forest (3 years of age) with 17.1 

species/plot and lowest in regrowth forests of 29 and 73 years of age, with 12.9 and 12.5 species/plot 

mailto:david.blair@anu.edu.au
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respectively. Our oldest cohort (161+ years old), supported intermediate numbers of species (13.4 

species/plot). Sprouting species, ferns and midstorey trees were most species rich in the oldest cohort, 

and lowest in the young regrowth forest, indicating Relay Floristics and inhibition succession by these 

groups as they most likely supressed other species. Seeding species such as eucalypts, Acacia, herbs, 

shrubs and graminoids all exhibited a decline in species richness with increasing forest age, indicating 

Initial Floristic Composition may be the most likely successional theory to explain changes in these 

functional groups. Biological legacies were important to all groups. With different functional groups 

described most accurately by a range of successional theories, this suggests it may be an 

oversimplification to try and explain the patterns of species richness for all plants in an ecosystem 

using only a single successional theory. 

Our results provide an important baseline showing succession in Mountain Ash forests in areas 

with minimal human disturbance. This allows comparisons to be made with human disturbances or 

future changes in regeneration trajectories due to climate change. Our results also suggest the need for 

careful management of sprouting species as these are the slowest to recover after disturbance. 

 

Key words: functional group, life form, species richness, Eucalyptus regnans, Initial Floristic 

Composition (IFC), Relay Floristics, disturbance, plant traits. 

 

INTRODUCTION 
Succession within forest ecosystems has been studied for over a century (Clements 1916, Egler 

1954, Cremer and AB 1965, Connell and Slatyer 1977, Pulsford et al. 2014). As succession theory has 

developed, there has been recognition of complexity in plant responses arising from differences in 

recovery trajectories. The range of recovery trajectories are influenced by an array of factors 

(Roxburgh et al. 2004). The state (e.g. age) of an ecosystem at the time of a disturbance can have 

important effects on species composition and trajectories post disturbance (Drury and Nisbet 1973, 

Phillips 2011, Swanson et al. 2011). The frequency of disturbance also can change the recovery path, 

particularly if multiple disturbances occur in a relatively short timeframe (Bowman et al. 2014b, 

Bowd et al. 2018a). Also of fundamental importance is the type of disturbance, whether it is natural 

(e.g. a windstorm, wildfire, eruption, landslide etc.) or human induced (e.g. logging, grazing) (Foster 

et al. 1999, Blair et al. 2016, Sass et al. 2018).  

An understanding of natural succession without such human influences is required to better 

understand forest succession, including differences in succession between infrequent, natural 

disturbances and human disturbance, or the effects of rapid multiple disturbance events. 

Unfortunately, this is increasingly difficult to achieve given so much of the world’s natural forests 

have been subject to human disturbance (Hansen et al. 2010, Mackey et al. 2015, Watson et al. 2018). 
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Here, we document succession in response to wildfire in the iconic wet temperate forests of the 

Victorian Central Highlands of south-eastern Australia. Substantial areas of these forests have been 

subject to significant human disturbance, however some areas have had very little human interference. 

We focused our studies on parts of the Mountain Ash forests that have been subject to minimal 

indigenous or European human disturbance. Before European settlement, indigenous people travelled 

through or hunted within these forests, but did not live permanently within them (Griffiths 2001). 

Unlike much of Australia, burning by indigenous people was not done in a deliberate and systematic 

way in the Mountain Ash forests (Griffiths 2001), and at most, limited burning may have occurred 

around the margins (Gammage 2011). After European settlement and before the forests were 

impacted by logging or mining, substantial areas of water catchment were set aside and protected for 

water supply, resulting in very limited human disturbance in these areas including being closed to 

public access. Such protection continues to the current day (Viggers et al. 2013). This provided a rare 

opportunity to quantify natural patterns of succession with minimal human influence, and before 

climate change potentially alters these unusual examples of undisturbed forests (Allen et al. 2010, 

Mok et al. 2012). 

We studied vascular plants in a chronosequence of four age classes after major wildfires in 

2009, 1983, 1939 and 1851 or older; resulting in forests that were 3, 29, 73 and 161+ years old at the 

time of our surveys. We compared changes in species richness with predicted patterns derived from 

the diverse range of succession theories (Figure 1 and Table 1). We also quantified the response 

patterns of specific functional groups of plants including those with different life forms and 

reproductive strategies. In this way, we aimed to determine which, if any, of the numerous 

successional theories best explained the key successional drivers within this ecosystem. 
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Figure 1: Conceptual diagram showing possible trends in species richness described by different 

succession theories. Many succession theories are not explicit with respect to species richness change 

through time and species richness can vary due to a wide range of influences within each ecosystem in 

question. For several theories, including relay floristics, whether the overall species richness increases 

or not over time depends on each successive cohort and whether they are more species rich than the 

last. Time on this diagram is also highly variable, depending on the ecosystem being described. IDH = 

Intermediate Disturbance Hypothesis. IFC = Initial Floristics Composition. 

 

Table 1: Succession theories and our hypothesis for our results. 

Successional 
theory 

General description Species richness 
curve 

Hypothesis for this study 

Primary 
succession 
(Walker and 
Del Moral 
2003) 

Building of an 
ecosystem from 
substrates initially 
lacking soil, eg. glacial 
retreat, lava flow, sand 
dunes. 

Begins with no 
life forms, usually 
builds slowly as 
soil forms, then 
species additions 
are more rapid 
before tapering. 

Not relevant to our study (included 
for completeness only), our study 
is secondary succession. 

Facilitation Early successional species make conditions unsuitable for themselves and/or more 
suitable for subsequent species, leading to series of invasions through to late 
successional species. 

Climax 
community 
(Clements 
1916) 

Early species facilitate 
later species along a 
predictable course until a 
final stable climax or 
equilibrium plant 
community is 
established. 

Variable, 
depending on 
number of species 
in successional 
stages. 

Facilitation partially describes our 
study, however, climax theory 
poorly describes multiple 
disturbance or disturbance of 
different types and the end state in 
our study area can vary from rain 
forest to Acacia scrub depending 
on disturbance history. 

Initial 
Floristics 
Composition 
(IFC)/Relay 
floristics 
(Egler 1954) 

IFC: All species are 
present at the time of 
disturbance, early 
dominant species 
facilitate subsequent 
species, then drop out. 
Relay floristics: Series 
of invasions, species 
enter a site progressively 
as conditions become 
appropriate and as other 
species are lost. 

Variable, 
depending on 
number of species 
in each 
successional 
stage. 

The majority of species are present 
at the time of disturbance, but not 
all. Major change is in dominance 
of species groups, not in whether 
they are present or not. Some early 
successional species are lost as 
conditions become unsuitable. 

Tolerance Resource levels dictate species composition, with those more tolerant of low 
resources levels able to outcompete established species over time 

Tolerance 
(Connell and 
Slatyer 
1977) 

Species compete, those 
more tolerant of lower 
resource availability able 
to replace less tolerant 
species. 

Variable, 
depending on 
number of species 
in each 
successional 
stage. 

Highly productive forests with 
deep rich soil and high rainfall, 
light is limiting factor so expect 
tall species to dominate shorter 
until canopy opens in older stages 
if disturbance sufficiently 
infrequent. 
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Intermediate 
Disturbance 
Hypothesis 
(IDH) 
(Connell 
1978) 

Species richness is 
highest with 
intermediate levels of 
disturbance intensity and 
duration between 
disturbance events. 

Increases after 
disturbance, but 
peaks then falls 
towards steady 
state. 

We are not studying frequency or 
intensity of disturbance, but expect 
opposite species richness curve 
with highest richness soon after 
disturbance, dropping when forest 
is young, then increasing again as 
it becomes old due to canopy gaps 
opening to provide more variable 
environmental conditions. 

Inhibition Early species inhibit later species from establishing until they die or are damaged 
Inhibition 
(Connell and 
Slatyer 
1977) 

Early species inhibit 
later species until they 
die or are damaged. 

Variable, but 
likely decline 
unless dominant 
pioneer species 
gives way to 
multiple 
replacement 
species. 

In an ecosystem dominated by 
access to light, early rapid pioneers 
may be able to inhibit successive 
species. Predict this to be of only 
minor importance. 

Other  
Biological 
legacies 
(Franklin et 
al. 2000) 

Secondary disturbance 
leaves living plant 
legacies and structural 
legacies that influence 
the successional path. 

Highly variable, 
depending on 
legacies and range 
of other factors. 

This theory does not predict 
species richness trajectory, 
however it has influence in our 
study as there are many biological 
legacies in the post-fire 
environment, in particular, species 
that re-sprout. 

Stochastic 
community 
drift, 
Markovian 
(Horn et al. 
1975) 

Successional path to the 
next state is determined 
wholly by the current 
state, and is not 
determined by states 
prior to that. 

Highly variable 
depending on 
current state and 
stochastic events. 

Model does not predict species 
richness trend as it is determined 
by stochastic events and each site 
may have a different starting state. 

 
Through quantifying plant species richness in different age cohorts, we aimed to answer two 

interrelated questions. 

 

Question 1. What succession theory, or group of theories, best explains observed differences in 

species richness between the age cohorts? 

Early studies of the Mountain Ash forests in Victoria suggested Egler’s Initial Floristic 

Composition (IFC) theory (Egler 1954) best explained succession in this forest type (Attiwill 1994, 

Pulsford et al. 2014). To maximise diversity across the landscape, Attiwill (1994) suggested 

intermittent disturbance (from fire or logging) as per the Intermediate Disturbance Hypothesis (IDH) 

(Connell 1978), stating  that old growth forests have the lowest species diversity. More recently, 

Pulsford et al. (2014) suggested succession in Mountain Ash would be best represented by a range of 

theories, depending on the frequency and intensity of the disturbances, but primarily IFC and 

facilitation theories. Pulsford et al. (2014) also suggested that biological legacies (sensu (Franklin et 

al. 2000)) are important drivers of post-disturbance recovery and by ‘anchoring’ species to sites, may 

reduce the likelihood of ecosystems shifting to a different state (Zielke et al. 2008). Biological 
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legacies include structures remaining after natural disturbances such as seed or living structures 

capable of re-sprouting that form part of the new stand that develops on a perturbed site (Franklin et 

al. 2000, Johnstone et al. 2016). 

 

Question 2. What trajectories do the functional groups (based on life form and reproductive 

strategy) follow and how does that relate to successional theory. 

Due to early successional (‘ruderal’) species being short lived early colonisers, and ground 

herbs generally favouring sunlit positions (Chazdon and Pearcy 1991, Chazdon et al. 1996), we 

predicted that the species richness of functional groups of plants on sites burned in 2009 would be 

dominated by herbs and short-lived species. Sprouting species and ground ferns were predicted to be 

present, but with low richness due to inhibition successional characteristics that allowed dominance to 

develop over time (Purdie and Slatyer 1976). We predicted that the sites burned in 1983 and 1939 

would be physically dominated by dense stands of eucalypts and Acacia (Ashton 1976, Wang 1997), 

and as such, the dense shading from such regrowth would support the fewest short-lived early 

successional species. As dominance by eucalypts and Acacia reduced through senescence and self-

thinning over time (Ashton 1976), we predicted increasing numbers of long-term persistent species 

such as sprouting species, shrubs and midstorey trees would increase in richness. If these predictions 

are correct, it follows that our oldest sites, burned in or before 1851, would have more sprouting 

species, ferns and midstorey trees than the younger cohorts. Minor disturbances from tree and branch 

fall may create areas of bare soil and an opportunity for re-entry of some early successional species 

and herbs, able to take advantage of the increased solar radiation due to periodic canopy and 

understorey gaps found in this older age of forest (Ashton and Chinner 1999). Consistent with Relay 

Floristics (Egler 1954), we expected that some additional species in the oldest sites may appear for the 

first time in this chronosequence, such as rainforest species, epiphytic ferns and mistletoe (Ashton and 

Chinner 1999, Loyn and Kennedy 2009). 

We hypothesised that species richness would be highest within the first few years after natural 

disturbance as per Initial Floristics Composition, declining in the middle periods when canopy density 

is greatest and ground layers (which are the most diverse (Gilliam 2007)) are most supressed. Then as 

canopy density reduces with more substantial gaps becoming larger and increasingly common in the 

oldest forest due to natural self-thinning, we expect an increase in species richness again due to light 

availability at ground level stimulating ground cover species. A summary of successional theories and 

the likely association to this study are shown in Table 1. 

By measuring species richness of different functional groups, we sought to gain important 

insights into how the presence and composition of different plant groups differ at different points in 

time, and identify whether a single succession theory is appropriate, or if a number of theories is 

required to describe the trajectories of different functional groups of species. By understanding how a 

forest ecosystem that is largely free from human disturbance recovers naturally following a major 
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disturbance event, we are better able to recognise alternative recovery trajectories from other 

disturbance regimes such as logging or future climate change. 

