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"He who learns but does not think, is lost!
He who thinks but does not learn is in peril."

— Confucius1

"Education is not the learning of facts,
it’s rather the training of the mind to think. "

— Albert Einstein2

"Human progress has always been driven by
a sense of adventure and unconventional thinking. "

— Andre Geim3

1Well known Chinese philosopher
2Winner of 1921 Nobel Prize in Physics
3Winner of 2010 Nobel Prize in Physics
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Abstract

This thesis addresses the theoretical and practical development of efficient Bayesian
filtering algorithms for use in robotic localization and mapping. Full Bayesian filters
generally require an infinite number of parameters to maintain the full conditional
probability density function (PDF), which is computationally intractable. The ex-
tended Kalman filter, Gaussian sum and particle filter are commonly used to address
the above problem. The limitations of these methods are the inherent trade-off be-
tween accuracy and computational complexity, and difficulty in ensuring consistent
estimation. This thesis investigates the use of degenerate Gaussian density func-
tions to approximate the nonlinear measurement densities arising in various sensing
systems, such as conical density in bearing sensors, or spherical density in ranging
sensors. There are four main contributions:

First, we propose the Minimal Iterative Gaussian Estimator (MIGE), which uti-
lizes a degenerate Gaussian density to approximate the nonlinear measurement like-
lihood. A degenerate Gaussian allows uncertainty to be infinite along some direc-
tions, allowing the representation of cylindrical and planar likelihood functions. A
minimal parametric representation of the Gaussian likelihood function is developed,
which allows for simple measurement likelihood update. Through Monte Carlo sim-
ulation, we show improved accuracy and consistency for bearing-only localization,
while using the least amount of memory and computational time, when compared
to existing popular filters.

Second, the MIGE algorithm is applied to improve the performance of Time Dif-
ference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) localiza-
tion. TDOA is a differenced range measurement forming a hyperboloid distribution.
FDOA is a pseudo bearing measurement forming conical distributions for a station-
ary emitter. Existing methods typically utilize linearization methods by computing
Jacobians. The MIGE-based method is shown to better approximate the measure-
ment density. Outliers may also be present in real-data experiments, which may
degrade estimator’s performance. It is shown that MIGE can effectively handle the
outliers by utilizing a bounding box method. Simulations and experiments using
real data collected from sensors (receivers) and a target (radio-station) demonstrate
the improved localization accuracy.

Third, the MIGE algorithm is applied to improve the performance of visual si-
multaneous localization and mapping (SLAM). The visual mapping process requires
three-dimensional triangulation of scene points. We apply MIGE by utilizing the
cylindrical degenerate Gaussian for the triangulation with minimal parametric rep-
resentation. Next, the Bayes Dense Flow (BDF) algorithm is proposed for a SLAM
front-end module to address the difficulty of feature-limited scenes in a probabilistic
framework. A new Mahalanobis eight-point algorithm is also proposed, which min-
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xii

imises the Mahalanobis distance of the epipolar line to each optical flow estimate. By
combining the BDF, Mahalanobis eight-point algorithm and MIGE, a robust visual
odometry is designed. The visual odometry is then combined with an existing SLAM
back-end, called robust linear pose-graph. The resulting visual SLAM is shown to be
more accurate for a standard dataset and our own UAV dataset, effectively handling
feature-limited scenes, pure rotational motion and large camera height variations.

Lastly, with the robustly estimated camera pose from our visual SLAM method, it
is possible to estimate a smooth camera trajectory for digital video stabilization. We
propose a method using window-based weighted pair-wise rotation average to obtain
a smooth rotational motion. Improved video stabilization performance is shown with
the proposed method.
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the same 3D scene point χ̄, ē is the image point of the camera centre ζ̄′
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Chapter 1

Introduction

This chapter begins with discussing issues that motivate this research work relating
to the topic of developing a new approximate Bayesian estimator for localization and
mapping tasks. It also presents the objectives, contributions and thesis structure.

1.1 Motivations

The work of this thesis falls into the broad research field of stochastic filtering, widely
studied by different research communities for many decades. Stochastic filtering is
applied to many engineering fields such as robot localization and navigation, sensor
network, target tracking and so on, where one wants to estimate the states of a
nonlinear dynamic system from noisy measurements and imperfect knowledge.

Stochastic filtering was first established by the pioneering work of Wiener and
Hopf [1931] and Kolmogorov [1941]. Their work then led to the well-known Kalman
filter [Kalman, 1960] (and subsequently Kalman-Bucy filter [Kalman and Bucy, 1961]).
The Kalman filter is a stochastic filter designed to solve the state estimation problem
for a linear dynamical system with Gaussian perturbation. The effectiveness of the
Kalman filter was evidenced by its application in the navigation system of the Apollo
lunar mission [Schmidt, 1981]. The Kalman filter has also been applied in various
scientific areas, such as communications, economics, finance, biology and so on.

A general class of stochastic filters is the Bayesian filter, where the random pro-
cesses are modelled as conditional probability densities. These probability densities
are then combined using Bayesian theory by Thomas Bayes [Bayes and Price, 1763].
Bayesian filtering techniques were first developed for state estimation in Ho and Lee
[1964]. The Kalman filter was also derived under Bayesian framework in [Meinhold
and Singpurwalla, 1983].

Most estimation problems involve nonlinear dynamic or measurement process,
where the assumptions used by the Kalman filter are not valid, and indeed the esti-
mation problems considered in this thesis are all nonlinear. Full Bayesian estimators
in general, require an infinite number of parameters to describe the underlying con-
ditional probability density function (PDF). Thus, approximate Bayesian methods
were developed to tackle nonlinear estimation problems.

The most popular efficient non-linear estimator is the Extended Kalman Filter
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(EKF) [Sorenson, 1985]. The EKF approximates the non-linearities of the system by
computing Jacobians. However, the EKF is known to be inconsistent, where the level
of uncertainty in the state estimate is often underestimated [Huang et al., 2010; Li
and Mourikis, 2013]. The Gaussian sum filter [Sorenson and Alspach, 1971; Alspach
and Sorenson, 1972] is another nonlinear estimator, where the nonlinear PDF is ap-
proximated by weighted sum of multiple Gaussian PDFs. The Gaussian sum filter
has an inherent trade-off between the computational complexity and accuracy, where
using more Gaussian densities can better approximate the true PDF but incurs higher
computational and memory cost.

An alternative to Gaussian sum filter is the sequential Monte Carlo based Bayesian
filter commonly known as particle filter [Gordon et al., 2002], where the PDF is rep-
resented using a set of particles. However, similar to Gaussian sum, the particle filter
needs to retain high number of particles to ensure accurate approximation of the
PDF, which in turn leads to higher computational cost. Another nonlinear Bayesian
estimator approximately captures the PDF using a grid-based method [Arulampalam
et al., 2002]. The discrete conditional probabilities at different locations are computed
and recursively updated. However, the accuracy of grid-based methods are limited
by the resolution, and the memory requirement is generally the highest among the
previously discussed methods.

The performance of the nonlinear filters is inherently poor when subjected to
noise that corrupts the measurements and is often computationally intensive. It is
also worth noting that the discussed filters have not exploited the geometrical aspects
of the measurement likelihood. For example, the bearing-sensing has a conical like-
lihood function extending to infinity, while range-sensing has a spherical likelihood.
Within a small local region, these likelihoods can be approximated as cylindrical or
planar likelihood function using a degenerate Gaussian.

The degenerate Gaussian has not drawn much attention in the filtering and
estimation domain. Sola et al. [2012] reviewed a number of past work that got
around representing infinite uncertainty of degenerate Gaussian using some over-
parametrisation. However, in some applications (e.g. dense visual reconstruction),
the additional memory and computational requirement may be undesirable. In this
context, the main interest of this thesis is to construct and apply an efficient estima-
tor exploiting the geometrical aspects of a measurement likelihood. We name this
estimator as Minimal Iterative Gaussian Estimator (MIGE). It utilizes a degenerate
Gaussian function to approximate a nonlinear likelihood function arising in various
sensing problems in target-tracking, localization and SLAM. A degenerate Gaussian
function allows infinite uncertainty along some directions. The standard Gaussian
parameters of mean and covariance are ill-defined in these functions, and thus we
propose a new parametrization method consisting of a minimal set of coefficients
for the quadratic terms (which gives rise to the “minimal” term of the MIGE). The
estimator also improves the estimation accuracy by iteratively refining the suitable
covariance values for the non-degenerate directions (which gives rise to the iterative
term of the MIGE). The performance of this estimator is evaluated by applying it to
several simulated experiments and complex real-world scenarios with real measure-
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ment data, which shows that the new estimator can achieve demonstrably improved
accuracy and estimator consistency while requiring the least amount of memory and
computational resources, when compared to existing popular filtering methods in-
cluding those discussed above.

1.2 Objectives

The objective of this thesis is to design an efficient approximate Bayesian estimator
and deploy it to some real-world applications. Our focus is on improving the estima-
tor consistency compared to EKF, while requiring low computational and memory
resources.

In designing our efficient approximate Bayesian estimator, we consider the fol-
lowing estimation problems:

• Noisy measurement with outliers: The sensors used to make measurements of
the target are not perfect. There may also be scenarios where the sensor’s ac-
curacy is limited by the environment. Some measurement process may also be
error prone such that certain measurements have an error significantly larger
than the rest of the measurements. These measurements are known as outliers,
and need to be handled properly to ensure correct convergence of the estimator.
Thus, the estimator should be designed to appropriately handle the measure-
ments’ noise and outliers. In this thesis, the inlier (non-outlier) measurement
noise is assume to follow zero mean Gaussian distribution, while outlier have
large unbounded noise that needs to be discarded. Sensors that were used in
the study are: software defined radios (SDRs), camera and inertial measure-
ment unit.

• Estimator consistency: The estimator has to provide consistent results. The
consistency of a static estimator is defined as the convergence towards the true
value with increasing number of measurements. For a dynamic system, the es-
timator consistency is evaluated using the estimated uncertainty (i.e. covariance
matrix in Gaussian assumption). More details can be found in Chapter 2.1.9.

• Computational and memory efficiency: The computational and memory re-
quirement of the estimator needs to be low that will allow the estimator to
be used on resources constrained system, which are increasingly common in
robotics applications.

The efficient approximate Bayesian estimator proposed in this thesis has the po-
tential to be applied to many localization and mapping tasks.

1.3 Contributions

This thesis explores solutions to the problem of localization and mapping tasks. The
following is a summary of the main contributions of this thesis.
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Figure 1.1: Examples of nonlinear likelihood distributions and their approximated
likelihood using a degenerate Gaussian. From top left to bottom right: (a) bear-
ing measurement likelihood; (b) approximated bearing measurement likelihood; (c)

range measurement likelihood; (d) approximated range measurement likelihood.

• Minimal Iterative Gaussian Estimator (MIGE): We propose a minimal repre-
sentation, iterative estimator that utilises a single degenerate Gaussian to ef-
fectively approximate the measurement likelihood function. The degenerate
Gaussian is a Gaussian function where one or more directions may have infinite
uncertainty. Examples of degenerate Gaussian used to approximate nonlinear
likelihood functions are shown in Figure 1.1. The consistency of the MIGE is
improved by ensuring the approximated density encloses the intersection of the
prior and measurement density.

• Accurate recursive TDOA-FDOA localization: MIGE method is applied to
improve TDOA and hybrid TDOA-FDOA localization accuracy. Test results
show that the method outperforms existing methods even when the sensor-
target geometry is poor.

• Robust visual SLAM suitable for general motion: An accurate visual odome-
try (SLAM front-end) method is proposed that utilizes our Bayes Dense Flow,
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Mahalanobis eight-point algorithm, MIGE for scene triangulation, robust scale
estimation and pose fusion. An existing robust linear pose graph SLAM is
used to further reduce the pose drift in the SLAM back-end. The popular
KITTI dataset and our own outdoor UAV dataset are used to demonstrate the
performance of our visual odometry and scene reconstruction.

• Efficient camera trajectory smoothing: An efficient camera trajectory smooth-
ing method is proposed, which is applied to a video stabilization task. Ex-
perimental results show our method achieves smooth motion trajectory with
minimal overshoot.

1.4 Publications

All the results in this thesis have been published or are currently under review in
refereed journal and conference papers. They are listed in reverse chronological
order as follows.

• Y. Ng, J. Kim and C. Yu. A Degenerate Gaussian Representation for Efficient
Bayesian Filtering: Part I - Theory, submitted to IEEE Transactions on Aerospace
and Electronic Systems

• Y. Ng, J. Kim and H. Li. A Degenerate Gaussian Representation for Efficient
Bayesian Filtering: Part II - Robust Visual SLAM, submitted to IEEE Transactions
on Aerospace and Electronic Systems

• Y. Ng, J. Kim, J. Wei and C. Yu. A Degenerate Gaussian Representation for
Efficient Bayesian Filtering: Part III - Hybrid TDOA-FDOA Localization, in
preparation for submission to IEEE Transactions on Aerospace and Electronic Sys-
tems

• Y. Ng, J. Wei, C. Yu and J. Kim. Measurement-Wise Recursive TDoA-based
Localization Using Local Straight Line Approximation, in Australian and New
Zealand Control Conference, Gold Coast, Australia, December 2017

• Y. Ng, J. Kim and H. Li. Robust Dense Optical Flow with Uncertainty for
Monocular Pose-Graph SLAM, in Australasian Conference on Robotics and Au-
tomation, Sydney, Australia, December 2017

• Y. Ng, B. Jiang, C. Yu and H. Li. Non-iterative, fast SE(3) path smoothing, in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Dae-
jeon, South Korea, October 2016

1.5 Thesis Structure

The thesis is organized as illustrated in Figure 1.2.
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Figure 1.2: Structure of this thesis, where our minimal iterative Gaussian estimator
(MIGE) is shown in blue, the two primary application areas of MIGE are highlighted
in green, while yellows shows the path smoothing work that is related to the esti-

mated camera motion from visual SLAM.

Chapter 2 reviews the background theories that are used in later chapters. This
includes theories in Bayesian filtering, computer vision, radio-based localization and
3D pose representations. For Bayesian filtering, it covers Bayes’ theorem, well known
non-linear filters, and defines estimator’s consistency. Next, theories regarding time-
difference-of-arrival and frequency-difference-of-arrival to be used in Chapter 4 are
presented. This chapter also covers important theories in computer vision needed
in Chapter 5, such as the pinhole camera model, homography, camera projection,
feature descriptor, optical flow, epipolar geometry, essential matrix and SLAM. This
is then followed by a brief discussion of commonly used 3D pose representation
relevant to Chapter 6.

Chapter 3 presents a novel minimal iterative Gaussian estimator (MIGE), showing
the intuition and mathematical derivation of the estimator. Particularly, bearing-only
and range-only localization will be discussed. Different parts of the MIGE method
are presented, which includes the minimal parametrisation, estimator’s design to
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improve consistency, state prediction and update steps of the estimator. We demon-
strate the accuracy and consistency of MIGE by using Monte Carlo simulation for
bearing-only and range-only localization.

Chapter 4 discuses our work on passive radio-based localization using time-
difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) measure-
ments. The real data experiments have a significant number of outlier measurements,
which can be identified and discarded using the simple bounding box method. Sim-
ulation and real data experiment shows the improvement in localization accuracy
compared to existing methods.

Chapter 5 describes our work on improving the performance of monocular vi-
sual SLAM for generic camera motion using the MIGE. The modified DCFlow algo-
rithm [Xu et al., 2017] called Bayes Dense Flow provides accurate estimation of dense
optical flow along with 2D uncertainty. A robust visual odometry is presented, which
utilises our Bayes Dense Flow, Mahalanobis eight-point algorithm, MIGE-based scene
reconstruction, robust scale estimation, and pose fusion. The SLAM back-end relies
on an existing robust linear pose graph method [Cheng et al., 2015]. The performance
of the resulting monocular visual SLAM is verified using KITTI and outdoor UAV
dataset.

Chapter 6 introduces our work on video stabilization application. Given the esti-
mated camera trajectory (e.g. using our proposed visual SLAM), a smooth trajectory
can be estimated. The difference between the smoothed trajectory and the origi-
nal trajectory is used to compute a homography to reduce camera shake caused by
unstable rotational motion.

Chapter 7 presents the conclusions of the thesis, and discusses future extensions
of our work.
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Chapter 2

Background

This chapter introduces some preliminaries on the various subjects that were studied.
The background theories, concepts and algorithms that form the basis of these works
are covered.

2.1 Bayesian filtering

Bayesian filtering techniques were first developed for state estimation in [Ho and
Lee, 1964]. A Bayesian filter is a general probabilistic approach in estimating the
conditional probability density function (PDF) of an unknown state of a system,
using noisy measurements as input.

The state’s PDF provides a complete description of the state, which contains the
information about the state’s mean and uncertainty (spread). This allows new mea-
surements to be incorporated into the estimation in a recursive fashion, which has
the benefits of less stringent computational and memory requirements. Thus, the
Bayesian filter is often used for real-time state estimation, especially in a resource
constraint system.

The state model of any general, nonlinear, discrete time estimation problem can
be written as

xk = fk(xk−1, uk−1) + vk−1, (2.1)

zk = hk(xk, uk) + wk, (2.2)

where xk ∈ Rnx is the state vector at discrete time k; uk ∈ Rnu is the input vector;
zk ∈ Rnz is the measurement vector; fk(·, ·) is the known state propagation function;
hk(·, ·) is the known measurement function; vk−1 and wk are independent process
and measurement noise.

Figure 2.1 shows the graphical representation of the state-space model of the
system.

The subsequent subsections will cover important backgrounds on Bayesian filter-
ing.

9
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Figure 2.1: Graphical representation of the discrete time state-space model of a gen-
eral, nonlinear estimation problem (see equation (2.1) and (2.2)). uk is the input, xk is

the state, and zk is the measurement at time k.

2.1.1 Bayes’ theorem

Arguably the most important theorem in Bayesian filter is the Bayes’ theorem, which
was discovered by Thomas Bayes and described in a paper published posthumously
in 1763 [Bayes and Price, 1763]. Bayesian theory describes the fundamental law gov-
erning logical inference. One of the first papers that studies Bayesian approach in an
iterative state estimation framework was done by Ho and Lee [1964]. It has also been
applied in a number of related research fields, such as Bayesian inference [Bernardo
and Smith, 1994; Robert, 1994; Press, 2003], Bayesian learning [Spragins, 1965], opti-
misation of adaptive systems [Lin and Yau, 1967; Chin et al., 2002], and Monte Carlo
methods [Chen, 2003].

Bayes’ theorem computes the posterior PDF, p(x|z) when given the prior PDF,
p(x) and likelihood PDF, p(z|x). The Bayes’ theorem is given as

p(x|z) = p(z|x)p(x)
p(z)

=
p(z|x)p(x)∫
p(z|x)p(x)dx

. (2.3)

The recursive form of Bayes’ theorem is the basis of all sequential Bayesian filter-
ing. The assumptions used in recursive Bayesian filters are:

• The state satisfies a first order Markov process such that p(xk|Xk−1) = p(xk|xk−1),
where Xk is the set of states {x0, x1, · · · , xk}. This means that the current state
xk only depends on the previous state xk−1, and independent of all other states
before it {x0, x1, · · · , xk−2}.

• The observations are independent of one another such that p(zi|zj) = p(zi),
where i 6= j.

Theorem 2.1 ([Chen, 2003, pg. 9]). Let Zk be the set of measurements {z1, z2, ..., zk}. The
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recursive form of the Bayes’ theorem can be written as

p(x|Zk) =
p(zk|x)p(x|Zk−1)

p(zk|Zk−1)
. (2.4)

It can equivalently be written as

p(x|z1, z2, · · · , zk) = c ·
[

k

∏
i=1

p(zi|x)
]

p(x), (2.5)

where c is the normalisation constant that makes the sum of the probability density
to be equals to one, while p(x) is the initial prior for the state x.

Bayesian filtering is optimal in the sense that it uses all the available information
(expressed by probabilities) to compute the posterior distribution, which contains the
complete description of the state being estimated. However, in general, the complete
description of the state requires an infinite amount of memory and computational
power. Thus, approximate (sub-optimal) methods are used. A common approxima-
tion is to assume the PDFs are Gaussian. Some properties of a Gaussian PDF are
discussed in the following section.

2.1.2 Gaussian PDF

A Gaussian probability density function (PDF) is a special distribution that can be
fully described by a mean, µ and covariance matrix, P, such that

µ = E [x] , (2.6)

P = E
[
(x− µ)(x− µ)T

]
. (2.7)

where E[·] is the expected value function.
A general Gaussian PDF on state vector x can be written as

N (x; µ, P) =
1√

det(2πP)
exp

(
−1

2
(x− µ)TP−1(x− µ)

)
. (2.8)

Two examples of Gaussian PDF are shown in Figure 2.2.
Some interesting properties of a Gaussian distribution are: [Gut, 2009]

1. Every covariance matrix P is a square matrix, such that P ∈ Rn×n.

2. Every covariance matrix P is a symmetrical matrix, such that P = PT.

3. For any symmetric covariance matrix P, there exist orthogonal matrix C such
that CTPC = D, where D is the diagonal matrix with eigenvalues of P.

4. Every covariance matrix P is non-negative definite, such that P � 0.



12 Background

Figure 2.2: Examples of Gaussian PDF. From left to right: (a) 1D Gaussian; (b) 2D
Gaussian

5. The exponential power of a Gaussian PDF (equation (2.8)) follows the Chi-
square distribution.

Let x ∼ N (µ, P), where P is non-singular with det(P) > 0, then
(x− µ)TP−1(x− µ) ∼ χ2(n)

6. A random variable undergoing matrix transformation is computed as follows.

Let x ∈ Rn be a random variable with mean µ and covariance matrix P. Further,
let B be a m× n matrix, a constant vector b ∈ Rn, and q = Bx + b. Then, the
mean and covariance matrix of q are given by

E [q] = Bµ + b, (2.9)

E
[
(q−E [q])(q−E [q])T

]
= BTPB. (2.10)

7. The sum of two Gaussian random vectors is computed as follows.

Let x ∼ N (µx, Px), and y ∼ N (µy, Py). Suppose w = x + y. Then, w ∼
N (µx + µy, Px + Py).

Property 6 and 7 are useful for state prediction (or propagation), where the state
can undergo some linear transformations (e.g. rotations) and addition of a random
variable (e.g. translation with noise).

2.1.3 Kalman filter

A well known filter is the Kalman filter [Kalman, 1960, 1963], which is optimal when
the estimation problem is linear with Gaussian noise. It is optimal in the sense that
the solution is unbiased with minimum variance.
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The Kalman filter has two steps, namely prediction and update steps. In the pre-
diction step, the state PDF is propagated from the previous time step to the current
time step, which corresponds to equation (2.1). The update step performs a correc-
tion on the state PDF based on the measurement taken at the current time step, which
corresponds to equation (2.2). In the linear case, the function fk(xk−1, uk−1) and
hk(xk, uk) in equation (2.1) and (2.2) simplifies to Fkxk−1 + Bkuk−1 and Hkxk + Ckuk
respectively.

In the stationary case, where Fk, Hk, vk−1 and wk are constant, then the Kalman
filter is equivalent to the least square Wiener filter [Wiener, 1949]. Originally, the
Kalman filter was derived with the orthogonal projection method. Kailath [1970]
reformulated the Kalman filter to the well known form using innovation method by
Wold and Kolmogorov [Wold, 1938; Kolmogorov et al., 1962].

In practice, most estimation problems are nonlinear and non-Gaussian, which
violates the assumptions used by the Kalman filter. Thus, numerous work was done
to overcome the limitations of the Kalman filter. Some of the more well known
nonlinear filters are discussed in the following sections.

2.1.4 Extended Kalman filter

The most commonly used nonlinear recursive filter is the extended Kalman filter
(EKF) [Smith et al., 1962; Sorenson, 1985]. It is closely related to the classical Kalman
filter, where the nonlinear problem is locally linearised using the Jacobian

F̂k =
d fk(x, uk−1)

dx

∣∣∣∣
x=xk−1|k−1

, (2.11)

Ĥk =
dhk(x, uk)

dx

∣∣∣∣
x=xk|k−1

. (2.12)

Then, the extended Kalman filter follows the classical Kalman filter closely, and
is shown in Algorithm 1.

For highly nonlinear, non-Gaussian estimation problems, other filters were pro-
posed. These are explored in subsequent sections.

2.1.5 Unscented Kalman filter

An alternative nonlinear recursive filter that is able to capture the posterior mean and
covariance information is the unscented Kalman filter (UKF) proposed by [Julier and
Uhlmann, 2004]. [Wan and Van Der Merwe, 2000] also showed the use of the UKF
for nonlinear system identification, training of neural network, and dual estimation
problem.

The UKF uses deterministic sampling approach, where a minimal set of carefully
chosen sample points (sigma points) are used to capture the true mean and covari-
ance of the Gaussian random variable.
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Algorithm 1: Extended Kalman filter
Data: Given prior {x0, P0}, state propagation function fk, measurement function

hk, process covariance matrix Qk, measurement covariance matrix Rk
Result: Posterior {xk|k, Pk|k}

1 initialization;
2 while time k is increasing do
3 k = k + 1;
4 Linearise fk to get F̂k using (2.11) ;
5 Predict state mean, xk|k−1 = fk(xk−1|k−1, uk);
6 Predict state covariance, Pk|k−1 = F̂kPk−1|k−1F̂T

k + Qk ;
7 if new measurement arrives then
8 Linearise hk to get Ĥk using (2.12) ;
9 Innovation mean, yk = zk − hk(xk|k−1, uk) ;

10 Innovation covariance, Sk = Rk + ĤkPk|k−1ĤT
k ;

11 Kalman gain, Kk = Pk|k−1ĤT
k Sk

−1 ;
12 Posterior mean, xk|k = xk|k−1 + Kkyk ;
13 Posterior covariance, Pk|k = (I − Kk Ĥk)Pk|k−1;
14 end
15 end

Let xk−1|k−1 be the prior mean state, Pk−1|k−1 be the covariance matrix, N be the

dimension of the state space, and
(√

M
)

i
is the ith column of the matrix square root

of M. Assuming the prior distribution is Gaussian, the sigma points are [Julier and
Uhlmann, 2004]

x(0)k−1|k−1 = xk−1|k−1

W(0)
k−1|k−1 =

1
3

x(i)k−1|k−1 = xk−1|k−1 +

√√√√ N

1−W(0)
k−1|k−1

Pk−1|k−1


i

W(i)
k−1|k−1 =

1−W(0)
k−1|k−1

2N

x(i+N)
k−1|k−1 = xk−1|k−1 −

√√√√ N

1−W(0)
k−1|k−1

Pk−1|k−1


i

W(i+N)
k−1|k−1 =

1−W(0)
k−1|k−1

2N

(2.13)

These sample points are then propagated through the nonlinear system dynam-



§2.1 Bayesian filtering 15

ics, which can better reflect the true mean and covariance information compared to
EKF. The Unscented Kalman filter (UKF) is shown in Algorithm 2.

Algorithm 2: Unscented Kalman filter
Data: Given prior {x0, P0}, state propagation function fk, measurement function

hk, process covariance matrix Qk, measurement covariance matrix Rk
Result: Posterior {xk|k, Pk|k}

1 initialization;

2 Compute sigma points x(i)k−1|k−1 and weights W(i)
k−1|k−1;

3 while time k is increasing do
4 k = k + 1;

5 Propagate sigma points by x(i)k|k−1 = fk(x
(i)
k|k−1, uk) ;

6 Predict state mean, xk|k−1 = ∑2N
i=0 W(i)

k−1|k−1x(i)k|k−1;

7 Predict state covariance,

Pk|k−1 = ∑2N
i=0 W(i)

k−1|k−1

(
x(i)k|k−1 − xk|k−1

) (
x(i)k|k−1 − xk|k−1

)T
;

8 if new measurement arrives then
9 Linearise ... ;

10 Innovation mean, ... ;
11 Innovation covariance, ... ;
12 Posterior mean, ... ;
13 Posterior covariance, ...;
14 end
15 end

2.1.6 Grid-based method

If the state is discrete and finite, grid-based methods can produce optimal results.
Suppose the discrete state s ∈ N consists of a finite number of states {1, 2, · · · , Ns}.
Let si

k denotes the discrete state with index i at time k, and wi
k|k denotes the condi-

tional probability for each si
k given measurements up to time k, such that

wi
k|k = p(sk = si|Zk).

Then the posterior PDF at time k is represented as

p(sk|Zk) =
Ns

∑
i=1

wi
k|kδ(sk − si

k). (2.14)

The predicted PDF at time k is represented as

p(sk|Zk−1) =
Ns

∑
i=1

wi
k|k−1δ(sk − si

k). (2.15)
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The grid-based method can also be applied to continuous state space, where an
approximate grid-based method can be used [Arulampalam et al., 2002]. The grids
need to be sufficiently dense to closely approximate the state space. This in turn
incurs high computational and memory cost.

For an unbounded state space, some truncation is necessary to make the method
tractable. Partitioning of the state space also need to be regular, otherwise the subse-
quent update may be computationally complex.

