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The accuracy of energies, energy gradients, and hessians evaluated by systematic molecular frag-
mentation is examined for a wide range of neutral molecules, zwitterions, and ions. A protocol is es-
tablished that may employ embedded charges in conjunction with fragmentation to provide accurate
evaluation of minimum energy geometries and vibrational frequencies in an automated procedure.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894185]

I. INTRODUCTION

A major purpose of ab initio quantum chemistry is to cal-
culate the total electronic energy of molecules so that chemi-
cal reactivity and other properties can be predicted. There are
a hierarchy of quantum chemistry techniques which provide
more and more reliable energy estimates at higher and higher
computational cost. Unfortunately, the computational time re-
quired for the most reliable calculations increases rapidly with
the size of the molecule. If Nbasis is the number of basis func-
tions, MP2 scales as Nbasis

5 and CCSD(T) scales as Nbasis
7,

for example.
These high scaling factors limit the size of the molecules

studied. So in recent years, algorithms have been developed
that reduce this “scaling problem,” ideally to linearity. Based
on the idea that chemical functionality is a local phenomenon,
one approach breaks the molecule into fragments, performs
calculations on the fragments, then reconstitutes the value of
the energy or property from the corresponding values for the
fragments.1 Molecular orbitals,2–5 density matrices,6, 7 and to-
tal electronic energies have all been calculated in this way.

When only the total electronic energy is required, a num-
ber of methods are currently employed, including QM/MM
schemes,8–10 the effective fragment potential method,11, 12

the X-Pol method,13–16 the fragment molecular orbital
method,1, 17, 18 and energy-based fragmentation methods. The
later involves breaking the molecule into fragments, evaluat-
ing the energy of each fragment, and recombining the frag-
ment energies to estimate the total electronic energy. Several
groups have developed such approximations to the energy,
and other molecular properties, in recent times.19–40 The com-
putational time for these fragmentation methods scales only
linearly with the size of the molecule. The variation in com-
putation time between different methods is mostly determined
by the different sizes of the fragments.

Systematic molecular fragmentation by annihilation
(SMFA),24–26, 41 as the name suggests, provides a system-
atic hierarchy of approximations to the molecular electronic
energy, called “Levels.” The molecular fragments at each
Level are determined by the chemical bonding. Level 1 frag-
mentation accounts for the energy due to the interaction of
functional groups with their α substituent groups, Level 2

accounts for α and β substituents, and so on. That is, the frag-
mentation depends on the bonded connectivity between func-
tional groups, rather than the spatial distance between groups.
The interactions between functional groups that are distant
in terms of bonded connectivity but not too far separated in
space, so-called non-bonded interactions, are accounted for
separately. Perturbation theory is used to describe long range
non-bonded interactions. This systematic method has the ad-
vantage that convergence of the energy estimate with increas-
ing Level of fragmentation can be reasonably taken as conver-
gence to the correct value.

Previous papers have demonstrated the convergence of
the energy estimate by SMFA for a set of 96 organic
molecules.25, 26, 41 However, this set contained few molecules
with extensive hydrogen bonding and no molecules with for-
mal charges. The presence of formally charged functional
groups, e.g., –COO− and –NH3

+ groups, or highly polar
groups, introduces a significant many-body induction con-
tribution to the molecular electronic energy. Gao and co-
workers,13–16 Dahlke and Truhlar42 and Li and co-workers34

accounted for this effect in the context of cluster expansions
and fragmentation methods, by performing the ab initio cal-
culations of molecular fragments in the presence of “embed-
ded charges” that represented the rest of the molecule. The
purpose of this paper is to present a modification of the es-
tablished SMFA procedure, involving the use of embedded
charges, to account for the presence of charged or highly po-
lar functional groups. The accuracy of the modified procedure
is demonstrated using a test set of molecules that includes a
much wider range of functional groups than has been con-
sidered previously with SMFA, including aromatic groups,
sugars, proteins, and organic ions. In particular, the use of
embedded charges and the use of perturbation theory for
long range non-bonded interactions introduce additional ap-
proximations for the energy gradients and hessians. Recently,
Gao and Wang43 introduced a variational procedure into the
X-Pol method to account for the mutual polarisation of molec-
ular fragments and to facilitate the evaluation of accurate en-
ergy gradients in the X-Pol method. Here, and in related im-
plementations of embedded charges,34 mutual polarisation is
accounted for in an iterative procedure. The accuracy of the

0021-9606/2014/141(9)/094108/13/$30.00 © 2014 AIP Publishing LLC141, 094108-1
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consequently approximate gradients is investigated in terms
of the accuracy of optimised geometries. The accuracy of the
approximate hessians is investigated in terms of the accuracy
of the harmonic vibrational frequencies. An early investiga-
tion of the accuracy of optimised geometries and vibrational
frequencies in systematic molecular fragmentation only con-
sidered very simple molecules,24 and it is essential40 to estab-
lish the general accuracy of energy gradients and hessians in
an approximate method such as SMFA.

The paper is set out as follows. Section II describes the
application of SMFA to general molecules, including those
containing formal charges. Section III presents the results of
numerical tests of accuracy and convergence, while Sec. IV
contains some concluding remarks.

II. ENERGY AND ENERGY DERIVATIVES

The SMFA approximation to the molecular en-
ergy and other properties has been presented in detail
previously.24–26, 41 Here, we simply summarize previous re-
sults and provide details for the modifications associated with
the calculation of energy gradients and hessians, including the
implementation of embedded charges.

In the SMFA approximation, the total molecular elec-
tronic energy is given by

E = Eb + Enb, (2.1)

where Eb denotes the “bonded energy” and Enb denotes the
“non-bonded energy.”

A. Bonded interactions

A molecule is viewed as a set of functional groups, {Gi,
i = 1, . . . , NG}, which are connected by single bonds (see
Appendix A). In SMFA, a molecule is decomposed into frag-
ments by removing functional groups, in an automated se-
quence of steps that preserve the bonding environment of
each group to some extent. The method has a systematic
set of “Levels” which determine the proximity of elimi-
nated groups, so that with increasing Level, a more extensive
bonding environment is retained. The method is automated
and applicable to any molecular structure, but a chain-like
structure provides an illustrative example. For a chain of
five groups, G1G2G3G4G5, the molecule is decomposed as
follows:

G1G2G3G4G5 → G1G2 + G2G3 + G3G4 + G4G5 − G2 − G3 − G4, (Level 1)

→ G1G2G3 + G2G3G4 + G3G4G5 − G2G3 − G3G4, (Level 2)

→ G1G2G3G4 + G2G3G4G5 − G2G3G4, (Level 3)

and so on for higher Levels. At Level 1, the interaction of each
group with its α substituents is included in the fragments. At
Level 2, β substituents are included and so on. For any general
molecule, we can write the fragmentation of molecule M as

M →
N

f rag∑
n=1

fnFn, (2.2)

where the Fn represent “overlapping” fragments of the
molecule and the fn are integers. When groups are eliminated
in the fragmentation procedure, the remaining groups have
unsatisfied valency. The normal valency of each atom is re-
stored by appending hydrogen atoms along the original bond
direction, as previously described.44 These are referred to as
“hydrogen caps.” Explicitly, the Cartesian coordinates of the
hydrogen cap is given by X(H),

X(H ) = X(j ) + r(j ) + r(H )

r(j ) + r(m)
[X(m) − X(j )], (2.3)

where r denotes a standard covalent radius for the element
associated with each nucleus; nucleus j is one of the nuclei
explicitly contained in fragment n and nucleus m is not con-
tained in fragment n (the j. . . . m bond was broken in forming
the fragment). Previous calculations have indicated that Eq.
(2.3) produces chemically sensible bond lengths for the cap-
ping j. . . . H bond. The positions of the atoms in each frag-

ment are exactly the corresponding positions in the whole
molecule. Hence, a cap defined by Eq. (2.3) has the same po-
sition in every fragment in which it occurs.