 

METHODS 
Study area, forest type, site selection and survey years 

We conducted our study in the Mountain Ash (Eucalyptus regnans) forests of the Central 

Highlands of Victoria, 60-100km east of Melbourne in south-eastern Australia (Figure 2). Eucalyptus 

regnans persists at an altitudinal range of 150m-1100m (Boland et al. 2006) and the forests of this 

region receive high annual rainfall (750-1700mm per annum). Eucalyptus regnans is the tallest 

flowering plant in the world, typically growing 55-75m tall (Boland et al. 2006) and historically, in 

excess of 100m (Walsh and Entwisle 1996, Ashton 2000). The forests have a tall luxuriant 

midstorey/understorey of shrubs, tree ferns and trees, including Acacia dealbata, which grow to 30m 

tall (Walsh and Entwisle 1996, Costermans 2009) and dense ground coverage of herbs, graminoids 

and/or ferns (Ashton 2000). Eucalyptus regnans is an obligate seeder, with seed stored in capsules in 

the canopy, which is released following large stand replacing fires (Ashton 1976). As a result, E. 

regnans usually regenerate as a stand of uniform age. In contrast, many other species in the Mountain 

Ash forests survive fire and as such may be a century or more older than the overstorey eucalypts 

(Mueck et al. 1996, Blair et al. 2017). The large wildfires that burn these forests typically do so when 

El Nino conditions periodically create strong drought conditions in summer. Historically the return 

interval of high-severity fires has been every 75-150 years (McCarthy et al. 1999). 
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Figure 2: Victorian Central Highlands showing location of sites containing forest of the (1) 2009 

cohort, (2) 1983 cohort, (3) 1939 cohort and (4) 1851 cohort. 

 

To quantify the functional group species richness of the Mountain Ash ecosystem and how it 

may vary with forest age, we studied stands of four overstorey ages on 67 sites selected from 181 long 

term monitoring sites (Table 2). We measured the presence of vascular plant species in forest stands 

that regenerated after large wildfires in 1851, 1939, 1983 and 2009. We surveyed all 67 sites on three 

separate occasions, in 2009/10, 2012 and 2015. The 2009 ‘Black Saturday’ fires burned 34% of the 

Central Highlands (Burns et al. 2015b) and trees regenerating from this fire were 1-6 years old when 

surveyed. The 1983 ‘Ash Wednesday’ fire also was a major fire, but it primarily burned other regions 

of the state, with 9% of the Central Highlands region burned (Taylor 2018). Regrowth from this fire 

was 26-32 years old at the time of surveys. The 1939 ‘Black Friday’ fire was widespread, with the fire 

footprint covering 79% of the Central Highlands region (Noble 1977, Macfarlane 1988), with trees 

from that conflagration 70-76 years old at the time of our three survey years. The oldest of our sites 

were burned in 1851 or earlier, being a minimum 158 years old. Due to the difficulty in correctly 

identifying species within months of a fire, the first survey year for the 2009 cohort was in 2010 

instead of 2009. For this youngest age cohort, at the time of the 2009 fire, 65% of the sites we 

surveyed were forest that had regenerated after the 1939 wildfire (so this was the second fire in 70 

years); the remainder were old growth sites at the time of the 2009 fire. For this study, we tried to 

select sites with as few recorded fire events prior to the fire that created our cohorts as possible. This 
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is because multiple fires can effect species composition, with multiple fires reducing on-site seeding 

species richness and abundance, including overstorey eucalypts (Bowd et al. 2018a).  

 

Table 2: Site survey summary for forest cohorts 

Forest cohort Survey year Age at time of survey Number of sites 
2009 2010 1 17 

2012 3 17 
2015 6 17 

1983 2009 26 10 
2012 29 10 
2015 32 10 

1939 2009 70 29 
2012 73 29 
2015 76 29 

1851+ 2009 158 11 
2012 161 11 
2015 164 11 

 
Compounding disturbance and multi-age forests 

Logging affects the species composition of Mountain Ash forests in a fundamentally different 

way to wildfire, and that effect is likely to persist for several decades (Turner and Kirkpatrick 2009, 

Blair et al. 2016). To reduce the effects of historical human disturbance on our sites, we selected sites 

either in closed water catchments (which have never been logged), or sites where no records or 

obvious signs of past harvesting were evident. 

Some stands of Mountain Ash forests are multi-aged, formed by low severity fire triggering a 

regeneration cohort while individuals in the overstorey survive (McCarthy and Lindenmayer 1998). 

We avoided surveys of multi-aged stands for this study as we wanted to reduce variability in the 

disturbance. Therefore, we selected sites that had only burned at high severity, indicated by uniform 

stand replacement of the overstorey. Also to reduce variability, we selected sites that were uniform in 

overstorey species composition, avoiding mixed (eucalypt) species stands. 

 

Elevation and aspect effects 

We measured the elevation and aspect of all sites, as these affect temperature and topographic 

wetness and thus influence the available niches for different plant species (Pausas and Austin 2001). 

Aspect was divided into two groups, ‘north’ being the hottest and driest aspect was taken from north-

west (315o) to north-east (45o). All other aspects (southerly, easterly and westerly) were combined. 

 

Geographic spread 

Given our study was based on sites burned at high severity by four major wildfires, the location 

of our sites was constrained by the geographic location of each high severity fire. This resulted in 

clustering of sites of some age cohorts (Figure 2). Kasel et al. (2017) found geographic distance 
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influenced beta-diversity within a range of forest types in the same region, but environmental 

variables including climate and soil were found to have greater effects than geographic spread. To 

limit the effect of environmental variables, we accounted for aspect and elevation (which is highly 

correlated with rainfall and temperature in these forests (Blair et al. 2017)) within our modelling. 

 

Site layout and survey methods 

Each of the 67 sites was a 100m x 100m square, with a 100m long central transect running 

perpendicular from the middle of the front edge, bisecting the site. Along the transect were three 10m 

x 10m plots, located between 10-20m, 50-60m and 90-100m, symmetrically straddling the transect. 

The first plot was set back from the front edge of the site to reduce edge effects (see Appendix A).  

We measured the presence or absence of all vascular plant species within each of the three 

plots. The same sites were used in each of the survey years and surveying was between February and 

May in any given year.  We did not measure the abundance of each plant species as this would be 

extremely time consuming for many species due to very high numbers or indistinct growth forms. To 

ensure consistency of data collection over the study period, all data were collected by two field 

ecologists, with one (DB) collecting 90% of the data. 

 

Life form and reproductive strategy functional groups 

To develop a more detailed picture of successional drivers, each plant species on our sites was 

categorised into one of eight life forms and one of five reproductive strategies (see Appendix B). The 

life forms categories related to physical form of the plants and included: (1) eucalypt (overstorey), (2) 

Acacia, (3) midstorey tree, (4) shrub, (5) fern, (6) graminoid, (7) herb and (8) climber. The eucalypt 

category was dominated by a single species, Eucalyptus regnans, which grow densely before rapidly 

self-thinning from 380 stems/ha at age 40 to 40 – 80 stems/ha in ecologically mature forest (Ashton 

and Attiwill 1994). The Acacia category included four species that are midstorey trees (Acacia 

dealbata, A. obliquinervia, A. frigesens and A. melanoxylon), growing to 15-30m tall (Costermans 

2009) and generally living to 30-80 years old. These were separated from other midstorey tree species 

as they are usually taller and also because they have long established unique ecological roles that are 

likely to be of interest for other research, such as nitrogen fixation (Adams and Attiwill 1984, 

Polglase and Attiwill 1992), associations with birds (Lindenmayer et al. 2009), or as feed trees for 

arboreal marsupials(Lindenmayer et al. 1990, Lindenmayer et al. 1991). The two species of tree ferns, 

Dicksonia antarctica and Cyathea australis were listed as midstorey trees, not ferns, due to their size 

and importance for structure in the midstorey. 

We assigned each plant species to one of five reproductive strategies. The categories were 

broadly split into species that are short-lived ‘early successional’ species and ‘persistent’ species: (1) 

Early Successional Seeders (ESS), (2) Persistent External Seed (PES), (3) Persistent On-site Seed 

(POS), (4) Persistent Sprout (Sprout) and Persistent None (Pnone). Early Successional Seeder (ESS) 
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species, or ruderals, are disturbance specialists. They regenerate rapidly from seed within the first few 

years after fire, then are typically visually absent within a decade unless additional disturbances occur, 

which may include small localised disturbances. Despite being visually absent, ESS species may still 

be present on site, having moved from the above ground (visually apparent) pool, to the below ground 

soil seed bank. Persistent species by contrast, remain in an extant state beyond the initial successional 

stage of recovery after fire. Persistent External Seed (PES) species have highly mobile seed, brought 

into the site from vectors such as wind or birds. In contrast, Persistent On-site Seed (POS) species 

originate from seed that was either in the soil or canopy and survived the fire. Persistent Sprout 

(Sprout) species recover by re-sprouting from a surviving part of the plant such as shooting from the 

trunk, lignotubers or rhizomes. Persistent None (Pnone) species have no clearly defined reproductive 

strategy. This may mean reproduction is undefined or, more commonly, consists of multiple 

reproductive methods without a single dominant strategy. The assignment of species into these 

various groups was done from field observations, literature reviews (Walsh and Entwisle 1994, 1996, 

1997, Costermans 2009, Kattge et al. 2011, Bull and Stolfo 2014) and through consultation with staff 

from the Melbourne Botanical Gardens (Walsh 2013).  

 

Statistical analysis 

We modelled overall species richness at the plot level (that is, the data from the three years at 

the plot level were used in computing site level richness) accounting for elevation (standardized) and 

four age cohorts. We used a Bayesian generalized linear mixed model (GLMM) with a Poisson 

distribution and log link with site as a random effect. The site level random effect allowed for 

correlation among the plots on each site. We completed our analysis in R (R Core Team 2017) using 

the brms package (Bürkner 2016). We used the default priors provided in the package and ran four 

Markov Chains for 2000 iterations discarding the first 1000 as burn-in.  Standard MCMC diagnostics 

were employed to check for convergence of the chains and all were found to show adequate mixing 

(Gelman and Rubin 1992). We report posterior mean estimates and 95% credible intervals. The 

species richness from each of the 13 functional groups (eight life form groups and five reproductive 

strategies) were analysed in a similar fashion. 

 

Qualitative comparison analysis of succession response curves 

The generalised curves of species richness for different succession theories are shown in Figure 

1. To determine which of the succession theories best explained observed changes in overall species 

richness and plant functional groups in the Mountain Ash forests, we drew inferences from the pattern 

of our chronosequence data points in a qualitative comparison with the succession theories trends. 
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RESULTS 
Overall species richness 

We found a significant trend in species richness (Figure 3, Appendix C). Sites burnt in 2009 

supported significantly higher species richness than other age cohorts, averaging 17.1 (Lower CI 15.3, 

Upper CI 19.2) species per plot. The 1983 and 1939 cohorts had the lowest average species richness 

with 12.9 (LCI 11.0, UCI 15.1) and 12.5 (LCI 11.4, UCI 13.6) spp/plot respectively, with plots in 

1851 aged stands supporting 13.4 (LCI 11.7, UCI 15.6) spp/plot. There was no significant difference 

in species richness between the older three age classes. There were a number of species found only in 

one age cohort. The 2009 sites supported seven species that were unique to that age cohort, 1983 

cohort had one unique species, 1939 had eight species and the 1851 cohort had three species found 

only in those plots. We found species richness declined with increasing elevation, adjustments for 

elevation was therefore included in adjusting for analyses of overall species richness. 

 

 
Figure 3: Overall species richness, average number of species per plot with 95% credible intervals for 

the four age cohorts that regenerated after fires in 2009, 1983, 1939 and 1851 for a site with average 

elevation. 

 

Functional groups – life form 

The following graphs (Figure 4) of life form show the average number of species per 10mx10m 

plot for the four age cohorts with 95% credible intervals. Modelling has the effects of elevation taken 

into account where elevation effects where significant. 
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Figure 4: Life form species richness, average number of species per plot (y-axis) with 95% credible 

interval for the four age cohorts that regenerated after fires in 2009, 1983, 1939 and 1851 for a site 

with average elevation. 

 

Eucalypts and Acacias generally diminished in the older cohorts. Eucalypts were significantly 

less species rich in our 1851 cohort compared to stands dating from 2009. Species richness of Acacia 

in the 1851 cohort was significantly lower than the other three cohorts.  

Midstorey trees were most species rich in the 1851 cohort, significantly greater than the 

younger three cohorts of which, the 1983 cohort had the lowest richness. Shrubs by contrast, were a 

mirror image of midstorey trees, with the 2009 and 1983 cohort having the greatest species richness, 

significantly greater than 1851, which had the lowest. 

Fern species richness increased in the older forest cohorts, with 1851 having the greatest 

richness, significantly more than 2009 and 1983. Graminoid species richness was high immediately 

post fire, with subsequent cohorts having reduced species richness. The 2009 cohort was significantly 
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more species rich than the 1939 and 1851 cohorts. Herb species richness was also highest 

immediately post fire disturbance, with the 2009 plots having significantly greater richness than all 

three other age cohorts. Herb richness was lowest in the 1983 and 1939 age forest plots. Climbers are 

represented by three species and no significant differences were established between the four age 

cohorts. 

 

Functional groups – reproductive strategy 

The five graphs of reproductive strategy (Figure 5), show the species richness within each 

10mx10m plot for the four age cohorts with 95% confidence intervals. Modelling has the effects of 

elevation taken into account. 

 

 
Figure 5: Reproductive strategy species richness, average number of species per plot (y-axis) with 

95% credible interval for the four age cohorts that regenerated after fires in 2009, 1983, 1939 and 

1851 for a site with average elevation. ESS = Early Successional Seed; PES = Persistent External 

Seed; POS = Persistent Onsite Seed; PSprout = Persistent Sprout, Pnone = Persistent None (no clearly 

defined strategy). 

 

Early Successional Seeder (ESS) species had the same pattern of as the overall species 

richness and as herbs, with the 2009 cohort having the highest species richness, significantly greater  

than the other three age cohorts. The 1983 and 1939 cohorts had fewest early successional species. 

Persistent External Seed (PES) species richness declined with increasing forest age. We 

recorded a significant difference between the 2009 plots and those of 1939 and 1851. 