Some work on adaptive grid-based method were also performed [Cai et al., 1995;
Bao et al., 2014]. However, the computational complexity is still high. Another related
work proposed the use of a piece-wise constant function to approximate the density
function on linear system [Kramer and Sorenson, 1988].

2.1.7 Gaussian sum filter

Gaussian sum filter [Sorenson and Alspach, 1971; Alspach and Sorenson, 1972] was
proposed that requires less memory compared to grid-based method, while allowing
close approximation of non-Gaussian probability density. The non-Gaussian PDF
is approximated by weighted sum of Gaussian densities, which is also known as
Gaussian mixture model (GMM). Let µi, Pi and wi be the mean, covariance matrix
and multiplicative weighing for the ith Gaussian density. Then, the PDF represented
by the GMM is

p(x) =
Ng

∑
i=1

wiN (x; µi, Pi), (2.16)

where the weighing wi is strictly positive, and ∑
Ng
i=1 wi = 1

It was shown in [Sorenson and Alspach, 1971] that as Ng approaches infinity
and Pi approaches the zero matrix, any general continuous PDF can be accurately
approximated. As Pi approaches the zero matrix, N (x; µi, Pi) approaches the unit
impulse function at µi.

There are a lot of ways to approximate a given PDF using a sum of Gaussian.
Alspach and Sorenson [1972] suggested ui be chosen in a grid-like fashion around the
state space region that are significant, and P is chosen as bI with appropriate value
of positive scalar b (depending on grid size). Assuming N (x; µi, Pi) are normalised,
then wi is chosen such that ∑

Ng
i=1 wi = 1.

Both the prior and measurement likelihood can be approximated using Gaussian
sum. The state prediction and update step can then be performed using a bank of
EKF. Suppose that the prior and measurement likelihood are approximated by Np

and Nm number of Gaussian densities respectively, then after the update step, there
will be NpNm Gaussian densities. This causes an exponential increase in the number
of Gaussian densities with each measurement update.

Thus, some methods that can reduce the number of Gaussian densities with-
out significantly changing the PDF is vital to ensure computational tractability. Two
methods to prevent the number of Gaussian densities to increase exponentially are by
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combining close-by densities, and discarding densities with low probability. [Soren-
son and Alspach, 1971]

2.1.8 Particle filter

Another popular method that is useful for capturing non-Gaussian PDF with lower
computational and memory requirement compared to the grid-based method is the
Monte Carlo method. The most well known sequential Monte Carlo method is the
particle filter. There are a number of good tutorial papers on particle filter, such as
[Arulampalam et al., 2002; Gustafsson, 2010].

The theoretical justification for the Monte Carlo method is similar to Gaussian
sum filter, where the true PDF is approximately captured by a large number of ran-
dom samples (particles). Similar to Gaussian sum filter, the PDF can be captured
more accurately as the number of samples Np increases to infinity. However, large
number of samples incurs large computational and memory burden. Thus, a method
to efficiently sample (and resample) is very important for Monte Carlo methods.

A common way to obtain and maintain useful samples is sampling-importance
resampling (SIR). The steps in SIR can be summarised as follows:

• Select Np samples
{

x(i)
}Np

i=1
from the proposed distribution

• Calculate importance weights wi for each sample

• Normalise the importance weights such that ∑
Np
i=1 wi = 1

• Resample from the discrete set
{

x(i)
}Np

i=1
, where the probability of being se-

lected is proportional to their corresponding wi

There are numerous ways to resample from the discrete set. For example, multi-
nomial resampling [Rubin, 1987; Efron and Tibshirani, 1993], Residual resampling [Liu
and RongChen, 1998; Whitley, 1994], stratified resampling [Kitagawa, 1996], and sys-
tematic or deterministic resampling [Kitagawa, 1996].

An example of the multinomial resampling is shown in Figure 2.3. The basic
resampling steps can be summarised as follows:

• Given discrete samples and its corresponding importance weights {x(i), wi}.
Normalise importance weights such that ∑

Np
i=1 wi = 1, and compute the cumu-

lative sum of importance weights {si}.

• Select Np random samples {ui}, where different methods of selection were
proposed.

• For each ui, select the sample x(i) that corresponds to the si such that si−1 <
ui ≤ si.

• Reset the importance weights wi = 1/Np.
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Figure 2.3: Examples of multinomial sampling. From top left to bottom: (a) an arbi-
trary importance weights for sample x(i); (b) cumulative sum of importance weights
showing multinomial resampling of 5 samples ({x(6), x(8), x(8), x(9), x(15)}); (c) cumu-
lative sum of importance weights showing deterministic resampling of 5 samples

({x(7), x(9), x(14), x(15), x(16)}).

For multinomial resampling method, the {ui} is randomly selected from the uni-
form distribution between (0, 1]. In residual resampling, for each wi, ni = bwiNpc
samples of x(i) were kept, the new weight w̃i = wi − ni/Np is used in multinomial
resampling step to select the remaining samples. In Stratified resampling, {ui} were
selected from within a uniformly partitioned region between (0, 1] such that each ui

is a randomly selected from the uniform distribution between
(

i−1
Np

, i
Np

]
. Determin-

istic resampling method select ui =
i−α−1

Np
, where α is randomly selected value from

the uniform distribution between (0, 1].
Due to the regularity of the selection of ui, the deterministic resampling was

shown to be able to replicate all samples, where the variance between different se-
lected samples is the smallest. The computational complexity is also low, at O(Np)
[Chen, 2003]. Thus, this resampling method is selected for the SIR particle filter in
our experimental comparison.

2.1.9 Estimator’s Consistency

The consistency of an estimator is defined as the convergence of the estimation to-
wards the true value as the number of measurements approaches infinity. The fol-
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lowing theorem provides a more formal definition.

Theorem 2.2 ([Ibragimov and Has’Minskii, 2013, pg. 30]). An estimator is said to be
consistent if for some value of ε, the state estimate up to measurement t, x̃t converges to the
true state x in probability, such that

lim
t→∞

p(|x̃t − x| > ε) = 0. (2.17)

The consistency described in Theorem 2.2 is an asymptotic property of an estima-
tor. However, this only applies to estimation of a constant, stationary parameter. The
finite sample consistency for a filter in dynamical system is evaluated as follows.

Theorem 2.3 ([Bar-Shalom et al., 2004, pg. 233]). Under the Gaussian assumption, the
state error should be acceptable as zero mean and have magnitude corresponding to the esti-
mated state covariance.

Suppose the state estimation up to measurement t is x̃t, true state is xt, and the estimated
covariance matrix is P. Then, the average normalised estimation error squared (NEES) is

E
[
(x̃t − xt)

TP−1(x̃t − xt)
]
= nx, (2.18)

where nx is the dimension of the state vector. Equation (2.18) is a property of a chi-square
distribution (see chapter 2.1.2, property 5).

Note that a biased estimator may still be consistent. For a static estimator, if
(2.17) holds, a biased estimator with the bias magnitude less than or equals to ε is
consistent. For dynamic estimator, if P = P̄+diag(b2), where P̄ is the covariance
matrix of the unbiased estimator and b is the bias vector. Then, the biased estimator
with estimated covariance matrix P is still consistent.

2.2 Radio-based localization

A number of strategically placed radio sensors can be used to localize an emitter loca-
tion. If the exact time of signal emission is known, the time-of-arrival (TOA) or time
of flight can be measured. This provides a distance measurement from the sensor,
which constrains the possible location of the emitter onto any point on the surface
of a sphere. However, this usually requires the emitter to send the transmission time
to the sensor, where the clock between emitter and sensors need to be synchronised.
These limit the usefulness of such technique.

In some application areas, this cooperative behaviour between the sensor and
target is not possible or undesirable. Thus, other passive measurements are ex-
plored. The most common passive measurements for radio-based localization are
time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA).

Suppose k = 1, 2, ..., N denotes the time index when the measurements are made.
The radio emitter is located at the unknown location pk = [xk, yk, zk]

T. The known co-
ordinates of the sensor i and sensor j are si,k = [xi,k, yi,k, zi,k]

T and sj,k = [xj,k, yj,k, zj,k]
T
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respectively. The relative velocity between the emitter and sensors i and j are rep-
resented as vi,k and vj,k respectively. The displacement vector between the emitter
and the sensors are thus denoted as di,k = pk − si,k and dj,k = pk − sj,k. The dis-
tance between the emitter and sensors are then denoted as ri,k =

√
(di,k)Tdi,k and

rj,k =
√
(dj,k)Tdj,k. The theory behind TDOA and FDOA are presented in the follow-

ing sections.

2.2.1 TDOA

Time-difference-of-arrival as the name suggests, measures the difference in time the
same signal arrives at different sensors.

The time-difference-of-arrival (TDOA) equation is represented as

τij,k =
1
c
(ri,k − rj,k), (2.19)

where c is the signal propagation speed (speed of light for radio signal).
Each TDOA measurement provides a hyperboloid constraint on the possible emit-

ter location, and the minimum number of sensors required to obtain a unique emitter
location estimate in 3D is 5.

2.2.2 FDOA

Frequency-difference-of-arrival (FDOA) measurement is caused by a phenomenon
called Doppler shift. It is the stretching or compressing of a waveform, due to the
non-zero relative velocity between the emitter and sensor. Similar to TDOA, without
knowledge of the exact transmission frequency, the differential Doppler or FDOA
can be measured.

The frequency-difference-of-arrival (FDOA) equation is represented as

νij,k =
fc

c
((vi,k)

Tui,k − (vj,k)
Tuj,k), (2.20)

where c is the signal propagation speed (speed of light for radio signal), fc is the
carrier frequency and

ui,k =
di,k

ri,k
, uj,k =

dj,k

rj,k
. (2.21)

2.3 Monocular visual SLAM

In the area of visual SLAM, the following section covers some basic background
knowledge of the research. “SLAM” refers to simultaneous localization and map-
ping, where both the sensor pose and the map points are jointly estimated. “Visual
SLAM” refers to a branch in SLAM research that focuses on the use of visual sensor
(i.e. camera) for the SLAM task, while “monocular” refers to the use of a single RGB
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colour camera in contrast to stereo (two camera), multi-camera (more than two cam-
eras), RGBD (colour and depth camera) and other visual systems. Some important
theories in visual SLAM are covered in the following sections.

2.3.1 Pinhole camera model

The simplest and most commonly used camera model is the pinhole camera model,
which assumes linear projection of 3D scene onto the 2D image plane. This is illus-
trated in Figure 2.4.

Figure 2.4: Illustration of pinhole camera model. From left to right: (a) An illustrative
example of 3D scene projection onto 2D image plane; (b) The geometrical relationship
showing the projection of a 3D scene point χ (in x′–y′ plane) to image point x (in x–y
or image plane), where ζ is the optical centre or the camera centre, d is the depth of
the scene point from ζ, f is the focal length, z is the principal axis of the camera, c is

the image centre.

From Figure 2.4(b), it is clear that the values of x can be computed as follows. Let
x = [x, y]T and χ = [X, Y, Z]T, then, Z = d, and[

x
y

]
= − f

Z

[
X
Y

]
. (2.22)

The computation can be simplified by using a virtual image plane, which is
placed between the pinhole centre O and the 3D scene point. The virtual image
plane is shifted by a distance equals to f in the z direction from O. This makes the
projected virtual image to be in the same orientation (not rotated) as the scene point.
Then, the relationship between the virtual image point pv = [xv, yv]T and the scene
point χ is [

xv

yv

]
=

f
Z

[
X
Y

]
. (2.23)
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2.3.2 Homogeneous coordinate

A useful coordinate representation is the homogeneous coordinates, where any scalar
multiple of the homogeneous coordinates represents the same vector. Let v be a
vector of appropriate dimension, and s be a non-zero scalar, then the homogeneous
coordinate v̄ can be written as

v̄ =

[
v
1

]
≡
[

sv
s

]
(2.24)

Theorem 2.4 ([Hartley and Zisserman, 2003, pg. 27]). Suppose the homogeneous vector
represents the 2D point x̄ = [x, y, 1]T and 2D line ax + by + c = 0 is parametrised as
l = [a, b, c]T. Then, if the dot product of the two homogeneous vectors is equals to zero, such
that

x̄.l = x̄Tl = lT x̄ = 0.

Then, point x̄ lies on the line l.

Theorem 2.5 ([Hartley and Zisserman, 2003, pg. 27]). Given two 2D lines l = [a, b, c]T

and l′ = [a′, b′, c′]T, the intersection point of the lines x̄ can be calculated using vector
cross-product, such that x̄ = l × l′.

Theorem 2.6 ([Hartley and Zisserman, 2003, pg. 28]). Given two 2D homogeneous
points x̄ and x̄′, the 2D line passing through both points is l = x̄× x̄′.

2.3.3 2D Homography

2D projective geometry is the study of projective plane’s properties that are invariant
under a group of transformation known as projectivities. The following definition and
theorem are provided in [Hartley and Zisserman, 2003].

Definition 2.1. Projectivity is an invertible mapping h that maps points in plane P2 to itself,
where collinearity of points is preserved.

Theorem 2.7 ([Hartley and Zisserman, 2003, pg. 33]). A plane-to-plane mapping h :
P2 → P2 is a projectivity if and only if it is a linear mapping by a non-singular matrix H
such that for any homogeneous point x in P2, h(x) = Hx.

The projective transformation is also known as homography, where the non-singular
matrix H is known as the homography matrix. Due to the use of homogeneous coor-
dinate, non-zero multiplicative scaling does not change the location of the 2D point,
such that Hxi ≡ sHxi. Thus, the 3 × 3 homography matrix has eight degrees of
freedom, and has rank 3.

Let x = [x, y, 1]T be the original homogeneous coordinate of a 2D point, x′ =
[x′, y′, 1]T be the transformed point, the projective transformation or homography on
a 2D point can be written as follows

λ

x′

y′

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x
y
1

 . (2.25)
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The homography matrix can be computed from point correspondences between
two images. From (2.25), we can expand and normalise the homogeneous coordi-
nates as

x′ =
λx′

λ
=

h11x + h12y + h13

h31x + h32y + h33
,

y′ =
λy′

λ
=

h21x + h22y + h23

h31x + h32y + h33
.

It can be observed that each point correspondences provide two equations for the
elements of H, such that

x′(h31x + h32y + h33) = h11x + h12y + h13,

y′(h31x + h32y + h33) = h21x + h22y + h23.

It can be rewritten as[
x y 1 0 0 0 −xx′ −yx′ −x′

0 0 0 x y 1 −xy′ −yy′ −y′

]
h = 0, (2.26)

where h =
[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]T
.

These are linear equations of the elements of H, and four point correspondences
is sufficient to solve the homography matrix up to a multiplicative scaling factor.
However, this minimum of four points correspondences assume that no three points
are collinear. More sophisticated method of computing the homography matrix can
be found in chapter 4 of [Hartley and Zisserman, 2003]. Homography can be used
for projective distortion removal, where an example is shown in Figure 2.5.

A less general transformation of the homography is the affine transformation,

where [h31, h32, h33] = [0, 0, 1], which has 6 degrees of freedom. If
[

h11 h12

h21 h22

]
= sR,

where R is the 2D rotation matrix, it is known as similarity transformation, which
has 4 degrees of freedom. If s = 1 in similarity transformation, it becomes Euclidean
transformation. The invariant properties under different transformation are detailed
in [Hartley and Zisserman, 2003].

2.3.4 3D to 2D camera projection

For a camera at arbitrary pose, the homogeneous 3D scene point χ̄(4×1) and the
homogeneous 2D image point x̄(3×1) is related by a projective transformation

λx̄(3×1) = P(3×4)χ̄(4×1). (2.27)

where the subscripts in parenthesis denote the dimension of the corresponding ma-
trix and vectors, and λ is a scalar that makes the third element of x̄(3×1) to be equals
to one.

The matrix P(3×4) in general has rank 3, and 11 degrees of freedom. The intrinsic
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Figure 2.5: An example of removing projective distortion (of blue building) from a
perspective image of a plane. From top to bottom: (a) original image; (b) homogra-
phy transformed image. Notice that the windows of the blue building has orthogonal
edges after the homography transformation, but other objects not on the same plane
may look distorted. There are also black border on the left of the transformed image

due to missing information (outside of original image boundary).

properties of the camera (5 degrees of freedom), namely the focal length, camera
skew and image centre may be extracted into a 3× 3 matrix by a simple decomposi-
tion. The remaining 6 degrees of freedom are the extrinsic parameter of the camera,
which contains the 3D rotation and translation. The general matrix P(3×4) for a pin-
hole camera can then be written as

P(3×4) = K [I(3×3) 0(3×1)] Tex

=

 fx s cx

0 fy cy

0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

 [R(3×3) t(3×1)
0(1×3) 1

]
,

(2.28)

where K is known as the intrinsic camera parameter matrix, Tex is the extrinsic cam-
era parameter matrix, fx and fy are the focal lengths, s is the camera skew parameter,
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Figure 2.6: Illustrative figure showing the projection of a 3D point wχ to image point
ix on the image plane (blue shaded region). The superscript before each variables
represents the coordinate frame they are defined, where w represents the world co-

ordinate frame, c is the camera frame, and i is the image frame.

[cx, cy] are the camera centre coordinate in the image plane, R(3×3) is the 3D rotation
matrix, and t(3×1) is the 3D translation vector.

Figure 2.6 shows the projection of a 3D scene point onto the image plane. The
wR and wt describes the pose of the camera with respect to the world coordinate
frame. We know that fixing the 3D scene points while moving the camera, and
fixing the camera pose while moving the 3D scene points (in an inverse rigid body
transformation) will produce the same image point location. This means wR and wt
is the inverse transformation of Tex, such that[ wR wt

0(1×3) 1

]
= (Tex)

−1

=

[
R(3×3)

T −R(3×3)
Tt

0(1×3) 1

]
.

(2.29)

Note that the example shown in Figure 2.4(b) assumes that both the camera and
world coordinate (for 3D scene points) frames are aligned. The intrinsic parameters
of the camera are also assumed to have equal focal length in both x and y direction
( fx = fy = f ), with zero skew and translation. In such a case, the matrix P(3×4) can
be expressed as

P(3×4) =

 f 0 0 0
0 f 0 0
0 0 1 0

 . (2.30)

The focal lengths fx and fy may not be equal when the CCD sensor representing
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Figure 2.7: An example of radial distortion. From left to right: (a) Input image
with fish-eye lens where the radial distortion is visible, (b) radial distortion corrected
image where straight lines appear straight. The black region at the top and bottom
of the radial distortion corrected image are areas with missing information (outside

of original image boundary).

the image pixels are rectangular instead of square-shaped. The skew parameter s
may be non-zero when the x and y axis of the CCD array are not perpendicular, or
when a “picture of a picture” process occurs. [Hartley and Zisserman, 2003]

Two classes of camera matrix are finite camera, and camera with centre at infin-
ity. An example of the second type is an affine camera, which represents parallel
projection. In my work, I focus on finite camera, where the focal length is finite.

Theorem 2.8 ([Hartley and Zisserman, 2003, pg. 158]). Suppose P(3×4) is the camera
projection matrix that maps homogeneous 3D scene point to homogeneous 2D image point.
Then, the right null space of P(3×4) is the homogeneous coordinate of the camera centre ζ.

There is another phenomenon that affects images taken by a camera, which is
not captured by the linear projective transformation in (2.27). It is due to the use of
optical lens to focus light rays in a camera. Compared to pinhole camera, the use of
optical lens allows more light to be captured, but introduces radial distortion in the
image.

The effect of radial distortion is greater the farther away from the distortion cen-
tre, and it is more obvious as the focal length decreases. For example, radial dis-
tortion is very evident in wide-angle photography. An example of radial distortion
is shown in Figure 2.7. It can also be observed that the projective distortion is not
removed by the radial distortion correction, where an object further away from the
camera will still appear smaller than close by object.

Radial distortion can be modelled as[
xd
yd

]
= L(r)

[
x
y

]
, (2.31)

where [xd, yd]
T is the measured image coordinates (after radial distortion), [x, y]T is

the ideal image coordinates, r is the radius from the distortion centre, and L(r) is the



§2.3 Monocular visual SLAM 27

distortion factor, which is a function of r.
The distortion factor is modelled by approximation of an arbitrary function by

Taylor series, such that L(r) = 1+ κ1r+ κ2r2 + κ3r3 + · · · . The coefficients and distor-
tion centre {κ1, κ2, ..., xc, yc} are considered part of the camera calibration parameters,
and are often estimated together with K in (2.28).

It is often not necessary to warp the image to correct for radial distortion. This
is because image warping will distort noise model and may introduce aliasing effect
to the image. Instead, the feature position may be corrected by applying appropriate
transformation according to (2.31). In our work, we assume that the camera intrinsic
and radial distortion parameters are calibrated accurately.

2.3.5 Feature descriptor and matching

In most computer vision tasks, we need to find the location of features and the cor-
responding matching features in two or more images. For example, a minimum of
four feature correspondences is required to compute the homography matrix. Fea-
tures of interest are first detected independently in each image. Then, each feature
is matched to features in other images using proximity and local visual similarity.
There may be more than one visually similar features in other images for a particular
feature. The best matching feature is selected based on the similarity metric chosen.

There are numerous ways to detect and describe an image feature. The simplest
one is the Harris corner detector and descriptor proposed by Harris and Stephens
[1988]. Harris corner detector can localize corners in the image at subpixel accuracy,
typically with an error less than 1 pixel [Schmid and Zisserman, 1998].

Other commonly used feature descriptors are Scale-Invariant Feature Transform
(SIFT) [Lowe, 2004], Speeded Up Robust Feature (SURF) [Bay et al., 2006] and ori-
ented rotated BRIEF (ORB) [Xu et al., 2012]. These features are more robust against
scale changes compared to the simple Harris corner. It can be observed that the
same object appears larger in a perspective image. Thus, the scale-invariant property
is important when matching features where the translational magnitude is large.

More recently, with the increase in popularity of artificial intelligence and neural
network research, the use of convolutional neural network (CNN) trained features
are becoming the norm [Zhou et al., 2014; Jia et al., 2014; Girshick et al., 2014]. These
features can be seen as a generalisation of the hand-crafted feature descriptors pre-
viously mentioned, where the weights for different visual cues are learned from a
large dataset.

The matching features can be determined by using a predefined feature similarity
metric. Some example of feature similarity metric are normalised cross-correlation
(CC), squared sum of intensity difference (SSD), and the dot product between feature
vector. CC is robust against affine mapping of the intensity value (i.e. I1 = αI2 + β,
scaling and offset), while SSD is more sensitive, and dot product is computationally
efficient.
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2.3.6 Optical flow

Unlike the sparse nature of the feature descriptor and matching discussed in previ-
ous section, optical flow is the dense motion field of image pixels. This means the
optical flow at each pixels describes the direction and magnitude of the correspond-
ing pixel’s motion between two images. An example of computed optical flow is
shown in Figure 2.8.

Figure 2.8: An example of optical flow computed using MATLAB’s Farneback optical
flow function. The input images are taken from KITTI odometry dataset [Geiger
et al., 2012], where the camera is moving forward. The blue arrows show the direction
and magnitude of the pixels’ motion between two consecutive frames. Note that the
areas with no texture (e.g. walls of building) has no optical flow due to the difficulty

in computing optical flow within those regions.

Since the well-known work [Horn and Schunck, 1981; Lucas et al., 1981], recent
developments of optical flow are focused on handling large displacement, occlu-
sion, illumination changes and reducing computational complexity. Another com-
mon challenge of optical flow is the aperture problem, where the pixel’s motion
perpendicular to the intensity gradient cannot be estimated accurately.

Classical optical flow algorithm optimises a cost function of the form

C( f ) = Cdata( f ) + λCreg( f ), (2.32)

where f is the computed optical flow, Cdata is the data term that penalises visually
dissimilar pixel, Creg is the regularisation term that encourages spatially smooth vari-
ation of optical flow field, while λ controls the trade-off between the two terms.

There are a number of possible data terms Cdata that can be used. For example,
similarity in terms of brightness [Horn and Schunck, 1981], gradient [Brox et al.,
2004], affine intensity and blur [Seitz and Baker, 2009], photometrically invariant
features [Liu et al., 2011].

The regularisation term Creg was first proposed by [Horn and Schunck, 1981],
where a homogeneous regularisation was applied. This does not respects flow dis-
continuity where different objects may have different optical flow direction and mag-
nitude. Since then, image edge driven [Lefebure et al., 1999; Nagel and Enkelmann,
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1986], flow driven [Black and Anandan, 1991], median filtering [Sun et al., 2010]
among others had been proposed to smooth the computed optical flow.

2.3.7 RANSAC

The most widely used assumption in parameter estimation is that the error follows
a Gaussian distribution. However, in practical scenario, this is not valid due to the
presence of outliers. For example, incorrect feature matches may produce an error
distribution with a long tail, where the probability of deviation from the mean value
does not decreases to zero exponentially fast.

The percentage of outliers may also be high such that using large number of
measurement does not guarantee convergence to the correct solution. Thus, outliers
will significantly degrade the performance of an estimator if they are not handled
properly. One method commonly used in computer vision to reduce the effect of
outliers is Random Sample Consensus (RANSAC) by [Fischler and Bolles, 1981].

The main idea of RANSAC is to identify inliers (non-outliers), so that the estima-
tor only uses the inliers for parameter estimation. Outliers that violate the Gaussian
assumption are discarded and not used. First, a minimum number of measurements
are randomly selected to compute an estimate. The number of support (inliers) is
computed, where the inliers have an error less than a threshold distance from the
estimate. The same steps are repeated N times and the estimate with the highest
number of support is used.

This is a robust estimation technique such that it is robust against a modest
amount of outliers with potentially unmodelled error distribution. The general steps
of RANSAC are shown in Algorithm 3.

Algorithm 3: General Random Sample Consensus (RANSAC)
Data: Measurements with outliers (e.g. image point correspondences)
Result: Robust parameter estimate

1 initialization;
2 while k < N do
3 k = k + 1;
4 Randomly select a minimal number of measurements from the input

measurement set;
5 Estimate parameter using the selected measurements;
6 Compute the distance (error) of all measurements to the estimate;
7 Identify consensus set (inliers) where the error is less than threshold t;
8 if number of inliers > previous largest number of inliers then
9 Store the inlier set Si;

10 end
11 end
12 Using the inlier set Si, recompute the parameter;

The distance used to identify inliers (line 5 of Algorithm 3) follows the assumed
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measurement error model. Under the common Gaussian error assumption, the
squared Mahalanobis distance follows χ2(n), the chi-square distribution with n de-
grees of freedom. The threshold on Mahalanobis distance can be selected based on
the desired confidence interval with the a-priori covariance matrix. For example, in
a 2D case, a threshold of 3χ ensures 98.89% of inliers are maintained, while there is
a 1.11% chance inliers are being discarded. In the literature, the measurement error
is commonly assumed to be isotropic and homogeneous Gaussian, which simplifies
the Mahalanobis distance to scaled Euclidean distance. Other distance metric like
reprojection error may also be used.

There is also an inherent trade-off between maintaining a large percentage of
inliers and the ability to effectively remove outliers. In the extreme case, a Maha-
lanobis distance threshold of infinity can maintain all inlier measurements, but all
outlier measurements are also preserved.

The number of iterations N should be high, while still being computationally
tractable. The value of N can be chosen such that with a probability of p (usually
0.99), one of the selected measurement set is free of outliers. Suppose the percent-
age of inliers among all the measurement is ε (equivalent to probability of selecting
an inlier), and n be the minimal required number of measurements to compute a
solution, then

N =
log(1− p)
log(1− εn)

. (2.33)

In the case where the percentage of inliers is known a-priori, the RANSAC iter-
ation can terminate early (before N) as the currently determined inliers proportion
approaches the known value. However, the percentage of inliers is usually not known
beforehand, thus, the value of ε can first be set to a worst case value (say 0.1), which
is then updated as larger inlier set is found. When a larger inlier set is identified, the
percentage of inliers is known to be at least equals to the current number of inliers
divided by the total number of measurements. Then, the value of N also decreases
according to (2.33).

After the inlier-outlier sets are determined, the inliers are used to refine the pa-
rameter estimate to obtain the final solution. The final refinement can be performed
either by linear weighted least square method, or an iterative non-linear optimisa-
tion method. In my work, I choose the weighted least square method due to the
lower computational cost. After the refinement step, the inlier-outlier classification
may change slightly. Thus, the measurements can be reclassified using the distance
threshold, and refinement step repeated until the classification converges.

The method to classify inliers-outliers in Algorithm 3 uses a simple threshold.
Maximizing the number of inliers can be interpreted as an optimisation of the fol-
lowing cost function.

C = ∑
i

γ(di) where γ(e) =
{

0 for e < t (inliers)
1 for e ≥ t (outliers)

(2.34)

Robust cost function may also be used during inlier-outlier classification. A trun-
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Figure 2.9: Illustrative figure showing the epipolar geometry. Blue regions represent
the two image planes, x̄ and x̄′ are the matching image features of the same 3D scene
point χ̄, ē is the image point of the camera centre ζ̄′ (similarly for ē′ and ζ̄). ē and ē′

are called the epipoles.

cated squared distance cost function is shown as follows. [Hartley and Zisserman,
2003].

