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Abstract

This thesis investigates the role of algebroid geometries in string theory. Differential

geometry provides the framework for general relativity and point particle dynamics.

The dynamics of strings and higher dimensional branes are most naturally described

by algebroid geometry on vector bundles—with fluxes being incorporated as geometric

data describing twisted vector bundles. This thesis contains original results in two

areas: Firstly, twisted generalised contact structures and generalised coKähler struc-

tures are studied. Secondly, a non-isometric gauging proposal based on Lie algebroids

is studied from a geometric perspective. We study generalised contact structures from

the point of view of reduced generalised complex structures; naturally incorporating

non-coorientable structures as non-trivial fibering. The infinitesimal symmetries are

described in detail with a geometric description given in terms of gerbes. As an appli-

cation of the reduction procedure we define generalised coKähler structures in a way

which extends the Kähler/coKähler correspondence. An invariant geometric approach

to the Lie algebroid gauging proposal of Kotov and Strobl [114, 99, 89, 90] is presented.

The existing literature on Lie algebroid gauging is purely local. We consider global as-

pects through the integrability of a local algebroid action. The main result is that it is

always possible to provide a local non-isometric gauging for any arbitrary background.

The necessary and sufficient conditions to gauge with respect to a given choice of vector

fields are given. However, requiring a gauge invariant field strength term restricts to

Lie groupoids that are locally isomorphic to Lie groups. As an application of this work

the proposal of Chatzistavrakidis, Deser, and Jonke for “T-duality without isometry”

is studied. We show that this non-isometric T-duality proposal is in fact equivalent to

non-abelian T-duality by an appropriate field redefinition.
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Chapter 1

Introduction

This thesis investigates the role of algebroid geometries—with particular focus on sym-

metries associated to extended objects. Differential geometry provides the framework

for general relativity and point particle dynamics. The dynamics of strings and higher

dimensional branes are most naturally described by algebroid geometry on vector bun-

dles; fluxes are incorporated as geometric data.

Chapter 2 gives motivation for studing algebroids from both a geometric and physics

perspective. The chapter has three aims: Firstly, convince the reader of the ubiquitous

nature of algebroids in geometry and physics. Secondly, give an opportunity to present

material used throughout the rest of the thesis. Thirdly, the chapter explains how an

extension of differential geometric structures from the tangent bundle to more general

vector bundles arise naturally in physics models. The chapter bridges the gap between

algebroid geometry and the associated physics; hopefully making the thesis accessible

to mathematicians and physicists.

Chapter 3 provides the more technical background material for the rest of the thesis.

This material is intended to familiarise the reader with various aspects of algebroid

geometry. The Chapter provides a review of definitions and theorems on Lie groupoids

(and Lie algebroids) which are relevant for the remainder of the thesis. Many standard

constructions of differential geometry are generalised to the case of vector bundles

endowed with a Leibniz algebroid structure.

Chapter 4 studies generalised contact structures and contains original results. The

chapter is closely based on a paper written by the author of this thesis [127]. Generalised

contact structures are the odd-dimensional analogue of the well known generalised com-

plex structures of Hitchin and Gualtieri. We study generalised contact structures from

the perspective of reduced generalised complex structures. While generalised contact

structures have been studied in the literature before there are several new contributions:

The spinor description of generalised contact structures is modified to describe the full

set of infinitesimal symmetries (Definition 4.14 and the related Theorem 4.15). The

1



2 CHAPTER 1. INTRODUCTION

symmetries are given a geometric description in terms of gerbes. This interpretation

allows us to use twisted algebroids to describe non-coorientable structures as non-trivial

fibering. We provide an application of the reduction procedure: generalised coKähler

structures are defined in a way which extends the Kähler/coKähler correspondence.

It is shown that T-duality maps generalised coKähler structures to other generalised

coKähler structures (Proposition 4.19).

Chapter 5 gives an invariant Lie algebroid geometry approach to gauging non-

linear sigma models with respect to a Lie groupoid action. The results on T-duality (in

Section 5.5) are based on a collaboration with Peter Bouwknegt, Mark Bugden, and

Ctirad Klimč́ık [24]. The results on general Lie algebroid gauging—and discussions of

the associated Weinstein Lie groupoid—is an extension of this work containing new

results.

A class of non-linear sigma models describe the embedding of a closed string world-

sheet in an n-dimensional target space. Non-linear sigma models with isometries are of

particular importance; for each isometry there is a conserved quantity. Furthermore,

a non-linear sigma model with isometries can be ‘gauged’—promoting the global sym-

metry to a local symmetry. The vector fields generating the isometries describe a Lie

algebra. A recent proposal of Kotov and Strobl [114, 99, 89, 90] suggested a general-

isation of the gauging procedure. The non-linear sigma model is gauged with respect

to a set of vector fields which are not isometries. In general the vector fields define

a Lie algebroid. We study a non-isometric gauging proposal based on Lie groupoids.

This chapter discusses the integrability of the Lie algebroid action to a Lie groupoid

action—something that has not appeared in the physics literature on Lie algebroid

gauging.

The main results of Chapter 5 are Theorem 5.4 and Theorem 5.8. The theorems

give the necessary and sufficient conditions for carrying out the Lie groupoid procedure

with a particular choice of vector fields. Corollary 5.6 states that it is always possible

to locally gauge an action non-isometrically. The existence of a gauge invariant field

strength term restricts to Lie groupoids that are locally isomorphic to Lie groups.

The proposal of Chatzistavrakidis, Deser, and Jonke [31, 33] for “T-duality without

isometry” is studied; giving an appliaction of our work. We show that this non-isometric

T-duality proposal is equivalent to non-abelian T-duality (Theorem 5.9).

Finally, Chapter 6 provides a brief summary and conclusion of the work contained

in this thesis. An outlook on possible future avenues of research is given.



Chapter 2

Motivation

This chapter will provide motivation for the study of algebroids and vector bundle ge-

ometry through the study of Lagrangian formulations of particle, string, and higher

brane models. Section 2.1 outlines the Lagrangian formulation of physics models; high-

lighting the role of variational problems in physics. Section 2.2 describes the geometric

structure underlying Lagrangian mechanics. We show how Lie algebroids and contact

structures arise naturally in the context of Lagrangian mechanics. In Section 2.3 the

emergence of a Courant algebroid in the study of non-linear sigma models is demon-

strated. Section 2.4 briefly discusses the connection between groupoid actions and

symmetries.

2.1 Lagrangian formulation of physical models

Quantum field theory currently provides an excellent description of the physical pro-

cesses which govern our universe (with the exception of gravity). The most insightful

approach is based on Lagrangian mechanics. Central to the path integral formula-

tion of quantum field theory is the Lagrangian approach to classical field theory. Let

M be a closed D-dimensional manifold. We wish to describe the dynamics of a field

ϕ ∈ C∞(M). The manifold M may represent spacetime or a more general configuration

space. The dynamics of ϕ are encoded in an action

S =

∫
M
L(x, ϕ(x), ∂ϕ(x))dDx, (2.1)

where x gives a parameterisation of M and L(x, ϕ(x), ∂ϕ(x)) is the Lagrangian density.1

The theory should be independent of the choice of parameterisation of the manifold:

L(x, ϕ(x), ∂ϕ(x)) must be invariant for any diffeomorphism x→ x′(x).

Of all the possible fields ϕ ∈ C∞(M), it is the set of fields corresponding to station-

1The formalism can be extended to L(x, ϕ(x), ∂ϕ(x), . . . , ∂nϕ(x)) with little difficulty.

3



4 CHAPTER 2. MOTIVATION

ary points (usually minima) of the action S that are physically realised. The classical

physical fields are solutions to the Euler–Lagrange equations:

δS

δϕ
=
∂L

∂ϕ
− ∂µ

[
∂L

∂(∂µϕ)

]
= 0, (2.2)

where µ = 0, 1, . . . , D − 1. Examples will be given in Section 2.1.1. The choice of

Lagrangian density is not unique; the addition of a total derivative term, L→ L+∂µΛµ,

results in the same Euler–Lagrange equations (using the divergence theorem). It is

the Euler–Lagrange equations which are fundamental, and not the Lagrangian density

itself. However, it is often more convenient to work with the Lagrangian and accepting

the ambiguity; rather than deal with Euler–Lagrange equations directly. Noether’s

theorem gives the relationship between symmetries and conserved quantities. Consider

an infinitesimal variation of ϕ given by

ϕ′ =ϕ+ δϕ = ϕ+ εrΨr,

where r = 1, . . . , k, εr ∈ R and Ψr ∈ C∞(M). If this variation induces a variation of

the Lagrangian density

L′ =L+ εr∂µΛµr ,

for some Λµr ∈ C∞(M), then the Euler–Lagrange equations are left unchanged. We

say that such a variation generates k symmetries. Associated to these symmetries are

conserved Noether currents:

Jµr = Λµr −
∂L

∂(∂µϕ)
·Ψr. (2.3)

The Noether currents satisfy ∂µJ
µ
r = 0. When there is a symmetry associated to the

Lagrangian it is possible to use the conserved quantity to find a relation between the

fields ϕ; reducing the dimension of the problem. If there are enough symmetries it may

be possible to solve the system exactly.

Classical field theory Lagrangians are at the heart of the path integral formulation

of quantum field theory.2 The fundamental object in this case is the amplitude

A =

∫
e
i
~S[ϕ]Dϕ,

where
∫
Dϕ denotes a path integral measure—the integration is taken over all possible

paths (a sum over histories). Each path generates a different phase and the accumu-

2To study the full quantum theory the classical Lagrangian must be quantised. There are standard
procedures for quantising which will not be covered here.
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lation of interfering paths gives the amplitude. The biggest contribution comes when

δS is small—paths which are ‘close’ to the classical paths. Path integrals have been

well studied and there are many applications in physics and other fields. A formal

introduction to path integrals and their role in physics can be found in [82].

The Lagrangian approach allows a description of classical limits, as well as per-

turbative analysis about classical limits. Some non-pertubative phenomena such as

solitons and instantons can also be captured.

2.1.1 Worldline dynamics

One-dimensional sigma models describe the geodesic flows on (pseudo-)Riemannian

manifolds (M,γ). Geodesics are paths which have extremal length in (M,γ). The

classical action is given by the pullback of the worldline length in M :

S[τ ] = −m
∫
dτ
√
−∂τxµ∂τxνGµν , (2.4)

where µ = 0, 1, . . . , D − 1 and x : R → M describes the embedding of the particle

worldline in the target manifold M . The action S[τ ] is the proper time along the

worldline.

The physical path is dependent on the choice of the embedded line, but not the

choice of parameterisation used to describe the line. The worldline itself should be

reparameterisation invariant—the same embedded line in M describes the same physics.

Diffeomorphism invariance of the world line means the model described by D fields,

xµ, has D − 1 degrees of freedom. This diffeomorphism invariance of the action is an

example of a symmetry.

It is convenient to make this symmetry manifest by introducing a function η which

couples the system to the worldline metric η(dτ)2. For a transformation τ ′ = f(τ), we

require that η′(τ ′) = (df/dτ)−1η(τ). The action is given by

Sη[τ ] = −m
2

∫
Gµν∂τx

µ∂τx
νη−1/2dτ − m

2

∫
η1/2dτ. (2.5)

Extremising the field η gives the action (2.4). Alternatively, fixing the field η = 1 is

equivalent to the action

Sη=1[τ ] = −m
2

∫
Gµν∂τx

µ∂τx
νdτ. (2.6)

It is the latter form of the action which is most useful. This form of the action can be

quantised using the standard techniques.
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A particle worldline can be coupled naturally to a field A ∈ Ω1(M):

S[τ ] = e

∫
Aµ∂τx

µdτ = e

∫
x∗A. (2.7)

The associated Euler–Lagrange equation is given by

F = dA = 0.

The solution to F = 0 is not uniquely defined. The field A′ = A+df for any f ∈ C∞(M)

satisfies dA′ = dA = F . Transformations A→ A+df are called gauge transformations.

These gauge transformation are associated with diffeomorphism invariance. To see

how this works consider an infinitesimal diffeomorphism given by a pushforward xµ →
xµ + vµε, where v ∈ Γ(TM) and ε a small constant. The corresponding coordinate

transformation is x′µ = xµ − vµε (to first order in ε). The induced transformation of

A is given by

A′µ(x) ≡ Aν(x+ vε)
∂xν

∂x′µ
=Aµ(x) + (vν∂νAµ(x) +Aν(x)∂µv

ν)ε+O(ε2),

=Aµ + (LvA)µε+O(ε2).

To first order we have A → A + εLvA = A + εdιvA, as dA = 0. Finally we identify

f = ειvA.

It is also possible to couple the worldline to a non-zero F . Consider

Fνλ =
1

2
µενλκ

xκ

|x|3
.

This has the interpretation of the field of a monopole of magnetic charge µ placed at

the origin of R3. For a closed trajectory one can consider

Smon(x) = e

∫
D
x̃∗F,

where x̃ : D → R3/{0} coincides with x on the boundary of the disk. Two different

extensions may give different results. The difference is given by

e

∫
S2
x̃∗F, (2.8)

with the integral taken over the two-sphere S2 obtained by gluing the two discs D

along the boundaries in opposite orientation. There is no globally defined one-form A

which satisfies dA = F . Carrying out the integral over the unit sphere gives 4πeµ ∈
R. In quantum mechanics we require the amplitudes

∫
eiSmonDx to be single-valued.
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This imposes the constraint Smon ∈ 2πZ; implying that eµ ∈ 1
2Z. This is the Dirac

quantisation condition.

In general we take the curvature to be a representative of [F ] ∈ H2(M,Z).3 The

field A can be thought of as a choice of connection one-form associated to a principal

U(1)-bundle. For closed trajectories a general non-linear sigma model can be written

as

S =

∫
S
x∗γ + e

∫
S2

x̃∗F, (2.9)

where S is a manifold with the topology of a circle and S2 is a manifold with boundary

∂S2 = S. Oriented circle bundles are topologically classified by [F ] ∈ H2(M,Z); with

[F ] 6= 0 corresponding to topologically non-trivial circle bundles (see for example [38]).

Example: Particle on a group manifold

In general we cannot explicitly solve the Euler–Lagrange equations arising from a

generic Lagrangian density. If there is a sufficient amount of symmetry the equations

of motion may be exactly solvable. An important example of solvable models comes

from the embedding of a worldline into a Lie group M = G. The importance of these

models come from fact that there is a natural left (and right) action of the group on

itself.

Consider the embedding of a particle worldline into a compact semi-simple Lie group

manifold g : [0, T ]→ G into a model of the form

S[g] =
−k
4

∫
(g−1ġ, g−1ġ)Gdτ, (2.10)

where ġ := d
dτ g, and (·, ·)G is a non-degenerate bilinear form. We have assumed that G

is a compact semi-simple Lie group, so that the integral (2.10) is well defined and (·, ·)G
exists (the Killing form gives an example). The variation of S[g] under the infinitesimal

change δg gives

δS

δg
=
k

2

∫
(g−1δg,

d

dτ
(g−1ġ))Gdτ.

The Euler–Lagrange equation in this case is

d

dτ

(
g−1 d

dτ
g

)
= 0.

3A more sophisticated treatment suggests one should consider Deligne or Cheeger–Simons cohomol-
ogy classes [20].
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The trajectories solving the equations of motion are given by

g(τ) = gle
τλ/kg−1

r , (2.11)

where gl and gr are fixed elements in G and λ may be taken in the Cartan subalgebra4

t ⊂ g. The space of solutions form the phase space of the system. The phase space is

equipped with a time independent symplectic form

Ω = −id(p, g−1ġ)G, (2.12)

where p(τ) = k
2ig
−1ġ. The Hamiltonian function is given by

H =
1

k
(p, p)G = −k

4
(g−1ġ, g−1ġ)G. (2.13)

The Hamiltonian function defines the Hamiltonian vector fields vH . The vector fields

vH are defined by the relation −dH = ιvHΩ, and satisfy LvHΩ = 0.

There are two commuting actions of G on itself, given by

h � g(τ) = hg(τ), g(τ) 	 h = g(τ)h−1,

for h ∈ G, and g ∈ C∞([0, T ],G). Both actions preserve the symplectic structure and

Hamiltonian. The left(right) action are generated by flowing along right(left)-invariant

vector fields (XR,L)a ∈ Γ(TG), where a = 1, . . . ,dim(G). Taking a basis for the right-

invariant vector fields (XR)a ∈ TG, we can identify TeG ∼= g:

[(XR)a, (XR)b] = Ccab(XR)c ⇔ [Ta, Tb] = CcabTc,

where Ccab ∈ R are the structure constants for the Lie algebra g := Lie(G). We see

that a Lie algebra structure naturally emerges in this case. In Section 2.2 we will see

how Lie algebroid structures emerge in more general Lagrangian mechanics scenarios.

2.1.2 Worldsheet dynamics

In string theory the fundamental structures are one-dimensional strings. The dynamics

of a string in a (pseudo-)Riemannian manifold (M,G) is given by embedding the string

worldsheet Σ into a target space M , X : Σ → M . The geodesic solutions for the

embedding of particle worldlines corresponds to minimising the length. The natural

4A Cartan subalgebra of a Lie algebra g is a maximal subalgebra h satisfying [X,Y ] = 0 for all
X,Y ∈ h.



2.1. LAGRANGIAN FORMULATION OF PHYSICAL MODELS 9

analogue for strings are minimal surfaces; given by the pullback of the area

SN [X] = −T
∫

Σ
dσdτ

√
| det ∂αXµ∂βXνGµν |,

where σα = (τ, σ) are coordinates on the worldsheet Σ. This is the Nambu–Goto action.

The embedding of the surface should be independent of the choice of parameterisation

of the the worldsheet.

This action contains a square-root which poses a problem for quantisation. It is

more useful to consider the Polyakov action—which is classically equivalent to the

Nambu action—but is in a form that is appropriate for path integral quantisation.

This is achieved by coupling the worldsheet to a dynamical metric h. The Polyakov

action is given by

SP [X] = −T
2

∫
Σ
dσdτ

√
−hhαβ∂αXµ∂βX

νGµν ,

where h is the determinant of hαβ. The Euler–Lagrange equations for Xµ give

∂α(
√
−hhαβ∂βXµ) = 0.

The variation of the Polyakov action with respect to h gives (see for example [101])

δSP
δh

= −T
2

∫
Σ
dσdτδhαβ

√
−h(∂αX

µ∂βX
ν − 1

2hαβh
δγ∂δX

µ∂γX
ν)Gµν = 0.

The Euler–Lagrange equations are equivalent to the vanishing of the energy-momentum

tensor

Tαβ ≡ ∂αXµ∂βX
νGµν − 1

2hαβh
δγ∂δX

µ∂γX
νGµν = 0.

The general solution to Tαβ = 0 is given by hαβ = fh̃αβ, where h̃ is the induced metric

h̃αβ = ∂αX
µ∂βX

νGµν , and f ∈ C∞(M) is an arbitrary nowhere zero function.

The Polyakov action is invariant under diffeomorphisms generated by

Xµ(σ, τ)→ X ′µ(σ′, τ ′), h′αβ(σ′, τ ′)→ ∂σδ

∂σ′α
∂σγ

∂σ′β
hδγ(σ, τ).

The Polyakov action is invariant under an additional transformation; the additional

Weyl transformation is given by

hαβ(σ, τ)→ Ω2(σ, τ)hαβ(σ, τ) for Ω2(σ, τ) = e2φ(σ,τ),

for some φ ∈ C∞(Σ). Two worldsheet metrics which are related by a combination
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of a diffeomorphism and a Weyl transformation are considered physically equivalent.

The combination of diffeomorphisms and Weyl transformations gives enough gauge

freedom to (locally) fix the worldshhet metric to the flat Minkowski metric hαβ = ηαβ

(see for example [101]). There is a subgroup of the diffeomorphism and Weyl invariance

remaining after fixing the metric; the group of transformations which leave ηαβ invariant

are

Xµ(σ, τ)→ X ′µ(σ′, τ ′), η′αβ → Ω2(σ, τ)
∂σδ

∂σ′α
∂σγ

∂σ′β
ηδγ .

Transformations of this form describe the conformal group.

Two-dimensional models exhibiting conformal invariance are extremely important.

Conformal invariance in two-dimensions is infinite dimensional and allows one to use the

powerful methods of Conformal Field Theory (CFT). The most rigorous mathematical

definition of string theory is via CFT.

Example: WZW model

An important example of non-linear sigma models associated to string theory are the

Wess–Zumino–Witten (WZW) models. Let g : Σ → G, be the embedding of a string

worldsheet into a Lie group G with Lie algebra g = Lie(G). Let (·, ·)G and (·, ·)B denote

two G-invariant bilinear forms, symmetric and skew-symmetric respectively. The WZW

model is described by

SWZW[g] =
1

2

∫
Σ

(g−1dg ∧, ? g−1dg)G + (g−1dg ∧, g−1dg)B, (2.14)

where g−1dg ∈ Ω1(Σ, g) denotes the left-invariant Maurer–Cartan form and

(a ∧, b)G(s1, s2) :=
1

2

[(
a(s1), b(s2)

)
G
−
(
a(s2), b(s1)

)
G

]
,

for s1, s2 ∈ Γ(TΣ), a, b ∈ Ω1(Σ, g).

This model is studied in detail in Section 5.2. The two-dimensional worldsheet

naturally couples to the pullback of a differential form B ∈ Ω2(G). In order to preserve

the group action we consider a bi-invariant two-form. In the case that dB = H = 0,

B ∈ Ω2
inv(G) is defined up to gauge transformations given by a G-invariant closed one-

form. A more general model can be given by replacing the (·, ·)B term with∫
Σ3

H =
1

6

∫
Σ3

(g−1dg, [g−1dg, g−1dg]g)G,

where Σ3 is a three-dimensional manifold with boundary ∂Σ3 = Σ. If H is non-trivial

in cohomology then B is not a globally defined two-form; instead B forms part of a
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U(1)-gerbe structure (see Section 4.1.1). The gerbe structure is naturally associated

with a Courant algebroid structure.

WZW models provide a rare example of a string theory which can be solved exactly.

A review of the construction of the exact solution of the model from the path integral

point of view can be found in the introductory lecture notes by Gawȩdzki [50].

It is possible to consider a more general non-linear sigma model given by

S[X] =

∫
Σ
GµνdX

µ ∧ ?dXν +

∫
Σ3

X∗H, (2.15)

for a (pseudo-)Riemannian manifold (M,G) and a choice of H ∈ Ω3
cl(M). This model

is studied in Chapter 5 from the perspective of Lie algebroid gauging.

2.2 Geometry of Lagrangian Mechanics

In Section 2.1 it was shown that the Lagrangian is a the heart of fundamental physics

theories—allowing the calculation of equations of motion and conserved quantities. In

this section we look at Lagrangian mechanics from a geometric perspective; it will be

shown that symmetries are naturally associated to Lie algebroids. In addition, it will

be shown that a Lie algebroid structure underlies the Euler–Lagrange equations.

We will consider the dynamics of a point particle in some manifold, just as we did

in Section 2.1. Take x : [0, T ]→M , and

S =

∫
γ
L(τ, x, ∂x)dτ. (2.16)

For simplicity we consider Lagrangian densities of the form L(τ, x, ∂x) = L(x) ∈
C∞(M). In this case we can make the identification

L(x(τ))dτ = x∗α, α ∈ Ω1(M).

The Euler–Lagrange equations for x are

∂L

∂x
= dx∗α = x∗dα = 0.

The problem is reduced to

S =

∫
x∗α,

and the Euler–Lagrange equations are satisfied by closed α. The physical models we

have studied are required to be invariant under diffeomorphisms. Diffeomorphisms are

generated infinitesimally by flowing along vector fields. A diffeomorphism—described
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by xµ → xµ + vµ—induces a transformation on a tensor T ; with the infinitesimal

transformation given by T → T+LvT . A vector field v ∈ Γ(TM) generates a symmetry

if Lvα = 0. If a vector field v generates a symmetry on an extremal surface (dα = 0)

we have

δS =

∫
x∗(Lvα) = 0 =

∫
x∗(dιvα+ ιvdα) =

∫
x∗dιvα.

When v generates a symmetry on an extremal surface x∗(dιvα) = 0; we conclude that

ιvα is a closed one form in the image of x (giving a conserved quantity). The Euler–

Lagrange equations remain unchanged if an exact term df (where f ∈ C∞(M) is any

choice of function) is added to the Lagrangian. In general we require that

Lvα+ df = d(ιvα+ f) = 0, (2.17)

giving the conserved quantity ιvα + f . A pair (v, f) is said to generate a symmetry

if Eq. (2.17) holds. Consider the vector bundle E = TM ⊕ R, with sections (v, f) ∈
Γ(TM)⊕ C∞(M) ∼= Γ(E). Define a subbundle C ⊂ E as follows

C = graph(α) := {(v, f) ∈ Γ(E) : f = −ιvα}.

There is a natural flow that preserves C. A pair (v, f) ∈ C if and only if f = −ιvα. The

flow of a section (v1, f1) ∈ Γ(E) preserves the pair (v,−ιvα) if it flows to (v′,−ιv′α) for

some v′ ∈ Γ(TM). The required flow is given by

L(v1,f1)(v2, f2) = ([v1, v2], v1(f2)− v2(f1)). (2.18)

The fact that this flow preserves C is easily verified:

L(v1,f1)(v,−ιvα) =([v1, v],−v1(ιvα)− v(f1))

=([v1, v],−Lv1ιvα− ιvdf1)

=([v1, v],−ι[v1,v]α− ιv(Lv1α+ df1))

=([v1, v],−ι[v1,v]α),

where the last line follows from the fact that (v1, f1) generates a symmetry and therefore

satisfies Eq. (2.17). This flow defines a bracket

[(v1, f1), (v2, f2)] = ([v1, v2], v1(f2)− v2(f1)). (2.19)

This bracket defines an Atiyah algebroid on E = TM ⊕ R. The Atiyah algebroid

provides an example of a Lie algebroid structure (see Definition 3.8). In Section 2.2.2
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we shall see that this is associated to a principal G-bundle and contact structure.

Following the discussion of Section 2.1.1 an additional term (representing a monopole)

can be added to the action. In this case

S =

∫
S
α+

∫
S2

F,

for some closed two-form F ∈ Ω2
cl(M). We can repeat the analysis above to calculate

the variation for extremal surfaces—remembering that the variation only has to vanish

up to a closed form df :

δS =

∫
S
Lvα+ df +

∫
S2

LvF =

∫
S
dιvα+ df +

∫
S2

dιvF

=

∫
S
d(ιvα+ f) +

∫
S
ιvF = 0.

This means that ιvα+ f is no longer closed but satisfies

d(ιvα+ f) + ιvF = 0. (2.20)

The modified flow which preserves the subspace C under this condition is

[(v1, f1), (v2, f2)]F = ([v1, v2], v1(f2)− v2(f1) + ιv1ιv2F ). (2.21)

This is verified as before

L(v1,f1)(v,−ιvα) =([v1, v],−v1(ιvα)− v(f1) + ιv1ιvF )

=([v1, v],−Lv1ιvα− ιv(df1 + ιv1F ))

=([v1, v],−ι[v1,v]α− ιv(d(ιv1α+ f1) + ιv1F ))

=([v1, v],−ι[v1,v]α).

The bracket (2.21) also defines a Lie algebroid. This is the twisted Atiyah algebroid.

In Section 2.2.2 we will see that this is associated to a non-trivial principal U(1)-bundle.

The above argument shows that Lie algebroid structures arises naturally in the

context of variational problems. In general we expect that the Lagrangian density

is a function of variables on the target M and higher derivatives of the variables

L(τ, x, ∂x, . . . , ∂kx). In this case there is still an algebroid structure underlying La-

grangian mechanics. It possible to extend the geometric description by replacing

TM ⊕ R with another vector bundle E → M . In particular, it is possible to in-

clude k-th order derivative terms by passing to the k-jet bundle. Such a generalisation

requires a desciption of Lagrangian mechanics on vector bundles. Briefly outlining this
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development is the topic of the next section. We will see that a Lie algebroid plays an

important role.

2.2.1 Lagrangian mechanics on vector bundles

Lagrangian mechanics can be formulated on a vector bundle E → M endowed with

a Lie algebroid structure. The dynamics can be encoded by geometric structures on

the vector bundles TE, T ∗E, TE∗ and T ∗E∗. The Euler–Lagrange equations are con-

structed using a Lie algebroid structure.5 Originally this vector bundle construction

was done for E = TM .

The treatment here is based on references [55] and [80]. The reader is invited

to consult these papers for further details. There are two approaches to describing

Lagrangian (and Hamiltonian) mechanics geometrically via algebroids. One approach

studies algebroids on the tangent space of a vector bundle E → M , while the other

involves the prolongation of E. The former approach is more natural for our purposes

and will be outlined here. The prolongation approach can be found in [41].

Consider a vector bundle (E, π,M) where π : E → M is a projection map. There

is a dual bundle π∗ : E∗ → M . A core concept in the construction is that of a double

vector bundle. A double vector bundle is a pair of naturally compatible vector bundles

sharing the same total space (the reader is referred to [56] for more details). The

relevant vector bundles associated to Lagrangian mechanics are TE, T ∗E, TE∗ and

T ∗E∗. There are three natural maps:

τE : TE → E, dπ : TE → TM, χE : T ∗E → E.

In addition there is another map vE : T ∗E → E∗ that can be interpreted as the vertical

derivative. The image under vE evaluated on an element e′ ∈ Eτ(e) is the derivative of

f ∈ C∞(E,R) in the direction of a vertical vector ve
′
e ∈ VeE := Te(Eτ(e)) ⊂ TeE. The

vertical derivative is defined as follows:

〈vE(df(e)), e′〉 = ve
′
e (f) :=

d

dt
f(e+ te′)|t=0, (2.22)

where df(e) ∈ T ∗eE and 〈·, ·〉 : E ×M E∗ → R is the canonical pairing. Henceforth we

denote the vertical derivative by dV f := vE(df).

The spaces T ∗E and T ∗E∗ are canonically isomorphic as double vector bundles.

The isomorphism by RE : T ∗E → T ∗E∗ can be explicitly constructed. First note

that the kernel K := {(e, ξ) ∈ E ×M E∗ : 〈e, ξ〉 = 0} is a smooth submanifold in

E ×M E∗. The isomorphism RE is defined (through its graph) as the annihilator of

5Technically only an almost Lie algebroid structure is required—the Jacobi identity plays no role in
the local construction. The Jacobi identity is required when integrating local solutions.
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TK ⊂ T (E ×M E∗), i.e.

graph(RE) := Ann(TK) ⊂ T ∗(E ×M E∗) ∼= T ∗E ×T ∗M T ∗E∗.

In fact, graph(RE) is a Lagrangian submanifold with respect to the canonical symplectic

structure on the cotangent bundle T ∗(E×M E∗). The isomorphism RE is also an anti-

symplectomorphism; RE intertwines the ‘legs’ of double vector bundles T ∗E and T ∗E∗:

vE∗ ·RE = χE : T ∗E → E, and χE∗ ·RE = vE : T ∗E → E∗.

Take a manifold M with a choice of local coordinates {xµ}, and choose local coor-

dinates

(xµ, pν) ∈ T ∗M, (xµ, yi) ∈ E, (xµ, ξi) ∈ E∗,

(xµ, yi, pν , πj) ∈ T ∗E, (xµ, ξi, pν , ϕ
j) ∈ T ∗E∗.

The anti-symplectomorphism RE can be described locally as

RE : (xµ, yi, pν , πj)→ (xµ, ϕi,−pν , ξj).

In order to define Lagrangian (and Hamiltonian) mechanics on the vector bundle

E → M a Lie algebroid structure must be defined on E. If E = TM a Lie algebroid

bracket is given by the commutator of vector fields. A Lie algebroid structure on E

can be encoded in a bivector ΛE∗ : Γ(∧2TE∗) (see Section 3.3.3). In the rest of this

section we will assume that a Lie algebroid structure—or equivalently ΛE∗—has been

specified.

Given a Hamiltonian function H ∈ C∞(E∗) we define the associated Hamiltonian

vector field XH ∈ Γ(TE∗) by

XH := Λ̃E∗(dH) := ιdHΛE∗ .

In the special case that E = TM the bivector ΛE∗ is dual to a symplectic form on the

phase space.6 Integral curves of XH are trajectories of the system. A curve ξ : [0, T ]→
E∗ is a Hamiltonian trajectory if

d

dt
ξ(t) = Λ̃E∗(dH(ξ(t))), t ∈ [0, T ].

The Lagrangian dynamics on an algebroid can also be understood in the language

of natural double vector bundle morphisms. By composing the canonical double vector

6Compare (H,Ω) to Equations (2.12) and (2.13).
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bundle isomorphism RE : T ∗E → T ∗E∗ with Λ̃E∗ : T ∗E∗ → TE∗ one obtains a double

vector bundle morphism EE := Λ̃E∗ · RE : T ∗E → TE∗. Explicit expressions for a

choice of ΛE∗ in local coordinates can be found in [55].

Consider a Lagrangian on L ∈ C∞(E) describing some physical system. The dy-

namics are encoded in solutions to the Euler–Lagrange equations. The constructions

of this section give a geometric formulation of the Lagrangian dynamics. A curve

γ : [0, T ]→ E is a solution of the Euler–Lagrange equations if

d

dτ
vEL(γ(τ)) = EE(dL(γ(τ))), τ ∈ (0, T ). (2.23)

This equation should be compared to (2.2).

We see the importance of the vertical derivative (and Lie algebroid structure) in

determining the dynamics in Lagrangian mechanics.7

Equation (2.23) guarantees that a trajectory γ : [0, T ] → E is automatically an

admissible curve,

ρ(γ(τ)) =
d

dτ
π(γ(τ)), ∀τ ∈ (0, T ).

This follows from the fact that the morphism EE projects to a map ρ : E → TM under

χE and dπ∗. The dynamics can be encoded in the following diagram

T ∗E
EE //

χE
��

vE

((

'

RE ((
TE∗

τE∗
��

T ∗E∗
Λ̃E∗oo

χE∗
��

E

dL

CC

E∗
= // E∗

dH

[[

(Lagrangian) (Dynamics) (Hamiltonian)

The phase dynamics are described by the Euler–Lagrange equations on an algebroid

and are described by Equation (2.23). The trajectories γ are critical trajectories of a

naturally defined action functional.

When the legendre map is a local diffeomorphism the trajectories described by

(2.23) are determined by the image of a Lagrangian submanifold dL(E) ⊂ T ∗E under

EE . If the Legendre map is not a local diffeomorphism the conditions on the trajectories
d
dτ γ(τ) are implicit and cannot be written explicitly.

Lagrangian mechanics is described by a geometric structure which is richer than

7In addition to the equations of motion, the map vE gives the Legendre map. The Legendre map
E → E∗ is given by vE(dL) = dV L : E → E∗.
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just Lie algebroids. The various double vector bundle morphisms encode additional

structure. It was noted that the Atiyah algebroids (2.19) and (2.21) are associated with

principal U(1)-bundles. Principal U(1)-bundles come with a natural contact structure.

Expanding on this relationship is the topic of the next section.

2.2.2 Contact geometry and physics

A Lagrangian on a spacetime (or configuration space) M can be viewed as a section of

the trivial line bundle M × R. It is more natural to consider the slightly more general

case of a principal G-bundle with Lie group G = R or U(1).8 The principal G-bundle

structure naturally incorporates the ambiguities in the Lagrangian construction and

allows for non-trivial topology. There is a gauge freedom associated to the addition of an

exact term to the Lagrangian. Principal U(1)-bundles are classified topologically by the

first Chern class c1 ∈ H2(M,Z). Given a principal bundle P (M,π,U(1)) and a choice

of principal connection, A ∈ Ω1(M, g), the curvature F = dA gives a representative of

the first Chern class of P . We will now outline the construction. Let U = {Uα} denote

a good cover of M and π−1(Uα) = Uα×S1 a cover for P . Take local coordinates (x, θα),

x ∈ Uα, θα ∈ S1. We have two sets of coordinates on π−1(Uα ∩ Uβ) given by (x, θα)

and (x, θβ). The coordinates are related by

θα = gαβ(x)θβ, x ∈ Uα ∩ Uβ, (2.24)

where gαβ(x) ∈ C∞(Uα∩Uβ,U(1)) are the transition functions. The transition functions

are required to satisfy the cocycle conditions

gαα(x) =1 x ∈ Uα,

gαβ(x)gβα(x) =1 x ∈ Uα ∩ Uβ,

gαβ(x)gβγ(x)gγα(x) =1 x ∈ Uα ∩ Uβ ∩ Uγ .

Equation (2.24) implies that

d log θα = d log gαβ + d log θβ, x ∈ Uα ∩ Uβ. (2.25)

While log is a multi-valued function d log is single valued. Every term in (2.25) is pure

imaginary since θα, θβ, gαβ all have absolute value 1.

Consider a connection one-form (given locally by Aα ∈ Ω1(Uα,R)) satisfying

(δA)αβ ≡ Aβ −Aα = −id log gαβ. (2.26)

8When considering quantisation we require G = U(1).
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It follows from (2.25) and (2.26) that

Aα − id log θα = Aβ − id log θβ,

and A is independent of the choice of cover. The curvature F = dA satisfies

F = dAα = dAβ, x ∈ Uα ∩ Uβ,

and gives a globally defined two-form F ∈ Ω2(M,Z). The Chern class of P is given by

[F ] ∈ H2(M,Z).

The cocycle conditions on A associated with non-zero F give exactly the correct

behaviour to describe a monopole (see Section 2.1.1). We see that the charge can be

encoded geometrically.

Gauge transformations

There is an ambiguity in the description of the transition functions gαβ. This ambiguity

corresponds to gauge transformations A → A + db, where b ∈ C∞(M). Let x(t) be

a curve in M , with t ∈ [0, 1]. To each point x we associate a point of the circle

π−1(t), defining a section. The section is described locally by θα(x(t)) for x(t) ∈ Uα. If

x(t) ∈ Uα ∩ Uβ, θα and θβ are related by (2.24). The section is called parallel if

d log θα − iAα(x) = 0,

where Aα(x(t)) is the restriction of Aα to x(t). Integrating the differential equation

gives

θα = exp

(
i

∫
x
Aα(t)

)
. (2.27)

Up to a constant factor
∫
Aα is the phase and the right hand side of (2.27) is the phase

factor. For questions of quantisation it is the phase factor that is meaningful and not

the phase itself. This leads to gauge transformations

A′α = Aα − id log hα, g′αβ = hαgαβh
−1
β , hα ∈ Ω0(Uα).

Writing hα = exp(2πibα), we have A′α = Aα + 2πdbα. The fields Aα and A′α give the

same phase factor when

1 = exp

(
i

∫
γ
(Aα −A′α)(t)

)
= exp

(
2πi

∫
γ
dbα(t)

)
.
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The requirement that dbα = 0 implies that bα is locally constant and hence bα ∈
Ω0(M,Z).

Atiyah algebroid and U(1)-bundles

In Section 2.2 it was claimed that the Atiyah algebroid (2.19) is the infinitesimal object

associated to P (M,π,U(1)). In this section we elaborate on this construction for the

G = U(1) Atiyah algebroid. For a summary of the general case see Section 3.2. Consider

the trivial principal bundle P (M,π,U(1)), given by P = M × S1, with the U(1)-action

being translation on S1. An Atiyah algebroid has an associated exact sequence of vector

bundles

0 // P × R // TP/U(1)
π∗ // TM // 0 ,

where g = Lie(U(1)) = R. This gives an induced map on sections

0 // C∞(P,R)U(1) ' C∞(M) // XG(P )
π∗ // X(M) // 0 ,

where X(M) := Γ(TM) and XG(P ) denotes the space of G-invariant vector fields. If

TP/U(1) is a trivial bundle there exists an isomorphism XG(P ) ∼= X(M)⊕C∞(M). To

see this explicitly let {x} describe coordinates on M , θ a parameterisation of S1, and

{x, θ} gives coordinates for P . The U(1)-action is given by translation on the circle

and generated infinitesimally by ∂θ. Sections v ∈ Γ(TP ) are given by

v = vi(x, θ)∂i + f(x, θ)∂θ, vi, f ∈ C∞(P ),

with the bracket on TP given by the commutator of vector fields. Elements of XG, the

space of U(1)-invariant vector fields, are of the form

vG = vi(x)∂i + f(x)∂θ, vi, f ∈ C∞(M). (2.28)

The bracket on XG is given by

[(v1, f1), (v2, f2)] = ([v1, v2], v1(f2)− v2(f1)), (2.29)

where v1, v2 ∈ Γ(TM) and f1, f2 ∈ C∞(M). In this way we can see that the Atiyah

algebroid (2.19) arises naturally as the Lie bracket of U(1)-invariant fields on a U(1)-

bundle. It is natural to ask how global information about the principal bundle P can

be encoded in the Atiyah algebroid. This information is incorporated in the twisted

Atiyah algebroid (2.21), with F being a representative of the first Chern class. A choice

of F determines a principal U(1)-bundle up to a choice of flat connection as described
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in Section 2.2.2.