Persistent On-site Seed (POS) species richness declined with increasing forest age with plots 

from both the 2009 and 1983 cohorts having greater species richness than the older 1939 and 1851 

cohorts. 
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Persistent sprout (Sprout) was the only reproductive strategy group to increase with forest 

age. The 1851 cohort had significantly greater species richness than all younger cohorts. The 1939 

cohort had greater species richness than the forest of 1983 age, which had the lowest species richness.  

Persistent none (Pnone) species richness trended slightly down with forest age but there were 

no signifcant differences betweeen the four cohorts. 

 

Functional group proportions of overall species richness 

Figure 6 illustrates the relative contribution of each functional group to the overall species 

richness of the Mountain Ash forest for the four age cohorts. Life forms are the top half of the chart 

and reproductive strategy the bottom half. The graphics are graduated from the functional groups that 

contribute most to overall species richness to the least (up for life form, down for reproductive 

strategy). From this graphic we see Midstorey Trees and Ferns increasingly dominate the overall 

species make up of the forest, with Herbs diminishing from the life form providing the greatest 

species richness in the 2009 cohort, to only minor representation in the 1983 and 1939 cohorts. For 

reproductive strategy, Persistent On-site Seed species contribute the most species to overall richness 

in the 2009 and 1983 cohorts before diminishing in the older forests, replaced by the increasing 

number of Persistent Sprouting species that increase their share of overall species richness with each 

age cohort. Early successional species contribute almost 9% of species richness in the 2009 cohort 

before reducing to 1 or 2% in the other cohorts. 
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Figure 6: Proportion of overall species richness contributed by different functional groups – life 

forms in the top half and reproductive strategy below in four age cohorts of Mountain Ash forest. 

Note, this graphic does not show abundance of any functional group, but what proportion of the 

overall species richness each group contributes. (POS = Persistent On-site Seed. Sprout = Persistent 

Sprouting species, PES = Persistent External Seed, Pnone = Persistent none/no defined strategy ESS = 

Early Successional Seeder.) 

 

DISCUSSION 

Disturbance within a range of ecosystems, including forests, has been studied for over a century 

(Clements (1916) reviewed by Pulsford et al. (2014)). Disturbance brings changes which benefit some 

species and negatively influence others at different times, creating shifts in the composition of plant 

species in a forest (Noble and Slatyer 1980, Lavorel and Garnier 2002). While the original theories 

from Clements (1916) of orderly transitions to a final ‘climax’ state have been superseded (Sousa 

1984, McIntosh 1999, Moore et al. 2009), there is still a wide range of theories to explain successional 

change through time (Pulsford et al. 2014), and theories which fit one ecosystem may not explain 

changes in others. However, understanding the disturbance recovery trajectories within largely natural 

ecosystems such as the studied areas of this temperate forest, assists with comparative analyses of 

temperate forest biomes at larger scale, including from climate change influences (Sommerfeld et al. 
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2018). Our chronosequence study within the Mountain Ash forests, was developed to examine the 

congruence between predictions from a range of succession theories and the observed patterns within 

this forest ecosystem. 

 

Stochastic community drift 

Disturbance history is important in wet temperate forests around the world. In the North 

American Rocky Mountains, historic fire and insect attack affected the regeneration trajectory of 

forests due to changes in severity of subsequent fire (Bigler et al. 2005). In north-western Canada, 

disturbance history affected stand basal area (Johnstone and Chapin 2006), which in turn, altered fire 

frequency (Bergeron et al. 2001). Fire is rare in the forests of the European Alps. Where it has 

occurred, it has radically changed the resulting vegetation community (Tinner et al. 2005), and when 

it interacts with drought it can also affect recovery pathways (Moser et al. 2010). In the temperate and 

boreal forests of northern China, fire affects stand age which is correlated to carbon storage (Wei et al. 

2013). Early work by Ashton (1981) and more recent work by Bowd et al. (2018a) in the Mountain 

Ash forests in Victoria, has showed combinations of stochastic events such as fire, with the 

deterministic disturbance of logging and post-fire salvage logging, can shift the plant community, 

with losses of species within some functional groups after particular types of disturbance. For 

example, multiple fires resulted in losses of persistent on-site seeding species, while logging, and in 

particular salvage logging, greatly reduced the number of sprouting species (Blair et al. 2016, Bowd et 

al. 2018a). Given we specifically avoided sites with complex human-generated disturbance histories, 

we are unable to establish evidence of stochastic community drift from this study. 

 

Question 1. What succession theory, or group of theories, best explains observed differences in 

species richness between the age cohorts? 

The major form of natural disturbance of Mountain Ash forests is wildfire. Following wildfire, 

a wide range of biological legacies remain (Franklin et al. 2000) and secondary succession is the 

dominant process (Walker and Del Moral 2003). Legacies that help establish the recovering forest 

include sprouting rhizomes and lignotubers (Murphy and Ough 1997), seed and even nutrients 

(Johnstone et al. 2016). Earlier work in the Mountain Ash forests suggested the Initial Floristic 

Composition (IFC) model of plant succession best explained changes in plant species richness through 

time (Attiwill 1994) or a combination of IFC, State Transitions and Biological Legacies (Pulsford et 

al. 2014). However, the species richness at different points in time in our study indicate the shape of 

the species richness curve for this forest may be better explained (at least in part) by Relay Floristics 

than by IFC, with reduced levels of species richness in the 1983 and 1939 cohorts, but increased 

overall species richness in older forest (see Table 1 and Figure 3). Our identification of 19 species that 

occurred in only one of the age cohorts, and 11 of these being in the oldest two cohorts, further 

supports the concept of relay floristics. While beta-diversity due to possible edaphic differences 
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between our sites may partially explain our findings (Kasel et al. 2017), it should also be noted there 

are plants known to be uncommon in younger regrowth forests, including Mistletoe (Lindenmayer 

2009, Loyn and Kennedy 2009) and epiphytic ferns (Hickey 1994), further supporting a Relay 

Floristics model. Additionally, seed storage effects result in some species that may be present in the 

below ground seed bank, not being recorded on some surveys due to not being visually observable. 

 

Question 2. What trajectories do the functional groups (life form and reproductive strategy) follow 

and how does that relate to successional theory. 

It is difficult to state definitive trends from 4 points in time as per our chronosequence. 

However, some trends through time are more likely than others. The changes in species richness for 

the life form and reproductive strategy functional groups that seem most plausible, could be 

generalised into four main trends (Figure 7). 

 

 
 

Figure 7: Generalised trends from our results for overall species richness and species richness of the 

functional groups. IDH = Intermediate Disturbance Hypothesis, no functional groups followed this 

trend. ESS = Early Successional Seed; PES = Persistent External Seed; POS = Persistent On-site 

Seed; P Sprout = Persistent Sprout, Pnone = Persistent None (no clearly defined strategy). 

 

As can be seen in Figure 7, the functional group species richness fitted into four broad trends 

across the forest age cohorts: (1) trending up, (2) trending down, (3) a flattened ‘U’ shape and (4) flat. 

None were the inverted-U shape characteristic of IDH.  

Upward trending species richness with increasing forest age was seen in the Persistent 

Sprouting species, midstorey trees and ferns (the majority of which are sprouting species). This most 
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closely follows Relay Floristics succession theory where inhibition is playing an increasing role 

through the sprouting species. This appears to be at the expense of other groundstorey seeding species 

(herbs, graminoids, Figure 6). By definition, sprouting species arise from biological legacies (Franklin 

et al. 2000) that persist after the major disturbance by fire (although in reduced numbers soon after 

fire), so this theory is clearly of importance in the recovery of these species. The concept of biological 

legacies describes pathways of recovery, including through sprouting species, but it is not necessarily 

a predictor of trends in species richness.  

Downward trending species richness with increasing forest age was common. Eucalypts, 

Acacia, shrubs, graminoids, Persistent External Seed and Persistent On-site Seed species all followed 

this trend, which is best explained by Egler’s Initial Floristics Composition. Declines in seeding 

species richness over time since disturbance can be attributable to plants senescing and moving from 

the above ground (visible) pool to the below ground seed store. If they require disturbance to re-

establish above ground, there could be very extensive periods without these species visually apparent. 

Another reason for their diminishing richness may be inhibition competition from the sprouting 

species. 

The ‘U’ shaped trend group, which included herbs and Early Successional Seed species, was 

similar to the downward trend, with large decreases in species richness from the 2009 cohort as forest 

age increased. However, the species richness of the oldest cohort for these functional groups 

rebounded slightly (Figure 4 and 5). The large decline in species richness in cohorts older than the 

2009 age forest (6 years of age) was likely due to a number of factors. Many species, such as the 

Early Successional Seed species and several herbs, are gradually out competed, becoming visually 

unobservable over time and often transitioning to become part of the below-ground seed bank. Some 

species, such as Dryopoa dives, are capable to remaining in the seed bank for well over a century 

(Lindenmayer et al. 2015). This fits with many successional theories, including Relay Floristics, 

facilitation or tolerance models, depending on the plant dynamics moving into the secondary phase of 

succession. For both ESS and the herbs, there were elevated levels of early successional species that 

appear in the oldest forest age cohort, presumably making use of minor disturbances from branch and 

tree fall and the increased sunlight available at ground level. Given these forests have high consistent 

rainfall and deep, rich soils, sunlight is likely to be a limiting factor for many of the groundstorey 

species (Ashton and Martin 1996), particularly in the 1983 cohort, and to a lesser extent the 1939 and 

1851 forests as stocking densities decrease (Ashton 1976). This leads to the dominance of some 

species by inhibition as mentioned previously, and tolerance by those that persist (Connell and Slatyer 

1977). Most species with seed that enters the site from external sources (PES and ESS) require a 

receptive available seed bed for establishment, so as the forest becomes dense and closed, this may 

reduce the number of persistent blow-in species from establishing at a time subsequent to the initial 

establishment period. With the inability to establish within a dense existing stand, and short longevity, 
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this explains why the1983 and 1939 stands had very few early successional species, although, as 

mentioned above, they increased in the oldest forest. 

Finally, a flat trends in species richness was seen in the Persistent None and climbers groups. 

The Persistent None group includes a wide range of life forms and variable reproductive strategies, so 

it is perhaps not surprising there was no clear trend. In contrast, there are only three climber species 

(Clematis aristata, Billardiera mutabilis and Parsonsia brownii), all are Persistent On-site Seeders. 

By occupying an arboreal niche, it is likely much of the competition experienced by other understorey 

species (particularly for light) is avoided by these species. 

We documented a shift in the proportion of the overall forest species richness for different 

functional groups with increasing forest age (Figure 6). Of the reproductive strategy groups, Persistent 

On-site Seed and Persistent Sprout species contributed the most to overall species richness in this 

forest ecosystem (Figure 6), but they trended in opposite directions; as the on-site seeders declined, 

the sprouters increased, leading to the overall species richness graph being ‘U’ shaped. The high 

species richness of both is due to these being diverse groups of species with a wide range of traits for 

survival in this forest type (Wang 1997, Blair et al. 2016). For life forms, herb species richness 

declined with forest age, while sprouting species and midstorey trees both increased. This is likely to 

be due to the low growth habits of the herbs favouring initial conditions after fire when light reaches 

the ground. In contrast, many ferns are shade tolerant (Ashton 2000) and are able to reproduce 

asexually from rhizome growth or frond tip bulbils (Walsh and Entwisle 1994). Eucalypts contributed 

little to overall species richness. This was as expected given sites were selected on the basis of being 

dominated by Eucalyptus regnans. It is likely the high level of competition for available light and 

water by the dense stands of eucalypts and Acacia, particularly in the 1983 and 1939 stands is a major 

contributing factor in the low overall species richness for those age cohorts. In the 1983 stands, 

eucalypts are generally 20-40m tall, averaging 500-800 stems/ha, are at or have maximised basal area, 

and are still growing rapidly (Ashton 1976, Blair et al. 2018). The persistence of Acacia, albeit at 

lower levels, in the oldest cohort is interesting as although A. melanoxylon may live in excess of 100 

years (Attiwill 1994) most Acacia species senesce before that age. This indicates possible 

regeneration without disturbance, or regeneration from minor disturbances such as tree or branch fall, 

disturbance by lyrebirds or low severity fire in the interim since the last high severity fire. 

 

Multiple succession theories for one ecosystem.  

Our findings suggest the various functional groups of the Mountain Ash forest ecosystem have 

dissimilar recovery trajectories, and while they may interact (eg. ferns outcompeting herbs or 

graminoids), they follow different successional theories. Therefore, while Initial Floristic 

Composition may explain the majority of the seeding species well, sprouting species are better 

explained by Relay Floristics (Egler 1954) or Inhibition (Connell and Slatyer 1977). The finding that 
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multiple successional theories may be required to describe the responses of different functional groups 

of plants in a single ecosystem is supported by others (Roxburgh et al. 2004, Pulsford et al. 2014). 

 

The Intermediate Disturbance Hypothesis 

The Intermediate Disturbance Hypothesis (Eggeling 1947, Grime 1973, Connell 1978) had 

been suggested by Attiwill (1994) to explain maximum species diversity in the Mountain Ash forests. 

Indeed, maintenance of diversity is used by Attiwill (1994) as an argument for logging within these 

forests, with the assumption that maintaining an ‘intermediate’ disturbance frequency would lead to 

greater species diversity on a landscape scale. What was probably poorly known at the time was the 

disturbance type of logging itself is deleterious to species diversity in these forests (Ough 2001, Blair 

et al. 2016). Many studies suggest that the peaked species richness curve that characterises IDH, may 

actually be uncommon (Mackey and Currie 2001, Fox 2013), or that it is a result of amalgamating a 

range of more complex interactions (Roxburgh et al. 2004). There are also differences in what is 

described, with IDH theory having been used to describe severity, frequency, or time since 

disturbance (Mackey and Currie 2001). Our findings of time since fire, were not of peaked species 

richness, rather the opposite, with minimum species richness occurring in the two middle age cohorts. 

