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Modified Shepard interpolation based on second order Taylor series expansions has proven to be
a flexible tool for constructing potential energy surfaces in a range of situations. Extending this to
gas–surface dynamics where surface atoms are allowed to move represents a substantial increase
in the dimensionality of the problem, reflected in a dramatic increase in the computational cost of
the required Hessian (matrix of second derivatives) evaluations. This work demonstrates that using
approximate Hessians derived from well known Hessian update formulae and a single accurate Hes-
sian can provide an effective way to avoid this expensive accurate Hessian determination. © 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868637]

I. INTRODUCTION

There has been sustained development in the applica-
tion of electronic structure theory to calculating the ener-
gies of molecular and condensed phase systems over the past
50 years. Nonetheless, an enduring problem is how to use the
results of such calculations in realistic atomistic simulations
of the dynamics of the system. Even within the simplest Born-
Oppenheimer approximation, a continuous representation of
the potential energy surface (PES) as a function of atomic co-
ordinates is usually required. Electronic structure theory cal-
culations almost universally provide PES information only at
a single point.

Many methods have been developed to construct con-
tinuous PESs from discrete calculated PES data. A suitable
continuous functional form can be fit to the sampled data.1–3

A neural network representation is a special case of this
approach.4–6 Cluster, “n-mode” or reproducing kernel Hilbert
space expansions7–9 can be used, or the potential energy data
can be interpolated with multidimensional splines or other
styles of interpolation.10–13 A method of the latter type that
has been used in a range of scenarios is a modified Shepard
interpolation, in which the “global” representation of the PES
is an interpolating weighted sum of (usually) second order
Taylor series expansions around scattered geometries.

A modified Shepard interpolation of PES data was used
in the pioneering work of Ischtwan and Collins14 to develop
an automated procedure to build PESs for bi-molecular reac-
tions using classical dynamics. Termed Grow, the procedure
has proven reliable and flexible.15 The PESs are constructed
specifically for classical molecular dynamics, but quantum
calculations can equally be performed on these PESs.16, 17

Methods are also being developed for sampling based on
quantum dynamics.18, 19

Modified Shepard interpolation and the Grow procedure
have been generalised to describe gas–surface reactions in
at least three formalisms. In one implementation, the solid
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surface atoms were treated as an extension of the gas phase
description.20 More recent work uses systematic molecular
fragmentation to express the gas–surface PES as a sum of
fragment PESs,21 or constructs a custom set of coordinates
to take more explicit account of the symmetry present in gas–
surface interactions.22

A desirable extension of the work on interpolating gas–
surface PESs would be to incorporate the effect of motion of
the surface atoms explicitly. In principle, one could incorpo-
rate coordinates describing surface atom motion with appro-
priate consideration of the symmetry of the system. There are
a number of ways in which this could be done, such as using
coordinates to describe specific phonons or by allowing cer-
tain atoms to move independently with Cartesian coordinates
for each.

Allowing a useful range of solid surface vibrational
modes would require explicit consideration of a supercell of
the surface lattice. However, this presents a practical diffi-
culty. Electronic structure theory calculations describing gas–
surface interactions, particularly with metal surfaces, are cur-
rently performed almost exclusively using periodic density
functional theory (DFT). Available codes for performing pe-
riodic DFT calculations do not allow the calculation of sec-
ond derivatives of the energy analytically. Thus, the second
derivative matrix (known as the Hessian) that is required to
construct a second order Taylor series expansion around a ge-
ometry must be calculated by a finite difference of the first
derivatives or energies, performing a series of DFT calcula-
tions with each coordinate stepped up and down. For exam-
ple, accurately calculating the required Hessian for a diatomic
interacting with a static surface from forces requires 12 addi-
tional DFT calculations to be performed, two for each degree
of freedom. For a diatomic interacting with a metal surface in
which one surface atom is allowed to move in each surface
unit cell, calculating the full Hessian for a 3 × 3 supercell by
differencing requires 66 additional DFT calculations. When
combined with the likelihood that the higher dimensional do-
main of the PES would require an increase in the number of
points required to converge the interpolated PES, and the fact
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that often more than one surface atom per unit cell should be
allowed to move,23 the additional computational time required
to calculate the Hessian by finite difference becomes problem-
atic. The general unavailability of analytic second derivatives
in periodic DFT programs will continue for the foreseeable
future.

Experience in interpolating molecular PESs suggests that
neglecting the second order term of the Taylor series does
not offer a solution.24 However, interpolating between second
order Taylor series expansions using imprecise Hessians has
been successful in particular contexts.25, 26 This suggests the
question to be addressed in this work: Can we construct a use-
ful modified Shepard interpolation for PESs using a computa-
tionally convenient approximation for the Hessian of surface
atom degrees of freedom?