2.2.3 Contact structures and Lagrangian mechanics

In this section we outline the contact structures underlying Lagrangian mechanics.

The following discussion on the connection between contact geometry and Lagrangian

mechanics is based on the short survey by Ševera [110]. A description of contact

quantisation is given in [65].

A contact structure on a manifold M is a field of hyperplanes defining a subbundle

of codimension 1, HM ⊂ TM , satisfying a maximal nonintegrability condition. Con-

tact structures are introduced and discussed in Chapter 4. Contact structures can be

described by a one-form θ on the line bundle TM → HM , i.e., θ ∈ Ω1(TM/HM).

A contact vector field has a flow which preserves the contact structure. There is a

one-to-one correspondence between contact vector fields and sections of the line bundle

TM/HM . For any w ∈ C∞(TM/HM) there is a unique v that is equal to w mod

HM .

There are two natural examples which are relevant to our discussion of Lagrangian

mechanics:

Example 2.1. Consider a symplectic manifold (N,ω). Let P (N, π,G) be a principal

G-bundle, with G = R or U(1). Choose a connection A ∈ Ω1(N, g), such that the

curvature dA = ω. The horizontal distribution makes P into a contact manifold. The

local flow generated by a contact field R preserves the contact structure if and only if

it is G-invariant. The contact field is invariant if the contact Hamiltonian h defined by

the constraint

ιRdA = −dh

is the pullback of a function on N .

Example 2.2. A classic example of a contact manifold is the space of contact elements

(CM,M, π) given by hyperplanes in the tangent space of a manifold M . The distri-

bution H(CM) can be described pointwise. Each point x ∈ CM corresponds to a

hyperplane H in Tπ(x)M and Hx(CM) is given by (dπx)−1(H).

Contact geometry on CM gives a geometric interpretation of first order partial

differential equations and the Lagrange method of characteristics. Let E ⊂ CM be

a hypersurface representing the equation. A hypersurface on Σ ⊂ M can be lifted to

CM via the tangent functor. For a point x ∈ Σ take the hyperplane TxΣ to be a point

of the lift Σ̃. Σ̃ is a Legendre submanifold of CM . The hypersurface Σ solves the

equation if Σ̃ ⊂ E. Taking x ∈ M the enveloping cone of the hyperplanes π−1(x) ∩ E
in TxM defines a field of cones in M . Σ solves the equation if it is tangent to the cones
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everywhere.

The construction on CM is central to the method of characteristics. The hyperplane

field H(CM) cuts a hyperplane field HE. The form θ becomes degenerate when we re-

strict from Hx(CM) to HxE. Thus at any x ∈ E there appears a direction along which

θ is degenerate. The integral curves of this direction field are called characteristics. In

this way we see that Lagrangian mechanics is naturally associated to contact geometry.

The solutions of the Euler–Lagrange equations are associated to characteristic curves.

2.3 Higher geometry

In Section 2.2 it was shown that Lagrangian mechanics describing the embedding of

worldlines in a target space has a geometric intrepretation in terms of contact structures

and Lie algebroids.

The construction of Lagrangian mechanics associated to worldline embeddings can

be generalised to describe string dynamics. This involves embedding a two-dimensional

worldsheet into a target manifold M , via X : Σ→M . We will be particularly interested

in non-linear sigma models. An example of such a model was given by (2.15). These

models are the subject of Chapter 5. We will see that the structure of a Courant

algebroid naturally emerges on the vector bundle E = TM ⊕ T ∗M .

Courant algebroids arise natually in two-dimensional variational problems. Con-

sider the mapping X : Σ→M describing the embedding of a two-dimensional manifold

(worldsheet) in a target manifold M . The Lagrangian theory is given by an action

S =

∫
Σ
X∗β

with β ∈ Ω2(M).9 Typically β can describe the tension of the worldsheet or a non-

linear sigma model describing the motion of a string in a fixed background. Extremal

surfaces are given by dβ = 0.

Suppose we have a vector field v ∈ Γ(TM) and an extremal surface β ∈ Ω2(M)

satisfying

Lvβ = dιvβ = 0.

We conclude that ιvβ is closed and hence gives a conserved quantity. Following Section

2.2, the ambiguity of the Lagrangian allows us to add an exact term dξ, where ξ ∈
Ω1(M), satisfying

Lvβ + dξ = d(ιvβ + ξ) = 0, (2.30)

9As in the one-dimensional case we can generalise this construction to the Jet space to incorporate
derivatives of fields.
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on extremal surfaces (the quantity ιvβ + ξ is conserved). In this case we see that

the pair (v, ξ) generates a symmetry. Take E = TM ⊕ T ∗M =: TM and consider

e = (v, ξ) ∈ Γ(E) = Γ(TM). Let C ⊂ E be given by

C = graph(β) := {(v, ξ) ∈ Γ(TM) : ξ = −ιvβ}.

There is a natural flow which preserves C when Lvβ + dξ = 0. This flow is given by

L(v1,ξ1)(v2, ξ2) = (Lv1v2,Lv1ξ2 − ιv2dξ1).

The preservation of C is easily verified

L(v1,ξ1)(v2, ξ2) =(Lv1v2,Lv1ξ2 − ιv2dξ1)

=([v1, v2],−Lv1ιv2β − ιv2dξ1)

=([v1, v2],−ι[v1,v2]β − ιv2(Lv1β + dξ1))

=([v1, v2], ι[v1,v2]β);

where the last line follows as (v1, ξ1) generates a symmetry and hence satisfies (2.30).

This flow defines a natural product

(v1, ξ1) ◦ (v2, ξ2) = ([v1, v2],Lv1ξ2 − ιv2dξ1). (2.31)

This product combined with the pairing

〈(v1, ξ1), (v2, ξ2)〉 =
1

2
(ιv1ξ2 + ιv2ξ1),

defines a Courant algebroid structure (see Definition 3.21).

In Section 2.2 it was possible to introduce a curvature term F , which results in

a twisted Atiyah algebroid. In the two-dimensional case one can add a term
∫

Σ3
H

where ∂Σ3 = Σ and H ∈ Ω3(M). Section 4.1.1 describes how H ∈ Ω3(M,Z) can be

interpreted as the curvature of a U(1)-gerbe structure. Following the argument used

for the twisted Atiyah algebroid the twisted Courant algebroid product emerges

(v1, ξ1) ◦H (v2, ξ2) = ([v1, v2],Lv1ξ2 − ιv2dξ1 + ιv1ιv2H). (2.32)

The two-form β is not unique. In fact any closed B ∈ Ω2(M) can be added to β

without changing anything; it is dβ that is important. This is simply the statement

that a total derivative term can be added to a Langrangian without changing the

Euler–Lagrange equations. So instead of considering C defined by β we should really
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be looking at an equivalence class of structures given by

CB = graph(β +B) = {(v, ξ) ∈ Γ(TM) : ξ = ιvβ + ιvB}

for B ∈ Ω2
cl(M). This is associated to an automorphism eB ∈ End(TM) given by

eB(v, ξ) = (v, ξ + ιvB).

Two structures C1 and C2 should be considered equivalent if they are related by such a

B-transformation. Differential geometry on TM ⊕ T ∗M is called generalised geometry

and naturally incorporates B-transformations. Generalised geometry was introduced

in the physics literature and later formalised by Hitchin and Gualtieri [64, 59].

The arguments of this section can be repeated for βp ∈ Ωp(M), with twists Hp+1 ∈
Ωp+1(M), describing the embedding of a p-dimensional worldvolume (a p− 1-brane) in

a target space of dimension n ≥ p. The calculations are formally the same and give

a higher algebroid product defined on E = TM ⊕ ∧pT ∗M with a ∧p−1T ∗M valued

pairing 〈·, ·〉.
In this way we can see how variational problems naturally lead to algebroid struc-

tures and ‘higher’ geometry. Geometric structures associated to the vector bundle

E ∼= TM ⊕ R⊕ R⊕ T ∗M are the subject of Chapter 4.

Example: Loop space model

The twisted Courant algebroid product (2.32) arises naturally in the study of closed

strings and sigma models on loop space [3, 46]. Consider the embedding of a closed

string worldsheet Σ = S1 × R. The phase space can be described locally using local

coordinates Xµ(σ) and canonical momenta pµ(σ). The phase space can be identified

with T ∗LM , via (Xµ, pµ) ∈ T ∗LM , where LM := {X : S1 → M} is the loop space.

The system is described by a Hamiltonian

H[X, p] =
1

2

∫
S1

Gµνpµpν +Gµν∂X
µ∂Xν .

The standard symplectic form on T ∗LM is given by

ω =

∫
S1

dσδXµ ∧ δpµ,

where δ : ∧•T ∗LM → ∧•T ∗LM is the de Rham differential. This symplectic form can

be twisted to give

ωH =

∫
S1

dσ(δXµ ∧ δpµ + 1
2Hµνλ∂X

µδXν ∧ δXλ).
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The symplectic structure is preserved under the transformation

(Xµ, pµ)→ (Xµ, pµ +Bµν∂X
ν)

when dB = 0. This construction can be identified with geometry on the bundle E =

TM := TM ⊕ T ∗M . A section (v, ξ) ∈ Γ(TM) is identified with a current Jε ∈
C∞(T ∗LM):

Jε(v, ξ) =

∫
S1

dσε(vµpµ + ξµ∂X
µ),

for test function ε ∈ C∞(S1). These currents obey a Poisson algebra structure based

on the twisted Courant algebroid:

{Jε1(v1, ξ1), Jε2(v2, ξ2)} = −Jε1ε2((v1, ξ1) ◦H (v2, ξ2))−
∫
S1

dσε1∂ε2〈(v1, ξ1), (v2, ξ2)〉.

For more details the reader is referred to [3, 46] and references within.

String theory inspired examples

The study of target space models in string theory and supergravity lead to Leibniz

algebroid structures on vector bundles. Models corresponding to Type II supergravity

[39], Heterotic supergravity [48, 10], and M-theory/11-dimensional supergavity [74]

can be constructed. A list of supergravity models and the associated algebroid vector

bundles is given in Table 2.1.10 It is also possible to consider quantum corrections in the

framework of generalised geometries. First loop α′-corrections have been incorporated

in the generalised geometry description of string theory [40].

Vector bundle Supergravity model

TM ⊕ T ∗M Type I (& Type II without RR-flux)
TM ⊕ S± ⊕ T ∗M Type II with RR-flux
TM ⊕ adG⊕ T ∗M Heterotic

TM ⊕ ∧2T ∗M ⊕ ∧5T ∗M M-theory (11-dim supergravity)

Table 2.1: List of supergravity theories and associated algebroid vector bundles.

2.3.1 Higher Noether’s theorem and Poisson–Lie T-duality

Poisson–Lie T-duality, introduced by Klimč́ık and Ševera [84, 83], describes an equiv-

alence11 between two non-linear sigma models. There is a Courant algebroid structure

10In Table 2.1 S± denote the positive and negative irreducible representations of the group
Spin(T ∗M):

S+ = ∧evT ∗M =
∑bdim(M)/2c
n=0 ∧2nT ∗M , and S− = ∧oddT ∗M =

∑bdim(M)/2−1c
n=0 ∧2n+1T ∗M .

11The equivalence here is a symplectomorphism between the phase spaces of both models.
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underlying Poisson–Lie T-duality (a description of Poisson–Lie T-duality from this

perspective is given by Ševera in [112]). The non-linear sigma models described by

Poisson–Lie T-duality are of the form

S[X] =

∫
dzdz̄(Gµν +Bµν)∂Xµ∂̄Xν =:

∫
dzdz̄Eµν∂X

µ∂̄Xν . (2.33)

Suppose that there is a right-action of a Lie group G on the closed target manifold M .

Choosing a basis of left-invariant vector fields va ∈ Γ(TM), a = 1, . . . ,dim(G), the Lie

algebra g = Lie(G) is realised by

[va, vb] = Ccabvc,

where Ccab ∈ R are structure constants. The associated conserved Noether forms,

Ja ∈ Ω1(Σ), are given by

Ja = vµaEµν ∂̄X
νdz̄ − vµaEνµ∂Xνdz.

We consider the variation δεS with respect to ε = εava for εa ∈ C∞(Σ):

δεS = S[X + εava]− S[X] =

∫
εaLvaE +

∫
dεa ∧ Ja

=

∫
εa(LvaE − dJa).

Requiring that δεS = 0 for arbitrary εa ∈ C∞(Σ) implies LvaE = dJa. When va are

Killing vectors for E (satisfying LvaE = 0) we conclude that Ja is closed and hence a

Noether current. More generally we may require that Ja satisfies

dJ − [J ∧, J ]g̃ = 0, (2.34)

where

[J ∧, J ′]g(s1, s2) :=
1

2

(
[J(s1), J ′(s2)]g̃ − [J(s2), J ′(s1)]g̃

)
,

for J, J ′ ∈ Ω1(Σ, g) and s1, s2 ∈ Γ(TΣ). It follows that J = dg̃g̃−1 is a Maurer–Cartan

form for some g̃ : Σ→ G̃ with g̃ = Lie(G̃).

There is a pair (va, Ja) associated to a non-linear sigma model (M,E) exhibiting

Poisson–Lie symmetry. The left-invariant vector fields va correspond to the right action

of G and Ja are the associated Noetherian currents (as well as right-invariant Maurer–

Cartan forms for G̃). Poisson–Lie T-duality takes a non-linear sigma model (M,E) with

(va, Ja) and identifies it with a dual non-linear sigma model (M̃, Ẽ) with (ṽa, J̃a). The

dual model interchanges the role of G and G̃. The vector fields ṽa ∈ Γ(TM̃) correspond
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to a basis of left-invariant vector fields for G̃ with associated Noetherian currents J̃a.

If we consider a target manifold M = G the Poisson–Lie pair is constructed out of a

Drinfeld double D. A Drinfeld double is a Lie group D which satisfies Lie(D) =∼= g⊕g̃.12

There is an integral surface f ∈ C∞(D) defined via the relations

∂f =εava + εaJa = εava − E(·, εava),

∂̄f =∂̄g + E(∂̄g, ·).

Central to the procedure is the fact that f ∈ C∞(D) admits two decompositions:

f(z, z̄) = g(z, z̄)g̃(z, z̄) = h̃(z, z̄)h(z, z̄). (2.35)

The dual model requires the definition of a dual tensor Ẽ = G̃+ B̃. This is done via an

identification of a subspace of Lie(D) ∼= g⊕ g̃. Define the graph of E to give a subspace

E := graph(E) = {(v, ξ) ∈ g⊕ g∗ : ξ = E(·, v)}.

Given a choice of dual tensor Ẽ ∈ Γ(g̃∗ ⊗ g̃∗) there is a second subspace

Ẽ := graph(Ẽ) = {(ṽ, ξ̃) ∈ g̃⊕ g̃∗ : ξ̃ = Ẽ(·, ṽ)}.

The Lie algebra associated to a Drinfeld double is endowed with an inner product. The

inner product gives an identification g ⊕ g∗ ∼= g̃∗ ⊕ g̃. Taking the canonical pairing of

g and g∗ gives an identification g̃ ∼= g∗. The tensors E and Ẽ are mutually determined

by the requirement that E = Ẽ .

The difficult part of Poisson–Lie T-duality is determining the necessary and suffi-

cient conditions on the pair (G, G̃) to ensure that all the necessary parts of the con-

struction above exist—in particular the decomposition (2.35). This construction exists

and is unique precisely when the pair (G, G̃) defines a Drinfeld double. A pair of Lie

groups (G, G̃) form a Drinfeld double if the Lie algebras (g = Lie(G), g̃ = Lie(G̃)) are

compatible:

dg̃[·, ·]g = [dg̃·, ·]g + [·, dg̃·]g (or equivalently dg[·, ·]g̃ = [dg·, ·]g̃ + [·, dg·]g̃),

where dg̃ is the Chevalley–Eilenberg differential on Γ(∧•g̃∗) ∼= Γ(∧•g), and [·, ·]g is the

Schouten bracket extension of the Lie bracket on g (see Section 3.4.1). The existence

of the Drinfeld double structure is enough to guarantee that both (G, E) and (G̃, Ẽ)

are integrable non-linear sigma models. Poisson–Lie T-duality provides a symplecto-

morphism between the phase spaces of both models. The relevant Courant algebroid

12For more information on Drinfeld doubles and Lie bialgebras see for example [87].
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structure associated to Poisson–Lie T-duality is a Lie bialgebroid constructed on the

Drinfeld double Lie(D) (see [112]).

2.4 Classifying Lie algebroids and Lie groupoid gauging

It was seen in Section 2.1 (see also Chapter 5) that WZW models play an important

role in the study of non-linear sigma models. Lie group manifolds come with natural

left/right actions and geometric structures which are compatible with these actions, e.g.,

Maurer–Cartan forms and Killing forms. This allows a rather explicit construction of

WZW non-linear sigma models for compact semi-simple Lie groups G.

Smooth symmetries are not restricted to group manifolds. Principal G-bundles,

defined on a generic base manifold M , have a natural Lie group action. Symmetries

are not restricted to group actions. In fact, groupoids provide the most natural setting

for discussing symmetries [126]. Smooth symmetries correspond to Lie groupoids. With

this in mind, it is of interest to realise geometric structures associated to Lie groupoids

in a manner that closely follows that of group manifolds. It turns out that a certain

class of transitive Lie algebroids (classifying algebroids) provide a solution to Cartan’s

realisation problem. The details of the construction are given in [113, 47]. This is

an interesting application as it allows us to give an intuitive and explicit method for

constructing manifolds with Lie algebroid symmetries.

Classifying Lie algebroids are the infinitesimal generators of a Lie groupoid action.

There are invariant Maurer–Cartan forms and vector fields tangent to groupoid orbits.

The Lie groupoid symmetry can be generated from flows defining foliations which do

not produce a Lie group structure. This allows the construction of non-linear sigma

models which are gauged using Lie groupoid actions. Global structure is determined

by Lie algebroid cohomology.

The use of Lie groupoid gauging in the study non-linear sigma models is the subject

of Chapter 5. It is possible to find an analogue of the WZW model given a Lie groupoid

by lifting the geometry to a vector bundle.
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Chapter 3

Background

This chapter contains background material required for the rest of the thesis. Lie

groupoids, Lie algebroids, and more general vector bundle geometry (based on local

Leibniz algebroids) are discussed, along with numerous examples. The chapter does

not contain new results and readers familiar with these topics may wish to skim the

chapter for notation.

3.1 Lie Groupoids

This section defines Lie groupoids and gives some of their properties. The presentation

and examples here are based primarily on the notes by Crainic and Fernandes [43]. A

comprehensive introduction to Lie groupoids and Lie algebroids can be found in the

textbook by Mackenzie [97].

Definition 3.1. A groupoid (G,M, s, t,m, u, i) consists of a set of arrows, G, a set of

objects M , and maps s, t,m, u, i, satisfying the laws of composition, associativity, and

inverses:

• The source and target maps: s, t : G →M , associating to each arrow h its source

object s(h) and target object t(h). We write h : x
h→ y for h ∈ G satisfying

s(h) = x and t(h) = y.

• The set of composable arrows is denoted by G2:

G2 := {(h2, h1) ∈ G × G : s(h2) = t(h1)}. (3.1)

For a pair of composable arrows (h2, h1) the composition map m : G → G is the

composition m(h2, h1) = h2 ◦ h1 (typically denoted h2h1 for simplicity).

• The unit and inverse maps: u : M → G, i : G → G, where u sends x ∈ M to the

identity arrow 1x ∈ G at x, and i sends an arrow h to its inverse h−1.

29
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We will often denote a groupoid by (G,M) or even simply G if there is no risk of

confusion.

Remark. The definition of a groupoid given here can be succinctly phrased is as follows:

A groupoid G is a small category in which every arrow is invertible.

Definition 3.2. A topological groupoid is a groupoid G whose set of arrows and set of

objects are both topological spaces, and the structure maps (s, t, u,m, i) are continuous

with s and t open.

Definition 3.3. A Lie groupoid is a groupoid G whose set of arrows and set of objects

are both manifolds, and the structure maps (s, t,m, u, i) are all smooth with s and t

are submersions.

Not all objects in a groupoid need to be composable. Given an object x ∈ M it is

important to keep track of the possible precomposable and postcomposable objects. If

x ∈M then the sets

G(x, ·) = s−1(x), G(·, x) = t−1(x)

are called the s-fiber and t-fiber at x. The inverse map induces a bijection i : G(x, ·)→
G(·, x). Multiplication is only defined on the s-fiber, and an arrow g : x→ y induces a

bijection

Rg : G(y, ·)→ G(·, x).

The set of objects which can be both precomposed and postcomposed with a fixed

x ∈M define a group; the intersection of the s and t-fiber at x ∈M

Gx = s−1(x) ∩ t−1(x) = G(x, ·) ∩ G(·, x)

is called the isotropy group at x.1

We can define an equivalence of two objects x, y ∈M , denoted x ∼ y, if there exists

an arrow h ∈ G whose source is x and target is y. The equivalence class of x ∈ MG is

called the orbit through x

Ox = {t(h) : h ∈ s−1(x)}.

The quotient set

M/G := M/ ∼G= {Ox : x ∈M}
1If we consider the transformation groupoid associated to the action of a Lie group G on a manifold

M (Example 3.3), the isotropy group defined here coincides with the notion of an isotropy subgroup
appearing in the physics literature: For a fixed x ∈M , the isotropy group Gx = {g ∈ G : gx = x}.



3.1. LIE GROUPOIDS 31

is called the orbit set of G.

Definition 3.4. Given a groupoid G over M a G-space E is defined by a map µ : E →
M , called the moment map, together with a map

G ×M E = {(g, e) : s(g) = µ(e)} → E, (g, e)→ ge,

satisfying the following identities

1. µ(ge) = t(g);

2. g(he) = (gh)e, for all g, h ∈ G and e ∈ E for which the composition is well defined;

3. 1µ(e)e = e, for all e ∈ E.

An action of G on E, with moment map µ : E → M , associates to each arrow

g : x→ y an isomorphism

Ex → Ey, e→ ge,

where Ex = µ−1(x), such that the action identities are satisfied. Each fiber Ex is a

representation of the isotropy group Gx.

If we have a topological groupoid G we might want E to be a topological space in

order to describe a continuous action. If M is a manifold we might want E to be a

manifold to describe a smooth action.

3.1.1 Lie groupoid examples

In this section we give examples of groupoids. The examples of Lie groupoids are

of particular relevance to Lie groupoid gauging discussed in Chapter 5. Many more

examples exist in the literature (see for example [125, 63, 97, 43]).

Example 3.1 (Lie group). Every Lie group G can be viewed as a Lie groupoid over a

point (G,M) = (G,pt).

Example 3.2 (Fundamental Groupoid). Let M be a manifold and let Π1(M) denote

the manifold consisting of all homotopy classes (with fixed end points) of curves in M .

Then (Π1(M),M) can be endowed with the structure of a Lie groupoid. Let γ : I →M

be a curve in M and denote its homotopy class by [γ]. The source and target maps

associate to [γ] are its end points i.e., s([γ]) = γ(0), and t([γ]) = γ(1). If γ1 and γ2 are

two curves such that γ1(1) = γ2(0) then we define their product to be concatenation

of curves, [γ2][γ1] = [γ2 · γ1]. The identity element at a point x ∈ M is the class

of homotopically trivial paths passing through x. The inverse of [γ] is the class of

γ̄ : I → M , where γ̄(t) = γ(1 − t). Note that the orbits of the fundamental groupoid



32 CHAPTER 3. BACKGROUND

are the connected components of M ; the isotropy group at x is the fundamental group

of M with base point x.

Example 3.3 (Transformation groupoid). Let G be a group acting on a manifold M .

We define the transformation groupoid (G,M) = (G ×M,M) to be the Lie groupoid

whose structure maps are given by

s(g, x) =x, t(g, x) = gx, (h, gx)(g, x) = (hg, x), 1x = (e, x), (g, x)−1 = (g−1, gx),

where e is the identity of G.

The orbits of the groupoid coincide with those of the action G. The isotropy groups

of G coincide with those of the action.

Example 3.4 (Gauge Groupoid). Let P (M,π,G) be a principal G-bundle. The gauge

groupoid of P , denoted (G(P ),M), is defined as

G(P ) =
P × P

G
,

where the quotient refers to the diagonal action of G on P × P ((p, q) · g = (pg, qg)).

Let us denote by [p, q] the class of (p, q). The structure of G(P ) is given by:

s[p, q] =π(q), t[p, q] = π(p), [p1, q1][q1, p2] = [p1, p2],

1x =[p, p] for some p ∈ π−1(x), [p, q]−1 = [q, p].

Example 3.5 (Symplectic groupoid on T ∗G). Given a Lie group G, with g = Lie(G), we

can define a Lie groupoid (G,M) = (T ∗G, g∗), equipped with its canonical symplectic

structure. If we identify T ∗G ∼= G × g∗ the Lie groupoid structure on T ∗G is simply

that of the transformation groupoid associated to the coadjoint action of G on g∗. For

more details see [125].

Many more examples of groupoids are known, including manifolds with boundary,

convolutions of functions, and more general symplectic groupoids (see for example

[43, 63, 125]).

3.1.2 The Lie algebroid of a Lie groupoid

The infinitesimal objects associated to Lie groupoids are Lie algebroids. Lie algebroids

are a linearisation of Lie groupoids, retaining most of the structure of the Lie groupoid,

but are easier to study.

There are two notable differences between the Lie groupoid case and the Lie group

case. Firstly there is a unit for each point in M suggesting a representation on a

vector bundle as opposed to a vector space. Secondly, when considering right-invariant
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sections on G we must restrict our attention to the sub-bundle T sG = ker(ds) ⊂ TG—

those sections which are tangent to the s-fibers.

Definition 3.5. Given a Lie Groupoid (G,M) we can define a vector bundle A→M .

For each x ∈ M the fiber Ax coincides with the tangent space at the unit 1x of the

s-fiber at x. In short A := T sG|M and will often denote it simply as A = Lie(G).

The vector bundle A→M is endowed with a bracket on the space of right-invariant

sections on G. To describe this we need to know the induced action from the composition

of arrows g : x→ y and h : y → z. For an arrow h : y → z we define

T shG := ThG(y, ·),

and any arrow g : x→ y induces a map

Rg : T shG → T shgG,

the differential of the right multiplication by g. The space of right-invariant sections

on G is given by the set

Xsinv(G) = {X ∈ Γ(T sG) : Xhg = Rg(Xh), ∀(h, g) ∈ G2},

where G2 is the set of composable arrows defined by (3.1). Given a ∈ Γ(A) a right-

invariant section is given by ãg = Rg(at(g)). The invariance of X ∈ Xsinv(G) shows that

X is determined by its values at the points in M

Xg = Rg(Xy), ∀g : x→ y.

Defining a := X|M ∈ Γ(A) we have X = ã. This establishes an isomorphism

Γ(A)
∼−→ Xsinv(G), a→ ã. (3.2)

Definition 3.6. The Lie algebroid bracket on A is the bracket obtained from the

isomorphism (3.2) and defined as

˜[a1, a2]A := [ã1, ã2]. (3.3)

Definition 3.7. The anchor map of A is the bundle map

ρ : A→ TM

obtained by restricting dt : TG → TM to A ⊂ TG.

The anchor map gives sections of Γ(A) a derivation property. For all a1, a2 ∈ Γ(A),
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and all f ∈ C∞(M) the Lie algebroid bracket satisfies

[a1, fa2]A = f [a1, a2]A + (ρ(a1)f)a2,

where ρ(a1)f = Lρ(a1)f . This follows from the identification of Γ(A) ∼= Xinv(G) and ρ

with dt. Details can be found in [43].

The Lie groupoid action can (partially) be recovered from the infinitesimal Lie

algebroid action. This is a generalisation of the relationship between Lie algebras and

Lie groups. The action is recovered by flowing along the right-invariant sections ã. For

x ∈M , we set

φta(x) := φtã(1x) ∈ G,

where φtã is the flow of the right-invariant section ã induced by a. This flow defines an

exponential map much like the in the case of Lie algebras:

exp(ta)(x) = φta(x).

Examples of Lie algebroids are given in Section 3.2.1.

3.2 Lie algebroids

In Section 3.1.2 the Lie algebroid associated to a Lie groupoid was given by taking

a bracket structure on right-invariant sections of a vector bundle. The properties of

this Lie algebroid can be axiomatised to give a general definition of a Lie algebroid.

A natural question arises: Given a Lie algebroid on a vector bundle A, can this be

integrated to a Lie groupoid action for some G? In contrast to the case of Lie algebras,

this is not true for general Lie algebroids (see Section 3.2.2).

Definition 3.8. A Lie algebroid (A,M, ρ, [· , ·]A) consists of a vector bundle A over a

manifold M equipped with a bundle map ρ : A → TM and a bracket [·, ·]A : Γ(A) ×
Γ(A)→ Γ(A) satisfying:

[a1, [a2, a3]A]A =[[a1, a2]A, a3]A + [a2, [a1, a3]A]A, (3.4a)

[a1, fa2]A =f [a1, a2]A + ((ρ(a1)f))a2, (3.4b)

[a1, a2]A =− [a2, a1]A, (3.4c)

for a1, a2, a3 ∈ Γ(A) and f ∈ C∞(M).

Identities (3.4a) and (3.4c) imply that [·, ·]A is a Lie bracket. The first two identities
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imply that the anchor map ρ is a bracket homomorphism:

ρ([a1, a2]A) = [ρ(a1), ρ(a2)]TM (3.5)

where [· , ·]TM is the bracket defined by the commutator of vector fields.2

A transitive Lie algebroid is a Lie algebroid with a surjective anchor. we say that A

is a regular Lie algebroid if the image of the anchor Im(ρx) ⊂ TxM has constant rank.

Remark. At any point x ∈ M the Lie algebra gx(A) := ker(ρx) is the isotropy Lie

algebra at x. Given a Lie groupoid G the isotropy Lie algebra gx is isomorphic to the

Lie algebra of the isotropy group Gx.

Generically a bundle morphism ρ : A→ TM defines a distribution Im(ρx) ⊂ TxM .

The distribution Im(ρ) is smooth if Im(ρx) is spanned by smooth sections a(x) ∈ Im(ρx)

for all x ∈ M . The rank of a smooth distribution is a lower semi-continuous function.

A smooth distribution is called a regular distribution if its rank is locally constant.

The anchor homomorphism property (3.5) is quite strong and gives an integrability

condition for regular Lie algebroids. A distribution K ⊂ TM is integrable if every point

of M is contained in a plaque (a connected, immersed submanifold O such that TO =

K|O). An integrable distribution K determines a foliation F of M into leaves given by

the maximal plaques. The foliation F is called the integral foliation of K. We call K

the tangent distribution to F , denoted by TF . The Stefan–Sussman theorem asserts

that a smooth distribution K ⊂ TM is integrable if and only if it is involutive3 and

rank(K) is constant along the flow lines of sections of K [115]. A regular distribution

in TM is integrable iff it is involutive. The anchor homomorphism property states that

Im(ρ) is involutive.

In conclusion: If A is a regular Lie algebroid, property (3.5) shows that the resulting

distribution is integrable and M is foliated by immersed submanifolds O defined by

orbits TxO = Im(ρx) for all x ∈ O.

Remark. While it is true that every regular Lie algebroid defines a foliation the converse

is not expected to be true. To the best of the author’s knowledge it is an open question

whether or not all foliations can be generated by Lie algebroids (see for example [6] and

references within). It has recently been shown that all foliations must by generated by

Lie∞-algebroids [92, 91].

3.2.1 Examples

Here we present some standard examples of Lie algebroids. These examples (along with

the associated Lie groupoids) will form the basis of examples of Lie groupoid gauging

in Chapter 5.

2This is shown in a more general setting in Section 3.4.
3A distribution K ⊂ TM is involutive if [X,Y ] ∈ Γ(K) for each X,Y ∈ Γ(K).
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Example 3.6 (Lie algebra). A Lie algebra g defines a Lie algebroid with A = g, M = pt,

ρ = 0. This is the infinitesimal object corresponding to a Lie groupoid (G,M) = (G, pt),

where g = Lie(G).

Example 3.7 (Tangent bundle). Given a manifold M , there is Lie algebroid on TM

with the bracket given by commutator of vector fields, and the anchor given by the

identity map ρ = IdTM .

Example 3.8 (Foliations). Let F be a regular foliation on M , so that TF ⊂ TM is

an involutive distribution of constant rank. The distribution TF has a Lie algebroid

structure, with the bracket given by the commutator of vector fields, and the anchor

given by the inclusion i : TF → TM . The orbits of this Lie algebroid are the leaves of

F .

Example 3.9 (Infinitesimal g-action). Let ψ : g→ Γ(TM) be an infinitesimal action of

a Lie algebra g on TM . The transformation Lie algebroid is defined on A = M × g,

where ρ(x,X) = ψ(X)|x and

[X1, X2]M×g(x) = [X1, X2]g + (ψ(X1) ·X2)(x)− (ψ(X2) ·X1)(x).

This is the Lie algebroid associated to the transformation groupoid (Example 3.3).

Example 3.10 (Atiyah algebroid). Let P (M,π,G) be a principal G-bundle. The Atiyah

algebroid is defined on A = TP/G as part of the exact sequence

0 // (P × g)/G // TP/G
ρ
// TM

σ
jj

// 0 .

Sections of A are identified with right-invariant vector fields on P . The bracket is given

by the commutator of right-invariant vector fields; the anchor is π∗|TP/G : A → TM

induced by π∗. A short exact sequence of vector bundles gives a short exact sequence

of the C∞(M)-modules of sections:

0 // C∞(P, g)G // XG(P )
π∗ // X // 0 ,

where C∞(P, g)G is the module of G-equivariant smooth functions from P to g. If TP/G

is a trivial bundle there is an isomorphism C∞(P, g)G ∼= C∞(M, g). A choice of splitting

is given by a choice of one-form connection σ ∈ Ω1(M,TP/G). The corresponding

curvature Fσ ∈ Ω2(M,TP/G) is given by

Fσ(v1, v2) = σ([v1, v2])− [σ(v1), σ(v2)]TP/G.
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Letting (v, γ) ∈ Γ(A) = X⊕ C∞(M, g) the Atiyah algebroid bracket is given by

[(v1, γ1), (v2, γ2)]F =([v1, v2], [γ1, γ2]g +∇σv1γ2 −∇σv2γ1 − Fσ(v1, v2)).

The Atiyah algebroid is the Lie algebroid associated to the Gauge groupoid (Example

3.4).

The integrability of the Lie algebroid TP/G can be deduced from the properties of

the curvature Fσ. See Example 3.15 for a special case and [42, 43] for the general case.

Example 3.11 (Generalised Atiyah sequence). Locally any Lie algebroid can be associ-

ated to a generalised Atiyah sequence:

0 // gO // Q|O
ρ
// TO

σ

ii
// 0 ,

where gO = ker(ρ) denotes the isotropy algebra of O and TO = Im(ρ).

Example 3.12 (Poisson cotangent Lie algebroid). Given a Poisson manifold4 (M,π)

there is a cotangent Lie algebroid : A = T ∗M , ρ(ξ) = π(ξ, ·) for ξ ∈ Γ(T ∗M), and the

bracket is given by

[ξ1, ξ2]T ∗M = Lπ(ξ1,·)ξ2 − Lπ(ξ1,·)ξ2 − d(π(ξ1, ξ2)). (3.6)

This is the Lie algebroid associated to a symplectic groupoid on T ∗M (Example 3.5).

3.2.2 Integrability

All Lie algebras arise as the tangent of some (not necessarily unique) Lie group. How-

ever, not all Lie algebroids arise as the tangent of a Lie groupoid.

Definition 3.9. A Lie algebroid A is called integrable if it is isomorphic to the Lie

algebroid of a Lie groupoid G. We say that G integrates A.

There are obstructions to the integrability of Lie algebroids. The general conditions

for the integrability of Lie algebroids were established by Crainic and Fernandes [42, 43].

Theorem 3.10 (Lie I). Let G be a Lie groupoid with Lie algebroid A. There exists a

unique s-simply connected5 Lie groupoid G̃ whose Lie algebroid is also A.

Theorem 3.11 (Lie II). Let A1 → M1 and A2 → M2 be integrable Lie algebroids.

Denote by G(A1) the s-simply connected Lie groupoid integrating A1 and H(A2) any

Lie groupoid integrating A2. If Φ : A1 → A2 is a morphism of Lie algebroids6 covering

4A Poisson structure is a non-degenerate π ∈ Γ(∧2TM) satisfying [π, π]Schouten = 0.
5We say that G is s-simply connected if the s-fibers s−1(x) are 1-connected for every x ∈M .
6Lie algebroid/groupoid morphisms are defined in Section 3.3.1.
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φ : M1 → M2, then there exists a unique morphism of Lie groupoids F : G(A1) →
H(A2), also covering φ, such that d1xF (v) = Φ(v) for all x ∈ M1 and v ∈ T s1xG(A1).

In this case we say that F integrates Φ.

In order to state the integrability condition for a general Lie algebroid A, we need to

introduce the Weinstein groupoid. The Weinstein groupoid will appear as the groupoid

associated to the Lie algebroid gauging procedure discussed in Chapter 5.

Definition 3.12. Fix a Lie algebroid structure on A → M . An A-path consists of a

pair (a, γ) where γ : [0, 1]→M is a path in M , and a : [0, 1]→ A is a path in A, where

• a is a path above γ: a(t) ∈ Aγ(t) for all t ∈ [0, 1];

• ρ(a(t)) = dγ
dt (t) for all t ∈ [0, 1].

The base map can be recovered from a using the anchor ρ, so we will often just

refer to a as the covering map with the induced base map implied. The space of paths

associated to a Lie algebroid A will be denoted P (A).

The notion of an A-path is the Lie algebroid generalisation of flow lines associated

to vector fields.

An A-homotopy between A-paths a0 and a1 is a Lie algebroid morphism T (I×I)→
A which covers a (standard) homotopy with fixed end-points between the base paths

γ(ai(t)).

Remark. If we start with a Lie groupoid G and consider a path g(t) : I → G which stays

within an s-fiber and starts at 1x, then a(t) = (dLg−1(t))g(t)
dg(t)
dt defines an A-path.

Definition 3.13. The Weinstein groupoid of A is the topological groupoid

G(A) := P (A)/ ∼

where ∼ denotes the equivalence of A-homotopy paths. The multiplication on G(A) is

given by concatenation of paths. The source and target maps are the projection to the

start and end points of the A-paths.

The obstruction to integrating a Lie algebroid is described using the Monodromy

groupoid.

Definition 3.14. The monodromy group of A at x ∈M is the set

Nx(A) = {v ∈ Z(gx) : v is A-homotopic to the constant zero path} ⊂ Ax,

where gx is the isotropy algebra of A at x, and Z(gx) is its center. The monodromy

group consists of the subset of v ∈ Z(gx) which A-homotopic to the trivial path. Each

v ∈ Z(gx) can be viewed as a constant A-path. If there exists a homotopy between the

constant A-path and the trivial path we have v ∈ Nx.
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Let G(gx) = Gx(g) denote the simply connected Lie group integrating the Lie algebra

gx. Define Ñx(A) as the subgroup of G(gx) consisting of equivalence classes [a] ∈ G(gx)

of gx-paths that equivalent to the trivial A-path. The group Ñ is a subgroup contained

in Z(G(gx)), and its intersection with the connected component Z(G(gx))0 is isomorphic

to Nx(A).

Let Lx be the leaf of A through x. There is a monodromy map ∂ : π2(Lx, x)→ G(gx)

whose image is Ñx(A).

We present two examples which provide tools to discuss integrability of Lie alge-

broids which could be used in relation to Lie groupoid gauging in Chapter 5.

Example 3.13 (Monodromy Groupoid of a foliation). Let F be a regular foliation of

M . The monodromy groupoid of the foliation is the unique Lie groupoid (Π1(F),M)

whose Lie algebroid is TF and s-fibers are connected and simply connected. It can

be described as the space of homotopy classes of curves contained in the leaves of F ,

where we only allow homotopies which are also contained in the leaves. Multiplication is

given by concatenation of paths, the identity elements are given by the class of constant

paths, and inversion is given by reversing the direction of the curve. The orbits of the

monodromy groupoid of F are precisely the leafs of the foliation. The isotropy Lie

group of a point x is the fundamental group of the leaf through x, with base point x,

i.e., π1(Lx;x).

Example 3.14 (Holonomy Groupoid of a foliation). Taking Example 3.13 but replacing

homotopy classes of curves with holonomy classes of curves, gives another Lie groupoid,

called the holonomy groupoid of the foliation (Hol(F),M). The associated Lie algebroid

is also TF . This Lie groupoid has the property that any Lie groupoid G whose Lie

algebroid is TF fits into the exact sequence of groupoid covering maps

0 // Π1(F) // G // Hol(F) // 0 .

In this exact sequence a groupoid covering map is a Lie groupoid morphism whose

restriction to each s-fiber is a covering map.