Even when examining the results of all the individual functional groups (Figure 4), none of the 

functional groups had a species richness pattern consistent with predictions from the IDH theory. In 

fact not only do we know that logging fundamentally changes the species composition in a way that is 

different to natural wildfire (Ough 2001, Blair et al. 2016), but our species richness results (Figure 3) 

show species richness is at its lowest during the age at which forests would spend the majority of their 

time if logged at 60-80 years of age, as has occurred over the last couple of decades in the Mountain 

Ash forests. With only 1.16% of the Mountain Ash forests currently older than 80 years of age 

(Lindenmayer et al. 2012), these forests are not lacking disturbance. Greater diversity is likely to be 

achieved across the landscape through the natural spatial heterogeneity of periodic wildfire across 

variable topography than through a series of deliberate disturbances at set intervals from a disturbance 

type that in itself reduces diversity. 

 

A baseline from undisturbed forests 

Temperate forests around the world are subjected to a range of disturbances which are 

beginning to be influenced by climate change (Sommerfeld et al. 2018). Given their history includes 

very minor human disturbance in certain areas (Griffiths 2001), this study is able to provide an 

important baseline of how we would expect the various plant functional groups to respond following 

infrequent major natural disturbances. With this knowledge, it is now possible to contrast these 

baseline responses with human disturbance such as logging or altered regeneration responses under 

future climate change influences. Climate modelling has suggested most tree species within the study 

region may be unable to naturally self-sustain from seed by the 2080s and possibly as early as the 
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2050s in the majority of areas where they currently persist (Mok et al. 2012, Wang et al. 2016). A 

better understanding of the successional pathways is important to detect early warning signs that these 

forests are recovering in fundamentally different ways to how they do so currently or have done in the 

past. 

 

Use of chronosequence 

Some studies using the ‘space for time’ methodology employed by chronosequencing have 

been found to be invalid in some situations, including examples of primary succession on dunes and 

glacial retreat (Johnson and Miyanishi 2008). Others have generally endorsed the method with 

specific cautions, including drawing inferences on species richness (Foster and Tilman 2000), or 

between plots of different site quality (Ashton and Martin 1996), or not extrapolating from plot level 

to landscape level (Harmon and Pabst 2015).  

Walker et al. (2010b) found chronosequencing an effective method for decade to millennial 

length studies, including for studying species richness, where sites of different ages are generally 

following the same trajectory. They also found optimal results when sites had low diversity, high 

species turn over, low severity disturbance and long intervals between disturbances. While our study 

sites were subject to high severity disturbance in the form of wildfire, the disturbance interval for the 

selected sites was long, 70 years as a minimum and well over 100 years for the majority of our sites. 

Given our study is at a decadal or longer scale and it is likely sites are on the same successional 

trajectory, we believe chronosequencing was an instructive method to compare stands of different 

ages. 

 

CONCLUSIONS 
Succession in the Mountain Ash forests of Victoria appears to most closely follow a 

combination of Initial Floristic Composition and Relay Floristics. We found the recovery trajectories 

of some functional groups, such as the on-site seeding species, herbs, eucalypts, Acacia, shrubs and 

graminoids can be largely explained through Egler’s Initial Floristic Composition theory (Egler 1954). 

However, the ferns, midstorey trees and sprouting species, as well as the addition of 11 species found 

exclusively in the 1939 and 1851 cohorts indicates Relay Floristics may also have a role to play with 

the sprouting species appearing to be inhibitors, increasing in dominance over time. The sprouting 

species are also important examples of biological legacies (Franklin et al. 2000) that are able to 

survive fire. Biological legacies underpin regeneration of all secondary succession with legacies such 

as seeds and nutrients playing important roles in forest recovery (Johnstone et al. 2016). Sprouting 

species may help ‘anchor’ this forest community in the face of a changing climate or other 

disturbance shocks through their ability to survive a disturbance such as wildfire with already well 

established root systems, which is likely to increase their resilience to climate induced drought in the 
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very early stages of establishment after wildfire when species regenerating from seed are particularly 

susceptible due to less substantial root mass (Pratt et al. 2008). 

Our studies revealed the Mountain Ash forests of Victoria comprise a variety of functional 

groups with differing recovery trajectories, and as such, are best explained by different successional 

theories. The recovery trajectories of some functional groups, such as the on-site seeding species, 

herbs, eucalypts, Acacia, shrubs and graminoids can be largely explained through Egler’s Initial 

Floristic Composition theory (Egler 1954). However, the ferns, midstorey trees and sprouting species, 

as well as the addition of 11 species found exclusively in the 1939 and 1851 cohorts indicates Relay 

Floristics may also have a role to play. 

As examples of forest free from human disturbance become increasingly rare around the world 

(Hansen et al. 2010, Watson et al. 2018), and impacts of climate change begin to fundamentally alter 

global forests (Allen et al. 2010, Sommerfeld et al. 2018), gaining an understanding of how our 

forests function without these influences becomes increasingly important so variations to usual forest 

recovery are observable. This may include increased insect attack in Canada’s boreal forests (Kurz et 

al. 2008), drought and associated fire in tropical forests including the Amazon (Laurance 1998) and 

Indonesia (Van Nieuwstadt and Sheil 2005), increased wind storms in the Congo (Whitmore 1998) or 

changes due to logging of native forests as occurs in many countries around the world. In our study 

region, modelling predicts most tree species will be unable to regenerate naturally from seed within 

40-70 years across the majority of their current geographic ranges (Mok et al. 2012, Wang et al. 

2016). Having descriptions of baseline recovery pathways following natural disturbance, means we 

are better equipped to detect changes in recovery due to human disturbance, multiple disturbances 

within a short time frame, or changes in regenerative capacity of the forest due to the more subtle 

effects of our changing climate. 
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APPENDIX A 
Site layout with plots 
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APPENDIX B 
Plant species classification 
Y = species observed on 2 or more sites, y = species observed on a single site. 
 
Species Life form Reproductive 

strategy 
Cohort present in 

2009 1983 1939 1851 
Acacia dealbata Acacia POS Y Y Y Y 
Acacia frigescens Acacia POS Y Y Y Y 
Acacia melanoxylon Acacia POS  y Y Y 
Acacia obliquinervia Acacia POS Y Y Y  
Acacia verniciflua Shrub POS y    
Acaena novae-zelandiae Herb POS Y y Y Y 
Acrothamnus maccraei Shrub POS   Y  
Asperula euryphylla Herb POS Y   y 
Asplenium bulbiferum Fern Sprout    Y 
Atherosperma moschatum Midstorey Tree Sprout   Y Y 
Australina pusilla Herb POS Y Y Y Y 
Austrocynoglossum latifolium Herb POS    y 
Bedfordia arborescens Midstorey Tree Sprout Y Y Y Y 
Billardiera mutabilis Climber POS y Y Y  
Blechnum cartilagineum Fern Sprout   Y  
Blechnum nudum Fern Sprout y  Y y 
Blechnum wattsii Fern Sprout Y Y Y Y 
Calochlaena dubia Fern Sprout  y  y 
Carex appressa Graminoid Sprout y   y 
Cassinia aculeata Shrub PES Y Y Y Y 
Cassinia longifolia Shrub PES Y y y y 
Clematis aristata Climber POS Y Y Y Y 
Coprosma hirtella Shrub POS Y Y Y Y 
Coprosma quadrifida Shrub POS Y Y Y Y 
Correa lawrenceana Shrub POS Y Y Y Y 
Cyathea australis Midstorey Tree Sprout Y Y Y Y 
Daviesia latifolia Shrub POS   y  
Dianella tasmanica Graminoid Sprout Y Y Y Y 
Dicksonia antarctica Midstorey Tree Sprout Y Y Y Y 
Drymophila cyanocarpa Herb Sprout  y y  
Dryopoa dives Graminoid POS Y y Y Y 
Eucalyptus cypellocarpa Eucalypt POS   Y  
Eucalyptus delegatensis Eucalypt POS y  Y  
Eucalyptus nitens Eucalypt POS Y Y y  
Eucalyptus regnans Eucalypt POS Y Y Y Y 
Eucalyptus viminalis Eucalypt POS y    
Gahnia radula Graminoid Sprout  y Y  
Galium propinquum Herb POS Y  Y y 
Geranium potentilloides Herb POS Y y Y Y 
Gonocarpus humilis Herb POS Y  Y  
Goodenia ovata Shrub POS Y y   
Goodia lotifolia Shrub POS Y    
Grammitis billardierei Fern POS  Y Y Y 
Hedycarya angustifolia Midstorey Trees Sprout Y Y Y Y 
Histiopteris incisa Fern Sprout Y Y Y Y 
Hydrocotyle geraniifolia Herb POS  y   
Hydrocotyle hirta Herb POS Y Y Y Y 
Hymenophyllum sp Fern POS   Y y 
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Hypolepis rugosula Fern Sprout Y    
Leionema bilobum Midstorey Tree POS y  Y  
Lepidosperma elatius Graminoid Sprout Y Y Y Y 
Leptinella filicula Herb POS   Y y 
Leptospermum grandiflorum Midstorey Tree POS   Y  
Leptostigma reptans Herb POS Y Y Y y 
Lomatia fraseri Midstorey Tree Sprout Y  Y y 
Mentha australis Herb POS y  y y 
Mentha laxiflora Herb POS Y  y Y 
Microlaena stipoides Graminoid POS  y y y 
Microsorum pustulatum Fern POS   Y Y 
Myrsine howittiana Midstorey Tree Sprout    y 
Notelaea ligustrina Midstorey Tree Sprout Y y Y y 
Nothofagus cunninghamii Midstorey Tree POS Y y Y Y 
Olearia argophylla Shrub Sprout Y Y Y Y 
Olearia lirata Shrub PES y Y Y Y 
Olearia phlogopappa Shrub PES Y Y Y Y 
Oreomyrrhis eriopoda Herb POS Y   y 
Oxalis exilis Herb POS Y y Y Y 
Parsonsia brownii Climber POS  Y Y y 
Persoonia arborea Herb POS Y Y Y Y 
Pimelea axiflora Shrub POS Y Y Y Y 
Pimelea ligustrina Shrub POS  y  y 
Pimelea linifolia Shrub POS y y Y Y 
Pittosporum bicolor Midstorey Tree Sprout Y Y Y Y 
Poa ensiformis Graminoid POS Y  Y Y 
Poa sieberiana Graminoid POS   y  
Polyscias sambucifolia Shrub POS Y Y Y Y 
Polystichum proliferum Fern Sprout Y Y Y Y 
Pomaderris aspera Midstorey Tree POS Y Y Y Y 
Poranthera microphylla Herb POS y    
Prostanthera lasianthos Midstorey Tree POS Y Y Y Y 
Prostanthera melissifolia Shrub POS  Y Y  
Pteridium esculentum Fern Sprout Y Y Y Y 
Rorippa dictyosperma Herb ESS Y y  y 
Rubus parvifolius Herb Sprout Y  Y y 
Rumohra adiantiformis Fern Sprout y    
Sambucus gaudichaudiana Herb Sprout Y Y Y Y 
Senecio glomeratus Herb ESS y   y 
Senecio gunnii Herb ESS Y  Y y 
Senecio minimus Herb ESS Y  y y 
Senecio vagus Herb ESS Y y  y 
Senecio velleioides Herb ESS Y  y Y 
Solanum aviculare Herb ESS Y    
Solanum prinophyllum Shrub POS   y y 
Stellaria flaccida Herb POS Y Y Y Y 
Sticherus lobatus Fern Sprout   y  
Tasmannia lanceolata Midstorey Tree Sprout Y y Y Y 
Tasmannia xerophila Midstorey Tree Sprout   y  
Tetrarrhena juncea Graminoid POS Y Y Y Y 
Urtica incisa Herb POS Y y y y 
Viola eminens Herb POS   Y y 
Viola hederacea Herb POS Y Y Y Y 
Zieria arborescens Shrub POS Y Y Y Y 
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APPENDIX C 
 
Posterior median and lower and upper 95% credible intervals are reported for each of the model 
effects. The cohort effects are given holding elevation fixed at the mean level. Also, note that 
elevation is standardized to have mean 0 and standard deviation 1.  We also report relative effects 
comparing each of the cohorts, note that credible intervals that don’t contain 1 indicate evidence that 
the rates are different from each other (displayed in bold). 
 
Overall Species Richness 

 est lower upper 
2009 17.11 15.34 19.24 
1983 12.95 11.01 15.1 
1939 12.47 11.39 13.56 
1850 13.4 11.7 15.64 
Elevation 0.94 0.88 1 
Aspect O 17.11 15.34 19.24 
Aspect N 16.92 14.54 19.54 
1983-2009 0.76 0.62 0.91 
1939-2009 0.73 0.64 0.84 
1850-2009 0.78 0.66 0.94 
1939-1983 0.96 0.81 1.15 
1850-1983 1.03 0.85 1.29 
1850-1939 1.08 0.92 1.26 
Aspect N – O 0.99 0.85 1.11 

 
Life form 
Significant results highlighted in bold. 
 