The field of nonlinear optimisation provides a rich
set of methods for estimating Hessian information without
explicitly evaluating second derivatives. The quasi-Newton or
variable metric methods, in particular, define useful means
of accumulating Hessian information from the gradients of
a function calculated at a number of different points in a
high dimensional domain. Developed from the 1950s,27 these
methods start from an estimate of the Hessian at a starting
point (which does not need to be accurate) and update the
Hessian as the optimisation algorithm proceeds toward the
desired minimum of the target function. Often, the Hessian
approximation converges to the true Hessian at the function
minimum.

In this work, we turn that process around. Starting from
a known minimum of a potential function and the Hessian at
that point, can we use Hessian update formulae to construct
approximations to the Hessian at points displaced from the
minimum that are useful in constructing modified Shepard
interpolations?

II. FORMALISM

Loosely, the modified Shepard interpolation of a poten-
tial function as a function of atomic coordinates x, including
symmetry, is given by14, 15, 22, 28

Vinterp(x) =
∑

i

∑
g∈G

w(g◦i)(x) T(g◦i)(x), (1)

where the sum over i sums over all known data points where
the potential energy and its derivatives have been calculated,
{x(i)}. G represents the set of symmetry operations to be ap-
plied under which the potential is invariant, with g◦i indicat-
ing that the quantity for data point i is to be transformed ac-
cording to the symmetry element g. T are the Taylor series
expansions

T(i)(x) = E(i) + �ET
(i)(x − x(i)) + 1

2
(x − x(i))

T B(i)(x − x(i))

(2)
in which E(i), �E(i), and B(i) are the potential energy, its gradi-
ent and Hessian, respectively, evaluated at x(i). Finally, the w

in Eq. (1) are the interpolating weight functions. In this work,

we use the simple weight functions

w(g◦i)(x) = ν(g◦i)(x)∑
j

∑
h∈G

ν(h◦j )(x)
(3)

with

ν(i)(x) = ‖x − x(i)‖−2p (4)

and p > 0. In Grow parlance, this is a “1-part” weight
function.29

Three Hessian update formulae commonly used in quasi-
Newton optimisation algorithms30 are used in this work.
Given a gradient g and Hessian matrix B at a point x and a
gradient g′ at a point x′, for convenience we define

δδδ = x′ − x, (5)

γγγ = g′ − g, (6)

and

εεε = γγγ − Bδδδ. (7)

We can then approximate the Hessian at point x′ using the
symmetric rank one update given by

B ′
SR1 = B + 1

εεεT δδδ
εεεεεεT , (8)

the Powell update given by

B ′
Powell = B + 1

δδδT δδδ
(εεεδδδT + δδδεεεT ) − εεεT δδδ

(δδδT δδδ)2
δδδδδδT (9)

or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
given by

B ′
BFGS = B + 1

δδδT γγγ
γγγγγγ T − 1

δδδTBδδδ
BδδδδδδTB. (10)

In the context of a central point where the Hessian is
known and a cluster of points around this central point where
the Hessian is to be estimated, these update formulae can be
applied in a number of ways. Three methods are applied in
this work: the “from centre” scheme where the update for-
mulae are applied to infer the Hessian at each point directly
from the central point, the “from nearest” scheme in which
the Hessians are propagated outward from the central point,
using the update formulae only between points where the
Hessian is known or has already been approximated and the
nearest points, and the “weighted” scheme where Hessians
are propagated outward using update formulae for all known
or already approximated Hessians in a weighted sum with
distance-based weight functions similar to those of Eqs. (3)
and (4). If data points are added sequentially (as would be the
case in the Grow procedure), the second and third of these
schemes would require reassessment of the Hessians for all
previous points when data points are added, as new points
will often be closer to the central point (where the Hessian is
known precisely) than previous points.

Two test potentials have been used to test the utility of
these updates for modified Shepard interpolation. The first
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was a simple two-dimensional function composed of coupled
quartic and Morse potential terms,

V2 = 0.7(1.9x2 + 1.65x4)

+[1.17 − 0.7(1.9x2 + 1.65x4)](1 − e1.03(z+1.5z2)).