Remark. The previous example mentioned holonomy classes of curves. We give the

definition of the holonomy of a curve in a foliated manifold (following [45]). Take some

d-dimensional manifold M and a k-dimensional foliation F ⊂ M . Choose a curve

lying in a single leaf of the foliation γ : [0, 1] → L with γ(0) = a and γ(1) = b. We

can choose small neighbourhoods Ua, Ub of a and b which consist of plaques. Take

(d − k)-dimensional disks Dd−k
a , Dd−k

b at a and b which are transversal to the leaves

and parameterise the plaques of Ua and Ub. The path γ can be subdivided such that it

consists of paths which lie within the neighbourhood of plaques Ui (where i = 0, . . . , n,

U0 = Ua, and Un = Ub) which intersect uniquely with Ui−1 and Ui+1. This chain of

plaques defines a diffeomorphism of a neighbourhood Dd−k
a to a neighbourhood Dd−k

b .
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This diffeomorphism gives the holonomy of the curve. The holonomy of the curve is

independent of choices of Ui.

Theorem 3.15 (Lie III [42]). Let A→M be a Lie algebroid. The following statements

are equivalent:

• A is integrable.

• The Weinstein groupoid G(A) is a Lie groupoid.

• The monodromy groups are uniformly discrete.

It is useful to consider several corollaries of this theorem:

• Any transitive Lie algebroid on a contractible base is integrable.

• Any Lie algebroid with an injective anchor is integrable.

• Let g be a Lie algebra and let g∗ be its dual Lie–Poisson manifold. The cotangent

Lie algebroid is integrable.

These integrability conditions will be sufficient for most examples of interest in Chapter

5 when considering Lie algebroid gauging of sigma models.

Example 3.15 (Integrability). Consider the Lie algebroid A, defined by the short exact

sequence

0 // L // A
ρ
// TM

σ

ee
// 0 ,

where L → M is a line bundle. A choice of splitting can be encoded in a choice of

connection one-form σ ∈ Ω1(M,A). Let F ∈ Ω2
cl(M) be the curvature of the connection

σ. A choice of splitting induces a local map on modules Γ(A) ∼= Γ(TM) ⊕ C∞(M).

The bracket is defined on sections (v, f) ∈ Γ(TM)⊕ C∞(M):

[(v1, f1), (v2, f2)]F = ([v1, v2]TM ,Lv1f2 − Lv2f1 − F (v1, v2)).

If M is simply connected and integral, [F/2π] ∈ H2(M,Z), and we have a prequan-

tisation principal U(1)-bundle. In this case the Lie algebroid integrates to the gauge

groupoid G(P ) associated to P (M,π,U(1)) (Example 3.4). The groupoid G(P ) is tran-

sitive and the isotropy Lie groups are all isomorphic to each other and to R/ΓF , where

ΓF is the group of spherical periods of F :

ΓF =

{∫
γ
F : γ ∈ π2(M)

}
⊂ R.
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The group ΓF is the monodromy group. When F is not integral, we don’t have a

prequantization bundle, and the construction of the groupoid fails. It is still possible

for the Lie algebroid A to integrate to a simply connected Lie groupoid if the isotropy

groups are isomorphic to R/ΓF . In this case A is integrable if ΓF ⊂ R is a discreet

subgroup. Let us take, for example, M = S2 × S2 with F = dS ⊕ λdS, where dS is

the standard area form on S2. Taking λ to be irrational the group of spherical periods

is ΓF = Z ⊕ λZ, so that R/ΓF is non-discrete, and the corresponding Lie algebroid is

non-integrable.

3.3 Lie algebroid geometry

In the previous section we introduced Lie algebroids and saw that they formed a gener-

alisation of Lie algebras. A standard example of a Lie algebroid comes from the tangent

bundle of a manifold (Example 3.7). The tangent bundle comes equipped with addi-

tonal structure of interest in differential geometry ,e.g, a Lie derivative L defining the

flow of tensors along a vector field, and the de Rham differential d defining de Rham

cohomology on the complex Ω•(M). The presence of a Lie algebroid A → M allows

the study of differential geometry on the vector bundle A. This section outlines Lie

algebroid geometry.

Given a Lie algebroid (A, [·, ·]A, ρ) one can define dA : Γ(∧kA∗)→ Γ(∧k+1A∗):

(dAω)(a0, a1, . . . , ak) =

k∑
i=0

(−1)iρ(ai)(ω(a0, a1, · · · , âi, . . . , ak)) (3.7)

+
∑
i<j

(−1)i+jω([ai, aj ]A, a0, . . . , âi, . . . , âj , . . . , ak),

where ai ∈ Γ(A), ω ∈ Γ(∧kA∗), and âi denotes omission. A lengthy but straightforward

calculation shows that the operator dA satisfies d2
A = 0 if and only if the Lie algebroid

axioms are satisfied. This can be recovered from the more general expression for d2
E

(3.37) given in Section 3.4.3.

There is a one-to-one correspondence between Lie algebroids (A, [·, ·]A, ρ) and Lie

algebroid differentials dA. It is clear from the definition of dA that a Lie algebroid

(A, [·, ·]A, ρ) uniquely defines a differential dA. Conversely, given a differential dA, the

Lie algebroid (A, [·, ·]A, ρ) can be recovered as follows: The anchor is given by the action

of differentiation on a function ρ(a)f = (dAf)(a); the bracket can then be recovered by

considering the differential on α ∈ Γ(∧1A∗):

(dAα)(a1, a2) = ρ(a1)α(a2)− ρ(a2)α(a1)− α([a1, a2]A).
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The Lie algebroid cohomology of A is the cohomology H•(A) groups associated to

the complex (dA,Γ(∧•A∗)).

Example 3.16 (de Rham cohomology). Take A = TM , and the Tangent Lie algebroid.

In this case 3.7 defines the de Rham differential, d, and Γ(∧•A∗) = Γ(∧•T ∗M).

Example 3.17 (Lie algebra cohomology). Take A = g, with the Lie algebroid defined

by the Lie algebra [·, ·]g. In this case 3.7 defines the Chevalley–Eilenberg differential dg

on the complex ∧•g∗.

Example 3.18 (Foliated cohomology). Take a manifold M and foliation F ⊂M . The fo-

liated Lie algebroid (Example 3.8) defines foliated cohomology with (dF ,Γ(∧•(T ∗F))).

Given a Lie algebroid A→M , and the canonical pairing 〈·, ·〉 : A× A∗ → R, a Lie

derivative can be defined which satisfies

La1〈a2, α〉 = 〈La1a2, α〉+ 〈a2,La1α〉.

Defining Laf := ρ(a)f for f ∈ C∞(M) and La1a2 := [a1, a2]A, we define

〈La1α, a2〉 := ρ(a1)〈α, a2〉 − 〈[a1, a2]A, α〉, (3.8)

for any α ∈ Γ(A∗). This definition can be extended in the natural way to general

tensors T ∈ Γ((⊗pA)⊗ (⊗qA∗)).7 This gives a notion of flowing tensors along sections

of a vector bundle endowed with a Lie algebroid. These definitions satisfy the Cartan

calculus on Γ(∧•A∗) :

[dA, dA] = 2d2
A = 0; (3.9a)

[dA, ιa] = ιadA + dAιa = La; (3.9b)

[dA,La] = dLa −Lad = 0; (3.9c)

[La1 ,La2 ] = La1La2 −La2La1 = L[a1,a2]A ; (3.9d)

[La1 , ιa2 ] = La1ιa2 − ιa2La1 = ι[a1,a2]A ; (3.9e)

[ιa1 , ιa2 ] = ιa1ιa2 + ιa2ιa1 = 0. (3.9f)

Equations (3.9) use the graded bracket [d1, d2] = d1d2 − (−1)|d1||d2|d2d1 with weights

|ιa| = −1, |dA| = 1, and |La| = 0.

Additional geometric structure can be defined using the notion of a Lie algebroid

connection.

Definition 3.16. Given a Lie algebroid A → M , and a vector bundle E → M , an

A-connection on E is a bilinear map ∇ : Γ(A) × Γ(E) → Γ(E) which satisfies the

7Taking La1 to act as a derivation on T.



3.3. LIE ALGEBROID GEOMETRY 43

following conditions:

• ∇fae = f∇ae;

• ∇afe = f∇ae+ (ρ(a)f)e;

where a ∈ Γ(A), e ∈ Γ(E), and f ∈ C∞(M).

Example 3.19 (Affine connection). When A = E = TM we recover the notion of an

affine connection.

Example 3.20 (Vector bundle connection). Given a vector bundle E → M , and the

Tangent Lie algebroid on TM , a TM -connection on E coincides with the definition of

a vector bundle connection.

Example 3.21. Given a vector bundle connection∇ (TM -connection on A), it is possible

to construct a number of Lie algebroid connections:

1. An A-connection on A: ∇a1a2 := ∇ρ(a1)a2.

2. An A-connection on A, called the adjoint connection:

A∇a1a2 := ∇ρ(a2)a1 + [a1, a2]A. (3.10)

3. An A-connection on TM : ∇a1ρ(a2) := ρ(A∇a1a2).

The adjoint connection plays an important role in the integrability of path groupoids,

and is central in understanding Lie groupoid gauging (Chapter 5).

Given an A-connection on E, denoted by∇, there is a natural definition of curvature

R∇ ∈ Γ(∧2A∗ ⊗ End(E)):

R∇(a1, a2)(e) = ∇a1∇a2e−∇a2∇a1e−∇[a1,a2]Ae, (3.11)

for a1, a2 ∈ Γ(A) and e ∈ Γ(e).

Given an A-connection on A, denoted ∇, we can define the Lie algebroid torsion

T∇ ∈ Γ(∧2A∗ ⊗A):

T∇(a1, a2) = ∇a1a2 −∇a2a1 − [a1, a2]A. (3.12)

Given an A-connection on E, and Lie algebroid differential dA, we can define a

modified differential d∇A : Γ(∧kA∗ ⊗ E)→ Γ(∧k+1A∗ ⊗ E) given by:

(d∇Aω)(a0, a1, . . . , ak) =
k∑
i=0

(−1)i∇ai(ω(a0, a1, · · · , âi, . . . , ak)) (3.13)
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+
∑
i<j

(−1)i+jω([ai, aj ]A, a0, . . . , âi, . . . , âj , . . . , ak),

where ω ∈ Γ(∧kA∗ ⊗ E). A straightforward calculation gives (d∇A)2ω = R∇ ∧ ω and

hence d∇A defines a differential if and only if ∇ is flat.

Definition 3.17. A representation of a Lie algebroid A over M on a vector bundle

E →M is a choice of flat connection ∇ : Γ(A)× Γ(E)→ Γ(E).

Given a representation of a Lie algebroid (a choice of flat connection ∇ : Γ(A) ×
Γ(E) → Γ(E)) we can construct a representation of the associated groupoid. The

correct groupoid is the Weinstein groupoid and is constructed using an A-path. Choose

an A-path a : [0, 1]→ A covering γ : [0, 1]→M . The derivative of a path e : [0, 1]→ E

(over γ) along a, denoted ∇ae, is defined as follows: choose a time dependent section

ξt ∈ Γ(E) such that ξt(t, γ(t)) = e(t), then

∇ae(t) = ∇aξt(x) +
dξt

dt
(x), x = γ(t).

The derivative is independent of the choice of ξt used to parameterise e.

3.3.1 Lie algebroid morphisms

Let A→M1 and B →M2 be two vector bundles, and endow each with a Lie algebroid

structure. Consider a bundle map

A B

M1 M2

Φ

φ

.

There is an induced pullback map Φ∗ : Γ(B∗)→ Γ(A∗) defined by

〈(Φ∗β)x, ax〉 = 〈(β ◦ φ)(x),Φ(a)〉,

where x ∈ M1, β ∈ Γ(B∗), and a ∈ Γ(A). This maps extends to Φ∗ : Γ(∧•B∗) →
Γ(∧•A∗) (we define Φ∗(f) = f ◦ φ for f ∈ C∞(M2)).

Definition 3.18. A bundle map (Φ, φ) from A → M1 to B → M2 is a Lie algebroid

morphism if the map

Φ∗ : (Γ(∧•B∗), dB)→ (Γ(∧•A∗), dA) (3.14)
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is a chain map.

Let A → M and B → M be vector bundles over the same base M . A morphism

Φ : A→ B induces a map of smooth sections Γ(A)→ Γ(B), given by a→ Φ ◦ a, which

is a linear map of C∞(M)-modules. In this case the notion of a Lie algebroid morphism

is equivalent to the existence of a morphism Φ between the vector bundles preserving

the bracket

Φ ◦ [a1, a2]A = [Φ ◦ a1,Φ ◦ a2]B,

for a1, a2 ∈ Γ(A). However, for vector bundles A → M1 and B → M2 over different

bases, a morphism Φ : A → B and φ : M1 → M2, does not induce a map between

modules of sections. It is necessary to consider the pullback bundle φ∗B. Sections

a ∈ Γ(A) can be pushed forward to sections Φ(a) ∈ Γ(φ∗B), and sections b ∈ Γ(B) can

be pulled back to φ∗b ∈ Γ(φ∗B). Given a section a ∈ Γ(A), there is a decomposition

Φ∗(a) = f i ⊗ bi,

for some suitable f i ∈ C∞(M1), and bi ∈ Γ(B). However this decomposition is not

unique. Choose a connection ∇ : Γ(TM2) × Γ(B) → Γ(B) and define ∇̄ : Γ(TM1) ×
Γ(φ∗B)→ Γ(φ∗B) by

∇̄v(fi ⊗ bi) = v(fi)⊗ bi + fi ⊗∇T (φ)(v)b
i, (3.15)

where v ∈ Γ(TM1), fi ∈ C∞(M1), and bi ∈ Γ(B). The definition of ∇̄ is not dependent

on the choice of decomposition. Define the torsion of the pullback connection ∇̄ by

T∇̄(fi ⊗ bi, f ′j ⊗ b′j) := fif
′
jφ
∗T∇(bi, bj),

and curvature FΦ ∈ Γ(∧2A∗ ⊗ φ∗B) by

FΦ(a1, a2) = ∇̄ρ(a1)Φ(a2)− ∇̄ρ(a2)Φ(a1)− Φ([a1, a2]A)− T∇(Φ(a1),Φ(a2)). (3.16)

The definition of FΦ is independent of the choice of connection ∇. The pair (Φ, φ)

defines a Lie algebroid morphism if and only if FΦ ≡ 0. This flatness condition is closely

related to the original definition of a Lie algebroid morphism [63]. The definition given

in this thesis was shown to be equivalent by Văıntrob [117].

There is a convenient description of certain Lie algebroid morphisms in terms of a

Maurer–Cartan form. This interpretation is due to Fernandes and Struchiner [47].

Consider a Lie algebroid morphism (Φ, φ) where Φ : TM1 → B, and φ : M1 →M2.
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The key observation is to consider Φ : Γ(TM1)→ Γ(B) as η ∈ Γ(T ∗M1 ⊗B):

η(v) := Φ∗(v),

for v ∈ Γ(TM1). The maps (Φ, φ) define a Lie algebroid morphism if and only if η can

be interpreted as a Maurer–Cartan form.

The setup can be described with the following commutative diagrams:

TM1 B

M1 M2

TM1 B

TM2

such that

η

φ

η

φ∗ ρ2

,

where the second diagram expresses the anchor compatibility condition. Given a choice

of TM1-connection on B, denoted ∇, define

(d∇η)(v1, v2) :=∇v1η(v2)−∇v2η(v1)− η([v1, v2]TM1), (3.17)

[η ∧, η′]∇(v1, v2) =1
2

(
T∇(η(v1), η′(v2)) + T∇(η(v2), η′(v1))

)
, (3.18)

where v1, v2 ∈ Γ(TM1) and η, η′ ∈ Γ(T ∗M1 ⊗B). The expression

Fη(v1, v2) =(d∇η − [η ∧, η]∇)(v1, v2), (3.19)

defines an element Fη ∈ Γ(∧2T ∗M1 ⊗B) which is independent of the choice of ∇.

An element η ∈ Γ(T ∗M1 ⊗B) ∼= Ω1(M1, B) satisfies Fη ≡ 0 if and only if it defines

a Lie algebroid morphism between TM1 and B. In this case η can be interpreted as a

Maurer–Cartan form as follows: Let G be a Lie groupoid with Lie algebroid B. Left

translation by an element h ∈ G is a diffeomorphism between s-fibres Lh : s−1(s(h))→
s−1(t(h)). A left-invariant one-form on G is an s-foliated one-form η on G such that

for all h ∈ G

η(X) = η(dgLh(X)), ∀g ∈ s−1(s(h)), X ∈ T sgG.

This is also denoted (Lh)∗η = η. A Maurer-Cartan form on a Lie groupoid G is the

B-valued s-foliated left-invariant one-form defined by

η(X) = (dLh−1)h(X),

for X ∈ T shG. The Maurer–Cartan form η : T sG → B covers the target map t : G →M .
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Theorem 3.19 ([47]). Let G be a Lie groupoid with Lie algebroid B and let η be its left

invariant Maurer–Cartan form. If η′ : TM1 → B is a solution of the Maurer–Cartan

equation covering a map φ : M1 → M2, then for each x ∈ M1 and h ∈ G such that

φ(x) = s(h), there exists a unique locally defined diffeomorphism φ′ : M1 → s−1(φ(x))

satisfying:

φ′(x) = h, φ′∗η = η′.

Example 3.22. Choose a manifold M and a Lie algebra g. A Lie algebroid morphism

TM → g is the same thing as a one-form η ∈ Ω1(M, g) satisfying the Maurer–Cartan

equation dη − [η ∧, η]g = 0.

Example: Pullback of a Lie algebroid

In this subsection we consider the pullback of a Lie algebroid structure. This will be of

particular interest in Section 5.3 when discussing Lie algebroid gauging of non-linear

sigma models.

Consider a Lie algebroid B → M2, and a smooth map φ : M1 → M2. There is no

natural induced Lie algebroid on φ∗B, due to the fact that a vector bundle morphism

does not induce a map between the modules of sections. However, there may be an

induced Lie algebroid structure. This construction is due Higgins and Mackenzie [63].

Consider the following bundle map:

TM1 TM2

B

φ∗

ρ2

The aim is to construct a Lie algebroid structure on A→M1, using the bundle maps

A

TM1 φ∗TM2

φ∗B

(φ∗)
∗

φ∗ρ2ρ1

Φ∗

Sections of A are of the form v ⊕ β, where v ∈ Γ(TM1) and β ∈ Γ(φ∗B). The induced

Lie algebroid φ∗∗B exists whenever φ is a surjective submersion, or B is transitive, or

if T (φ) and ρ2 are transversal. In these cases there is a Lie algebroid structure on A



48 CHAPTER 3. BACKGROUND

described as follows: define ρ1(v ⊕ β) = v and

[a1, a2]A = [v1 ⊕ β1, v2 ⊕ β2]A := [v1, v2]⊕
(
∇̄v1β2 − ∇̄v2β1 − T∇̄(β1, β2)

)
, (3.20)

for v1, v2 ∈ Γ(TM1) and β1, β2 ∈ Γ(φ∗B).

Example 3.23. Take M2 to be a point, and hence B = g is a Lie algebra. The inverse

image connection in M1 × g is the standard flat connection ∇̌v(X) = v(X), and the

above formula reduces to the standard expression of the bracket in TM1 ⊕ (M1 × g).

It is of interest to consider the existence of the groupoid φ∗∗G. Given a Lie groupoid

G on M2 and a smooth map φ : M1 →M2, such that φ×φ : M1×M1 →M2×M2 and

(s, t) : G →M2 ×M2 are transversal, the pullback

φ∗∗G

M1 ×M1 M2 ×M2

G

φ× φ

(s, t)

is a manifold and has a groupoid structure. However, it is not necessarily true that the

source or target maps are submersions, meaning φ∗∗G may not be a Lie groupoid. If

the composition

φ∗G // G
t // M2,

is a submersion then φ∗∗G will be a Lie groupoid. Here φ∗G denotes the pullback of φ

and s:

φ∗G := {(X,x) ∈ G ×M1 : s(X) = φ(x)}.

The double pullback construction will be essential in defining true Lie algebroid gauging

in Chapter 5.

3.3.2 Superspace description of Lie algebroids

There is a description of Lie algebroids given by a homological vector field Q on a

super manifold M. The description is due to Văıntrob [117]. The correspondence is

reasonably straightforward. Take a supermanifold M described locally by coordinates

(xµ, ζi). There is an isomorphism between the supermanifold M and a vector bundle

A→M . The even coordinates xµ give local coordinates on the base manifold M . The

odd coordinates ζi give a local basis for the fibers A∗, which can then be identified with
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a basis for A. The degree-1 homological vector field is given by

Q = Ckijζ
iζj∂ζk + ρµi ζ

i∂xµ ,

where ρµi are identified as the components of the anchor ρ : A → TM , and Ckij are

identified with the structure functions given by [ei, ej ]A = Ckijek (taking ei to be a

basis for A dual to ζi). Homological vector fields are those which satisfy

[Q,Q] = 2Q2 = 0.

The condition Q2 = 0 is equivalent to the axioms of a Lie algebroid:

Q2 =(2ρν[a|∂νρ
µ
|b] − C

c
abρ

µ
c )ζaζb∂µ

+ (2Cd[a|kC
k
b]c + 2ρµ[a|∂µC

d
b]c − C

k
abC

d
kc + ρµc ∂µC

d
ab)ζ

aζbζc∂ζd .

It is clear that the operator dA and homological vector fields Q are in a direct

correspondence. Throughout this thesis we will concentrate on the description in terms

of the operator dA. Equivalent statements in terms of homological vector fields will be

left unstated.

3.3.3 Bivector description of almost Lie algebroids

A Lie algebroid structure (A
π→ M,ρ, [·, ·]A) can be equivalently characterised as a

bivector ΛA∗ ∈ Γ(∧2TA∗). The construction presented here is from [54], and we refer

the reader to this paper for details. The Lie algebroid anchor and bracket are recovered

from the bivector as follows:

ΛA∗(dAιa, (π
∗)∗dAf) := (π∗)∗(ρ(a)f), ΛA∗(dAιa, dAιa′) := ι[a,a′]A , (3.21)

where ιa, ιa′ and ι[a,a′]A are linear functionals on A∗ induced by sections a, a′, [a, a′]A ∈
Γ(A), and 〈a, α〉 = ιaα.

3.4 Leibniz algebroid geometry

The concept of a Lie algebroid naturally unifies Lie algebras and differential geometry.

There are further useful generalisations that can be made. There are two core properties

in the definition of a Lie algebroid. The first is the derivation property for [a, ·]A, giving

the Jacobi identity (3.4a). The second is the anchor homomorphism property (3.5). It

is possible to relax one or other of these requirements and get interesting structures.

A pre-Lie algebroid structure is a quadruple (A,M, ρ, [·, ·]A) satisfying (3.4b)-(3.5).
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Pre-Lie algebroids are relevant in the study of local structures where integrability is not

guaranteed. Integrability of pre-Lie structures are intimately connected to the Jacobi

identity (3.4a).

It is possible to incorporate the derivation property and the anchor homomorphism

property—whilst still generalising Lie algebroids—by considering brackets which are

not skew-symmetric. This leads us to a Leibniz algebroid. Of particular interest are L∞-

algebroids, giving a natural generalisation of closure up to homotopy (see for example

[111, 124, 16]). Leibniz algebroids (in particular L∞-algebroids) form the basis of higher

gauge theory (see for example [8, 106, 81]).

3.4.1 Lie bialgebroids and Courant algebroids

A concrete motivation for studying higher algebroids are Lie bialgebroids and Courant

algebroids. A Lie bialgebroid is a notion of doubling for Lie algebroids, and was first

introduced by Mackenzie and Xu [96]. A Lie bialgebroid consists of a Lie algebroid

(A, dA) and another Lie algebroid (A∗, dA∗) satisfying a compatibility condition de-

scribed below by (3.22).

In order to describe the compatibility condition we need to extend the Lie bracket

[·, ·]A from a map Γ(A) ⊗ Γ(A) → Γ(A) to a map Γ(∧iA) ⊗ Γ(∧jA) → Γ(∧i+j−1A).

The generalised Schouten bracket is the unique extension [·, ·]A of the Lie bracket on

Γ(A) satisfying the following conditions:

1. [a, f ]A = (ρ(a)f) for a ∈ Γ(A), f ∈ C∞(M);

2. For a ∈ Γ(∧iA) [a, ·]A is a derivation of degree i− 1 on Γ(∧•A);

3. [a1, a2]A = −(−1)(i−1)(j−1)[a2, a1]A for a1 ∈ Γ(∧iA) and a2 ∈ Γ(∧jA).

The Lie algebroid differential dA has a natural action on the complex Γ(∧•A∗) and dA∗

has a natural action on Γ(∧•A).

A Lie bialgebroid is a pair of Lie algebroids (dA, dA∗) satisfying a compatibility

relation. Compatibility requires that dA∗ is a derivation of the Schouten bracket [·, ·]A
on Γ(∧•A):

dA∗ [a1, a2]A = [dA∗a1, a2]A + [a1, dA∗a2]A, (3.22)

for a1, a2 ∈ Γ(A).

Remark. We note that it is possible to generalise this by considering ‘twisted’ differ-

entials dH := dA + H∧, and dR := dA∗ + R∧, for H ∈ Γ(∧3A∗), and R ∈ Γ(∧3A) (for

details see [85]).

Proposition 3.20 ([96]). If the pair (dA, dA∗) is a Lie bialgebroid, then (dA∗ , dA) is

also a Lie bialgebroid ,i.e., If dA is a derivation of [·, ·]A∗, then dA∗ is a derivation of

[·, ·]A.
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Definition 3.21. A Courant algebroid is a quadruple (E, ◦, 〈·, ·〉, ρ) where E → M is

a vector bundle, ◦ : Γ(E)×Γ(E)→ Γ(E) is a Dorfman product, 〈·, ·〉 a non-degenerate

bilinear form, and ρ : Γ(E)→ Γ(TM) is an anchor satisfying:

e1 ◦ (e2 ◦ e3) =(e1 ◦ e2) ◦ e3 + e2 ◦ (e1 ◦ e3); (3.23a)

ρ(e3)〈e1, e2〉 =〈e3 ◦ e1, e2〉+ 〈e1, e3 ◦ e2〉; (3.23b)

e1 ◦ e1 =1
2d〈e1, e1〉; (3.23c)

for ei ∈ Γ(E) and d is defined by 〈df, e1〉 = ρ(e1)f .

The notion of a Lie bialgebroid led to the axiomatic definition of Courant algebroids

[94]. Given a Lie bialgebroid (dA, dA∗) there is a Courant algebroid on E = A ⊕ A∗

defined as follows:

(a1, α1) ◦ (a2, α2) =
(

[a1, a2]A + L A∗
α1
a2 − ια2dA∗a1, (3.24a)

[α1, α2]A∗ + L A
a1α2 − ιa2dAα1

)
,

〈(a1, α1), (a2, α2)〉 =1
2(ιa1α2 + ιa2α1), (3.24b)

ρE(a, α) =ρA(a) + ρA∗(α), (3.24c)

where a1, a2 ∈ Γ(A), and α1, α2 ∈ Γ(A∗).

The Lie bialgebroid (3.24) satisfies the Courant algebroid axioms if and only if

(dA, dA∗) form a Lie bialgebroid. Conversely, a Courant algebroid defined on E =

L1 ⊕ L2, where L1, L2 are Dirac structures (maximal subbundles which are isotropic8

and involutive with respect to ◦), defines a Lie bialgebroid with the Lie algebroid

structures coming from the restriction of the fields to sections of L1 and L2.

Example 3.24 (Lie bialgebra). Take (dA, dA∗) = (dg, dg∗) where dg is the Chevalley–

Eilenberg differential associated to a Lie algebra g. The Lie algebroid compatibility

condition (3.22) is satisfied if and only if g and g∗ form a Lie bialgebra. The reader is

referred to [87] for an introduction to Lie bialgebras.

Example 3.25 (Standard Courant bracket). Take (A, dA, dA∗) = (TM, d, 0), where d is

the de Rham differential. This defines a Lie bialgebroid given by the exact Courant

algebroid. The Courant algebroid is given explicitly by (4.2) (in this case H = 0).

Example 3.26 (Poisson bialgebroid). Take (A, dA, dA∗) = (TM, d, dπ), where d is the de

Rham differential, and dπ is the Poisson algebroid differential associated to the Poisson

cotangent Lie algebroid (Example 3.12). The compatibility condition is equivalent to

[π, π]TM = 0 (for the Schouten extension of [·, ·]TM ) which is satisfied by definition for

any Poisson structure π.
8A subbundle L is isotropic if 〈a1, a2〉 = 0 for all a1, a2 ∈ Γ(L).
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3.4.2 Leibniz algebroids

A Leibniz algebroid on a vector bundle E →M is a triple (E, ◦, ρ), where the product

◦ : Γ(E)× Γ(E)→ Γ(E), and anchor ρ : Γ(E)→ Γ(TM) satisfy

e1 ◦ (e2 ◦ e3) =(e1 ◦ e2) ◦ e3 + e2 ◦ (e1 ◦ e3), (3.25a)

e1 ◦ fe2 =f(e1 ◦ e2) + (ρ(e1)f)e2. (3.25b)

The two axioms state that e1 ◦ · acts as a derivation on f ∈ C∞(M) and ei ∈ Γ(E).

The lack of skew-symmetry doesn’t restrict the first entry to behave as a first order

differential operator or even be local. We will be interested in local Leibniz algebroids

which have nice geometric structure.

A local Leibniz algebroid (E, ◦, ρ) is a Leibniz algebroid which satisfies

(fe1) ◦ e2 = f(e1 ◦ e2)− (ρ(e2)f)e1 + L(df, e1, e2), (3.26)

where L is viewed as a C∞(M)-trilinear map L : Γ(E∗) × Γ(E) × Γ(E) → Γ(E), and

d : C∞(M)→ Γ(E∗) is defined by 〈df, e〉 = ρ(e)f . The map L measures the failure of

the product to be skew-symmetric. For all f ∈ C∞(M), e1, e2, e3 ∈ Γ(E) we have

L(df, e1, e2) ◦ e3 = (ρ(e3)f)(e1 ◦ e2 + e2 ◦ e1)− L(df, e3, e1 ◦ e2 + e2 ◦ e1),

and in particular L(df, e1, e2) ◦ e3 = L(df, e2, e1) ◦ e3.

Example 3.27 (Lie algebroid). A Lie algebroid (A, [·, ·]A, ρ) is a Leibniz algebroid with

L(df, e1, e2) ≡ 0.

Example 3.28 (Courant algebroid). A Courant algebroid (E, ◦, 〈·, ·〉, ρ) is a Leibniz

algebroid with L(df, e1, e2) = df〈e1, e2〉.

Example 3.29 (Higher Courant algebroid). Consider a vector bundle E → M with

E = TM ⊕ ∧pT ∗M , for some p > 1. Denoting sections (v, ξ) ∈ Γ(TM) ⊕ Γ(∧pT ∗M)

the Higher Courant algebroid9 is given by:

(v1, ξ1) ◦ (v2, ξ2) =([v1, v2],Lv1ξ2 − ιv2dξ1), ρ(v, ξ) = v.

In this case L(df, e1, e2) = df ∧ (ιv1ξ2 + ιv2ξ1).

Example 3.30 (E6 algebroid). Consider a vector bundle E → M , with E = TM ⊕
∧2T ∗M ⊕∧5T ∗M . Denoting sections (v, σ, τ) ∈ Γ(TM)⊕Γ(∧2T ∗M)⊕Γ(∧5T ∗M), the

9The Higher Courant algebroid structure is not a Courant algebroid, as there is no compatible
pairing 〈·, ·〉 : E × E → R.
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E6 algebroid is given by:

(v1, σ1, τ1) ◦ (v2, σ2, τ2) =([v1, v2],Lv1σ2 − ιv2dσ1,Lv1τ2 − ιv2dτ1 + dσ1 ∧ σ2),

ρ(v, σ, τ) =v.

In this case L(df, e1, e2) = df ∧ (ιv1σ2 + ιv2σ1) + df ∧ (ιv1τ2 + ιv2τ1).

Remark. The E6 algebroid is related to 11-dimensional supergravity [74, 9]. The name

comes from the fact that the symmetries of this algebroid can be identified the Lie

group E6 when dim(M) = 6 (see [9] for details).

Example 3.31 (Closed form Leibniz algebroid). A local Leibniz algebroid structure can

be constructed on a vector bundle E →M of the form

E = TM

n⊕
i=1

(Vi ⊗∧i−1T ∗M),

where Vi is a graded vector space of weight −i. The construction is due to Baraglia

and can be found in [9]. The algebroid is constructed as a derived bracket using the de

Rham differential.

For sections v ∈ Γ(TM) and ξ ∈ Γ(
⊕n

i=1(Vi ⊗∧i−1T ∗M)) the Leibniz algebroid is

given by

(v1, ξ1) ◦ (v2, ξ2) =([v1, v2]TM ,Lv1ξ2 − ιv2dξ1 + [dξ1, ξ2]), (3.27a)

ρ(v, ξ) =v, (3.27b)

where we refer the reader to [9] for the definition of Lvξ, dξ and [dξ1, ξ2].

Remark. The derived bracket construction can be used to show that the local closed

form Leibniz algebroids are L∞-algebroids. This is a result based on the work of Getzler

[51], and further details can be found in [9].

The axioms of a Leibniz algebroid imply that the anchor homomorphism property

holds:

ρ(e1 ◦ e2) = [ρ(e1), ρ(e2)]TM . (3.28)

To prove this identity we expand (e1 ◦ e2) ◦ fe3 in two ways: First we note that

(e1 ◦ e2) ◦ fe3 =e1 ◦ (e2 ◦ fe3)− e2 ◦ (e1 ◦ fe3).

Alternatively, we have

(e1 ◦ e2) ◦ fe3 = f((e1 ◦ e2) ◦ e3) + ρ((e1 ◦ e2)f)e3.
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We compare these expansions to e1 ◦ (e2 ◦ fe3), which is given by

e1 ◦ (e2 ◦ fe3) =e1 ◦ (f(e2 ◦ e3) + (ρ(e2)f)e3)

=f(e1 ◦ (e2 ◦ e3)) + ρ(e1)(ρ(e2)f)e3 + (ρ(e1)f)e2 ◦ e3 + (ρ(e2)f)e1 ◦ e3,

and the result follows from (3.25a). As a consequence we find that the discussion follow-

ing Equation (3.5) for regular Lie algebroids (Section 3.2) holds for Leibniz algebroids

as well. If the anchor of a Leibniz algebroid is regular then M is foliated by immersed

submanifolds O, which are defined by orbits TxO = Im(ρx), for all x ∈ O.

We note that for Local Leibniz algebroids the anchor homomorphism property im-

plies that

ρ(L(df, e1, e2)) = 0, ∀e1, e2 ∈ Γ(E), f ∈ C∞(M). (3.29)

To see this we expand ρ((fe1) ◦ e2) and use the bracket homomorphism property:

ρ((fe1) ◦ e2) =fρ((e1 ◦ e2))− (ρ(e2)f)ρ(e1) + ρ(L(df, e1, e2)),

=f [ρ(e1), ρ(e2)]TM − (ρ(e2)f)ρ(e1) + ρ(L(df, e1, e2)),

and note that [ρ(fe1), ρ(e2)]TM = f [ρ(e1), ρ(e2)]TM − (ρ(e2)f)ρ(e1). The result follows

by equating the two expressions.

Given an TM -connection on a vector bundle V → M , denoted by ∇, and a local

Leibniz algebroid (E, ◦, ρ), there is a natural definition of curvature R∇ ∈ Γ(E∗⊗E∗⊗
End(V )):

R∇(e1, e2)(ν) = ∇ρ(e1)∇ρ(e2)ν −∇ρ(e2)∇ρ(e1)ν −∇ρ(e1◦e2)ν, (3.30)

for e1, e2 ∈ Γ(E) and ν ∈ Γ(V ). This definition of the curvature differs from the form of

the Lie algebroid curvature (3.11), due to the presence of the anchor ρ. This is required

in order to ensure that R∇ is a tensor: The condition

R∇(fe1, e2) = R∇(e1, fe2) = fR∇(e1, e2),

holds because ρ(L(df, e1, e2)) = 0.

The curvature R∇ is not skew-symmetric. It is possible to define R′∇ ∈ Γ(∧2E∗ ⊗
End(V )) by

R′∇(e1, e2)(ν) = ∇ρ(e1)∇ρ(e2)ν −∇ρ(e2)∇ρ(e1)ν −∇ρ([[e1,e2]])ν, (3.31)

where [[e1, e2]] = 1
2(e1 ◦ e2 − e2 ◦ e1) = e1 ◦ e2 − 1

2d〈e1, e2〉. In the case of closed form
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Leibniz algebroids ρ([[e1, e2]]) = ρ(e1 ◦ e2) and the two definitions agree.

There is another notion of generalised curvature that can be defined for a Leibniz

algebroid. Take an E-connection on E, denoted ∇, and define GR∇ : Γ(E)× Γ(E)→
End(E):

GR∇(e1, e2) = ∇e1∇e2 −∇e2∇e1 −∇e1◦e2 . (3.32)

A straightforward calculation shows that

GR∇(e1, fe2) = fGR∇(e1, e2), GR∇(fe1, e2) = fGR∇(e1, e2) +∇L(df,e1,e2).

It is clear that GR∇ is not a tensor for all e1, e2 ∈ Γ(E). The generalised curvature is

a tensor when e1 and e2 are chosen from a subspace such that L(df, e1, e2) = 0. The

generalised curvature was introduced by Gualtieri for the special case of the standard

Courant algebroid on TM [60]. This provides the Courant analogue of curvature when

e1 ∈ Γ(C±) and e2 ∈ Γ(C∓) (where C± are defined by a choice of generalised metric

(4.7)).

Given a Courant algebroid (E, ρ, ◦, 〈·, ·〉) and an E-connection on E, denoted by ∇,

the Gualtieri torsion GT∇ ∈ Γ(∧3E∗) is given by

GT∇(e1, e2, e3) = 〈∇e1e2 −∇e2e1 − [[e1, e2]], e3〉+ 〈∇e3e1, e2〉 − 〈∇e3e2, e1〉. (3.33)

This modified notion of torsion is valid for all e1, e2, e3 ∈ Γ(E).

The construction of a generalised Lie derivative on a vector bundle A→M endowed

with a Lie algebroid, discussed in Section 3.3, can be generalised to the case of a

local Leibniz algebroid: Given a local Leibniz algebroid (E, ◦, ρ), and a non-degenerate

pairing 〈·, ·〉 : E × E∗ → R, a Lie derivative can be constructed. Define Lef := ρ(e)f

for f ∈ C∞(M), and Le1e2 := e1 ◦ e2, and

〈Le1ε, e2〉 := ρ(e1)〈ε, e2〉 − 〈e1 ◦ e2, ε〉, (3.34)

where ε ∈ Γ(E∗). This definition can be extended in the natural way to general tensors

T ∈ Γ((⊗pE)⊗ (⊗qE∗)). This gives a notion flowing tensors along sections of a vector

bundle endowed with a Leibniz algebroid.

Example 3.32 (Generalised Killing equation). Consider the vector bundle E = TM ⊕
T ∗M , with a Courant algebroid product

(v1, ξ1) ◦ (v2, ξ2) = ([v1, v2],Lv1ξ2 − ιv2dξ1 − ιv1ιv2H), ρ(v, ξ) = v,
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where (v, ξ) ∈ Γ(TM ⊕ T ∗M) and H ∈ Ω3
cl(M). Consider a generalised metric10

G ∈ End(TM ⊕ T ∗M), defined by

G(X1,X2) = G(v1, v2) +G−1(ξ1 +B(v1), ξ2 −B(v2)),

where X = (v, ξ) ∈ Γ(TM ⊕ T ∗M), G is a Riemannian metric, and B ∈ Ω2(M).

Identifying G ∈ Γ(E∗ ⊗ E∗), we can consider the generalised Killing equation:

(LXG)(X1,X2) = ρ(X)(G(X1,X2))−G(LXX1,X2)−G(X1,LXX2) = 0.

Letting X1 = (v1, 0), and X2 = (0, ξ2) we can calculate the component LXG((v1, 0), (0, ξ2))

and get the result:

LXG((v1, 0), (0, ξ2))

= v(G−1(B(v1), ξ2))−G−1(B(v1),Lvξ2)−G−1(ι[v,v1]B − ιv1dξ − ιvιv1H, ξ2)

= v(G−1(B(v1), ξ2))−G−1(B(v1),Lvξ2)−G−1(Lvιv1B − ιv1LvB − ιv1dξ − ιvιv1H, ξ2)

= v(G−1(B(v1), ξ2))−G−1(LvB(v1), ξ2)−G−1(B(v1),Lvξ2)

+G−1(ιv1(LvB + dξ − ιvH), ξ2)

= (LvG−1)(B(v1), ξ2) +G−1(ιv1(LvB + dξ − ιvH), ξ2).