The “bonded energy” is given by the sum of the Level L
fragment energies,

Eb =
N

f rag∑
n=1

fnE[Fn; {Z(k),Q(k)}]. (2.4)

The term E[Fn; {Z(k), Q(k)}] denotes the electronic energy
of fragment Fn, which is evaluated in the presence of a
set of charges Q(k) at positions Z(k), so-called embedded
charges.13–16, 34, 42 The point charges are taken to represent the
charge distribution of functional groups that are not contained
in fragment Fn. These point charges are evaluated using a
Natural Population Analysis, and the details are presented in
Appendix B. The normal (default) approach is that charges
are only employed to represent groups that contain formal
charges, for example, RCOO− and RNH3

+ groups. How-
ever, for systems that contain a high density of polar groups,
e.g., water clusters or some proteins, highly polar groups may
also be represented by a set of charges. The point charges
are included in all fragment energy calculations, E[Fn;
{Z(k), Q(k)}], unless that group is actually contained in the
fragment Fn.
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The inclusion of point charges in the fragment energy cal-
culations accounts for two significant contributions to the total
energy:

(i) the electrostatic interaction of groups that do not share
any common fragment Fn; and

(ii) the induction energy produced by the net electric field
due to formally charged (or highly polar) groups acting
on the rest of the molecule.

It is worth noting that the fragmentation expression of
Eq. (2.2) is balanced, in that each group occurs exactly once
on the left hand side, and a net once on the right hand side
(rhs) [see the examples in Eq. (2.1)]. So, counting the interac-
tions of point charges with all groups on the rhs of Eq. (2.4)
shows that the point charges representing a some group, A,
interact a net once with each other group, B, that does not
have any common fragment with A, and (correctly) a net zero
times with groups that do share a common fragment with A.
As has been noted previously,34, 45 this means that two groups
which are represented by point charges and do not share a
common fragment interact twice; group A with the charges
representing group B and group B with the charges repre-
senting group A. This double counting must be corrected (see
below). It is also worth noting that since all charges are in-
cluded in every fragment energy calculation (either within Fn
or as a set of point charges), then the many-body induction ef-
fect is accounted for, at least approximately. The many-body
nature of induction, which depends on the net electric field,
is particularly significant for molecules that contain formal
charges; which is why embedded charges are implemented
herein.

1. Energy gradients

The energy associated with chemical bonding in Eq. (2.4)
is a sum of energies of individual molecular fragments,. The
Hamiltonian for a molecular fragment, Fn, in the presence of
point charges can be written as H(Fn),

H (Fn) = HM (Fn) +
N

e∑
i=1

N
c∑

k=1

−Q(k)

‖x(i) − Z(k)‖

+
N

nuc∑
j=1

N
c∑

k=1

Q(k)q(j )

‖X(j ) − Z(k)‖ , (2.5)

where HM denotes the usual molecular Hamiltonian; x(i),
i = 1, . . . , Ne, denotes the Cartesian coordinate vectors of the
electrons; X(j), j = 1, . . . , Nnuc, denotes the Cartesian coordi-
nate vectors of the fragment nuclei, and q(j) is the correspond-
ing nuclear charge; Z(k), k = 1, . . . , Nc, denotes the Cartesian
coordinate vectors of the point charges, and Q(k) is the corre-
sponding charge at that position. Here, we have neglected the
mutual Coulomb interaction of the point charges.

We assume that an ab initio quantum chemistry pro-
gram produces an approximate solution for the ground elec-
tronic state, subject to this Hamiltonian, which we denote
as �0. The total energy, E(Fn), is given by the expectation

value

E(Fn) = E[Fn; {Z(k),Q(k)}] = 〈�0|H (Fn)|�0〉

= EM (Fn) +
N

c∑
k=1

Q(k)�[Z(k)], (2.6)

where EM denotes the expectation value of HM and the second
term gives the interaction energy of each charge, Q(k), with
the electric potential of the molecule at the position of each
point charge, �[Z(k)]. Clearly, the total electronic energy de-
pends on both the positions of the nuclei and the positions of
the point charges.

The derivative of this energy with respect to the nuclear
positions of atoms in the fragment,

∂E(F
n
)

∂X
α

(j ) , can be obtained

from most standard quantum chemistry programs, either by
finite differences over nuclear positions or from so-called
analytic derivatives for some levels of ab initio theory. The
derivatives of each fragment energy with respect to nuclei in
the original molecule have two components: The explicit en-
ergy derivative associated with nucleus j in fragment n and a
contribution from hydrogen caps.

Suppose that nucleus j contained in fragment Fn is la-
belled nucleus i in the original molecule and has a capping
hydrogen, atom h in Fn, attached to it in place of nucleus m
in the original molecule. Then, from Eq. (2.3), there are con-
tributions to the total energy gradient with respect to atoms i
and m, given, respectively, by

fn

{
∂E(Fn)

∂Xα(j )
+ ∂E(Fn)

∂Xα(h)

[
1 − r(j ) + r(H )

r(j ) + r(m)

]}
,

(2.7)

fn

{
∂E(Fn)

∂Xα(h)

r(j ) + r(H )

r(j ) + r(m)

}
.

The derivatives of the bonding energy are given from Eq. (2.4)
as a sum of fragment energy derivatives, including the contri-
butions from the caps,

∂Eb

∂Xα(i)
=

N
f rag∑

n=1

fn

∂E(Fn)

∂Xα(i)
. (2.8)

Although Eq. (2.3) is a plausible proposal for locating hy-
drogen caps and appears to produce sensible associated bond
lengths, the consequent contributions to the atomic energy
gradients in Eq. (2.7) are nonetheless based on guesswork.
The hydrogen caps “cancel” in the fragmentation formula,
Eq. (2.2), and as a consequence, “cap contributions” to the
gradients appear in Eq. (2.8) with coefficients fn that sum to
zero. The bonding environment of each cap is similar in all
fragments in which it occurs. Indeed, as the value of Level
increases, the bonding environment of a given cap in frag-
ments with cancelling signs becomes more and more simi-
lar, as does the charge distribution in the neighbourhood of
the cap. Hence, the energy gradients for a cap are similar
in each fragment and, when summed with the cancelling fn
coefficients, result in only small contributions to the net en-
ergy gradients for the atomic nuclei in the original molecule.
Nonetheless, the capping procedure ensures that the energy
gradients cannot be given exactly by SMFA.
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Thus far we have partly neglected the role of the point
charges in the gradient of the fragment energy. The deriva-
tives of the fragment energy with respect to the positions of
any point charges are generally not readily available from
ab initio quantum chemistry program packages, except by fi-
nite difference. To approximate these gradients, we note that
if �0 were exact, then the Hellman-Feynman theorem would
hold, and