(11)

The second was designed to represent a lattice of surface
atoms. A 3 × 3 grid of atoms arranged in a two-dimensional
hexagonal lattice with a lattice parameter of 6 was considered
explicitly, with each atom allowed to move in three dimen-
sions. Thus, the potential energy was a function of 27 degrees
of freedom. The potential was comprised of a sum of anhar-
monic vibrational terms centred on the equilibrium position
of each of the nine atoms and Lennard-Jones potentials be-
tween each atom and its six nearest neighbours in the lattice,
treated periodically in x and y

V27 =
9∑

i=1

⎧⎨
⎩0.015

∣∣x2
i +y2

i

∣∣ + 0.05
(
x2

i +y2
i

)2 +1

3
(1−e−z/3)2

+0.05
∑
j∈Ni

[(
6

rij

)12

− 2

(
6

rij

)6
]⎫⎬
⎭ , (12)

where xi, yi, and zi are the displacements of the ith atom from
its equilibrium lattice position, the sets Ni contain the iden-
tities of the six nearest neighbours to atom i, and rij is the
distance from atom i to atom j under the minimum image con-
vention.

III. RESULTS

In this work, the utility of the modified Shepard inter-
polation using Hessian update formulae was tested in three
ways.

A. Optimal interpolation of V2

The first test was for an interpolation of V2. An energy
parameter � defines a domain D� in which V2 ≤ �. With a
fixed number of data points n defining the interpolated poten-
tial Vinterp, the function

f� = max
(x,z)∈D�

(|Vinterp − V2|) (13)

was minimised with respect to the coordinates of the n data
points (xi, zi) ∈ D�. The simulated annealing implementa-
tion of Goffe et al.31 was used to perform the minimisation.
Minimisations were carried out for a range of values of � and
n.

Tests were conducted for the interpolated potential
Vinterp being constructed with different approaches based on
Eqs. (1)–(4), with p = 4. In all cases, one data point was lo-
cated at the potential minimum position at the origin, whose
second order Taylor series expansion was constructed using
the correct, analytic Hessian evaluated at that point. The re-
maining n − 1 data points were treated with six different ap-
proaches, namely:

FIG. 1. Optimum values of f� [Eq. (13)] as a function of the number of data
points for � = 0.1 and � = 0.7 using six different interpolation schemes (see
text). Symbols representing calculations are connected by straight lines.

1. second order Taylor series expansions using analytic
Hessians;

2. first order Taylor series expansions, neglecting the sec-
ond order term of Eq. (2);

3. second order Taylor series expansions using Hessians
approximated from that at the origin by the rank one for-
mula, Eq. (8);

4. second order Taylor series expansions using Hessians
approximated from that at the origin by the Powell for-
mula, Eq. (9);

5. second order Taylor series expansions using Hessians
approximated from that at the origin by the BFGS for-
mula, Eq. (10);

6. second order Taylor series expansions using the Hessian
evaluated at the origin as the Hessian everywhere.

The n − 1 data points were replicated according to the
V2(x, z) = V2(−x, z) symmetry of V2.

The optimum values of f� (the maximum absolute inter-
polation error) are shown in Figure 1 for � = 0.1 and � = 0.7.
Consistent with previous work,24 using mostly first order Tay-
lor series expansions for the modified Shepard interpolation
gave a maximum interpolation error several orders of magni-
tude larger than using second order Taylor series expansions.
Using the Hessian from the potential minimum everywhere
did improve the interpolation error (at no significant compu-
tational cost), but still fell several orders of magnitude short
of the performance of the second order expansions.

Using one of the three Hessian update formulae reduced
the interpolation error substantially, generally to within an or-
der of magnitude of the full second order expansion result.
The three Hessian update formulae performed approximately
equivalently.

B. 3 × 3 lattice: Defined path

The second test was for an interpolation of the two-
dimensional periodic lattice potential V27. A continuous pre-
defined path was devised starting and finishing at the ori-
gin, passing through a number of random points and high
symmetry points in the 27-dimensional space describing the
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locations of the lattice atoms. Along this path V27 varied from
its minimum at −2.7 up to a maximum of −1.74. The ener-
gies along this path were calculated for a modified Shepard
interpolation, initially using only a data point with an accu-
rate Hessian at the origin. Subsequently, the point of maxi-
mum deviation between Vinterp and V27 along this path was
determined, and a data point added at that location. This can
be considered to be an idealised simulation of the Grow pro-
cedure, as the point of maximum error would be an attrac-
tive geometry to add in Grow were it to be identifiable. Points
were added until the maximum deviation between Vinterp and
V27 was smaller than 0.005 (0.5% of the energy range along
the path).

The six interpolation schemes described in Sec. III A
were used in this test. The update formulae were used in the
three different modes described in Sec. II, being directly from
the central potential minimum data point, propagated from the
nearest already known Hessian, or propagated in a weighted
average update from all nearby known Hessians.