C = ∑
i

γ(di) where γ(e) =
{

e2 for e2 < t2 (inliers)
t2 for e2 ≥ t2 (outliers)

(2.35)

2.3.8 Epipolar geometry and fundamental matrix

Given two views (images) of the same scene, epipolar geometry is an intrinsic projec-
tive geometry that depends only on the intrinsic camera parameter and the relative
pose between the cameras. Fundamental matrix captures this geometrical relation-
ship in a 3× 3 matrix with 7 degrees of freedom, and rank 2. Given the homography
coordinates of matching feature points in two images as x̄ and x̄′, the following equa-
tion holds.

x̄′T Fx̄ = 0 (2.36)

The fundamental matrix can be computed without the knowledge of the intrinsic
camera parameter K. Equation (2.36) can be rewritten as x̄′Tl′, and from Theorem 2.4,
we can see that x̄′ lies on the line l′ = Fx̄. Similarly, by applying a transpose opera-
tion to (2.36), we get x̄T FT x̄′ = 0 such that x̄ lies on the line l = FT x̄′. This geometrical
relationship is illustrated in Figure 2.9.

It is noted that the points ζ̄, ζ̄′ and χ̄ lie on the same plane called the epipolar
plane. For different 3D scene point χ̄, the epipolar plane may rotate around the
baseline (line joining ζ̄ and ζ̄′). The intersection of the epipolar plane with the image
plane then gives rise to the epipolar lines l and l′ respectively.

Any points on the line passing through the points ζ̄′ and χ̄ will get projected onto
the point x̄′. This means that given an image point x̄′, position of the corresponding
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scene point χ̄ is constrained to the line through ζ̄′ and χ̄, without any constraint on
the distance. Thus, the epipolar line l may also be seen as the projection of the line
through ζ̄′ and χ onto the first image plane (left blue region in Figure 2.9). This
argument applies similarly to line l′.

The epipole ē is the projection of the second camera centre ζ̄′ onto the first image
plane. Similarly, the epipole ē′ is the projection of the first camera centre ζ̄ onto
the second image plane. The epipolar lines will always pass through the respective
epipoles regardless of the position of the 3D scene point.

The epipolar line is helpful when searching for matching image feature, where
the search will be constrained to a one-dimensional search along the line, rather than
the full two-dimensional image space.

The Fundamental matrix F is related to the two camera projective transformations
P(3×4) and P′(3×4) in (2.27). This was first derived by Xu and Zhang [1996] and is given
as follows.

Theorem 2.9 ([Hartley and Zisserman, 2003, pg. 243]). Given the projective transforma-
tions matrices of camera 1 and camera 2 be P and P′ respectively, the fundamental matrix F
is equals to

F = [P′ζ̄]×P′P+, (2.37)

where [u]× is the skew symmetric matrix of vector u for cross product such that u × v =
[u]×v, ζ̄ is the homogeneous coordinate of the camera 1’s centre such that Pζ̄ = 0, and P+ is
the pseudo-inverse of P such that PP+ = I.

Given a set of matching image points there are different methods to compute
the fundamental matrix. For example, five-point algorithm [Nister, 2004; Li and
Hartley, 2006], six-point algorithm [Schaffalitzky et al., 2000], and seven-point algo-
rithm [Hartley and Zisserman, 2003] has been proposed.

However, we will focus on eight-point algorithm as the computation is the most
straight forward. The normalised eight-point algorithm has also been shown to pro-
duce good result. [Hartley and Zisserman, 2003]

Suppose a pair of matching image features are x = [x, y, 1]T and x′ = [x′, y′, 1]T,
the equation that satisfies the epipolar geometry (2.36) is

x′x f11 + x′y f12 + x′ f13 + y′x f21 + y′y f22 + y′ f23 + x f31 + y f32 + f33 = 0, (2.38)

where fij are the elements of the fundamental matrix at ith row and jth column.

The same equation can also be written in the following form

[x′x, x′y, x′, y′x, y′y, y′, x, y, 1] f = 0. (2.39)

Given n pairs of matching image features, the equations can be concatenated into
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a linear equation as

A f =

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0. (2.40)

If the matrix A has rank 8, then the solution of fundamental matrix is then equals
to the right-null space of A. In the presence of noise, the rank of A may be 9.
Then, using singular value decomposition (SVD), the solution that minimises the
Frobenius norm ||A f || is the right singular vector that corresponds to the smallest
singular value.

The computed fundamental matrix using this linear method may not satisfy the
singular property of the fundamental matrix. We can enforce the singularity con-
straint by computing the closest singular matrix F̃ to the computed fundamental
matrix F, which minimises the Frobenius norm ||F − F̃||. This is easily accom-
plished by SVD. Suppose F = UDV T, where D = diag(r, s, t) and r ≥ s ≥ t. Then,
F̃ = Udiag(r, s, 0)V T.

In [Hartley, 1997], the importance of normalisation of the image features location
during the fundamental matrix computation was shown. A translation and scaling is
applied to image features such that for each sets of image features, the mean of the
coordinate is at the origin, and the root mean squared distance of the points to the
origin is

√
2. This provides a significant improvement to the conditioning of matrix

A, which improves the stability of the solution.
The method described thus far computes the fundamental matrix by minimising

the algebraic error ||x̄′T Fx̄||. However, minimising this error does not guarantees the
minimisation of a meaningful geometrical distance. Thus, other methods that min-
imises a different cost function was proposed. The Gold Standard method minimises
the reprojection error, where the cost function is

∑
i

d(xi − x̂i)
2 + d(x′i − x̂′i)

2,

where d(v) is the Euclidean norm of vector v, {xi, x′i} are the measured position of
the ith matching image coordinate, while {x̂i, x̂′i} are the estimated “true” location of
the corresponding image point that satisfies x̂′Ti Fx̂i = 0 exactly. The Gold Standard
method is given in Algorithm 11.3 from [Hartley and Zisserman, 2003].

The Gold Standard method is accurate but it is computationally complex. A first-
order approximation of the geometric error called Sampson distance was used [Torr
and Zisserman, 1998; Zhang, 1998]. It was inspired by iterative weighted least square
method, which was first used to fit a conic to scattered data points in [Sampson,
1982].

Theorem 2.10 ([Hartley and Zisserman, 2003, pg. 287]). Given the ith matching pixel
xi and x′i, the cost function to compute the fundamental matrix that minimises the first order
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approximation of geometric distance (Sampson distance) is given by

∑
i

(x′i
T Fxi)

2

(Fxi)
2
1 + (Fxi)

2
2 + (FTx′i)

2
1 + (FTx′i)

2
2

. (2.41)

Thus, when estimating the fundamental matrix F from point correspondences,
we can scale each of the linear equations (rows of (2.40)) by

φi =
1√

(Fxi)
2
1 + (Fxi)

2
2 + (FTx′i)

2
1 + (FTx′i)

2
2

. (2.42)

The fundamental matrix is then computed using SVD as before. This can be
done iteratively, where an initial F is first computed without the reweighing, and
subsequent computations use the previously computed F to compute the weighs for
each equations.

There are other distance measures like the symmetric epipolar distance [Zhang,
1998], and Katakani distance [Fathy et al., 2011; Kanatani et al., 2008]. However, [Fathy
et al., 2011] shows that the Sampson distance is still superior in terms of the accuracy
and computational complexity after outliers has been removed. It is also noted that
most of the existing distance measures assumes an isotropic, homogeneous Gaussian
error for the image features location.

2.3.9 Essential matrix and inter-frame pose

In most cases, the camera intrinsic parameters can be estimated beforehand through
camera calibration. If the intrinsic camera parameter matrix is known, the image
points can be expressed in normalized coordinates. Suppose K is the intrinsic camera
parameter matrix, x̄ is the homogeneous coordinate of an image point, the homoge-
neous image point in normalized coordinates is

x̂ = K−1 x̄. (2.43)

We can rewrite the epipolar geometry equation (2.36) as

x̂′TEx̂ = 0. (2.44)

The matrix E is called essential matrix, which is a 3× 3 matrix with 5 degrees of
freedom. It is related to the fundamental matrix as

E = K′T FK. (2.45)

Theorem 2.11 ([Hartley and Zisserman, 2003, pg. 257]). Suppose the normalised camera
projective matrices are P̂ = [I 0] and P̂′ = [R t]. The essential matrix is equals to

E = [t]×R. (2.46)
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From equation (2.44) and (2.46), we can see that the essential matrix has 5 degrees
of freedom. This arises from 3 degrees of freedom for 3D rotation, while 2 degrees
of freedom for 3D translation with scale ambiguity (any scalar multiple of E will still
satisfy (2.44)). We can extract the rotation and translation from the essential matrix
as follows.

Theorem 2.12 ([Hartley and Zisserman, 2003, pg. 259]). Given an essential matrix E,
assuming the first camera projection matrix P = [I 0]. The singular value decomposition of
the essential matrix can be written as

E = U

1 0 0
0 1 0
0 0 0

V T.

We define a matrix W such that

W =

0 −1 0
1 0 0
0 0 1

 . (2.47)

There are four possible solutions for the second camera projection matrix

P′ =
[
UWV T +u3

]
, (2.48)

or
P′ =

[
UWV T −u3

]
, (2.49)

or
P′ =

[
UW TV T +u3

]
, (2.50)

or
P′ =

[
UW TV T −u3

]
, (2.51)

where u3 is the last column of U.

Only one of the solutions of P′ represents the true relative camera pose. This can
be identified using the chirality constraint, where the triangulated 3D scene point
must lie in front of both cameras.

2.3.10 SLAM

Simultaneous localization and mapping (SLAM) refers to method that computes both
the current sensor/robot pose (self-localization) and location of landmarks (envi-
ronment mapping). In visual SLAM, by using a calibrated camera, image feature
matches in normalised coordinate allows the computation of essential matrix. The
camera pose can then be recovered from the computed essential matrix.

The next step is to estimate the location of landmarks, which can be calculated
by triangulation. In computer vision literature, the triangulation of landmarks (3D
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scene points) is known as reconstruction. Reconstruction is typically performed as
follows:

1. Identify image features matches from two (or more) images

2. Compute the fundamental matrix with image features matches

3. Estimate the camera matrices from the fundamental matrix

4. Triangulate the 3D scene points that corresponds to the matching image fea-
tures

Without knowledge of the camera intrinsic parameter, reconstruction has a pro-
jective ambiguity, where the angles between rays of light also has additional scale
ambiguity. Longuet-Higgins [1981] showed that if the camera intrinsic parameters
are calibrated, then the reconstruction is determined up to a similarity transforma-
tion (scale, rotation and translation).

The similarity transformation ambiguity is one of the limitation of visual SLAM,
where it is not possible to recover the exact location or pose of the camera and 3D
scene points. For example, the absolute latitude, longitude or orientation cannot
be recovered purely from images. They can only be determined up to a Euclidean
transformation (3D rotation and translation) with respect to the world frame. Thus,
the commonly used convention is to assume the first camera at the first time instant
is aligned to the world coordinate frame. The rest of the poses and reconstruction
will then be expressed with respect to this frame of reference.

Another limitation of visual SLAM is the scale ambiguity of the reconstruction
and translation. This is due to the fact that any scalar multiple of translation t will
still satisfy the equation (2.46). With a translation of λt, the triangulated 3D scene
points will also be equally scaled by λ. An observable example of the scale ambiguity
is the difficulty in distinguishing images of a perfect miniature replica from images
of an actual building.

The reconstruction scale can be fixed, where a metric reconstruction can be ob-
tained with additional knowledge or assumptions. For example, in images taken
from a camera mounted on a vehicle, the known height of the camera can be used
to fix the scale. Other knowledge of the scene is also possible, such as known object
with fixed dimension can be used to recover the scale.

2.4 Path smoothing

Estimation of robot’s pose is an important task in robotics system. One method
to obtain the pose estimate is by using an onboard camera to obtain noisy bearing
measurements of mostly stationary environment (see Chapter 2.3). However, due to
the presence of noise, the estimated robot pose trajectory may not be smooth even if
the robot actually undergoes a smooth motion. Another research problem considers
the estimated pose to be accurate, where computing the smooth pose trajectory is
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useful in applications such as video stabilization. Thus, an effective path smoothing
method is important for both tasks.

The commonly used representations of a three-dimensional pose is briefly dis-
cussed as follows.

2.4.1 Translation representation

3D translation is typically represented using a vector of length 3, such that

t ∈ R3. (2.52)

2.4.2 Rotation representation

3D rotation can be represented in different forms. Some well-known examples in-
clude the rotation matrix, Euler angles, angle-axis representation and quaternion.
However, it was known that the Euler angles representation is not unique, as the
same rotation can be obtained by a sequence of different rotations. Angle-axis rep-
resentation is also not unique, where applying a negative rotational angle along the
negative axis is equivalent to the non-negative case. Similarly, quaternion represen-
tation is also not unique as q = −q.

Thus, we focus on the rotation matrix representation, which uniquely defines a
particular 3D orientation. The 3D rotation matrix R is a 3× 3 matrix, and has the
following properties.

RT = R−1, (2.53)

det(R) = +1. (2.54)

Orthogonal group O(n) satisfies the property (2.53), while rotation from the special
orthogonal group SO(n) also satisfies the property (2.54).
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Chapter 3

Minimal Iterative Gaussian
Estimator

This chapter introduces a new approximate Bayesian estimator using degenerate
Gaussian. The most closely related work are the inverse-depth parameterization in
monocular simultaneous localization and mapping (SLAM) to represent the image
features in infinite distance [Civera et al., 2008; Montiel et al., 2006] and extended
information filter (EIF) commonly used in SLAM [Anderson and Moore, 1979; Thrun
et al., 2005; Huang and Dissanayake, 2007], which however relies on the linearized
measurement Jacobians. This leads to inconsistency in estimation when the prior
uncertainty is large. We propose a new filtering method called Minimal Iterative
Gaussian Estimator (MIGE). The measurement likelihood is expressed in the state
space, which allows computation of the measurement likelihood covariance in the
state space to ensure estimator consistency. Due to the mapping from lower dimen-
sional measurement space to higher dimensional state space, we utilize a degenerate
Gaussian to better approximate the measurement likelihood. We also introduce a
new re-parametrization to handle the degeneracy while decreasing the memory and
computational requirement of the algorithm. The key contributions of this chapter
are three-fold:

• The explicit use of degenerate Gaussian to approximate the non-Gaussian mea-
surement likelihood function, while ensuring estimation consistency by utiliz-
ing the prior uncertainty and local nonlinearity of the measurement function.
To the best of the author’s knowledge, this has not been addressed elsewhere.

• A new parametrized form to handle the degenerate Gaussian is further devel-
oped, resulting in the proposing of the Minimal Iterative Gaussian Estimator.

• The performance of the methods, in terms of accuracy, consistency and compu-
tational complexity, is verified through extensive simulation analysis.

The rest of the chapter is organized as follows. Section 3.1 covers some related
work. In Section 3.2, the nonlinear state and measurement models are briefly de-
scribed and Section 3.3 introduces the degenerate Gaussian as an approximated like-
lihood function. A re-parametrization method is discussed in Section 3.4 followed

39
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by the Minimal Iterative Gaussian Estimator framework in Section 3.5. Section 3.6
presents the simulation results for the bearing-only and range-only cases in 2D and
3D scenarios. Finally, the summary is presented in Section 3.7.

3.1 Related Work

The Bayesian filtering framework has been widely investigated and applied to many
engineering fields such as probabilistic robot navigation, sensor network, target track-
ing [Chen, 2003; Stano et al., 2013] and so on. Its benefits lie in the full probabilistic
descriptions of the nonlinear state and measurement models, utilizing the conditional
independence between the variables of interest.

The most commonly used efficient non-linear estimator suitable for resource con-
strained system are the Extended Kalman Filter (EKF) [Sorenson, 1985]. However, it
was known that the estimators are often inconsistent, where the uncertainty of the
estimate is often underestimated. A number of past works [Huang et al., 2010; Li
and Mourikis, 2013] focus on finding a consistent EKF suitable for simultaneous lo-
calization and mapping tasks. The works concluded that the inconsistency arises due
to the sensor’s (or robot’s) orientation being seemingly observable when the actual
measurement does not provide such information. More recently, Zhang et al. [2017]
claims that the inconsistency of EKF is due to the filter not being invariant to stochas-
tic rigid body transformation. However, even when this factor was removed by using
accurate position and orientation of the robot (purely localization task), the EKF (or
equivalently EIF) can still produce inconsistent result (Figure 3.7(b)). We postulate
that the inconsistency arises due to the mismatch between the true conditional PDF
of the measurement and the approximated PDF.

There are also other variants of Kalman filter such as extended information filter
(EIF) [Anderson and Moore, 1979], unscented Kalman filter (UKF) [Uhlmann, 1997]
or cubature Kalman filter (CKF) [Arasaratnam and Haykin, 2009]. The EIF is mathe-
matically equivalent to EKF, where the conditional PDF is represented using the in-
formation matrix and information vector instead of the covariance matrix and mean.
The UKF uses a set of sample points (called sigma points), where the mean and
covariance matrix are subsequently computed from the propagated sample points
through the nonlinear state prediction and measurement functions. Similar to UKF,
CKF uses a set of cubature points to capture the underlying conditional PDF, where
cubature rule is applied during the cubature points selection.

Another approach has been to utilize a large number of parameters to repre-
sent nonlinear, non-Gaussian conditional PDF. One example of such approach is the
Gaussian sum filter [Sorenson and Alspach, 1971; Alspach and Sorenson, 1972]. It
was proven that any arbitrary PDF can be represented as a weighted sum of a suf-
ficiently large number of Gaussian PDFs [Ito and Xiong, 2000; Maz’ya and Schmidt,
1996]. A bank of EKF was used to propagate and update the PDFs. One primary
drawback of the Gaussian sum filter is the difficulty in ensuring accurate approxi-
mation of the true PDF, while ensuring computational tractability. This is due to the
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tendency for the number of Gaussian PDFs to grow exponentially with increasing
nonlinearity of the PDF to be approximated. A suitable method to trim and merge
the Gaussian PDFs is vital for this filter [Sorenson and Alspach, 1971]. Even with the
trimming and merging of Gaussian PDF, the computational complexity of Gaussian
sum filter remains high.

An alternative class of nonlinear estimator suitable for a highly nonlinear, non-
Gaussian PDF is based on the Monte Carlo method. The Monte Carlo methods can
be traced back to the attempt by Buffon to estimate the value of π in 1777 [Solomon,
1978]. The modern formulation of the Monte Carlo method was developed in physics
[Metropolis and Ulam, 1949; Metropolis et al., 2004], statistics [Chen, 2003; Robinson,
2010] and engineering [Doucet et al., 2001] among others. The Monte Carlo method is
a stochastic sampling method designed to solve an analytically intractable problem of
a complex system. A sequential Monte Carlo method like the particle filter [Gordon
et al., 2002] combines the powerful Monte Carlo sampling with Bayesian inference,
which allows real-time state estimation with a reasonable computational cost. How-
ever, sequential Monte Carlo methods are not suitable for solving high dimensional
problems due to the need for a sizeable amount of samples (or particles) to capture
the underlying PDF adequately.

In comparison, our proposed method exploits the geometrical aspect of most non-
Gaussian measurement likelihood by explicitly fitting a degenerate Gaussian to the
likelihood function within a local region. The estimator’s consistency is improved
by computing the covariance of the non-degenerate directions using prior uncer-
tainty and local nonlinearity of the measurement function. A minimal parametrized
representation is also introduced, which reduces the computational and memory re-
quirement.

3.2 Nonlinear System Model

The stochastic state and measurement models can be written as

xk+1 = f (xk, uk) + vk (3.1)

zk = h(xk) + wk, (3.2)

where xk is the state vector at discrete time k; uk is the input vector; zk is the measure-
ment vector; f is the state transition function; h is the known measurement function;
vk and wk are independent process and measurement noise, which is a zero-mean
Gaussian process with a covariance of Qk and Sk respectively.

The probability density function of the state can be written as follows

p(xk) = C · exp
{
−1

2
(xk − x̂k)

TP−1
k (xk − x̂k)

}
, (3.3)

where x̂k is the state mean, and the covariance matrix Pk is a positive definite matrix.
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The probabilistic likelihood function for a given measurement (z = zk) becomes

p(zk|xk) = exp
{
−1

2
(zk − h(x̂))TS−1

k (zk − h(x̂))
}

. (3.4)

Note that the Pk and Sk can be further decomposed into a rotation matrix Rk and
a diagonal matrix Σk such that Sk = RkΣkRT

k � 0. In addition, the normalization
constant in the likelihood is dropped since it is not a probability density in general.
Although the measurement model is in a Gaussian form, the likelihood p(zk|xk) in
the state-space typically has nonlinear, non-Gaussian shapes. Figure 3.1 illustrates
two examples of likelihood functions for the bearing-only and range-only measure-
ment, having a conic and a shell shape, respectively.

Figure 3.1: Nonlinear likelihood distribution: (a) the bearing-only measurement with
α and β angles, and (b) the range-only measurement with r and uncertainty.

3.3 Degenerate Gaussian

A degenerate Gaussian is defined as one or more of its eigenvalues in Σ being infinite.
It is thus not a proper probability distribution due to infinite area or volume. In
particular, two cases are of interest: cylindrical and planar function,

Cylindrical Function: Σ =

 σ1
2 0 0

0 σ2
2 0

0 0 ∞

 (3.5)

Planar Function: Σ =

 ∞ 0 0
0 ∞ 0
0 0 σ1

2

 . (3.6)
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The likelihood function of a bearing measurement can be approximated as a cylin-
drical function with an infinite eigenvalue in one axis (for example, z-axis) as shown
in Figure 3.2, and that of a range measurement can be approximated as a planar
function with two infinite eigenvalues as illustrated in Figure 3.3. These likelihood
functions can be geometrically transformed with rotation and translation to approx-
imate the three-dimesional (3D) bearing and range sensing.

Figure 3.2: A degenerate Gaussian distribution to approximate the bearing-only mea-
surement likelihood which has an infinite uncertainty in one of the principle axes.
From left cylinder to right cylinder: (a) degenerate Gaussian with infinite uncer-
tainty along the z direction; (b) rotated and translated degenerate Gaussian with
uncertainty defined on the plane π (parallel to x′–y′ plane) as shown in the shaded

region.

3.3.1 Bearing-only case

Figure 3.2 shows the transformation of the degenerate Gaussian to approximate the
bearing-only measurement from a camera. First, the vertical cylinder function is
tilted along the direction pointed by the elevation (α) and yaw (β) angles, yielding,

p(zk|x) = G(0, R1ΣR1
T), (3.7)

where G represents a Gaussian likelihood function (without the normalization con-
stant) and

R1(α, β) = Ry′(β)Rx′(α) (3.8)
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Rx′(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (3.9)

Ry′(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (3.10)

Σ =

 σ1
2 0 0

0 σ2
2 0

0 0 ∞

 . (3.11)

Then the tilted cylindrical function undergoes the rigid-body transformation (R, t)
of the camera frame, giving

p(zk|x) = G(t, RR1ΣR1
TRT). (3.12)

3.3.2 Range-only case

Figure 3.3: A degenerate Gaussian Distribution to approximate the range-only mea-
surement likelihood which has an infinite uncertainty in two of the principle axes.
From left to right: (a) degenerate Gaussian with infinite uncertainty in both x and y
direction; (b) rotated and translated degenerate Gaussian towards the range vector r.

For the range-only case, Figure 3.3 illustrates the transformation of a planar de-
generate Gaussian to approximate the measurement. Similar to the bearing-only
case, the planar function is tilted towards the prior direction of a ranging radio tar-
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get. A planar degenerate Gaussian has infinite uncertainty along the x and y axes
which can be written as

p(zk|x) = G(0, Σ) (3.13)

Σ =

 ∞ 0 0
0 ∞ 0
0 0 σ1

2

 . (3.14)

For a prior target vector r = [rx, ry, rz]T expressed in the sensor frame (x′ y′ z′),
the planar function is tilted along the direction, yielding

p(zk|x) = G(r, R1ΣR1
T) (3.15)

where

R1 = Ry′(β)Rx′(α) (3.16)

α = arctan(−ry/
√

rx2 + rz2) (3.17)

β = arctan(rx/rz). (3.18)

Then the tilted planar function undergoes the rigid-body transformation (R, t) of
the sensor frame, yielding the final planar function as

p(zk|x) = G(Rr + t, RR1ΣR1
TRT). (3.19)

Note that the direction of r is determined from the prior estimate and iterative
estimation process, and the range measurement determines only the magnitude of r.

3.4 Re-parametrization

The degenerate Gaussian likelihood contains a singular information matrix (an inverse-
covariance matrix) and thus the mean is not uniquely defined as well as the covari-
ance parameters not being recoverable. For example, the covariance matrix of the
degenerate Gaussian cannot be recovered from the singular information matrix as

Cylindrical Function: Σ−1 =

 σ1
−2 0 0
0 σ2

−2 0
0 0 0

 (3.20)

Planar Function: Σ−1 =

 0 0 0
0 0 0
0 0 σ1

−2

 . (3.21)

This issue can be resolved in the information filtering framework as it can nat-
urally handle the singular information. However, in 2D/3D sensing problems, we
can further improved the computational complexity by re-parametrizing the degen-
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erate Gaussian by expanding its quadratic equation of the exponential term. Let the
information matrix for a 3D measurement be

P−1 =

Yxx Yxy Yxz

Yxy Yyy Yyz

Yxz Yyz Yzz

 . (3.22)

The quadratic equation of the Gaussian exponential term (dropping the sign and
half) in equation (3.3) expands as

(x− x̂)TP−1(x− x̂)

=

x− x̂
y− ŷ
z− ẑ

T Yxx Yxy Yxz

Yxy Yyy Yyz

Yxz Yyz Yzz

x− x̂
y− ŷ
z− ẑ


= (Yxx)x2 + (Yyy)y2 + (Yzz)z2

+ (2Yxy)xy + (2Yxz)xz + (2Yyz)yz

+ (−2Yxx x̂− 2Yxyŷ− 2Yxz ẑ)x

+ (−2Yxy x̂− 2Yyyŷ− 2Yyz ẑ)y

+ (−2Yxz x̂− 2Yyzŷ− 2Yzz ẑ)z

+ const.

(3.23)

Please note that the constant term can be dropped as it contribute to the scaling
of the exponential function. The minimal representation of the 3D Gaussian function
is thus obtained using a vector of length 9 to store the coefficients of the quadratic
equation

P , [p1, p2, p3, p4, p5, p6, p7, p8, p9]
T (3.24)

= [Yxx, Yyy, Yzz, 2Yxy, 2Yxz, 2Yyz,

− 2(Yxx x̂ + Yxyŷ + Yxz ẑ),

− 2(Yxy x̂ + Yyyŷ + Yyz ẑ),

− 2(Yxz x̂ + Yyzŷ + Yzz ẑ)]T (3.25)

χ , [ x2 y2 z2 xy xz yz x y z ]T. (3.26)

The degenerate Gaussian function is then represented using this new parameter
(P),

p(zk|x) = exp
{
−1

2
PTχ

}
. (3.27)

Note that the new parameter P actually is a concatenation of an information
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matrix Y and an information state estimate ŷ, which can be converted

Y = Mat(P (1:6)) ,

 p1 p4/2 p5/2
p4/2 p2 p6/2
p5/2 p6/2 p3

 (3.28)

ŷ = Yx̂ , −1
2
P (7:9). (3.29)

where Mat(·) defined as a symmetric matricization operator converting the parame-
ters into an information matrix.

3.5 Minimal Iterative Gaussian Estimator

By utilizing the degenerate Gaussians and the new coefficient parameters, a new
estimation framework is proposed, termed Minimal Iterative Gaussian Estimator
(MIGE), which has a state propagation and an iterative measurement update cycles.

3.5.1 State Propagation

Note that the measurement likelihood expressed in the state space is modelled using
degenerate Gaussian, but prior and posterior likelihood are in general not degen-
erate. Thus, the inverse of the information matrix is well defined. Therefore, we
can apply the EIF state propagation method. However, any other nonlinear state
propagation methods can be applied here.

First, the prior information matrix Yk−1 and the information state ŷk−1 are recov-
ered from the prior parametrized representation Pk−1|k−1 as in Eqs. 3.28 and 3.29.

Then the prediction is performed as in Anderson and Moore [1979],

[Yk−1, ŷk−1] =

[
Mat(P (1:6)

k−1|k−1),−
1
2
P (7:9)

k−1|k−1

]
(3.30)

Yk =
[

FkY−1
k−1FT

k + Qk

]−1
(3.31)

ŷk = Yk f (Yk−1
−1ŷk−1, uk) (3.32)

Pk|k−1 =
[
Mat−1(Yk)

T,−2ŷT
k

]T
, (3.33)

where the subscript i|j shows the variable at time i with measurements up to time j,
and Fk and Bk are the Jacobian matrix ∂ f /∂x and ∂ f /∂u, respectively.