∂E(Fn)

∂Zα(m)
= 〈�0|

∂H (Fn)

∂Zα(m)
|�0〉

= 〈�0|
∂

∂Zα(m)

N
e∑

n=1

N
c∑

k=1

−Q(k)

‖x(n) − Z(k)‖

+
N

nuc∑
j=1

N
c∑

k=1

Q(k)q(j )

‖X(j ) − Z(k)‖ |�0〉

= ∂

∂Zα(m)

N
c∑

k=1

Q(k)�(n)[Z(k)]

= Q(m)
∂�(n)[Z(m)]

∂Zα(m)

= −Q(m)�(n)
α [Z(m)], (2.9)

where �(n)
α [Z(m)] is the electric field due to the electrons and

nuclei in fragment n, evaluated at the position of the point
charge. The electric field at these positions is readily supplied
by standard quantum chemistry programs, so Eq. (2.9) is read-
ily evaluated at negligible computational cost. Although the
Hellman-Feynman theorem is not exact for an approximate
electronic wavefunction, nonetheless, test calculations indi-
cate that Eq. (2.9) is quite accurate in the following sense:

N
nuc∑

j=1

∂E(Fn)

∂Xα(j )
+

N
c∑

k=1

∂E(Fn)

∂Zα(k)
≈ 0, for α = 1, 2, 3. (2.10)

That is, the sum of the computed forces on the point charges
is equal (typically to about 10−6 a.u.) and opposite to the sum
of the forces on the molecular nuclei.

Now, the positions of these point charges are determined
by the positions of atoms in the original molecule,

Z(m) =
N

nuc∑
j=1

cmj X(j ), (2.11)

and
∂Zα(m)

∂Xα(j )
= cmj . (2.12)

As discussed in Appendix B for the current protocol, cmj is
one or zero, although more complicated schemes have been
considered.46 Combining Eqs. (2.9) and (2.12), by the product
rule, gives a contribution to the energy gradient with respect
to the coordinates of atoms in groups represented by point
charges, associated with the force on the point charges from
the ab initio fragment charge distributions,

∂E(Fn)

∂Xα(j )
∼ −Q(m)�(n)

α [Z(m)]cmj . (2.13)

Such contributions to the total energy gradient rely on merely
plausible assumptions about the magnitude of the point
charges and their association with the positions of atoms in
the molecule, as well as on the applicability of the Hellman-
Feynman theorem. Clearly, the use of Eq. (2.13) introduces
an error in the estimate of the atomic energy gradients. The
magnitude of this error is examined below.

2. Second derivatives of the energy

Similarly, the second derivatives of the energy with re-
spect to the positions of the point charges are approximated
by (neglecting contributions from first-order perturbations of
the electronic wavefunction)

∂2E(Fn)

∂Zα(m)∂Zβ(m)
= −Q(m)�(n)

αβ [Z(m)], (2.14)

where �(n)
αβ [Z(m)] denotes the electric field gradient of frag-

ment n at Z(m). Again, using Eq. (2.12) and the product rule,
Eq. (2.14) leads to contributions to the hessian for atoms rep-
resented by point charges. “Off diagonal” second derivatives
of fragment energies with respect to the coordinates of atoms
in the fragment and atoms represented by charges cannot be
easily evaluated and have been neglected.

The major contributions to the hessian for the bonding
energy are expected to be given by the corresponding formula
for the first derivatives, Eq. (2.8),

∂2Eb

∂Xα(j )∂Xβ(i)
=

N
f rag∑

n=1

fn

∂2E(Fn)

∂Xα(j )∂Xβ(i)
, (2.15)

where the contributions arising from hydrogen caps are taken
into account, using Eq. (2.7).

B. Non-bonded interactions

The non-bonded energy, Enb, contains the interactions be-
tween groups in the molecule that are not accounted for in the
bonded energy, Eb; that is, interactions between groups that
are never contained in a common fragment. These interac-
tions are evaluated from the interaction of one fragment of the
molecule with another fragment, as previously described.24–26

Briefly, if we fragment the molecule at Levels L1 and L2,

M →
N

L1
f rag∑

n1=1

f
(L1)
n1

F
(L1)
n1

,

(2.16)

M →
N

L2
f rag∑

n2=1

f
(L2)
n2

F
(L2)
n2

,

then the non-bonded energy is given by

Enb = 1

2

N
L1
f rag∑

n1=1

N
L2
f rag∑

n2=1

f
(L1)
n1

f
(L2)
n2

E
[
F

(L1)
n1

↔F
(L2)
n2

]
allowed

, (2.17)

where E[F
(L1)
n1

↔ F
(L2)
n2

]allowed denotes the energy of interac-
tion between two fragments, which is allowed. Here, allowed
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means that the interaction has not already been accounted for
in the bonded energy, Eb. The way in which non-bonded frag-
ment interactions are modified to account for the bonded in-
teractions was discussed in detail in Ref. 26. In principle, the
description of these nonbonded interactions can be systemat-
ically improved by increasing the Levels L1 and L2. In prac-
tice, it has been found to be sufficient to take L1 = L2 = 1.

The non-bonded energy of Eq. (2.17) is actually evalu-
ated in a way that can be written as a sum of distinct terms,

Enb = Eab + Eele + Eind + Edisp. (2.18)

Assuming that an interaction, F
(L1)
n1

↔ F
(L2)
n2

is allowed,
then the interaction energy can be evaluated by ab initio quan-
tum chemistry calculation,

Eab

[
F

(L1)
n1

↔ F
(L2)
n2

] = E
[
F

(L1)
n1

+ F
(L2)
n2

; {Z(k),Q(k)}]

−E
[
F

(L1)
n1

; {Z(k),Q(k)}]

−E
[
F

(L2)
n2

; {Z(k),Q(k)}], (2.19)

as the difference in energy between the combined and separate
fragments, calculated in the presence of point charges which
represent groups that are not contained in the fragments listed
to the left of the “;” in each term in Eq. (2.19). These ab initio

calculations are only required if the fragments F
(L1)
n1

and F
(L2)
n2

are separated by a relatively short distance. In practice, all the
atom-atom distances between the two fragments are calcu-
lated and compared to the sum of the Van der Waals radii for
each pair of atoms. An ab initio evaluation of this interaction
is only performed if the ratio of the atom-atom distance to the
sum of the radii is less than a “cut-off” value, denoted dtol,
for at least one pair of atoms. The interaction energies evalu-

ated by Eq. (2.19) are summed with coefficients 1
2f

(L1)
n1

f
(L2)
n2

to give Eab in Eq. (2.18).
The contributions to the energy gradient and hessian aris-

ing from Eq. (2.19) are evaluated in the same manner as
for the ab initio energies that contribute to the bonded en-
ergy, including the contributions from hydrogen caps and the
forces on any point charges. The capping hydrogen atoms
formally cancel in the L1 and L2 fragmentations, so that the
net forces on caps in the non-bonded energy is expected to
be small. However, the editing procedure that ensures only
“allowed” terms occur in Eq. (2.17) leads to some resid-
ual non-vanishing forces on some caps. Hence, the pres-
ence of some capping hydrogens in fragments which interact
“through space” contributes an additional approximation to
the estimation of energy gradients and hessians in SMFA.