For simplicity in this proof of principle work only a sub-
set of the symmetries present in V27 were implemented for the
g sum of Eq. (1), being the translational symmetry of the un-
derlying lattice. Thus, a displacement of one of the nine atoms
in the lattice is exactly equivalent in the interpolated PES to
a similar displacement (in the same direction) of any of the
other atoms. Other symmetries of the appropriate hexagonal
plane group (accounting for equivalent displacements in dif-
ferent directions) were not implemented.

General features of the energetics and interpolations
along this predefined path are shown in Figure 2. As V27 is
a concave function in the region being examined, errors in
the interpolation using first order Taylor series expansions al-
ways underestimated the value of the function. On the scale
of the plot in Figure 2 an interpolation based on 12 data points
and second order Taylor series expansions reproduced the po-
tential profile well, whether the Hessian was evaluated an-
alytically or by using an update formula from the potential
minimum.

Figure 3 examines the performance of the modified Shep-
ard interpolation schemes in more detail. Plotted is the mean
absolute interpolation error along the predefined path as a
function of the number of data points, for the various interpo-

FIG. 2. V27 along the predefined test path as well as the 12 data point inter-
polations using first order, correct second order, and Powell-updated Taylor
series expansions.

FIG. 3. The average error along the predefined path under a range of inter-
polation schemes for V27. Hessian update formulae applied from the central
point (solid lines), from the nearest available Hessian (dashed lines) and as a
weighted sum of available Hessians (dotted lines).

lation schemes tested. Data points were added until the maxi-
mum absolute interpolation error dropped below 0.005.

Extending beyond the range shown in Figure 3, an inter-
polation based on first order Taylor series expansions required
140 points to achieve the 0.005 maximum error criterion. Ap-
proximating Hessians with the symmetric rank one formula
from the central point was not continued beyond 100 data
points due its apparent instability.

Like in the previous example, using first order Tay-
lor series expansions exhibited the worst convergence and
the standard second order interpolation the best, with using
the Hessian from the potential minimum copied for all data
points providing intermediate performance. Estimating Hes-
sians with the BFGS or Powell formulae determining the un-
known Hessians from the central potential minimum point di-
rectly (“From centre”) gave somewhat smaller interpolation
errors than simply copying the potential minimum Hessian.
Using the update formulae to estimate Hessians sequentially,
either propagating outward from centre to the nearest point
(“From nearest”) or using a number of estimates in a distance
weighted scheme (“Weighted”) gave errors that were sub-
stantially smaller still. Little difference was observed in the
performance of the sequential update schemes. Notably, this
included the symmetric rank one formula, despite the non-
convergence of applying this update from the central point.

C. 3 × 3 lattice: Classical trajectory

The Grow procedure is usually applied by monitoring dy-
namical results as data points are added to the interpolation of
the potential function.15 Thus, it is desirable to test the util-
ity of the Hessian update formulae in a similar manner. In
the context of vibrational motion of surface atoms, there is
not a single dynamical quantity that is easily monitored in the
same way as, for example, the reaction probability in a reac-
tive system. Instead, a classical trajectory was calculated for
a short time on the interpolated PES, using the error in the
interpolated PES along the trajectory to select points akin to
the dynamics-guided sampling used for Grow.
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Being subject to classical mechanics, changes to the PES
caused by adding data points to the modified Shepard inter-
polation could lead to the trajectory exploring completely dif-
ferent regions of configuration space than under the PES from
the interpolation without those data points. To allow conver-
gence in an easily manageable number of data points, for this
proof of principle calculation the length of the trajectory was
progressively extended, adding data points until the maximum
error was small between extensions. Note that the maximum
interpolation error increased dramatically when the trajectory
was extended to longer time, as the trajectory explored new
regions far from the existing data points.

For the dynamics, the value of the potential function V27

was interpreted as electron volts and the atoms were taken to
have a mass of 60 u, approximately the mass of nickel. The
resulting dynamics explored the PES over a range of a little
over 0.4 eV, or around 5000 K.

Using second order Taylor series expansion in the mod-
ified Shepard interpolation of V27 achieved the desired accu-
racy along the entire trajectory with 80 data points, as shown
in the upper panel of Figure 4. Using a first order Taylor se-
ries expansion everywhere except the potential minimum did
not yield satisfactory results, with errors around 0.002 from a
700 point interpolation along only three quarters of the de-
sired trajectory length. Copying the potential minimum Hes-
sian to all points performed remarkably well, giving the de-
sired accuracy with around 200 data points (second panel,
Figure 4).