3.5.2 Measurement Update

With new measurements, the state distribution can be updated by fusing the pre-
dicted density and the approximated measurement likelihood. The posterior pa-
rameter Pk|k is computed through element-wise addition of the predicted parameter
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Pk|k−1 and the measurement parameters {Pi} as

p(zi|x) = exp
{
−1

2
PT

i χ

}
(3.34)

Pk|k = Pk|k−1 +
K

∑
i=1
Pi. (3.35)

These propagate and update processes complete the estimation cycle of the Mini-
mal Iterative Gaussian Estimator. Please note that the fusion process can be iterated
to improve the approximated likelihood. It is known that the state uncertainty
shrinks after measurement update. Thus, the measurement likelihood can be re-
approximated by using the fused uncertainty instead of the prior uncertainty. This
leads to an uncertainty reduction in the approximated measurement and a subse-
quent improvement of the estimation result as in the iteration of Gauss-Newton
method Bell and Cathey [1993].

3.5.3 Computing Measurement Uncertainty for Estimator Consistency

The measurement likelihood covariance in the state space Σ is chosen such that the
approximated likelihood encloses the true underlying likelihood within the current
state prior (ŷk|k−1, Yk|k−1). This is done to improve the consistency of the estimator.
An illustrative example is shown in Figure 3.4.

The original likelihood may extend to infinity, and thus we only approximate
the likelihood around a region of interest. This region is defined to be within χ

Mahalanobis distance from the prior, where the χ value is selected depending on the
desired level of confidence based on the chi-square distribution. We choose χ to be 3
in our experiment.

For a bearing measurement with isotropic noise (the covariance matrix has equal
non-zero eigenvalues), the σ is chosen as σ]dmax, where σ] is the measurement’s
uncertainty, dmax = dx̂ + 3dP is the mean distance from the sensor plus 3 times the
standard deviation in distance (from the prior). The second term in dmax can be
seen as the deviation of the approximated likelihood from the actual measurement
likelihood.

For a range measurement, the σ is chosen as σr + (r −
√

r2 − (3w)2), where σr

is the measurement’s uncertainty, r is the measured range, w is the largest width of
the prior along the tangent plane. Thus, if the measured range is significantly larger
than the uncertainty of the prior along the tangent plane, the σ ≈ σr as expected.

3.6 Simulation Results

Simulation study is conducted to analyse the performance of MIGE for a 2D and 3D
bearing-only target localization.
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Figure 3.4: Illustrative figure showing the approximated uncertainty σ to avoid es-
timator inconsistency. The “width” of the distribution is chosen to ensure the in-
tersection between the confidence contour of the prior (yellow ellipse) and the mea-
surement likelihood (blue region) are enclosed within the confidence contour of the
approximated likelihood. From left to top right: (a) bearing measurement; (b) arbi-

trary nonlinear measurement.

3.6.1 2D Bearing-only Localization

Monte Carlo simulation for a 2D and a 3D bearing-only localization are performed
using the proposed MIGE. The true target location is at [20.25− 1.5t,−19.75 + 1.5t],
with t being a time variable. The sensor is located at [−20,−20]. The simulated
process (motion) noise has a zero mean and a standard deviation of σp for both x and
y direction, while the angular error has a zero mean with a standard deviation of σa

radians. In the Monte Carlo simulation, the noise strengths (σp and σa) vary from
10−3.5 to 10−1 which are selected based on the typical noise level from cameras. For
example, the focal length of camera used in the popular KITTI dataset Geiger et al.
[2012] is 718 pixels, and most of the optical flow error is less than 3 pixels Menze
et al. [2018], which corresponds to an angular error of 10−2.38 radians.

The Monte Carlo simulation are performed 1000 times for each noise level and
MIGE is compared to the probability grid (PG) method, Gaussian mixture model
(GMM) filter, particle filter (PF) and extended information filter (EIF). For the prob-
ability grid, the grid is chosen with x-range between −30m and 60m, and y-range
between −60m and 30m, with a resolution of 0.5m in both directions. For the GMM
method, We use 4 Gaussians to approximate each measurement likelihood. 1000
particles are used for the particle filter.

For a visual comparison between the approximated probability density of grid-
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based method and our method, we computed the likelihood at discretized state space
as shown in Figure 3.5. From the figure, we can see that our approximated density
is slightly wider compared to the grid-based one. This is caused by the design of
our estimator to ensure the true target is located within the χ ≤ 3 bound of the
uncertainty, and thus ensuring the consistentency.

Figure 3.5: The evolution of the uncertainty for 2D bearing-only localization of a
moving target. The simulated bearing has a zero-mean Gaussian noise with a stan-
dard deviation of 0.0316 radians. Top row is for the PG method, and the bottom row
is for MIGE. From left to right: Probability density at discrete time 0 (prior), 1, 10

and 22.

The error metric chosen to evaluate the accuracy is the root-mean-squared error
(RMSE). We evaluate the estimator consistency by using the normalized estimation-
error-squared (NEES) as proposed by Bar-Shalom et al. [2004]. The expected value
of the NEES for a consistent estimator should be equal to the dimension of the state
vector (i.e. 2 for 2D case). We also evaluated the average computational time per
measurement, and the required number of parameters to store the state density for
each method. The results are presented in Figure 3.6.

From Figure 3.6(a), it can be observed that, at low to medium measurement and
process noise, the MIGE outperforms all other methods in terms of accuracy, al-
though MIGE achieves a similar result to particle filter at high noise level, while
being slightly worst than probabilistic grid method. It should be mentioned that the
accuracy of the probability grid method is limited by the resolution of the grid being
used. Particle filter has a weakness of the so-called sample impoverishment prob-
lem Arulampalam et al. [2002]. Extended information filter sometimes diverges with
low sensor noise, which is due to the inconsistency of the filter.

Gaussian mixture model (GMM) showed similar accuracy to MIGE at low noise
level which can be observed in Figure 3.6(a). This can be explained by the resem-
blance between the two methods where the true underlying likelihood is explicitly
approximated.

The primary difference is that MIGE uses a single degenerate Gaussian compared
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Figure 3.6: Monte Carlo simulation results for 2D tracking using bearing-only mea-
surements. From top left to bottom right: (a) Root-mean-square error (RMSE); (b)
Consistency evaluation (“ideal” is the consistent value); (c) Average computational
time per measurement (tc in seconds); (d) Average memory requirement to represent
state likelihood function (mc). “PG” is the probability grid method, “GMM” is Gaus-
sian sum, “PF” is particle filter, “MIGE” is our Minimal Iterative Gaussian Estimator,

and “EIF” is extended information filter.

to a set of Gaussians, leading to significant saving in terms of the memory require-
ment and the computational complexity. Figure 3.6(c)(d) shows the enhanced accu-
racy with small computational and memory requirement at high level noise, whilst
the GMM method shows a noticeable increase in the computational and memory
requirements. This is due to the difficulty in fusing multiple Gaussians at high level
of noise which causes the increase in the number of Gaussians.

3.6.2 3D Bearing-only Localization

We also evaluated the performance of 3D bearing-only localization using Monte
Carlo simulations. The sensors are assumed to be in stereo configuration, where
the separation between them is 1 unit distance. The 3D points are randomly gener-
ated at 20 unit distance (depth) in front of the sensors, with the maximum x and y
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upper bounded by the field of view of the camera used in KITTI datasetGeiger et al.
[2012]. The sensor noise is defined to be on the image plane, with the covariance
matrix

Pπ = σ2R
[

β 0
0 1− β

]
RT, (3.36)

where σ varies from 10−3.5 to 10−1, β ∼ U (0, 1), and R is 2D rotation matrix at angle
θ ∼ U (0, π).

Similar to the 2D case, we perform 10000 runs for each value of σ. The accuracy
is evaluated using the RMSE, while estimator consistency is evaluated using NEES
(ideal value is 3). The Monte Carlo simulation results are shown in Figure 3.7.
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Figure 3.7: Monte Carlo simulation results for 3D triangulation using bearing-only
measurements. From left to right: (a) Root-mean-square error (RMSE); (b) Consis-
tency evaluation (“ideal” is the consistent value). “MIGE” is our Minimal Iterative

Gaussian Estimator, and “EIF” is extended information filter.

From Figure 3.7, we can see that our method outperforms EIF method in both the
accuracy and the uncertainty estimation. The EIF underestimates the uncertainty of
the estimation, causing most estimates to have a large normalized estimation error.
This will affect subsequent computation and fusion of the 3D point estimate. The
average computational time of MIGE is 1.17× 10−4s per measurement, while EIF is
8.26× 10−4s per measurement.

3.6.3 Range-only Localization

Existing wireless radio used to obtain range measurements typically has an error
between 1m to 3m Lanzisera et al. [2011]Kotaru et al. [2015]Rea et al. [2017]. Thus,
we evaluate the performance of our estimator in 2D range-only target tracking using
Monte Carlo simulation with measurement error from 100 to 100.5m. The same sensor
and target configuration as the 2D bearing-only localization is used. The results are
presented in Figure 3.8.

From Figure 3.8, it can be observed that MIGE is more accurate than EIF. For
MIGE, the decrease in measurement noise results in decreasing estimation error.
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Figure 3.8: Monte Carlo simulation results for 2D tracking using range-only mea-
surements. From top left to bottom right: (a) Root-mean-square error (RMSE); (b)
Consistency evaluation (“ideal” is the consistent value); (c) Average computational
time per measurement (tc in seconds); (d) Average memory requirement to represent
state likelihood function (mc). “PG” is the probability grid method, “MIGE” is our

Minimal Iterative Gaussian Estimator, and “EIF” is extended information filter.

However, the estimation error of EIF increases with a decrease in measurement noise
due to the estimator becoming inconsistent. Despite the improvement in accuracy
compared to EIF, MIGE accuracy is still not as accurate as the probabilistic grid
method. This is due to the large initial error used and the poor geometry of the
problem, where the tangential line to the circular constraint is almost parallel with
the motion of the target. This causes the uncertainty ellipse to be unable to shrink
significantly enough, where the measurement likelihood function within the prior
cannot be sufficiently captured by a single degenerate Gaussian. Existing literatures
avoid the poor geometry by using more than one sensors Rea et al. [2017] or combi-
nation of different measurementsKotaru et al. [2015]. This will alleviate the problem
we observed, and allows more accurate target tracking performance using MIGE.
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3.6.4 Computational Complexity and Consistency

The number of parameters required to represent a Gaussian distribution with N
degrees of freedom is (N2 + 3N)/2. In comparison, traditional Kalman filter and
information filter require N2 + N parameters to describe the same distribution. The
computation of the Mahalanobis distance is also more computationally demanding
when expressed in the representation used by Kalman or information filter, which
will be useful for goodness of fit test. If the fused mean is too far away (in terms of
Mahalanobis distance) from the prior, then the measurement is treated as an outlier.
The identified outlier measurements are discarded to avoid the state estimation from
being corrupted.

From the χ2 distribution, we can determine the probability of the estimated mean
to agree with a given density. For example, a random variable with 2 degrees of
freedom (2D case) has a 99.97% of chance to have a Mahalanobis distance less than 4,
while a random variable with 3 degrees of freedom (3D case) has a 99.89% chance to
have a Mahalanobis distance less than 4. Thus, we can conclude that if the computed
Mahalanobis distance is greater than 4, the chances of the two densities describing
the same variable is less than 0.03% for 2D case, or less than 0.11% for 3D case. De-
pending on the desired level of confidence, a different threshold on the Mahalanobis
distance can be selected to discard outlier measurements.

MIGE also shows the improved consistency which can be observed from Fig-
ure 3.6(b), Figure 3.7(b) and Figure 3.8(b). As discussed by Bar-Shalom et al. [2004],
assuming the likelihood function follows a Gaussian distribution, the average nor-
malized estimation error squared (NEES) of a consistent estimator should be equals
to the dimension of the state vector. This is achieved by ensuring that the approx-
imated density encloses the true measurement likelihood within the current state
prior.

It is in contrast to the EKF method, where linearisation of the measurement model
is purely performed at the estimated mean, disregarding the current state uncer-
tainty.

3.7 Summary

In this chapter, a degenerate Gaussian is proposed to approximate the nonlinear like-
lihood functions arising from the bearing-only and range-only localization problems.
An efficient Minimal Iterative Gaussian Estimator utilising the approximated likelihood
function is fomulated with a new parametrization method. Monte Carlo simulations
showed enhanced performance in terms of accuracy, consistency and computational
complexity when compared to existing techniques. This is a consequence of the
efficient approximation of the likelihood functions.



Chapter 4

Bayesian Radio-Based Localization

This chapter presents a novel, accurate, measurement-wise recursive method of station-
ary, LOS target (emitter) 2D localization, using time-difference-of-arrival (TDOA) and
frequency-difference-of-arrival (FDOA) measurements from multiple, localized sen-
sor pairs. The method is based on our minimal iterative Gaussian estimator (MIGE)
presented in Chapter 3. Due to the erroneous measurement, we also utilize the esti-
mated uncertainty to make the method more robust against outliers.

The contributions of this work are:

• Based on MIGE, an efficient approximation of the nonlinear constraints are pro-
posed for TDOA and FDOA localization. The hyperbolic constraint of TDOA
and the pseudo-bearing constraint of the FDOA are approximated using a de-
generate Gaussian.

• A closed-form analysis of the sensing geometry and uncertainty are also con-
ducted. This helps in designing a consistent estimator, which ensures the cor-
rect convergence of the localization result as the number of measurements in-
creases.

The chapter is organised as follows. Section 4.1 discusses some related work. Sec-
tion 4.2 presents the degenerate Gaussian likelihood used to approximate the mea-
surement probability density. Section 4.3 and 4.4 describe the parametrisation for
time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) local-
ization. Then, the experimental results are discussed in Section 4.6, followed by a
simple overview of the propose method in Section 4.5. The chapter finishes with a
summary in Section 4.7.

4.1 Related Work

TDOA localization is an active research area with many published papers. Some of
the earliest work [Carter, 1981; Schau and Robinson, 1987] study the passive source
localization using acoustic and radar sensors. The seminar paper by Carter [1987],
presented a maximal likelihood estimator for the time delay between the signal re-
ceived at two sensors. Some more recent works include: TDOA-based tracking of

55
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a mobile emitter [Han et al., 2010; Miao et al., 2014], hybrid TDOA localization sys-
tems [Wei and Yu, 2016; Yin et al., 2016], TDOA-based localization under non-line-of-
sight (NLOS) conditions [Wang et al., 2016] [Li et al., 2015], and so on. These research
papers were built on past works related to stationary, line-of-sight (LOS) emitter lo-
calization using TDOA measurements. [Chan and Ho, 1994] proposed a closed-form,
batch processing method to localize an emitter (signal source) using TDOA measure-
ments. Their proposed method approximates the maximum-likelihood estimator and
was shown to attain the Cramer-Rao lower bound in the small error region. A MAT-
LAB implementation of Chan and Ho’s closed-form method is available on Univer-
sity of Missouri website [Sun and Ho, 2010]. However, most robotics systems require
real-time localization, which favours recursive method as opposed to methods that
rely on batch processing.

In a recent paper, Choi et al. [Choi et al., 2013] proposed a TDOA localization
estimator under the Robust Least Square (RoLS) estimator framework, which is re-
cursive in time. This means that a set of measurements taken at a different time can
be recursively combined to produce a more accurate localization result. However,
the method proposed by Choi et al. is still restrictive in the sense that their method
requires each set of measurements (taken at one time instance) to contain at least the
minimum number of measurements from different sensors pair to obtain a unique
localization solution (i.e. 3 for unique 2D TDOA localization).

A more desirable property of an estimator is the ability to update the location
estimate using individual measurements. This is what we term a measurement-wise
recursive estimator. Measurement-wise recursive estimator is beneficial because the target
can still be tracked even if all but two sensors broke down during operation. It is also
possible to save cost by using only a pair of mobile sensors instead of requiring mul-
tiple (at least 4 separate) sensors for 2D target localization. Kalman Filter [Kalman,
1960] and its variants (e.g. Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) [Julier and Uhlmann, 2004]) are some well-known measurement-wise re-
cursive estimators. The performance of TDOA localization using EKF and UKF are
compared in [Fletcher et al., 2007].

There are also numerous works on joint TDOA-FDOA localization [Fowler and
Hu, 2008; Musicki et al., 2010; Yeredor and Angel, 2011]. Recently, Wei and Yu [2016]
proposed the use of a combination of a stationary and a mobile sensor to localize a
stationary target. The localization is done by measuring the TDOA and FDOA from
the pair of sensors. Following these assumptions, we apply our MIGE method to
obtain an improved location estimator when compared to the existing methods.

There are also works based on motion pattern recognition in combination with
Kalman Filter to track a moving emitter that does not satisfy the constant acceler-
ation assumption [Han et al., 2010]. A more recent work is on localizing a source
moving on a plane with Doppler-effect elimination and source plane scanning [Miao
et al., 2014]. More recently, Zhong et al. [2016] uses a sequence of TDOA-FDOA
measurements to detect and track multiple targets.

Time-difference-of-arrival (TDOA) and frequency-difference-of-arrival (FDOA) mea-
surements are obtained by generalised cross-correlation of the received signal, or
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from the cross-spectral density function in the frequency domain. Multi-path effects
may cause the cross-correlation to have multiple peaks. [Rappaport et al., 1996] sug-
gested the selection of the largest or the first peak as the measurement. Wei and Yu
[2016] proposed a way to remove some outliers from the measurements. However,
even with the proposed methods, outliers may still be present in the measurement.
Thus, estimators need to be robust against outliers, which may otherwise corrupt the
location estimate.

A lot of existing TDOA localization [Choi et al., 2013; Xu et al., 2015; Wei and Yu,
2016] and hybrid TDOA-FDOA localization [Musicki et al., 2010; Yeredor and An-
gel, 2011; Wei and Yu, 2016] works only consider two-dimensional (2D) localization,
where the height of the target emitter is assumed known, or at the same height as
the sensors. In our work, we also consider the 2D localization case, where the height
of the sensor and emitter are assumed known, but can have different value.

4.2 Degenerate Gaussian Likelihood

Similar to our minimal iterative Gaussian estimator (MIGE), the main idea behind our
new method is the approximation of the underlying probability distribution with a
degenerate Gaussian likelihood function. This is supported by the fact that TDOA
and FDOA constraints can be approximated by straight line constraints within a
small region. An example with real data is shown in Figure 4.1.
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Figure 4.1: Plotted hyperbolic curves (blue, green and black lines) of real TDOA
data. From left to right: (a) within a large local region (50σ bound), (b) within a
small local region (5σ bound of prior used in our experiment), which looks very
close to being straight lines. Red star corresponds to ground truth emitter location.
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The equation of a 2D degenerate Gaussian likelihood is expressed as

G = exp
(
− d2

2σ2

)
, (4.1)

where exp is the natural exponential function, d is the distance from the mean (with
highest probability), σ is the standard deviation of the Gaussian likelihood.

We compute the Gaussian function with degeneracy along a straight line as fol-
lows. We know that the minimum distance of an interest point (possible emitter
location) at coordinates (x, y) from a straight line with parameters (a, b, c) can be cal-
culated as

dmin =
|ax + by + c|√

a2 + b2
. (4.2)

By substituting (4.2) into (4.1), the degenerate Gaussian likelihood centred around
points on the straight line is then

G(x, y|a, b, c, σ2) = exp
(
− (ax + by + c)2

(a2 + b2)(2σ2)

)
. (4.3)

Note that the volume under a degenerate Gaussian is not well defined, and so we
use a likelihood function without the normalisation constant.

Similar to MIGE, we propose to parametrise a 2D Gaussian likelihood by stor-
ing only the polynomial coefficients of the exponential power (ignoring the constant
term), with a vector P of length 5, such that

PTχ = [p1, p2, p3, p4, p5]


x2

x
y2

y
xy

 . (4.4)

Consequently, expanding the exponential power in (4.3) and following (4.4),

P = −


a2

2ac
b2

2bc
2ab

 /((a2 + b2)(2σ2)). (4.5)

By assuming that all measurements are independent of each other, the likelihood
is updated based on the Bayes’ theorem. We know that the multiplication of two
Gaussian functions is another Gaussian function, and that the multiplication of ex-
ponentials with the same base is simply the sum of their corresponding power (e.g.
exp(x) exp(y) = exp(x + y)). Thus, the likelihood update is done by simple addition
in the parametric form. The uncertainty σ can also be scaled by a scalar product.

Since the likelihood is a Gaussian function, we can recover the mean from the
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parametric vector P by computing the single critical point of the function (4.4), such
that [

x̂
ŷ

]
=

[
2p2 p3 − p4 p5

2p1 p4 − p2 p5

]
/(p5

2 − 4p1 p3) (4.6)

Note that this is only well defined for non-degenerate Gaussian likelihood, where
the denominator of a degenerate Gaussian is zero.

From the parametric P vector, we can also recover the uncertainty and bounds
where the emitter may be located. This bound allows us to identify the best section
of the nonlinear measurement curve to approximate with a tangent straight line,
based on the current estimated uncertainty. It also allows the rejection of outlier
measurements (where the measurement’s curve lies outside of the bound). This is
illustrated in Figure 4.2.

Figure 4.2: Illustrative figure showing the maximum-likelihood estimate (denoted
by (x̂, ŷ)), the uncertainty ellipse (defined by eq = 0) of the previous estimate or
prior (2D Gaussian distribution), the rectangular bounding box (defined by upper
and lower bound on x and y), and a nonlinear measurement constraint (denoted
by Tnew). The bounding box can help in locating the correct section of the curved
constraint that most satisfies the uncertainty of the prior, which is then approximated
by a tangential straight line (i.e. l1 instead of l2). The bounding box can also be
used to ignore outlier measurements (e.g. Toutlier), when the curve lies outside of
the bounding box. The points on the elliptical bound that intersect the rectangular

bound satisfies either dy
dx = 0 or dx

dy = 0 as denoted in the figure.

In order to find the 5 standard deviation (elliptical) bound (from χ2 distribution,
99.9996% of the time, true emitter location is within this bound), we substitute d = 5σ

into (4.1), and solve for eq = 0, where

eq , PTχ +
25
2

. (4.7)
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We further simplify the computation by using a rectangular bounding box that
encloses the elliptical bound, which is fully defined by the upper and lower bounds
on x and y (Figure 4.2). The upper and lower bound of y are calculated as follows.

y =
−b1 +

√
b1

2 − 4a1c1

2a1
, y =

−b1 −
√

b1
2 − 4a1c1

2a1
(4.8)

where

a1 = − p5
2

4p1
+ p3, b1 = − p2 p5

2p1
+ p4, c1 = − p2

2

4p1
+ p6 +

25
2

Similarly, the upper and lower bound of x are calculated as follows.

x =
−b2 +

√
b2

2 − 4a2c2

2a2
, x =

−b2 −
√

b2
2 − 4a2c2

2a2
(4.9)

where

a2 = − p5
2

4p3
+ p1, b2 = − p4 p5

2p3
+ p2, c2 = − p4

2

4p3
+ p6 +

25
2

The first step of our method then becomes a tangent straight line fitting of the
nonlinear measurement constraint within the uncertainty bound. This defines the
values of [a, b, c], where ax + by + c = 0 is the equation of the tangent line. The
following sections explain the choice of standard deviation σ for TDOA and FDOA
localization.

4.3 TDOA parametrisation

The time-difference-of-arrival (TDOA) equation is represented as

τij,k =
1
c
(ri,k − rj,k), (4.10)

where c is the signal propagation speed (speed of light for radio signal, ri,k and rj,k
are the distance of sensor i and sensor j from the target emitter respectively.

As previously mentioned, the TDOA hyperbolic curves are approximated with
tangential straight lines. We also analyse the different “spread” of the uncertainty
due to the relative placement of the sensors and the emitter, represented using the
sensor-target geometry factor. This is explained as follows.

The two graphs in Figure 4.3 shows different TDOA hyperbolic curves plotted
with the same step-size for τ. Two interesting features of the sensor target geometry
factor emerged upon analysing the two graphs. First, it was clear that the “spread”
(distance between lines) is larger in sensor pair (2, 1) compared to sensor pair (3, 1),
even though the step-size used for τ is the same for both plots.

Second, it was also noted that the “spread” is larger when the emitter is farther
away from the sensors, or when the emitter is not between the two sensors and
almost co-linear with the line joining the two sensors.
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Figure 4.3: TDOA hyperbolic curves plotted with the same step-size, showing dif-
ferent “spread” of uncertainty due to relative placement of sensors (blue stars) and
emitter (red star). From left to right: (a) Sensor pair (2, 1); (b) Sensor pair (3, 1). Note
that some of the vertex of the hyperbolas are not within the line joining the focal
points (sensors position). This is due to the position of the actual focal points (sensor

position) to be on a different 2D plane (height).

The sensor-target geometry factor is computed as follows. Let [xi, yi, zi] be the
sensor i coordinates, [xj, yj, zj] be the sensor j coordinates, and [x, y, z] be emitter
coordinates.

We calculate the small change in x with respect to small change in τij,k by first
assuming y and z are constant, then differentiate (4.10) with respect to τij,k, we get

dx
dτij,k

=
ri,k rj,k

rj,k(x− xi)− ri,k(x− xj)
. (4.11)

Similarly, we calculate the small change in y with respect to small change in τij,k
by first assuming x and z are constant, then differentiate (4.10) with respect to τij,k,
we get

dy
dτij,k

=
ri,k rj,k

rj,k(y− yi)− ri,k(y− yj)
. (4.12)

With these and assuming that the hyperbolic lines are parallel (valid for small
change in τ), we can find the small shift in distance between the hyperbolas with a
small change in τij,k using simple trigonometry, such that

dDij,k

dτij,k
=

(
dx

dτij,k

dy
dτij,k

)
/

√(
dx

dτij,k

)2

+

(
dy

dτij,k

)2

. (4.13)
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The magnitude | dDij,k
dτij,k
| is known as the sensor-target geometry factor. An example of the

sensor-target geometry factor at different sensor coordinates is shown in Figure (4.4).

Each sensor pair has a bounded error characterised by the measurement error of
the two sensors. This measurement error (in meters) can be calculated during the
calibration stage. This is obtained from the standard deviation of each set of TDOA
measurements (for each sensor pair), σm,ij, multiplied by the speed of light, c, where

σd,ij = c σm,ij. (4.14)

Another factor that contributes to the inaccuracy of the approximation using de-
generate Gaussian along a straight line comes from hyperbolic shape of the actual
measurement likelihood. Using (4.2), the distance of each points on the hyperbola
(within the prior uncertainty bound) can be computed. We improve the estimator’s
consistency by increasing the uncertainty of the degenerate Gaussian using the root
mean squared error (RMSE).

Finally, combining the sensor uncertainty, sensor-target geometry factor and the de-
viation from straight line, the resulting magnitude of uncertainty σ in (4.5) for each
sensor pair is computed as

σ =

∣∣∣∣ dDij

dτij,k

∣∣∣∣ σd,ij + εh, (4.15)

where εh is the RMSE of points on the hyperbola from the approximated straight
line.
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Figure 4.4: Sensor-target geometry factor plot around the TDOA hyperbolic curve at
different locations (sensor pair (2, 1)), where dark blue corresponds to small values,

while dark red corresponds to high values.
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4.4 FDOA parametrisation

The frequency-difference-of-arrival (FDOA) equation is represented as

νij,k =
fc

c
((vi,k)

Tui,k − (vj,k)
Tuj,k), (4.16)

where c is the signal propagation speed (speed of light for radio signal), fc is the
carrier frequency, vi,k and vj,k are relative velocity between the emitter and sensors
i and j respectively, ui,k and uj,k are unit vector pointing from sensor i and j to the
emitter.

Wei and Yu [2016] proposed the use of a stationary and a mobile sensor to lo-
calize a stationary target. We analyse the same problem and found that the FDOA
constraints simplifies to frequency-of-arrival (FOA).

Assuming sensor j is stationary, the second term of (4.16) is equals to zero, while
the first term can be seen as the dot product between vi,k = [vx, vy, vz] and ui,k. The
velocity of sensor i is obtained from GPS sensor, which does not provide velocity in
the z axis. Thus, we assume the sensor is travelling at a constant height, where vz is
zero. In this work, we also assume the height for the emitter is known, but can be
different from the height of the sensors.

We also know that the dot product between two vectors is equals to the prod-
uct of their magnitude and cosine of the angles between them. This provides two
bearing constraints, mirrored around the motion vector of sensor i. The two possible
degenerate Gaussian likelihood will then be centred along one of the two lines

l1 : (tan(∠1))x + (−1)y + (yi − tan(∠1)xi) = 0, (4.17)

l2 : (tan(∠2))x + (−1)y + (yi − tan(∠2)xi) = 0, (4.18)

where the angles

∠1 = arctan
(

vy

vx

)
+ θ, (4.19)

∠2 = arctan
(

vy

vx

)
− θ, (4.20)

θ = arccos

(
cνij,k

fc||vi,k|| cos(arctan( z−zi
(x−xi)2+(y−yi)2 ))

)
. (4.21)

Similar to TDOA, the FDOA constraint is approximated using a degenerate Gaus-
sian along a straight line, where the spread of the likelihood function is computed as
follows.