Eucalypt species richness 

 est lower upper 
2009 1.18 0.9 1.56 
1983 1.17 0.76 1.68 
1939 0.86 0.67 1.06 
1850 0.6 0.37 0.94 
Elevation 1.06 0.9 1.25 
Aspect O 1.18 0.9 1.56 
Aspect N 1.07 0.74 1.56 
1983-2009 0.99 0.61 1.53 
1939-2009 0.72 0.52 1.04 
1850-2009 0.51 0.29 0.82 
1939-1983 0.73 0.48 1.13 
1850-1983 0.51 0.28 0.89 
1850-1939 0.7 0.42 1.16 
Aspect N – O 0.91 0.63 1.28 

 
Acacia species richness 

 est lower upper 
2009 0.95 0.66 1.29 
1983 1.18 0.74 1.73 
1939 0.93 0.72 1.16 
1850 0.44 0.24 0.73 
Elevation 1.14 0.96 1.34 
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Aspect O 0.95 0.66 1.29 
Aspect N 0.98 0.63 1.43 
1983-2009 1.24 0.76 2.1 
1939-2009 0.98 0.67 1.46 
1850-2009 0.46 0.25 0.81 
1939-1983 0.79 0.5 1.29 
1850-1983 0.37 0.19 0.71 
1850-1939 0.47 0.26 0.84 
Aspect N – O 1.03 0.71 1.47 

 
Midstorey Tree species richness 

 est lower upper 
2009 2.48 2.03 3 
1983 2.17 1.66 2.85 
1939 2.74 2.37 3.12 
1850 3.61 2.94 4.51 
Elevation 0.86 0.78 0.94 
Aspect O 2.48 2.03 3 
Aspect N 2.19 1.7 2.86 
1983-2009 0.87 0.62 1.21 
1939-2009 1.1 0.88 1.41 
1850-2009 1.45 1.11 1.92 
1939-1983 1.26 0.95 1.71 
1850-1983 1.66 1.19 2.36 
1850-1939 1.32 1.03 1.69 
Aspect N – O 0.88 0.7 1.12 

 
Shrub species richness 

 est lower upper 
2009 2.84 2.21 3.74 
1983 3.18 2.25 4.41 
1939 2.43 2 2.96 
1850 1.88 1.33 2.67 
Elevation 0.89 0.78 1.02 
Aspect O 2.84 2.21 3.74 
Aspect N 2.88 2.1 4.01 
1983-2009 1.12 0.74 1.66 
1939-2009 0.85 0.62 1.2 
1850-2009 0.66 0.44 0.99 
1939-1983 0.76 0.52 1.08 
1850-1983 0.59 0.38 0.94 
1850-1939 0.78 0.52 1.12 
Aspect N – O 1.02 0.76 1.35 

 
Fern species richness 

 est lower upper 
2009 2.02 1.65 2.5 
1983 1.99 1.48 2.65 
1939 2.33 2.01 2.66 
1850 2.8 2.21 3.5 
Elevation 1.03 0.93 1.14 
Aspect O 2.02 1.65 2.5 
Aspect N 1.84 1.4 2.35 
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1983-2009 0.98 0.69 1.38 
1939-2009 1.16 0.89 1.46 
1850-2009 1.39 1.02 1.82 
1939-1983 1.17 0.86 1.61 
1850-1983 1.41 0.98 2 
1850-1939 1.2 0.93 1.56 
Aspect N – O 0.91 0.72 1.14 

 
Graminoid species richness 

 est lower upper 
2009 1.77 1.41 2.23 
1983 1.3 0.91 1.81 
1939 1.21 0.98 1.46 
1850 1.08 0.77 1.51 
Elevation 0.92 0.81 1.04 
Aspect O 1.77 1.41 2.23 
Aspect N 1.98 1.45 2.61 
1983-2009 0.73 0.5 1.1 
1939-2009 0.68 0.52 0.93 
1850-2009 0.61 0.41 0.91 
1939-1983 0.93 0.66 1.38 
1850-1983 0.83 0.54 1.31 
1850-1939 0.89 0.59 1.29 
Aspect N – O 1.12 0.86 1.51 

 
Herb species richness 

 est lower upper 
2009 4.28 2.41 7.53 
1983 0.7 0.29 1.62 
1939 0.72 0.43 1.12 
1850 1.57 0.72 3.08 
Elevation 0.88 0.67 1.24 
Aspect O 4.28 2.41 7.53 
Aspect N 4.84 2.32 9.72 
1983-2009 0.16 0.06 0.44 
1939-2009 0.17 0.08 0.34 
1850-2009 0.37 0.17 0.96 
1939-1983 1.02 0.41 2.5 
1850-1983 2.23 0.71 6.08 
1850-1939 2.17 0.99 5.02 
Aspect N – O 1.13 0.59 2.22 

 
Climber species richness 

 est lower upper 
2009 0.65 0.43 0.96 
1983 0.87 0.53 1.38 
1939 0.57 0.42 0.76 
1850 0.6 0.35 0.95 
Elevation 0.89 0.72 1.07 
Aspect O 0.65 0.43 0.96 
Aspect N 0.62 0.38 1 
1983-2009 1.33 0.73 2.35 
1939-2009 0.88 0.55 1.4 
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1850-2009 0.93 0.5 1.59 
1939-1983 0.66 0.38 1.1 
1850-1983 0.69 0.37 1.33 
1850-1939 1.06 0.61 1.87 
Aspect N – O 0.96 0.61 1.44 

 
 
Reproductive strategy 
Significant results highlighted in bold. 
 
Early Successional Seed (ESS) species richness 

 est lower upper 
2009 1.43 0.91 2.14 
1983 0.13 0.03 0.35 
1939 0.14 0.08 0.26 
1850 0.33 0.16 0.62 
Elevation 1.31 0.95 1.72 
Aspect O 1.43 0.91 2.14 
Aspect N 1.44 0.83 2.51 
1983-2009 0.09 0.02 0.26 
1939-2009 0.1 0.05 0.19 
1850-2009 0.23 0.11 0.46 
1939-1983 1.13 0.35 4.84 
1850-1983 2.59 0.75 11.16 
1850-1939 2.3 0.89 5.07 
Aspect N – O 1 0.57 1.79 

 
Persistent External Seed (PES) species richness 

 est lower upper 
2009 0.93 0.59 1.38 
1983 0.51 0.26 1.02 
1939 0.35 0.23 0.55 
1850 0.39 0.18 0.69 
Elevation 1.11 0.86 1.42 
Aspect O 0.93 0.59 1.38 
Aspect N 0.77 0.43 1.38 
1983-2009 0.55 0.24 1.16 
1939-2009 0.38 0.21 0.64 
1850-2009 0.43 0.21 0.9 
1939-1983 0.69 0.33 1.53 
1850-1983 0.77 0.32 1.92 
1850-1939 1.11 0.53 2.31 
Aspect N – O 0.83 0.47 1.43 

 
Persistent On-site Seed (POS) species richness 

 est lower upper 
2009 6.76 5.89 7.69 
1983 5.92 4.94 7.12 
1939 4.78 4.25 5.3 
1850 4.08 3.31 4.95 
Elevation 0.95 0.88 1.02 
Aspect O 6.76 5.89 7.69 
Aspect N 7.23 6.08 8.57 
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1983-2009 0.87 0.7 1.08 
1939-2009 0.71 0.6 0.84 
1850-2009 0.6 0.48 0.76 
1939-1983 0.81 0.66 0.99 
1850-1983 0.69 0.54 0.9 
1850-1939 0.86 0.68 1.06 
Aspect N – O 1.07 0.92 1.25 

 
Persistent Sprout (Sprout) species richness 

 est lower upper 
2009 4.69 4.02 5.39 
1983 3.87 3.16 4.77 
1939 4.96 4.49 5.53 
1850 6.33 5.32 7.39 
Elevation 0.96 0.9 1.03 
Aspect O 4.69 4.02 5.39 
Aspect N 4.32 3.56 5.13 
1983-2009 0.82 0.65 1.04 
1939-2009 1.06 0.89 1.26 
1850-2009 1.35 1.09 1.64 
1939-1983 1.28 1.02 1.58 
1850-1983 1.63 1.27 2.12 
1850-1939 1.28 1.06 1.54 
Aspect N – O 0.92 0.78 1.08 

 
Persistent None (Pnone) species richness 

 est lower upper 
2009 2.76 2.14 3.52 
1983 2.29 1.61 3.15 
1939 2.09 1.73 2.52 
1850 2.15 1.54 2.97 
Elevation 0.81 0.71 0.92 
Aspect O 2.76 2.14 3.52 
Aspect N 2.76 2.03 3.79 
1983-2009 0.83 0.54 1.21 
1939-2009 0.76 0.56 1.03 
1850-2009 0.78 0.53 1.16 
1939-1983 0.92 0.62 1.29 
1850-1983 0.94 0.6 1.51 
1850-1939 1.03 0.72 1.49 
Aspect N – O 1 0.76 1.33 

 
 

  



105 | P a g e  
 

CHAPTER 4 
Does pre-disturbance forest stand age influence recovery after fire in 

Mountain Ash? 
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ABSTRACT 
The age of a forest prior to a large natural disturbance is important in determining the species 

composition of the post-disturbance regeneration cohort. Forest age broadly influences a range of 

biological legacies from which a new forest regenerates. 

We quantified the recovery of vascular plants in the Mountain Ash (Eucalyptus regnans) 

forests of the Central Highlands in Victoria, south-eastern Australia. We compared the regeneration 

from forest of three age cohorts that were 26, 70 and 158+ years old when all were burned by high-

severity wildfire in 2009. Overall species richness declined with forest age at the time of disturbance 

with 25.7, 22.7 and 20.7 species/site respectively. The youngest sites had greater richness of the 

seeding functional groups. In contrast, sprouting species, including ferns and most midstorey trees, 

were more species rich when older cohorts regenerated after fire. 

We suggest the lower overall plant species richness in the regeneration of the 158+ year old 

forest burned in 2009 was likely due to a diminishing soil seed bank producing fewer seedlings, or 

seedlings failing to establish due to competition from an increased number of re-sprouting ground 

ferns, or both. 

mailto:david.blair@anu.edu.au
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Our findings indicate that in forests where the overstorey eucalypts are reproductively mature, 

the age of a forest at the time it is subject to major wildfire has a moderate influence on the 

subsequent post-fire regeneration, but broadly does not impede the ability of this forest type to 

regenerate and support a representative diversity of plant functional groups. 

 

INTRODUCTION 
A wide variety of factors determine how forest vegetation recovers following major 

disturbances, such as large wildfires (Cohen et al. 2016, Kulakowski et al. 2017). These include 

characteristics of the landscape, the disturbance itself (Gill 1975, Keeley 2009), the resilience and 

resistance traits of the plant species (Duveneck and Scheller 2016), the pre-disturbance history 

including number and frequency of past disturbances (Bowd et al. 2018b), and stand characteristics 

before the disturbance (Foster et al. 1998).  

In this investigation, we examined one of the pre-disturbance stand characteristics. We studied 

the effects that forest age prior to a disturbance has on the post-disturbance regeneration cohort. The 

age of a stand of forest at the time it is burned is likely to influence post-fire forest recovery for at 

least four key reasons. These include: 

 

1. The age of individual plants can affect their resilience to fire through physical factors such as bark 

thickness (Clarke et al. 2013) and canopy height, especially for species where seed is stored in the 

canopy (e.g. species in the Myrtaceae family (Gill 1997)). 

2. Older (and therefore larger) plants usually produce more seeds, which can in turn affect the soil 

seed bank and hence post-disturbance dynamics (Wenk and Falster 2015).  

3. Forest age can influence disturbance severity. For example, fire tends to burn at higher severity in 

younger forests than in older stands in higher elevation areas in south-eastern Australia (Taylor et al. 

2014, Zylstra 2017). This has implications for the survival of individual plants and may influence 

persistence of on-site seed (Ferrandis et al. 1999, Lindenmayer et al. 2010). 

4. Individuals and species remaining after disturbance can strongly shape the structure and 

composition of recovering stands (Egler 1954, Franklin et al. 2002, Pulsford et al. 2014).  

Numerous ‘time since disturbance’ studies have examined plant species richness and 

successional changes in the composition of plant assemblages in forests of different ages after major 

disturbances (Connell and Slatyer 1977, Johnson and Miyanishi 2008, Swanson et al. 2011). 

However, relationships between the age of a forest at the time it was disturbed and subsequent 

patterns of plant species richness and assemblage composition have rarely been quantified. This is a 

major knowledge gap because of its implications for forest biodiversity in response to recurrent large 

disturbances and recovery of particular species during inter-disturbance periods (Lindenmayer et al. 

2017).  
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Here we report the results of a study of vascular plants in the Mountain Ash (Eucalyptus 

regnans) forests of the Central Highlands of Victoria, in south-eastern Australia. Widespread, high 

severity wildfires across the study region in 1851, 1939 and 1983 resulted in even aged stands of 

Mountain Ash in different parts of the landscape (Victorian Government DELWP 2018a). In 2009, 

another large wildfire burned stands of some of these respective age cohorts. The cohorts were 26, 70 

and 158+ years old when burned by the 2009 fire. By selecting forest with no previous logging 

history, we took advantage of an important opportunity to determine whether the age of a forest prior 

to a large disturbance influenced post-fire plant species composition.  

 

We posed two inter-related questions: 

1) Does forest age at the time of high severity fire affect the species richness of the subsequent 

regenerating forest; and  

2) How does forest age at the time of high severity fire affect the different plant functional groups 

ability to persist? 

 

The species richness and composition of life forms in a forest stand regenerating after wildfire 

will depend largely on the plant propagules present (Leck 2012). This includes seed in the soil and 

canopy, seed that enters from outside the site, and the abundance of resprouting species with 

structures such as lignotubers, rhizomes and trunks. We made a series of predictions about how forest 

age is likely to affect each of these regeneration traits. We based many of these predictions on a 

detailed understanding of the ecology of Mountain Ash forests, including information from past 

studies of this ecosystem (Ashton 1976, 1981, Wang 1997, Ashton 2000).  