For fragments that are separated by larger distances, the
interaction can be accurately evaluated using perturbation the-
ory (see below). This distance based criterion is important, be-
cause if all non-bonded interactions were evaluated ab initio,
as in Eq. (2.18), then the computer time for the whole calcula-
tion would contain a contribution that scaled as the square of
the number of fragments, and hence as the square of the num-
ber of atoms in the molecule. Using a distance based criterion
for Eq. (2.18) ensures that the computer time for the whole
calculation is linear in the number of atoms in the molecule.

When F
(L1)
n1

and F
(L2)
n2

are separated by more than the
cut-off value, the interaction is evaluated using perturbation
theory. In first order perturbation theory, the interaction of
two fragments is electrostatic. As previously reported,26 the
charge distribution of each fragment is described by a set of
distributed electric multipoles (up to the hexadecapole) cen-
tred on each atom in the fragment, using Stone’s GDMA
program.47 The computational effort required is little more
than an evaluation of the energy (and electron density) for
each of the (small) Level 1 fragments. The electron den-
sity of these Level 1 fragments is calculated in the pres-
ence of the point charges (corresponding to all the groups
represented by charges, which are not contained in the rele-
vant Level 1 fragment), to account for the mutual polarisation
of the fragments.48 The interaction energy (to first order) is
then a sum of multipole-multipole interactions between the
fragments

E
[
F

(L1)
n1

↔ F
(L2)
n2

] = Eele

[
F

(L1)
n1

↔ F
(L2)
n2

]
=

∑
a∈F

n1

∑
b∈F

n2

T abqaqb + T ab
α

× (
qaμb

α − μa
αqb

) + ....., (2.20)

which is written explicitly in Eq. (26) of Ref. 26.
Equation (2.20) employs the tensor convention, wherein re-
peated subscripts are summed. Here, Eq. (2.20) is intended to
indicate that the electrostatic interaction is evaluated as a sum
over all the atoms in both fragments of the products of Carte-
sian multipoles (charges, qa; dipoles, μa

α; etc) with Cartesian
tensors, T, of appropriate rank [see page 37 of Ref. 49]. The
interaction energies evaluated by Eq. (2.20) are summed with

coefficients 1
2f

(L1)
n1

f
(L2)
n2

to give Eelein Eq. (2.18).
Previous studies26, 28 have demonstrated that Eq. (2.20)

provides a very accurate description of the long range electro-
static interaction energy between molecular fragments. How-
ever, it is not easy to obtain complete derivatives of Eq. (2.20)
with respect to the nuclear coordinates. A variation of a nu-
clear coordinate results in a variation of the Cartesian tensors,
which is easily evaluated, and a variation in the Cartesian mul-
tipoles, which is not easily evaluated. It would be possible to
evaluate Cartesian gradients of the distributed multipole mo-
ments by finite difference, but this would be computationally
expensive, and is not pursued herein. Here, we approximate
the derivatives of the electrostatic energy by

∂Eele

[
F

(L1)
n1

↔ F
(L2)
n2

]
∂Xα(j )

=
∑

a∈F
n1

∑
b∈F

n2

qaqb ∂T ab

∂Xα(j )

+ (
qaμb

α − μa
αqb

) ∂T ab
α

∂Xα(j )
+ .... .

(2.21)

The accuracy of this approximation is examined below. The
second derivatives of the electrostatic interactions are given
by the corresponding form of Eq. (2.21) involving second
derivatives of the tensors, only.
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In second order perturbation theory, these non-bonded
fragment interactions have a dispersion interaction, Edisp, and
an induction energy, Eind. The dispersion energy is calculated
as a sum over the dispersion energy for each pair of groups
[unless the groups share a common fragment in Eq. (2.2)].
The details of these dispersion interactions have been pre-
sented previously.26 To summarise,

Edisp =
N

G
−1∑

i=1

N
G∑

j=i+1
i↔j allowed

U
ij

disp,

(2.22)

U
ij

disp = −T
ij

αβT
ij

γ δα
i
αγ α

j

βδ

2PiiPjj

(Pii + Pjj )
,

where i and j denote groups, αi denotes the zero frequency
polarizability of group i, Pii is calculated from the relative
magnitude of the imaginary frequency polarisability of group
i, and Tij is a Cartesian tensor evaluated from the Cartesian
vector connecting the centroids of the two groups.

The exact gradient and hessian of Edisp requires evalu-
ation of the Cartesian derivatives of the polarizability and
imaginary frequency polarisability of the groups. These are
not readily available. Moreover, the Tij are defined in terms of
the group centroids, which arbitrarily relates the atomic posi-
tions to Edisp. Hence, exact evaluation of the nuclear deriva-
tives of Edisp is not feasible. Atomic gradients and second
derivatives of Edisp are estimated from the corresponding first
and second derivatives of the Tij tensors alone. Test calcula-
tions reported below show that these first and second deriva-
tives are very small. In the case that an estimate of the Hartree-
Fock energy of a molecule is required, the dispersion energy
is not evaluated.

The static dipole polarizability, αi, for each group is also
used in the calculation of the induction energy. In the case
of systems containing formal charges, the induction energy is
contained within the bonded energy, Eb, due to the inclusion
of embedded charges. Such charges dominate the polarisation
of the fragments and, from the results presented below, ap-
pear to account satisfactorily for the total induction energy. In
most molecules that do not contain formal charges, the induc-
tion energy is small, often below 1 mEh. However, in some
systems containing a large number of polar groups the induc-
tion energy can be more significant. Hence, for systems with-
out embedded charges, the induction energy is evaluated as
follows.

(i) The charge distribution of the Level 1 fragments has been
evaluated, in terms of distributed multipoles, in the eval-
uation of the electrostatic energy.

(ii) The electric field at the centre, X(k), of each group,
k = 1, . . . , Ngroups, can therefore be readily evaluated as

�γ [X(k)] =
N

L1
f rag∑

n=1
allowed

fn

∑
i∈F

n

�i
γ [X(k)], γ = 1, 2, 3,

(2.23)

where the first sum is over all allowed Level 1 frag-
ments, Fn, with coefficients fn. As usual herein, allowed
means that the groups in Fn do not share any common
fragment with group k in Eq. (2.2). The second sum in
Eq. (2.23) is over all atoms in the Level 1 fragment Fn
which have distributed multipoles that produce an elec-
tric field, �i

γ [X(k)], at the group centre, X(k),

�i
γ [X(k)] = T ki

γ qi − T ki
γ εμ

i
ε. (2.24)

In the results presented below, only distributed charges
and dipoles have been employed at each atomic position.