First, we differentiate (4.21) to compute the small change in the angle θ with a
small change in FDOA measurement ν. This is the sensor-target geometry for FDOA,
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which is

dθ

dνij,k
=

c√(
fc||vi,k|| cos(arctan( z−zi

(x−xi)2+(y−yi)2 ))
)2
− (cνij,k)2

. (4.22)

Then, we check if the sensor i location is within the current uncertainty prior. If
it is within the current uncertainty prior, the standard deviation of the angle will be
higher. This is due to the fact that both bearing angles are possible as a constraint
for the emitter location. On the contrary, if the sensor i is located outside of the prior
uncertainty and only one angle is within the bound, then the standard deviation
of the angle σθ will only be affected by the sensor-target geometry and the standard
deviation of the FDOA measurement. This is illustrated in Figure 4.5.

Figure 4.5: Two cases of interest for frequency-difference-of-arrival measurements.
If the prior uncertainty ellipse is e1, then the measurement likelihood is less certain
because both bearing angles are possible. If the prior uncertainty ellipse is e2, then

there is only one bearing angle possible (within a specified confidence).

Finally, the standard deviation of the degenerate Gaussian σ is then

σ =

(∣∣∣∣ dθ

dνij,k

∣∣∣∣ σν + ∆θ

)
dmax, (4.23)

where dmax is the maximum distance between the sensor i to the emitter (according
to the current prior), and

∆θ =

{
2θ if sensor i is inside the prior (e1 case)
0 otherwise (e2 case)

(4.24)
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4.5 Algorithm overview

The key steps of the new method may be summarised as follows.

Algorithm 4: TDOA-FDOA Localization
Data: Given initial estimate x0, covariance matrix P0, TDOA measurements

{τij,k}, FDOA measurements {νij,k}
Result: Emitter location estimate in parametric form Pk

1 Convert prior x0 and P0 into parametric form;
2 while time k is increasing do
3 Find bounding box following (4.8) and (4.9);
4 Find contour of nonlinear constraint;
5 if contour outside bounding box then
6 pass;
7 else
8 Compute tangent line;
9 Compute sensor-target geometry factor;

10 Compute parametric form of measurement likelihood;
11 end
12 Update by element-wise addition;
13 end

The proposed method is also simple and general enough to combine different
types of measurements under the same framework (i.e. straight line approximation
and parameter updating). For example, angle-of-arrival (AOA) measurement, receive
signal strength (RSS), can be combined with TDOA measurements for improved lo-
calization accuracy.

4.6 Experimental results

We verify the performance of our proposed method by performing Monte Carlo
simulation and real data experiments for TDOA and TDOA-FDOA localization.

4.6.1 TDOA localization

Monte Carlo simulations are performed to compare the performance of different
TDOA Localization methods using the minimum number of measurements (i.e. 3
measurements from 4 different sensor pairs), at increasing measurement noise (Gaus-
sian with zero mean, variance from −50dB to 30dB). For recursive methods, the
initial estimate is initialised with an additive Gaussian Noise with zero mean and a
variance of 43dB (40dB in both x and y).

RoLS method from Choi et al. [2013] is a time-recursive method, where an initial
estimate is given as a prior. However, in this experiment, only measurements from a
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single time instance are used. Thus, we may consider it to be a batch process method
with a prior.

RoLS is also modified to measurement-wise recursive method for a fair comparison
with other methods like EKF, UKF and our newly proposed method.

In this section, Monte Carlo simulation results are presented to compare the per-
formance of batch processing methods from Sun and Ho [2010], NoLS and RoLS from
Choi et al. [2013]; and measurement-wise recursive methods like EKF, UKF, modified
version of RoLS and our proposed method.

A sequence of real TDOA measurements is also collected and used in the later
part of our experiment, to test the performance of our newly proposed TDOA local-
ization method.

4.6.1.1 Good Geometry Monte Carlo Simulation

The first experiment involves good sensor-target geometry, where there is large sep-
aration between the sensors (7− 13km), and the target (emitter) does not lie close to
the curved part of the TDOA hyperbolas. Figure 4.6 shows the hyperbolas in a small
local region, along with the location of sensors and target.
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Figure 4.6: Plots of good geometry case. From top to bottom: (a) shows the 10 sets
of TDOA hyperbolas in a small local region (5σ bound of prior uncertainty), which
is observed to have a clear line intersect and the curves looks very close to being
straight lines. (b) shows the location of the sensors, target and the initial uncertainty

(5σ bound) used.

Figure 4.7 shows the Monte Carlo simulation results. From Figure 4.7, it can be
observed that our newly proposed method outperforms EKF, UKF and measurement-
wise (MW) recursive RoLS method in small measurement noise case, and stays close to
the Cramer Rao Lower Bound (CRLB) line. It is also noted that at very low noise level
(10 log(cσ) < −30), the batch processing method from Sun and Ho [2010] produces
slightly better result than our proposed method.

It can also be observed that the MW recursive RoLS solution deviates from the
initial 43dB location significantly when the measurement noise is low. This could be
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Figure 4.7: Monte Carlo simulation results for good geometry case. “Ours” is
the new method we proposed. “MW Recursive” refers to measurement-wise recursive
method. “init” refers to the initial uncertainty used as a prior. “MSE” is the mean
squared error, while “cσ” is the TDOA measurement noise multiplied by the speed

of light.

due to the poor conditioning of the matrix H̃k and vector zk (see Choi et al. [2013])
when only one measurement is used at each estimation step. When the noise level is
low, instead of improving the estimation, the poorly conditioned equation drags the
initial estimate farther away from the correct value.

Small measurement noise also corresponds to having a large amount of measure-
ment data, which greatly favours our new method compared to other MW recursive
methods.

On the other hand, other batch processing methods like Sun and Ho [2010], NoLS
and RoLS Choi et al. [2013] perform similarly to each other. RoLS is considered batch
processing here because only a single time instance is used in this experiment.

Interestingly, Sun and Ho Sun and Ho [2010] method performed slightly better
when all measurements taken from different sensors are batch processed, compared
to the more recent NoLS or RoLS. This could be due to Choi et al. Choi et al. [2013],
similar to our method, uses the simplifying assumption that the noise from different
sensor pairs is independent of each other.
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Figure 4.8: Plots of poor geometry case. From top to bottom: (a) shows the 10 sets
of TDOA hyperbolas in a small local region (5σ bound of prior uncertainty), which
is observed to have a poor line intersect and the curves does not look close to being
straight lines. (b) shows the location of the sensors, target and the initial uncertainty

(5σ bound) used.

4.6.1.2 Poor Geometry Monte Carlo Simulation

“Poor geometry” refers to sensors being close to each other and to the target (emitter)
such that the hyperbolic lines are almost parallel to each other, and the hyperbolas
cannot be well estimated by a simple straight line. Figure 4.8 shows the hyperbolas
in a small local region, and location of sensors and target.

Figure 4.9 shows the Monte Carlo simulation results. From Figure 4.9, it can be
observed that our newly proposed method is robust to poor sensor-target geometry
and outperforms all other methods in most of the range of measurement noise tested.
It is also the closest to the Cramer Rao Lower Bound (CRLB).

On the other hand, EKF and MW RoLS result diverge from the initial estimate
(with 43dB) at low noise level, while UKF and RoLS only achieved a small improve-
ment from the initial prior provided. It is also noted that the MATLAB implementa-
tion of Chan and Ho’s work Sun and Ho [2010] and NoLS cannot provide any useful
localization result.

4.6.1.3 Real Data

Using four synchronised software define radios (SDRs) placed at known locations
(GPS localized), we have collected 61 TDOA measurements per sensor pair. Fig-
ure 4.10(a) shows the location of the sensors with respect to the target (radio tower)
location. Figure 4.1 shows the hyperbolas within the 5σ bound of the initial estimate
(prior).

The measurement standard deviations are 56.5m, 80.7m, 55.2m for sensor pairs
(2, 1), (3, 1) and (4, 1) respectively.

Figure 4.10(b) shows a few examples of the localization error trajectories over 61
sets of TDOA measurements, where each measurement set consists of one TDOA
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Figure 4.9: Monte Carlo simulation results for poor geometry case. “Ours” is
the new method we proposed. “MW Recursive” refers to measurement-wise recur-
sive method. “init” refers to the initial uncertainty used as a prior. “MSE” is the
mean squared error, while “cσ” is the TDOA measurement noise multiplied by the

speed of light.

measurement from each sensor pair ((2, 1), (3, 1) and (4, 1)). The plot shows that the
newly proposed method can successfully reduce the initial localization error of more
than 1300m to a final localization error of less than 50m.
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Figure 4.10: Plots of real data experiment. From top to bottom: (a) shows the
location of sensors, target and initial uncertainty (5σ bound) for the real data exper-
iment, (b) shows 10 estimation error trajectories (in meters) versus time. Each run is
initialised with a prior (zero mean Gaussian around the true emitter location with
standard deviation of 500m). Note that time refers to different instances of measure-

ments set (61 sets of measurements in total), and not the absolute time.
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Figure 4.11: Two paths taken by the mobile sensor during TDOA-FDOA localization
experiment (courtesy of Junming Wei [Wei and Yu, 2016]). From left to right: (a)

Short path; (b) Long path.

4.6.2 TDOA-FDOA localization

We collect TDOA-FDOA measurements using two synchronised software define ra-
dios (SDRs), where one is placed at a fixed known location, while the other is placed
on a car driven on two different paths. The paths are illustrated in Figure 4.11.
We also collect measurements at two different frequencies, namely the FM signal at
106.3 MHz, and TV signal at 226.5 MHz.

The performance of our method is compared to the results obtained in Wei and
Yu [2016], and is presented in Table 4.1.

Table 4.1: Performance comparison of our new method and existing methods. The
error metric is the final localization error in meters.

FM short TV short FM long TV long
No. of TDOA & FDOA 26 26 131 98

RMSE EKF [Wei and Yu, 2016] 145 m 112 m 90 m 86 m
RMSE WLS [Wei and Yu, 2016] 249 m 64 m 62 m 80 m

New method 119 m 37 m 57 m 47 m
CRLB [Wei and Yu, 2016] 105 m 17 m 16 m 13 m

From Table 4.1, we can see that the newly proposed method outperforms the other
methods, and is the closest to the theoretical Cramer Rao lower bound (CRLB). The
new method even outperforms the weighted least square (WLS) method that jointly
optimises all measurements. This can be attributed to the ability of our method to
effectively approximate the measurement likelihood, and the ability to recursively
discard outlier measurements that will otherwise corrupt the estimate.
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4.7 Summary

This chapter proposes a novel, simple, memory efficient, robust and measurement-
wise recursive time-difference-of-arrival (TDOA) and frequency-difference-of-arrival
(FDOA) based algorithm for the localization of a stationary emitter on a known 2D
plane. Similar to MIGE, the method approximates the nonlinear measurement likeli-
hood using a degenerate Gaussian around a tangential straight line, with a variance
that depends on both the measurement noise and the sensor-target geometry. The
probability density is then updated by the simple element-wise addition. The pro-
posed method is compared to well-known methods and shown to have superior
performance. For TDOA only localization, we also show that the method is robust
enough that the initial estimate (prior) can be improved even when the sensors are
poorly placed, or when the curve cannot be well approximated by a straight line
(Sec. 4.6.1.2). The method also inherently trims away outlier measurements based
on the computed uncertainty. The method is also applied to real TDOA and TDOA-
FDOA measurement data, which shows convergence to the correct emitter location.



Chapter 5

Bayesian Monocular Visual SLAM

This chapter discusses a new robust monocular simultaneous localization and map-
ping (SLAM) system to provide low drift visual odometry and 3D reconstruction re-
sult. We overcome the limitations of using sparse features in low/repetitive textured
scenes for pose estimation, without relying on restrictive motion dynamics assump-
tions. This is accomplished by using dense optical flow with estimated uncertainty
as the input to our visual odometry method. Combining with an existing robust
SLAM back-end [Cheng et al., 2015], the method achieves significant robustness with
respect to the sensing uncertainty and loop-closure outliers. The contributions of this
work are threefold:

• An accurate dense optical flow with estimated uncertainty is proposed. Based
on DCFlow [Xu et al., 2017], we improve the existing optical flow accuracy by
including the epipolar constraint into the cost function used to compute the
matching pixel. A principled method to estimate the uncertainty of a dense op-
tic flow is also proposed, by fitting a bivariate Gaussian function to the match-
ing cost. We named the method Bayes Dense Flow.

• A robust visual odometry method is presented. An efficient RANSAC sam-
pling is used to select inlier correspondences based on their estimated uncer-
tainty. We then propose a new Mahalanobis eight-point algorithm to estimate
the inter-frame camera motion. These ensure that a robust camera motion is
estimated from the dense correspondences, by applying appropriate weighting
for each correspondence with respect to their corresponding uncertainty. The
visual odometry method is further improved by fusing with the pose estimate
obtained through the perspective-n-point (PnP) method, which utilizes a set of
previously triangulated scene points.

• Based on the MIGE (Chapter 3), an efficient approximate Bayesian 3D triangula-
tion method is proposed, which allows the 3D scene points to be reconstructed
along with a measure of uncertainty. The triangulation method uses a minimal
representation parametric form, which also allows for a simple recursive fusion
of consecutive 3D scene points estimates. Combined with the existing SLAM
back-end [Cheng et al., 2015], the method is applied for aerial navigation and
mapping.

73
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To the best of our knowledge, this is the first research work that achieves the ro-
bustness for both of the front-end and back-end SLAM, and its application for aerial
navigation and mapping in an unstructured environment with dynamic objects.

The chapter is organised as follows. Section 5.1 discusses some related work. Sec-
tion 5.2 presents the 3D scene points triangulation in greater details, where the mea-
surement noise is defined on the image plane. Section 5.3 details the improvement
to DCFlow and optical flow uncertainty estimation, Section 5.4 describes our new
robust visual odometry, Section 5.5 covers the loop closure computation to further
reduce visual odometry drift. Section 5.6 provides a quick overview of the proposed
visual SLAM. Section 5.7 shows the experimental results that verify the performance
of our proposed method, and Section 5.8 presents a summary of our work.

5.1 Related Work

Visual simultaneous localization and mapping (SLAM) refers to a method that uses
visual sensor (i.e. camera) to estimate the pose of the camera (self-localization) and
the location of landmark (environment mapping) at the same time. Visual SLAM
is categorized based on the sensing modality used. Existing unmanned aerial ve-
hicle (UAV) visual odometry and SLAM systems have used stereo camera [Hrabar
et al., 2005; Heng et al., 2011], multi-camera [Yang et al., 2017], omni-directional
camera [Hrabar and Sukhatme, 2003; Demonceaux et al., 2006], IMU-camera sys-
tem [Cheviron et al., 2007; Wang et al., 2013; Weiss et al., 2013], IMU-camera-sonar
[Chowdhary et al., 2013], GPS-IMU-camera system [Templeton et al., 2007], laser-
IMU-camera system [Achtelik et al., 2009; Bachrach et al., 2009; Shen et al., 2011],
external camera [Park et al., 2005; Klose et al., 2010], or a monocular downward-
facing camera [Weiss et al., 2011b,a; Lee et al., 2011].

A monocular camera system is the most interesting due to the generality where
only a single camera is required. The other benefits of a monocular system are the
energy efficiency, low cost, light weight, easy installation and maintenance. In our
work, we do not assume the IMU or GPS data is available, due to the difficulty to
synchronise the sensors, and the often non-constant relative pose between the sen-
sors with pan-tilt camera system. As previously mentioned, existing UAV monocular
visual odometry methods primarily use a downward-looking camera [Herisse et al.,
2008; Lee et al., 2011; Weiss et al., 2011b, 2013; Wang et al., 2013; Chowdhary et al.,
2013] that simplifies the problem of visual odometry, as the estimation of the for-
ward motion is known to be more error-prone [Song et al., 2016; Oliensis, 2005]. A
downward looking camera also allows easier initialisation and tracking of features as
the visible scene is assumed to be mostly planar [Wang et al., 2013; Caballero et al.,
2009]. However, commercially available UAVs are usually equipped with a single
front facing camera. This makes existing methods not suitable for such hardware
setup. Using a front facing camera also makes teleoperation in a highly unstructured
environment possible, as it allows the pilot to see and avoid obstacles. An existing
visual odometry work that uses front facing camera assumes partially a structured
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scene with known objects [Artieda et al., 2009], which makes their method unsuitable
for general unstructured scenes.

On the other hand, most visual odometry methods suitable for large forward
motion (e.g. [Klein and Murray, 2007; Song et al., 2016; Fanani et al., 2017]) use
sparse feature points matched between images to compute the inter-frame motion.
However, in some scenes, the sparsely matched features may be clustered around a
small region of the image or encounter problems with planar degeneracy [Hartley
and Zisserman, 2003]. This may result in an inaccurate motion estimate. Existing
methods (e.g. [Bradler et al., 2015; Fanani et al., 2017]) improve the feature matching
accuracy by also assuming that the motion dynamics of the vehicle/robot is known
or calibrated. This makes their method not general enough to be directly applied
to other vehicles with different motion dynamics. Some methods also use learning-
based [Song et al., 2016] or convolutional neural network (CNN) trained [Fanani
et al., 2017] ground height estimation. This again makes the method not suitable for
general use when the ground surface is different from the training data.

Independent of visual odometry and SLAM research, optical flow has also achieved
significant improvement. Currently, one of the most accurate optical flow algorithms
suitable for large motion was proposed by Xu et al. [2017]. Similar to [Chen and
Koltun, 2016], they compute the optical flow by operating directly on the four-
dimensional cost volume. The data term they used is the dot product between the
feature vectors, where the feature vector trained by a convolutional neural network
(CNN) describes the local visual cue. The edge-aware spatial regularisation is en-
forced by adapting semi-global matching (SGM) [Drory et al., 2014] with structural
edge detector (SED) [Dollár and Zitnick, 2015]. Forward-backward consistency was
checked, where inconsistent matches are discarded. The semi-dense optical flow
is then interpolated using the well known EpicFlow interpolation method [Revaud
et al., 2015]. An extra postprocessing step fits homography to the computed flow
field to improve optical flow estimate at low textured region that is roughly planar
(e.g. ground). More recently, CNN, pyramidal feature extraction and feature warp-
ing have also been applied successfully to compute optical flow [Hui et al., 2018][Sun
et al., 2018]. However, like most state-of-the-art optical flow methods, the uncertainty
of the optical flow is not computed.

It was known that the information about the optical flow uncertainty is useful for
later processing, where each flow vector can be appropriately weighted. Estimation
of the optical flow uncertainty has been done using image gradient [Heeger, 1988][Si-
moncelli et al., 1991], which depends on the contrast of neighbouring pixels. Optical
flow uncertainty has also been estimated from the min-marginal map of a dynamic
Markov Random Field approach [Glocker et al., 2008]. However, their method only
provides a very local estimation of the uncertainty, and is not suitable for more recent
optical flow methods that utilize more advanced feature matching and regularization
techniques. The bootstrap resampling method [Kybic and Nieuwenhuis, 2011] has
also been proposed to estimate optical flow uncertainty, but it requires multiple itera-
tions of the optical flow to be performed to accurately capture the uncertainty. More
recently, Mac Aodha et al. [2013] propose to estimate the optical flow uncertainty
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using learning methods, but this method requires extra training and does not reflect
the actual uncertainty of a particular optical flow method. Probabilistic methods have
also been used to compute the optical flow [Wannenwetsch et al., 2017][Piao et al.,
2014], but the achievable optical flow accuracy is still lower than other methods. In
comparison, our proposed method directly makes use of the full discrete cost volume
of DCFlow [Xu et al., 2017], which allows simple incorporation of extra matching cost
(epipolar) constraints to improve the optical flow accuracy, and direct estimation of
the 2D uncertainty.

5.2 3D Scene Points Triangulation

Given the camera pose from the computed camera extrinsic (Section 5.4), we can
obtain the 3D scene points by triangulation. We know that 3D points that are far
away or has large uncertainty in their feature location is less reliable. Thus, we use
our minimal iterative Gaussian estimator (MIGE) from Chapter 3 to triangulate 3D
scene points along with estimating their uncertainty information.

In this section, we follow the convention used by computer vision community,
and denote the measurement vector (image coordinate) as xk, and changed the nota-
tion for state vector to χk.

5.2.1 3D Bearing Measurement

Assuming the intrinsic parameters of the camera is calibrated, the nonlinear, bearing-
only measurement model can be written as

xk = h(χk) + wk (5.1)[
ûk
v̂k

]
=

1
zk

[
xk
yk

]
+ wk, (5.2)

where [ûk, v̂k] are the image feature in normalized coordinates, and χk = [xk, yk, zk]
is the coordinate of the corresponding 3D point in the camera frame at time k.

The likelihood function for a measurement (x = xk) becomes

p(xk|χk) = exp
{
−1

2
(xk − h(χk))

TYx(xk − h(χk))

}
. (5.3)

Note that the normalization constant is dropped since it is not a proper probability
density with respect to the state variable χk in general.

From (5.2), we can append a 1 at the end of the vector, such thatûk
v̂k
1

 =

xk/zk
yk/zk

1

+

[
wk
0

]
, (5.4)

Then, by multiplying both sides with zk and some rearranging, the bearing-only
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measurement model can be rewritten in the state space asxk
yk
zk

 = zk

ûk
v̂k
1

− [wk
0

] . (5.5)

From (5.5), since the depth zk is not observable from the bearing measurement,
it can be seen that the likelihood function is centred around the line along the vec-
tor [ûk, v̂k, 1]T. Also, the information matrix of the noise in x–y plane is Yx/(zk

2).
This means that the likelihood function is an elliptical cone extending to infinity.
Figure 5.1 illustrates the likelihood function which intersects with the camera image
plane π, creating an uncertainty ellipse e1 with the corresponding information ma-
trix Yx. Its scaled-up version is the uncertainty ellipse e2 at the feature location with
corresponding information matrix Yx/d2. In this work, the uncertainty ellipse e1 is
measured from the dense optical flow, which captures the visual and structural simi-
larity of the local image region. This information matrix is calculated in Section 5.3.2,
where

Y(e1) = Yx =

[
Ỹxx Ỹxy

Ỹxy Ỹyy

]
. (5.6)

The cone-shape likelihood can be approximated by Gaussian mixture model or
particle samples. In this work, we utilise a degenerate Gaussian which is simple
yet effective in approximating the measurement likelihood. This is explained in the
following section.

5.2.2 Degenerate Gaussian Representation

A degenerate Gaussian is defined as a Gaussian density where one or more eigen-
values of the covariance matrix are infinite. It is thus not a proper probability dis-
tribution due to infinite area or volume. Suppose the feature coordinate xk = [0, 0],
and the corresponding 3D point is at a depth (distance along the z axis) of d. Then,
the likelihood function (5.3) expressed in state space, is approximated as an ellipti-
cal cylinder function with an infinite eigenvalue in the z-axis with the information
matrix

Y0 =
1
d2

 Yxx Yxy 0
Yxy Yyy 0
0 0 0

 . (5.7)

This is illustrated in Figure 5.2(a).

For a general feature coordinate [ûk, v̂k], the cylinder function needs to be tilted
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Figure 5.1: Figure shows the underlying probability distribution for one measure-
ment (image feature position x) with a level set of the probability distribution il-
lustrated by an uncertainty ellipse e1, where ζ is the centre of the camera, f is the
focal length (equals to one after normalisation with intrinsic camera parameter), χ is
the location of the 3D point, d is the depth of the 3D point, and e2 is the scaled up

uncertainty ellipse e1 with respect to depth.

towards the direction of the image feature at rotation angles (α, β) as

Y =
1
d2 Rαβ

 Yxx Yxy 0
Yxy Yyy 0
0 0 0

RT
αβ (5.8)

with

Rαβ = Ry(β)Rx(α) (5.9)

=

 cos β 0 sin β

0 1 0
− sin β 0 cos β

1 0 0
0 cos α − sin α

0 sin α cos α

 , (5.10)

where α = arctan(−v̂k/
√

û2
k + 12), and β = arctan(ûk/1).

Multiplying the rotation matrices into the information matrix in (5.8), the 3D
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Figure 5.2: 3D degenerate Gaussian likelihood with a degenerate axis, resulting in
a cylindrical distribution. From left to right cylinder: (a) degenerate Gaussian (at
coordinate system xyz) with an infinite uncertainty along the z-axis; (b) degenerate
Gaussian tilted towards the direction of an image feature , where the shaded cross-
section is the uncertainty estimated from the optical flow at the image plane π; (c)
rigid body transformation of the tilted degenerate Gaussian, where R, t represents

the rotation and translation between the coordinate systems.

information matrix given a feature coordinate [ûk, v̂k] is then

Y =
1
d2

 Ỹxx Ỹxy ∗
Ỹxy Ỹyy ∗
∗ ∗ ∗

 , (5.11)

where the top left block diagonal matrix corresponds to the estimated optical flow
uncertainty Y(e1), such that [

Ỹxx Ỹxy

Ỹxy Ỹyy

]
= Y(e1), (5.12)

and the ∗ in (5.11) corresponds to unknown values we need to compute.

We can solve the unknowns in (5.11) by first computing the information matrix
Y0 in (5.7) as follows. Given the angles α and β (computed from the image mea-
surement), we want the block diagonal matrix in (5.11) to be equals to the measured
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optical flow uncertainty Yx (5.6), then

Yyy =
1

cos2 α
Ỹyy (5.13)

Yxy =
1

cos α cos β
Ỹxy − sin α tan βỸyy (5.14)

Yxx =
1

cos2 β
Ỹxx − 2 sin α tan βỸyy − sin2 α tan2 βỸxy. (5.15)

The unknowns of Y in (5.11) can then be computed using equation (5.8). This is
illustrated in Figure 5.2(b).

Furthermore, the camera may not be aligned to the world coordinate frame. Thus,
the tilted cylindrical likelihood undergoes the rigid-body transformation (R, t) of the
camera frame, giving

p(xk|χ) = G(t, RY−1RT), (5.16)

where the transformation of the cylindrical function is illustrated in Figure 5.2(c).

5.2.3 Re-parametrization

The approximation using the degenerate Gaussian distribution significantly simpli-
fies the fusion of multiple measurements. Similar to MIGE, for each pixel, we propose
a parametric form of the 3D distribution using 9 elements vector, which represents
the coefficient of the multivariate quadratic equation of the sum of squared Maha-
lanobis distance equation (negative log likelihood of a Gaussian function).

Let the information matrix and information vector for a 3D measurement be

Y , P−1, y , Y χ̂. (5.17)

The quadratic equation of the Gaussian exponential term (dropping the sign and
half) expands as

(χ− χ̂)TP−1(χ− χ̂)

=

x− x̂
y− ŷ
z− ẑ

T Yxx Yxy Yxz

Yxy Yyy Yyz

Yxz Yyz Yzz

x− x̂
y− ŷ
z− ẑ


= (Yxx)x2 + (Yyy)y2 + (Yzz)z2 + (2Yxy)xy + (2Yxz)xz + (2Yyz)yz

+ (−2Yxx x̂− 2Yxyŷ− 2Yxz ẑ)x + (−2Yxy x̂− 2Yyyŷ− 2Yyz ẑ)y

+ (−2Yxz x̂− 2Yyzŷ− 2Yzz ẑ)z

+ const.

(5.18)

Please note that the constant term can be dropped as it only contributes to the
scaling of the exponential function. The minimal representation of the 3D Gaussian
function is thus obtained using a vector of length 9 to store the coefficients of the
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quadratic equation.
The degenerate Gaussian function is then represented using this new parameter

(P), such that

p(xk|χk) = exp
{
−1

2
PTξ

}
, (5.19)

with

P , [p1, p2, p3, p4, p5, p6, p7, p8, p9]
T (5.20)

= [Yxx, Yyy, Yzz, 2Yxy, 2Yxz, 2Yyz,

− 2(Yxx x̂ + Yxyŷ + Yxz ẑ),

− 2(Yxy x̂ + Yyyŷ + Yyz ẑ),

− 2(Yxz x̂ + Yyzŷ + Yzz ẑ)] (5.21)

ξ , [ x2 y2 z2 xy xz yz x y z ]T. (5.22)

Note that the new parameter P is actually a concatenation of an information matrix Y
and an information state estimate ŷ but in a minimal form (equivalent to the square-
root information filter), which can be recovered

P ⇐⇒ {Y , y}, (5.23)

with

Y = Mat(P (1:6)) ,

 p1 p4/2 p5/2
p4/2 p2 p6/2
p5/2 p6/2 p3

 (5.24)

ŷ , −1
2
P (7:9), (5.25)

where Mat(·) defined as a symmetric matricization operator converting the parame-
ters into an information matrix.
Remark: Note that equation (5.18)–(5.25) corresponds to equation (3.23)–(3.29), but
is reproduced here due to the use of a slightly different notation to avoid confusion
and to make the chapter self-contained.