 

Prediction 1: Overall species richness would be lowest in stands 158+ years old at the time of the 

2009 fire.  

Our prediction was based on the expected cumulative responses of the various functional 

groups within the Mountain Ash forests (see predictions below). We predicted overall species 

richness would be lowest in the 158+ year old forest burned in 2009 because of suppression from 

ground ferns (Coomes et al. 2005) (which we predict to be most abundant on old sites), and where 

seed bank viability may have reduced over time.  

 

Prediction 2: Establishment of on-site seeding species will decline with forest age at the time of 

the 2009 fire. 

This prediction corresponds to plant regeneration arising from seed originating on the site, 

either in the canopy (typified by many species in the Myrtaceae family, including Eucalyptus 

regnans) (Judd and Ashton 1991) or in a seed bank in the soil. For this prediction, we need to 

determine how seed banks change over time. Seed longevity varies between forest ecosystems. In 
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tropical rainforests, competition is such that seed is constantly produced but generally short-lived 

(Vázquez-Yanes and Orozco-Segovia 1993). In the temperate deciduous forests of the Northern 

Hemisphere, it was found that seed banks are filled with an early deposition of large amounts of seed, 

that diminishes over time (Pickett 1989). Seed viability decline, seed loss through abiotic means 

(crushed, abraded, water logging etc) and biotic seed predation over time, particularly by ants (Ashton 

1979) can deplete soil seed banks (Chambers and MacMahon 1994, Bossuyt et al. 2002). However, 

the soil seed banks of some species may persist for over a century (Leck 2012, Lindenmayer et al. 

2015). 

The on-site seeding functional group is likely to be an important component of overall species 

richness as it is a species-rich group (Murphy and Ough 1997, Blair et al. 2016). We predict the 

germination from on-site seeding species may decline with forest age due to seed predation and a 

decline in seed viability as well as increasing competition from ground ferns that are likely to be more 

abundant on older sites (Ough 2001). 

 

Prediction 3: The species richness of functional groups with highly mobile seed would be similar 

across all sites. 

The ‘blow-in seed’ group includes species with highly mobile seed dispersed by vectors 

including wind, birds and mammals that typically enter a burned site from unburned areas outside the 

perturbation boundary. Hence, we predicted this group would exhibit similar levels of species richness 

across all sites as the biological legacies remaining from the pre-disturbance forest should not have an 

effect on seed from these sources reaching the site. This group includes the ‘climbers’ life form group, 

represented by two species, Clematis aristata and Billardiera mutabilis which are wind and bird 

dispersed, respectively. 

 

Prediction 4: The highest species richness of sprouting taxa would be forest regenerating from 

stands that were 158+ years old at the time of the disturbance. 

Resprouting as a response to disturbance comes from retained living biological legacies within 

a forest such as rhizomes, lignotubers/root balls or trunks (Murphy and Ough 1997, Ough 2001). Such 

legacies are increasingly abundant as forests age (Ashton 2000, Ough 2001). Therefore, we predicted 

that sprouting species would be more common in forest regenerating from stands that were 158+ years 

old at the time it was burned. Given these sprouting plants usually have an established root system 

and are able to access resources beyond those available to newly germinated plants, they can grow 

rapidly soon after disturbance, and thus may out complete seeding species (George and Bazzaz 1999, 

Coomes et al. 2005). This group includes the majority of the midstorey trees and all but one of the 

ferns. 
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Prediction 5: Species richness of eucalypts would be even across sites and species richness of 

Acacia would be greatest on sites that were 158+ years old at the time of the fire. 

Given we selected sites that were dominated primarily by Eucalyptus regnans, we predicted 

species richness for the eucalypts would be limited mainly to this one species with forest age prior to 

disturbance having little or no effect. 

Acacias have very long lived seed with trees continuing to produce additional seed over many 

decades of the life of an individual tree (Wilson et al. 2011). This should increase seed abundance in 

the seed bank over time. However, Acacia seed is also targeted by ants (Ashton 1979). Ants 

consequently move seed to a wide range of depths within the soil profile (Wang 1997) which could 

increase the probability of successful germination under a variety of conditions. Due to expected 

increases in seed availability in both eucalypts and Acacia as forests age, we predicted the prevalence 

of these species in post-fire regeneration would be greatest on sites that were the oldest at the time of 

the 2009 fire.  

 

Prediction 6: Shrubs, graminoids and herbs would regenerate with greatest species richness 

from sites that were young at the time of disturbance. 

Shrubs are a diverse group with a range of reproductive strategies. In another study in these 

forests, they were the only life form that increased in probability of occurrence across a ‘disturbance 

gradient’ of fire, clearfall logging and salvage logging (Blair et al. 2016), indicating the potential to 

respond positively to severe and repeated disturbance. For this reason, we predicted that shrubs would 

be more common in stands regenerating on sites dominated by young (26 year old) forest at the time 

of the 2009 fire.  

Many herbs and graminoids decline in abundance after the early successional stages following 

fire (Swanson et al. 2011) and we therefore anticipated that these species may not add significantly to 

the seed bank after that initial period. If this is the case, together with a predicted decline in seed bank 

viability over time, then we should observe greater species richness of graminoids and herb species in 

the resulting regeneration cohort when younger (26 year old) forest is burned. Additionally, their low 

growth habits are more likely to lead to greater competition with ground ferns, which we predict to be 

more common on older (70 and 158+ year old) sites. 

 

METHODS  
We conducted this study in the Mountain Ash (Eucalyptus regnans) forests of the Central 

Highlands of Victoria, 60-120km east of Melbourne in south eastern Australia (37o20'-37 o 55'S and 

145 o 30'-146 o 20'E) (see Figure 1). Eucalyptus regnans is an obligate seeder and the tallest flowering 

plant in the world, typically 55-75m in height (Costermans 2009). Our study sites were between 436m 

and 1175m in elevation and located within closed water catchments, where logging is excluded, and 
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multi-purpose State Forest, which includes areas subject to timber harvesting. As we wanted to avoid 

the effects of logging, we selected areas within the State Forest that were unlogged. 

 

 
Figure 1: Map of study area showing location of sites. 

 

The Central Highlands region has a history of wildfires, with areas of forest burning in 1851, 

1905, 1906, 1926, 1932, 1939, 1948, 1954, 1983 and 2009 (Victorian Government DELWP 2018a). 

The fires in 1939 were severe and widespread, burning 79% of the Central Highlands region (Noble 

1977).  

Our study comprised 27 sites assigned three pre-fire age cohorts. The cohorts originated from 

fires in 1983 (six sites), 1939 (12 sites) and in or prior to 1851 (nine sites). All 27 sites were burned in 

2009 at high severity. The overstorey on the sites was 26, 70 and 158+ years old respectively at the 

time of the 2009 fires. To ensure our results were associated with the age of the forest at the time it 

was burned, we controlled other variables which can affect forest plant species composition. 

Covariates of successional changes and climatic differences were constrained through surveying 

regeneration from a single fire event in 2009, resulting in all regenerating plants being of the same 

age. We avoided sites that had been logged in the past as this can influence species composition (Blair 
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et al. 2016). We also avoided sites burned by more than two fires in the last century in our study 

design as frequent fires can affect species composition (Bowd et al. 2018b).  

Each of our 27 sites was 100m x 100m in size, with a 10m wide central transect bisecting the 

site from front to back. Along this transect, we recorded the species richness of all live vascular 

plants. We did not measure individual plant abundance as many species would number in the 

thousands at that scale and the young germinants of many species are extremely difficult to 

distinguish at the early stage of growth. We did not record species for the first 10m of the transect to 

avoid potential edge effects. We conducted our surveys between March and August, 2017, eight years 

after the 2009 fire that burned all 27 field sites. 

We divided the plants into life forms based on physical traits and on reproductive strategy (see 

Appendix S1 for species and functional groups). Life forms included: 1) Eucalypts (the dominant 

overstorey species), 2) Acacia, 3) Midstorey trees, 4) Shrubs, 5) Ferns, 6) Graminoids, 7) Herbs, and 

8) Climbers. The three main Acacia species (Acacia dealbata, A. frigescens, and A. obliquinervia) are 

midstorey trees. However, due to Acacias being the focus of other research because of their special 

ecological roles in nutrient cycling (Adams and Attiwill 1984) and provision of habitat for fauna 

(Lindenmayer et al. 1993), it was decided to separate them from the other midstorey trees. Tree ferns 

Dicksonia antarctica and Cyathea australis were categorised as midstorey trees, not ferns, due to their 

large physical form and importance in midstorey structure (Blair et al. 2017). Plants were assigned 

categories based on the Victorian State Government Department of Environment, Land, Water and 

Planning’s Highlands Southern Fall Bioregion Ecological Vegetation Class (EVC) (Victorian 

Government DELWP 2018b).  

We divided reproductive strategy into ‘Persistent’ (P) species, and ‘Transitory’ (T) species. 

Transitory species are short-lived early colonisers that are out competed by other plants, typically in 

less than 10 years after disturbance. In later successional stages, transitory species may still be 

‘present’ on site due to below ground seed, but their above ground foliage will no longer be visually 

present. Many of the transitory species already appeared absent when we conducted our surveys. We 

further divided the reproductive strategy groups based on their primary method of regeneration after 

disturbance from fire. This resulted in 1) Transitory Blow-in species (TBi), 2) Persistent Blow-in 

species (PBi), 3) Persistent On-site Seeders (POS), 4) Persistent Sprouting species (PS) and species 

that commonly reproduced in a number of ways, 5) Persistent None (no defined strategy) (PNone). 

The ‘blow in’ categorisation was a generalised term for all species with highly mobile seed spread by 

vectors such as wind, mammals or birds, with seed usually entering the site from outside the 

disturbance boundary. Our determination of species reproductive strategy was based on literature 

reviews (Walsh and Entwisle 1994, 1996, 1997, Costermans 2009, Kattge et al. 2011, Bull and Stolfo 

2014), field observations and consultation with an expert from the Melbourne Botanical Gardens. 

Exotic plant species are rare on our sites and were excluded from statistical analysis. 
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Statistical analysis 

We modelled overall species richness at the site level as a function of age cohort, elevation and 

aspect. We used a Bayesian generalized linear model (GLMM) with a Poisson distribution and log 

link function. We completed our analysis in R (R Core Team 2017) using the brms package (Bürkner 

2016). We used the default priors provided in the package and ran four Markov Chains for 2000 

iterations discarding the first 1000 as burn-in. Standard MCMC diagnostics were employed to check 

for convergence of the chains and all were found to show adequate mixing (Gelman and Rubin 1992). 

Due to our study design, we included age cohort in all models and used LOOIC (Leave One Out cross 

validation Information Criterion) to choose whether or not elevation and/or aspect was required in 

addition to age cohort (Vehtari et al. 2017). We report posterior mean estimates and 95% credible 

intervals. Species richness in each of the 13 functional groups (eight life form groups and five 

reproductive strategies) was analysed in a similar fashion. 

 

RESULTS 
We identified 87 indigenous vascular plant species across our 27 sites. On the sites that were 26 

years old when burned in 2009, we recorded an average species richness of 25.7 species/site (21.7 

Lower 95% Credible Interval, 30.4 Upper CI), on the 70 year old sites we recorded 22.7 species/site 

(19.6 LCI, 26.1 UCI) and on the 158+ year old sites, 20.7 species/site (17.7 LCI, 24.2 UCI) (Figure 

2). The 26 year old cohort had significantly higher species richness than the 158+ year old cohort.  

 

 
Figure 2: Average species richness per site of vascular plants regenerating from three stand ages all burned in 

2009, with 95% Credible Intervals 

 

Of the life forms into which we grouped our species, the most common were herbs (26 species), 

shrubs (17 species), and midstorey trees (14 species). The remaining life forms were ferns (10 

species), graminoids (nine species) and eucalypts (six species). The least diverse groups were Acacia 

(three species) and climbers (two species). Only two life form groups exhibited significant responses 

to forest age at the time of disturbance (Figure 3); midstorey trees and climbers. The 70 year old 
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cohort of midstorey trees had a species richness of 2.1 species/site, significantly higher than the 26 

year old cohort with 1.3 species. Climbers had a significantly greater species richness in the 70 year 

old cohort (0.6 species/site) than the 158+ year old cohort (0.2 species/site).  

 

 
Figure 3: Life form species richness per site, with 95% Credible Intervals for regeneration from three forest age 

cohorts burned in 2009.  
 

Of the five reproductive strategy categories, persistent on-site seeders had the greatest species 

richness (36 species), followed by sprouters (26 species), persistent ‘none’ (19 species). The least 

diverse were the blow-in seed groups with persistent blow-in species (four species) and transitory 

blow-in species (two species).  

Statistical analysis of species richness by reproductive strategy identified two significant results 

for species richness at site level (Figure 4). Both were for the ‘persistent none’ (no defined 

reproductive strategy) category. Stands regenerating after the 70 year old and 26 year old forests had 

been burned, supported an average of 2.2 and 2.9 species/site respectively, both significantly higher 

than stands regenerating after the 158+year old forest had been burned (1.4 species/site).  
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Figure 4: Reproductive strategy species richness per site, with 95% Credible Intervals for regeneration from 

three forest age cohorts burned in 2009. 
 

DISCUSSION 
We found forest age at the time of disturbance influenced the species richness and composition 

of the post-fire forest, but the effects were generally limited.  

 

Prediction 1: Patterns of overall species richness. 