Similarly we have

LXG((0, ξ1), (0, ξ2)) =(LvG−1)(ξ1, ξ2),

LXG((0, ξ1), (v2, 0)) =− (LvG−1)(ξ1, B(v2))−G−1(ιv2(LvB + dξ − ιvH), ξ1),

LXG((v1, 0), (v2, 0)) =(LvG)(v1, v2)− (LvG−1)(B(v1), B(v2))

+G−1(ιv1(LvB + dξ − ιvH), B(v2))

+G−1(B(v1), ιv2(LvB + dξ − ιvH)).

It follows that

LXG = 0 ⇔ LvG = 0, ιvH = LvB + dξ. (3.35)

The generalised Killing equation for G reproduces the gauging constraints associated

to non-linear sigma models describing string theory (studied in Chapter 5). In the

generalised geometry picture the fields B and H are naturally incorporated in the

geometric data describing the vector bundle E = TM ⊕ T ∗M (for details see Section

4.1.1).

10Generalised metrics on TM ⊕ T ∗M are defined and discussed in Section 4.1.2.



3.4. LEIBNIZ ALGEBROID GEOMETRY 57

3.4.3 Leibniz algebroids: dE and (D•,t)

In the previous section we have seen how a Lie algebroid (A, [·, ·]A, ρ) can be equivalently

described by a differential operator dA. There is a similar definition of a derivation for

general Leibniz algebroids described in [58]. The Leibniz algebroid is encoded in dE act-

ing on a complex (D•,t): Consider an operator dE defined on ω ∈ Linp(Γ(E), C∞(M))

as follows

dEω(e0, e1, . . . , ep) =
k∑
i=0

(−1)iρ(ei)ω(e0, . . . , êi, . . . , ep) (3.36)

−
∑
i<j

(−1)iω(e0, . . . , êi, . . . ,

(j)︷ ︸︸ ︷
ei ◦ ej , . . . , ep),

where ê denotes omission, and e ∈ Γ(E). This satisfies

d2
Eω(e0, . . . , ep+1) =∑
i<j

(−1)i+j+1([ρ(ei), ρ(ej)]− ρ(ei ◦ ej))ω(e0, . . . , êi, . . . , êj , . . . , ep+1)+ (3.37)

∑
i<j<k

(−1)i+jω(e0, . . . , êi, . . . , êj , . . . , ei ◦ (ej ◦ ek)− ej ◦ (ei ◦ ek)− (ei ◦ ej) ◦ ek, . . . , ep+1).

We see that d2
E ≡ 0 if the bracket (E, ◦) satisfies the axioms of a Leibniz algebroid.

Taking ξ ∈ Γ(E∗) we have dEξ(e0, e1) + dEξ(e1, e0) = −ξ(e0 ◦ e1 + e1 ◦ e0) 6= 0 in

general. For a local Leibniz algebroid11 dEξ(e0, fe1) = fdEξ(e0, e1) and dEξ(fe0, e1) =

fdEξ(e0, e1)− ξ(L(df, e0, e1)). It is clear that dE is not a chain map for Γ(∧•E∗) or

even Γ(⊗•E∗). We should consider Lin•(Γ(E), C∞(M)). In particular we consider

Dk(E) := Dk(Γ(E), C∞(M)) ⊂ Link(Γ(E), C∞(M)),

consisting of all multidifferential operators of total order at most k.

As a special case we can consider Dk(E) ⊂ Dk(E) the subset of multidifferential

operators Dk(E) which are order 0 with respect to the last variable, with total degree

≤ k − 1, and set D•(E) =
⊕∞

k=0 Dk(E). We define D0(E) = C∞(M).

A simple calculation shows that dE : Dk(E)→ Dk+1(E), and we see that D•(E) :=⊕∞
i=0 Di(E) is the appropriate complex when dealing with the Leibniz differential dE .

Definition 3.22. For any ω ∈ Dp(E) and ω′ ∈ Dq(E), p, q ∈ N, we denote the shuffle

11If (E, ◦, ρ) is not a Local Leibniz algebroid then we do not necessarily have a locally defined complex.
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product

ω t ω′(e1, . . . , ep+q) :=
∑

σ∈sh(p,q)

sign(σ)ω(eσ(1), . . . , eσ(p))ω
′(eσ(p+1), . . . , eσ(q)),

where sh(p, q) is the subset of the symmetric group made up of all (p, q)-shuffles.

The complex D•(E), with the shuffle product t, is a graded algebra, the reduced

shuffle algebra.

If ω, ω′ are skew-symmetric this coincides with the wedge product. The shuffle

product is graded symmetric ω t ω′ = (−1)|ω||ω
′|ω′ t ω for ω, ω′ ∈ D•(E).

The differential dE defines a derivation of degree +1 on the reduced shuffle algebra.

We can also define a degree -1 derivation given by the interior product,

ιeω(e1, . . . , ek) = ω(e, e1, . . . , ek)

where ei ∈ Γ(E), ω ∈ Dk+1 and ιeω ∈ Dk. The derivation property means we have the

following identities

dE(ω t ω′) = dEω t ω
′ + (−1)kω t dEω

′, ιe(ω t ω
′) = ιeω t ω

′ + (−1)kω t ιeω
′.

Using our +1 and -1 derivations we can define Cartan relations on D•(E) using

graded commutators:

[d,d] = 2d2 = 0; (3.38a)

[d, ιe] = dιe + ιed = Le; (3.38b)

[d,Le] = dLe − Led = 0; (3.38c)

[Le1 ,Le2 ] = Le1Le2 − Le2Le1 = Le1◦e2 ; (3.38d)

[Le1 , ιe2 ] = Le1ιe2 − ιe2Le1 = ιe1◦e2 ; (3.38e)

[ιe1 , ιe2 ] = ιe1ιe2 + ιe2ιe1 6= 0. (3.38f)

We conclude with an alternative characterisation of Leibniz algebroids:

Theorem 3.23 ([57]). Let E be a vector bundle. There exists a one-to-one correspon-

dence between equivalence classes of differentials

dE ∈ Der1(D•(E),t), d2
E = 0

and Leibniz algebroid structures on E.

There is a superpace inspired description of Courant algebroids using a homological

vector field Q which plays the same role as the operator dE . A nice description can
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be found in Roytenberg’s thesis [104]. More generally, L∞-algebroids (a subset of local

Leibniz algebroids) can be associated to a homological vector field Q, defined on certain

N-graded vector bundles referred to as NQ manifolds (see for example [4, 111, 105]).
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Chapter 4

Generalised contact geometry

This chapter describes generalised contact geometry, an extension of contact geometry,

associated to a Courant algebroid structure on the vector bundle

E ∼= TM ⊕ R⊕ R⊕ T ∗M.

Generalised geometry on the generalised tangent bundle E ∼= TM ⊕ T ∗M is reviewed

in Section 4.1. Generalised geometry, introduced by Hitchin [64] and developed by

Gualtieri [59], has proven to be a very successful extension of differential geometry on

the generalised tangent bundle TM ⊕ T ∗M . Generalised complex structures (defined

on even dimensional manifolds) unify and interpolate between symplectic and complex

structures. Much of the interest in generalised geometry—particularly in relation to

T-duality in string theory—is due to the enlarged symmetry group of the structures on

TM ⊕ T ∗M .

Section 4.2 introduces generalised contact geometry, the odd-dimensional counter-

part to generalised complex geometry. Generalised contact geometry is defined on the

vector bundle E ∼= TM ⊕ R ⊕ R ⊕ T ∗M . While generalised contact geometry has

been studied before it is not as well developed as generalised complex geometry (see

[118, 119, 102]). The description of the symmetries associated to generalised contact

structures was incomplete. This chapter presents generalised contact structures as S1-

invariant reductions of generalised complex structures. A geometric interpretation of

twisted generalised contact structures is given through bundle gerbes classifying the

splitting of the vector bundle E →M .

This chapter modifies the definition of generalised contact structures given in [78]

(as well as the mixed pair description [57]) to include the full set of symmetries. Gener-

alised contact structures are described as S1-invariant reductions of generalised complex

structures in Section 4.3. The extended κ-symmetries noted by Sekiya [108] correspond

to reductions of non-trivial S1-bundles. In Section 4.4 twisted generalised coKähler

61
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structures are described as reductions of generalised Kähler structures. This gives a

generalised analogue of the correspondence between coKähler structures on M and

Kähler structures on a principal circle bundle S1 ↪→ P →M . The role of the extended

symmetries are discussed in the context of T-duality in Section 4.5. The main result

being that generalised coKähler structures are mapped to other generalised coKähler

structures under T-duality. Finally, in Section 4.6, the relationship between the twisted

contact structures in this chapter and geometry on the generalised derivation bundle

DL ∼= DL⊕ J1L (introduced in [123]) is given.

The twisted coKähler structures may be of interest to physics when conisdering the

Kaluza–Klein reduction of generalised complex structures with respect to non-trivial

circle bundles.

4.1 Generalised tangent spaces and Courant algebroids

Generalised geometry is the study of geometric structures on a vector bundle equipped

with an algebroid structure. Courant algebroids underly the generalised geometries

associated with both generalised complex structures and generalised contact structures.

Standard generalised geometry is the study of geometric structures on the gener-

alised tangent bundle E →M given by the following exact sequence:

0 // T ∗M
ρ∗

// E
ρ
//

s∗

ff TM

s

ee
// 0 . (4.1)

Courant algebroids on E, specified by (4.1), are called exact Courant algebroids. Every

exact Courant algebroid admits a splitting s : TM → E, which satisfies ρs = Id, and

is isotropic (〈s(v1), s(v2)〉 = 0 for all v1, v2 ∈ Γ(TM)). Two exact Courant algebroids

are equivalent if they differ by a choice of isotropic splitting.

A choice of splitting defines an isomorphism E ∼= s(TM)⊕ρ∗(T ∗M) := TM . Using

the identification Γ(e) = s(v) + ρ∗(ξ) := (v, ξ), for v ∈ Γ(TM) and ξ ∈ Γ(T ∗M) the

standard Courant algebroid is given by

(v1, ξ1) ◦H (v2, ξ2) =
(

[v1, v2],Lv1ξ2 − ιv2ξ1 − ιv1ιv2H
)

; (4.2a)

〈(v1, ξ1), (v2, ξ2)〉 =1
2(ιv1ξ2 + ιv2ξ1); (4.2b)

ρ(v, ξ) =v; (4.2c)

where H ∈ Ω3
cl(M), is given by

H(v1, v2) = s∗(s(v1) ◦ s(v2)).
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For further details see [20]. The Leibniz identity for ◦H (4.2a) gives the Bianchi identity

dH = 0. The Dorfman product, ◦H , is natural in the sense that it is the derived bracket

of dH := d+H∧ (with d the de Rham differential) acting on Γ(∧•T ∗M) [86].

Consider splitting (4.1) with two different isotropic splittings si : TM → E, i = 1, 2,

satisfying ρ(s1 − s2) = 0. Exactness implies that there exists a unique B ∈ Ω2(M)

satisfying s1(v)− s2(v) = ρ∗(B(v)) for all v ∈ Γ(TM). It can be shown that

H1 −H2 = dB.

Exact Courant algebroids are classified by [H] ∈ H3(M,R); a point first noted by

Ševera [109].

The equivalence of the exact Courant algebroid under isotropic splittings (corre-

sponding to some B ∈ Ω2(M)) is closely related to the concepts of symmetries in

generalised geometry structures.

4.1.1 Courant algebroid symmetries

Perhaps the most interesting aspect of generalised geometry is the enhanced symmetry

group. The symmetry group of the Tangent Lie algebroid (given by the commutator

of vector fields on TM) is Diff(M). Exact Courant algebroids have a symmetry group

given by Diff(M) n Ω2
cl(M) if H = 0.

Definition 4.1. A Courant algebroid symmetry is a bundle automorphism S : E → E

such that

〈S(e1), S(e2)〉 = 〈e1, e2〉, S(e1) ◦ S(e2) = S(e1 ◦ e2). (4.3)

Given a diffeomorphism f : M →M , the induced action on a section (v, ξ) ∈ Γ(TM)

is given by

vp + ξp → (Tpf)(vp) + (Tf(p)f
−1)∗(ξp).

There is an infinitesimal action of B ∈ Ω2(M) on (v, ξ) ∈ Γ(TM), given by B(v, ξ) =

(0, ιvB). The corresponding finite action is called a B-transformation:

eB(v, ξ) = (v, ξ + ιvB).

A B-transformation satisfies

〈eB(v1, ξ1), eB(v2, ξ2)〉 =〈(v1, ξ1), (v2, ξ2)〉;

eB(v1, ξ1) ◦H eB(v2, ξ2) =eB((v1, ξ1) ◦H+dB (v2, ξ2)).

When H = 0 the vector bundle TM is trivial and a B-transformation is a Courant
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algebroid symmetry if and only if B ∈ Ω2
cl(M). The Lie group composition of closed

two forms is

eB
′
eB
′′

= eB
′+B′′ , B′ ·B′′ = B′ +B′′.

The H-twisted exact Courant algebroid and the B-transformations have a close con-

nection to U(1)-gerbes. If one requires that H has integral periods, [H/2π] ∈ H3(M,Z),

there is a gerbe describing the patching of T ∗M to TM constructing TM [64].

Consider a good cover of M , denoted U = ∪αUα, with Uαβ...γ := Uα ∩ Uβ · · · ∩ Uγ .

A gerbe is described by the cocycle gαβγ = exp(iΛαβγ) ∈ U(1), a connection given by

Aαβ ∈ Ω1(Uαβ), and Bα ∈ Ω2(Uα) satisfying

Bβ −Bα =dAαβ on Uαβ,

Aβγ −Aαγ +Aαβ =dΛαβγ on Uαβγ .

H = dBα = dBβ on Uαβ is independent of the cover and is a globally defined 3-form.

Given a representative of a class [H] ∈ H3(M,R) it is possible to reconstruct the

bundle E. Choose an open cover U and a representative H ∈ H3
dR(M,R), which consists

of a 4-tuple (Λαβγ , Aαβ, Bα, H) in the Čech–de Rham complex (over R). The bundle

E is constructed by the clutching construction

E =
⊔
α

(TUα ⊕ T ∗Uα)/ ∼,

identifying (vα, ξα) ∈ Γ(TUα)⊕Γ(T ∗Uα) with (vβ, ξβ) ∈ Γ(TUα)⊕Γ(T ∗Uα) on overlaps

if and only if vβ = vα and ξβ = ξα + ιvαdAαβ. Consistency on triple overlaps Uαβγ

follows from dAβγ − dAαγ + dAαβ = (dδA)αβγ = (d2Λ)αβγ = 0, where δ is the Čech

differential. On TM |Uα the splitting is given by

s|Uα : vα → vα + ιvαBα,

and consistency on overlaps follows from Bβ −Bα = dAαβ.

A closed B-field such that B/2π has integral periods should be considered a gauge

transformation. This means that the notion of equivalence of generalised structures

should not be just the diffeomorphisms connected to the identity, but extended by

Ω2
cl(M).

The importance of the H-twist appearing in the exact Courant algebroid (4.2a) is

in identifying it as H(v1, v2) = s∗(s(v1), s(v2)) for some non-trivial bundle E →M .

Remark. In string theory applications the requirement that [H/2π] ∈ H3(M,Z) arises

naturally as the requirement ensuring a single valued path-integral. The three-form H
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giving a representative [H/2π] ∈ H3(M,Z) is interpreted as the Neveu–Schwarz flux,

arising from a local two-form potential B satisfying H|Uα = dBα. B-transformations

in Ω2
cl(M) are viewed as gauge transformations and should be quotiented out when

considering physically distinct states. Generalised geometry can be seen as a way of

encoding flux geometrically.

4.1.2 Generalised geometric structures

Almost all differential geometry structures have a counterpart on the vector bundle TM
in generalised geometry. Of most interest are generalised complex structures, gener-

alised metric structures, and generalised Kähler structures. The standard introductory

reference being Gualtieri’s Ph.D. thesis [59].

The generalised tangent bundle admits a Clifford action of sections (v, ξ) ∈ Γ(TM)

on differential forms ϕ ∈ Ω•(M) given by

(v, ξ) · ϕ = ιvϕ+ ξ ∧ ϕ. (4.4)

The Clifford action satisfies (v, ξ)2 · ϕ = 〈(v, ξ), (v, ξ)〉ϕ := ||(v, ξ)||2ϕ. Forms ϕ ∈
Γ((∧mT ∗)

1
2 ⊗ Ωod/ev(M)), where m = dim(M), describe spinors [59]. Associated to

each spinor is the annihilator bundle

Lϕ := Ann(ϕ) = {(v, ξ) ∈ Γ(TM) : (v, ξ) · ϕ = 0}.

A complex pure spinor is a ϕ ∈ Γ(Ωod/ev(M)⊗C) that is non-degenerate with respect

to the Mukai pairing, that is (ϕ,ϕ)M 6= 0 where

(ϕ1, ϕ2)M = (α(ϕ1) ∧ ϕ2)m, (4.5)

α is the Clifford anti-automorphism α(dx1⊗dx2⊗· · ·⊗dxk) = dxk⊗dxk−1⊗· · ·⊗dx1,

m = dim(M), and (·)m denotes the projection onto Ωm(M). The non-degeneracy

condition (ϕ,ϕ)M 6= 0 implies that Lϕ is a maximal isotropic subbundle. Given a pure

spinor ϕ and a function f ∈ C∞(M) we have

(v, ξ) · fϕ = f(v, ξ) · ϕ, (fϕ, fϕ)M = f2(ϕ,ϕ)M .

If f is nowhere zero, then fϕ describes the same maximal isotropic subspace as ϕ. The

class ϕ ∼ fϕ is called a conformal class. There is a local one-to-one correspondence

between maximally isotropic subspaces of TM and conformal classes of pure spinors.

Definition 4.2. A generalised almost complex structure on TM is given by J ∈
End(TM) satisfying J∗ = −J and J2 = −Id.
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A generalised almost complex structure can be equivalently described by a maximal

isotropic complex subbundle LJ ⊂ TM ⊗ C, satisfying LJ ∩ L̄J = {0}, for

LJ = {e ∈ Γ(TM ⊗ C) : J(e) = ie}.

There is a local one-to-one correspondence between generalised almost complex struc-

tures and conformal classes of complex pure spinors (where a complex pure spinor

satisfies the non-degeneracy condition (ϕ̄, ϕ)M 6= 0).

A generalised almost complex structure J, is H-involutive if all sections e of the

+i-eigenbundle LJ are involutive with respect to ◦H : e1, e2 ∈ LJ ⇒ e1 ◦H e2 ∈ LJ.

Definition 4.3. A generalised complex structure is an H-involutive generalised almost

complex structure.

The H-involutive property of a maximal isotropic subbundle Lϕ can be encoded as

a constraint on the pure spinor ϕ: A pure spinor ϕ is H-involutive if and only if there

exists some e ∈ Γ(TM ⊗ C) such that

dϕ+H ∧ ϕ = e · ϕ. (4.6)

A proof of this fact can be found in [59]. Given an H-involutive pure spinor ϕ and a

nowhere zero complex function f ∈ C∞(M) we have

dfϕ+H ∧ fϕ = f(dϕ+H ∧ ϕ) + df ∧ ϕ = fe · ϕ+ df ∧ ϕ := e′ · fϕ,

where e′ = e+ f−1df .

There is a local one-to-one correspondence between Generalised complex structures

and conformal classes of H-involutive pure spinors.

Example 4.1. Given an (almost) symplectic structure ω ∈ Ω2(M), we can define a

generalised (almost) complex structure with the spinor ϕω = eiω. The symplectic

structure is non-degenerate so (ϕω, ϕ̄ω)M = ωm/2 6= 0. The +i-eigenbundle is given by

Lω = {(X, ξ) ∈ Γ(TM ⊗ C) : ξ = iω(X, ·)}.

Example 4.2. Given an (almost) complex structure J ∈ End(TM) (satisfying, J∗ = −J
and J2 = −Id) we can define a generalised (almost) complex structure with the spinor

ϕJ = Ω, where Ω ∈ Ω(m,0)(M) is a locally defined generator of the (m, 0)-forms for the

complex structure J . The non-degeneracy condition is (ϕJ , ϕ̄J)M = Ω ∧ Ω̄ 6= 0. The

+i-eigenbundle is given by

LΩ = T (0,1)M ⊕ T ∗(1,0)M



4.1. GENERALISED TANGENT SPACES AND COURANT ALGEBROIDS 67

The tangent bundle has a structure group GL(m). A reduction of the structure

group GL(m) to its maximal compact subgroup O(m) defines a choice of Riemannian

metric. The generalised tangent bundle TM equipped with metric 〈·, ·〉 has structure

group O(m,m).

Definition 4.4. A generalised metric G is a positive definite metric on TM , corre-

sponding to a choice of reduction of the structure group from O(m,m) to O(m)×O(m).

The inner product 〈·, ·〉 determines a splitting TM = C+ ⊕ C−, where C+ is pos-

itive definite with respect to 〈·, ·〉 and C− is negative definite. The generalised metric

structure is defined by

G(e1, e2) := 〈e1, e2〉|C+ − 〈e1, e2〉|C− . (4.7)

Using the metric 〈·, ·〉 to identify TM with T∗M , a generalised metric can be iden-

tified with G ∈ End(TM) satisfying G∗ = G, and G2 = Id. It follows from (4.7) that

C± correspond to the ±1-eigenbundles of G.

Given a Riemannian metric G a generalised metric G can be defined by the identi-

fication

C± = {(v, ξ) ∈ TM : ξ = ±G(v, ·)}.

Definition 4.5. A generalised almost Kähler structure is a pair of almost generalised

structures satisfying J1J2 = J2J1 and −J1J2 = G for some generalised metric G.

The role of extended symmetry is important as it provides deformations of gen-

eralised metric and generalised complex structures. This provides a way to generate

examples and gives a notion of equivalence which goes beyond diffeomorphisms.

Example 4.3 (Twisted generalised metric). A generalised metric, defined by a Rieman-

nian metric G can be twisted by a 2-form B to give another generalised metric

CB± = {(v, ξ) ∈ TM : ξ = ±G(v, ·) +B(v, ·)}.

Example 4.4 (Twisted generalised complex structure). Take a pure spinor ϕ defining

an (almost) complex structure. We can define ϕB = e−B ∧ ϕ, for some B ∈ Ω2(M),

satisfying

(ϕB, ϕ̄B)M = (ϕ, ϕ̄)M , dH′(e
−B ∧ ϕ)− e′ · (e−B ∧ ϕ) = e−B(dHϕ− e · ϕ),

where H ′ = H + dB and e′ = eB · e = eB(v, ξ) = (v, ξ + ιvB).

A generalised H-involutive complex structure ϕ can be deformed to a (H + dB)-

involutive complex structure e−B ∧ ϕ.



68 CHAPTER 4. GENERALISED CONTACT GEOMETRY

A generalised (almost) complex structure is said to be of geometric type-k, if tL(x) :=

codimC(ρ(Lx)) = k. Generically the type can change at each point x ∈M .

Example 4.5. Locally every generalised (almost) complex structure of type-k can be

associated (non-canonically) to a pure spinor ϕJ = Ω ∧ eB+iω, where ω ∈ Ω2(M), Ω is

a complex decomposable form of degree k, and ωm/2−k ∧ Ω ∧ Ω̄ 6= 0.

In Section 4.4 generalised coKähler structures will be defined in a way that mirrors

the definition in terms of Kähler structures. This Section concludes with the definition

of generalised Calabi–Yau structures and hyperKähler structures.

Definition 4.6. A generalised almost Calabi–Yau structure consists of two pure spinors

(ϕ1, ϕ2) which describing two generalised almost complex structures (J1,J2) which

define a generalised almost Kähler structure. In addition, the lengths of these sections

are related by a constant

(ϕ1, ϕ̄1)M = c(ϕ2, ϕ̄2)M ,

where c ∈ R can be scaled to either +1 or −1 by rescaling ϕ1.

A generalised Calabi–Yau structure is a generalised almost Calabi–Yau structure

where (ϕ1, ϕ2) are both H-involutive.

Example 4.6 (Calabi–Yau). A Calabi–Yau manifold is a Kähler manifold of complex

dimension m with symplectic form ω and holomorphic volume form Ω satisfying ωm =

2−mimm!Ω ∧ Ω̄. This gives a generalised Calabi–Yau structure with ϕ1 = eiω and

ϕ2 = Ω satisfying

(eiω, e−iω)M = (−1)
m(m−1)

2 (Ω, Ω̄)M .

Example 4.7 (hyperKähler). Given a hyperKähler structure (M, g, I, J,K) a generalised

Kähler structure can be constructed:

ϕ1 = eB+iω1 , ϕ2 = e−B+iω2 ,

where B = ωK , ω1 = ωI − ωJ , ω2 = ωI + ωJ .

4.2 Generalised contact geometry

The exact Courant algebroid and Dirac structures play a fundamental role in generalised

complex geometry. The corresponding objects in generalised contact geometry are the

contact Courant algebroid and contact Dirac structures.
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For sections V = (v, f, g, ξ) ∈ Γ(TM)⊕ C∞(M)⊕ C∞(M)⊕ Γ(T ∗M), the contact

Courant algebroid is given by [20]:

V1 ◦H3,H2,F V2 =
(

[v1, v2], v1(f2)− v2(f1)− ιv1ιv2F, v1(g2)− v2(g1)− ιv1ιv2H2,

Lv1ξ2 − ιv2dξ1 − ιv1ιv2H3 + g2df1 + f2dg1 (4.8a)

+ f1ιv2H2 − f2ιv1H2 + g1ιv2F − g2ιv1F
)

;

〈V1, V2〉 =1
2(ιv1ξ2 + ιv2ξ1 + f1g2 + g1f2); (4.8b)

ρ(V ) =ρ((v, f, g, ξ)) = v; (4.8c)

where the twists (H3, H2, F ) ∈ Ω3(M) ⊕ Ω2(M) ⊕ Ω2(M) are globally defined forms

required to satisfy the Bianchi identities:

dH3 +H2 ∧ F = 0, dH2 = 0, dF = 0. (4.9)

This is a twisted version of the contact Courant algebroid that has appeared previously

in the generalised contact literature [78, 79, 57]. The twists (H3, H2, F ) play an essential

role in describing symmetries and deformations of generalised contact structures.

First consider the case that H3 = H2 = F = 0. There is an action of B ∈ Ω2(M),

a, b ∈ Ω1(M) on V = (v, f, g, ξ) ∈ Γ(E):

e(B,b,a)(v, f, g, ξ) =
(
v, f + 2〈v, a〉, g + 2〈v, b〉, ξ + ιvB − fb− ga− 〈v, a〉b− 〈v, b〉a

)
.

(4.10)

This action satisfies

〈e(B,b,a)V1, e
(B,b,a)V2〉 = 〈V1, V2〉, e(B,b,a)V1 ◦(0,0,0) e

(B,b,a)V2 = e(B,b,a)(V1 ◦H′3,H′2,F ′ V2),

where

H ′3 = dB + 1
2(da ∧ b+ a ∧ db), H ′2 = db, F ′ = da.

We conclude that when H3 = H2 = F = 0 the bracket (4.8a) has the symmetry group

Diff(M) n Ω2
cl(M)⊕ Ω1

cl(M)⊕ Ω1
cl(M).

The group action is generated by the algebra action

(B, b, a) · (v, f, g, ξ) = (0, ιva, ιvb, ιvB − fb− ga).
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The algebra composition is given by

(B2, b2, a2) · (B1, b1, a1) = (B1 +B2 − 1
2(b1 ∧ a2 + a1 ∧ b2), b1 + b2, a1 + a2).

The group action can be recovered from the algebra action by exponentiation

e(B,b,a)V1 = V1 + (B, b, a) · V1 +
1

2!
(B, b, a)2 · V1 + . . . .

For non-trivial (H3, H2, F ) the symmetries are described by a gerbe structure. The

construction follows from Baraglia’s general argument for twisting closed form Leibniz

algebroids [9]. The twists are constructed from

(H3, H2, F ) = (dBα − 1
2aα ∧ dbα −

1
2daα ∧ bα, dbα, daα), (4.11)

where (Bα, bα, aα) ∈ Ω2(Uα) ⊕ Ω1(Uα) ⊕ Ω1(Uα) are required to satisfy (4.9) and the

cocycle conditions

(Bαβ, bαβ, aαβ) · (Bβγ , bβγ , aβγ) · (Bγα, bγα, aγα) = 0 on Uαβγ , (4.12)

where (Bαβ, bαβ, aαβ) = (Bα −Bβ + 1
2bα ∧ aβ + 1

2aα ∧ bβ, bα − bβ, aα − aβ). The gerbe

structure defines a twisted bundle with sections patched together on Uαβ using

(vα, fα, gα, ξα) = e(Bαβ ,bαβ ,aαβ)(vβ, fβ, gβ, ξβ)

to define a global section (v, f, g, ξ) ∈ Γ(E). The twists do not define (B, b, a) uniquely

and it is possible to make a different choice (B′, b′, a′) as long as (Bαβ, bαβ, aαβ) =

(B′αβ, b
′
αβ, a

′
αβ). This gives the relation

(B′α, b
′
α, a
′
α) = (Bα +B′′ − 1

2bα ∧ a
′′ − 1

2aα ∧ b
′′, bα + b′′, aα + a′′), (4.13)

where (B′′, b′′, a′′) are globally defined forms satisfying

(dB′′ +H3 − 1
2da
′′ ∧ b′′ − 1

2a
′′ ∧ db′′, db′′ +H2, da

′′ + F2) = 0. (4.14)

Definition 4.7. Consider a choice of twists (H3, H2, F ) ∈ Ω3(M)⊕Ω2(M)⊕Ω2(M) sat-

isfying (4.9). A (B, b, a)-transformation corresponds to a choice of triple (Bα, bα, aα) ∈
Ω2(Uα) ⊕ Ω1(Uα) ⊕ Ω1(Uα) which generate the twists (H3, H2, F ), i.e., satisfying con-

ditions (4.11) and (4.12). The choice of (B, b, a)-transformation is not unique. Two

transformations (B, b, a) and (B′, b′, a′) will produce the same twists (H3, H2, F ) if they

are related by a set (B′′, b′′, a′′) ∈ Ω2(M)⊕Ω1(M)⊕Ω1(M) satisfying (4.14). A trans-

formation (B′′, b′′, a′′) satisfying (4.14) defines a (B′′, b′′, a′′)-gauge transformation.
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The description above shows that the twisted contact Courant algebroid can be seen

as a bracket on a twisted vector bundle E via a clutching function construction. The

insight here is to interpret the contact Courant algebroid bracket as an S1-reduction of

the standard twisted Courant algebroid. The identification is made as follows: Consider

a Courant algebroid associated to the vector bundle E given as

0 // T ∗P
ρ∗B // E

ρB //

(sB)∗

ee TP

sB

ee
// 0,

with the standard H-twisted Courant algebroid structure (4.2), identifying

H(X1, X2) = s∗B(sB(X1), sB(X2)), X1, X2 ∈ Γ(TP ).

If P (M,π,U(1)) is a principal U(1)-bundle, then there are Atiyah algebroids associated

to TP and (TP )∗ ∼= T ∗P :

0 // P × R
ra // TP/U(1)

π∗ //

ta

ii
TM

sa

kk
// 0,

0 // P ∗ × R
tb // T ∗P/U(1)

sb //

(rb)
∗

jj
T ∗M

(πb)
∗

kk
// 0.

The Atiyah algebroid constructed from the reduction of P (M,π,U(1)) is described in

detail in Section 2.2.2 (page 19) and the general case of P (M,π,G) is described in

Example 3.10. The reduction gives a decomposition of the three-form H ∈ Ω3(P ).

First recall that the splitting sa : TM → TP/U(1) can be defined by a choice of

principal connection on P , which we denote A, with curvature F = dA ∈ Ω2(M,Z).

The decomposition of H is given by

H = π∗H3 +H2 ∧A,

where H3 ∈ Ω3(M,Z) and H2 ∈ Ω2(M,Z). The reader is referred to [25] for more

details on Courant algebroid reduction. Equivalently we can identify

H2(v1, v2) = tb(sb(v1), sb(v2)), F (v1, v2) = ta(sa(v1), sa(v2)),
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for v1, v2 ∈ Γ(TM). The induced map on sections is

0 // C∞(P,R)U(1) ' C∞(M)
r // XG(P ) ' X(M)⊕ C∞(M)

π∗ // X(M) // 0 ,

allowing the local identification

Γ(E) ∼= Γ(TP/U(1))⊕ Γ((TP/U(1))∗) ∼= Γ(TM)⊕ C∞(M)⊕ C∞(M)⊕ Γ(T ∗M).

The reduction of the U(1)-invariant exact Courant algebroid on P gives (4.8). In this

way the twisted contact Courant algebroid can be identified with

0 // (TP/U(1))∗ // E // TP/U(1) // 0 .

The twisted contact Courant algebroid is constructed out of (H3, H2, F ) and makes no

reference to (Bα, bα, aα). Another choice (B′α, b
′
α, a
′
α) giving the same (H3, H2, F ) will

give an isomorphic twisted contact Courant algebroid. Any two choices (Bα, bα, aα) and

(B′α, b
′
α, a
′
α) give the same twists if and only if they are related by a (B′′, b′′, a′′)-gauge

transformation. The notion of equivalence of generalised contact geometry should be

extended to include to the full set of symmetries—diffeomorphisms and (B′′, b′′, a′′)-

gauge transformations. Geometrically the gauge transformations can be interpreted as

a change in splitting of the bundle E ∼= TM ⊕R⊕R⊕ T ∗M . Geometry on the bundle

E should not be dependent on the choice of splitting.

Remark. Sekiya note κ-symmetries when studying generalised contact structures as-

sociated to the trivial line bundle L = M × R [108]. This corresponds to (0, b, a)-

transformations for globally defined forms not subject to periodicity constraints. This

clarifies the geometric origin of Sekiya’s κ-symmetries. The (0, b, a)-transformations

correspond to a choice of connection for a circle/line-bundle P →M . The non-abelian

composition law for B with (0, b, a) reflects the fact that there is choice in which order

one splits the sequences.

4.3 Generalised contact structures

This section describes the mixed pair description of generalised contact structures,

the odd-dimensional analogue of the pure spinor description in generalised complex

geometry. Aldi and Grandini [2] gave a proposal for mixed pairs which were compat-

ible with B-transformations; but mixed pairs were not compatible with the full set of

(B, b, a)-transformations. The original definition cannot incorporate non-coorientable

structures.

There is a Clifford action of sections (v, f, g, ξ) ∈ Γ(TM) ⊕ C∞(M) ⊕ C∞(M) ⊕
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Γ(T ∗M) on pairs of differential forms (ϕ,ψ) ∈ Ω•(M):

(v, f, g, ξ) · (ϕ,ψ) = ((v, ξ) · ϕ+ fψ, gϕ− (v, ξ) · ψ), (4.15)

where (v, ξ) · ϕ = ιvϕ+ ξ ∧ ϕ is the Clifford product on TM . This product satisfies

(v, f, g, ξ)2 · (ϕ,ψ) =(ιvξ + fg)(ϕ,ψ) = 〈(v, f, g, ξ), (v, f, g, ξ)〉(ϕ,ψ)

=||(v, f, g, ξ)||2(ϕ,ψ).

It is interesting to consider the annihilator bundles of a pair (ϕ,ψ):

Ann((ϕ,ψ)) := {(v, f, g, ξ) ∈ E ⊗ C : (v, f, g, ξ) · (ϕ,ψ) = 0}.

When f = g = 0, (v, 0, 0, ξ) · (ϕ,ψ) = 0 implies that (v, ξ) · ϕ = 0 and (v, ξ) · ψ = 0,

the same annihilator condition as Section 4.1. For some pairs (ϕ,ψ), there may be

solutions for non-zero f or g. In this case

fψ = −(v, ξ) · ϕ, gϕ = (v, ξ) · ψ,

indicating that there exist sections (v, ξ) ∈ TM which relate ϕ and ψ. Pure spinors

play an important role in describing Dirac structures in TM ⊗C; mixed pairs describe

the odd-dimensional analogue of Dirac structures.

Definition 4.8. Let M be an odd-dimensional manifold (m = dim(M)). A contact

Dirac structure is a decomposition of a vector bundle E ⊗ C into isotropic subspaces

E ⊗ C = L⊕ L̄⊕ Ce1 ⊕ Ce2, L ∩ L̄ = 0,

where dimR(L) = m− 1, and e1, e2 ∈ Γ(TM). A contact Dirac structure is specified by

a triple (L, e1, e2).

The pairing (· , ·)M for two pairs of differential forms (ϕi, ψi) (i = 1, 2) is given by

((ϕ1, ψ1), (ϕ2, ψ2))M := (−1)|ϕ1|(α(ϕ1) ∧ ψ2)m−1 + (−1)|ψ1|(α(ψ1) ∧ ϕ2)m−1, (4.16)

where α(dx1 ⊗ dx2 ⊗ · · · ⊗ dxk) = dxk ⊗ dxk−1 ⊗ · · · ⊗ dx1, m = dim(M), |ϕ| = k for

ϕ ∈ Ωk(M), and (· )m−1 is the projection to Ωm−1(M).

Definition 4.9. A Dirac pair consists of two differential forms ϕ,ψ ∈ Γ(Ωev/od(M)⊗C)

satisfying

(α(ϕ) ∧ ϕ̄)m−1 6= 0, (α(ψ) ∧ ψ̄)m−1 6=0, ((ϕ,ψ), (ϕ̄, ψ̄))M 6= 0

e1 · ϕ = ψ, e2 · ψ = ϕ,
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for some e1, e2 ∈ Γ(TM).

The second condition implies that ϕ ∈ Γ(Ωev(M) ⊗ C) and ψ ∈ Γ(Ωodd(M) ⊗ C),

or ϕ ∈ Γ(Ωodd(M)⊗ C) and ψ ∈ Γ(Ωev(M)⊗ C).

Given two nowhere-zero functions f1, f2 ∈ C∞(M) and a Dirac pair (ϕ,ψ), the pair

(f1ϕ, f2ψ) satisfy the non-degeneracy condition and

e1 · f1ϕ− f2ψ = f2(e′1 · ϕ− ψ) = 0, e2 · f2ψ − f1ϕ = f1(e′2 · ψ − ϕ) = 0,

for some e′1 = f2/f1e1 and e′2 = f1/f2e2. Thus (ϕ,ψ) and (f1ϕ, f2ψ) describe the same

contact Dirac structure (L, e1, e2).

To motivate the definition of generalised contact structures it is helpful to briefly

consider the relationship between contact structures and symplectic structures. A con-

tact structure is a maximally non-integrable codimension-1 hyperplane distribution

D ⊂ TM . This can be described by the line bundle TM/D. Letting η be a TM/D-

valued one-form; the distribution is given by D = ker(η). The non-integrability condi-

tion can be given as η ∧ (dη)m 6= 0, where dim(M) = 2m + 1. There is a transverse

symplectic structure on D: ωD = dη. In addition, there is another symplectic structure

associated with the manifold N := M × Rt. Take α = dt + η and set ωt = d(etα).

When TM/D is a non-trivial line bundle there is no globally defined contact form η.

It is possible to consider the same construction with S1 ↪→ P ′ → M . In this case

there is an Atiyah algebroid structure and the contact structure can be associated with

an S1-invariant reduction. In the non-trivial case η is no longer globally defined but

describes a connection one-form with a globally defined curvature two-form F = dη.

The ability to construct two symplectic structures from a contact structure is the

guiding principle of generalised contact structures. A generalised contact structure

should be able to be viewed as a (possibly non-trivial) S1-reduction of a generalised

complex structure (see Examples 4.8 and 4.9). In addition the definition should be

compatible with (B, b, a)-transformations.

Remark. Contact structures are usually associated to symplectic structures defined

on line bundles TM/D and N = M × R. Throughout this chapter S1-bundles will

be considered primarily. The motivation for this is the fact that [H2/2π], [F/2π] ∈
H2(M ;Z) have a nice interpretation in terms of gerbes (as outlined in Section 4.2).

The corresponding Courant algebroid description applicable to non-trivial line bundles

was given by Vitagliano and Wade [123] and is briefly described in Section 4.6.

Generalised contact structures have been studied in a number of papers [79, 102, 2].

However, the (0, b, a)-twists (which allow the description of non-coorientable structures

when H2, F 6= 0) have received little attention.
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Definition 4.10 ([108]). A Sekiya quadruple on an odd-dimensional manifold M is

given by the quadruple (Φ, e1, e2, λ) ∈ End(TM)⊕Γ(TM)⊕Γ(TM)⊕C∞(M), satisfying

the following conditions:

〈e1, e1〉 = 0 = 〈e2, e2〉, 〈e1, e2〉 = 1
2 ; (4.17a)

Φ∗ =− Φ; (4.17b)

Φ(e1) = λe1, Φ(e2) = −λe2; (4.17c)

Φ2(e) =− e+ 2(1 + λ2)(〈e, e2〉e1 + 〈e, e1〉e2), for e ∈ Γ(TM). (4.17d)

Generalised contact structures coming from Sekiya quadruples with λ = 0 have been

well studied and are often referred to as Poon–Wade triples [102]. The importance

of considering λ 6= 0 is the inclusion of the (B, b, a)-symmetries, which should be

considered on an equal footing to B-transformations, a fundamental part of the theory.