The data fusion for the triangulation of the 3D scene features are simply element-
wise addition using the parametric form as

P = P1 + P2. (5.26)

We perform 5 iterations to compute the suitable scaling (d in equation (5.11)). In
the first iteration, we use d = 1. Subsequent iterations use the previous estimates of
depth and depth’s standard deviation for refinement. 5 iterations are performed to
ensure convergence (experimentally, 4 iterations are enough for convergence).

These triangulation steps are done for all inlier correspondences to produce an
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almost-dense 3D reconstruction of the scene that contains both the position and
uncertainty. The reconstructed 3D scene points can also be represented using a
depth map (z direction distance from the first image) and depth’s standard devia-
tion (square root of the last element of Y−1.

5.3 Bayes Dense Flow

A new optical flow method is developed by modifying the existing DCFlow [Xu
et al., 2017]. The accuracy of the optical flow estimate is improved by incorporating
the epipolar constraint into the cost computation, while the optical flow uncertainty
is extracted by fitting a Gaussian function to the cost volume. The resulting dense
optical flow is known as Bayes Dense Flow.

5.3.1 Dense Flow with Epipolar Constraint

We propose a robust visual odometry method that uses dense optical flow as input.
Optical flow is a method that estimates the motion of each individual pixel between
two images. Classical optical flow algorithm optimises a cost function of the form

C( f ) = Cdata( f ) + λCreg( f ), (5.27)

where f is the computed optical flow, Cdata is the data term that penalises visually
dissimilar pixel, Creg is the regularisation term that encourages spatially smooth vari-
ation of optical flow field, while λ controls the trade-off between the two terms.

We represent the discrete matching cost of a set of candidate pixels in the second
image to a corresponding pixel in the first image using a two-dimensional (2D) cost
slice. Each pixel in the first image has their respective 2D cost slices, such that the
full cost volume is four-dimensional (4D). The full discrete cost volume is used to
directly compute dense optical flow [Chen and Koltun, 2016][Xu et al., 2017]. The
four-dimensional cost volume has the size of M× N × D × D, where M× N is the
scaled down (1/3) dimension of the input images, and D is equals to 2 ∗ dmax + 1,
where dmax is the maximum pixel displacement between the two images.

The dense optical flow method we use for visual odometry task is a modified ver-
sion of the direct cost volume optical flow (DCFlow) from Xu et al. [2017]. Currently,
their method is one of the most accurate monocular dense optical flow methods for
both KITTI and Sintel dataset, with a reasonably short computational time of less
than 9 seconds. They have made the code public, and their method directly oper-
ates on the full cost volume. This allows us to make the necessary modifications to
improve the performance, and also include a function to estimate the optical flow
uncertainty. The modifications to the method are illustrated in Figure 5.3.

In most videos (e.g. the driving scene from KITTI dataset), large areas of the
image frame are covered by low or repetitive textured surfaces such as road and wall
of buildings. This makes the task of finding the correct correspondences difficult.
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Figure 5.3: The overview of our modified optical flow framework. The blue boxes
show our modifications to DCFlow [Xu et al., 2017]. The rescaling of the input image
and post-processing part of the algorithm is left out due to space restriction. More

details can be found in the text.

One way to reduce the ambiguity of the matching is by applying epipolar con-
straint into the cost function in (5.27). We encourage the correspondences to be close
to the epipolar line by increasing the cost of finding a match far from the line. This is
accomplished as follows. First, Shi-Tomasi corner features tracked by Kanade-Lucas-
Tomasi (KLT) algorithm [Shi and Tomasi, 1994], are used as sparse correspondences
for the well known eight-point algorithm [Hartley, 1997] to obtain an initial estimate
of the Fundamental matrix. A truncated L2 cost is added to the cost volume to
enforce the epipolar constraint based on the computed Fundamental matrix.

When the pixel in the first image corresponds to a static point of the scene, the
cost of finding the match far away from the epipolar line is increased proportionately
to squared distance. Conversely, when a pixel in the first image corresponds to a
point on a moving object, a truncated cost is applied. This helps to avoid matches
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that satisfy the epipolar constraint but are visually dissimilar to be wrongly selected.
The epipolar constraint is added to the cost function before regularisation is ap-

plied. Figure 5.4 shows an example of the epipolar constraint being added to one of
the cost volume slices.

Figure 5.4: Example illustrating epipolar constraint added to a cost slice (before
spatial smoothness regularisation step). From top to bottom: (a) first image with
a pixel marked by a green star; (b) second image with a bounding box enclosing
the candidate matching pixels for the pixel marked in the first image; (c) cost slices
representing the matching cost of corresponding candidate matching pixels with ad-
dition of truncated epipolar cost. Note that the candidate matching pixels outside
the boundary of the image is assigned a fixed cost (blue colour at the bottom of the

cost slices).

5.3.2 Uncertainty Estimation

Like most state-of-the-art optical flow methods, DCFlow [Xu et al., 2017] implicitly
assumes each correspondence has a homogeneous, isotropic Gaussian uncertainty.
However, the uncertainty of each correspondence can have different magnitude and
correlation, thus heteroscedastic, depending on the visual similarity of neighbouring
pixels. Figure 5.5 illustrates an example of a matching cost slice, in which the neg-
ative logarithm of a unimodal Gaussian distribution is fitted to the optic flow cost
output.
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Figure 5.5: An example showing the uncertainty fitting of negative logarithm of a
bivariate Gaussian to a matching cost slice (after spatial smoothness regularisation
step). From left to right: (a) 2D cost slice, (b) the approximate 2D cost slice using 2D

Gaussian fitting.

For a general two-dimensional Gaussian distribution, we know that the negative
logarithm of the likelihood function is half of the squared Mahalanobis distance. The
squared Mahalanobis distance, d2

M can be computed as [Mahalanobis, 1936]

d2
M(x|µ, P) = (x− µ)TP−1(x− µ) (5.28)

dM
2 =

[
x y

] [Ỹxx Ỹxy

Ỹxy Ỹyy

] [
x
y

]
(5.29)

= Ỹxxx2 + 2Ỹxyxy + Ỹyyy2, (5.30)

where x is the vector representing the coordinates of a point, µ is the vector repre-
senting the coordinates of the mean (optical flow) of the Gaussian distribution, and
P is the covariance matrix of the Gaussian distribution.

The elements of information matrix, Y can then be computed using linear least
square equation as 

x1
2 2x1y1 y1

2

x2
2 2x2y2 y2

2

...
xN

2 2xNyN yN
2


︸ ︷︷ ︸

A

Ỹxx

Ỹxy

Ỹyy


︸ ︷︷ ︸

Y

=


d1

2

d2
2

...
dN

2


︸ ︷︷ ︸

d

∴ Y = (AT A)−1ATd.

(5.31)

DCFlow computes the matching cost efficiently by using (1− f1 · f2), where f1
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and f2 are the unit vectors representing the image feature descriptor. This results
in a matching cost value between 0 (visually similar) and 1 (visually dissimilar).
However, the negative logarithm of a Gaussian likelihood function has value between
0 to infinity. Thus, we can exclude pixels with high cost from our Gaussian fitting by
only using pixels with a matching cost below a set threshold.

Similar to most top performance optical flow method, DCFlow has a post-processing
step to remove unreliable matches from the semi-dense correspondences before EpicFlow
[Revaud et al., 2015] interpolation. This is accomplished by computing the forward
and backward optical flow, and removing those matches that do not satisfy the
forward-backward consistency. This post-processing step changes the uncertainty
estimate such that the correspondences that got removed should be assigned a high
uncertainty. We replace those values with the maximum uncertainty of the optical
flow estimate.

These provide us with a three channels (Ỹxx, Ỹxy, Ỹyy), floating-point image en-
coding the information matrix for every pixel correspondences for the scaled-down
pair of RGB input images. We can scale the uncertainty image back to the original
resolution by applying an image resize operation. First, the information matrix pa-
rameters are converted to covariance parameters, which is scaled up to the original
image resolution, followed by a multiplication of 9 (squared of image rescaling fac-
tor). The scaled-up covariance parameters are then converted back to information
matrix following matrix inverse.

The estimated uncertainty can also be used to determine if the two input images
are visually similar, which will be helpful when computing the loop closure con-
straints (section 5.5). If the two input images belong to the same scene, most of their
local neighbours will have similar optical flow magnitude and direction. Regulari-
sation step will then shrink the region of possible matching locations, and thus, the
uncertainty decreases. On the other hand, if the two input images belong to different
scenes, local neighbours may have very different optical flow magnitude and direc-
tion. Regularisation step will not be able to shrink the region of possible matching
location, and the uncertainty is high. This is illustrated in Figure 5.6.

5.4 Robust Visual Odometry (SLAM Front-end)

The dense optical flow, dense depth estimate (prior) and their uncertainty are used to
estimate the inter-frame motion. The dense optical flow correspondences are treated
like conventional sparse feature matches, while the optical flow uncertainty is used
during the sampling step of RANSAC, and also to apply a weighting to their corre-
sponding equation in our Mahalanobis eight-point algorithm.

The method to accurately recover the scale of the motion is also presented. The
accurate inter-frame motion estimate is obtained from fusing the Mahalanobis eight-
point algorithm result and perspective-n-points result.

A new method to efficiently fuse two given depth map (triangulated scene points)
is also presented, where the previous depth map estimate is fused with the current
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Figure 5.6: Example of estimated optical flow and uncertainty magnitude. From
top to bottom: first input image, second input image, optical flow, estimated infor-
mation matrix. Left column corresponds to sequential images, while right column
corresponds to two input images with high structural similarity (SSIM) index, but
is not of the same scene. Black colour for information matrix values corresponds to

high covariance (unreliable) pixels.

estimate to obtain more accurate depth map result. The depth map is then propa-
gated to the next frame for future computation.

Ways to determine and handle small motion in the video sequences are also dis-
cussed in the following subsections.

Remark 5.1. Note that unless otherwise stated, the estimated poses, reconstructed 3D points
and 3D points uncertainty are all expressed with respect to the previous frame. For example,
at current time, a new image frame with index t is captured, we fix the coordinate frame at
the pose of frame t− 1, with z-axis pointing forward, x-axis points to the right, y-axis points
downward, and the origin at the centre of the camera at frame t− 1.

5.4.1 Mahalanobis 8-points Algorithm

From a pair of input images, we can find a set of matching pixels xi ↔ xi
′. Then, the

fundamental matrix F satisfies
x′i

T Fxi = 0. (5.32)

Each matching pixel provides a linear constraint on the elements of F. Since
the scale of F can be arbitrary, the solution of F can be computed using 8 sets of
matching pixels. A vector of length 9 is used to represent all the elements of the
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Fundamental matrix. Given n pairs of matching image features, the linear constraints
can be concatenated into a matrix form as

A f =

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0. (5.33)

The solution of f is then computed as the null space of matrix A. When more
than 8 noisy matching pixels are provided as input, RANSAC is applied to identify
reliable matches (inliers) to compute F. Given the inlier set, the solution of f is then
refined by computing the corresponding right singular vector of A with the smallest
singular value. This is the well-known eight-point algorithm, where sparse feature
matches are typically used.

However, solving the null space of equation (5.33) only minimises the algebraic
error ||x′T Fx||, which does not guarantees the minimisation of a meaningful geo-
metrical distance. One well-known method minimises the Sampson distance [Torr
and Zisserman, 1998; Zhang, 1998], which modifies the the rows of matrix A by a
multiplicative scaling, such that

A f =

 φx′1x1 φx′1y1 φx′1 φy′1x1 φy′1y1 φy′1 φx1 φy1 φ1
...

...
...

...
...

...
...

...
...

φnx′nxn φnx′nyn φnx′n φny′nxn φny′nyn φny′n φnxn φnyn φn

 f = 0,

(5.34)
where

φi =
1√

(F̃xi)
2
1 + (F̃xi)

2
2 + (F̃Tx′i)

2
1 + (F̃Tx′i)

2
2

, (5.35)

and F̃ is the iteratively refined Fundamental matrix that is first initialised by com-
puting the null space of A from (5.33). The rank 2 constraint is also enforced on the
solution to obtain the final estimate of F.

Instead of enforcing the rank 2 constraint at the end similar to the eight point
algorithm, there are also nonlinear methods that enforce additional constraints from
the start. These methods require less matching points to estimate F. For example,
five-point algorithm [Nister, 2004][Li and Hartley, 2006], six-point algorithm [Schaf-
falitzky et al., 2000], and seven-point algorithm [Hartley and Zisserman, 2003] has
been proposed. However, we will focus on eight-point algorithm as the computation
is the most straight forward.

Also, unlike most existing work (e.g. [Raguram et al., 2009]), where the error of the
matching pixels’ location is assumed to be isotropic Gaussian with equal variance, we
propose a new algorithm to estimate inter-frame motion that uses dense optical flow
with non-isotropic pixel error (uncertainty). Dense optical flow correspondences are
treated similar to sparse feature matches in conventional eight-point algorithm. In
the modified RANSAC step, the uncertainty (square root of trace of the covariance
matrix) of the optical flow is used to guide the sampling of the matches by increasing
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Figure 5.7: Illustrative figure showing an image feature pixel x represented as a
2-dimensional random variable with mean µ and covariance matrix P, the epipolar
line is represented as a straight line l with equation ax + by + c = 0, min(dM) is the
minimum Mahalanobis distance, while min(dE) is the minimum Euclidean distance.

the likelihood of selecting correspondences (or matches) with a lower uncertainty.
This is accomplished using multinomial resampling method [Douc and Cappe, 2005]
commonly used in particle filter, which helps in decreasing the required number of
iterations to ensure good inlier set selection.

We determine the inlier set by using both the Euclidean distance and Mahalanobis
distance. The inlier must be within a threshold distance (both Euclidean and Maha-
lanobis) from the epipolar line. We choose the inlier set that minimises the sum of
truncated distance from the epipolar line.

The optical flow uncertainty is also used to apply a weighting to each equation
(row of matrix A) during the refinement step of the Mahalanobis eight-point al-
gorithm. This ensures that the solution of the Fundamental matrix minimises the
squared Mahalanobis distance to all the inlier correspondences with respect to their
individual uncertainty. This is illustrated in Figure 5.7.

Similar to Sampson distance, this is accomplished by applying a multiplicative
scaling to each row, such that the weights in (5.34) are

φi =

√√√√ ỸxxỸyy − Ỹ2
xy

(F̃xi)1
2Ỹyy + (F̃xi)2

2Ỹxx − 2(F̃xi)1(F̃xi)2Ỹxy
, (5.36)

where the notation (v)k is the kth element of the vector v. (see Appendix 5.9 for
proof)

Similar to the Sampson distance method, F̃ is the iteratively refined Fundamental
matrix that is first initialised by computing the null space of A from (5.33). The
refinement step is performed for 5 iterations to ensure convergence. The method is
named as Mahalanobis eight-point algorithm, and it is detailed in Algorithm 5.

From the estimated Fundamental matrix F and intrinsic camera matrix K, the
essential matrix E is recovered as

E = K′T FK. (5.37)
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Algorithm 5: Mahalanobis eight-point algorithm for inter-frame motion estima-
tion

Data: Dense correspondences {m1, m2} from optical flow, uncertainty of
correspondences {Y}, intrinsic camera parameters K

Result: Inter-frame motion, R and t (translation has unknown scale)

1 initialization ;
2 Compute normalised correspondences {m̂1, m̂2};
3 for r = 1:N do
4 Find random 8 correspondences (with higher chance of selecting

correspondences with lower uncertainty);
5 Estimate Fundamental matrix F (normalised eight-point algorithm);
6 Compute Euclidean distance dE and Mahalanobis distance dM from

epipolar lines;
7 Find outliers, where dE > τ or dM > τ;
8 Find number of inliers n;
9 Compute truncated Mahalanobis distance dT, where outlier has a fixed

distance of τ;
10 if sum(dT) < dprev. then
11 Assign dprev. = sum(dT);
12 Assign Fest = F;
13 Assign inlier set to the new inlier set;
14 end
15 if r > (log(1− 0.9999)/log(1− (n/ntotal)

8)) and r > 10 then
16 break;
17 end
18 end
19 for r = 1:5 do
20 Refine Fest by weighing all inliers equations with their corresponding

weighing factor (φi from equation (5.36);
21 end
22 Denormalise Fest and fit to the closest rank 2 matrix;
23 Estimate Essential matrix E;
24 Make E has singular values of [1,1,0];
25 Extract two possible rotations and translations from E;
26 Use chirality constraint to find the correct R and t;
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The camera pose is represented using extrinsic camera matrix

Tex =

[
R t
0T 1

]
, (5.38)

and it is related to the essential matrix by

E = [t]×R, (5.39)

where the extrinsic camera matrix (with translational scale ambiguity) is recovered
following Theorem 2.12.

5.4.2 Scale Estimation

Unlike stereo visual odometry, the translational scale cannot easily be recovered due
to the lack of a reliable reference (i.e. fixed, known stereo baseline). Thus, we can only
estimate the scale by relying on other assumptions. The most common assumption
used by monocular visual odometry is that the camera moves at a fixed height from a
roughly planar ground. This is a good assumption for video sequence captured from
any ground-based vehicle or robot. However, this does not apply to videos captured
from an aerial vehicle (e.g. unmanned aerial vehicle (UAV)). The scale must then be
determined using other methods. Two methods to recover the scale are proposed as
follows.

Firstly, the scale can be determined by fitting a plane through the 3D recon-
structed points that are roughly parallel to the zx (forward-right) plane of the camera
axis. Assuming the ground is visible roughly in the middle of the image, we use the
reconstructed points below the camera (y coordinate of the 3D points is positive),
and not too far to the side (image coordinate x within half the image width from
the centre) of the camera. Plane fitting provides us with a plane equation satisfying
ax + by + cz + d = 0. The height of the plane with respect to 1 unit of inter-frame
translation is then equals to −d/b. If the height of the camera, h is known (calibrated
from training data, or estimated throughout the motion), the scale of the inter-frame
translation s can be computed as s = −(bh)/d.

Secondly, the translational scale can also be recovered by computing the multi-
plicative factor that relates the current and previously computed depth map. The
median of the multiplicative factor between corresponding depth values provides a
robust translational scale estimate.

For ground-based vehicle/robot, we can combine the scale estimated from the
ground height and depth map using a simple average. For aerial vehicle (UAV), we
cannot ensure that the height from the ground is fixed, and thus, we estimate the
scale using ground height for the first frame, and relies on the scale from the depth
map for subsequent frames.

The height of the camera is also constantly being updated using the reconstructed
3D points of the scene, which is only used to reinitialise the translational scale when
not enough (< 5%) 3D points from the previous estimate overlaps the current trian-
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gulated points.
The estimated scale is then multiplied to the estimated camera translation, 3D

reconstructed points, depth map and uncertainty. The information matrix of the
reconstructed 3D points are divided by the squared scale.

5.4.3 Inter-frame Pose Fusion

Given the dense optical flow, there are two methods to estimate the inter-frame
pose/motion. One method is by using the Mahalanobis eight-point algorithm (Sec-
tion 5.4.1) along with the estimated scale (Section 5.4.2). Another method is by using
the perspective-n-point (PnP) method [Gao et al., 2003]. PnP uses the 2D motion
of the pixels (from optical flow), 3D location of the corresponding points (estimated
from 3D reconstruction) and intrinsic camera parameter to estimate the motion of
the camera.

We can improve the performance of PnP method by discarding unreliable corre-
spondences as input. We propose to use only pixels that have the following proper-
ties:

• standard deviation of the depth is less than 0.3 times the estimated depth

• square root of the trace of optical flow covariance matrix is less than
√

2

We then propose to fuse the two estimated poses by doing a simple average,
where rotation Rave and translation tave are handled separately as

Rave = R1 exp
(

log(R1
TR2)

2

)
, tave =

t1 + t2

2
, (5.40)

where exp is the matrix exponential function, while log is the matrix logarithm func-
tion [Moakher, 2002].

When a lot of the depth values have not converged to an accurate value, the
PnP estimate may return an error prone result. Thus, we only perform the fusion
when the difference in the estimated translation scale is within 30% of the scale
estimated in Section 5.4.2, and the estimated rotations has a difference less than 0.5
radians. If either of these conditions are not met, we use the pose estimated from the
Mahalanobis eight-point algorithm (Section 5.4.1) instead.

The 3D scene points are re-estimated as discussed in Section 5.2 using the fused
camera pose estimate.

5.4.4 3D Scene Points Fusion and Propagation

Two independent estimates of the 3D scene reconstruction can be obtained for the
previous frame t− 1, where one is estimated from frame t− 2 and t− 1, while the
second is estimated from frame t− 1 and t. We propose a simple method to fuse the
two 3D scene estimate as follows.
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In the 3D reconstruction step, we do not use outlier correspondences (identified
during Mahalanobis eight-point algorithm) because they may be points on moving
objects (e.g. cars) or error prone correspondences (e.g. occluded or out-of-view pix-
els). This results in a reconstruction with some missing information.

We can perform data fusion for pixels that are triangulated for both pairs of input
frames as follows. Given the means (χ̂1 and χ̂2) and their corresponding information
matrix (Y1 and Y2), let

χ̂1 =

x1

y1
z1

 , χ̂2 =

x2

y2
z2

 (5.41)

Y1 =

Y1,xx Y1,xy Y1,xz
Y1,xy Y1,yy Y1,yz
Y1,xz Y1,yz Y1,zz

 , Y2 =

Y2,xx Y2,xy Y2,xz

Y2,xy Y2,yy Y2,yz

Y2,xz Y2,yz Y2,zz

 . (5.42)

Similar to equation (5.18), we can transform these information using the paramet-
ric form, where the fusion simplifies to element-wise addition as PT = P1

T + P2
T.

The pixels that are triangulated for only one of the input pairs of image are
assigned the mean and information matrix of the respective triangulation result.

The fused depth map and reconstructed scene points for the previous frame (t−
1) can also be propagated to the current image frame (t). This provides a prior 3D
scene information for the next image frame. Given the computed camera extrinsic
matrix Tex, the homogeneous 3D points in the previous frame χ̂t−1 are propagated
to the current image χ̂t as

χ̂t = Texχ̂t−1. (5.43)

The corresponding pixel locations of the propagated 3D scene points χ̂t are then
projected into the image coordinate using the intrinsic camera parameter matrix K,
such that

qt = round(Kχ̂t/χ̂t[3]), (5.44)

where round is the rounding to the nearest integer function, and χ̂t[3] is the third
element (z-coordinate) of the 3D scene point.

We place an upper bound on the memory requirement of our algorithm by only
storing 3D scene points in the visible region of the scene, where points that got
mapped outside of the image boundary are discarded. Multiple 3D points that got
mapped to the same pixel location are also discarded. These are points that are
either occluded or are outside the field of view of the camera, which are less reliable
to track.

The information matrices are also propagated to the current frame by multiplica-
tion of the extrinsic camera rotation as

Y t = RexY t−1Rex
T. (5.45)
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5.4.5 Small Motion Handling

The use of scaled-down images (one-third the original scale) for dense optical flow
estimation cannot guarantee the accuracy of the matches when the pixel translation
between two images is too small. This occurs when the vehicle moves very slowly
or stops completely, causing the motion estimation to be error-prone. Small transla-
tional motion estimation is a common problem in most monocular visual odometry.
This is because small parallax between two images leads to difficulty in estimating
both motion and structure accurately.

We determine if the inter-frame motion is big enough using two separate condi-
tions. First, the Shi-Tomasi corner matches have a median displacement magnitude
of at least 2.5 pixels. Secondly, the third quantile (75%) of the computed optical
flow has a magnitude greater than 5. If either of the two conditions is not met, the
inter-frame motion is computed using perspective-n-points (PnP) method by using
the previously computed depth and the motion of the corresponding pixels (optical
flow).

5.4.6 Global Camera Pose Estimate

We can compute the global camera pose at the current frame Tt using the inter-frame
camera pose expressed as camera extrinsic parameters (Rex and tex) as follows. Let

Tex =

[
Rex tex

0 1

]
, (5.46)

where 0 = [0, 0, 0].
Then,

Tt = Tt−1Tex
−1, (5.47)

where Tt−1 is the camera pose of the previous frame (t− 1).

5.5 Robust Loop Closure (SLAM Back-end)

Loop closure is possible when a previously visited location is revisited. We determine
the candidate frames for loop closure in three steps. The first step is by selecting
frames with their estimated poses to be less than a fixed (metric) distance away, while
having a difference in frame index no less than a threshold value. The minimum
frame index difference is enforced to prevent finding too many candidates within
neighbouring frames. We can further reduce the possible candidates by only finding
candidate loop closure images for every 10 frames.

The second step is to determine which of the candidate loop closure images are
valid, by using the structural similarity index (SSIM) [Wang et al., 2004]. We discard
any images that have a SSIM index less than a set threshold (experimentally set to
0.38), and keep a maximum of three candidate images with the highest SSIM index.
Lastly, the dense optical flow between the images and their possible neighbours are
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computed. The estimated uncertainty is used to determine if the optical flow is
reliable, and only compute their inter-frame motion when the percentage of matches
with an uncertainty less than a set threshold is greater than 20% (an example is
shown in Figure 5.6). During the loop closure, the inter-frame motion estimation
step also checks for the small motion conditions as discussed in previous sections.
This provides us with close loop constraints that links temporally far away poses that
are spatially close to each other.

Loop closure is accomplished by using the robust linear pose graph-based opti-
misation method from Cheng et al. [2015]. Similar to other pose graph SLAM, their
method treats all poses of the vehicle or robot as vertices, and inter-pose constraints
(e.g. odometry and close loop constraints) as edges. The linear pose graph-based
optimisation minimises the cost function,

min
{xi}

∑
i

∑
j

cij||(zij − h(xi, xj))||I , (5.48)

where cij is a scalar weight, zij is the loop closure pose constraint between time i and
j, h(·, ·) is the nonlinear function that computes the relative pose between the two
input, xi and xj are the estimated poses at time i and j respectively.

Their method is used due to the method’s robustness of handling outliers in the
loop closure constraints, and effectively discarding wrong edges, preventing incorrect
convergence result.

5.6 Algorithm overview

Flow chart in Figure 5.8 shows our proposed SLAM framework. Given a pair of con-
secutive image frames taken from a monocular camera, dense optical flow and their
corresponding uncertainty are computed. If the pixels motion is small, we directly
compute the inter-frame pose using perspective-n-point (PnP) method. Otherwise,
the inter-frame pose and 3D scene points are estimated using our proposed Maha-
lanobis eight-points and Bayesian triangulation algorithm.

The translational and 3D scene points scale are then estimated using the triangu-
lated 3D scene points, using the camera height from the ground or by matching with
previously computed depth map. For aerial video, we update the camera height
using the propagated depth map. For ground-based vehicle, the camera height is
assumed constant, where the value is calibrated from training data (1.7m for KITTI
dataset).

We then fuse the inter-frame pose estimate from our Mahalanobis eight-point
algorithm and PnP method, which is integrated to obtain the global camera pose.
The estimated 3D scene points are also fused with previous estimate, which is then
propagated to be used as a prior for the next frame.

The computed camera trajectory is then used as input to the back-end of the
SLAM framework, where loop closure constraints are enforced to reduce estimation
drift.
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Figure 5.8: Our proposed SLAM framework. Notation k is the frame number, OF is
the computed dense optical flow, R̄ and t̄ are the inter-frame pose, s̄ is the estimated
translational scale, X is the triangulated 3D scene points, R and t are the camera pose
in global coordinate frame, subscript CL represents loop closure constraints, while
subscript op represent pose-graph SLAM optimised result. The height for ground-
based vehicle is assumed constant, while aerial vehicle require frequent re-estimation

of the camera height.

5.7 Experimental Results

We evaluated our proposed SLAM framework using the well-known KITTI dataset
[Geiger et al., 2012] and our own UAV dataset. KITTI dataset shows a camera
mounted on a vehicle travelling on a roughly planar ground. The sequence 01 in
particular is a challenging highway scenario, where the vehicle is travelling at high
speed and there are few distinctive feature points within view. UAV dataset shows
a camera mounted on a quadcopter flying in a highly unstructured outdoor envi-
ronment with dynamically moving objects. The UAV also performs motions such as
(almost) pure rotation and drastic height variation. These make accurate estimation
of camera pose difficult for existing monocular visual odometry and SLAM.
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5.7.1 Ground-based Vehicle

The dataset we used to verify the performance of our proposed algorithm for ground-
based vehicle/robot is taken from KITTI benchmark. For optical flow evaluation, we
use the flow 2015 dataset [Menze and Geiger, 2015], while for the odometry, we
use the odometry dataset [Geiger et al., 2012]. For both experiments, we use the
monocular RGB images (image_2 folder). In the odometry experiment, we assume
the camera is 1.7m above the ground, with zero pitch.