Consistent with our predictions, species richness declined with increasing stand age prior to 

disturbance (Figure 2). We suggest these differences were likely attributable to diminished seed bank 

viability or greater competition from ground ferns in old forest cohorts (George and Bazzaz 1999, 

Coomes et al. 2005). Given there is less diversity in ground ferns than the range of seeding species 

(which includes most of the herbs and graminoids), this would lead to lower overall species richness 

on sites that were old when burnt by the 2009 fire. Forests of the Northern Hemisphere also have a 

significant component of their overall species diversity found in the richness of the herb layer. 

However, in contrast with our study, the diversity of this ground layer generally increases with time 

since disturbance (Gilliam 2007). 

 

Prediction 2: Effects on on-site seeding species. 

On-site seeder species richness decreased, as predicted, with increasing forest age prior to 

disturbance (Figure 4). Species within the on-site seeding functional groups of ‘Persistent on-site 

seed’ and ‘Persistent none’ have a highly diverse range of characteristics. Forest age is likely to have 

influenced regeneration success due to some of these traits. For example, seed longevity or viability 

may decline with time (Bossuyt et al. 2002), so we would expect reduced numbers of germinants 

when old forest is burned. In contrast, the quantity of seed in a seed bank may increase if long lived 

plants continue to produce seed over many years (Wang 1997) or if they continue to grow larger, 

producing increased seed crop volumes (Smith et al. 2014).  
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In the Mountain Ash forests of the Central Highlands, the return interval for high severity (tree 

killing) fire has historically been 75-150 years (McCarthy et al. 1999). For this reason, species that 

recover from fire with seed within the disturbed area either constantly produce short-lived seed 

(requiring the plant to remain extant to continue production), or produce very long-lived seed that is 

able to persist in the soil for decades. The overstorey eucalypts are an example of a long-lived genus 

that produces seed crops annually, with seed stored in the canopy (Judd and Ashton 1991). In contrast, 

species of Acacia and Poa, and the species Dryopoa dives store seed within the soil that may not 

germinate for well over a century (Lindenmayer et al. 2015). This indicates reductions in seed 

viability over time (Bossuyt et al. 2002), at least for some species, may have a limited effect. It also is 

likely for some species that the quantities of seed produced are so great, losses over time from seed 

longevity or ant predation (Ashton 1979) were insignificant. Interestingly, Wang (1997) found seed 

densities and species richness of seed within the seed bank increased with forest age from 0.6 years to 

54 years, further supporting the proposition that seed in Mountain Ash forests is long lived and/or 

seedbanks have additional seed laid down over time beyond the initial successional stage. Woody 

species within the Mountain Ash forests were found not to produce seed until around 10 years after 

fire (Wang 1997) and Eucalyptus regnans takes 20 years to mature and produce viable seed 

(McCarthy et al. 1999). Consequently, frequent repeat fire could result in loss of these species 

(Bassett et al. 2015). As our sites were 26, 70 and 158+ years old prior to disturbance, this should not 

have limited these species. 

A key determinant of successful seedling establishment is not how much viable seed was 

present at the time of the fire, but subsequent competition with other functional groups. Reduced 

seedling establishment due to competition with ground ferns has been demonstrated in the deciduous 

forests of the New England region of the US (George and Bazzaz 1999), New Zealand (Coomes et al. 

2005) and Puerto Rico (Walker et al. 2010a) although in contrast, in the tropical rainforests of 

Queensland, Australia, ground ferns were found to be positively correlated to the successful 

establishment of seedlings (Song et al. 2012). Given a high abundance of ground ferns in the older 

forest cohorts of Mountain Ash forest which then resprouted after the 2009 fire, it seems likely that 

competition from ground ferns may be an important predictor of seedling establishment that is 

influenced by forest age prior to disturbance. Given POS and Pnone had the highest and third highest 

total number of species (36 and 19 respectively), these two groups have a large influence on overall 

species richness. In contrast to our findings, studies by Bowd et al. (2018b) in the same forests, 

showed 1983 cohorts that subsequently burned in 2009, but importantly, had also burned a third time 

in 1939 (= three high severity fires in 70 years) were characterized by a low abundance of onsite seed 

regeneration, indicating a limited ability of the seedbank to replenish with repeated short return 

intervals of fire. 
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Prediction 3: Effects on functional groups with highly mobile seed. 

We predicted blow-in seeders (including the ‘climbers’ life form group) would be unaffected 

by the age of the forest prior to disturbance. For transitory and persistent blow-in seed species (TBiS 

and PBiS) this was the case (Figure 4). For ‘climbers’ this was not the case with the regeneration of 

burned 70 year old forest supporting significantly greater species richness than the regeneration from 

burned 158+ year old forest (Figure 3). Forest age before the 2009 fire should have had no effect (due 

to seed entering from unburned forest outside the fire boundary), additionally, the broad-scale ash bed 

of the immediate post-fire landscape should have been uniformly receptive for all sites regardless of 

pre-fire age (Chambers and Attiwill 1994). It is likely the differences were due to the distance to seed 

sources in unburnt forest in the surrounding landscape (Nathan and Muller-Landau 2000), a variable 

we did not measure. 

 

Prediction 4: Effects on sprouting species, including midstorey trees and ferns. 

The sprouting species group includes one shrub (Olearia argophylla), nine of the fourteen 

midstorey tree species, and eight of the nine ground ferns. We correctly predicted the regeneration 

following fire in an old forest would have greater sprouting species richness compared to young 

forest. Most ground ferns are shade tolerant for reproduction (Ashton 2000), or increase in number 

asexually through rhizome growth or proliferous buds/bulbils on their frond tips (Walsh and Entwisle 

1994, Ough 2001). It is common in ecosystems around the world that as time since disturbance 

increases (such as in old forest compared to young), that diversity usually decreases as the most 

competitive species persist and proliferate (Mackey and Currie 2001). Importantly for our study, the 

increase in biological legacies from the competitive sprouting species that become more abundant as 

forests age, are likely to re-establish in the new stand of regenerating forest. Although sprouting 

species are well adapted to wildfire, they are the group most detrimentally impacted by clearcutting 

and salvage logging (Blair et al. 2016, Bowd et al. 2018b). 

 

Prediction 5: Effects on eucalypts and Acacia. 

Our site selection of Eucalyptus regnans dominated forest ensured species richness for this 

group was uniform across the age cohorts, which it was (Figure 3). Despite recording six species of 

eucalypt across our 27 sites, occurrences of species other than E.regnans were evenly spread and not 

common enough to produce significant differences between age cohorts. Acacia also exhibited limited 

variation in species richness as predicted. Unlike other species, suppression from ground ferns is 

unlikely to be a factor in establishment success of the eucalypts and Acacia, as both genera grow 

rapidly in the post fire environment, quickly overtopping ground storey species, including ferns. 

 

Prediction 6: Effect on shrubs, graminoids and herbs. 
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Despite our prediction that the regeneration from young (26 year old) forest burned in 2009 

would have greater species richness for shrubs, our results showed the most even distribution across 

the regeneration of the three age cohorts of any functional group (Figure 3). This is likely to be a 

result of shrubs being a variable but robust group that is able to regenerate successfully under a wide 

range of disturbance scenarios (Blair et al. 2016). As we predicted at the outset of our study, 

graminoids and herbs were most species rich in the regeneration cohort of the youngest forest (26 

years old) when it burned in 2009 (Figure 3), although the contrasts between the ages of forest at the 

time they were burned were not significant. The majority of herbs are seeding species (17 of 19 

species), while half the graminoids are seeders. As discussed in Prediction 2 above (on-site seeders), it 

is difficult to predict the responses of this group due to its variability in seeding characteristics. Our 

prediction was premised on the seed bank viability declining with time since disturbance in the older 

forest stands, as well as increased competition during establishment of these ground level plants from 

ferns.  

 

Summary of influences on regeneration 

We found that once the Mountain Ash forests of Victoria’s Central Highlands reach 26 years of 

age, in the event of a major wildfire, the effect of the forest age prior to that disturbance had only 

moderate effects on the resulting post fire regeneration. A fire return interval of less than 20 years 

may compromise eucalypt regeneration due to reproductive immaturity (McCarthy et al. 1999) and 

similarly for other woody species with fire intervals less than 10 years (Wang 1997). Eucalyptus 

regnans is an obligate seeder and has little or no seed stored in the soil (Ashton 1979), and hence 

repeated fires in rapid succession (in the absence of artificial seeding) may lead to an Acacia-

dominated landscape (McCarthy et al. 1999, Bassett et al. 2015). This occurred following consecutive 

large wildfires in 1926 and 1939 in the Central Highlands, and more recently further north along the 

Great Dividing Range in areas where the Alpine Fires of 2003, 2006 and 2009 overlapped (Bowman 

et al. 2014a, Bassett et al. 2015). It also occurs where wildfire burns areas that have been logged and 

regenerated within the last 20 years (Lindenmayer et al. 2015). The regeneration cohort that 

developed when the 2009 fire burned old growth forest from 1851 or earlier produced lower species 

richness than the regeneration from when the same fire burned young forest from 1983 (Figure 2). 

This is likely to be due to a combination of depletion or deterioration of the seed bank over time 

which allowed fewer seedlings to germinate, or increased competition from abundant ground ferns 

found in the older forests which prevented germinating seedlings establishing, or both. 

 

CONCLUSIONS 
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In our study of how forest age before severe wildfire can influence the subsequent post-fire 

regeneration cohorts, we found that forest age had a moderate influence on the species composition in 

Mountain Ash forests.  

As forests age, vegetation structure and plant species composition changes (McCarthy et al. 

1999, Franklin et al. 2002, Seidl et al. 2014a) and the biological legacies found within a forest also 

change over time (Foster et al. 1998). Some biological legacies, such as large old trees and logs are 

visually apparent yet may have only minor influence on a new cohort regenerating after disturbance, 

while other legacies, including seeds, rhizomes and nutrients (Johnstone et al. 2016) are far less 

visually obvious, yet may have considerable implications for subsequent regeneration once disturbed.  

The implications of our results for forest managers are encouraging. This ecosystem will 

regenerate well after fire, with a wide range of species present provided the overstorey is sufficiently 

mature to produce seed and the regeneration cohort is not subsequently disturbed through salvage 

logging operations.  
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SUPPLEMENTARY INFORMATION S1  
Plant species classification 
Reproductive strategies: POS = Persistent On-site Seeder, Pnone = Persistent None (no defined reproductive strategy, or 

commonly uses several different strategies), Sprout = Persistent Sprouting species, PBiS = Persistent Blow-in Seeder, TBiS 

= Transitory Blow-in Seeder. 

Species Life form Reproductive strategy Occurrence on sites 
1983 1939 1851 

Acacia dealbata Acacia POS 5 8 6 
Acacia frigescens Acacia POS 0 2 4 
Acacia nanodealbata Midstorey Tree POS 0 1 1 
Acacia obliquinervia Acacia POS 4 4 3 
Acacia verniciflua Shrub POS 0 1 0 
Acaena novae-zelandiae Herb Pnone 2 1 0 
Asperula euryphylla Herb Pnone 0 5 1 
Asperula gunnii Herb POS 1 0 0 
Atherosperma moschatum Midstorey Tree Sprout 0 1 0 
Australina pusilla Herb POS 2 3 4 
Bedfordia arborescens Midstorey Tree Sprout 2 2 1 
Billardiera mutabilis Climber Pnone 1 3 0 
Blechnum cartilagineum Fern Sprout 1 0 0 
Blechnum nudum Fern Sprout 1 0 1 
Blechnum wattsii Fern Sprout 1 4 3 
Carex appressa Graminoid Sprout 0 1 1 
Cassinia aculeata Shrub PBiS 4 7 5 
Cassinia longifolia Shrub PBiS 1 2 2 
Clematis aristata Climber Pnone 5 10 4 
Coprosma hirtella Shrub POS 1 6 2 
Coprosma quadrifida Shrub POS 4 4 1 
Correa lawrenceana Shrub POS 3 4 0 
Cyathea australis Midstorey Tree Sprout 1 5 1 
Daviesia mimosoides Shrub POS 0 0 1 
Dianella tasmanica Graminoid Sprout 1 5 2 
Dicksonia antarctica Midstorey Tree Sprout 2 8 8 
Dryopoa dives Graminoid POS 2 6 4 
Epilobium billardierianum Herb POS 1 0 0 
Eucalyptus cypellocarpa Eucalypt POS 0 1 0 
Eucalyptus delegatensis Eucalypt POS 0 3 2 
Eucalyptus nitens Eucalypt POS 1 1 1 
Eucalyptus radiata Eucalypt POS 1 0 0 
Eucalyptus regnans Eucalypt POS 6 10 7 
Eucalyptus viminalis Eucalypt POS 3 1 0 
Gahnia radula Graminoid Sprout 1 0 0 
Galium propinquum Herb POS 4 4 1 
Geranium potentilloides Herb POS 6 4 3 
Gleichenia dicarpa Fern Sprout 0 1 0 
Gonocarpus humilis Herb Pnone 3 2 0 
Goodenia ovata Shrub Pnone 1 1 0 
Goodia lotifolia Shrub POS 0 4 0 
Hedycarya angustifolia Midstorey Trees Sprout 1 4 1 
Histiopteris incisa Fern Sprout 1 3 4 
Hydrocotyle hirta Herb POS 5 9 8 
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Hypolepis rugosula Fern Sprout 0 0 3 
Isolepis subtilissima Graminoid Pnone 0 0 1 
Leionema bilobum Midstorey Tree POS 0 0 1 
Lepidosperma elatius Graminoid Sprout 4 2 1 
Leptinella filicula Herb Pnone 4 0 2 
Leptostigma reptans Herb Pnone 4 0 0 
Lomatia fraseri Midstorey Tree Sprout 3 7 2 
Mentha laxiflora Herb Pnone 2 2 1 
Microlaena stipoides Graminoid POS 0 0 1 
Microsorum pustulatum Fern Pnone 0 0 1 
Notelaea ligustrina Midstorey Tree Sprout 1 1 1 
Nothofagus cunninghamii Midstorey Tree POS 0 3 3 
Olearia argophylla Shrub Sprout 1 4 5 
Olearia lirata Shrub PBiS 1 1 0 
Olearia phlogopappa Shrub PBiS 5 6 6 
Oreomyrrhis eriopoda Herb Pnone 0 0 1 
Oxalis exilis Herb Pnone 3 2 3 
Persoonia arborea Herb POS 0 1 0 
Pimelea axiflora Shrub Pnone 1 1 1 
Poa ensiformis Graminoid POS 0 1 0 
Polyscias sambucifolia Shrub POS 1 7 7 
Polystichum proliferum Fern Sprout 4 10 9 
Pomaderris aspera Midstorey Tree POS 5 7 2 
Poranthera microphylla Herb POS 0 2 1 
Prostanthera lasianthos Midstorey Tree Pnone 2 5 1 
Prostanthera melissifolia Shrub Pnone 2 0 1 
Pteridium esculentum Fern Sprout 6 10 6 
Ranunculus scapiger Herb POS 1 0 0 
Rubus parvifolius Herb Sprout 2 2 0 
Sambucus gaudichaudiana Herb Sprout 3 2 6 
Senecio gunnii Herb Sprout 0 1 0 
Senecio velleioides Herb TBiS 1 3 1 
Stellaria flaccida Herb POS 1 7 7 
Tasmannia lanceolata Midstorey Tree Sprout 0 2 1 
Tetrarrhena juncea Graminoid Pnone 6 9 3 
Todea barbara Midstorey Tree Sprout 1 1 0 
Urtica incisa Herb Pnone 0 1 5 
Veronica notabilis Herb Sprout 0 1 0 
Viola eminens Herb POS 0 0 2 
Viola hederacea Herb POS 6 6 4 
Zieria arborescens Shrub POS 0 3 1 
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CONCLUSIONS 