The Powell and BFGS update formulae, applied either
from the nearest assigned data point or through weighted up-
dates, also performed well. The lower panels of Figure 4 show

FIG. 4. The maximum error along a trajectory under a range of interpolation
schemes for V27. Spikes in the interpolation error generally coincide with
extending the trajectory to longer times.

the best (BFGS from nearest points) and worst (weighted
Powell update) combinations. Using the BFGS update con-
verged substantially faster than the Powell update. Nonethe-
less, even the worst case achieved the desired accuracy with
about three times the number of data points as the second or-
der case using accurate Hessians.

The symmetric rank one update performed poorly in this
test. Although the errors along the early parts of the trajectory
could be made small, longer trajectories proved very unstable
on adding data points. Overall, the symmetric rank one update
was even less effective in this context than using only first
order expansions, irrespective of which Hessian propagation
scheme was used.

IV. DISCUSSION

An important aspect of this work is that the Hessian up-
date formulae can be applied at negligible computational cost,
when compared to accurately calculating Hessians using peri-
odic DFT electronic structure calculations. Thus, constructing
an interpolation based on first order Taylor series expansions,
copying a known Hessian to approximate a nearby point or
using a Hessian update formula to approximate a nearby
point all cost essentially the same computational time per
data point. Any of these approaches are significantly cheaper
than evaluating Hessians accurately for interpolating accurate
second order Taylor series expansions. Even seemingly more
complicated schemes requiring reassignment of Hessians over
all data points with repeated nearest neighbour searches when
a data point is added to the interpolation set (such as the
weighted scheme used here) pale into insignificance when
compared with the cost of calculating a Hessian accurately.
While the straight-forward use of the potential minimum Hes-
sian copied everywhere gives a decent interpolation for the vi-
brational scenarios studied here, any increase in accuracy by
using a Hessian update formula is an improvement from the
point of view of computational efficiency.

The Powell and BFGS updates are both rank two update
formulae. Both of these updates were effective in this work.
The symmetry rank one update of Eq. (8) was effective for
the interpolation of the two-dimensional function V2, but not
for the higher dimensional case of V27. Examining the inter-
polated PES along the predefined path of Sec. III B as data
points were added under the rank one update suggests that us-
ing Eq. (8) to update a Hessian over a longer distance resulted
in a data point with excessively high positive curvature. Such
data points introduce large errors into the interpolated PES.
Adding data points to correct these errors induced further
high curvature points, as new data points are added even fur-
ther from the central potential minimum. For the predefined
path, using previously approximated Hessians involved ma-
jor contributions from closer points only, avoiding the long-
distance updates that apparently cause problems for the rank
one update. This did not work for the classical trajectory of
Sec. III C. The rank one formula’s success for interpolating
V2 may be due to smaller average distances in the substan-
tially lower dimensional space, or it may have been due to the
optimal placement of all data points simultaneously through
the simulated annealing procedure used.
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In this work, Hessian update formulae have been used to
propagate Hessians everywhere from a Hessian determined
accurately at a single geometry. An obvious extension would
be to accurately determine the Hessian at a number of judi-
ciously chosen geometries. Such an approach has not been
explored in this work.

In the context of nonlinear optimisation, another very ef-
fective method that incorporates updates to approximations
to the Hessian of a system based on incomplete information
is that derived from the work of Schlegel.32 This method is
known to many in the computational chemistry community
as the Berny algorithm. The Berny Hessian update is effec-
tively a prediction–correction method which includes histor-
ical information. It cannot be easily expressed in the “from
this Hessian and these gradients give that Hessian” form of
Eqs. (8)–(10), which is why it has not been used in this
work.

V. CONCLUSION

The results given above confirm the conclusion of Ref. 24
that modified Shepard interpolation based on first order Tay-
lor series expansions performs extremely poorly compared to
the second order version. This work shows that this holds even
in vibrational scenarios with a second order term included at
the potential minimum, which might be expected to be sub-
stantially beneficial.

Using approximate Hessians in the Taylor series
expansions, on the other hand, has proven to be useful.
Approximating the Hessian at data points using well-known
updates (such as the BFGS update) generally allowed con-
vergence of the interpolated PES with around twice the num-
ber of data points as required when using accurate Hessians.
When the Hessian is expensive to calculate (such as when
the energies come from electronic structure theory calcula-
tions) this represents a significant saving of computational
effort.

For the test problems considered in this work, approx-
imating the Hessian everywhere to be that calculated at the
potential minimum in a second order modified Shepard inter-
polation gave a significant improvement over the first order
case. At times this approach was competitive with using the
BFGS or Powell updates. In other cases, copying the poten-
tial minimum Hessian gave significantly worse performance
than using update formulae. Copying the Hessian represents

no significant computational saving over the update formulae
so is not recommended in general.
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