Due to the post-processing part of the DCFlow code not made available, we
can only verify the optical flow result before homography fitting is applied to the
EpicFlow [Revaud et al., 2015] interpolated results. Based on KITTI 2015 optical flow
dataset, by applying our epipolar constraint on the cost volume, we achieved a 0.6%
improvement in accuracy (in terms of less than 3 pixels endpoint error criterion).
The improvement is small due to the epipolar truncation cost being set very low to
accommodate for dynamic pixels in the scene. However, we can visually observe
a noticeable improvement in the optical flow estimation for the ground pixels, not
reflected by the large (3 pixels error) KITTI accuracy metric. We also implemented a
homography fitting step based on the description of their paper.

The uncertainty estimate for the dense optical flow is visually inspected, where
it was observed that occluded, out-of-bound or textureless regions of the image have
high uncertainty value.

For ground-based vehicle’s visual odometry result, we compare our performance
with existing methods, specifically VISO2-M [Geiger et al., 2011], MLM-SFM [Song
et al., 2016], PMO [Fanani et al., 2017] and DOF-1DU+LC [Ng et al., 2017]. We
selected a few of the available sequences that contain slow moving vehicle in an urban
environment (sequence 00), fast moving vehicle on a highway (sequence 01) and
vehicle travelling in a loop (sequence 06) to gauge the performance of our proposed
methods. The results are summarised in Table 5.1 and Table 5.2.

DOF-2DU DOF-2DU+PnP DOF-2DU+PnP+LC
seq rot trans rot trans rot trans

(deg/m) (%) (deg/m) (%) (deg/m) (%)
00 0.0076 1.80 0.0067 1.57 0.0045 1.07
01 0.0082 0.97 0.0050 1.03 0.0050 1.03
06 0.0047 0.96 0.0039 1.11 0.0039 1.17

Table 5.1: Ablation study of our new proposed methods for selected KITTI dataset.
“DOF-2DU” is the pose estimate of our Mahalanobis eight-point algorithm using
dense optical flow with 2-dimensional uncertainty, “+PnP” is the fused pose estimate

with perspective-n-point, and “+LC” is the inclusion of loop closure.

Note that VISO2-M [Geiger et al., 2011] and MLM-SFM [Song et al., 2016] meth-
ods fail to estimate the visual odometry for sequence 01 due to the highly repeated
structures of the scene, which cannot be reliably matched by the sparse feature
matching technique their methods employ. Figure 5.9 shows our estimated trajec-
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VISO2-M MLM-SFM PMO DOF-1DU+LC DOF-2DU+PnP+LC
seq rot trans rot trans rot trans rot trans rot trans

(deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m) (%) (deg/m) (%)
00 0.0209 11.91 0.0048 2.04 0.0042 1.09 0.0117 2.03 0.0045 1.07
01 n/a n/a n/a n/a 0.0038 1.32 0.0107 1.149 0.0050 1.03
06 0.0157 4.74 0.0081 2.09 0.0044 1.31 0.0054 1.05 0.0039 1.17

Table 5.2: Comparison of visual odometry accuracy for VISO2-M [Geiger et al., 2011],
MLM-SFM [Song et al., 2016], PMO [Fanani et al., 2017], dense optical flow with 1D
uncertainty and loop closure (DOF-1DU+LC) [Ng et al., 2017] and our new proposed

methods (DOF-2DU+PnP+LC) for selected KITTI dataset.

tory for the vehicle’s motion.
From the estimated motion trajectory (Figure 5.9) and computed error from the

ground truth (Table 5.2), we can observe that our proposed method achieved very
accurate estimation of translation. This is achieved without using bundle adjustment,
motion model or ground segmentation used by other state-of-the-art methods. From
Table 5.1, we can also observe an improvement in the rotation estimate after fusing
the Mahalanobis eight-point algorithm and PnP result.

5.7.2 Aerial Vehicle

Since our visual odometry method does not rely on restrictive motion model of the
vehicle, we can easily apply our proposed method with slight modification to aerial
vehicles (e.g. UAV). The difference with ground-based vehicle is that the camera
height is not assumed constant, but is updated for each motion. This is because the
unmanned aerial vehicle (UAV) can change its height arbitrarily.

Another challenge of quadcopter UAV visual odometry comes from the fact that
it can rotate its yaw with no translation. This makes the pose estimation and 3D
scene reconstruction highly under-constraint and error prone. We also incorporated
such motion in the video sequences we use in our experiment.

For UAV video with fast motion and drastic height change, we manually select
12 images that are that are spatially close to each other to compute the loop clo-
sure constraints. This is because of the difficulty in identifying the same scene using
structural similarity index (SSIM), when the scene consists of highly repetitive struc-
tures and the high degrees of freedom of the UAV motion compared to ground-based
vehicle.

5.7.2.1 Small Translation with Rotation

We captured 500 frames of video from a quadcopter flying among some trees, where
the scene has highly repetitive, unstructured and dynamic objects (e.g. leaves, cars).
Due to the lack of ground truth unlike KITTI dataset, we evaluate the scale drift
by reversing the frames and appended them to the end of the video, where the last
frame coincides with the first frame. Figure 5.10 shows the result of our experiment.
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Figure 5.9: Comparison of the estimated motion trajectory and the ground truth
motion. From top left to bottom: (a) sequence 00; (b) sequence 01; (c) sequence 06.

Remark 5.2. We do not compute the loop closure constraint for this video sequence. The
result shown in Figure 5.10 is pure visual odometry.

From Figure 5.10(f), we can see that the translation scale difference remains close
to zero, which shows that the scale drift is small. We also observed sudden spikes
in the third plot, which corresponds to small motion as can be seen from the middle
plot of Figure 5.10.

As a comparison, we also evaluated VISO2-M [Geiger et al., 2011] method on the
same UAV video, using the constant camera height assumption. Figure 5.10(a)(b)(c)
shows the result. We observed that the estimated pose has very large translational
magnitude (wrong) when the quadcopter rotates the yaw with negligible transla-
tional motion (e.g. at frame 200, 150 and 100). From the third plot of Figure 5.10(c),
we can also see that although the estimated scale does not drift (due to fixed cam-
era height assumption), the estimated translational magnitude fluctuates erratically
throughout the video sequence.
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Figure 5.10: Plots evaluating the scale drift of the visual odometry on UAV video.
Left column is VISO2-M (a)(b)(c), Right column is our new method (d)(e)(f). From
top to bottom: (a,d) estimated motion trajectory; (b,e) inter-frame translation magni-
tude; (c,f) percentage scale difference (difference between the translation magnitude

divided by forward magnitude).
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5.7.2.2 Fast Motion With Drastic Height Changes

For the next experiment with UAV video, we captured 563 frames of a UAV flying
at high speed with drastic variation in height. We have also marked some trees with
yellow tapes (1m apart) to calibrate the first translational scale, and also to obtain
a measure of scale drift after the UAV returns to the same spot. The error in the
estimated position can also be visually observed by comparing the location of the
reconstructed scene points. We plot 3D scene points with a depth standard deviation
less than 0.2m for the first frame and the last frame. Figure 5.11 and Figure 5.12
shows our result.
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Figure 5.11: Estimated depth with standard deviation. From top to bottom: input
frame, estimated depth, estimated depth standard deviation. The first column is
frame 0, second column is frame 562. The scale of the colour code is in meters. Pixels
that are identified as outliers are not triangulated and appears dark red in the middle

plot.

From Figure 5.12(c), we can see that the error of the estimated camera pose and
reconstructed 3D scene points is very small. The scale drift computed from the
known distance between the tape is +5.36%. We have also computed the distance
between the farthest point from the starting location, compared to GPS measurement
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mated trajectory; (b) estimated UAV height (zero at starting height, and positive is
downwards); (c) our 3D reconstruction result of the first frame (blue) and last frame

(red).

and VISO2-M result. Result in Table 5.3 shows that our method agrees with GPS
measurement more closely compared to VISO2-M method. Thus, this verifies that
our method can accurately estimate the camera motion, regardless of the motion
dynamics of the vehicle or scene structure.

Method Distance of farthest point to origin (m)
GPS 45.81
Ours 45.50

VISO2-M 40.93

Table 5.3: Comparison of estimated distance of the farthest point from origin.
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5.8 Summary

In this chapter, a novel monocular visual SLAM method that is suitable for any
camera undergoing general SE(3) motion is described. The proposed method can be
used in a number of practical areas where an estimate of the camera location and
dense reconstruction of the scene is required. The monocular visual SLAM method
utilises dense optical flow and estimates its corresponding uncertainty, which are
then used as input to the new Mahalanobis eight-point algorithm. Based on MIGE,
a new 3D scene point triangulation method is also proposed that achieves accurate
estimate of the location and uncertainty. The performance of the new method is
evaluated using simulation and real data, and compares favourably with other state-
of-the-art methods that rely on additional assumptions on motion dynamics and
ground segmentation, assumptions which our method does not require.

The videos showing the visual SLAM results can be found in the following link:
https://www.youtube.com/watch?v=rtDui6iayLU&list=PLRKZhEGYIuwOu-mhbEJPM-V_

_WWcRCfPW.

5.9 Appendix: Proof of Mahalanobis eight-point algorithm

Given an initial Fundamental matrix estimate F, homogeneous coordinates of match-
ing pixels in both images xi and x′i. Since optical flow estimates the motion of each
pixels in the first image to the second image, the error is only present in coordinate
of the second image pixel x′i. From Figure 5.7, let mean µ = [x0, y0]T, information

matrix Y = P−1 =

[
Ỹxx Ỹxy

Ỹxy Ỹyy

]
, and a point on the line be [x1, y1]

T = [x1, −ax1−c
b ].

First, we calculate the minimum Mahalanobis distance between the line l and
the mean image feature location µ. The minimum Mahalanobis distance is equals to
the square root of the minimum squared Mahalanobis distance. The squared Maha-
lanobis distance dM

2 between the feature pixel and the epipolar line is computed as
follows.

dM
2 =

[
x1 − x0

−ax1−c
b − y0

]T [
Ỹxx Ỹxy

Ỹxy Ỹyy

] [
x1 − x0

−ax1−c
b − y0

]
(5.49)

Expanding (5.49) and computing the first derivative of dM
2 with respect to x1 equals

to zero provides us the solution of x1 where dM
2 is minimum. We then substitute

this solution of x1 back into (5.49) and apply a square root to obtain the equation of
the minimum Mahalanobis distance, min(dM) as follows.

min(dM) = |ax0 + by0 + c|

√√√√ ỸxxỸyy − Ỹ2
xy

a2Ỹyy + b2Ỹxx − 2abỸxy
(5.50)

Since the original eight point algorithm minimises |ax0 + by0 + c|, the multiplica-

https://www.youtube.com/watch?v=rtDui6iayLU&list=PLRKZhEGYIuwOu-mhbEJPM-V__WWcRCfPW
https://www.youtube.com/watch?v=rtDui6iayLU&list=PLRKZhEGYIuwOu-mhbEJPM-V__WWcRCfPW
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tive scaling is thus

φ =

√√√√ ỸxxỸyy − Ỹ2
xy

a2Ỹyy + b2Ỹxx − 2abỸxy
. (5.51)

This completes the proof.



Chapter 6

Path Smoothing

This chapter presents our new path smoothing method based on window-based
weighted average for a video stabilization application. The window-based weighted
average method is also known as convolution, which is a well known smoothing
method among the signal processing and computer vision community. It is com-
monly used to smooth noisy measurements in the Euclidean space. We extend this
method to rotation smoothing, and propose an efficient method that uses parallel
pairwise rotation averages. The key contributions of this chapter are threefold:

• The well known vector convolution method is reformulated into a set of par-
allelisable pairwise averaging tree. Similar method is then applied to perform
rotation smoothing. The pairwise averaging tree when combined with an ex-
isting method to compute weighted average of two rotations ensures that the
solution remains on the SO(3) manifold.

• The performance of the propose method is verified through extensive simu-
lation and real data experiments and compared to [Jia and Evans, 2014]. The
smoothness and deviation from input metrics proposed in [Jia and Evans, 2014]
are used to compare the performance of our methods.

• The proposed rotation smoothing method is applied to a video stabilization
task, which shows smooth camera motion with minimal black border intrusion.

The rest of the chapter is organised as follows. Section 6.1 discusses some related
work. Section 6.2 presents our reformulated vector convolution using a sequence of
parallelisable weighted pairwise average. Section 6.3 introduces our rotation smooth-
ing method similar to our reformulated vector convolution. A number of other meth-
ods with Gaussian weights are also proposed based on well known rotation averag-
ing methods. Section 6.4 shows our experimental results using simulation and real
data for video stabilization application. Finally, the chapter finishes with a summary
in Section 6.5.

105
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6.1 Related Works

A 3D pose is in the special Euclidean group SE(3), which contains the rotation and
translation component. In our review of existing translation smoothing methods,
we will look at the more widely studied works on image smoothing due to their
similarity. In particular, a sequence of translations can be interpreted as a single line
of colour image pixels. Thus, similar techniques can be applied to obtain a smooth
translational trajectory.

Gaussian convolution is the most well-known image smoothing technique in com-
puter vision community [Deng and Cahill, 1993]. A convolution can be written as

( f ∗ g)(t) =
∫ −∞

∞
f (τ)g(t− τ)dτ (6.1)

and the discrete form is

( f ∗ g)(t) =
n

∑
τ=1

f (τ)g(t− τ) (6.2)

The convolution operation can be seen as a weighted average of neighbouring
vectors. When applied to smooth a sequence of noisy input, a sliding window ap-
proach is used to compute the smoothed result.

For impulse noise, it was known that a median filter is very effective in obtaining
a smoother value [Tukey, 1977]. [Huang, 1997] used a median filter and convolutional
smoothing to remove image noise for video compression application.

Due to the relative simplicity and the mature research works that already exist,
we will not focus on proposing a new translation smoothing method. Instead, we
focus our effort on the more challenging task of designing a new method suitable for
rotation smoothing.

Unlike translation, the variable of interest in 3D rotation smoothing algorithm lies
on Special Orthogonal SO(3) manifold. In general, the solution of a simple weighted
average of SO(3) does not remain on the SO(3) manifold. Thus, more sophisticated
methods that ensures the solution remains on the manifold, or ones that project an
arbitrary point back to the manifold are required.

In order to apply similar technique as vector smoothing, we explore the litera-
ture on rotation average methods. Moakher [2002] presented a method to compute
the weighted average of two rotation matrices. An alternative method is to use ro-
tations in quaternion form to find the weighted average of two rotations, using a
method called slerp [Shoemake, 1985]. Slerp relies on linear interpolation on non-
unique quaternion representation (q = −q), which suffers from rotation direction
potentially changing abruptly. This means that the weighted average found using
slerp may not lie on the shortest geodesic curve between the two rotations. Thus, the
weighted average using rotation matrices is more suitable and stable.

On the other hand, an iterative algorithm to compute the Geodesic L2 mean of
multiple rotational matrices was presented in Hartley et al. [2011, 2012]. Suppose Ri
is the input rotations matrix within a sliding window, and R is the smoothed rotation
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matrix in the middle of the window. Then, the rotation minimizing cost function for

Geodesic L2 mean is, C(R) =
n
∑

i=1
d∠(R, Ri)

2. Geodesic L2 Mean is also known as the

Karcher mean of rotations, or the geometric mean [Moakher, 2002].
In addition, Geodesic Lq Mean can be found by using Iteratively Reweighted Least

Square (IRLS) Method. IRLS is also called the Lq Weiszfeld Algorithm [Aftab et al.,

2015]. It is a method that minimises the cost function, Cq(R) =
n
∑

i=1
d∠(R, Ri)

q. As the

name suggests, it relies on the iterative Geodesic L2 Mean algorithm by adding an
extra reweighing factor, wi = d∠(R, Ri)

q−2. This reweighing for different R and Ri
pair changes the gradient descent Geodesic L2 Mean method to solve for Geodesic
Lq Mean instead. The distance, d∠(R, Ri) = (1/

√
2)|| log(R−1Ri)||F, where || ∗ ||F

is the Frobenius norm of the matrix, and the scaling (1/
√

2) ensures that d∠(∗, ∗)
represents the angular distance between the two rotations.

When q = 1, the algorithm finds the Geodesic L1 Mean solution, which is known
to be more robust against outliers in the input. However, Geodesic L1 mean computa-
tion is also known to be slower than Geodesic L2 mean, and there is also a possibility
of the solution getting stuck when R is equal to one of the input, Rj ∈ Ri. [Aftab
et al., 2015] When R is equal to one of the input Rj, the weighing factor, wj (in Al-
gorithm 8) becomes 1

0 = ∞. Thus, all the other weighing factors will be insignificant
compared to the weighing factor of Rj, and the rotation will be unchanged.

We can partially overcome the slow convergence by choosing 1 < q < 2, as
discussed by Aftab et al. [2015]. However, this does not solve the problem of the
solution getting stuck when R is equal to Rj, because wj still approaches ∞ as R
approaches Rj, albeit at a slower rate.

Like all iterative algorithms, there needs to be a good initial estimate of R. As
suggested by Aftab et al. [2015], the initial estimate can be found by Chordal L2

Mean, which has a closed-form solution.
Chordal L2 Mean is defined as the rotation which minimises the cost, C(R) =

n
∑

i=1
dchord(R, Ri)

2. It is also named the projected or induced arithmetic mean [Moakher,

2002; Sarlette and Sepulchre, 2009]. The algorithm to compute Chordal L2 Mean is
given by Hartley et al. [2012], which uses Singular Value Decomposition (SVD) in-
stead of polar decomposition used in [Moakher, 2002; Sarlette and Sepulchre, 2009].
Reprojecting the algebraic sum of the rotational matrices onto the orthogonal SO(3)
manifold is also called the Orthogonal Procusthes Problem [Schönemann, 1966] [Ev-
erson, 1997].

Other cost functions have also been proposed to smooth an input sequence of
rotations. Jia and Evans [2014] proposed to minimise the cost function

min
{Ri}

N

∑
i=1

d(R̃i, Ri) + α
N−1

∑
i=1

d(Ri, Ri+1), (6.3)

where d(∗, ∗) is any suitable distance metric in SO(3), α is the scalar factor controlling
the smoothness of the output trajectory (a trade-off against deviation from input - the



108 Path Smoothing

first summation term in the cost function), R̃i is the input (measured) orientation at
the ith instance, Ri is the smoothed orientation at the ith instance.

After a cost function is specified, it can be optimised using iterative methods
like gradient descent [Hartley et al., 2011], Newton’s method [Jia and Evans, 2013],
Lagrangian Duality [Fredriksson and Olsson, 2013], or Iteratively Reweighted Least
Square [Aftab et al., 2015; Chatterjee and Govindu, 2013].

On the other hand, there are also works based on stochastic filtering methods
[Ertürk, 2002; Glover and Kaelbling, 2013]. However, the SO(3) manifold is not con-
vex. Thus, stochastic filtering method requires an unbiased prior, which is not always
available in practice. Also, due to the “future measurements” not being used, the out-
put of stochastic filtering methods may produce a result that has a bigger bias from
the actual motion compared to methods that uses that extra information.

In comparison, we proposed a new efficient rotation smoothing method that is
inspired by the Gaussian convolution method commonly used for vector smoothing.
The weight assigned to the middle of the sliding window is the highest, and de-
creases to zero the farther away it is from the middle. This ensures that the solution
stays close to the input rotation, following the assumption that close-by neighbours
tend to have a similar orientation. The weighted average of rotation is then computed
efficiently using the proposed pairwise weighted averaging tree.

6.2 Translation smoothing

For translation smoothing, we use the well established method of window-based
weighted average, which is also known as convolution method. The vector con-
volution is reformulated into a sequence of pairwise weighted averages, which are
parallelisable for faster computation.

6.2.1 Pairwise Gaussian Weighted Average of 2n Vectors

A Gaussian filter kernel can be calculated using

G(t|µ, σ2) =
1√

2πσ2
e−

(t−µ)2

2σ2 . (6.4)

For a discrete case, to ensure that the resulting filtered signal has the same scale
as the original, we can make sure that the elements of the kernel sum to 1 by a simple
normalisation, such that

Gnorm(t|µ, σ2) =
G(t|µ, σ2)

∑(G(t|µ, σ2))
. (6.5)

The Gaussian Kernel values are calculated by using t with equal spacing, centred
around zero (µ = 0). Otherwise, for temporally invariant Gaussian Kernel, the value
of t is set to the time at each measurement, and µ is the time of the middle entry of
the input (mean of Gaussian distribution).
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We then introduce a method to rearrange a normalised weighted sum of two
vectors, into a form similar to the equation of weighted average of two rotations as
shown in (6.9).

A normalised weighted sum of two vectors (x1, x2) with different weighing factor
(g1, g2) is equivalent to the difference in value x2 − x1 multiplied by the ratio of the
weighing factor of x2 to the total weighing factor, added to x1. The derivation is
included as

1
g1 + g2

(g1x1 + g2x2) =
1

g1 + g2
((g1 + g2)x1 + g2(x2 − x1)) (6.6)

= x1 +
g2

g1 + g2
(x2 − x1) (6.7)

= x1 + λ(−x1 + x2). (6.8)

We propose that the weighted average of 2n vectors can be decomposed into a
sequence of pairwise averages. This will be useful in the next section. The operation
can be illustrated as shown in Figure 6.1.

Figure 6.1: 2n Averaging Tree

Each arrow in Figure 6.1 shows a normalised weighted average operation between
two vectors. The updated weighing factor of each average operation is the sum of
the corresponding weighing factors of that average.

This method is equivalent to a weighted averaging filter (convolution), with win-
dow size of 2n, which is capable of smoothing an otherwise noisy input vector (e.g.
translational component of SE(3)).

6.3 Rotation smoothing

Here, a number of window-based rotation smoothing methods are proposed. They
are designed to operate on orthogonal rotational matrices.
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Figure 6.2: 2n Weighted Averaging Tree, with their weight, λ in (6.9) shown below
the nodes

6.3.1 Gaussian Weighted Average of 2n Rotations

The weighted average of two rotations, which lies on the shortest geodesic curve
connecting the two rotations can be calculated as follows.

RweightedAve = R1.exp(λ.log(RT
1 R2)) (6.9)

where, log(∗) is the matrix logarithm, and exp(∗) is the matrix exponential. The
exponential and logarithm of the rotation group are also discussed in Moakher’s
paper [Moakher, 2002].

In the rest of this section, we propose a generalised method to perform weighted
average of multiple rotations deterministically.

In order to find a weighted average of rotations in a window size of 2n, a method
similar to that presented in Section 6.2.1 may be used. Instead of vectors, each circle
(node) represents a rotation. This is well defined because the weighted average of
two input rotations can be calculated exactly using (6.9).

Similar to weighted average of 2n vectors, only the ratio of their corresponding
weight matters. After each pairwise average, their resulting weighing factor is equiv-
alent to the sum of their corresponding weights. Figure 6.2 illustrates this concept
with an example.

With this generalised method in finding the weighted average of 2n rotations, we
can then do Gaussian filtering in a similar way to the vector case (Section 6.2.1).

Although for the case of rotation, Bingham Distribution is more appropriate due
to the wrap around effect, but as discussed in [Kurz et al., 2013], it was shown that
for standard deviation less than 11◦, Gaussian Distribution is a good approximation.

It is also noted that there is a need to account for the delay introduced by the
filter, which is equivalent to 2n+1

2 , as can be seen from the graph in Figure 6.1. The
resulting average is thus a value for rotation between the forth and fifth values used.

In order to reposition the averaged value to align to an input time interval, we
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Figure 6.3: 2n Averaging Tree with Value Reposition

can do another average between subsequent averaged value as shown in Figure 6.3.
This is equivalent to an interpolation step of the two consecutive rotation averages.

The red circles are the values used and computed for one time step after the blue
circles, and the purple value is the repositioned average (which is aligned to the fifth
input value).

By combining the proposed pairwise weighted average of 2n rotations and the
Gaussian Filter technique, we have found a way to smooth a sequence of 3D rotation
data.

It is noted that every layer (or level) contains completely independent compu-
tations of pairwise rotation averaging. Thus, they are parallelisable for faster com-
putation. For example, Figure 6.3 shows window size of 9, and there are a total
of 15 pairwise averages, but after parallelisation, only 4 dependent levels are left (a
potential for 3.75× shorter computation time).

We can summarise the pairwise method in Algorithm 6 as follows.

Algorithm 6: Gaussian Weighted Pairwise Average on SO(3)
Data: Given a sequence of rotations {Rk}
Result: Smooth rotations {R̃k}

1 while time k is increasing do
2 for Level 1 parallel loop do
3 Compute Rlvl1,i = R2i−1 exp(gi. log(RT

1+2iR2i)) , where i ∈ [1, N], and N
is half the window size ;

4 end
5 for Level 2 parallel loop do
6 Compute Rlvl2,i = Rlvl1,2i−1 exp(λi. log(RT

lvl1,1+2iRlvl1,2i)) , where λ is the
updated weighing factor (Fig. 6.2)

7 end
8 ... (more parallel loops until the last two averages) ;
9 end
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6.3.2 Gaussian Weighted Geodesic L2 Mean

We have also explored the possibility of using different weighing factors, gi when
doing the iterative Geodesic L2 distance minimisation. In essence, we just modify
the 3rd line of Algorithm 1 in [Hartley et al., 2012]. The new method is shown in
Algorithm 7.

Algorithm 7: Gaussian Weighted Geodesic L2 Mean on SO(3)
Data: Given a sequence of rotations {Rk}
Result: Smooth rotations {R̃k}

1 while time k is increasing do
2 Set R := Rmid. Choose a tolerance ε > 0 ;
3 while true do

4 Compute S :=
n
∑

i=1
gi. log(RTRi) ;

5 if ||S|| < ε then
6 return R̃k = R ;
7 end
8 Update R := R. exp(S) ;
9 end

10 end

6.3.3 Gaussian Weighted Geodesic Lq Mean

Similar to Weighted Geodesic L2 Mean, we can add an extra weighing factor, gi to
the Geodesic Lq Mean. The resulting algorithm is given in Algorithm 8.

Algorithm 8: Gaussian Weighted Geodesic Lq Mean on SO(3)
Data: Given a sequence of rotations {Rk}
Result: Smooth rotations {R̃k}

1 while time k is increasing do
2 Set R := Rinitial . Choose a tolerance ε > 0 ;
3 while true do

4 Compute S :=
(

n
∑

i=1
gi.wi. log(RTRi)

)
/ (∑n

i=1 wi), where,

wi = (d∠(R, Ri))
q−2 ;

5 if ||S|| < ε then
6 return R̃k = R ;
7 end
8 Update R := R. exp(S) ;
9 end

10 end
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6.3.4 Gaussian Weighted Chordal L2 Mean

Instead of a simple algebraic sum in the original Chordal L2 Mean, we can do a
weighted sum instead. The newly defined Ce is as shown in Line 1 of Algorithm 9.

Algorithm 9: Gaussian Weighted Chordal L2 Mean on SO(3)
Data: Given a sequence of rotations {Rk}
Result: Smooth rotations {R̃k}

1 while time k is increasing do

2 Compute Ce =
n
∑

i=1
gi.Ri ∈ R3×3 ;

3 Compute SVD, Ce = U D V T, where diagonal elements of D is arranged
in descending order ;

4 if det(UV T) ≥ 0 then
5 Rk = UV T ;
6 else
7 Rk = U.diag([1, 1,−1]).V T ;
8 end
9 end

The addition of Gaussian weighs to the Chordal L2 Mean method makes the
algorithm more robust against averaging large angular motion, because the weight
given to the middle of the window is higher than those further to the edges. Thus,
preserving the continuity of the motion.

The results using our Pairwise Average method, Jia and Evan’s method, the
Weighted Geodesic L2 Mean method, and other window-based methods discussed
are presented and compared in Section 6.4.

6.4 Experimental Results

Simulation is performed to evaluate the performance of our proposed rotation smooth-
ing method. Real data experiments were also conducted by using rotation estimated
from inertial sensor. The smoothed rotational trajectory is then applied to video
stabilization task.

6.4.1 Simulation

The simulated ground truth data is obtained by having a combination of sinusoidal
and constant change in each ’ZYX’ rotation angles (simulated smooth motion), then a
Gaussian noise with standard deviation of 0.1 radian is added to each of the rotation
angles. This is then transformed into Rotation matrix using MATLAB’s in-build
function, angle2dcm to obtain the simulated noisy input.

To represent the smoothness of the rotation (orientation) sequence, in Figure 6.4
we plotted the relative rotational angle (distance metric chosen) between consecutive
orientations.
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Figure 6.4: Simulation Result of Relative Rotational Angle of Consecutive Orien-
tations, Window Size = 65, Standard Deviation = 8. From left to right: (a) Whole

sequence; (b) Zoom in.
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From Figure 6.4, we can see that our method has successfully produce a smoothed
orientation data (red) very close to the ground truth (black).

In order to determine how close our Pairwise method approximate Geodesic L2

mean, we can check the norm of r in Line 3 of Algorithm 7. In Figure 6.5, we can
see that the Pairwise average method is accurate up to a tolerance, ε < 10−3, while
Chordal L2 Mean method is up to 7 times less accurate.
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Figure 6.5: Simulation Result of Difference to Geodesic L2 Mean as Illustrated by
Norm of r in Algorithm 7, Window Size = 65, Standard Deviation = 8

Figure 6.6 shows the simulation result by superimposing previous frames onto
the current frame to produce artificial motion blur. More motion blur corresponds to
a shaky video.