Definition 4.11. Let M be an odd-dimensional manifold of dimension m. A gener-

alised almost contact structure is a quadruple (L, e1, e2, λ), where L ⊂ TM ⊗ C is a

maximal isotropic subspace dimR(L) = m− 1, e1, e2 ∈ Γ(TM), satisfy

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e1, e2〉 = 1
2 ,

and λ ∈ C∞(M).

A Sekiya quadruple can be associated to a generalised almost contact structure: Let

L represent the +i-eigenbundle of Φ, and e1, e2 specify the±λ eigenbundles respectively.

It is clear that the pairs (e1, e2, λ) and (e2, e1,−λ) describe the same generalised

almost contact structure. When λ = 0 it follows that dim(ker(Φ)) = 2 and there is a

O(1, 1) freedom in the choice of e1, e2.

A generalised almost contact structure on M can be constructed from an S1-

invariant generalised almost complex structure on a principal circle bundle P (M,π,U(1)).

Consider a principal bundle P (M,π,U(1)) over an odd-dimensional manifold M . Let

U = {Uα} denote a good cover of M , and π−1(Uα) = Uα × S1 a cover for P . Take

local coordinates (x, tα), x ∈ Uα, tα ∈ S1. We have two set of coordinates on

π−1(Uα ∩ Uβ) denoted (x, tα) and (x, tβ). The coordinates are related by tα = gαβtβ,

where gαβ ∈ C∞(M,U(1)) are transition functions. Choose an S1-invariant connec-

tion A, given locally by Aα = dtα + A(x), where A ∈ Ω1(M). On x ∈ Uαβ we have

Aα = Aβ − id log gαβ. Assume that there is an S1-invariant generalised almost com-

plex structure Jinv ∈ End(TP ). A choice of connection induces a decomposition of

S1-invariant sections Γ(TP ) = Γ(TM) ⊕ C∞(M) ⊕ C∞(M): v + ξ + f∂t + gA, for
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v ∈ Γ(TM), f, g ∈ C∞(M), and ξ ∈ Γ(T ∗M). This gives the decomposition:

Jinv =

 Φ µe1 µe2

−2µ〈e2, ·〉 −λ 0

−2µ〈e1, ·〉 0 λ

 , (4.18)

where Φ ∈ End(TM), µ =
√

1 + λ2, λ ∈ C∞(M), and e1, e2 ∈ Γ(TM). The properties

of a Sekiya quadruple (Φ, e1, e2, λ) follow from J2
inv = −Id and J∗inv = −Jinv. The

clutching construction for global sections (X, f, g, ξ) involve transition functions gαβ ∈
C∞(Uα ∩ Uβ,U(1)). The global sections can be viewed as a (B, b, a)-transformation

with B = b = 0, a = A, generating twists H3 = H2 = 0, and F = dA. The choice

of transition functions gαβ are not unique; gαβ can be replaced with g′αβ = hαgαβh
−1
β ,

for any hα ∈ C∞(Uα,U(1)). Replacing gαβ with g′αβ corresponds to a (0, 0, a)-gauge

transformation, describing the decomposition with respect a connection A′ = A + a

satisfying da = 0.

A generalised almost contact structure (L, e1, e2, λ) is (H3, H2, F )-involutive if all

sections V of the +i-eigenbundle LJinv (defined by (4.18)) are involutive with respect

to ◦H3,H2,F : V1, V2 ∈ LJinv ⇒ V1 ◦H3,H2,F V2 ∈ LJinv .

Definition 4.12. An (H3, H2, F )-generalised contact structure is an (H3, H2, F )-involutive

generalised almost contact structure.

Generalised (almost) contact structures can be encoded in differential forms in a

relationship analogous to that of pure spinors and generalised (almost) complex struc-

tures.

Definition 4.13 ([2]). A mixed pair (ϕ,ψ, e1, e2) consists of two differential forms

ϕ,ψ ∈ Γ(Ωev/od(M)⊗ C) and a choice of two sections e1, e2 ∈ Γ(TM) satisfying

(ϕ, ϕ̄)m−1 6= 0, (ψ, ψ̄)m−1 6=0, ((ϕ,ψ), (ϕ̄, ψ̄))m−1 6= 0, (4.19a)

e1 · ψ = 0, µe1 · ϕ = (1 + iλ)ψ, e2 · ϕ = 0, µe2 · ψ = (1− iλ)ϕ, (4.19b)

where µ =
√

1 + λ2, and λ ∈ C∞(M).

Remark. The definition of mixed pair given here differs slightly from that given in [2],

which is valid for λ = 0 only.

Given a nowhere zero function f ∈ C∞(M) the pair (fϕ, fψ) satisfies the equations

(4.19) for fixed (e1, e2, λ).

A generalised almost contact structure can be described using a mixed pair. Fix a

generalised almost contact structure (L, e1, e2, λ), and identify Ann(ψ) = L⊕ Ce1 and

Ann(ϕ) = L⊕ Ce2. The isotropic subbundle L can be recovered as the intersection of

the annihilator bundles of (ϕ,ψ).
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There is a local correspondence between generalised almost contact structures given

by (L, e1, e2, λ) and a conformal class of mixed pairs (ϕ,ψ).

The definition of mixed pairs is motivated by the decomposition of a pure spinor

ρJ (associated to an S1-invariant generalised complex structure Jinv on M × S1 see [2])

into a mixed pair (ϕ,ψ) associated to a Sekiya quadruple on M : ρJ → ϕ + idt ∧ ψ.

The pure spinor condition (ρJ, ρ̄J)M×S1 6= 0 gives (4.19a). Note that J|S1(ej) = ie(j)

(j = 1, 2) for e(1) = (µe1, i−λ, 0), e(2) = (µe2, 0, i+λ)—this implies that e(j) ·ρJ|S1 = 0

and gives (4.19b).

Definition 4.14. A mixed pair (ϕ,ψ) is said to be (H3, H2, F )-involutive if there exists

a V = (v, f, g, ξ) ∈ Γ(E) such that

dH3,H2,F (ϕ,ψ) = V · (ϕ,ψ), (4.20)

where

dH3,H2,F (ϕ,ψ) :=(dϕ+H3 ∧ ϕ+ F ∧ ψ,H2 ∧ ϕ− dψ −H3 ∧ ψ),

V · (ϕ,ψ) =(v, f, g, ξ) · (ϕ,ψ) = (ιvϕ+ ξ ∧ ϕ+ fψ, gϕ− ιvψ − ξ ∧ ψ),

and (H3, H2, F ) satisfy the Bianchi identities (4.9).

Remark. The terminology (H3, H2, F )-involutive is justified by Theorem 4.15.

Given a non-zero function h ∈ C∞(M) and mixed pair (ϕ,ψ, e1, e2), satisfying

dH3,H2,F (ϕ,ψ) = V · (ϕ,ψ), the quadruple (hϕ, hψ, e1, e2) satisfies

dH3,H2,F (hϕ, hψ) = V ′ · (hϕ, hψ), V ′ = (v, f, g, ξ − h−1dh).

Thus the (H3, H2, F )-involutive property is not dependent on the choice of (ϕ,ψ) chosen

to represent the almost contact structure (L, e1, e2, λ).

Let us briefly recall the Clifford product on U ⊂ ∧•T ∗M ⊗ C on the generalised

tangent bundle TM :

(v, ξ) · ρ = ιvρ+ ξ ∧ ρ, (v, ξ)· : Γ(∧ev/oddT ∗M ⊗ C)→ Γ(∧odd/evT ∗M ⊗ C),

for (v, ξ) ∈ Γ(TM) ⊕ Γ(T ∗M), and ρ ∈ Γ(U), where U ⊂ ∧•T ∗M ⊗ C. By Clifford

multiplication on U we obtain filtrations of the even and odd exterior forms (here 2n

is the real dimension of the manifold):

U =U0 < U2 < · · · < U2n = ∧ev/oddT ∗M ⊗ C,

L∗ · U =U1 < U3 < · · · < U2n−1 = ∧odd/evT ∗M ⊗ C,
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where ev/odd is chosen according to the parity of U itself, Uk is defined as CLk ·U , and

CLk is spanned by products of not more than k elements of TM [59]. Note that we have

the canonical isomorphism L∗ ⊗ U = ((TM ⊕ T ∗M)⊗C)/L (using the inner product)

and hence U1 is isomorphic to L∗⊗U0. Theorem 3.38 of [59] shows that an almost Dirac

structure defined by Ann(ρ) is Courant involutive if and only if d(C∞(U0)) ⊂ C∞(U1),

i.e., dρ = ιvρ+ ξ ∧ ρ for some (v, ξ) ∈ Γ(TM)⊕ Γ(T ∗M).

A similar statement holds in the almost contact case. Consider a mixed pair (ϕ,ψ).

The definition requires that (ϕ,ψ) ∈ Γ(∧ev/oddT ∗M ⊗ C)⊕ Γ(∧odd/evT ∗M ⊗ C).

(v, f, g, ξ) · (ϕ,ψ) = (ιvϕ+ ξ ∧ ϕ+ fψ, gϕ− ιvψ − ξ ∧ ψ),

(v, f, g, ξ)· :Γ((∧ev/oddT ∗M ⊗ C)⊕ (∧odd/evT ∗M ⊗ C))

→ Γ((∧odd/evT ∗M ⊗ C)⊕ (∧ev/oddT ∗M ⊗ C)).

This gives a filtration:

W =W0 < W2 < · · · < Wm+1 = (∧ev/oddT ∗M ⊗ C)⊕ (∧odd/evT ∗M ⊗ C),

L∗ ·W =W1 < W3 < · · · < Wm = (∧odd/evT ∗M ⊗ C)⊕ (∧ev/oddT ∗M ⊗ C),

where dim(M) = m is odd-dimensional and ϕ,ψ are being viewed as pure spinors on a

local trivialisation of M × S1.

Theorem 4.15. The annihilator bundle Ann(ϕ,ψ) of a (H3, H2, F )-involutive pair

(ϕ,ψ) is involutive under the (H3, H2, F )-contact Courant algebroid product.

Proof. Let (L, e1, e2, λ) be the generalised almost contact structure and let (ϕ,ψ) be a

trivialisation of representative of (L, e1, e2, λ) over some open set.

We show below that

V1 ◦H3,H2,F V2 · (ϕ,ψ) = −V2 · V1 · dH3,H2,F (ϕ,ψ),

for any sections V1, V2 ∈ Ann(ϕ,ψ). The subbundle Ann(ϕ,ψ) is involutive if and

only if for any V1, V2 ∈ Ann(ϕ,ψ) the condition V1 · V2 · dH3,H2,F (ϕ,ψ) = 0 holds. This

condition holds if and only if dH3,H2,F (ϕ,ψ) is in C∞(W1) (elements of Wk are precisely

those which are annihilated by k + 1 elements in Ann(ϕ,ψ)).

A section V = (v, f, g, ξ) ∈ Ann(ϕ,ψ) satisfies

(v, f, g, ξ) · (ϕ,ψ) = (ιvϕ+ ξ ∧ ϕ+ fψ, gϕ− ιvψ − ξ ∧ ψ) = 0.

Rearranging we have ιvϕ = −ξ ∧ ϕ− fψ, ιvψ = gϕ− ξ ∧ ψ.
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ι[v1,v2]ϕ =[Lv1 , ιv2 ]ϕ = Lv1ιv2ϕ− ιv2dιv1ϕ− ιv2ιv1dϕ

=Lv1(−ξ2 ∧ ϕ− f2ψ)− ιv2d(−ξ1 ∧ ϕ− f1ψ)− ιv2ιv1dϕ

=− Lv1ξ2 ∧ ϕ− ξ2 ∧ d(−ξ1 ∧ ϕ− f1ψ)− ξ2 ∧ ιv1dϕ− (Lv1f2)ψ

− f2Lv1ψ − ιv2(−dξ1 ∧ ϕ+ ξ1 ∧ dϕ− df1 ∧ ψ − f1dψ)− ιv2ιv1dϕ

=(−Lv1ξ2 + ιv2dξ1 + ξ2 ∧ dξ1) ∧ ϕ− ξ2 ∧ (ιv1 + ξ1∧)dϕ

+ (ξ2 ∧ df1 − ιv1df2 + ιv2df1) ∧ ψ + f1ξ2 ∧ dψ − f2d(g1ϕ− ξ1 ∧ ψ)

− f2d(g1ϕ− ξ1 ∧ ψ)

− ιv2(ξ1 ∧ dϕ+ ιv1dϕ)− df1 ∧ (g2ϕ− ξ2 ∧ ψ) + f1ιv2dψ

=− (Lv1ξ2 − ιv2dξ1 + g2df1 − f2dg1) ∧ ϕ− (ιv1df2 − ιv2df1) ∧ ψ

+ f1(ιv2 + ξ2∧)dψ + f2(ξ1 ∧ dψ + g1dϕ)

− (ιv2 + ξ2) ∧ (ιv1 + ξ1∧)dϕ.

A similar calculation holds for ι[v1,v2]ψ. Combining the results gives

ιV1◦V2(ϕ,ψ) =(
− (ιv2 + ξ2∧)(ιv1 + ξ1∧)dϕ− f2g1dϕ− f2(ιv1 + ξ1∧)dψ + f1(ιv2 + ξ2∧)dψ,

(ιv2 + ξ2∧)(ιv1 + ξ1∧)dψ + g2f1dψ + g1(ιv2 + ξ2∧)dϕ− g2(ιv1 + ξ1∧)dϕ
)

=− (v2, f2, g2, ξ2) · ((ιv1 + ξ1∧)dϕ− f1dψ, g1dϕ+ (ιv1 + ξ1∧)dψ)

=− (v2, f2, g2, ξ2) · (v1, f1, g1, ξ1) · (dϕ,−dψ) = −V2 · V1 · d(ϕ,ψ).

So the annihilator bundle Ann(ϕ,ψ) corresponds to an involutive subbundle. A similar

argument holds for the twisted case ιV1◦H3,H2,F
V2(ϕ,ψ) = −V2 · V1 · dH3,H2,F (ϕ,ψ).

Let us consider a generalised almost contact structure generated by a cosymplec-

tic structure on M and examine the integrability condition. An almost cosymplectic

structure is a pair (θ, η) ∈ Ω2(M)⊕Ω1(M) satisfying η∧θn 6= 0. From standard results

in contact geometry there exists a Reeb vector field R ∈ Γ(TM) such that ιRη = 1 and

ιRθ = 0. A mixed pair (ϕ,ψ, e1, e2) can be given by

ϕ = eiθ, ψ = η ∧ eiθ, e1 = η, e2 = R.

We have dϕ = idθ ∧ ϕ, and dψ = dη ∧ ϕ + idθ ∧ ψ. If dθ = dη = 0 (a cosymplectic

structure) then d0,0,0(ϕ,ψ) = 0. If dη = θ (a contact 1-form η) then d0,dη,0(ϕ,ψ) = 0.

In fact the pair (θ, η) will form a (0, dη, 0)-generalised contact structure if dθ = 0. We
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conclude the following:

• A cosymplectic structure defines a (0, 0, 0)-generalised contact structure.

• A contact 1-form η defines a (0, dη, 0)-generalised contact structure.

It is possible to describe a non-coorientable contact structure arising from a TM/D-

valued 1-form η. In the case of a non-trivial line bundle TM/D, η is not globally defined.

Local trivialisations ηα and ηβ are related using transition functions gαβ. If the line

bundle on a compact manifold is of the form TM/D ∼= TS1, for an S1-foliation then

η satisfies the conditions of a (0, 0, η)-transformation ((4.11) and (4.12)) with twists

(0, 0, dη).

Remark. In [102] an almost generalised contact structure (defined with e1 ∈ Γ(TM),

e2 ∈ Γ(T ∗M), λ = 0) is called a generalised contact structure if L⊕ Ce1 is involutive.

A strong generalised contact structure is a generalised contact structure where L⊕Ce2

is involutive. In [2] a generalised normal contact structure is a generalised contact

structure arising from an invariant generalised complex structure J on M ×R. In both

cases a contact form η with dη 6= 0 does not give a strong generalised contact structure.

An essential property of the definition of a generalised (almost) contact structure is

that it is compatible with the (B, b, a)-symmetries. The action on a Dirac pair (ϕ,ψ)

is:

e(B,b,a)(ϕ,ψ) =
(
e−Bϕ+ ae−Bψ − 1

2abe
−Bϕ, e−Bψ − be−Bϕ− 1

2bae
−Bψ

)
, (4.21)

where ∧ has been omitted. The action preserves the pairing,

(e(B,b,a)(ϕ1, ψ1), e(B,b,a)(ϕ2, ψ2))M = ((ϕ1, ψ1), (ϕ2, ψ2))M ,

and satisfies

dH′3,H′2,F ′(e
(B,b,a)(ϕ,ψ))− V ′ · (e(B,b,a)(ϕ,ψ)) = e(B,b,a)(dH3,H2,F (ϕ,ψ)− V · (ϕ,ψ)),

(4.22)

where

H ′3 =H3 + dB + a ∧H2 + b ∧ F +
1

2
(da ∧ b+ a ∧ db),

H ′2 =H2 + db, F ′ = F + da, V ′ = e(B,b,a)V.

This shows that given a (H3, H2, F )-involutive mixed pair (ϕ,ψ) there exists a (H ′3, H
′
2, F

′)-

involutive Dirac pair e(B,b,a)(ϕ,ψ).
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Below two standard examples of generalised contact structures (first appearing in

[79] for M × R) are presented from the perspective of reduced generalised complex

structures on S1 ↪→ P →M .

Example 4.8 (Almost symplectic to almost cosymplectic structure). Let ω ∈ Γ(∧2T ∗P )

be a symplectic form, where S1 ↪→ P → M , and dim(M) = m = 2n + 1. Consider a

connection specified by locally by Aα = dtα + Aα ∈ Ω1(Pα) (with π−1(Uα) = Uα × S1

defining a cover of P ) with curvature F = dA ∈ H2(M,Z). The symplectic form is

S1-invariant if it admits the decomposition

ωα = θα +Aα ∧ ηα ∈ Ω2(Pα),

where ω is globally defined, but η is not if the bundle is not trivial (η satisfies the usual

cocycle conditions).

0 6= ωn+1 = (θ +A ∧ η)n+1 =
n+1∑
k=0

(
n+ 1

k

)
θn+1−k(A ∧ η)k = (n+ 1)θn ∧ A ∧ η

giving η ∧ θn 6= 0. There exists a Reeb vector field R ∈ Γ(TM) such that ιRη = 1

and ιRθ = 0. θ is non-degenerate on ker(η). The generalised complex structure Jω is

reduced to a generalised contact structure (Φ, e1, e2, λ):

Jω =

(
0 −ω−1

ω 0

)
⇒ Φ =

(
0 −θ−1

θ 0

)
, e1 = η, e2 = R, λ = 0,

ρJω = eiω ⇒ ϕ = eiθ, ψ = η ∧ eiθ,

where Jω is written in the splitting TP ⊕T ∗P , Φ in the splitting ker(η)⊕Ann(R), and

ρJω is a pure spinor associated to Jω.

Let us look at the integrability conditions:

dϕ = idθ ∧ ϕ, dψ = dη ∧ ϕ+ idθ ∧ ψ.

If dθ = 0 then d0,dη,0(ϕ,ψ) = 0. Noting that ω = θ + A ∧ η, we see that dω =

dθ+dA∧η+A∧dη is not necessarily zero. So a generalised (0, dη, 0)-contact structure

can arise from a pre-symplectic structure.

Example 4.9 (almost complex to almost contact structure). Consider an almost complex

structure J ∈ End(TP ) on S1 ↪→ P → M , where dimM = 2n + 1, and the S1-bundle

is specified by the choice of connection A (given locally by Aα = dtα + Aα ∈ Ω1(Pα)).

Given local coordinates x for M and t for S1, the almost complex structure is S1-
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invariant if there exists a decomposition

JIK∂I ⊗ dxK = (φ′ik −RiAk)∂i ⊗ dxk +Ri∂i ⊗A+ αkκ⊗ dxk.

Setting φ := φ′ −R⊗A the conditions J∗ = −J and J2 = −1 give

ιRα = 1, Φ(R) = 0 = φ∗(α), φ2(v) = −v + (ιvα)R.

The generalised almost complex structure JJ reduces to a generalised almost contact

structure (Φ, e1, e2, λ):

JJ =

(
J 0

0 −J∗

)
⇒ Φ =

(
φ 0

0 −φ∗

)
, e1 = α, e2 = R, λ = 0,

ρJ = ΩJ ⇒ ϕ = Ωφ, ψ = α ∧ Ωφ,

where ΩJ ∈ Ω2n+2,0(P ) is the decomposable top form giving the pure spinor describing

JJ and α ∧ Ωφ := ΩJ .

Let us look at the integrability conditions:

dϕ = dΩφ, dψ = dα ∧ ϕ+ α ∧ dΩφ.

We require that dΩφ = 0. In this case we have d0,dα,0(ϕ,ψ) = 0.

4.3.1 Deformations of generalised contact structures

The (B, b, a)-transformations described in Section 4.1.1 provide deformations of gen-

eralised contact structures. While B-transformations have been studied before, the

(b, a)-transformations have not been incorporated. The K±(κ) (κ ∈ Γ(T ∗M)) symme-

tries introduced by Sekiya in [108] are equivalent to the more geometrically natural

(b, a)-transformations.

A Sekiya quadruple (Φ, e1, e2, λ), can be deformed to give another Sekiya quadruple

(Φ′, e′1, e
′
2, λ
′):

Φ′(e) =eBΦe−B(e)− 〈e, a〉Φ(b)− 〈e, b〉Φ(a) + 2µ〈e, a〉e1 + 2µ〈e, b〉e2

+ 〈eBΦ(a), e〉b− 2µ〈e1, a〉〈e, a〉b− 2µ〈e2, a〉〈e, b〉b− 2µ〈eBe2, e〉b (4.23a)

+ 〈eBΦ(b), e〉a− 2µ〈e2, b〉〈e, b〉a− 2µ〈e1, b〉〈e, a〉a− 2µ〈eBe1, e〉a.

+ 〈a,Φ(b)〉〈a, e〉b+ 〈b,Φ(a)〉〈b, e〉a.

µ′e′1 =µeBe1 − λ′b+ µ〈e1, b〉a+ µ〈e1, a〉b− eBΦ(b) (4.23b)

µ′e′2 =µeBe2 + λ′a+ µ〈e2, a〉b+ µ〈e2, b〉a− eBΦ(a) (4.23c)
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λ′ =λ+ 2〈b,Φ(a)〉+ 2µ〈e1, a〉 − 2µ〈e2, b〉 (4.23d)

where e = (v, ξ) ∈ Γ(TM).

This follows immediately from considering e(B,b,a) transformation on Jinv, via

e(B,b,a)Jinve
(−B,−b,−a) =

 Φ′ µ′e′1 µ′e′2
−2µ′〈e′2, ·〉 −λ′ 0

−2µ′〈e′1, ·〉 0 λ′

 ,

where Jinv is the S1-invariant generalised complex structure associated to (Φ, e1, e2, λ)

by (4.18), noting that e(B,b,a)e(−B,−b,−a)V = V .

Proposition 4.16. The transformation e(B,b,a) given by (4.10) maps a (H3, H2, F )-

generalised contact structure (Φ, e1, e2, λ) to a (H ′3, H
′
2, F

′)-generalised contact structure

(Φ′, e′1, e
′
2, λ
′) given by (4.23), where

H ′3 = H3 + dB + a ∧H2 + b ∧ F + 1
2(da ∧ b+ a ∧ db), H ′2 = H2 + db, F ′ = F + da.

Proof. This follows directly from the mixed pair description and the fact that the

transformation e(B,b,a) preserves the pairing and (4.22).

Example 4.10 (Symmetries). Any generalised almost contact structure gives a family

of generalised almost contact structures using (B, b, a)-transformations. Deforming

Example 4.8 gives

ϕ′ =
(
1 + a ∧ η − 1

2a ∧ b
)
∧ e−B+iθ, ψ′ =

(
η − b− 1

2b ∧ a ∧ η
)
∧ e−B+iθ

µ′e′1 = eB ∧ η − λ′b+ ιρ∗(b)θ
−1 + ιιρ∗(b)θ−1B

µ′e′2 = R+ ιRB + λ′a+ 1
2(ιRa)b+ 1

2(ιRb)a+ ιρ(a)θ
−1 + ιιρ(a)θ−1B,

λ′ = ιRb− ιρ∗(b)ιρ∗(a)θ
−1,

where ρ∗(a) : T ∗M → Ann(R) is the dual anchor combined projection onto the Anni-

hilator of R.

Deforming Example 4.9 we get

ϕ′ =
(
1 + a ∧ α− 1

2a ∧ b
)
∧ e−B ∧ Ωφ, ψ′ =

(
α− b− 1

2b ∧ a
)
∧ e−B ∧ Ωφ,

µ′e′1 = α+ λ′a+ φ∗(ρ(a)),

µ′e′2 = R+ ιRB − λ′b+ 1
2(ιRb)a+ 1

2(ιRa)b+ φ∗(ρ(b)),

λ′ = ιRa.

Remark. These examples show that (b, a)-transformations can change λ. The (b, a)-
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transformation can be interpreted geometrically as twisting the S1-bundle. The corre-

spondence between a-transformations and twisting comes from the discussion preced-

ing Definition 4.10. The description following Defintion 4.7 shows that the splitting

of invariant sections of TP and T ∗P correspond to an a-transformation and a dual

b-transformation.

Example 4.11 (Products [52]). Let M = M1 ×M2 with projections pri : M → Mi.

If (L1, e1, e2) is a generalised almost contact structure on M1 and L2 is a generalised

almost complex structure on M2, then (pr∗1L1 ⊕ pr∗2L2, pr
∗
1e1, pr

∗
1e2) is a generalised

almost contact structure on M .

There are manifolds which admit generalised contact structures but not contact

structures. A class of examples come from S1-bundles of nilmanifolds. A nilmanifold

is a homogeneous space M = G/Γ, where G is a simply connected nilpotent real Lie

group and Γ is a lattice of maximal rank in G. For the associated generalised complex

structures on nilmanifolds see [29]. The structure of a particular nilpotent Lie algebra

can be given by specified by listing exterior derivatives of the elements of a Malcev

basis, as an n-tuple of two-forms dεk =
∑
cijk εiεj , (henceforth ∧ is omitted, so that

εi ∧ εj = εiεj).

Example 4.12 ((0, 0, 12, 13, 14 + 23, 34 + 52)× S1). Specify a 6-dimensional nilmanifold

via the coframe {εi}, i = 1, . . . , 6 satisfying:

dε1 = 0, dε2 = 0, dε3 = ε1ε2, dε4 = ε1ε3, dε5 = ε1ε4 + ε2ε3, dε6 = ε3ε4 + ε5ε2.

Let E = M × S1, where M is the nilmanifold specified by (0, 0, 12, 13, 14 + 23, 34 + 52),

and S1 is parameterised by t. The one-form dt gives a flat connection on S1. Define

η = π∗dt where π : M × S1 →M is the projection. Let R = π∗∂t be the corresponding

Reeb vector field. The generalised almost contact structure is given by

Ω =ε1 + iε2,

B =ε2ε6 − ε3ε5 + ε3ε6 − ε4ε5,

ω = ε3ε6 + ε4ε5,

ϕ =eB+iωΩ, ψ = ηeB+iωΩ, e1 = η, e2 = R, λ = 0.

Example 4.13 (S1-bundles on nilmanifolds). There are manifolds which have no sym-

plectic or complex structures but do have generalised complex structures. In [29]

generalised complex structures are constructed on nilmanifolds which do not admit

symplectic or complex structures. Each of these examples define a generalised com-

plex structure via a pure spinor ρ = Ω ∧ eB+iω. This construction can be modified

to find generalised contact structures which do not admit contact structures. Take



4.4. GENERALISED COKÄHLER GEOMETRY 85

S1 ↪→ E → M . Choose an S1-invariant connection A. Define a vector field R such

that ιRA = 1. Take the generalised complex structure described by the pure spinor

ρ = Ω ∧ eiω+B. The corresponding mixed pair is

ϕ = eB+iωΩ, ψ = AeB+iωΩ, e1 = A, e2 = κ, λ = 0.

Example 4.14. Consider R5, described using coordinates {t, z1, z2} where z1, z2 are stan-

dard coordinates in C2 ∼= R4. A generalised complex structure is defined by the pure

spinor ρ = z1 + dz1dz2. When z1 = 0, ϕ = dz1dz2 defines a standard complex struc-

ture, whereas z1 6= 0, ϕ defines a B-symplectic structure since ρ = z1 exp(dz1dz2/z1).

A generalised contact structure is given by

ϕ = z1 + dz1dz2, ψ = dt(z1 + dz1dz2), e1 = dt, e2 = ∂t.

4.4 Generalised coKähler geometry

Generalised geometric structures are of great interest in string theory due to the fact

that T-duality is associated to so(T ⊕ T ∗) = End(T ) ⊕ ∧2T ∗ ⊕ ∧2T . The generalised

metric incorporates the Riemannian metric G and B-field associated with the Neveu–

Schwarz flux H in the bosonic sector of supergravity. Generalised Kähler structures

are equivalent to bi-hermitian structures and are the most general geometry associated

to two-dimensional target space models with N = (2, 2) supersymmetry [49].

CoKähler structures are the odd-dimensional counterpart to Kähler structures. The

relationship between Kähler and coKähler structures is described in [93, 11]. Li gave a

structure result for compact coKähler manifolds stating that such a manifold is always

a Kähler mapping torus. The coKähler structure on an odd-dimensional manifold M

can be associated to a Kähler structure on an S1-bundle (using a symplectomorphism)

[93]. Further results on coKähler structures were given in [11].

Generalised coKähler structures have appeared in the literature before [53]. The

definition given in [53] deals with generalised Kähler structures on M1×M2, and the def-

inition is compatible with B-transformations. In this section we will consider the case

where M2 = S1, but will not restrict to product manifolds, instead considering princi-

pal circle bundles. The definition is compatible with the full (B, b, a)-transformations.

Generalised coKähler structures will be presented as S1-invariant reductions of gener-

alised Kähler structures.

Remark. Generalised Kähler structures play an important role in string theory. In

[49] generalised Kähler structures (written as a bi-Hermitian structures) appear in the

study of N = (2, 2) non-linear sigma models with torsion. The torsion arises from the

connections ∇± = ∇LC ± g−1H, where ∇LC is the Levi-Civita connection. Abelian
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T-duality can be carried out when the metric has an S1-isometry, and the T-duality

procedure involves Kaluza–Klein reduction. T-duality is most interesting when the

S1-isometry corresponds to a topologically non-trivial S1-bundle. In this case there

is an interesting relationship between topology and H-flux [17, 18]. The study of S1-

reductions of generalised Kähler structures is interesting in this context.

4.4.1 Generalised metric structure

The inner product (4.8b) is non-degenerate and a generalised contact metric can be

constructed using maximally isotropic subspaces

G(V1, V2) = 〈V1, V2〉|C+ − 〈V1, V2〉|C− ,

where V1, V2 ∈ Γ(E) ∼= Γ(TM) ⊕ C∞(M) ⊕ C∞(M) ⊕ Γ(T ∗M); mirroring the case of

generalised geometry on TM described in Section 4.1.2. In the present case we have

C± = {(v, f, g, ξ) ∈ Γ(E) : g = ±fh2, ξ = ±G(v, ·)} (4.24)

for some h ∈ C∞(M) and Riemannian metric G. This satisfies

〈(v, f,±fh2,±G(v, ·)), (v, f,±fh2,±G(v, ·))〉 = ±G(v, v)± f2h2,

verifying that C± describe the maximal positive/negative definite subbundles.

As 〈·, ·〉 is invariant under (B, b, a)-transformations the subbundles C±, defining a

generalised metric G, can be transformed to e(B,b,a)C± defining a generalised metric

G′ = e(B,b,a)Ge−(B,b,a). The maximal subspaces are given by

C± = {(v, ξ, f, g) :ξ = ±G(v, ·) +B(v, ·)− fb− fh2a− 2〈v, b〉a, (4.25)

g = ±fh2 + 2〈v, b〉+ 2h2〈v, a〉+ 〈v, b〉〈v, a〉}.

All subspaces C± can be described in the form (4.25) for some choice of (G, h,B, b, a).

Definition 4.17. A generalised coKähler structure on an odd-dimensional manifold

M , consists of two generalised (H3, H2, F )-contact structures (L1, e
(1)
1 , e

(1)
2 , λ1) and

(L2, e
(2)
1 , e

(2)
2 , λ2) whose associated Sekiya quadruples J1 = {Φ1, e

(1)
1 , e

(1)
2 , λ1} and J2 =

{Φ2, e
(2)
1 , e

(2)
2 , λ2} give a generalised Kähler structure.

The commuting condition J1J2 = J2J1 places the restrictions on the Sekiya quadru-

ples (Φ1, e
(1)
1 , e

(1)
2 , λ1) and (Φ2, e

(2)
1 , e

(2)
2 , λ2). The Sekiya quadruples are required to

satisfy

Ce(1)
1 ⊕ Ce(1)

2 =Ce(2)
1 ⊕ Ce(2)

2 := E ;
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Φ1Φ2(v) =Φ2Φ1(v) ∀v ∈ E⊥

e
(1)
1 = e

(2)
1 , e

(1)
2 = e

(2)
2 , when λ1 = λ2 or e

(1)
1 = e

(2)
2 , e

(1)
2 = e

(2)
1 , ∀λ1, λ2 ∈ R.

Remark. If λ1 = λ2 = 0 then there is a O(1, 1)-freedom in the description and it is

possible to choose e
(1)
1 = e

(2)
2 and e

(1)
2 = e

(2)
1 .

Example 4.15 (coKähler). A coKähler structure on an odd-dimensional manifold M ,

is given by the quadruple (J,R, η,G), where (J,R, η) is an almost contact structure

and G is a Riemannian metric satisfying G(Jv1, Jv2) = G(v1, v2) − η(v1)η(v2) for all

v1, v2 ∈ Γ(TM). The integrability conditions are [J, J ] = 0, and dω = dη = 0, where

ω(v1, v2) := G(Jv1, v2) ∈ Ω2(M). This defines a generalised coKähler structure (with

λ = H3 = H2 = F = 0):

ϕ1 = eiω, ψ1 = η ∧ eiω, e(1)
1 = η, e

(1)
2 = R, ϕ2 = ΩJ , ψ2 = η ∧ ΩJ , e

(2)
1 = η, e

(2)
2 = R.

Example 4.16 (Generalised Kähler to generalised coKähler). We will reduce a gener-

alised Kähler structure to produce a generalised coKähler structure. It was shown in

Example 4.8 (Example 4.9) that the reduction of a symplectic (complex) structure (over

the same S1-bundle) gives

Jωinv =


0 −ω−1 0 η

ω 0 R 0

0 −2〈η, ·〉 0 0

−2〈R, ·〉 0 0 0

 , JJinv =


−J 0 −R 0

0 J∗ 0 η

2〈R, ·〉 0 0 0

0 −2〈η, ·〉 0 0

 ,

where ω and J are non-degenerate on D. The condition that −JωinvJJinv = G for

G =


0 G−1 0 0

G 0 0 0

0 0 0 1

0 0 1 0

 ,

requires that ω(Jv1, v2) = G(v1, v2), giving a transverse Kähler structure, 〈R, η〉 = 1
2 ,

〈R,R〉 = 0 = 〈η, η〉.

The almost generalised complex structures Jωinv and JJinv will define a generalised

coKähler structure when H2 = dα = dη (see Examples 4.8 and 4.9 for notation).

Example 4.17 (Twisted generalised coKähler). It is clear from Example 4.16 that the

reduction of a generalised Kähler structure can produce a generalised coKähler struc-

ture. It is possible to deform any generalised coKähler structure (Jωinv , JΩinv ,G) to get
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another:

(e(B,b,a)JJinve
−(B,b,a), e(B,b,a)Jωinve

−(B,b,a), e(B,b,a)Ge−(B,b,a)).

Definition 4.18. A generalised almost coKähler–Einstein structure on an odd-dimensional

manifold M (with m = dim(M)) is described by two mixed pairs (ϕ1, ψ1) and (ϕ2, ψ2)

satisfying

((ϕ1, ψ1), (ϕ̄1, ψ̄1))M = c((ϕ2, ψ2), (ϕ̄2, ψ̄2))M ,

where c ∈ R can be scaled to +1 or −1 by scaling (ϕ1, ψ1). A generalised almost

coKähler–Einstein structure is a generalised coKähler–Einstein structure if (ϕ1, ψ1, e
(1)
1 , e

(1)
2 )

and (ϕ2, ψ2, e
(2)
1 , e

(2)
2 ) are generalised (H3, H2, F )-contact structures.

Example 4.18 (S1-invariant generalised Calabi–Yau). Let N = M × S1 be an even

dimensional manifold with an S1-invariant generalised Calabi–Yau structure (ρ1, ρ2).

The decompositions ρj = ϕj + idtψj (j = 1, 2) defines a generalised coKähler–Einstein

structure: (ϕ1, ψ1, e
(1)
1 = ∂t, e

(1)
2 = dt) and (ϕ2, ψ2, e

(2)
1 = ∂t, e

(2)
2 = dt), where λ =

H3 = H2 = F = 0.

Example 4.19 (coKähler–Einstein). A coKähler–Einstein structure on an odd-dimensional

manifold M is a Ricci-flat coKähler structure. A coKähler structure has an associated

cosymplectic structure (η, θ). Consider N = M × S1, with S1 parameterised by t,

and pr1(N) = M . Let ω = dt ∧ pr∗1η + pr∗1θ, and GN = pr∗1G + (dt)2. This defines

a Calabi–Yau structure on N . A Calabi–Yau structure defines a generalised Calabi–

Yau structure (Example 4.6). Using the reduction procedure (Example 4.18) we get a

generalised (0, 0, 0)-coKähler–Einstein structure.

Example 4.20. A (B, b, a)-transformation maps an involutive mixed pair to another

involutive mixed pair, preserving the length. It follows that a generalised coKähler(–

Einstein) structure, ((ϕ1, ψ1), (ϕ2, ψ2)), is mapped to another coKähler(-Einstein) struc-

ture by a (B, b, a)-transformation, ((e(B,b,a)ϕ1, e
(B,b,a)ψ1), (e(B,b,a)ϕ2, e

(B,b,a)ψ2)). A

generalised (H3, H2, F )-contact structure is mapped to generalised (H3 + dB,H2 +

db, F + da)-contact structure.

4.5 T-duality

T-duality provides an isomorphism between Courant algebroids defined on two torus

bundles Tk ↪→ E → M and T̂k ↪→ Ê → M . The topological description of T-duality

is described in [17, 18]. The isomorphism of Courant algebroid structures in [30]. The
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situation is described by the following diagram:

E ×M Ê

E

M

Ê

p p̂

π π̂

where

Tk E

M

T̂k Ê

M

andπ π̂

.

A torus Tk can be viewed as an abelian group with lie algebra t. Principal torus bundles

E(M,π,Tk) are classified by H2(M,Zk). A representative can be found by choosing a

principal torus connection A ∈ Ω1(M, t) and taking the curvature F = dA ∈ Ω2(M, t).

A choice of connection determines an isomorphism of Tk invariant vector fields on E:

TE/Tk ∼= TM ⊕ t (see Example 3.10). The isomorphism allows us to identify the

curvature with a Tk invariant two-form F ∈ Ω2
Tk

(E) (in fact F ∈ Ω2(M)). We can

similarly identify F̂ ∈ Ω2
T̂k

(Ê). The relevant fluxes are H ∈ Ω3
Tk

(E) and Ĥ ∈ Ω3
T̂k

(Ê).

The bundles E and Ê are T-dual if

π∗H = F̂ , π̂∗Ĥ = F, p∗H − p̂∗Ĥ = dF ,

for some T2k-invariant 2-form on the correspondence space F ∈ Ω2(E×M Ê) such that

F : t⊗ t̂→ R is non-degenerate.

H is admissible if it satisfies [30]:

H(X1, X2, · ) = 0, ∀X1, X2 ∈ t ∈ E.

The requirement that H is admissible ensures that the T-dual bundle Ê is in fact a

principal torus bundle. If H is not admissible the T-dual is not a principal torus bundle,

although it may still admit an interpretation in terms of a non-commutative/non-

associative space [98, 19]. We will assume that H and Ĥ are admissible.
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If we have admissible T-dual pairs (H,F ) and (Ĥ, F̂ ) we have the decomposition

H = F̂ ∧ A+ h3, Ĥ = F ∧ Â+ h3,

where h3 ∈ Ω3(M).