(iii) The field at each group centre induces a dipole in pro-
portion to the static dipole polarizability tensor, α(k), for
each group. These induced dipoles in turn polarise other
groups. However, for systems without formal charges, it-
eration of the field calculation to include the fields due
to induced dipoles is generally not essential for reason-
able accuracy. Hence, the induction energy is simply es-
timated as49

Eind =−1

2

N
groups∑
k=1

3∑
γ=1

3∑
ν=1

�γ [X(k)]αγν(k)�ν[X(k)]. (2.25)

Again, the exact first and second derivatives of the induction
energy cannot be readily calculated since the corresponding
derivatives of the multipole moments and group polarizability
tensor are not easily obtained. Hence, first and second deriva-
tives of Eind are approximated using constant polarizabili-
ties and distributed multipole moments, and derivatives of the
T tensors in Eq. (2.24).

Finally, the total non-bonded energy is given by the sum
of these contributions, as in Eq. (2.18), and the gradient and
hessian of Enb is given by the corresponding sum of gradients
and hessians.

It is important to note that a finite value of the “cut-off”
distance, dtol, has the benefit of ensuring that the computa-
tional time is linear in the number of functional groups in
the molecule. However, a finite value of dtol also results in
some discontinuity in the total energy gradient as the molecu-
lar geometry changes; as some Level 1 fragment to fragment
distance passes through dtol. If dtol is sufficiently large, then
when the fragment to fragment distance is near dtol, the gra-
dients calculated by ab initio methods should be close to the
gradients evaluated by perturbation theory,

∂Eab

∂Xα(j )
≈ ∂(Eele + Eind + Edisp)

∂Xα(j )
. (2.26)

Hence, if dtol is sufficiently large, the discontinuity in the gra-
dients should be small in magnitude.

C. Summary

In summary, the molecular energy is given by a sum of
“bonded” energies and non-bonded interactions. Each bonded
fragment energy is evaluated in the presence of embedded
charges which model the charge distribution of the remain-
der of the molecule. The non-bonded interaction energies are
evaluated ab initio for close interactions (in the presence of
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embedded charges which model the charge distribution of the
remainder of the molecule) and by perturbation theory for
long range interactions, in terms of electrostatic interactions,
induction and dispersion.

The energy derivatives are composed of the correspond-
ing contributions from bonded energies and non-bonded inter-
actions. The derivatives of the ab initio energies with respect
to the atomic positions are provided by the ab initio program
packages, with account taken of the contributions from hydro-
gen atom caps. An approximate description of the gradients
associated with the embedded charges is accounted for. Fi-
nally, approximate derivatives of the long range electrostatic,
induction and dispersion interactions are evaluated.

III. TEST RESULTS

In this section, the accuracy of the SMFA energy, gra-
dients, and hessians is examined for a set of molecules that
vary from relatively small and simple to molecules contain-
ing about 250 atoms. This test set contains features which
were not common in a set of 96 molecules previously used to
examine the accuracy of systematic molecular fragmentation:
The molecules considered here contain aromatic rings, exten-
sive hydrogen bonding and formally charged groups. Some of
these molecules have been studied using related fragmenta-
tion methods, which allow some comparison with alternative
approaches.

A. Test molecules

1. Sugars, peptides, and organic ions

The structures for a set of 38 organic molecules have
been obtained from the Cambridge Structure DataBase.50

There are 14 structures that contain formally charged groups,
and 24 structures which contain no formal charges. These
24 structures include various sugars, peptides, and miscel-
laneous functional groups, with between 42 and 169 atoms
(the average is 64), and which feature extensive hydrogen
bonding. The 14 ions/zwitterions contain between 62 and
180 atoms (the average is 93). The Cartesian coordinates for
all structures are included in Table S1 of the supplementary
material.51 Figure 1 illustrates the smallest and largest of these
structures.

2. Protein conformers

The structure of TM1081, a Thermotoga maritima
anti-s factor antagonist, has been examined using NMR
spectroscopy.52 Generally, NMR data may not be suffi-
cient to completely determine the structure of a protein. In
Ref. 52, various computational methods were used to compile
20 feasible structures, which were deposited in the Protein
Data Bank53 with accession code 2KA5. These 20 structures
all contain a terminal chain which is structurally disordered,
and these chains, each containing 246 atoms, are used here
as a test set of protein conformers. The Cartesian coordinates
of all 20 conformers are included in Table S2 of the supple-
mentary material.51 Two of these structures are illustrated in

FIG. 1. Ball and stick figures depict the smallest and largest structures in the
set of 38 miscellaneous test molecules.

Figure 2. Each structure contains three formally charged
groups, two –NH3

+ groups and one –COO− group. De-
protonating the –NH3

+ groups and protonating the –COO−

group gives an additional test set of conformers (of 245
atoms) that contain no formal charges. These modified struc-
tures are shown in Table S3 of the supplementary material.51

3. Simple zwitterion chains

To illustrate the ability of SMFA to systemati-
cally describe zwitterions, a simple set of structures for

FIG. 2. Ball and stick figures depict two of the 20 protein conformers.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.56.64.29 On: Wed, 24 Sep 2014 04:56:50



094108-8 Michael A. Collins J. Chem. Phys. 141, 094108 (2014)

NH3
+(CH2)nCOO− (for n = 5, . . . , 9) has been considered.

The Cartesian coordinates of these structures are included in
the supplementary material:51 Table S4 gives the structures
optimised at HF/6-31G and Table S5 gives the structures op-
timised at MP2/6-31+G(d,p).

4. Other test cases

To provide some comparison with related work, an addi-
tional four test cases have been included that were examined
previously by Li and co-workers,54 denoted (Gly)12, (H2O)28,
GelA, and GelB in Ref. 54. GelA and GelB are largely alka-
nes with two charged nitrogen or oxygen containing groups;
(H2O)28 is a water cluster; and (Gly)12 is a poly-glycine with
an α-helical structure. The Cartesian coordinates of these
structures [optimised at HF/6-31G(d)] are given in the sup-
plementary material for Ref. 54.

5. Computations

For the miscellaneous test set and protein conform-
ers, ab initio calculations were carried out at the HF/6-
31G level using the GAUSSIAN09 program package.55 For
the NH3

+(CH2)nCOO− structures, calculations were carried
out at the HF/6-31G and MP2/6-31+G(d,p) levels using
GAUSSIAN09. For MP2 calculations, the dispersion energy
was evaluated using the DALTON program package.56 For
(Gly)12, (H2O)28, GelA, and GelB, HF/6-31G(d) calculations
were carried out using GAUSSIAN09.

B. Results

1. Sugars, peptides, and organic ions

The set of miscellaneous organic molecules and ions con-
tain many hydrogen bonds and amide groups. If hydrogen
bonds are treated as normal single bonds, these typically pro-
duce small ring motifs in the bonding structure. As previously
discussed,41 small rings cannot be fragmented, because par-
tial ring fragments contain capping H atoms in close proxim-
ity. Rings of up to 5, 6, 7, 8 groups cannot be fragmented at
Levels 2, 3, 4, 5 or above, respectively. Some structures, such
as α-helical peptides, may then contain small connected rings
which cannot be fragmented. This difficulty can be amelio-
rated if the C–N bond in an amide group is treated as a single
bond, despite being significantly shorter than a normal single
C–N bond. Although the default definition of bonding sets the
amide C–N bond as multiple, here it is set to be a single bond
to allow fragmentation of some α-helical structures.