The Mountain Ash forests of Victoria’s Central Highlands have evolved traits allowing them to 

survive some of the most high severity wildfires in the world. Disturbance has been a key driver of 

ecological composition and adaption in this ecosystem for millennia with species developing a variety 

of regenerative mechanisms to deal with the disturbance. The introduction of logging over a century 

ago, and intensive clearfell logging of these forests over the last 40 years, has introduced the novel 

disturbance type of wide scale mechanical disturbance. From my research, it has become apparent that 

certain functional groups are not well adapted to this form of disturbance, especially when it comes 

directly after a large wildfire in the form of salvage logging. 

In Chapter 1 Disturbance gradient shows logging affects plant functional groups more than 

fire, my findings of a ‘disturbance gradient’ across low severity fire, high severity fire, (green) 

clearfell logging and (post-fire) salvage logging showed reductions in species richness and overall 

implication of forest biota. Specifically, it was the sprouting species including ferns and midstorey 

trees where losses were greatest. My conclusions were that the mechanical disturbance of logging 

caused the reductions in these functional groups. This work highlighted the importance of retaining 

places where the ground remains undisturbed within the area being logged. 

Chapter 2 Non-linear growth in tree ferns, Dicksonia antarctica and Cyathea australis, found 

that C.australis grows at approximately twice the rate of D.antarctica. However, an unexpected 

finding was that growth rates were greater the taller either species of tree fern was before the 2009 

fire. I concluded that growth rate most likely increased with increased light as the taller ferns were 

above the densely regenerating fire regrowth for longer. The variable growth rates also suggest the 

common practice of determining a tree fern’s age by dividing its total height by an annual average 

growth rate may have limited application.  

Chapter 3 Testing succession theory using a chronosequence study of Australian Mountain 

Ash forest following wildfire showed young (3 year old) Mountain Ash in the early stages of 

succession after wildfire to be the most species rich, with on-site seeding species such as herbs and 

graminoids making up a high proportion of the overall species make up. In older forest stands, overall 

species richness is lower, but the functional groups contributing the greatest numbers to overall 

species richness also shifts as the forests age, from the seeding species to sprouting species such as 

ferns and midstorey trees. These findings indicate the ecosystem is not easily described using a single 

succession theory, but rather while Initial Floristic Composition may describe the seeding species 

well, the sprouting species follow a Relay Floristics and Inhibition pathway. By selecting sites that 

have had little human disturbance, this study describes important baseline information on successional 

change in Mountain Ash forests under conditions that are as close to the long term natural state of 

these forests. It is hoped this will allow early detection of signs that climate change is altering forest 
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recovery in the future and allow comparisons with areas that have seen human disturbance to know if 

recovery trajectories have altered. 

Chapter 4 Does forest age influence recovery after fire? concludes that the Mountain Ash 

forests are well adapted to fire with age prior to wildfire having only a moderate influence on post-fire 

recovery. As Chapter 3 had shown, sprouting species were more prominent in older forest stands and 

through biological legacies that persisted after fire, this resulted in greater species richness of this 

functional group in the post-fire regrowth when older stands were burned. The reduced species 

richness when older stands were burned as most likely due to a combination of depletion or 

deterioration of the seed bank and increased suppression from ground ferns. 

In conclusion, my research ties together many different facets of vascular plant recovery after 

disturbance within the Mountain Ash forests. The findings are important for forest managers as they 

demonstrate important differences between fire and logging and indicate that while some functional 

groups recovery well after disturbance, others may not. Through my investigations, I found sprouting 

species, including tree ferns, ground ferns and many mid storey trees require particular care with 

management as they are susceptible to loss through the ground-disturbing mechanical damage of 

logging. In addition, their recovery is slower than many other functional groups. Sprouting species are 

important structural elements in Mountain Ash forests and are favoured by longer intervals between 

disturbance. Management of this group of species may be further complicated by the future fire 

projections in a warming climate and the disturbance history of these forests which has resulted in 

them being dominated by a greater extent of younger forest than in recent history. 

 

  



127 | P a g e  
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Additional publications published in the PhD period (2014-2018) 
 

The Leadbeater’s Possum Review 

Authors:  Blair, D. P., D. B. Lindenmayer, L. McBurney, S. C. Banks, and W. Blanchard. 

Contributions: Study concept DB (65%), DL, LM; Research DB (80%), DL, LM; Authorship of 

original manuscript DB (95%), DL; Statistical analysis N/A; Edits and revision DB (60%), DL, SB, 

WB, LM. 

Current status of paper: Published, including online PDF:  

https://fennerschool-associated.anu.edu.au/documents/Leadbeater_Pos_Rev_Aug_2017.pdf  

Publisher: The Australian National University, 68 pages, technical report 

Citation: Blair, D. P., D. B. Lindenmayer, L. McBurney, S. C. Banks, and W. Blanchard (2017). The 

Leadbeater’s Possum Review. The Australian National University, Canberra. 

 

Failing to conserve Leadbeater’s Possum and its Mountain Ash forest habitat 

Authors:  Blair, D. P., D. B. Lindenmayer, L. McBurney. 

Contributions: Study concept DB (50%), DL, LM; Research DB (75%), DL, LM; Authorship of 

original manuscript DB (50%), DL; Statistical analysis N/A; Edits and revision DB (50%), DL, LM. 

Current status of paper: Published 

Publisher: Australian Zoologist 

Citation: Blair, D. P., D. B. Lindenmayer and L. McBurney (2018). Failing to conserve Leadbeater’s 

Possum and its Mountain Ash forest habitat. Australian Zoologist, 39(3). pp443-338. 

 

Mountain Ash: fire, logging and the future of Victoria’s giant forests 

Authors:  D. B. Lindenmayer, D. P. Blair, L. McBurney and S. C. Banks. 

Contributions: Study concept DL, DB (30%), LM, SB; Research DL, DB (20%), LM; Authorship of 

original manuscript DL, DB (10%), SB, LM; Published photographs DB (170 of 215), various other 

photographers, Edits and revision DL, DB (40%), SB, LM. 

Current status of paper: Published 

Publisher: CSIRO Publishing, 176 pages, book. 

Citation: D. B. Lindenmayer, D. P. Blair, L. McBurney, and S. C. Banks (2015). Mountain Ash: 

Fire, logging and the future of Victoria's giant forests. CSIRO Publishing, Melbourne, Australia 

 

https://fennerschool-associated.anu.edu.au/documents/Leadbeater_Pos_Rev_Aug_2017.pdf
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From unburnt to salvage logged: quantifying bird responses to different levels of disturbance 

severity 

Authors:  D. B. Lindenmayer, L. McBurney, D. P. Blair, J. Wood, S. C. Banks. 

Contributions: Study concept DL; Research DB (20%), DL, LM; Authorship of original manuscript 

DL; Statistical analysis JW; Edits and revision DB (30%), DL, SB, JW, LM. 

Current status of paper: Published 

Publisher: Journal of Applied Ecology 

Citation: Lindenmayer, D. B., L. McBurney, D. P.Blair, J. Wood, and S. C. Banks (2018). From 

unburnt to salvage logged: quantifying bird responses to different levels of disturbance severity. 

Journal of Applied Ecology, 55(4), 1626-1636. 

 

Empirical relationships between tree fall and landscape-level amounts of logging and fire 

Authors:  D. B. Lindenmayer, W. Blanchard, D. P. Blair, L. McBurney, J. Stein, S. C. Banks. 

Contributions: Study concept DL, DB (10%), LM, SB; Research DB (50%), LM; Authorship of 

original manuscript DL; Statistical analysis WB; GIS analysis JS; Edits and revision DB (20%), DL, 

SB, LM. 

Current status of paper: Published 

Publisher: PLoS One 

Citation: Lindenmayer, D. B., W. Blanchard, D. P. Blair, L. McBurney, J. Stein, S. C. Banks (2018). 

Empirical relationships between tree fall and landscape-level amounts of logging and fire. PLoS One, 

13(2). 
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Logging and fire regimes alter plant communities 

Authors: E. J. Bowd, D. B. Lindenmayer, S. C. Banks, D. P. Blair. 

Contributions: Study concept EB, DL, DB (10%); Research EB; Authorship of original manuscript 

EB; Statistical analysis EB; Edits and revision DB (20%), DL, SB. 

Current status of paper: Published 

Publisher: Ecological Applications 

Citation: Bowd, E. J., D. B. Lindenmayer, S. C. Banks, D. P. Blair. (2018). Logging and fire regimes 

alter plant communities. Ecological Applications, 28(3), 826-841. 

 

Inter-den tree movements by Leadbeater’s Possum 

Authors:  D. B. Lindenmayer, L. McBurney, D. P. Blair, S. C. Banks. 

Contributions: Study concept DL; Research DL; Authorship of original manuscript DL; Edits and 

revision DB (30%), SB, LM. 

Current status of paper: Published 

Publisher: Australian Zoologist 

Citation: Lindenmayer, D. B., L. McBurney, D. P. Blair, S. C. Banks (2018). Inter-den tree 

movements by Leadbeater’s Possum. Australian Zoologist, 39(3), 464-468. 

 

Relationships between tree size and occupancy by cavity-dependent arboreal marsupials 

Authors:  D. B. Lindenmayer, W. Blanchard, D. P. Blair, L. McBurney, S. C. Banks. 

Contributions: Study concept DL, DB (10%), LM, SB; Research DB (50%), LM; Authorship of 

original manuscript DL; Statistical analysis WB; Edits and revision DB (30%), DL, SB, LM. 

Current status of paper: Published 

Publisher: Forest Ecology and Management 

Citation: Lindenmayer, D. B., W. Blanchard, D. P. Blair, L. McBurney, S. C. Banks (2017). 

Relationships between tree size and occupancy by cavity-dependent arboreal marsupials. Forest 

Ecology and Management, 391, 221-229. 

 

Where do animals come from during post-fire population recovery? Implications for ecological 

and genetic patterns in post-fire landscapes 

Authors:  Banks, S. C., L. McBurney, D. P. Blair, I. D. Davies, D. B. Lindenmayer. 

Contributions: Study concept DL; Research DL; Authorship of original manuscript DL; Edits and 

revision DB (30%), SB, LM. 

Current status of paper: Published 

Publisher: Ecoography 
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The dynamic regeneration niche of a forest following a rare disturbance event 

Authors:  A. L. Smith, W. Blanchard, D. P. Blair, L. McBurney, S. C. Banks, D. A. Driscoll, D. B. 

Lindenmayer. 

Contributions: Study concept AS, DL, DD, DB(10%); Research DB(70%), LM; Authorship of 

original manuscript AS; Statistics AS, WB; Edits and revision DB (10%), AS, DL, DD, SB, LM. 

Current status of paper: Published 

Publisher: Diversity and Distributions 

Citation: Lindenmayer, D. B., L. McBurney, D. P. Blair, S. C. Banks (2016). The dynamic 

regeneration niche of a forest following a rare disturbance event. Diversity and Distributions, 22(4), 

457-467. 

 

Environmental and human drivers influencing large old tree abundance in Australian wet 
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Contributions: Study concept DL, DB (10%), LM, SB; Research DB (70%), LM; Authorship of 
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Contributions: Study concept DL, DB (50%), LM, SB; Research DB (70%), DL; Authorship of 

original manuscript DL; Edits and revision DB (50%), DL, SB, LM. 

Current status of paper: Published 
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