The T-duality map τF : (Ω•
Tk

(M), dH) → (Ω•
T̂k

(M̂), d
Ĥ

) gives an isomorphism of

chain complexes and is defined by the formula

τFω :=

∫
T̂k
eFp∗ω,

for Tk-invariant differential forms ω ∈ Ω•
Tk

(M). In that case that k = 1, the T-duality

map gives an isomorphism of mixed pairs:

τF (ϕ+ iAψ) =

∫
Ŝ1
eFp∗(ϕ+ iAψ) = ϕ̂+ iÂψ̂,

where (ϕ,ψ) is a mixed pair, and F = −AÂ. The map τF can be seen as the com-

bination of a pullback from E to the correspondence space E ×M Ê, followed by a

B-transformation eF , and then the pushforward to Ê. This can be viewed as a type of

geometric Fourier transform.

The complexes (Ω•
Tk

(M), dH) and (Ω•
T̂k

(M̂), d
Ĥ

) determine the T-dual Courant

algebroids ◦H and ◦
Ĥ

. The exact Courant algebroid ◦H can be viewed as a derived

bracket on TM generated by the twisted differential dH := d + H∧ (for details see

[86, 9]). The T-dual Courant algebroid ◦
Ĥ

is a derived bracket on TM̂ generated by

d
Ĥ

.

The description of T-duality for generalised (almost) contact structures on the triv-

ial bundle E = M × R is given in [2].

Given the interpretation of generalised contact structures as S1-reduced generalised

complex structures, Tk-duality of generalised contact structures is Tk+1-duality of the

corresponding generalised complex structure. T-duality for a circle bundle is considered

as an example in [30]. The killing vector generates an S1-foliation and—considering S1-

invariant fields—the Courant bracket (4.2a) is reduced to (4.8a). T-duality corresponds

to the interchange (F, f) ↔ (H2, g). Contact geometry corresponds to an extra S1-

invariant reduction without the interchange and pushforward.

T-duality in the cone direction, denoted t, is considered in [2] . In this case the

mixed pair (ϕ,ψ) is mapped to the mixed pair (ψ,ϕ). A b-transformation is interpreted

as a change in connection for the S1-bundle defining the generalised contact structure.

An a-transformation corresponds to a choice of connection in the T-dual direction.

Proposition 4.19. T-duality maps a generalised coKähler(–Einstein) structure to an-

other generalised coKähler(–Einstein) structure.
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Proof. T-duality preserves the pairing, and maps a mixed pair to another mixed pair.

4.6 Contact line bundles versus reduction

It has recently been shown that generalised contact geometry has a conceptually nice

description as generalised geometry on the generalised derivation bundle DL ∼= DL ⊕
J1L for a (possibly non-trivial) line bundle L [122, 123]. This section briefly outlines

the description and relates this to the current chapter. A generalised contact structure

viewed as a reduced generalised complex structure J |S1 is the S1-bundle version of the

generalised complex structure I ∈ End(DL). A mixed pair (ϕ,ψ) is associated to a

pure spinor $ ∈ Γ(∧•J1L,L).

Many interesting examples of contact structures are in fact non-coorientable and

not defined by a globally defined contact one-form. Contact structures are determined

by a line bundle L = TM/D (as described in Section 4.3). It is of interest to have

a formalism that allows the description of non-trivial line bundles while making the

symmetries explicit.

The description of generalised contact bundles is given via the Atiyah (or gauge)

algebroid, defined on DL = DL ⊕ J1L, where sections of DL are derivations of L,

and J1L is the first jet bundle of L. A derivation ∇ ∈ DE has a unique symbol

σ : DE → TM such that, for f ∈ C∞(M) and λ ∈ Γ(E),

∇(fλ) = (σ∇)(f)λ+ f∇λ = X(f)λ+ f∇λ,

where X = σ(∇). This makes it clear that DE is part of the exact sequence

0 // gl(E) // DE
σ // TM // 0 .

There is a natural Lie algebroid structure associated with DE: the Lie bracket is given

by the commutator of derivations and the anchor given by σ. In the case of a line

bundle the induced map on sections gives:

0 // Γ(gl(L)) ∼= C∞(M) // Γ(DL)
σ // Γ(TM) // 0 . (4.26)

If the bundle DL is trivial there is an isomorphism Γ(DL) ∼= Γ(TM)⊕C∞(M). If D is a

non-trivial bundle there are local isomorphisms Γ(DL|Uα) ∼= Γ(TUα)⊕C∞(Uα) patched

globally using transition function (in a manner analogous U(1)-bundles described in

Section 2.2.2). Sections (v, f) ∈ Γ(TM) ⊕ C∞(M) are the line bundle version of the

S1-invariant sections of TP for S1 ↪→ P →M .
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The 1-jet bundle J1E can be defined, at a point p ∈M , by the equivalence relation

in Γ(E):

e1 ∼ e2 ↔ e1(p) = e2(p), d〈e1, ζ〉 = d〈e2, ζ〉, ∀ζ ∈ Γ(E∗).

There exists p : J1E → E, such that ker(p) ∼= Hom(TM,E), giving

0 // Hom(TM,E) // J1E
p

// E // 0 .

In the case of a line bundle the induced map on sections gives:

0 // Γ(Hom(TM,L)) ∼= Γ(T ∗M) // Γ(J1L) // Γ(L) ∼= C∞(M) // 0 .

(4.27)

If the bundle J1L is trivial there is an isomorphism Γ(J1L) ∼= Γ(T ∗M) ⊕ C∞(M).

Sections (ξ, g) ∈ Γ(T ∗M) ⊕ C∞(M) are the line bundle version of the S1-invariant

sections of T ∗P .

It is shown in [36] that DE is E-dual to J1E, there is a non-degenerate E-valued

pairing 〈·, ·〉E : DE × J1E → E. For sections ∇ ∈ Γ(DE) and χ =
∑
fj1e ∈ Γ(J1E)

the pairing is given by 〈∇, χ〉E =
∑
f∇(e). The pairing between DE and J1E has a

geometric interpretation: 〈∇, χ〉E can be viewed as the covariant derivation of χ with

respect to ∇.

Given the E-valued pairing between DE and J1E there is a natural E-Courant

(more specifically an omni-Lie) algebroid defined on the generalised derivation bundle

DE given by:

0 // J1E // DE
ρ
// DE // 0 .

The definition and properties of omni-Lie and E-Courant algebroids can be found in

[36] and [37] respectively. The E-Courant algebroid can be viewed as a derived bracket

for the differential dDE acting on the complex Ωk
E := Γ(∧kJ1E,E):

dDE$(∇0,∇1, . . . ,∇k) =
k∑
i=0

(−1)i∇i($(∇0, . . . , ∇̂i, . . . ,∇k))

+
∑
i<j

(−1)i+j$([∇i,∇j ],∇0, . . . , ∇̂i, . . . , ∇̂j , . . . ,∇k),

for ∇i ∈ Γ(DE), $ ∈ Ωk
E , and ·̂ denoting omission. The action of L∇$ := dDEι∇$ +

ι∇dDE$ gives a Lie derivative on Γ(∧•J1E,E) satisfying an analogue of the Cartan

relations.

From this construction the omni-Lie algebroid on a line bundle L→M is given as:
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(∇1, ψ1) ◦L (∇2, ψ2) =
(

[∇1,∇2],L∇1ψ2 − ι∇2dDLψ1

)
; (4.28a)

〈〈(∇1, ψ1), (∇2, ψ2)〉〉 =〈∇1, ψ2〉L + 〈∇2, ψ1〉L; (4.28b)

ρ(∇, ψ) =∇, (4.28c)

for ∇ ∈ Γ(DL) and ψ ∈ Γ(J1L). The bracket (4.28a) can be identified with (4.8a)

when H3 = 0. In the case of a trivial line bundle, H2 = F = 0, this has already been

noted [122]. If the line bundle is non-trivial then F = H2 is given by the curvature of

a connection specifying the bundle.

Having identified the Courant algebroids (4.28a) with (4.8a) the identification of

generalised contact structures as generalised complex structures is straightforward.

The generalised complex structure J |S1 ∈ End(TP ⊕ T ∗P ) can be identified with

I ∈ End(DL) (satisfying I2 = −Id and I∗ = −I) by splitting the sequences (4.26)

and (4.27). The generalised complex structure I is identified with a Dirac structure

LI ⊂ DL and described by a pure spinor $ ∈ Γ(∧•J1L,L). A choice of decom-

position Γ(J1L) = C∞(M) ⊕ Γ(T ∗M) coming from (4.27), induces a decomposition

$ ∈ Γ(∧•J1L,L) into a mixed pair (ϕ,ψ) ∈ Γ(∧•T ∗M)⊕ Γ(∧•−1T ∗M).
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Chapter 5

Lie algebroid gauging of

non-linear sigma models

This chapter describes the underlying Lie algebroid geometry associated to the non-

isometric gauging proposal by Kotov and Strobl [114, 88, 89, 99]. The main results

are Theorem 5.4 and Theorem 5.8 which give the necessary and sufficient conditions

for carrying out the non-isometric gauging procedure with a particular choice of vector

fields. Corollary 5.6 states that it is always possible to locally gauge an action non-

isometrically. Lie algebroid structures underpin the non-isometric gauging procedure.

This chapter discusses the integrability of the Lie algebroid action to a Lie groupoid

action—something that has not appeared in the Lie algebroid gauging literature. In

contrast to the isometric case, non-isometric gauging does not necessarily represent

an underlying symmetry with a Noether charge. Applications of gauging (such as T-

duality or Yang–Mills theory) involve adding a field strength term to the action. The

existence of a field strength with desirable gauge transformation properties provides an

obstruction to gauging.

An interesting application of Lie algebroid gauging is non-isometric T-duality. A

proposal for non-isometric T-duality was given by Chatzistavrakidis, Deser, and Jonke

(CDJ) [31, 33]. The existence of a gauge invariant field strength term in the action

gives Theorem 5.9: The non-isometric T-duality proposal is in fact equivalent to the

standard non-abelian T-duality procedure through a change of Lie algebroid frame.

5.1 Non-linear sigma models

Non-linear sigma models play an important role in the study of physical theories. This

chapter will consider non-linear sigma models which describe the motion of closed

strings in a fixed background. A study of the massless sector of bosonic string theory

gives two rank two-tensors, G which is symmetric, and B which is skew-symmetric;

95
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there is an additional scalar field called the dilaton. The field G is a Riemannian

metric describing the geometry of the fixed background in which the string propagates.

The field B is the Kalb–Ramond field and is the stringy analogue of electromagnetic

potential. The dilaton will play no role in Lie algebroid gauging and will be omitted

for convenience.

A two-dimensional non-linear sigma model consists of the data (X,Σ, h,M,G,B, S[X]):

where X : Σ→M describes the embedding of a two-dimensional (pseudo-)Riemannian

surface (Σ, h) (the string worldsheet) in an n-dimensional (pseudo-)Riemannian mani-

fold (M,G) (the target space). The dynamics of the string are encoded in an action

S[X] =
1

2

∫
Σ
X∗GµνdX

µ ∧ ?dXν +X∗BµνdX
µ ∧ dXν ,

where ? is the Hodge star on the worldsheet, and B ∈ Ω2(M).1 The equations of motion

for the string are given by the Euler–Lagrange equations specifying the stationary points

of S[X].

Symmetries of the physical theory are encoded in symmetries of the action S[X].

A non-linear sigma model has a smooth symmetry group G (a Lie group) if the action

of h ∈ G on the fields X satisfy S[h · X] = S[X].2 The continuous symmetries are

diffeomorphisms and the infinitesimal symmetries are generated by vector fields. There

exist a set of right-invariant vector fields which can be associated to g = Lie(G). The

set of right-invariant vector fields form a Lie algebra g, with the bracket given by the

commutator of vector fields, and a choice of a linearly independent spanning set of

right-invariant vector fields give a frame for the Lie algebra g.

Symmetries play an important role in the study of physical theories. For every

continuous symmetry Noether’s theorem tells us there is a conserved quantity. Suppose

we have some S[X] which is invariant under the action of a fixed group element h ∈ G.

It is possible to introduce a field A ∈ Ω1(Σ, g) (which transforms in a particular way)

to produce an action S[X,A] which is invariant under any position dependent element

h ∈ C∞(Σ,G). This procedure is called ‘gauging’ the action and will be described in

detail for the case of a group manifold in Section 5.2. The gauging procedure originated

in particle physics to describe Yang–Mills theories. The fieldA is called a gauge field and

describes the mediation of forces between particles. In the case of electromagnetism,

A is the four-potential. From the mathematical perspective the gauging procedure

is associated to lifting the action S[X] to the total space of the associated principal

G-bundle (see for example [12]).

The focus of this Chapter is generalising the gauging of non-linear sigma model

1Technically B is not required to be a globally defined two-form, and should really be thought of as
a U(1)-gerbe satisfying dB = H ∈ H3(M,Z) as described in Section 4.1.1

2It is enough that S[h ·X] = S[X] +
∫
dξ, for ξ ∈ Ω1(M), as discussed in Section 2.1
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actions to include Lie groupoid actions. Kotov and Strobl have given a local description

of Lie algebroid gauging in [114, 88, 89, 99]. The description given there is only valid for

Lie algebroids which are bundles of Lie algebras (Theorem 5.1). An invariant geometric

description applicable to general Lie algebroids—as well as a discussion of associated

groupoid actions—is new. Conceptually the gauging process is captured in the following

diagram:

Global action // Local action // Identify gauge transformations

S[h ·X] = S[X] // S[X,A] // S[X,A] ∼= S[h ·X,h � A]

fixed h ∈ G h ∈ C∞(Σ,G) quotient G/ ∼

An action S[X] with a global symmetry (corresponding to a fixed element h ∈ G) is

gauged to produce S[X,A]; invariant under the action of h ∈ C∞(Σ,G). Any two fields

related by a gauge transformation are considered physically equivalent. The space of

physically distinct fields is given by identifying gauge equivalent fields C∞(Σ,G)/ ∼.

The Lie group action on S[X] is generated by the right-invariant vector fields ρa =

ρµa∂µ ∈ Γ(TM) (a = 1, . . . ,dim(G)) satisfying

[ρa, ρb] = Ccabρc,

where Ccab ∈ R are the structure constants for the Lie algebra g = Lie(G). The induced

infinitesimal action on the fields X is generated by

δεX
µ := ρ(ε)(Xµ) = εaρνa∂νX

µ = εaρµa .

The infinitesimal variation δεS[X] (for constant ε) is required to vanish; giving the

constraint

δεS[X] =
1

2

∫
Σ
εa
(

(LρaG)µνdX
µ ∧ ?dXν + (LρaB)µνdX

µ ∧ dXν
)

= 0,

which is satisfied by3

LρaG = 0, LρaB = 0.

This establishes a correspondence between Lie group symmetries and isometries. The

3It is sufficient that LρaB = dξ for some locally defined 1-form ξ. This is included in the general
considerations in Section 5.3, but does not play an important role in the current discussion.
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above discussion shows that the set of right-invariant vector fields, associated to a

Lie algebra g, are required to generate isometries. Geometrically this corresponds to

the existence of flowlines—integrating the vector fields—along which the metric G is

preserved. Conversely, associated to a smooth one-parameter group of diffeomorphisms

preserving a metric is a Killing vector field given by differentiation.

The existence of isometries is a rather special property; a generic metric would not

be expected to have any isometries. Section 5.3 describes a proposal of Kotov and

Strobl to gauge non-linear sigma models with a Lie algebroid action. The formalism

presented there suggests it is sometimes possible to gauge models without isometries.

A rather exciting proposal indeed! The new results contained in this chapter show that

all metrics can be gauged non-isometrically (at least locally). The precise statement

is given by Theorem 5.4. The real constraint of the gauging procedure comes from

attempting to construct a field strength which imposes a flatness condition on the

gauge fields. In the case of non-isometric T-duality the gauge transformation of the

field strength imposes a constraint so strong that we conclude that non-isometric T-

duality is locally equivalent to non-abelian T-duality (Theorem 5.9).

5.2 G manifolds and the WZW model

Before considering the local Lie algebroid gauging procedure it is instructive to detail

the gauging procedure for a non-linear sigma model on a Lie group manifold. This

case provides the motivation and intuition for the more general case of Lie algebroid

gauging.

A standard example of a non-linear sigma model is given by the Wess–Zumino–

Witten (WZW) model. In this case the target manifold is a Lie group, G, with the group

action coming from composition. We denote the corresponding Lie algebra g := Lie(G).

Let g : Σ → G, be the embedding of a string worldsheet into a Lie group G. The

non-linear sigma model is given by the action

SWZW[g] =
1

2

∫
Σ

(g−1dg ∧, ? g−1dg)G + (g−1dg ∧, g−1dg)B, (5.1)

where (·, ·)G and (·, ·)B denote two G-invariant bilinear forms, symmetric and skew-

symmetric respectively; g−1dg ∈ Ω1(Σ, g) denotes the left-invariant Maurer–Cartan

form, ? is the worldsheet Hodge star, and

(a ∧, b)G(s1, s2) :=
1

2

((
a(s1), b(s2)

)
G
−
(
a(s2), b(s1)

)
G

)
,

for s1, s2 ∈ Γ(TΣ), a, b ∈ Ω1(Σ, g).
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The action (5.1) is manifestly invariant under the left action of a constant h ∈ G:

(hg)−1d(hg) = g−1h−1hdg = g−1dg.

It is possible to promote the left-invariant symmetry for a constant h ∈ G to h ∈
C∞(Σ,G) through the introduction of a gauge field A ∈ Ω1(Σ, g). The gauged action

is given by

SWZW[g,A] =
1

2

∫
Σ

(g−1Dg ∧, ? g−1Dg)G + (g−1Dg ∧, g−1Dg)B, (5.2)

where g−1Dg = g−1dg − g−1Ag. The left action of h ∈ C∞(Σ,G) is defined to be

h � (g,A) = (hg, hA) := (hg, hAh−1 + dhh−1).

This left group action leaves g−1Dg invariant:

h � g−1Dg =(hg)−1d(hg)− (hg)−1hAh−1(hg)− (hg)−1dhh−1(hg)

=g−1h−1(dh)g + g−1dg − g−1Ag − g−1h−1(dh)g

=g−1dg − g−1Ag = g−1Dg.

It follows immediately that SWZW[g,A] is invariant under the action of h ∈ C∞(Σ,G).

The original action SWZW[g] can be recovered from the gauged action SWZW[g,A]

if there exists a global gauge transformation which sets A = 0:

hA = 0 = hAh−1 + dhh−1 ⇒ A = −h−1dh, for some h ∈ C∞(Σ,G).

The gauge field A ∈ Ω1(Σ, g) satisfies A = −h−1dh for some h ∈ C∞(Σ,G) if and

only if A is equal to the left-invariant Maurer–Cartan form (up to diffeomorphism).

It is well known that the Maurer–Cartan form is locally the unique solution (up to

diffeomorphism) to the zero field strength condition F = 0, where

F = dA− [A ∧, A]g, (5.3)

and

[A ∧, A′]g(s1, s2) :=
1

2

(
[A(s1), A′(s2)]g − [A(s2), A′(sa)]g

)
,

for A,A′ ∈ Ω1(Σ, g) and s1, s2 ∈ Γ(TΣ). The flatness condition can be imposed on the

model in two ways: One option is to impose the condition on solutions ‘by hand’ as an

extra constraint. Alternatively, it is possible to introduce an extra term to Lagrangian
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such that the constraint follows from the Euler–Lagrange equations. Taking the latter

option the gauged Lagrangian is:

SWZW[g,A, X̂] =
1

2

∫
Σ

(g−1Dg ∧, ? g−1Dg)G +
1

2

∫
Σ

(g−1Dg ∧, g−1Dg)B +

∫
Σ
〈X̂, F 〉,

(5.4)

where X̂ ∈ g∗ is a Lagrange multiplier, and 〈· , ·〉 is the canonical pairing between g

and g∗.

Imposing the flatness condition via a Lagrange multiplier is necessary for T-duality

and will be discussed in Section 5.5. For the purposes of general gauging the flatness

condition shall be viewed as an extra constraint.

Finally, it is worth noting that in the physics literature the gauging is often described

by an infinitesimal Lie algebra action generated by ε ∈ C∞(Σ, g):

δε(g,A) = (εg, dε+ [ε,A]g). (5.5)

The infinitesimal action can be generated from the group action δεA := d
dt(

exp(tε)A)|t=0.

δεA =
d

dt

(
exp(tε)A exp(−tε) + (d exp(tε)) exp(−tε)

)
|t=0

=[ε,A]g +
d

dt
(tdε exp(tε) exp(−tε))|t=0

=dε+ [ε,A]g.

5.2.1 Geometric interpretation

The above discussion of gauging the WZW model was largely algebraic. There is an

associated geometric description which generalises to the Lie algebroid case and will

serve as intuition for the geometric interpretation of Lie algebroid gauging in Section

5.4.

A Lie algebra g := Lie(G) can be identified with the set of right-invariant vector

fields on G; which we denote Xinv(G). The vector space g can be identified with the

tangent space at the identity g ≡ TeG. A basis for the Lie algebra Ta (a = 1, . . . ,dim(g))

can be constructed from evaluating a chosen basis of right-invariant vector fields va ∈
Xinv(G) at the identity. The Lie bracket is given by the commutator of vector fields

[va, vb] = Ccabvc ⇔ [Ta, Tb]g := CcabTc.

This gives a well defined Lie algebra: the space of right-invariant vector fields is closed

under the usual Lie bracket of vector fields, [Xinv(G),Xinv(G)] ⊂ Xinv(G), and the

commutator bracket automatically satisfies the Jacobi identity.
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The structure constants Cabc corresponding to a Lie algebra g can be associated to

an orthonormal coframe ηa ∈ Γ(T ∗G). The coframe is defined by the relation

dηa =
1

2
Cabcη

b ∧ ηc.

The coframe {ηa} is dual to the frame specified by a basis of right-invariant vector fields

{va} (with the pairing satisfying 〈va, ηb〉 = δba). The Lie algebra g specifies the coframe

at T ∗e G. Lie Groups are in fact parallelisable, and the frame defined at the identity can

be extended to give a global trivialisation. The frame is globalised by pushing forward

the frame at the identity by the group action (Rh)∗Ta, for h ∈ G. Geometrically the

frame is transported by flowing along the right-invariant vector fields.

Using the coframe {ηa} it is possible to construct (·, ·)G and (·, ·)B which are in-

variant under the left action, as required for gauging. Define E = Eabη
a ⊗ ηb, where

Eab ∈ R. This is manifestly left-invariant. Symmetrising Eab defines (·, ·)G (if it is

non-degenerate); skew-symmetrising defines (·, ·)B.

There is a similar construction for Lie groupoids G. The notation here follows the

introduction to Lie groupoids and Lie algebroids given in Section 3.1. Locally a Lie

algebroid defined on a vector bundle Q → M can be identified with right-invariant

sections at the unit 1x in Q = T sG (see Section 3.1.2). It is possible to construct an

orthonormal coframe and left-invariant Riemannian metric using the left-invariant Lie

algebroid generalisation of the Maurer–Cartan form (Section 3.3.1). In general this

construction cannot be extended to the entire manifold as there are obstructions to

integrating a Lie algebroid (see for example [43]). Explicitly, the fibre of T s(G) at an

arrow g : y → z is

T sgG := TgG(y, ·),

where G(x, ·) = s−1(x), and T sG = ker(ds) ⊂ TG. The left action by an arrow h : x→ y

is only defined on the s-fibre at y and induces a bijection

Rh : G(y, ·)→ G(x, ·), and (Rh)∗ : T sgG → T sghG.

The set of right-invariant sections on G is defined as:

Xsinv(G) = {X ∈ Γ(T sG) : Xhg = (Rh)∗(Xg),∀(g, h) ∈ G2}.

The Lie algebroid (groupoid) proposal, described in this chapter, has a geometric in-

terpretation. The action of the Lie algebroid is described in terms of the right-invariant

sections Xsinv. The connections Q∇± (Given by Equation 5.29) define representations

of Lie algebroids on Q. If the Lie algebroids are integrable Q± = T sG± (where Q+
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and Q− are isomorphic as vector bundles and may be simply denoted Q). The Lie al-

gebroid actions are generated infinitesimally by the right-invariant sections Xsinv(Q±).

The Lie groupoid actions can be partially recovered from sections Xsinv(Q±) using the

flow φtXsinv(Q±) (see Section 3.1.2). This flow defines the Q±-paths and the associated

Weinstein groupoids (described in Section 3.2.2). The Lie groupoid actions associated

to Lie algebroid gauging are given by the flows φtXsinv(Q±).

5.2.2 Comments on the gauge algebra and integrability

Closure of the gauge algebra (and later gauge algebroid) is of fundamental importance.

The set of physical fields in a non-linear sigma model is given by a quotient: the set

of smooth fields identified by an equivalence relation where any two fields related by

a gauge transformation are identified. In order for the quotient to be well defined

the set of gauge transformations must form a group (or groupoid). In particular, the

composition of any two gauge transformations must itself be a gauge transformation:

(h2(h1g), h2(h1A)) = (h3g, h3A), (5.6)

where h3 is a gauge transformation generated from h1 and h2. The corresponding

infinitesimal version of this constraint is

[δε2 , δε1 ](g,A) = δε3(g,A), (5.7)

where ε3 is a Lie algebra (algebroid) element generated from ε1 and ε2. These identities

will not hold for arbitrary field transformations. In the case of WZW model the group

action can be verified directly:

(h2(h1g), h2(h1A)) =(h2h1g, h2(h1Ah
−1
1 + dh1h

−1
1 )h−1

2 + dh2h
−1
2 )

=(h2h1g, h2h1A(h2h1)−1 + h2dh1(h2h1)−1 + dh2h1h
−1
1 h−1

2 )

=(h2h1g, h2h1A(h2h1)−1 + d(h2h1)(h2h1)−1)

=(h2h1g, h2h1A),

giving h3 = h2h1 the group composition of h2 with h1. The infinitesimal action (5.5)

was shown to be generated from the group action. It follows automatically that (5.7)

holds and ε3 = [ε2, ε1]g is generated by the Lie algebra bracket on g = Lie(G).

The Lie algebroid gauging proposal of Kotov and Strobl involves ‘exotic’ gauge

transformations which do not correspond to infinitesimal algebroid actions in general.

Closure of the gauge algebroid will impose an important constraint on Lie algebroid

gauging; ultimately leading to flat connections which define representations of the Lie

algebroids generating the gauging action.
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Not all gauge transformations must be composable when considering Lie Groupoid

gauging. For example the dimension of Im(ρ), and the associated leaf space, may change

at different points of the manifold M . In this case different leaves will have different

dimensions and there is clearly no well defined composition of gauge transformations

for all points. However, when the composition of two gauge transformations is well

defined the composition must be a gauge transformation. If the gauge transformations

do generate a Lie groupoid G the groupoid action corresponds to flowing along smooth

paths in the Weinstein groupoid. It is important to note that in order to have a well

defined notion of a gauge groupoid it is necessary for the gauge algebroid to close at

all points on M .

In the physics literature non-linear sigma models are often analysed locally using an

infinitesimal action δε. Given a Lie group action, denoted G there is a unique Lie algebra

given by g = Lie(G). However, an infinitesimal action generated by a Lie algebra g does

not correspond to a unique Lie group. Lie groups that are related by covering maps or

quotients of discrete subgroups have isomorphic algebras and cannot be distinguished

by local considerations alone. Local considerations of infinitesimal algebra actions are

not enough to determine the topology.4

The Lie algebroid proposal of Kotov and Strobl is a local gauging theory—global

issues have not considered. An integrable Lie algebroid is isomorphic to the tangent

Lie algebroid of some s-connected Lie groupoid. However, several Lie groupoids may

produce the same tangent Lie algebroid. The situation is complicated by the fact that

not all Lie algebroids are integrable. For a discussion of Lie algebroid integrability

see Section 3.2.2 and references within. In this thesis we will consider examples of

integrable Lie algebroids and consider the associated Lie groupoids.

5.3 Kotov–Strobl Lie algebroid gauging

This section outlines the local coordinate description of Lie algebroid gauging devel-

oped by Kotov and Strobl [114, 88], Mayer and Strobl [99], and further studied with

Chatzistavrakidis, Deser, and Jonke (CDJ) [32].

The general proposal for Lie algebroid gauging can be found in [32]. Consider a

map X : Σ→M , embedding a string worldsheet into a target space M . This map can

be described locally by Xµ, for µ = 1, . . . ,dim(M). The key generalisation associated

to Lie algebroid gauging is the ability to gauge with respect to a set of involutive vector

4Non-abelian T-duality is described by a local gauging procedure and an associated topological
description is still unknown [5, 116].
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fields ρa ∈ TM , a = 1, . . . , d satisfying5

[ρa, ρb] = Ccab(X)ρc, Ccab(X) ∈ C∞(M), (5.8)

defining a Lie algebroid. A Lie algebroid structure can be defined as follows: Let

Q → M be a vector bundle, specified locally by a frame {ea}, a = 1, . . . , d = dim(Q),

satisfying

[ea, eb]Q := Ccab(X)ec. (5.9)

The anchor ρ : Q → TM is defined by ρ(ea) := ρa. The description is not invariant;

given a change of frame ẽa = Kb
aeb, K

b
a ∈ C∞(M), the description becomes

[ẽa, ẽb]Q =C̃cab(X)ẽc,

where

C̃cab = (K−1)cd(K
e
aK

f
bC

d
ef +Ke

aρ
µ
e∂µK

d
b −Ke

bρ
µ
e∂µK

d
a). (5.10)

The choice of frame has a drastic effect on the coefficients C̃cab, and it may happen that

there exists a frame in which they particularly nice (or nasty). An invariant description

is clearly preferred to avoid confusion arising from a poor choice of frame for Q.

The gauged action given in [32] is

SKS[X,A] =
1

2

∫
Σ
GµνDX

µ ∧ ?DXν +

∫
Σ3

H +

∫
Σ

(Aa ∧ αa +
1

2
γabA

a ∧Ab), (5.11)

where DXµ := dXµ − ρµaAa, H ∈ Ω3(M), Σ3 is a three manifold with boundary Σ,

A ∈ Ω1(Σ, X∗Q), α ∈ Γ(Q∗), and γ ∈ Γ(∧2Q∗).

The infinitesimal gauge transformations are of the form

δεX
µ =ρµa(X)εa (5.12a)

δεA
a =dεa + Cabc(X)Abεc + ωaµb(X)εbDXµ + φaµb(X)εb ? DXµ, (5.12b)

where ωaµb, φ
a
µb ∈ C∞(M) are a priori undetermined fields, and ? denotes the Hodge

star on the worldsheet. It is noted that there are implied pullbacks in the action and

(5.12). Closure of the gauge algebroid requires that the Lie algebroid structure can be

pulled back. In general this is not possible. This represents a serious restriction on the

allowable Lie algebroids described by this method (see Section 5.3.1).

5The integer d need not be equal dim(M).
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Under a change of frame ẽa = Kb
aeb the fields ωaµb and φaµb transform as

ω̃aµb = (K−1)acω
c
µdK

d
b −Kc

b∂µ(K−1)ac, φ̃aµb = (K−1)acφ
c
µdK

d
b. (5.13)

Thus ω : Γ(Q)→ Γ(Q⊗T ∗M) defines a TM -connection on Q, and φ ∈ Ω1(M,End(Q)).

The action SKS[X,A] is invariant under the gauge transformations (5.12) if the

following constraints hold:

LρaG =ωba ∨ ιρbG+ φba ∨ αb, (5.14a)

LρaH =dαa − ωba ∧ αb ± φbaιρbG, (5.14b)

γab =ιρaαb, (5.14c)

Lρaαb =Ccabαc + ιρb(dαa − ιρaH), (5.14d)

where (ωba∨ιρbG)µν = ωbµaρ
λ
bGλν+ωbνaρ

λ
bGµλ, and the choice ± is given by the choice

of Lorentzian (?2 = 1) or Euclidean (?2 = −1) signature on the worldsheet.

There are two natural questions:

1. For a given choice of G and H, do there exist (ρa, αa, ω
a
µb, φ

a
µb) satisfying the

constraints (5.14)?

2. If (ρa, αa, ω
a
µb, φ

a
µb) satisfying (5.14) can be found is the choice unique?

An answer to the existence question is given for special cases in [32, 35]. The results of

this thesis give a more complete answer: Corollary 5.6 states that for any choice ofG and

H there exist (ρa, αa, ω
a
µb, φ

a
µb) which satisfy the constraints (5.14) for some U ⊂M .

Necessary and sufficient conditions to gauge with respect to a chosen set of vector

fields ρa ∈ Γ(TM) are determined (Theorem 5.4 and Theorem 5.8). If ρa ∈ Γ(TM) do

satisfy the necessary and sufficient conditions a (not necessarily unique) solution for

(αa, ω
a
µb, φ

a
µb) is given.

5.3.1 Pullback constraint of Kotov–Strobl gauging

The variation of the gauge fields for the Kotov–Strobl gauging proposal is given by

(5.12). The closure of the gauge algebroid requires that

[δε1 , δε2 ]Xµ = δε3X
µ, [δε1 , δε2 ]Aa = δε3A

a,

for some ε3 = σ(ε1, ε2) = −σ(ε2, ε1) ∈ Γ(X∗Q). The field ε3 ∈ Γ(X∗Q) can be written

using the pullback of a basis for Q: ε3 = εa3X
∗ea ∈ Γ(X∗Q). The following expression

for εa3 is given in the literature (Eq. (10) in [99]):

εa3 = εb1ε
c
2C

a
bc. (5.15)
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Consider the Lie algebroid structure (Q, [·, ·]Q, ρ) restricted to the image (X(Σ), Q|X(Σ)) ⊂
(M,Q). Denote the restricted algebroid structure (Q|X(Σ), [·, ·]X(Σ), ρX(Σ)). Take a

change of frame on Q|X(Σ) given by

ẽa = K(X(σ))baeb.

Invariance of sections gives the transformation of the coefficients:

ε = εaX∗ea = ε̃aX∗ẽa = ε̃aK(σ)baX
∗eb, ⇒ ε̃a = (K−1)abε

b.

This gives a constraint on the transformation of the structure functions on X(Σ):

ε3 = εb1ε
c
2C

a
bcX

∗ea = ε̃b1ε̃
c
2C̃

a
bcX

∗ẽa = εy1ε
z
2(K−1)by(K

−1)czC̃
x
yzK

a
xX
∗ea,

so that

C̃abc = (K−1)axC
x
yzK

y
bK

z
c. (5.16)

However, it follows from (5.10) that the structure functions (restricted to X(Σ)) trans-

form as

C̃cab = (K−1)cd(K
e
aK

f
bC

d
ef +Ke

a(X
−1
∗ ρ)e(K

d
b)−Ke

b(X
−1
∗ ρ)e(K

d
a)), (5.17)

where (X−1
∗ ρ)a denotes the pushforward of the map X−1 (which exists as X is a

diffeomorphism when restricted to X(Σ) ⊂M). It is clear that the requirement (5.16)

places a tight constraint on the allowable Lie algebroids for gauging. In particular, the

requirement that (5.16) and (5.17) hold simultaneously, mean that the Lie algebroid

bracket [·, ·]X(Σ) is C∞(X(Σ)) linear.

Theorem 5.1. The Lie algebroid gauging procedure outlined by Kotov, Mayer, Strobl

and CDJ [114, 99, 88, 89, 32] is only valid when (Q|X(Σ), [·, ·]X(Σ), ρX(Σ))—the restric-

tion of (Q, [·, ·]Q, ρ) to the image of X—is a bundle of Lie algebras.

Remark. The vector fields ρa must vanish on T (X(Σ)) if we require that the definition

of ε3 be invariant under arbitrary invertible changes of frame K(X(σ))ab ∈ C∞(X(Σ)).

In this case the gauged action is equivalent to the ungauged action over X(Σ). The

usual procedure of Lie algebra gauging takes a set of non-zero vector fields va ∈ Γ(TM)

satisfying [va, vb] = Ccabvc for Ccab ∈ R defining a Lie algebra. The Lie algebra

structure is defined on the R-span of the vectors spanR{v1, . . . , vd} (a Lie algebroid is

defined on spanC∞(M){v1, . . . , vd}). In this case the allowable frame transformations

are given by Ka
b ∈ R, and (5.16) is equal to (5.17). In all frames the structure functions

are constant, and there is really only a Lie algebra structure on Q.
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5.4 General Lie algebroid sigma models

This section describes a general construction for considering non-linear sigma models

which are gauged with respect to a Lie algebroid action. This construction is valid for

any integrable Lie algebroid, Q ∼= Lie(G).

The Lie algebroid gauged model takes a non-linear sigma model (X,Σ, h,M,G, S[X])

(defined on page 94) and constructs a ‘gauged’ action SQ[X,A] using ρa and (Ω±)aµb,

where the vector fields ρa ∈ Γ(TM) define a Lie algebroid

[ρa, ρb] =: Ccabρc, Ccab ∈ C∞(M),

and (Ω±)aµb define TM -connections on a vector bundle Q. The TM -connections on Q

will be denoted ∇±. Let {ea} be a local frame for Q. The connections ∇± are defined

as

∇±ea := (Ω±)ba ⊗ eb. (5.18)

The fields (ρa, (Ω
±)aµb) determine (ρ̌a, Ω̌

a
αb) which are defined in Section 5.4.1.

Let {σα} be local coordinates on the worldsheet Σ. Consider the following action

(for ?2 = 1 Lorentzian worldsheet):

SQ[X,A] =

∫
Σ

(X∗E)αβD−σ
α ∧D+σ

β −
∫

Σ
X∗C +

∫
Σ3

X∗H, (5.19)

where, E = G + C for some C ∈ Ω2(M), Dσ = dσ − ρ̌(A), A ∈ Ω1(Σ, X∗∗Q), and

D±σ = 1
2(Dσ ± ?Dσ).

The infinitesimal variation is given by

δεX =ρ̌(ε)(X), (5.20a)

δεA
i =dεi + ČijkA

jεk + (Ω̌+)iαjε
jD+σ

α + (Ω̌−)iαjε
jD−σ

α, (5.20b)

and δεSQ[X,A] = 0 if the following conditions are met:

(LρaE)µν =Eµλρ
λ
b (Ω+)bνa + Eλνρ

λ
b (Ω−)bµa, (5.21a)

Lρ(ε)C =ιρ(ε)H. (5.21b)

We will refer to (5.21a) as the generalised Killing equation.

When ?2 = −1 (Euclidean worldsheet), the corresponding action is

SQ[X,A] =

∫
Σ

(X∗E)αβD+σ
α ∧D−σβ −

∫
Σ
X∗C +

∫
Σ3

X∗H, (5.22)
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where, E = iG + C, Dσ = dσ − ρ̌(A), and D±σ = 1
2(Dσ ± i ? Dσ). In this case the

infinitesimal variation is given by

δεX =ρ̌(ε)(X), (5.23a)

δεA
i =dεi + ČijkA

jεk + (Ω̌−)iαjε
jD+σ

α + (Ω̌+)iαjε
jD−σ

α. (5.23b)

and δεSQ[X,A] = 0 if (5.21) holds.

5.4.1 Non-isometric gauge algebroid

It was shown in Section 5.3.1 that taking ε ∈ Γ(X∗Q) and setting

δεX
µ = X∗ρ(ε)(Xµ)

leads to a strong restriction on the class of Lie algebroids that can be used to gauge. This

is a consequence of the fact that a Lie algebroid structure does not naturally pullback

in general. However, there may be a natural Lie algebroid structure defined on X∗∗Q.

The construction of the double pullback algebroid is due to Higgins and Mackenzie

[63] and reviewed in Section 3.3.1. The induced Lie algebroid exists whenever the map

φ : M1 →M2 is a surjective submersion. The induced Lie algebroid X∗∗Q always exists

when considering Lie algebroid gauging as X : Σ → M is an embedding. If there is

a Lie groupoid G(Q) such that Q = Lie(G), it follows that G(X∗∗Q) will give a well

defined Lie groupoid.

The Lie algebroid bracket [·, ·]X∗∗Q is induced from [·, ·]Q (defined via (3.20)) and

in a local frame {ěa} for X∗∗Q determines the Lie algebroid structure functions Čijk ∈
C∞(Σ):

[ěi, ěj ]X∗∗Q := Čkij ěk,

where i, j, k = 1, . . . ,dim(X∗∗Q). Sections of X∗∗Q are given by ε = (σ, ε) ∈ Γ(TΣ ⊕
X∗Q). The anchor ρ̌ : X∗∗Q→ TΣ is given by

ρ̌(ε) = ρ̌(σ, ε) := σ.

The variation δεX = ρ̌(ε)(X) is now a well defined quantity, and

[δε1 , δε2 ](X) = δ[ε1,ε2](X) ⇒ [ρ̌(ε1), ρ̌(ε2)]TΣ(X) = ρ̌([ε1, ε2]X∗∗Q)(X).