Figure 3 presents the mean absolute error in the total
HF/6-31G electronic energy for the set of miscellaneous or-
ganic molecules and ions as a function of the Level of frag-
mentation. The standard value26 of dtol, 1.1, is used, except
for Level 2 where dtol = 0 (in order to avoid close contact
of capping hydrogen atoms in the non-bonded interactions).
The total energy is not strongly dependent on the value of
dtol, for values larger than 1.1. Non-bonded interactions be-
tween charged Level 1 fragments are evaluated ab initio, as
in Eq. (2.19). The graph clearly indicates convergence of the
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FIG. 3. The mean absolute error in the fragmentation approximation to the
total HF/6-31G energy is shown versus the Level of fragmentation. The open
symbols correspond to the 24 miscellaneous neutral organic molecules and
the filed symbols correspond to the 14 organic ions and zwitterions.

energy to within a few kJ mol−1 as the Level of fragmentation
increases. Table S8 in the supplementary material51 presents
the individual contributions to the energy [see Eqs. (2.1) and
(2.18)] for each of the 38 molecules, at Levels 2–5. For some
molecules, the total energy is reasonably well converged by
Level 3, but as Figure 3 indicates, generally convergence is
established by Level 4. The 38 molecules contain an average
of 24.5 groups, while the fragment molecules contain an aver-
age of 6.6 groups at Level 3 and 9.3 groups at Level 4. For any
arbitrary molecule, a practical approach is to estimate the to-
tal energy, using a low (inexpensive) level of ab initio theory
at Levels 2–5 to observe convergence of the total energy. Ear-
lier work has established that the error due to fragmentation
does not depend significantly on the size of the basis set or the
method used to treat electron correlation.24, 25 Thus, once the
appropriate Level of fragmentation has been determined, con-
vergence of the energy with respect to basis set and treatment
of electron correlation can be examined in the usual way. The
total calculation time is linearly proportional to the number
of groups in the molecule. However, the ab initio calculations
for all fragments are independent, so if sufficient processors
are available the “walltime” is determined by the largest frag-
ment calculation. The practical limit on the size of basis set
and treatment of electron correlation is thus determined by
the size of the largest fragment.

Figure 4 presents the mean absolute error in the Carte-
sian energy gradients for this test set, for several values of the
Level of fragmentation and the tolerance, dtol. As the value
of dtol increases, more non-bonded interactions are evaluated
ab initio, rather than using electrostatic multipole expansions.
These 38 molecular configurations, from a crystallography
database, are not stationary configurations. The largest gra-
dient at HF/6-31G is of the order of 0.5 (hartree/bohr), and
on average a HF/6-31G gradient component is about 0.07
(hartree/bohr) in magnitude. Given the large forces present
in these structures, and the different chemical composition of
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FIG. 4. The mean absolute error in the fragmentation approximation to the
Cartesian energy gradients (1 a.u. = 1 hartree/bohr) for the 38 miscellaneous
molecules is shown as function of the value of dtol (see text). The open sym-
bols correspond to the 24 miscellaneous neutral organic molecules and the
filed symbols correspond to the 14 organic ions and zwitterions; Level 3 (cir-
cle), Level 4 (squares), and Level 5 (diamond).

the neutral and charged molecules, the differences in gradi-
ent errors between neutral and charged species are not clearly
significant. Figure 4 indicates that the error in the gradient is
smaller at higher Levels of fragmentation and at larger values
of dtol. When considering these gradient errors, it is useful to
note that standard ab initio program packages consider that
a geometry is a stationary point (zero gradient) if the root-
mean-square gradient is below about 0.0003 (hartree/bohr),
and the largest gradient is below 0.00045 (hartree/bohr).
Figure 4 indicates that the error due to the fragmentation ap-
proximation is approaching zero on this scale. As noted in
Sec. II B, the estimation of gradients arising from Eele is
somewhat arbitrary. Hence it is not surprising that the mean
gradient error is reduced for larger values of dtol. For practical
calculation of gradients for geometry optimization, Figure 4
indicates that Level 4 fragmentation is significantly more ac-
curate than Level 3, and that a value of dtol near 2 would be
preferable to the default value of 1.1, which is adequate for
energy calculations. At Level 4 and dtol = 1.1, the mean abso-
lute gradient error is 5.5 × 10−4 (hartree/bohr) if gradients of
Eele are included, but 6.0 × 10−4 if these are neglected. How-
ever, for values of dtol ≥ 1.6, there is no apparent reduction in
the gradient error if gradients of Eele are included.

For the ions and zwitterions, the forces on the back-
ground charges, as in Eq. (2.13), have been accounted for.
However, these appear to be very small contributions in these
test cases: For Level 4 and dtol = 1.1, the mean absolute gra-
dient error is 2.7 × 10−4 (hartree/bohr), and this increases
to only 2.8 × 10−4 (hartree/bohr) if the contributions from
Eq. (2.13) are neglected.

2. Protein conformers

The energies of the protein conformers have been deter-
mined via whole molecule calculations and via fragmenta-
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FIG. 5. The mean absolute error in the relative energies of the 20 protein
conformations is shown against the maximum number of basis functions for a
single fragment calculation for Levels 2–5. The error bars represent one stan-
dard deviation for the 20 relative energy errors. For comparison, the whole
molecule has 1410 functions for the Pople-style 6-31G basis.

tion using the standard defaults (amide CN bonds are mul-
tiple bonds and dtol = 1.1). For each conformer the energy
is measured relative to the average energy of all the con-
formers. The error in these relative energies is then obtained
by comparing the fragmentation and whole-molecule values.
Figure 5 shows the mean and standard deviation of the ab-
solute error in the relative energy of these 20 conformers for
Levels 2–5, graphed as a function of the maximum number
of basis functions required in a single calculation. Table S9 in
the supplementary material51 shows the energies for each con-
former. Figure 5 indicates that the relative energies of these
conformers have converged at Level 3. Figure 6 shows the
Level 3 relative energies for all 20 conformers versus the ex-
act HF/6-31G value. This plot shows that the 20 conform-
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FIG. 6. The relative energy of each protein conformer, evaluated at Level 3
fragmentation, is shown versus the exact HF/6-31G value. The diagonal line
indicates perfect agreement.
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FIG. 7. The mean absolute error in the components of the energy gradient
for the 20 protein conformers is shown as a function of the dtol parameter, for
Level 3 (�) and Level 4 (•) fragmentation. The results for the corresponding
neutral peptides (see text) are shown for Level 3 (o) and Level 4 (�).

ers range in energy over about 367 kJ mol−1 and that the
relative order of these energies is reproduced well at Level
3 fragmentation.