6.4.2 Video Stabilisation - Walking Sequence

In most mobile robotics systems, inertial measure unit (IMU) is a crucial component
for estimation of the robot’s relative location and orientation. The IMU is also present
in most smartphones these days. In the following experiments, the gyroscope in IMU
is used to estimate the camera orientation at each image frame.

By using the video sequence tested by Jia and Evans [2014], we compare our result
in this subsection. Similar to their method, we assume the input video sequence has
undergone rolling shutter rectification.

The camera is assumed to follow a pure rotational camera model, and the dif-
ference between the smoothed and original camera orientation is used to warp the
input video by a Homography (projective transformation).

We know that the Gaussian kernel’s standard deviation, σ is related to the factor
α in (6.3). Thus, we tune the σ until our smoothed curve lies close to that obtained
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Figure 6.6: Simulation Result at the Corresponding Frames using Our Pairwise
Average Method, where the Motion is Represented by Motion Blur. From left to

right: (a) 209th frame; (b) 698th frame.
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by Jia and Evans method [Jia and Evans, 2014].
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Figure 6.7: Relative Rotational Angle of Consecutive Orientations in Our Pairwise
Smoothing Result (Red) VS Jia and Evans’s Smoothing Result (Black), and Other

Window-based Smoothing Methods (Test Video in [Jia and Evans, 2014])

In Figure 6.7, we can see that the result from our pairwise method (Red) is
smoother than Jia and Evans’s result (Black). This could be due to the extra con-
straint included by Jia and Evans to restrict the maximum angular deviation from
the input rotation, as can be seen from Figure 6.8.

The maximum angular deviation is added to ensure that the warped frame has
an upper limit on the amount of black border intruding into the view. This was
done by reprojection of the gradient to be within the set bound [Jia and Evans, 2014].
We did not have this because we found that our method produces little, instanta-
neous black border intrusion (< 5 continuous frames, or < 0.167s) to justify the extra
computation.

Figure 6.9 contains a boxplot showing the perturbation represented by the relative
angle (geodesic distance) between consecutive orientations. From this figure, we can
also see that Jia and Evans method produces a result with higher median than the
other window-based methods we have proposed.

From the third plot in Figure 6.10, we can also see that our method follows the
mean of the input (blue curve) more closely than Jia and Evans’s method.

We have also implemented the Pairwise Average method, Geodesic L2 Mean, and
Chordal L2 Mean in C++ to compare the computational speed between the three
smoothing methods. These are included in parenthesis of the last column in Table
6.1.

The matrix operations in C++ are programmed with the help of Eigen 3.2.4 li-
brary [Jacob and Guennebaud, 2015]. It is noted that the C++ implementation has
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Figure 6.8: Rotational Angle Deviation from Input in Our Pairwise Smoothing Result
(Red), Jia and Evans’s Smoothing Result(Black), and Other Window-based Smooth-

ing Methods (Test Video in [Jia and Evans, 2014])

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Input Jia Pairwise Geo. L2 Geo. L1 Chord. L2

Figure 6.9: Boxplot Showing the Distribution of the Relative Angle between Con-
secutive Orientations (Test Video in [Jia and Evans, 2014]). Red line is the median of
the distribution, top and bottom line of the box represents 75th and 25th percentiles

respectively, and red "+" shows the outliers



§6.4 Experimental Results 119

0 200 400
0.6

0.8

1

q 0

0 200 400
-1

0

1

q 1

0 200 400
-0.1

-0.05

0

q 2

0 200 400
-0.2

0

0.2

q 3

Figure 6.10: Quaternion Representation of Input (Blue), Jia and Evans’s Result
(Green), and Our Pairwise Method (Red) (Test Video in [Jia and Evans, 2014])



120 Path Smoothing

Table 6.1: Comparisons of Our Pairwise Method, Jia and Evan’s, Geodesic L2,
Geodesic L1, Geodesic L1.5 Mean, and Chordal L2 Mean on the video used in [Jia
and Evans, 2014]. The Geodesic L2 Distance is the Square of Relative Rotational An-
gle between Consecutive Frames. Numbers in Parenthesis is the Computation Time

in C++ Implementation, Non-Parenthesised are MATLAB Implementation

Geodesic L2 Distance Sum For 561 Frames

Relative Rotation Deviation from Input Comp. Time (s)

Input 1737.96 0 -
Pairwise Method 532.61 5382.8 4.23 (0.79)
Jia and Evans’s 559.96 6067.5 28.88
Geodesic L2 532.96 5367.3 4.50 (1.44)
Geodesic L1 657.89 3301.8 82.37
Geodesic L1.5 554.68 4550.2 34.88
Chordal L2 533.98 5322.9 1.21 (0.01)

lower precision than MATLAB’s implementation, and the iterative Geodesic L2 Mean
needs a higher tolerance, ε, and setting a maximum number of iterations for the pro-
gram to converge.

In C++ implementation of Geodesic L2 Mean, ε = 10−3, and maximum number
of iterations is set to 6, whereas MATLAB implementation has ε = 10−6 with no
upper bound on maximum number of iterations.

Figure 6.11, 6.12 and 6.13 shows the feature trajectories in the next 10 frames to
visualise the difference in camera motion after stabilization.

6.4.3 Video Stabilisation - Standing Sequence

Another experiment was conducted using a Sony Xperia Z2 smartphone and its on-
board gyroscope. A short video is taken by a person at a T-junction making oc-
casional panning of the camera. This video represents a slightly different camera
motion, which examines videos with smaller camera shake than the previous video.

Different stabilization methods are tested, along with the same parameters used
for the previous video. Figure 6.14 shows the smoothness metric, while Figure 6.15
shows the deviation from the original path.

From Figure 6.15, it is clear that Jia and Evan’s method has overly compensated
for the camera motion, since there are large and wide peaks that corresponds to mo-
tion that are not caused by noise but are removed by their method. On the other
hand, the other window-based averaging method remove only the noisy camera mo-
tion.

Table 6.2 shows the comparison of the two performance metrics between different
rotation smoothing methods tested.

From Table 6.2, we can again observe that although Jia and Evan’s method pro-
duces a result that is smoother, it deviates from the input camera motion a lot more
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Figure 6.11: Video Stabilisation Input Video (used in[Jia and Evans, 2014]) at the
Corresponding Frames. From top to bottom: (a) 36th frame; (b) 456th frame; (c) 502th

frame.
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Figure 6.12: Video Stabilisation Result with Our Pairwise Method at the Corre-
sponding Frames. From top to bottom: (a) 36th frame; (b) 456th frame; (c) 502th

frame.
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Figure 6.13: Video Stabilisation Result with Jia and Evans’s Method at the Cor-
responding Frames. From top to bottom: (a) 36th frame; (b) 456th frame; (c) 502th

frame.
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Figure 6.14: Relative Rotational Angle of Consecutive Orientations in Our Pairwise
Smoothing Result (Red) VS Jia and Evans’s Smoothing Result (Black), and Other

Window-based Smoothing Methods (Standing Sequence)
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Figure 6.15: Rotational Angle Deviation from Input in Our Pairwise Smoothing
Result (Red), Jia and Evans’s Smoothing Result(Black), and Other Window-based
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Table 6.2: Comparisons of Our Pairwise Method, Jia and Evan’s, Geodesic L2,
Geodesic L1, Geodesic L1.5 Mean, and Chordal L2 Mean on the standing video se-
quence. The Geodesic L2 Distance is the Square of Relative Rotational Angle between
Consecutive Frames. Numbers in Parenthesis is the Computation Time in C++ Im-

plementation, Non-Parenthesised are MATLAB Implementation

Geodesic L2 Distance Sum For 568 Frames

Relative Rotation Deviation from Input Comp. Time (s)

Input 159.87 0 -
Pairwise Method 98.43 419.17 4.87 (0.78)
Jia and Evans’s 72.51 3783.30 28.96
Geodesic L2 98.47 417.54 4.15 (1.46)
Geodesic L1 104.01 319.36 20.87
Geodesic L1.5 98.77 407.17 4.56
Chordal L2 98.49 416.74 1.63 (0.01)

than the other window-based methods.
The resulting video from using Jia and Evan’s method also look very similar to

the one obtained using the window-based method. However, Jia and Evan’s method
has larger black border intrusion for this video sequence.

6.5 Summary

This chapter discusses a new method to smooth a noisy input in the Special Euclidean
Group, SE(3). The translational part of SE(3) is smoothed by simple vector convolu-
tion with a Gaussian kernel, and an analogous method to smooth input rotation in
the Special Orthogonal Group, SO(3) is proposed.

It is shown that the pairwise average method (Section 6.3.1) is superior to the
method presented by Jia and Evans [2014] in rotation smoothing. The pairwise av-
eraging method presented is shown to closely approximate the weighted L2 mean
method (Section 6.3.2), while being approximately 1.8 times faster in computation
speed. The chapter also presents an alternative method that has a much shorter
computation time, called Weighted Chordal L2 Mean (Section 6.3.4). Table 6.1 and
6.2 summarises the experimental results between the different rotation smoothing
methods.

Additionally, it was also showed that the pairwise method successfully minimises
both the relative orientation angle in consecutive frames (smoothness metric), while
maintaining small deviation from the input rotation sequence. This is a trade-off
controlled by the Gaussian kernel’s standard deviation, σ, similar to the scalar factor,
α in equation (6.3) presented in [Jia and Evans, 2014].

Due to the use of a Gaussian convolution, the method does not introduce drift
and scale changes (sum of weights = 1), and is temporally invariant. The pairwise
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computation is also parallelisable, fast (≈ 1.4ms/data point), and has a determinis-
tic computation time. Unlike iterative methods, it also does not require any initial
estimate, which has been shown to sometimes affect the convergence of the iterative
algorithm.

The only drawback in the proposed Pairwise Rotations Averaging method is the
delay introduced by the technique, which is half the window length used in the con-
volution. However, if there is extra information about the “future” motion available,
the solution is ensured to stay close to the mean of the actual trajectory, as shown
in the quaternion plot (Figure 6.10). Finally, the video stabilisation output of the
walking sequence is illustrated in features trajectory shown in Figure 6.12, showing
improved video stabilization performance.



Chapter 7

Conclusions and future work

This thesis covers the development of an efficient approximate Bayesian filter and its
application to real-world complex systems. The main conclusions and future work
are summarized in this chapter. The introductory chapters (1 and 2) are excluded
from this discussion because they do not contain new research material.

7.1 Conclusions

Chapter 3 describes the design of a new approximate Bayesian filter (MIGE) that
exploits the geometrical aspect of a measurement likelihood. The method is built
upon the use of a degenerate Gaussian function to approximate a nonlinear likeli-
hood function arising in various sensing problems in target-tracking and localization
tasks. A degenerate Gaussian function allows infinite uncertainty along some direc-
tions representing cylindrical or planar likelihood functions which are used to ap-
proximate the cone-shape density in bearing sensing or shell-shape density in range
sensing. The standard Gaussian parameters of mean and covariance are ill-defined
in these functions, and thus we apply a new parametrization method consisting of
a minimal set of coefficients for the quadratic terms. The performance of MIGE
is evaluated using Monte Carlo simulations for bearing-only and range-only target
localizations. Results show improved performance compared to the state-of-the-art
nonlinear filters in terms of accuracy, consistency, and computational/memory re-
quirement.

Chapter 4 describes a new recursive localization method that uses passive time-
difference-of-arrival (TDOA) and frequency-different-of-arrival (FDOA) measurements.
The recursive method is based on MIGE, and localizes the position of an unknown
stationary target using TDOA and FDOA measurements received by pairs of syn-
chronized and localized radio sensors. This method is designed to handle different
challenging scenarios, which include the presence of noise, missing measurements
and outliers. The method updates the location estimate with each new measure-
ment and approximates the underlying measurement likelihood with a degenerate
Gaussian. The position estimation accuracy is tested using Monte Carlo simulations.
The method is also evaluated using experimental tests on real measurement data
collected from software defined radios (SDRs), which shows improved localization

127
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accuracy when compared to existing methods.
Chapter 5 describes a novel monocular visual SLAM method that is suitable for

any camera undergoing general SE(3) motion. This method has potential to be ap-
plied to many practical areas where the camera location and dense reconstruction
of the scene are required. The method uses dense optical flow and estimates the
corresponding uncertainties, which are then used as input to our new Mahalanobis
eight-point algorithm. Based on MIGE, an efficient 3D point triangulation method
is used to produce accurate estimate of the location and uncertainty. The current
implementation of our visual SLAM does not compute the uncertainty of the esti-
mated pose in manner similar to Extended Kalman filter. This is because estimating
pose uncertainty by subjecting dense pixel correspondences to EKF filtering means
we have to operate on very large covariance and Jacobian matrices. This incurs high
computation and memory cost. Thus, in the inter-frame pose fusion, we use a simple
average for both rotation and translation. In the triangulation step, we assume that
the error in rotation and translation is negligible compared to the error of the image
feature position. The proposed visual SLAM method is successfully applied to video
captured from camera mounted on aerial and ground vehicles. The experiments
show improved localization and mapping performance, effectively handling low or
repetitive textured scenes, purely rotational motions and drastic camera height vari-
ations.

Chapter 6 describes an efficient window-based weighted average for SE(3) path
smoothing. A pairwise weighted averaging tree is designed to efficiently perform
weighted average of a large number of variables by leveraging on the parallelisable
layers. The proposed translational smoothing is mathematically equivalent to the
well-known vector convolution. The pairwise weighted averaging tree is applied to
rotation smoothing, where it is experimentally shown to be close to the weighted L2

mean method, while being 1.8 times faster in computational speed. The pairwise
rotation averaging method is also shown to be able to successfully minimise both
the relative orientation angle between consecutive frames (smoothness metric), while
remaining close to the input rotations. The method also does not introduce drift or
scale changes. Unlike iterative methods, it does not require any initial estimate, and
has deterministic computational time. Like all window-based smoothing methods,
the proposed method introduces a delay equivalent to half the window size. How-
ever, the inclusion of the “future” motion allows the solution to remain close to the
mean of the actual trajectory. The rotation smoothing method is applied to video sta-
bilization task and shows a reduction in undesirable camera shake while introducing
minimal black border intrusion.

7.2 Future work

The current derivation of the approximate Bayesian filter called minimal iterative
Gaussian estimator (MIGE) in Chapter 3 only covers the measurement likelihood up
to the three-dimensional case. Future research can be conducted to extend the esti-
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mator to solve higher dimensional problems. Despite the fact that the geometrical
interpretation is not as intuitive in a higher dimension, one can still define a degener-
ate Gaussian likelihood with the corresponding transformation matrix in the Special
Orthogonal group SO(n) manifold. Applying the same logic, one can also derive the
minimal parametrization method for high dimensional cases.

Multiple extensions of the TDOA-FDOA localization work discussed in Chap-
ter 4 are possible. First, the current two-dimensional localization method can be
extended to the three-dimensional cases, where the need for the prior knowledge of
emitter height is removed. This can be accomplished by using the planar degenerate
Gaussian likelihood to approximate the hyperboloid (TDOA) and conical (FDOA)
measurement likelihood. Second, the current localization method assumes that the
emitter is stationary. In a future work, the localization method can be extended to
track mobile emitter using TDOA-FDOA measurements. This can be accomplished
by incorporating a motion model and state prediction step into our method, similar
to EKF. Third, the current method assumes that the sensors’ locations are known ac-
curately, but this is only an approximation. In the future, we will perform an analysis
on the effects of sensor location error on the localization result.

The monocular visual SLAM method discussed in Chapter 5 uses dense opti-
cal flow to obtain a robust estimate of the inter-frame camera pose. A simplifying
assumption is used, such that the estimated camera pose is assumed to have no un-
certainty. This assumption circumvents the need to estimate the pose uncertainty,
which is computationally expensive with the currently available methods. For ex-
ample, the extended Kalman filter (EKF) is not suitable for dense correspondences,
which involves the computation of very large covariance and Jacobian matrices. In
the future, efforts can be directed to investigate a more efficient method for esti-
mating the uncertainty of the pose, which will allow a weighted fusion of the pose
estimated based on their corresponding uncertainty. The estimated uncertainty of
the camera pose also allows the propagation of error to the triangulated 3D scene
points.

Another possible extension of the monocular visual SLAM work is to include
a smoothing step in the (almost) densely reconstructed 3D scene points (or depth
map). This allows missing or more uncertain points of the image to get an improve-
ment in terms of accuracy and reduction in uncertainty by using information from
the surrounding pixels that are more accurately localized. The justification of such
techniques is similar to the spatial smoothness terms commonly used in optical flow
method, where close-by pixels are found to have similar motion and depth.

Improvement can also be made to the current back-end of our monocular vi-
sual SLAM that uses the structural similarity index (SSIM) to identify images of the
same scene. The SSIM works well for ground-based vehicles, where their motion
is highly constrained. However, for an unmanned aerial vehicle (UAV), the high
freedom of motion causes some images of the same scene to have low SSIM value.
Thus, a different method is required to more robustly identify images of the same
scene. The method needs to be robust enough to work even for highly unstruc-
tured environments and drastic changes in viewpoint, similar to the challenging
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scenarios observed from the UAV videos in our experiments. Methods using bag of
words [Gálvez-López and Tardos, 2012; Kejriwal et al., 2016] may be used for this
purpose.

In the video stabilization work presented in Chapter 6, we use camera pose esti-
mated from an external inertial measurement unit (IMU). However, most cameras do
not have the capability to easily obtain synchronized images with an IMU. A poor
synchronisation can lead to poor video stabilization results. Thus, a possible exten-
sion is to apply our proposed monocular visual SLAM method (in Chapter 5), where
the camera pose estimate can better reflect the observed motion, without requiring
additional IMU hardware. Our monocular visual SLAM method also provides an
accurate estimation of the (almost) dense depth map. This allows the use of spatially
varying warp to synthesis novel views for video stabilization suitable for removing
translational vibrations.



Bibliography

Achtelik, M.; Bachrach, A.; He, R.; Prentice, S.; and Roy, N., 2009. Stereo vision
and laser odometry for autonomous helicopters in gps-denied indoor environ-
ments. In Unmanned Systems Technology XI, vol. 7332, 733219. International Society
for Optics and Photonics. (cited on page 74)

Aftab, K.; Hartley, R.; and Trumpf, J., 2015. Generalized weiszfeld algorithms for
lq optimization. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37,
4 (April 2015), 728–745. doi:10.1109/TPAMI.2014.2353625. (cited on pages 107
and 108)

Alspach, D. and Sorenson, H., 1972. Nonlinear bayesian estimation using gaussian
sum approximations. IEEE Transactions on Automatic Control, 17, 4 (Aug 1972),
439–448. doi:10.1109/TAC.1972.1100034. (cited on pages 2, 16, and 40)

Anderson, B. D. O. and Moore, J. B., 1979. Optimal filtering. Prentice-Hall. (cited
on pages 39, 40, and 47)

Arasaratnam, I. and Haykin, S., 2009. Cubature kalman filters. IEEE Transactions
on automatic control, 54, 6 (2009), 1254–1269. (cited on page 40)

Artieda, J.; Sebastian, J. M.; Campoy, P.; Correa, J. F.; Mondragón, I. F.;
Martínez, C.; and Olivares, M., 2009. Visual 3-d slam from uavs. Journal of
Intelligent and Robotic Systems, 55, 4-5 (2009), 299. (cited on page 75)

Arulampalam, M. S.; Maskell, S.; Gordon, N.; and Clapp, T., 2002. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transac-
tions on Signal Processing, 50, 2 (2002), 174–188. (cited on pages 2, 16, 17, and 50)

Bachrach, A.; He, R.; and Roy, N., 2009. Autonomous flight in unknown indoor
environments. International Journal of Micro Air Vehicles, 1, 4 (2009), 217–228. (cited
on page 74)

Bao, F.; Cao, Y.; Webster, C.; and Zhang, G., 2014. A hybrid sparse-grid approach
for nonlinear filtering problems based on adaptive-domain of the zakai equation
approximations. Salud Colectiva, 2, 1 (2014), 784–804. (cited on page 16)

Bar-Shalom, Y.; Li, X. R.; and Kirubarajan, T., 2004. Estimation with applications to
tracking and navigation: theory algorithms and software. John Wiley & Sons. (cited on
pages 19, 50, and 54)

131

http://dx.doi.org/10.1109/TPAMI.2014.2353625
http://dx.doi.org/10.1109/TAC.1972.1100034


132 BIBLIOGRAPHY

Bay, H.; Tuytelaars, T.; and Van Gool, L., 2006. Surf: Speeded up robust features.
In European conference on computer vision, 404–417. Springer. (cited on page 27)

Bayes, T. and Price, R., 1763. An essay towards solving a problem in the doctrine
of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to
john canton, amfrs. Philosophical Transactions (1683-1775), (1763), 370–418. (cited
on pages 1 and 10)

Bell, B. M. and Cathey, F. W., 1993. The iterated kalman filter update as a gauss-
newton method. Automatic Control IEEE Transactions on, 38, 2 (1993), 294–297.
(cited on page 48)

Bernardo, J. M. and Smith, A. F. M., 1994. Bayesian theory. Journal of the Royal
Statistical Society, 15, 19 (1994), 13–23. (cited on page 10)

Black, M. J. and Anandan, P., 1991. Robust dynamic motion estimation over time.
In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Com-
puter Society Conference on, 296–302. IEEE. (cited on page 29)

Bradler, H.; Anne Wiegand, B.; and Mester, R., 2015. The statistics of driving
sequences – and what we can learn from them. In The IEEE International Conference
on Computer Vision (ICCV) Workshops. (cited on page 75)

Brox, T.; Bruhn, A.; Papenberg, N.; and Weickert, J., 2004. High accuracy optical
flow estimation based on a theory for warping. Computer Vision-ECCV 2004, (2004),
25–36. (cited on page 28)

Caballero, F.; Merino, L.; Ferruz, J.; and Ollero, A., 2009. Vision-based odometry
and slam for medium and high altitude flying uavs. Journal of Intelligent and Robotic
Systems, 54, 1-3 (2009), 137–161. (cited on page 74)

Cai, Z.; Gland, F. L.; and Zhang, H., 1995. An adaptive local grid refinement
method for nonlinear filtering. (cited on page 16)

Carter, G., 1981. Time delay estimation for passive sonar signal processing. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 29, 3 (1981), 463–470. (cited
on page 55)

Carter, G. C., 1987. Coherence and time delay estimation. Proceedings of the IEEE,
75, 2 (1987), 236–255. (cited on page 55)

Chan, Y. T. and Ho, K. C., 1994. A simple and efficient estimator for hyperbolic
location. IEEE Transactions on Signal Processing, 42, 8 (Aug 1994), 1905–1915. doi:

10.1109/78.301830. (cited on page 56)

Chatterjee, A. and Govindu, V., 2013. Efficient and robust large-scale rotation
averaging. In Computer Vision (ICCV), 2013 IEEE International Conference on, 521–
528. doi:10.1109/ICCV.2013.70. (cited on page 108)

http://dx.doi.org/10.1109/78.301830
http://dx.doi.org/10.1109/78.301830
http://dx.doi.org/10.1109/ICCV.2013.70


BIBLIOGRAPHY 133

Chen, Q. and Koltun, V., 2016. Full flow: Optical flow estimation by global opti-
mization over regular grids. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 4706–4714. (cited on pages 75 and 82)

Chen, Z., 2003. Bayesian filtering: From kalman filters to particle filters, and beyond.
Statistics, (2003). (cited on pages 10, 18, 40, and 41)

Cheng, J.; Kim, J.; Shao, J.; and Zhang, W., 2015. Robust linear pose graph-based
slam. Robotics and Autonomous Systems, 72 (2015), 71–82. (cited on pages 7, 73,
and 95)

Cheviron, T.; Hamel, T.; Mahony, R.; and Baldwin, G., 2007. Robust nonlinear
fusion of inertial and visual data for position, velocity and attitude estimation of
uav. In Robotics and Automation, 2007 IEEE International Conference on, 2010–2016.
IEEE. (cited on page 74)

Chin, W. H.; Ward, D. B.; and Constantinides, A. G., 2002. Semi-blind mimo chan-
nel tracking using auxiliary particle filtering. In Global Telecommunications Confer-
ence, 2002. GLOBECOM ’02. IEEE, 322–325 vol.1. (cited on page 10)

Choi, K. H.; Ra, W. S.; Park, J. B.; and Yoon, T. S., 2013. Compensated robust least-
squares estimator for target localisation in sensor network using time difference
of arrival measurements. IET Signal Processing, 7, 8 (October 2013), 664–673. doi:

10.1049/iet-spr.2012.0374. (cited on pages 56, 57, 65, 66, and 67)

Chowdhary, G.; Johnson, E. N.; Magree, D.; Wu, A.; and Shein, A., 2013. Gps-
denied indoor and outdoor monocular vision aided navigation and control of un-
manned aircraft. Journal of Field Robotics, 30, 3 (2013), 415–438. (cited on page
74)

Civera, J.; Davison, A. J.; and Montiel, J. M., 2008. Inverse depth parametrization
for monocular slam. IEEE transactions on robotics, 24, 5 (2008), 932–945. (cited on
page 39)

Demonceaux, C.; Vasseur, P.; and Pegard, C., 2006. Omnidirectional vision on
uav for attitude computation. In Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006., 2842–2847. doi:10.1109/ROBOT.2006.

1642132. (cited on page 74)

Deng, G. and Cahill, L. W., 1993. An adaptive gaussian filter for noise reduc-
tion and edge detection. In 1993 IEEE Conference Record Nuclear Science Symposium
and Medical Imaging Conference, 1615–1619 vol.3. doi:10.1109/NSSMIC.1993.373563.
(cited on page 106)

Dollár, P. and Zitnick, C. L., 2015. Fast edge detection using structured forests.
IEEE transactions on pattern analysis and machine intelligence, 37, 8 (2015), 1558–1570.
(cited on page 75)

http://dx.doi.org/10.1049/iet-spr.2012.0374
http://dx.doi.org/10.1049/iet-spr.2012.0374
http://dx.doi.org/10.1109/ROBOT.2006.1642132
http://dx.doi.org/10.1109/ROBOT.2006.1642132
http://dx.doi.org/10.1109/NSSMIC.1993.373563


134 BIBLIOGRAPHY

Douc, R. and Cappe, O., 2005. Comparison of resampling schemes for particle
filtering. In ISPA 2005. Proceedings of the 4th International Symposium on Image and
Signal Processing and Analysis, 2005., 64–69. doi:10.1109/ISPA.2005.195385. (cited
on page 89)

Doucet, A.; De Freitas, N.; and Gordon, N., 2001. Sequential Monte Carlo methods
in practice. Springer. (cited on page 41)

Drory, A.; Haubold, C.; Avidan, S.; and Hamprecht, F. A., 2014. Semi-global
matching: A principled derivation in terms of message passing. In GCPR. Proceed-
ings, 8753, 43–53. doi:10.1007/978-3-319-11752-2_4. 1. (cited on page 75)

Efron, B. and Tibshirani, R., 1993. An introduction to the bootstrap. Monographs on
Statistics and Applied Probability, Chapman and Hall, London, , 57 (1993), 436. (cited
on page 17)

Ertürk, S., 2002. Real-time digital image stabilization using kalman filters. Real-Time
Imaging, 8, 4 (2002), 317–328. (cited on page 108)

Everson, R., 1997. Orthogonal, but not orthonormal, procrustes prob-
lems. In Advances in Computational Mathematics . (Submitted). Available from
http://www.ee.ic.ac.uk/research/neural/everson. (cited on page 107)

Fanani, N.; Stürck, A.; Ochs, M.; Bradler, H.; and Mester, R., 2017. Predic-
tive monocular odometry (pmo): What is possible without ransac and multiframe
bundle adjustment? Image and Vision Computing, (2017). (cited on pages 75, 97,
and 98)

Fathy, M. E.; Hussein, A. S.; and Tolba, M. F., 2011. Fundamental matrix estimation:
A study of error criteria. Pattern Recognition Letters, 32, 2 (2011), 383–391. (cited
on page 34)

Fischler, M. A. and Bolles, R. C., 1981. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. ACM.
(cited on page 29)

Fletcher, F.; Ristic, B.; and Musicki, D., 2007. Recursive estimation of emitter loca-
tion using tdoa measurements from two uavs. In 2007 10th International Conference
on Information Fusion, 1–8. IEEE. (cited on page 56)

Fowler, M. L. and Hu, X., 2008. Signal models for tdoa/fdoa estimation. IEEE
Transactions on Aerospace and Electronic Systems, 44, 4 (2008), 1543–1550. (cited on
page 56)

Fredriksson, J. and Olsson, C., 2013. Simultaneous multiple rotation averag-
ing using lagrangian duality. In Computer Vision âĂŞ ACCV 2012 (Eds. K. Lee;
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