We conclude that [δε1 , δε2 ](X) = δ[ε1,ε2](X) is equivalent to the anchor homomorphism

property of the Lie algebroid (X∗∗Q, [·, ·]X∗∗Q, ρ̌). The variation δεX is generated by

infinitesimal diffeomorphisms on Σ generated by ρ̌(ε) ∈ Γ(TΣ).
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The fields (Ω±)aµb (a, b = 1, . . . ,dim(Q) and µ = 1, . . . ,dim(M)) define connections

via ∇±ea := (Ω±)ba ⊗ eb. We define (X∗Ω±)aαb by writing the connections X∗∇±

(defined via (3.15)) in the basis {X∗ea}. We define a TΣ-connection on X∗∗Q as

follows:

∇̌±σ′σ ⊕ ε := ρ(σ′)(σ)⊕ ε+ σ ⊕X∗∇±σ′ε. (5.24)

In the basis ěi = ∂α ⊕X∗ea, we get the connection coefficients:

∇̌±ěi = (Ω̌±)j i ⊗ ěj .

With these definitions the variation of the gauge fields A ∈ Ω1(Σ, X∗∗Q) is a well

defined quantity.

Remark. Having established the correct gauge algebroid structure, we will henceforth

omit the ·̌ with the relevant double pullback maps implied. This will allow a more

direct comparison to the formulae appearing in the literature on Lie algebroid gauging.

5.4.2 Examples

The action SQ[X,A] includes the non-linear sigma models described by SKS[X,A] and

SWZW[X,A] as well as allowing the possibility of gauging the standard non-linear sigma

model with any integrable Lie algebroid.

Example 5.1 (WZW). SWZW[X,A] can be described using SQ[X,A] by taking M = G,

Q = TG = G× g. Choose the coframe dX = η = g−1dg and identify

(E, ρ, C,H) = ((G+B)µνη
µ ⊗ ην ,Adg−1 , B,H),

where H = (g−1dg, [g−1dg, g−1dg]g)G is given by H = dgB.

Example 5.2 (Poisson sigma model). Define Bµν := Aµ(π(A, ·))−1
ν where π is a Poisson

bivector; the action is given by

S[X,A] =
1

2

∫
Σ
GµνDX

µ ∧ ?DXν +

∫
Σ
Aµ ∧ dXµ +

1

2
πµνAµ ∧Aν ,

where DX = dX − π(A, ·). The Lie algebroid structure on Q = T ∗M is given by the

Poisson cotangent Lie algebroid (Example 3.12). Integrable Poisson Lie algebroids are

associated to symplectic groupoids [125, 28].

Example 5.3 (Universal). The ‘universal’ action of Kotov–Strobl [35] is given by

Suniv[X,V,W ] =

∫
Σ

(1

2
gµνDX

µ ∧ ?DXν +Wµ ∧ (dXµ − 1

2
V µ)

)
+

∫
Σ3

H,
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where DXµ = dXµ − V µ, V ∈ Ω1(Σ, X∗∗TΣ) and W ∈ Ω1(Σ, X∗∗T ∗Σ). This is

equivalent to SQ[X,A] through the identification V µ = ρ̌µaAa and Wµ = Čµν ρ̌
ν
aA

a.

The Kotov–Strobl action and Poisson sigma model are special cases of the universal

action. The Kotov–Strobl action is found by identifying V µ = ρµaAa, and Wµ = αµaA
a.

The Poisson sigma model (for Q = T ∗M) is identified via V µ = πνµAν , and Wµ = Aµ.

The universal action naturally interpolates between the Poisson sigma model and the

Kotov–Strobl model. The Lie algebroid is found by restricting the Lie bialgebroid con-

structed from [·, ·], [·, ·]π to a (small) Dirac6 structure (see Section 3.4.1 for a description

of Lie bialgebroids).

The universal title refers to the fact each different choice of small Dirac structure

on TM ⊕ T ∗M gives a different model. This gives a class of examples, but not all Lie

algebroids arise as subbundles of TM ⊕ T ∗M .

Example 5.4 (Foliation). Let Q ⊂ TM be an involutive subbundle (a constant rank

subbundle closed under the Lie bracket). This defines a Lie algebroid (Example 3.8).

An involutive linearly independent set of vector fields va will satisfy (by definition)

[va, vb] = Ccabvc, Ccab ∈ C∞(M),

but in general Ccab will not be constant. Involutive foliated vector fields Q = TF ⊂ TM
are not generated by group actions in general. The integrability of smooth distributions

is given by the Steffan–Sussmann conditions, see [115].

Example 5.5 (Lie Groupoid). Take any Lie groupoid (G,M), and take the Lie algebroid

Q = Lie(G). The action SQ[X,A] provides a sigma model action.

It is possible to consider sigma models for all the examples of Lie algebroids con-

sidered in Section 3.2.1 (Examples (3.6)–(3.12)). Integrability is guaranteed when you

start with a Lie groupoid. Examples of Lie groupoids can be found in Section 3.1.1

(Examples (3.1)–(3.5)).

Remark. We can consider topologically non-trivial examples by considering the gauge

groupoid G(P ) (Example 3.4) corresponding to a topologically non-trivial principal

bundle P (M,π,G).

Remark. It is entirely consistent to consider a Lie algebroid with an anchor with a

non-trivial kernel, ker(ρ) 6= 0. Such an algebroid has an associated isotropy Lie algebra

at each point x ∈M which corresponds to a gauge symmetry that is not generated by

a vector field in TM . This possibility was considered in [34]. This would correspond to

symmetries not generated by vector fields on M . In string theory M is spacetime and

the dimension is fixed for quantisation consistency. A non-zero isotropy Lie algebra

would correspond to introducing extra degrees of freedom to gauge theories on M .

6A small Dirac structure is an involutive and isotropic subbundle. A Dirac structure is a small Dirac
structure of maximal dimension.
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It is clear that many natural examples of non-linear sigma models can be described

using the action SQ[X,A]. The task remaining is to understand when such models can

be gauged.

5.4.3 Closure constraint

As emphasised in Section 5.2.2 it is necessary for the gauge algebroid to be closed.

There is another way to see the importance of closure of the gauge algebroid from

the perspective of gauged sigma models. The gauged model will be equivalent to the

original model if there exists a finite gauge transformation which sets the gauge fields

to zero. The infinitesimal gauge transformations (5.20) (or (5.23)) will only integrate to

finite gauge transformations when the gauge algebroid is closed. Closure of the gauge

algebroid does not follow automatically from (5.20) (or (5.23)). We will see that closure

of the gauge algebroid imposes important constraints. We note that the formulas in

this section have been calculated using the Lie algebroid ([·, ·]X∗∗Q, ρ̌); we have left the

pullback maps implied throughout in order to better connect to the literature.

The first constraint gives

[δε1 , δε2 ]X = δ[ε1,ε2]QX ⇔ [ρ(ε1), ρ(ε2)]X = ρ([ε1, ε2]Q)X,

the anchor homomorphism property of a Lie algebroid. Closure on the gauge field A is

more involved. It is convenient to define D±X := 1
2(DX ± ?DX). A straightforward

computation gives

δεD±X
µ =εa(∂νρ

µ
a − ρ

µ
b (Ω±)bνa)D±X

ν , if ?2 = 1

δεD±X
µ =εa(∂νρ

µ
a − ρ

µ
b (Ω∓)bνa)D±X

ν , if ?2 = −1.

A lengthy calculation for the ?2 = 1 case gives:

([δε1 , δε2 ]− δ[ε1,ε2]Q)Aa =εb1ε
c
2(−∇−µ (T∇−)abc + 2ρν[b|(R∇−)aνµ|c])D−X

µ

+εb1ε
c
2(−∇+

µ (T∇+)abc + 2ρν[b|(R∇+)aνµ|c])D+X
µ,

and for the ?2 = −1 case:

([δε1 , δε2 ]− δ[ε1,ε2]Q)Aa =εb1ε
c
2(−∇−µ (T∇−)abc + 2ρν[b|(R∇−)aνµ|c])D+X

µ

+εb1ε
c
2(−∇+

µ (T∇+)abc + 2ρν[b|(R∇+)aνµ|c])D−X
µ,

where

(T∇±)abc =ρµb (Ω±)aµc − ρµc (Ω±)aµb − Cabc; (5.25)
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(R∇±)aµνb =2∂[µ(Ω±)aν]b + 2(Ω±)a[µ|c(Ω
±)c|ν]b; (5.26)

(∇±µ T∇)abc =∂µ(T∇)abc + (T∇)dbc(Ω
±)aµd − (T∇)adc(Ω

±)dµb − (T∇)abd(Ω
±)dµc.

The closure constraints for φ = 0 (or equivalently Ω+ = Ω−) have appeared in the

literature before [99].7

Closure of the gauge algebroid requires that either D±X ≡ 0 or ∇±µ (T∇±)abc =

2ρν[b|(R∇±)aνµ|c]. If D±X ≡ 0 then the gauged terms disappear from the Lagrangian.

While it may be possible to consider D±X = 0 as an ‘on-shell’ condition it is not clear

that this is a natural constraint physically. In addition, quantisation requires ‘off-shell’

closure of the gauge algebroid. It makes sense to require closure for all X : Σ → M ,

including D±X 6= 0. With this assumption it follows that

([δε1 , δε2 ]− δ[ε1,ε2]Q)Aa = 0 ⇔ ∇±µ (T∇±)abc = 2ρν[b|(R∇±)aνµ|c]. (5.27)

The closure constraint on the curvatures ∇±, given by (5.27), is a curious constraint

and is not readily interpreted. When ∇± are flat connections, the closure of the gauge

algebra acquires a nice interpretation: ∇±(T∇±)abc = 0, which is equivalent to the fact

that covariantly constant sections are closed on [· , ·]Q:

(∇±q1 = 0 & ∇±q2 = 0 ⇒ ∇±[q1, q2]Q = 0) ⇔ ∇±µ (T∇±)abc = 0,

for q1, q2 ∈ Γ(Q). The constraint for R∇± 6= 0 is best understood by ‘lifting’ the

TM -connections on Q to Q-connections on Q using the adjoint connections (3.10):

Q∇±q1q2 := ∇±ρ(q2)q1 + [q1, q2]Q. (5.28)

The adjoint connection is well known in the mathematics literature and plays an im-

portant role in integrating Q-paths in a Lie groupoid [43]. In the local frame specified

by {ea} the components of the adjoint connections are given by

(QΩ±)abc := ρµc (Ω±)aµb + Cabc. (5.29)

The torsion TQ∇± and curvature RQ∇± can be calculated in terms of the induced

connections ∇±q1q2 := ∇±ρ(q1)q2, using (5.28), with the following results:

TQ∇±(q1, q2) =− T∇±(q1, q2), (5.30)

RQ∇±(q1, q2)(q3) =R∇±(q1, q3)q2 −R∇±(q2, q3)q1 (5.31)

+∇±q3T∇±(q1, q2)− T∇±(∇±q3q1, q2)− T∇±(q1,∇
±
q3q2).

7We replace the Lie bracket [ε1, ε2]X∗Q with the Lie algebroid bracket [ε1, ε2]X∗∗Q but the expression
is formally the same.
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Calculating RQ∇± in local coordinates produces the closure constraint (5.27). In

conclusion:

([δε1 , δε2 ]− δ[ε1,ε2]Q)A = 0 ⇒ RQ∇± = 0. (5.32)

If ρ has a non-trivial kernel then RQ∇± = 0 does not necessarily imply closure of the

gauge algebroid. If {ρa} are linearly independent we can define Q ∼= TF ⊂ TM to be

the span of {ρa}. In this case ρ has no kernel and RQ∇± = 0 implies the closure of the

gauge algebroid.

Remark. In the case that φ = 0 (Ω+ = Ω−) it has been noted in [89] that closure of

the gauge algebra is equivalent to the Q-flat condition.

Closure of the gauge algebra implies the existence of two flat Q-connections on Q.

These connections define representations of Lie algebroids on Q. The Lie algebroids de-

fine Q-paths associated to the Weinstein groupoid (as outlined in Section 3.2.2). The

Q-paths define the orbits describing our gauge symmetry. It follows from Theorem

3.19 that X∗∗Q∇± will define representations of Lie algebroids corresponding to Lie

groupoids G±(X∗∗Q) if Q∇± define a representation of G±(Q). Thus it is sufficient to

study the flatness of the connections Q∇±. Alternatively we come to the same conclu-

sion by noting that RQ∇± are tensors, so RX∗∗Q∇± = X∗∗RQ∇± , and it is sufficient to

check the flatness of Q∇±.

The flatness condition RQ∇± = 0 implies that QΩ± are Maurer–Cartan forms for

the frame bundle B(Q) over M . It follows that

QΩ± = K−1
± dQK±, (QΩ±)abc = (K−1

± )adρ
µ
b ∂µ(K±)dc, (5.33)

for some K± ∈ C∞(M,GL(d)) where d = dim(Q).

Remark. Another way to see that QΩ± have the form (5.33) is by looking at the trans-

formation properties: Take

Q∇±q1q2 = (qb1ρ
µ
b ∂µq

a
2 + qb1q

c
2(QΩ±)abc)ea = (q̃b1ρ̃

µ
b ∂µq̃

a
2 + q̃b1q̃

c
2(QΩ̃±)abc)ẽa, (5.34)

where {ea} is a choice of frame for Q, and ẽa = (K±)baeb. The change of frame

induces the transformations q̃a = (K−1
± )abq

b, and ρ̃a = (K±)baρb. This induces the

transformation

(QΩ̃±)abc = (K−1
± )axρ̃

µ
b ∂µ(K±)xc + (K−1

± )ax(QΩ±)xyz(K±)yb(K±)zc. (5.35)

A flat connection is one that can be set to zero by an appropriate choice of frame. If
QΩ± is zero is the frame {ea} then it follows from (5.35) that in a generic frame {ẽa},
the connection coefficients are of the form (5.33).
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5.4.4 Solving the Gauge constraints

Closure of the gauge algebra implies that RQ∇± = 0. This constraint is much easier

understood than (5.27) and allows an explicit construction of solutions to the gauging

constraints (5.21). Equation (5.21b) can be used to determine a choice of field C ∈
Ω2(M) and does not pose a constraint to gauging.

Our first task is to find the general solution to the generalised Killing equation

(5.21a). Written in matrix form the generalised Killing condition is given by a system

of matrix equations

LρaE =EρΩ+
a + ETρΩ−a . (5.36)

For each a = 1, . . . , k this is a linear matrix equation and a solution for Ω+
a exists if

and only if

LρaE − ETρΩ−a = Eρ(Eρ)+(LρaE − ETρΩ−a ), (5.37)

for each a, where (Eρ)+ denotes the Moore–Penrose pseudo-inverse of Eρ. If this

constraint is satisfied the solution Ω+
a is given by

Ω+
a =(Eρ)+(LρaE − ETρΩ−a ) + (I − (Eρ)+Eρ)Xa, (5.38)

where I is the k × k identity matrix, and Xa ∈ C∞(M,Rk×n) is arbitrary.8 In explicit

index notation we have

(Ω+
a )bµ =((Eρ)+)bλ(LρaE)λµ − ((Eρ)+)bλEκλρ

κ
c (Ω−)cµa

+ (δbc − ((Eρ)+)bλ(Eρ)λc )(Xa)
c
µ.

Theorem 5.2. Given a field E ∈ Γ(T ∗M⊗T ∗M) and a choice of involutive vector fields

ρa ∈ Γ(TM) (a = 1, . . . , k) defining a Lie algebroid [ρa, ρb] = Ccabρc, the generalised

Killing equation

(LρaE)µν =Eµλρ
λ
b (Ω+)bνa + Eλνρ

λ
b (Ω−)bµa,

has solutions for Ω± ∈ Γ(T ∗M ⊗Q) if and only if

LρaE − ETρΩ−a = Eρ(Eρ)+(LρaE − ETρΩ−a ) (5.39)

holds for some set {Ω−a }. If there exists a set {ρa,Ω−a }, satisfying the stated conditions,

8Remember that a, b, c = 1, . . . , k and µ, ν, λ = 1, . . . , n = dim(M).
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then solutions are given by

Ω+
a =(Eρ)+(LρaE − ETρΩ−a ) + (I − (Eρ)+Eρ)Xa, (5.40)

where Xa ∈ C∞(M,Rk×n) is arbitrary. In addition, any solution Ω+
a satisfies (5.40).

Remark. Theorem 5.2 is a new result. The necessary and sufficient conditions for the

generalised Killing equation to have solutions, as well as the form of the general solution

has not appeared before. In [32] a solution was found in the special case that (α∗+ρ)−1

exists.9 In particular Eq. (3.17) and Eq. (3.18) of [32] give

ωµνλ =Γµνλ − φµνλ + [(α∗ − ρ)−1]µκ

(
∇LCν (α∗ + ρ)κλ −

1

2
ρτνHτλ

κ

)
,

φµνλ =[(α∗ − ρ)−1]µκ

(
∇LCλ ρκν − ρκτ [(α∗ − ρ)−1]τ η

(
∇LCν (α∗ + ρ)ηλ −

1

2
ρτνHτλ

ι

))
,

where ∇LC denotes the Levi–Civita connection of G, with connection coefficients Γµνλ.

It follows from Theorem 5.2 that a family of solutions exist in this case, with the above

being a particular solution. No statement was made about the closure of the gauge

algebroid for this choice, nor the existence of solutions when (α∗+ ρ)−1 does not exist.

Having found the general solution to the generalised Killing equation (5.21a) we

now turn our attention to those which result in a closed gauge algebroid. These are

gaugings which are at least locally integrable. As shown in Section 5.4.3 the task now

is to find Ω±a such that QΩ±a define flat connections Q∇±.

First we will consider the case of gauging with respect to a set of linearly indepen-

dent independent vector fields {ρa}, a = 1, . . . , k where k ≤ dim(M). In such a case

rank(Im(ρ)) = k and corresponds to gauging with respect to a regular Lie algebroid.

The general case, allowing rank(Im(ρ)) to vary at different points in M , is treated

separately. An example of the non-isometric gauging, demonstrating the results of this

chapter, is given in Example 5.8.

Gauging with linearly independent vector fields

Here we consider the case of gauging with respect to a set of linearly independent vector

fields {ρa} where a = 1, . . . , k and k ≤ dim(M). This allows us to describe gauging

with respect to regular Lie algebroids [ρa, ρb] = Ccabρc. The components ρµa define a

n × k matrix. As a consequence of the linear independence of {ρa}, the columns of ρ

are linearly independent and ρTρ is invertible. In this case we have an explicit formula

9The notation follows Section 5.3, and we refer the reader to the paper [32] for details.
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for the pseudo-inverse

ρ+ = (ρTρ)−1ρT .

It follows that ρ+ is a left-inverse for ρ: explicitly ρ+ρ = I the k × k identity matrix.

Throughout this chapter we assume that E is invertible (this is true for almost all

physical models) and hence satisfies rank(E) = n. As E defines an endomorphism it

follows that rank(Eρ) = rank(ρ). Eρ is a n × k matrix, and has linearly independent

columns

(Eρ)+ = (ρTETEρ)−1ρTET

and (Eρ)+ is a left-inverse for Eρ

(Eρ)+Eρ = I. (5.41)

Assuming that {ρa} are linearly independent simplifies the general solution to the

generalised Killing equation (5.21a):

Ω+
a =(Eρ)+(LρaE − ETρΩ−a ). (5.42)

When condition (5.37) holds, the generalised Killing equation has solutions, and they

are given by (5.42).

In order to impose the Q-flatness condition on Q∇± it is useful to get an expression

for the components (QΩ+
a )bc. Using (5.29) we have:

(QΩ+
a )bc =(Ω+

a )bµρ
µ
c + Cbac

=(Eρ)+(LρaE − ETρΩ−a )bµρ
µ
c + Cbac

=((Eρ)+)bλ(LρaE)λµρ
µ
c − ((Eρ)+)bλEκλρ

κ
d(Ω−a )dµρ

µ
c + Cbac

=((Eρ)+)bλ(LρaE)λµρ
µ
c − ((Eρ)+)bλEκλρ

κ
d((QΩ−)dac − Cdac) + Cbac.

This expression can be simplified.

Lemma 5.3. The following identity holds:

(LρaE)λµρ
µ
c = (ρ+)dλρ

κ
a∂κ(ρνdEνµρ

µ
c )− (ρ+)cλC

d
acρ

κ
dEκµρ

µ
c − EλµCdacρ

µ
d . (5.43)

Proof. Recall that [ρa, ρb] := Ccabρc. By direct computation

(LρaE)λµρ
µ
c =ρκa(∂κEλµ)ρµc + (∂λρ

κ
a)Eκµρ

µ
c + (∂µρ

κ
a)Eλκρ

µ
c

=ρκa(∂κEλµρ
µ
c )− Eλµ(ρκa∂κρ

µ
c − ρκc∂κρµa) + (∂λρ

κ
a)Eκµρ

µ
c
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=ρκa(∂κEλµρ
µ
c )− Eλµ([ρa, ρc])

µ + (∂λρ
κ
a)Eκµρ

µ
c

=ρκa(∂κEλµρ
µ
c )− EλµCdacρµd + (∂λρ

κ
a)Eκµρ

µ
c . (5.44)

Next we use the fact that ρ+ρ = I,

ρκa∂κ(Eλµρ
µ
c ) =ρκa∂κ((ρ+)dλρ

ν
dEνµρ

µ
c ) = ρκa∂κ((ρ+)dλ)ρνdEνµρ

µ
c + ρκa(ρ+)dλ∂κ(ρνdEνµρ

µ
c ).

(5.45)

Using d(ρ+ρ) = dI = 0 to conclude that (dρ+)ρ = −ρ+dρ, we have

ρκa∂κ((ρ+)dλ)ρνdEνµρ
µ
c =− (ρ+)dλρ

κ
a∂κρ

ν
dEνµρ

µ
c

=(ρ+)dλC
e
daρ

ν
eEνµρ

µ
c − (ρ+)dλρ

κ
d∂κρ

ν
aEνµρ

µ
c

=(ρ+)cλC
d
caρ

κ
dEκµρ

µ
c − (∂λρ

ν
a)Eνµρ

µ
c . (5.46)

Combining (5.44), (5.45) and (5.46) gives the desired result (5.43).

Substituting (5.43) in the expression for QΩ+
a gives

(QΩ+
a )bc =((Eρ)+)bλ(ρ+)dλρ

κ
a∂κ(ρνdEνµρ

µ
c ) + (δbd − ((Eρ)+Eρ)bd)C

d
ac

− ((Eρ)+)bλEκλρ
κ
d(QΩ−)dac

=((ρTEρ)+)bλρ
κ
a∂κ(ρTEρ)λc − (Eρ)+ETρ(QΩ−a )bc.

This can be written more succinctly as

QΩ+
a = (ρTEρ)+ρa(ρ

TEρ)− (Eρ)+ETρQΩ−a . (5.47)

Whenever (5.37) holds there exist solutions to the gauging constraint (5.21a); the gen-

eral solution is given by (5.47).

Closure of the gauge algebroid imposes the Q-flatness condition RQ∇± = 0. If Q∇−

is flat there exists a choice of frame ẽb such that (QΩ̃−)abc = 0. Take M ∈ End(Q),

such that ẽb = Ma
bea. Now ρ̃b = Ma

bρa and in this frame

QΩ̃+
a = (ρ̃TEρ̃)+ρ̃a(ρ̃

TEρ̃). (5.48)

Recall that the coefficients QΩ±a define flat connections Q∇± if and only if they are of

the form

QΩ±a = (K±)−1ρa(K±) = (K±)−1ρµa∂µK±, (5.49)
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for some K± ∈ C∞(M,GL(k)). We require that

QΩ̃+
a = (K̃+)−1ρ̃a(K̃+) = (ρ̃TEρ̃)+ρ̃a(ρ̃

TEρ̃),

which is satisfied if K̃+ = ρ̃TEρ̃ and ρ̃TEρ̃ is invertible. This provides a necessary

condition for QΩ̃+
a to be flat. Furthermore we note that

rank(ρ̃TEρ̃) = rank(ρTEρ),

as ρ̃a and ρb are related by M ∈ End(Q). If Q∇+ is flat then (ρTEρ) is invertible, and

(ρTEρ)+ = (ρTEρ)−1. Returning to (5.47) we find

QΩ+
a = (ρTEρ)−1ρa(ρ

TEρ)− (Eρ)+ETρQΩ−a , (5.50)

and have a solution for QΩ−a = 0, QΩ+ = (K+)−1ρµa∂µK+ with K+ = ρTEρ. In local

coordinates

(QΩ−)abc = 0 = (Ω−)aµbρ
µ
c + Cabc, ⇒ (Ω−)aµb = −(ρ+)cµC

a
bc.

Let us define Ψa ∈ Γ(T ∗M ⊗ T ∗M)

(Ψa)µν := (LρaE)µν − EλνρλbCbac(ρ+)cµ. (5.51)

Taking QΩ−a = 0 modifies Eq. (5.38) (the necessary condition for the existence of Ω+
a )

so that consistency requires

Ψa = Eρ(Eρ)+Ψa. (5.52)

We are now ready to state the main result for gauging with respect to linearly

independent vector fields.

Theorem 5.4. Given an invertible field E ∈ Γ(T ∗M⊗T ∗M) and a choice of involutive

linearly independent vector fields ρa ∈ Γ(TM), a = 1, . . . , k, defining a regular Lie

algebroid [ρa, ρb] = Ccabρc, the generalised Killing equation

(LρaE)µν =Eµλρ
λ
b (Ω+)bνa + Eλνρ

λ
b (Ω−)bµa,

has solutions for Ω±a ∈ Γ(T ∗M ⊗Q) if and only if

Ψa = Eρ(Eρ)+Ψa, det(ρTEρ) 6= 0, (5.53)
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where

(Ψa)µν := (LρaE)µν − EλνρλbCbac(ρ+)cµ, (Eρ)+ = (ρTETEρ)−1ρTET . (5.54)

If these conditions are satisfied then a solution is given by

(Ω−)aµb = −(ρ+)cµC
a
bc, (Ω+)aµb = ((Eρ)+)aλ(Ψb)λµ, (5.55)

where (Ω±)aµb are connection coefficients defining ∇±. The corresponding flat adjoint

connections Q∇± are defined by

QΩ−a = 0, QΩ+
a = (ρTEρ)−1ρλa∂λ(ρTEρ). (5.56)

Definition 5.5. A non-linear sigma model (X,Σ, h, E,H, SQ[X]) can be locally gauged

when there exists some U ⊂ M such that ρa ∈ Γ(TU) and QΩ± ∈ Γ(Q∗U ⊗ End(QU ))

satisfy the requirements of Theorem 5.4. The local non-linear sigma model is given by

the restriction of (X,Σ, h, E,H, SQ[X]) to U ⊂M . The adjoint connections Q∇± give

representations of local algebroid actions. If U = M , and the Lie algebroid actions can

be integrated to Lie groupoid actions G(Q∇±), we say that the non-linear sigma model

can be gauged.

Corollary 5.6. All non-linear sigma models (X,Σ, h, E,H, SQ[X]) can be locally gauged

when E ∈ Γ(T ∗M ⊗ T ∗M) is invertible.

Proof. Choose a local trivialisation of M , denoted U ⊂ Rn, and a set of linearly inde-

pendent {ρa} ∈ Γ(TM), a = 1, . . . , n = dim(M) (such a set of vector fields exists see

for Example 5.6). These vector fields define a local frame for QU ∼= TU and define a

Lie algebroid [ρa, ρb] = Ccabρc. The associated matrix ρ is square and invertible, giving

ρ+ = ρ−1. If E is invertible then Eρ and ρTEρ have rank(n) and (Eρ)+ = (Eρ)−1. The

compatibility conditions (5.53) are satisfied. The construction of Theorem 5.4 gives a

choice of ∇± (or equivalently QU∇±).

Example 5.6 (Local gauging). Take a manifold M , and some U ⊂ M with local

coordinates {x1, x2, . . . , xn}. It is always possible to take QU ∼= TU and {ρa} =

{∂x1 , ∂x2 , . . . , ∂xn} giving ρ = In×n.

Corollary 5.7 (Global gauging). If there exists a global frame (the manifold M is

parallelisable) the non-linear sigma model (X,Σ, h, E,H, SQ[X]) can be gauged.

Proof. Take a set of globally defined non-zero linearly independent vector fields which

span TM . These exist by the definition of a parallelisable manifold. The construction

of Corollary 5.6 can be extended globally using this choice of vector fields.
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Examples of parallelisable manifolds include Lie groups, S1, S3, S7, and all oriented

three-manifolds.

We see that the notion of local gauging allows us to get a local understanding of

gauging with respect to regular smooth distributions. A regular smooth distribution

has locally constant rank by definition. Fix some U ⊂ M such that dim(Im(ρ)) = k

is constant. We can construct a local gauging using the procedure described above

(by definition there is a local set of linearly independent vector fields spanning the

distribution). The local gaugings may be of different dimensions for different choices

of U ⊂M .

Consider rescaling a set of vectorfields {ρa} by f ∈ C∞(M) to give {fρa}. Suppose

that {ρa} satisfies the generalised Killing condition

(LρaE)µν = Eµλρ
λ
b (Ω+)bνa + Eλνρ

λ
b (Ω−)bµa.

It follows that

(LfρaE)µν = Eµλfρ
λ
b (Ω′+)bνa + Eλνfρ

λ
b (Ω′−)bµa,

for (Ω′±)bµa = (Ω±)bµa+δbaf
−1∂µf . If f > 0 it is possible rescale any set {ρa} of vector

fields whilst still satisfying the generalised Killing equations (5.21a) by modifying the

connection. The generalised Killing equation is satisfied trivially if the vector fields {ρa}
are identically zero. We note that we cannot use a partition of unity type construction

to globalise the vector fields used in the local gauged solutions by setting {ρa} to zero

outside of U . It is clear that in the limit f → 0 we have f−1∂µf = ∂µ ln(f) → ∞ and

Ω′± is unbounded. There is no straightforward way to extend local gaugings to the

entire manifold.

Gauging general vector fields

In this section we consider Lie algebroid gauging for a general set of involutive vector

fields {ρa}—dropping the linear independence requirement. A different perspective is

taken from the last section. If the generalised Killing equation holds, then a projected

version of the equation holds (5.57). This projected form can be ‘lifted’ to an equation

on the vector bundle Q using Lie algebroid geometry. An expression defining the flat

adjoint connections Q∇± can be found in terms of objects on the vector bundle Q.

A general set of involutive vector fields may become linearly dependent for some set

of points in M . There are a fixed number of vector fields k ≤ dim(M), but the image

of the distribution spanned by the vector fields is allowed to change dimension. A set

of involutive vector fields describes a generalised distribution and defines a singular

foliation. Not all singular foliations are generated by vector fields in this way and we
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restrict ourselves to those which do. As a concrete example of the type of vector fields

we are interested in consider the following:

Example 5.7 (Generalised distribution). Let M = R2 with coordinates {x, y}. Consider

the vector fields

X =
∂

∂x
, Y =

∂

∂x
+ f(x)

∂

∂y
,

where f(x) ∈ C∞(M) satisfies f(x) = 0 for x ≤ 0, and f(x) > 0 for x > 0. Let ∆ be

the distribution given by the span of X and Y . At each point x ∈ M , ∆x ⊆ TMx is

the vector space given by the linear span of X(x) and Y (x). For x > 0 dim(∆) = 2,

and for x ≤ 0 dim(∆) = 1.

[X,Y ] = f ′(x)∂y.

At each point x0 ∈ M we have that [X,Y ](x0) is in the span of {X(x0), Y (x0)} and

the distribution is involutive. To be explicit, when x > 0 [X,Y ](x0) = ln(f)′Y (x0) −
ln(f)′X(x0) and when x ≤ 0 [X,Y ] = 0. By the Stefan–Sussman theorem the distri-

bution ∆ describes a singular foliation, with ∆ giving the partition into leaves. For an

enlightening discussion of this example see [115].

Theorem 5.2 does not assume that {ρa} are linearly independent and still applies as

a necessary condition on solving the generalised Killing equation (5.21a) in the general

case. The issue remaining is the possible construction of flat connections Q∇± to ensure

closure of the gauge algebroid. If a set of vector fields {ρa} satisfy the generalised Killing

equation

(LρaE)µν = Eµλρ
λ
b (Ω+)bνa + Eλνρ

λ
b (Ω−)bµa,

it follows that

ρµdρ
ν
c (LρaE)µν = ρµdρ

ν
cEµλρ

λ
b (Ω+)bνa + ρµdρ

ν
cEλνρ

λ
b (Ω−)bµa. (5.57)

The converse is not true in general, Eq. (5.57) does not imply that the generalised

Killing equation is satisfied. It is instructive to ‘lift’ Equation 5.57 to the vector bundle

Q. By ‘lift’ we mean replacing Ω± (which define the TM -connections on Q) with QΩ±

(which define the Q-connections on Q), and replacing the field E ∈ Γ(TM ⊗TM) with

E : Γ(Q⊗Q); where

E(·, ·) := E(ρ(·), ρ(·)).

Noting that (5.29) gives ρµc (Ω±)aµb = (QΩ±)abc − Cabc, it follows that (5.57) is
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equivalent to

ρµdρ
ν
c (LρaE)µν =ρµdEµλρ

λ
b ((QΩ+)bac − Cbac) + ρλbEλνρ

ν
c ((QΩ−)bad − Cbad),

=Edb((
QΩ+)bac − Cbac) + Ebc((

QΩ−)bad − Cbad). (5.58)

The Lie algebroid defined by [ρa, ρb] = Ccabρc can be lifted to a Lie algebroid on

Q as follows: Choose a frame for Q, denoted {ea}, and define a Lie algebroid by

[ea, eb]Q := Ccabec, and ρ(ea) := ρa.

Recall from Section 3.3 that we can define a Lie derivative on Q,

(LqE)(q1, q2) = ρ(q)(E(q1, q2))− E([q, q1]Q, q2)− E(q1, [q, q2]Q),

where q, q1, q2 ∈ Γ(Q) and E ∈ Γ(Q∗ ⊗Q∗). The expression in the local basis {ea} is

(LqE)(q1, q2) = qa1q
b
2(qcρµc ∂µEab − CdcaEdbq

c − CdcbEadqc + Ecbρ
µ
a∂µq

c + Eacρ
µ
b ∂µq

c),

and it follows that

(LeaE)dc = ρµa∂µEdc − CbadEbc − CbacEdb. (5.59)

The Lie algebroid Lie derivative acting on E can be related to the standard Lie derivative

on E:

(LeaE)dc =ρλa∂λ(Eµνρ
µ
dρ

ν
c )− CbadρµbEµνρ

ν
c − Cbacρ

µ
dEµνρ

ν
b ,

=ρλa∂λ(Eµν)ρµdρ
ν
c + Eµν(ρλa∂λρ

µ
d)ρνc + Eµνρ

µ
dρ

λ
a∂λρ

ν
c

− ([ρa, ρd])
µEµνρ

ν
c − ([ρa, ρc])

νρµdEµν

=ρλa∂λ(Eµν)ρµdρ
ν
c + (ρλd∂λρ

µ
a)Eµνρ

ν
c + (ρλc ∂λρ

ν
a)ρµdEµν

=ρµdρ
ν
c (LρaE)µν .

Combining (5.58) and (5.59) gives

ρµa∂µEdc = Edb(
QΩ+)bac + Ebc(

QΩ−)bad. (5.60)

We conclude that (5.60) holds if {ρa} satisfy the generalised Killing condition (5.21a).

We would like to choose a frame in which (QΩ−)bad = 0 (such a frame exists as
QΩ− is flat). In this case (5.60) simplifies to

ρµa∂µEdc = Edb(
QΩ+)bac.
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As QΩ+ is flat we can use (5.33) to conclude that

dQE = EK−1dQK, K ∈ C∞(M,GL(k)). (5.61)

Now we wish to construct a K satisfying Equation (5.61). If rank(E) = k we can simply

choose K = E. If rank(E) = j < k, we can still construct K. There exists a frame

where E is in the form

E =

(
E′ X ′

0 0

)
, (5.62)

where E′ ∈ C∞(M,Rj×j) has rank j, and X ′ ∈ C∞(M,Rj×(k−j)). Let us denote such a

frame by {ẽa} where ẽa = N b
aeb for some N ∈ C∞(M,GL(k)) and {ea} is the original

frame defined by ρ(ea) = ρa. We can now take

K =

(
E′ X ′

0 I

)
⇒ QΩ+ =

(
E′−1d′QE E′−1dQX

′

0 0

)
.

A straightforward calculation shows that this choice satisfies (5.61). After this choice

is made it is possible to change back to the original frame.

The construction given above will produce a valid choice QΩ+ with QΩ = 0 (when

Theorem 5.2 holds) in the frame where E is of the form (5.62). Transforming back to the

original frame will give (QΩ)abc = Na
xρ
µ
b ∂µ(N−1)xc. So we need to find a set of vector

fields {ρa} which satisfy Theorem 5.2 when Ω− satisfies ρµc (Ω−)aµb = Cacb+QΩa
bc. We

are now ready to state the gauging theorem for arbitrary involutive vector fields.

Theorem 5.8. Given an invertible field E ∈ Γ(T ∗M ⊗ T ∗M) and arbitrary involutive

vector fields ρa ∈ Γ(TM), a = 1, . . . , k, defining a Lie algebroid [ρa, ρb] = Ccabρc, the

generalised Killing equation

(LρaE)µν =Eµλρ
λ
b (Ω+)bνa + Eλνρ

λ
b (Ω−)bµa,

has solutions defining flat adjoint connections Q∇± if

Ψ′a = Eρ(Eρ)+Ψ′a, (5.63)

where

(Ψ′a)µν := (LρaE)µν − Eλνρλb (Ω−)bµa, (5.64)

for some (Ω−)bµa which satisfies ρµc (Ω−)bµa = Cbca + (QΩ)bac (where QΩb
ac is given by

(5.65)). Let N ∈ C∞(M,GL(k)) be such that the frame ẽa = N b
aea brings E to the
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form (5.62). If these conditions are satisfied then there exist Q∇± defined by

(QΩ−)abc = Na
xρ
µ
b ∂µ(N−1)xc, (QΩ+)abc = ((KN−1)−1)ax∂

µ
b (KN−1)xc, (5.65)

where K ∈ C∞(M,GL(k)) is constructed following the discussion preceding this theo-

rem.

Remark. It appears that lifting the field E, and the generalised Killing equation, from

the tangent bundle TM to the vector bundle Q has not been considered before. Instead

the projection of geometric structures on the base has been considered in [90]. Algebroid

geometry is usually more natural when considered on the vector bundle and becomes

less natural when the geometry is projected onto the base. This is familiar in generalised

geometry, where the definition of generalised Kähler structures is more natural than

the equivalent definition of bi-hermitian structures.

Non-isometric gauging example

We conclude the discussion of non-isometric gauging with an original example. The

results of this chapter give a methodical procedure for determining whether a set of vec-

tor fields can be used to gauge an action—as well as constructing a choice of connection

coefficients when gauging is possible.

Example 5.8. Let M = R3 with coordinates {x, y, z}. Take

G = (dx)2 + (dy)2 + (1 + x2)(dz)2, C = 2xdx ∧ dz,

giving

E =

 1 0 x

0 1 0

−x 0 1 + x2

 , H = dC = 0.

The field E ∈ Γ(T ∗M ⊗ T ∗M) is invertible as det(E) = 1 + 2x2 6= 0.

Consider the possibility of gauging with respect to {ρa} = {∂x, ∂y}.

L∂xE =

 0 0 1

0 0 0

−1 0 2x

 , L∂yE = 0, ρ =

1 0

0 1

0 0

 , ρ+ =

(
1 0 0

0 1 0

)
.

We note that L∂xE 6= 0 so ∂x is not a Killing vector field. The vector fields {∂x, ∂y} are

linearly independent—so we apply Theorem 5.4. In this case the necessary consistency
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condition (5.52) is not satisfied:

(Eρ)(Eρ)+ =
1

1 + x+ x2

 x 0 1− 2x2

0 0 0

−x 0 2x3 − 1

 ⇒ L∂xE 6= Eρ(Eρ)+L∂xE.

We conclude that it is not possible to gauge E non-isometrically using the vector fields

{∂x, ∂y}.
Now consider the possibility of gauging with respect to {ρ′a} = {∂x, ∂z}.

L∂xE =

 0 0 1

0 0 0

−1 0 2x

 , L∂zE = 0, ρ′ =

1 0

0 0

0 1

 , ρ′+ =

(
1 0 0

0 0 1

)
.

In this case the necessary consistency conditions are satisfied, with the only non-trivial

part being

L∂xE =

 0 0 1

0 0 0

−1 0 2x

 =

1 0 0

0 0 0

0 0 1


 0 0 1

0 0 0

−1 0 2x

 = Eρ′(Eρ′)+L∂xE.

We conclude that we can gauge with respect to {∂x, ∂z}. Explictly, using (5.55), we

find

Ω− = 0, Ω+ =
1

1 + 2x2

(
xdx+ (1− x2)dz 0

−dx+ 3xdz 0

)
⇒ QΩ− = 0, QΩ+ = E−1∂xEdx,

where

E = ρTEρ =

(
1 x

−x 1 + x2

)
, det(E) = 1 + 2x2 6= 0.