These 20 structures are not stationary points for HF/6-
31G calculations, with gradients as large as about 0.05 a.u.
in each case. Figure 7 displays the mean absolute error in
the HF/6-31G gradients for the 20 protein structures versus
dtol for Level 3 and Level 4 fragmentation. Contributions to
the gradient from the electrostatic energy and the forces on
the background charges have been included. Figure 7 also
presents the corresponding mean absolute errors for the “neu-
tral” proteins, in which the –NH3

+ groups are de-protonated
and the –COO− group is protonated. As for the miscellaneous
test set, the contributions from the electrostatic energy, Eele,
are small for dtol ≥ 1.6. Fig. 7 displays the same trend in the
gradient error versus dtol as does Fig. 4. At Level 4, the mean
absolute error is below 3 × 10−4 for dtol above about 1.8. The
figure also clearly indicates that the gradients are evaluated
with much the same accuracy for both the charged and neu-
tral proteins.

These proteins contain aromatic rings in the side chains,
histidine, and phenylanaline residues, which impose a lower
limit on the size of the largest fragments. At Level 4 (Level
3), the largest ab initio calculation requires 241 (183) basis
functions at 6-31G, compared to 1410 basis functions for the
whole molecule.

3. Simple zwitterion chains

Figure 7 indicates that the error in the energy gradient at
Level 3 is reasonably converged for dtol ≥ 2. Hence, geom-
etry optimisation might be carried out using values of dtol in
this range. Table I presents the results of geometry optimisa-
tion of the molecules NH3

+(CH2)nCOO−, for n = 5, . . . , 9 at
the HF/6-31G and MP2/6-31+G(d,p) levels of ab initio the-
ory, at Level 3 with dtol = 2.1, compared to optimisation of
the whole molecules. Tables S6 and S7 in the supplementary

TABLE I. The geometry, energy, and frequency errors in NH3
+CH2

(CH2)nCH2COO− chains, with n = 5, . . . , 9, optimised at the given levels of
theory using fragmentation Level = 3, and dtol = 2.1. The errors are relative
to the corresponding properties for structures optimised without fragmenta-
tion. Here, 〈|δr|〉 is the mean absolute error in the bond lengths, 〈|δθ |〉 is the
mean absolute error in the valance bond angles, 〈|δτ |〉 is the mean absolute
error in the dihedral angles, 〈|δω|〉 is mean absolute error in the harmonic
vibrational frequencies, and Max |δω| is the maximum absolute error in the
frequencies.

Energy error 〈|δr|〉 〈|δθ |〉 〈|δτ |〉 〈|δω|〉 Max |δω|
System (kJ mol−1) (Å) (deg) (deg) (cm−1) (cm−1)

HF/6-31G
5 −0.34 0.00020 0.032 0.15 0.6 3.9
6 −0.74 0.00019 0.024 0.15 0.6 3.1
7 −0.75 0.00018 0.026 0.12 0.7 3.3
8 −0.79 0.00015 0.021 0.028 0.7 2.0
9 −0.95 0.00015 0.023 0.027 0.7 2.9

MP2/6-31+G(d,p)
5 −1.20 0.00022 0.053 0.49 0.9 4.2
6 −2.59 0.00021 0.063 0.72 1.2 4.7
7 −2.79 0.00022 0.054 0.55 1.1 3.7
8 −2.97 0.00019 0.044 0.53 1.3 8.7
9 −3.38 0.00020 0.045 0.56 1.4 9.4

material51 shows the optimised structures for Level 3 and dtol
= 2.1. Results for dtol = 1.6 are very similar to those shown in
the tables. The SMFA and whole-molecule optimised Carte-
sian structures were converted to z-matrix format using the
open babel program57 to allow comparison of bond lengths,
valance bond angles, and dihedral angles. It is clear from
Table I that the optimised geometries are very close to the
exact structures in every case, indicating that the energy gra-
dients have been evaluated to sufficient accuracy. The mean
errors in the frequencies are also very small, which indicates
that the hessians have also been evaluated to sufficient accu-
racy. The errors for MP2/6-31+G(d,p) appear to be slightly
larger than for HF/6-31G, but are still small. There are no
significant contributions to the energy derivatives from long
range dispersion, in these cases. Figure 8 presents the highest
and lowest frequencies in these chains, comparing the exact
and Level 3 results. It is interesting to note that the variation
of the lowest frequency mode with chain length is well repro-
duced in the fragmentation approximation, even though this
mode is a delocalised cooperative motion of the whole chain.

4. Other test cases

Reference 54 presented measures of the accuracy with
which the GEBF fragmentation method produced optimised
structures for moderately large molecules, ions, and clusters.
Table II presents SMFA results for a selection of these struc-
tures, denoted (Gly)12, (H2O)28, GelA and GelB in Ref. 54.
The SMFA optimised structures are given in Table S10 of the
supplementary material51 for this article, while Table II in-
cludes some measures of the deviation of these SMFA struc-
tures from the optimised structures.54 Given, the results above
for the accuracy of energy gradients, a value of dtol = 2.1
was used for geometry optimisation for (H2O)28, GelA and
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FIG. 8. The highest and lowest frequencies for NH3
+(CH2)nCOO− (for

n = 5, . . . , 9) at the MP2/6-31+G(d,p) level are shown for the whole molecule
(•) and using Level 3 fragmentation with dtol = 2.1 (�).

GelB, while it was found that dtol = 3.1 was more accurate
for (Gly)12 at Level 3. The SMFA and whole-molecule opti-
mised Cartesian structures were converted to z-matrix format
using the open babel program,57 so that mean absolute devi-
ations in the valance bond lengths, valance bond angles and
dihedral angles could be calculated. Note that for (H2O)28 hy-
drogen bonds are included in the bond lengths, bond angles,

and dihedrals. Harmonic vibrational frequencies were evalu-
ated for all optimised structures, so that the mean absolute
deviation in the frequencies and the maximum absolute fre-
quency deviation could be evaluated. For GelA and GelB,
embedded charges were employed to represent the formally
charged groups only. Table II shows the advantage of using
embedded charges in a water cluster, which has a high density
of very polar groups. The charges are obtained from a NPA
calculation of each isolated water monomer. The (H2O)28 op-
timised geometry, including the very “soft” dihedral angles, is
more accurate when these charges are included. Moreover, the
vibrational frequencies are much more accurate. For (Gly)12,
embedded charges were included to represent only the 13
amide groups (using NPA charges for the isolated groups),
and hydrogen bonds were not included. The α-helical struc-
ture of (Gly)12 was then obtained with the accuracy shown.
Similar accuracy was not possible in the absence of embed-
ded charges.

The results in Table II can be compared with correspond-
ing results in Tables I and III of Ref. 54. This comparison indi-
cates that the SMFA method produces approximate energies,
geometries, and vibrational frequencies that are comparable
or better in accuracy to the GEBF method, and often requires
smaller fragments (lower numbers of basis functions).

IV. CONCLUDING REMARKS

This paper has established a protocol which can be used
in an automated procedure to estimate the energy, minimum
energy geometry, and harmonic vibrational frequencies of
general organic and biological molecules using SMFA with
embedded charges.

The accuracy of the protocol has been demonstrated for
a wide range of molecules. One might ask why are the gradi-
ents and hessians in SMFA are so accurate, given the many ap-
proximations involved – fragmentation, the use of capping hy-
drogen atoms, treatment of through space interactions partly
by ab initio methods and partly by perturbation theory in-
cluding multipole-multipole interactions, the use of embed-
ded point charges, and a very simple account of the forces on
embedded charges. The basic reason why the energy and cor-
responding derivatives are accurate is because the large forces
are described by the Level L fragmentation of Eqs. (2.2)

TABLE II. The structure of the listed molecules has been optimised at the fragmentation Levels shown, at the HF/6-31G(d) level of ab initio theory, and
compared with the optimised structure of the whole molecule. The notation “(chgs)” denotes that embedded charges have been used (see text for details).
“Basis” shows the maximum number of basis functions required for a single fragment calculation in SMFA, compared to the number of basis functions required
for the whole molecule, while other notations are defined in Table I.

Exact Energy Max
Molecule Level energy (a.u.) error (a.u.) Basis 〈|δr|〉 (Å) 〈|δθ |〉 (deg) 〈|δτ |〉 (deg) 〈|δω|〉 (cm−1) |�ω| (cm−1)

GelA 3 − 1946.05069 − 0.00112 216/710 0.00020 0.047 0.32 0.8 6.3
GelB 3 − 2335.42596 0.00055 178/706 0.00015 0.0437 0.30 0.7 10.5
(H2O)28 2 − 2128.80493 − 0.00082 114/532 0.04771 3.308 57.41 5.7 62.2
(H2O)28 3 − 2128.80493 0.00329 209/532 0.02230 1.594 27.18 2.5 17.1
(H2O)28 2 (chgs) − 2128.80493 − 0.00001 114/532 0.00218 0.263 10.69 1.6 17.3
(H2O)28 3 (chgs) − 2128.80493 0.00030 209/532 0.00065 0.078 0.26 0.7 8.0
(Gly)12 3 (chgs) − 2728.84807 − 0.00090 140/881 0.00082 0.155 4.82 2.4 8.8
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and (2.4). The capping hydrogen atoms formally cancel in
Eq. (2.2). If L is sufficiently large, the chemical environment
of each cap in a fragment with positive coefficient, fn, is very
nearly the same in other fragments with complementary neg-
ative coefficients. Hence, the net forces on the caps are near
zero; the caps are not exerting forces on the “real” atoms.
As the value of L increases, the net forces of the caps more
nearly vanish. Other fragmentation schemes report reasonably
accurate energy gradients and hessians, simply by using the
ab initio derivatives of the “real” atoms in the fragments, with
no correction for caps or for long range interactions.31, 54 The
correction for caps in Eq. (2.7) is likely very small, any er-
ror in this correction is also likely to be very small. Smaller
forces arise from the non-bonded interactions. The largest of
these are evaluated ab initio, for all interactions between frag-
ments closer than dtol. Again, the H atom caps formally can-
cel in the Level 1 fragmentation, so make little contribution
to a Level 1–Level 1 description of the non-bonded interac-
tions; some interactions involving caps arise from the editing
process that restricts Eq. (2.17) to allowed interactions. Only
the quite long range (and likely very small) non-bonded in-
teractions are treated using perturbation theory. Other authors
neglect these interactions entirely or account for them via the
embedded charges. No doubt the very approximate treatment
of long range forces produces a significant relative error in
the estimates of these forces, but the total error is small be-
cause the forces are small. This comment applies to the forces
originating from both Eqs. (2.13) and (2.21), as both these
forces only make a contribution to interactions between frag-
ments which are separated by more than dtol and/or do not
share a Level L fragment in common. The results above show
that accurate gradients and hessians are obtained for neutral
molecules, ions, and zwitterions, which indicates that the ap-
proximations employed for all long range interactions are suf-
ficiently accurate.

The computational efficiency of the SMFA approach re-
sides in the fact that the total computational effort required
scales only linearly with the number of functional groups in
the molecule. Moreover, given a sufficiently large number of
processors, the walltime required is only proportional to the
size of the largest single fragment produced by the SMFA
process.

A significant advantage of the SMFA procedure is that, as
the name suggests, it is systematic. Estimation of molecular
properties at Levels 2–5 (say) demonstrates convergence of
the property value and establishes the Level of fragmentation
required. Systematic convergence of the property values with
respect to the level of ab initio method and basis set can then
be explored in the usual way.
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APPENDIX A: GROUPS AND BONDING

All atoms in a molecule are assigned to a set of groups,
which are generally intended to coincide with the usual chem-

ical definition of a functional group. The definition of groups
follows from the definition of “bonding” and is largely the
same as that reported previously:25

(i) Two atoms are defined to be connected by a single bond
if the sum of the covalent radii of the two atoms + 0.4 Å
is greater than the distance between the atoms. All single
bonds are assigned initially.

(ii) A single bond is replaced by a multiple bond if the sum
of the covalent radii of the two atoms +0.08 Å is greater
than the distance between the atoms, unless either atom
has its normal valence (for example, an oxygen has two
single bonds, nitrogen has three single bonds, carbon
has four single bonds). For example, one could define
the CN bond in an amide group to be a multiple bond
(such bonds, at equilibrium, would be sufficiently short
in length to be defined as multiple bonds)

(iii) Two atoms connected by a multiple bond are contained in
the same group. Hydrogen atoms are defined to be con-
tained in the same group as the “heavy” atom to which
they bonded.

(iv) In the case where formal charges are present: If atom A is
connected by a single bond to a formally charged atom B
(or to an atom which is connected to a formally charged
atom B by a multiple bond), then atom A is taken to be in
the same group as the formally charged atom.So, for ex-
ample, in a structure like –(CH2)–COO−, one O atom is
formally charged. Both O atoms may have short bonds to
the C atom, taken to be multiple bonds. Thus all three
atoms, COO, must be in the same group. Then, since
the CH2 group is connected by a single bond to the C
atom, all the atoms, (CH2)COO, are contained in a single
group.

(v) Hydrogen bonds can be defined as a separate type of
bond. In the current implementation, a hydrogen bond
can exist only between two “heavy atoms” that are either
oxygen or nitrogen. Such a bond exists if the distance
between a hydrogen single bonded to O or N is within
2.4 Å of another O or N atom. Hydrogen bonds are
treated like any other single bond by the fragmentation
procedure, except that no capping H atom is employed
when a hydrogen bond is broken. It is worth noting that if
hydrogen bonds are not requested, then such interactions
are accounted for as part of the non-bonded interactions.
For the case of water clusters, hydrogen bonds are em-
ployed, as they are the only bonds connecting groups.

APPENDIX B: POINT CHARGES

The molecule is fragmented into single groups, where hy-
drogen caps are introduced in place of any bonds broken in
the original molecule, as previously described.25 The ground
state electronic wavefunction is evaluated at the chosen level
of ab initio theory and a Natural Population Analysis58, 59 is
used to assign charges to each atomic centre.

Each group may contain one or more hydrogen atom cap,
each attached to a heavy atom in the group. The charge on
each hydrogen cap is added to that of the heavy atom to which
it is attached, at the position of the heavy atom. No charge
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is located at the cap positions. This procedure prevents very
close contact between atoms in other groups with the point
charges in any subsequent ab initio calculation. The total (in-
teger) charge of the formally charged group is preserved.

More complicated approaches using distributed multi-
pole representations of the charge distribution47 were exam-
ined but found to be unnecessary.
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