Example 5.8 provides us with an explicit example of gauging where R∇+ 6= 0 but

the gauge algebroid closes (RQ∇± = 0). A direct calculation gives

R∇+ =
1

2(1 + 2x2)2

(
−2x(5 + x2) 0

5− 8x2 0

)
dx ∧ dz.

In this case ∇+ doesn’t define a representation of a Lie algebroid on Q ∼= TF (where the

leaves of F are the xz-planes). The local gauging data is given by {ρa,Ω±}. However,

from a geometric perspective the gauging symmetry should not be viewed as arising

from ∇±. The vector fields {ρa} generate the action of the gauging symmetry on

TM . The connections QΩ± describe the lifted action on sections of Q. The gauging is
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associated to the flow of the Lie algebroid actions defined by Q∇±. The flat connections
Q∇± define representations of two Lie algebroids (Q,Q∇±). The infinitesimal action

is generated by (Q,Q∇±). The finite groupoid action comes from the Weinstein Lie

groupoids G(Q∇±).

The choice of gauging in Example 5.8 is not unique. Example 5.8 can also be gauged

with respect to the vector fields {ρ′′a} = {∂x, ∂y, ∂z}. In this case one can take QΩ− = 0

and QΩ+ = E−1∂xEdx.

5.4.5 Alternative choice of gauging: Poisson–Lie

The necessary and sufficient conditions for gauging SQ[X], given a choice of E ∈
Γ(T ∗M ⊗ T ∗M) and vector fields {ρa}, were described in the previous section. An

explicit construction of QΩ± was given when {ρa} satisfy the consistency conditions.

The choice of connection coefficients (QΩ±)abc is not unique. It is possible to consider

gaugings where QΩ− is not set to zero in the {ea} frame if one desires. If the choice

of vector fields {ρa} correspond to isometries of E, then for that particular choice of

vector fields we have Ω± = 0. Even if E admits no isometries there may still be multiple

gaugings. In this section we show if E satisfies the conditions for Poisson–Lie T-duality

then there is a non-isometric gauging which differs from that described in Section 5.4.4.

Poisson–Lie T-duality is a proposal for non-isometric T-duality in the presence of a

Lie bialgebra structure. Poisson–Lie T-duality was introduced by Klimč́ık and Ševera

[84, 83] and we refer the reader to those papers for details. An overview of Poisson–Lie

T-duality is given in Section 2.3.1, and we refer the reader there for notation. Poisson–

Lie data consists of

(E, ρa, Ja) ∈ Γ(T ∗M ⊗ T ∗M)⊕ Γ(TM)⊕ Γ(T ∗Σ),

where a = 1, . . . , d = dim(g), {ρa} define a Lie algebra g, and {Ja} define a dual Lie

algebra g∗, specified locally by:

[ρa, ρb] = Ccabρc, dJa =
1

2
C̃bcaJb ∧ Jc, Ccab, C̃

bc
a ∈ R.

The Lie algebras are required to form a Lie bialgebra (see Section 3.4.1) satisfying the

compatibility conditions:

2Cd[a|g|C̃
gl
b] + 2C̃dg [bC

f
a]g − CgabC̃dlg = 0.

The metric compatibility condition is given by

(LρaE)µν = C̃klaρ
λ
kρ

τ
l EλνEµτ . (5.66)
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We claim that a sigma model satisfying the Poisson–Lie gauging conditions can be

gauged for a choice QΩ± that differs from that of Section 5.4.4. This highlights the

lack of uniqueness of the Lie groupoid gauging procedure.

Choose the frame where ρa := ρ(ea) coincides with the vector fields for Poisson–Lie

gauging. Take

(QΩ+)abc = Cabc, (QΩ−)abc = C̃adbEcd + Cabc,

where E = E(ρ(·), ρ(·)). The Lie algebroid gauging condition (5.21a) can be directly

verified. Calculating the Q-curvatures we find:

(R
Q∇+

)abc =ρµa∂µC
d
bced; (5.67a)

(R
Q∇−)abc =

(
ρµa∂µC

d
bc + 2ρµ[a∂|µ|(C̃

dl
b]Ecl) + 2(Cd[a|g|C̃

gl
b] − CgabC̃dlg)Ecl (5.67b)

+ 2C̃dl[aC
g
b]cEgl + 2C̃dk [a|EgkC̃

gl
|b]Ecl

)
ed.

It is clear that RQ∇+ = 0, as Cabc ∈ R. To see that RQ∇− vanishes requires a little bit

more work. Using the definition of the Lie derivative, and (5.66), we have

ρλa∂λEµν = C̃kla ρ
λ
kρ

τ
l EλνEµτ − (∂µρ

λ
a)Eλν − (∂νρ

λ
a)Eµλ.

Multiplying by ρµb ρ
ν
c (which are invertible):

ρµb ρ
ν
cρ
λ
a∂λEµν =C̃kla EkcEbl − (ρµb ∂µρ

λ
a)Eλνρ

ν
c − (ρνc∂νρ

λ
a)Eµλρ

µ
b

=C̃kla EkcEbl + Cdabρ
λ
dEλνρ

ν
c + (ρµa∂µρ

λ
b )Eλνρ

ν
c

+ Cdacρ
λ
dEµλρ

µ
b + (ρνa∂νρ

λ
c )Eµλρ

µ
b ,

so that ρµa∂µEbc = C̃kla EkcEbl +CdabEdc +CdacEbd. Substituting this into (5.67b), gives

(R
Q∇−)abc = (2Cd[a|g|C̃

gl
b] + 2C̃dg [bC

f
a]g − CgabC̃dlg)Ecled.

We conclude that RQ∇− = 0 as Cabc and C̃abc define a Lie bialgebra.

5.5 Application: T-duality

As an application of non-isometric Lie algebroid gauging we consider non-isometric

T-duality. A proposal for non-isometric T-duality was given by CDJ in [31, 33]. The

constraints for non-isometric T-duality are slightly different than those of Lie algebroid

gauging. In order to clarify the difference we briefly review the case of non-abelian

T-duality for a WZW model.
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Recall from Section 5.2 that a gauged WZW model is described by

SWZW [g,A, X̂] =
1

2

∫
Σ

(g−1Dg ∧, ? g−1Dg)G +

∫
Σ

(g−1Dg ∧, g−1Dg)B +

∫
Σ
〈X̂, F 〉,

where X̂ is a Lagrange multiplier whose equations of motion impose the flatness con-

dition F = 0. When F = 0 there exists a gauge transformation which allows us to set

A = 0 and recover the ungauged action.

The first two terms were shown to be invariant in Section 5.2. The left group action

on the field strength gives

h � F =d(hAh−1 + dhh−1)− [(hAh−1 + dhh−1) ∧, (hAh−1 + dhh−1)]g

=h(dA− [A ∧, A]g)h
−1 = AdhF,

where we have used the identities dhh−1 = −hdh−1 (which follows from d(hh−1) =

d(e) = 0) and [A ∧, A′]g = [A′ ∧, A]g.

The final term in the Lagrangian will be invariant under the left action of h ∈
C∞(Σ,G) if and only if

h � X̂ = Ad∗h−1X̂,

where Ad∗h−1 is the coadjoint action 〈Ad∗hX̂,X〉 := 〈X̂,AdhX〉for X̂ ∈ g∗ and X ∈ g.

The importance of this standard calculation is that the invariance of the action with

the additional field strength term does not follow automatically from invariance of the

other terms.

The full left gauging action is given by

h � (g,A, X̂) = (hg, hAh−1 + dhh−1,Ad∗h−1X̂). (5.68)

The introduction of the curvature term is an essential part of the non-abelian T-

duality procedure. For each invariant action S[X] (invariant under the action of a Lie

algebra g) a gauged action S[X,A, X̂] can be constructed. The original action can be

recovered by solving the equations of motion for X̂ and fixing the gauge fields A = 0.

Alternatively, solving the equations of motion for A and gauge fixing X gives an action

Ŝ[X̂] describing a dual model. In the dual model the fields X̂ are interpreted as local

coordinates on some dual manifold M̂ .
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The procedure can be summarised by the following diagram:10

S[X]

S[X,A, X̂]

ga
ug

e
is
om

et
ri
es

in
te

gr
at

e
X̂

ga
ug

e
fix
A

Ŝ[X̂]

integrate
A

gauge
fix
X

The construction of the dual model was given in [103, 44] and is described in Section

5.5.4. We note that the T-dual pair (S[X], Ŝ[X̂]) are uniquely determined by the choice

of gauged action S[X,A, X̂]. If two gauging proposals produce the same gauged action

they must describe the same T-duality pair.

5.5.1 Non-isometric T-duality proposal

A proposal to carry out T-duality with respect to a set of vector fields which do not

generate isometries has recently appeared in the literature [31, 33]. This ‘non-isometric

T-duality’ is based on the formalism of Lie algebroid gauging developed in [32, 99, 88].

The non-linear sigma model is specified by the data (X,Σ, h,M,G,H, S[X]), where

X : Σ → M is a map embedding a (pseudo-)Riemannian string worldsheet (Σ, h) into

a (pseudo-)Riemannian manifold (M,G), and H ∈ Γ(∧3T ∗M). The action is given by

(Eq. 2.1 in [31]):

S[X] =
1

2

∫
Σ
GµνdX

µ ∧ ?dXν +
1

6

∫
Σ3

HµνλdX
µ ∧ dXν ∧ dXλ, (5.69)

where Σ3 is a three manifold with boundary ∂Σ3 = Σ.

The action S[X] is gauged with respect to a set of vector fields ρa ∈ Γ(TM),

satisfying [ρa, ρb] = Ccabρc, for Cabc ∈ C∞(M).

The gauged action is (Eq 2.8 in [31]):

Sgauged =
1

2

∫
Σ
GµνDX

µ ∧ ?DXν +
1

6

∫
Σ3

HµνλdX
µ ∧ dXν ∧ dXλ (5.70)

−
∫

Σ
(θa + dX̂a) ∧Aa +

1

2

∫
Σ

(ιρ[aθb] + CabcX̂a)A
b ∧Ac −

∫
Σ
ωaµbX̂aA

b ∧DXµ,

where DXµ = dXµ − ρµaAa and θa = θaµdX
µ.

The infinitesimal gauge transformations are of the following form:

δεX
µ =εaρµa , (5.71a)

10This TikZ picture is modified from a presentation by Mark Bugden.
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δεA
a =dεa + CabcA

bεc + ωaµb(dX
µ − ρµcAc), (5.71b)

δεX̂a =− ιρ(aθb)ε
b − CcbaεbX̂c + ρµaω

d
µbX̂dε

b. (5.71c)

The gauged action is invariant under the gauge transformations if the following non-

isometric gauging conditions hold:

LρaG =ωba ∨ ιρbG, (5.72a)

ιρaH =dθa + θb ∧ ωba − X̂bR
b
a. (5.72b)

There are additional consistency conditions required to carry out non-isometric T-

duality:

Lρ[aθb] =Cdabθd − ιρdθ[aω
d
b] − ιρ[aω

d
b]θd −Dc

baX̂c, (5.73a)

1

3
ιρaιρbιρcH =ιρ[aC

d
bc]θd − 2ιρ[aω

d
bιρc]θd − 2D̃e

abcX̂e, (5.73b)

where

De
ab =dCeab + Ccabω

e
c + 2Ced[aω

d
b] + 2ιρdω

e
[bω

d
a] + 2Lρ[bω

e
a] + ιρ[aR

e
b], (5.73c)

D̃e
abc =ιρ[aιρbR

e
c], (5.73d)

0 =Cd[abC
e
c]d + ρµ[c∂µC

e
ab]. (5.73e)

In local coordinates these form a formidable set of equations. It is not clear when these

equations have non-trivial solutions.

The gauging procedure can be immediately recognised as Lie algebroid gauging

(described in Section 5.4 with φ = 0) with the action:

Sgauged =

∫
Σ
EµνD−X

µD+X
ν −

∫
Σ
X∗C +

∫
Σ3

X∗H +

∫
Σ
〈X̂, F∇ω〉,

where E = G+ C, C is defined by Lρ(ε)C = ιρ(ε)H, θ := ιρC, and

(F∇ω)aea = (dAa + 1
2C

a
bcA

b ∧Ac + ωaµbA
b ∧DXµ)ea. (5.74)

Equation (5.74) is the field strength of ∇ω, a TM -connection on Q, defined locally by

∇ωea := ωba ⊗ eb.
The constraints (5.73) are solved if and only if we have a Lie algebroid (ρ, [·, ·]Q, Q)

coming from a (small) Dirac structure of the H-twisted standard Courant algebroid.

For details see Example 5.3. It is the existence of Lie algebroid that is of importance

to the procedure not a Courant algebroid.

The first three terms of Sgauged are invariant under the gauge transformations (5.20).
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The curvature term is invariant under the action δε if and only if

δε〈X̂, F∇ω〉 = 0 = 〈δεX̂, F∇ω〉+ 〈X̂, δεF∇ω〉. (5.75)

As δεX̂ must be independent of A it follows that δεF∇ω ∝ F∇ω is required for (5.75) to

hold.

The infinitesimal variation can be calculated directly:

δε(F∇ω)a = (Cabc − ρµbω
a
cµ)εc(F∇ω)b + (R∇ω)abµνε

bDXµ ∧DXν +Da
bcµε

cDXµ ∧Ab.

It follows immediately that we require R∇ω = Da
bcµ = 0. A calculation shows that

Da
bcµ = (∇ωµT∇ω)abc − 2ρν[b(R∇ω)ac]νµ,

so Da
bcµ = 0 is simply the closure of the gauge algebroid. The flatness condition

R∇ω = 0 implies that ω is a Maurer–Cartan form for the frame bundle B(M) (viewing

B(M) as a principal GL(M) bundle over M). Hence

ω = K−1dK, ωaµb = (K−1)ac∂µ(K)cb,

for some K ∈ C∞(M,GL(d)), where there are d vector fields {ρa}.

There exists a field redefinition such that ω̃ = 0. Take ẽa = (K−1)baeb and use

(5.13):

ω̃aµb =Ka
cω

c
µd(K

−1)db − (K−1)cb∂µK
a
c

=Ka
c(K

−1)ce∂µK
e
d(K

−1)db − (K−1)cb∂µK
a
c

=0.

In this frame the non-isometric gauging conditions (5.72) and the infinitesimal gauge

transformations (5.71) become:

Lρ̃aG =0, ιρ̃aH = dθ̃a,

δε(X
µ, Ãa,

˜̂
Xa) =(εaρ̃µa , dε

a + C̃abcÃ
bεc,−C̃abcεb

˜̂
Xc).

In this frame the gauged action is given by

Sgauged =
1

2

∫
Σ
DXµ ∧ (Gµν ? DX

ν + CµνDX
ν) +

1

6

∫
Σ3

HµνλdX
µ ∧ dXν ∧ dXλ

− 1

2

∫
Σ
CµνdX

µ ∧ dXν +

∫
Σ

˜̂
Xa(dÃ

a + C̃abcÃ
bÃc).
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The closure of gauge algebroid gives the constraint

∇̃ω̃µ(T∇̃ω̃)abc = 0 = ∂µC̃
a
bc,

indicating that C̃abc ∈ R. Thus,

[ρ̃a, ρ̃b] = C̃cabρ̃c, C̃cab ∈ R,

defines a Lie algebra g̃. It is clear that in this frame we recover the gauged action of

non-abelian T-duality (in the presence of a WZW term) corresponding to the Roček–

Verlinde intermediate gauge theory [103, 44].

Theorem 5.9 ([24]). Infinitesimal gauge invariance of the non-isometrically gauged Lie

algebroid sigma model (5.70) implies that ∇ω is flat, and there exists a field redefinition

(given by changing the Lie algebroid frame) such that g(Q,ω) has constant structure

functions Cabc and defines a Lie algebra.

Corollary 5.10. The Non-isometric T-duality proposal of CDJ is equivalent to non-

abelian T-duality.

It was noted in [89] that the flat condition on ω implied that there existed a frame

such that ω̃ = 0. The necessity of the flatness condition for T-duality—and the fact

that it renders non-isometric T-duality equivalent to non-abelian T-duality—seems not

to have been realised before the publication of [24].

Remark. The change of Lie algebroid frame can be interpreted simply as an alternative

choice of vector fields {ρ̃a}. The above result can then be stated as follows: Whenever

a non-isometric T-dual gauging exists for vector fields {ρa}, it is always possible to

choose a set of Killing vector fields {ρ̃a} which give an equivalent gauged action (and

hence T-duality pair).

The above result implies that the non-isometric proposal of CDJ is locally equivalent

to non-abelian T-duality. It is possible that there may exist admissible Lie algebroids

(Q,∇ω) for which the corresponding Lie algebra g(Q,ω) acts locally on the target

manifold M but does not integrate to a global action. A possible scenario in which

this may occur is given by the quotient of a Lie group by its discreet subgroups. The

physical interpretation could be that of strings winding around non-contractible cycles

of M .

A model with winding modes wrapped around non-contractible cycles of M would

correspond to a Lie algebroid action. The integrability of such an algebroid would be

determined by the associated monodromy and holonomy groupoid (see Examples 3.13

and 3.14 for the monodromy and holonomy groupoids).
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5.5.2 Field strength F∇ω

The field strength term associated with non-isometric T-duality (5.74) can be written

invariantly in the following form:11

F∇ω = d∇ωA− [A ∧, A]∇ω .

This can be verified by an explicit calculation in local coordinates:

(d∇ωA)(v1, v2) =∇ωv1(A(v2))−∇ωv2(A(v1))−A([v1, v2]TM )

=vµ1 v
ν
22(∂[µA

a
ν] + ωa[µ|bA

b
|ν])ea,

[A ∧A]∇ω(v1, v2) =1
2(T∇ω(A(v1), A(v2)) + T∇ω(A(v2), A(v1)))

=vµ1 v
ν
2A

b
[µA

c
ν](2ρ

λ
[b|ω

a
µ|c] − Cabc)ea.

Taking vµ1 = dXµ and vν2 = dXν , we have

F∇ω =(dAa + ωaµbA
b ∧ dXµ − ωaµbAb ∧ ρµcAc + 1

2C
a
bcA

b ∧Ac)ea

=(dAa + ωaµbA
b ∧DXµ + 1

2C
a
bcA

b ∧Ac)ea,

which matches the local coordinate formula given in [99].

The condition F∇ω = 0 is equivalent to the statement that A : TΣ→ X∗∗Q is a Lie

algebroid morphism (see Section 3.3.1). In particular, we can interpret A ∈ Ω(Σ, X∗∗Q)

as a Maurer–Cartan form for the Lie groupoid G(X∗∗Qω) (where Qω denotes the Lie

algebroid defined by the representation ∇ω). The groupoid is specified by flowing along

Q-paths defined on the Lie algebroid Qω. It follows from Theorem 5.9 that G(Qω) is

isomorphic to a Lie group G. In the frame where ωaµb = 0 the Q-paths coincide with

the flowlines along the right-invariant sections Xinv(G).

The invariant curvature formula can also be used to provide a nice description of

the variation of A:

δεA = d∇ωε+ [ε,A]∇ω . (5.76)

To understand and justify this statement recall that φ = 0, so that Ω± = ω and

A± = A. We explicitly calculate the expression in local coordinates:

(d∇ωε)(v) =∇ωv ε = (vµ∂µ(εa) + vµεbωaµb)ea = (dεa + ωaµbε
bdXµ)ea,

11Here we ignore issues regarding pullbacks (discussed in Section 5.4.1) to compare with the expres-
sion given in the literature.
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if vµ = dXµ.

[ε,A(v)]∇ω =T∇ω(ε,A(v)) = εaAbµv
µ(ρµbω

a
µc − ρµcωaµb − Cabc)ea

=(CabcA
bεc + ρ(ε)µωaµcA

c − ωaµbεbρ(A)µ)ea.

d∇ωε+ [ε,A]∇ω =(dεa + CabcA
bεc + ωaµbε

b(dXµ − ρµcAc) + ρ(ε)µωaµcA
c)ea

=δεA
aea +Ab(ρ(ε)µωaµbea) = δεA

aea +Ab(∇ρ(ε)eb)

=δεA
aea +Aaδεea = δε(A

aea) = δεA.

This gives the correct coordinate variation (5.71b)

δεA
a = dεa + CabcA

bεc + ωaµbε
b(dXµ − ρµcAc),

as well as naturally incorporating the variation of the basis δεea := ∇ρ(ε)ea. The

variation δεA involves comparing the value of the field A at some point x ∈ M with

the value at some point x′ = x + π(ρ(ε)) found by flowing along the vector field ρ(ε).

In order to compare A|x to A|x′ it is necessary to parallel transport ea|x to ea|x′ using

ea|x′ = ∇ρ(ε)ea|x.

T-duality and R∇ω 6= 0

It is not possible to perform T-duality for non-flat ω. The action Sgauged[X,A, X̂] is

not invariant under the gauge transformations (5.71) if R∇ω 6= 0.

One may wonder if it is possible to introduce a modified curvature, which would

transform covariantly without requiring R∇ω = 0. In [89] Kotov and Strobl introduced

a different curvature

(G∇ω)a = dAa +
1

2
CabcA

b ∧Ac + ωaµbDX
µ ∧Ab +

1

2
Ba

µνDX
µ ∧DXν , (5.77)

which satisfies

δε(G∇ω)a = (Cabc − ρµbω
a
µc)(G∇ω)bεc,

under the assumption that the gauge algebroid closes and

(R∇ω)ab + LρbB
a − ωcb ∧ ιρcBa + ιρbω

a
cB

c + (T∇ω)abcB
c = 0.

This curvature is not appropriate for T-duality. The condition G∇ω = 0 does not

imply A = 0, and there is an extra field B ∈ Γ(∧2T ∗M ⊗ Q) which has no clear

interpretation in the context of T-duality. The point of introducing the curvature term
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F∇ω in the standard gauging is to ensure that A = 0 can achieved globally, and the

ungauged action can recovered from the original. The curvature G∇ω was introduced

for a different purpose in [89].

Remark. The curvature G∇ω may be related to the ‘fake-curvature’ associated to two-

connections and higher gauge theory (see for example [107]). However, this possible

interpretation was not discussed in [89].

The curvature term F∇ω has the interpretation as the field strength for a Maurer–

Cartan field A. The gauge field A can be interpreted as a Lie algebroid morphism. This

suggests that a curvature term for Lie groupoid gauging would be based on gauge fields

A± ∈ Γ((X∗∗Q)∗ ⊗ Q) describing a Lie algebroid morphism between Lie algebroids

on the vector bundles X∗∗Q and Q. The flat connections Q∇± define Lie algebroids,

however the gauging procedure does not define any fields which could be interpreted as

the required Maurer–Cartan forms A±. This suggests that it is not possible to add a

gauge invariant curvature term to the action when considering Lie algebroid gauging.

This limits the usefulness of the Lie algebroid gauging procedure.

5.5.3 Example of non-isometric T-duality

We present an example of non-isometric gauging in order to better understand the

connection between ‘non-isometric T-duality’ and non-abelian T-duality. We show how

an explicit change of frame gives the standard non-abelian gauged action. Consider a

group manifold G. The WZW action SWZW is invariant under the left action, but not

under the right action. It is possible to gauge SWZW non-isometrically with respect to

the right action. We will see that the non-isometric gauging with respect to the right

action is in fact isomorphic to the standard gauging of the left action.

Recall a WZW group target model g : Σ→ G given by,

SWZW[g] =
1

2

∫
Σ

(g−1dg ∧, ? g−1dg)G +
1

2

∫
Σ

(g−1dg ∧, g−1dg)B,

repeated here for convenience. The Lie algebroid Q is the tangent bundle TG. The

standard non-abelian gauging (described in Section 5.2) written in the CDJ formalism

corresponds to defining the connection ∇ω by declaring that the right-invariant vector

fields on G are covariantly constant.

The purpose of this example is to consider non-isometric gauging with respect to a

basis of left-invariant vector fields. The right action of the group G on the left-invariant

Maurer–Cartan form gives:

g−1dg 	 h = (gh)−1d(gh) = h−1g−1dgh = Adh−1g−1dg,
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and

SWZW[gh] =
1

2

∫
Σ

(Adh−1g−1dg ∧, ?Adh−1g−1dg)G + (Adh−1g−1dg ∧, Adh−1g−1dg)B.

The action is not invariant under the right action.

There is a non-isometric gauging of the WZW action with respect to the right

action:

SWZW [g,A, X̂] =
1

2

∫
Σ

(g−1Dg ∧ ?g−1Dg)G +
1

2

∫
Σ

(g−1Dg ∧ g−1Dg)B (5.78)

+

∫
Σ
〈X̂, dA+A ∧A+ g−1Dg ∧A+A ∧ g−1Dg〉,

where g−1Dg = g−1dg −A. The associated gauge transformations are given by

(g,A, X̂) 	 h := (g,A, X̂)h = (gh,A− g−1dg + (gh)−1d(gh), X̂).

In order to check that this corresponds to a well defined groupoid action it is sufficient

(in this case) to check that

((g,A, X̂)h1)h2 = (g,A, X̂)h1h2 .

This follows by direct calculation:

((g,A, X̂)h1)h2 = (gh1, A− g−1dg + (gh1)−1d(gh1), X̂)h2

=(gh1h2, A− g−1dg + (gh1)−1d(gh1)− (gh1)−1d(gh1) + (gh1h2)−1d(gh1h2), X̂)

=(gh1h2, A− g−1dg + (gh1h2)−1d(gh1h2), X̂) = (g,A, X̂)h1h2 .

To connect this to the CDJ proposal it is necessary to consider the corresponding

infinitesimal gauge transformations

δε(g,A, X̂) = (gε, dε+ [A, ε]g + Adg−1Dgε, 0).

It follows immediately that ω = adg−1dg.

We wish to show that the non-isometric gauging with respect to the right action is

equivalent to the standard left action gauging. It is enough to find the change of frame

K which gives the field redefinition relating them. To convert the right action to a left

action take K = Adg giving the field redefinitions

h̃ = ghg−1, Ã = gAg−1,
˜̂
X = Ad∗gX̂.
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Taking these field redefinitions we have the action

SWZW [g, Ã,
˜̂
X] =

1

2

∫
Σ

(g−1Dg ∧, ? g−1Dg)G +
1

2

∫
Σ

(g−1Dg ∧, g−1Dg)B

+

∫
Σ
〈 ˜̂X, dÃ− [Ã ∧, Ã]g〉,

where g−1Dg = g−1dg − g−1Ãg and gauge transformations are given by

(g, Ã,
˜̂
X)→ (hg, hÃh−1 + dhh−1,Ad∗h−1

˜̂
X).

This describes the standard gauged action of non-abelian T-duality.

We conclude that whenever a Lie group manifold can be gauged non-isometrically,

there must exist a choice of frame for Q which gives a standard isometric action. This

is in accordance with Theorem 5.9. This example gives the intuition of the general

case: whenever there is a non-isometric action (generated by a set of vector fields ρa)

there exists another set of vector fields ρ̃a which generate a Lie algebra describing an

equivalent gauged action.

5.5.4 Constructing the Non-Abelian T-dual background

In the final section of this chapter we will describe how to construct the T-dual back-

ground Ê given a non-linear sigma model E with a group of isometries associated to a

compact semi-simple Lie group G.

Consider a principal G-bundle P (M,π,G) and a non-linear sigma model S[X] gauged

with a set of vector fields {ρa}, a = 1, . . . , d = dim(G), satisfying [ρa, ρb] = Ccabρc where

Ccab are the structure constants of g = Lie(G). We consider the action, defined on a

Euclidean worldsheet12 Σ, given by

S[X] =
1

4

∫
Σ
X∗G+ iX∗B =

∫
Σ
dzdz̄(Eµν∂X

µ∂̄Xν),

where ∂X = ∂zX, ∂̄X = ∂z̄X, and η = η+dz + η−dz̄. The set {ρa} are assumed to be

isometries of E:

LρaE = 0.

Locally the decomposition P ∼= M×G induces a decomposition of E ∈ P ∗⊗P ∗: Choose

the set of coordinates described by the frame {dXi} = {dX1, . . . , dXn−d, η1, . . . , ηd}.

12Here we choose the flat worldsheet metric h = (dσ)2 + (dτ)2.
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Let µ = 1, . . . , n− d. The field E decomposes, in this frame, as

E = Eµν∂X
µ∂̄Xν + Eaνη

a
+∂̄X

ν + Eµb∂X
µηb− + Eabη

a
+η

b
−.

We can gauge the action S[X] with gauge fields Aa = Aa+dz+Aa−dz̄. The covariant

derivatives are defined by

DXµ = ∂Xµ, D̄Xµ = ∂̄Xµ, Dηa± = ηa± −Aa±.

The gauged action becomes

S =

∫
Σ
dzdz̄

(
Eµν∂X

µ∂̄Xν + Eaν(ηa+ −Aa+)∂̄Xν + Eµb∂X
µ(ηb− −Ab−) (5.79)

+ Eab(η
a
+ −Aa+)(ηb− −Ab−) + X̂a(∂A

a
− − ∂̄Aa+ + CabcA

b
+A

c
−)
)
.

In order to recover the original metric S[X] we integrate out X̂ and gauge fix A = 0.

We are interested in finding the dual background by integrating out the gauge field A

and gauge fixing ηa.

Denoting the Lagrangian density by L (S :=
∫

Σ dzdz̄L) the equations of motion for

A split into A±:

δS

δA+
=
∂L

∂A+
− ∂

(
∂L

∂(∂A+)

)
− ∂̄

(
∂L

∂(∂̄A+)

)
=CbacX̂bA

c
− − Eaν ∂̄Xν − Eab(ηb− −Ab−) + ∂̄X̂a = 0,

and

δS

δA−
=CbabX̂bA

c
+ − Eµb∂Xµ − Eab(ηa+ −Aa+)− ∂X̂a = 0.

This system of first order equations can be solved for A± giving

Aa+ =(Eab + CcabX̂c)
−1(Eµb∂X

µ + Ebcη
c
+ + ∂X̂b),

Aa− =(Eab + CcabX̂c)
−1(Ebν ∂̄X

ν + Ebcη
c
− − ∂̄X̂b).

Substituting into the action (5.79) and using
∫
X̂a(∂A

a
−− ∂̄Aa+) =

∫
∂̄X̂aA

a
+− ∂X̂aAa−

we have

S =

∫
Σ
dzdz̄

(
Êµν∂X

µ∂̄Xν + Êaν∂X̂a∂̄X
ν + Êµb∂X

µ∂̄X̂b + Êab∂X̂a∂̄X̂b (5.80)

+Naνη
a
+∂̄X

ν +Nµa∂X
µηa− +Nabη

a
+η

b
− +N+

abη
a
+∂̄X̂b +N−ab∂X̂aη

b
−

)
.



5.5. APPLICATION: T-DUALITY 139

where Ê is given by the non-abelian Buscher rules:(
Êµν Êµa

Êaν Êab

)
=

(
Eµν − Eµb(Ebc + CdbcX̂d)

−1Ecv Eµb(Eba + CcbaX̂c)
−1

−(Eab + CcabX̂c)
−1Ebν (Eab + CcabX̂c)

−1

)
, (5.81)

and Mab := Eab + CcabX̂c,

Naν = Eaν − EabM−1
bc Ecν , Nµa = Eµa − EµbM−1

bc Eca, Nab = Eab − EacM−1
cd Edb,

N+
ac = EacM

−1
cb , N−ab = −M−1

ac Ecb.

The first line of (5.80) describes a dual ungauged sigma model. The second line contains

terms involving η = η+dz+η−dz̄. Remember that η is the left-invariant Maurer–Cartan

form for G and can be set to zero by an appropriate choice of gauge. Choosing a gauge

where η = 0 we produce the dual sigma model

Ŝ =

∫
Σ
dzdz̄

(
Êµν∂X

µ∂̄Xν + Êaν∂X̂a∂̄X
ν + Êµb∂X

µ∂̄X̂b + Êab∂X̂a∂̄X̂b

)
. (5.82)

Given E with an isometry group G the T-dual metric Ê is given by the non-abelian

Buscher rules. In this dual model the coordinates associated to the coframe ηa are

integrated out and the Lagrange multipliers X̂a play the role of dual coordinates. The

dual field Ê is defined on a space with local coordinates {Xµ, X̂a} ∈ U ⊂ Rn. The

topology of the non-abelian T-dual space is an open problem. A discussion on the

difficulties in establishing the topology of the non-abelian T-dual can be found in [5,

116].
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Chapter 6

Conclusion and Outlook

This thesis highlights the role of algebroid geometry in mathematics and physics. Lie

algebroids and associated geometric structures (such as contact structures) form the

basis of the mathematical structure describing the dynamics of point particles. The

dynamics of strings and higher dimensional branes are most naturally described by

more general Leibniz algebroid geometry.

Symmetry plays a central role in mathematics and physics. In differential geometry

two objects related by a diffeomorphism are considered equivalent. In the presence

of a Lie group symmetry all structures should be invariant under the group action

and the geometry is governed by an Atiyah algebroid. Differential geometry provides

the appropriate mathematical framework for general relativity and principal G-bundles

play a crucial role in describing Yang–Mills gauge theory.

Symmetry in string theory leads to a different notion of equivalence resulting in

exotic ‘stringy geometry’. Abelian T-duality is an exact symmetry of string theory

[26, 27] which establishes an equivalence of string theories described on geometrically

(and even topologically) different target spaces. Consider a compact manifold defined

by a principal torus bundle with fibers Td. Take a model with d Killing vectors (cor-

responding to the torus action). The appropriate framework for invariant structures

is not based on the group O(d), but rather the T-duality group O(d, d).1 The most

general backgrounds will be constructed out of spaces called T-folds. T-folds are de-

scribed using charts U =
⊔
α Uα where Uα ⊂ Rd are patched together using O(d, d)

valued transition functions.

The notion of extended symmetry motivates much of this thesis. In Chapter 4 the

extended symmetry group of the generalised contact algebroid—generated by (B, b, a)-

gauge transformations—was taken to be the starting point of generalised contact ge-

ometry. The drive to construct geometric structures which are invariant under this

1The T-duality group is O(d, d,Z) but when considering the associated geometry we take the sym-
metry group O(d, d,R).
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group led to a modification of the definitions previously appearing in the literature on

generalised contact structures. This modification allows the use of twisted algebroids

to describe non-coorientable structures. All structures were defined in a way that is

compatible with an extended notion of equivalence. Thiese structures are suitable to

describe a geometric subgroup of string geometry on odd-dimensional manifolds.

Extended symmetry, in the guise of gauge symmetry, was studied in Chapter 5.

The notion of gauging an action was extended from symmetries arising from Lie groups

to those arising from Lie groupoids. Elucidating the underlying Lie groupoid structure

was crucial to understanding the global properties of the local proposal appearing in the

literature. The invariant Lie algebroid geometry was key to establishing the equivalence

of ‘non-isometric T-duality’ and non-abelian T-duality; as well as the necessary and

sufficient conditions to undertake the general Lie algebroid gauging proposal.

We close this thesis with a few remarks on extensions of this work and possible

future directions of research. Hitchin’s generalised geometry provides a mathemati-

cal background to describe a parabolic subgroup of the T-duality group O(d, d)—the

so called ‘geometric subgroup’. In the physics literature there is evidence of ‘non-

geometric’ backgrounds, which display non-commutative and non-associative behaviour

[72, 73, 75, 7, 95]. Double field theory (DFT) [76, 66, 1] is a proposal which makes

T-duality manifest and is based on doubling the degrees of freedom (physically inter-

preted as adding winding modes). For a geometric perspective on DFT we refer the

reader to [120]. A section constraint projects the theory to some physical subspace

which halves the doubled degrees of freedom. In this framework non-geometric back-

grounds correspond to a choice of the section constraint which describes a dual space

dependent on the winding modes. Exceptional Field Theory (EFT) [68, 69, 70] is a

closely related theory which aims to make U-duality manifest. EFT is an extension

of exceptional generalised geometry relevant to M-theory based on a Leibniz algebroid

with a symmetry group related to the exceptional lie groups.

Global aspects of DFT (and EFT) have been considered [67, 77, 100]. Ques-

tions relating to integrability and global properties on the doubled space remain. The

approaches are very computational and an invariant approach especially in the non-

geometric frames would be conceptually important.

Spherical T-duality is a topological theory for S3 ↪→ P → M bundles (viewed as

principal SU(2) bundles) [21, 22, 23]. Spherical T-duality gives a well defined topolog-

ical duality (at least when the base space has dim(M) ≤ 4) but the local geometric

structure is missing. Fluxes appearing in spherical T-duality can be associated with

twisted Leibniz algebroids related to exceptional generalised geometry. However, an

appropriate geometric version remains elusive.

I believe the best prospect to explore global aspects of DFT is through Poisson–

Lie T-duality. There exists a generalisation of DFT which is based on doubling Lie
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group manifolds [121, 13, 14, 61]. Recently Poisson–Lie T-duality has been described

in this doubled formalism [62]. In Poisson–Lie T-duality the doubled space is given by

a Drinfeld double. These Lie groups are well studied in the mathematical literature,

and provide a well defined example of a doubled space. The existence and uniqueness

of the Poisson–Lie dual relies crucially on the special properties of Drinfeld doubles.

Looking at integrability properties of the dual models in DFT for group manifolds is

likely to impose tight constraints on the structure of general doubled group spaces. The

original Poisson–Lie construction is not based on a Roček–Verlinde intermediate gauge

theory; the doubled group proposal suggests would suggest that such a description

might exist. I expect that if a gauging construction exists for Poisson–Lie T-duality

it will be based on Courant algebroid gauging. It would be interesting to see if this

is possible. More generally one could consider L∞-algebroid gauging proposals, which

may have applications in string theory [71, 15].
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[5] E. Álvarez, L. Álvarez–Gaumé, J.L.F. Barbón, and Y. Lozano, Some Global As-

pects of Duality in String Theory, Nucl. Phys. B415 (1994) 71–100, [arXiv:hep-

th/9309039].

[6] I. Androulidakis, and M. Zambon, Smoothness of holonomy covers for sin-

gular foliations and essential isotropy, M. Math. Z. 275 (2013) 921–951,

[arXiv:1111.1327].

[7] P. Aschieri, and R.J. Szabo, Triproducts, nonassociative star products and geom-

etry of R-flux string compactifications, Journal of Physics: Conference Series 634

(2015) 012004, [arXiv:1504.03915].

[8] J. Baez, and J. Huerta, An invitation to Higher Gauge Theory, General Relativity

and Gravitation 43 (2011) 2335–2392, [arXiv:1003.4485 ].

[9] D. Baraglia, Leibniz algebroids, twistings and generalized geometry, J. Geom.

Phys. 62 (2012) 903–934, [arXiv:1101.0856].

[10] D. Baraglia, and P. Hekmati, Transitive Courant algebroids, String structures and

T-duality, Adv. Theor. Math. Phys. 19(3) (2015) 613–672, [arXiv:1308.5159].

145

http://iopscience.iop.org/article/10.1088/0264-9381/30/16/163001
https://arxiv.org/abs/1305.1907
http://www.sciencedirect.com/science/article/pii/S0393044015000352?
http://www.sciencedirect.com/science/article/pii/S0393044015000352?
https://arxiv.org/abs/1312.7471v3
http://iopscience.iop.org/article/10.1088/1126-6708/2005/03/035
http://iopscience.iop.org/article/10.1088/1126-6708/2005/03/035
https://arxiv.org/abs/hep-th/0410183
https://www.worldscientific.com/doi/abs/10.1142/S0217751X97001031
https://www.worldscientific.com/doi/abs/10.1142/S0217751X97001031
https://arxiv.org/abs/hep-th/9502010
https://www.sciencedirect.com/science/article/pii/0550321394900671?via%3Dihub
https://arxiv.org/abs/hep-th/9309039v2
https://arxiv.org/abs/hep-th/9309039v2
https://link.springer.com/article/10.1007/s00209-013-1166-5
https://arxiv.org/abs/1111.1327
http://iopscience.iop.org/article/10.1088/1742-6596/634/1/012004
http://iopscience.iop.org/article/10.1088/1742-6596/634/1/012004
https://arxiv.org/abs/1504.03915
https://link.springer.com/article/10.1007%2Fs10714-010-1070-9
https://link.springer.com/article/10.1007%2Fs10714-010-1070-9
https://arxiv.org/abs/1003.4485
http://www.sciencedirect.com/science/article/pii/S0393044012000174?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S0393044012000174?via%3Dihub
https://arxiv.org/abs/1101.0856
http://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0019/0003/a003/
https://arxiv.org/abs/1308.5159


146 BIBLIOGRAPHY

[11] G. Bazzoni, and J. Oprea, On the structure of co-Kähler manifolds, J. Geom

Dedicata 170 (2014), [arXiv:1209.3373].

[12] D. Bleeker, Gauge Theory and Variational Principles, Addison–Wesley (1981),

(Global Analysis, Pure and Applied, No. 1; Series Advanced Graduate Level

Text).
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[80] M. Jóźwikowski, Prolongations vs. Tulczyjew triples in Geometric Mechanics,

[arXiv:1712.09858].
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[111] P. Ševera, Some title containing the words “homotopy” and “symplectic”, e.g.
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