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We present a comprehensive characterization of the optical quality of InP nanopillars (NPs)

fabricated by a top down approach using micro-photoluminescence (l-PL), time-resolved PL, and

cathodoluminescence (CL). A lattice matched InGaAs layer provided beneath the 1 lm tall NPs

functions as a “detector” in CL for monitoring carrier diffusion in InP NP. Carrier feeding to the

InGaAs layer indicated by a double exponential PL decay is confirmed through CL mapping.

Carrier lifetimes of over 1 ns and the appreciably long diffusion lengths (400–700 nm) in the InP

NPs indicate very low surface damage making them attractive for optoelectronic applications.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4808447]

One dimensional semiconductor nanostructures such as

nano-wires (NWs) or nanopillars (NPs) have been the subject

of intense research for the last two decades due to interesting

fundamental physics and their potential to derive next gener-

ation electronics and optoelectronic devices.1–4 A broad

spectrum of unique optical properties, such as nonlinear-

ity,5,6 waveguiding,7,8 and nanoantenna effects9 make them

attractive for compact nanophotonic devices. InP- and GaAs-

based nanowires are prime candidates for optoelectronic

devices including photovoltaics10 due to their direct bandgap

and high carrier mobilities when compared with group IV

semiconductors.

Surface states and crystallographic defects inadvertently

affect recombination lifetimes and quantum efficiencies in

nanowire systems including InP, CdS, GaAs, and GaAs/

GaAlAs.11–14 Generally, dangling bonds on nanowire or

nanopillar surfaces trap carriers and are a channel of nonra-

diative recombination. However, surface recombination ve-

locity also varies in different semiconductor materials.15 Due

to a lower surface recombination velocity in InP (�103 cm/s)

compared to GaAs (�106 cm/s), charge carriers in InP are

less affected by surface recombination. In epitaxially grown

InP NWs, low radiative recombination lifetimes have been

attributed to surface band bending, wurtzite-zinc blend

poly-typism and crystallographic defects.16,17 Although tre-

mendous efforts have been made in nanowire growth,

improvement in structural morphology with precise control

over their composition and dopant concentration is still

required to get functional devices.18,19 NWs or NPs fabri-

cated by top down approach20 using user designed epitaxial

structures, grown by mature growth techniques can be an

attractive alternative. However, top-down approaches invari-

ably employ dry etching which can damage the surface,

degrading optical properties. Thus, low damage processes

are necessary. Further, it is essential to study carrier dynam-

ics and transport properties such as recombination life-times

and diffusion lengths in top down fabricated nanopillars

(NPs) for device applications.

In this work, we focus on the optical properties of InP NP

arrays fabricated by a combination of colloidal lithography

and dry etching.20 We have used micro-photoluminescence

(l-PL) spectroscopy, time-resolved photoluminescence

(TRPL), and cathodoluminescence (CL) to perform a compre-

hensive analysis of the optical quality of the InP NPs in terms

of PL intensity, carrier lifetimes, and diffusion lengths.

The InP/InGaAs structure was grown by metal organic

vapor phase epitaxy (MOVPE) on an nþ InP substrate. The

sample structure consisted of 1 lm thick InP on a 300 nm

InGaAs (lattice matched to InP) layer. The epitaxially grown

layers are nominally undoped. The NP arrays are fabricated

using colloidal lithography and Cl2/H2/CH4 based induc-

tively coupled plasma reactive ion etching (ICP-RIE) pro-

cess. The sample has several areas, 1–2 mm2, with uniform

NP arrays (Fig. 1(a)). Other regions of the sample have par-

tial coverage. The InP pillars are �1 lm tall with an average

diameter of 200 nm (Fig. 1(b)), and have the InGaAs layer at

their base. Detailed description of the fabrication process has

been reported earlier.20

l-PL measurements were performed to characterize the

PL of the fabricated InP NPs. The excitation spot size of

�20 lm was used to study PL intensity dependence on NP

surface density/coverage. An Arþ 514.5 nm laser was used

for PL measurements due to its small penetration depth

(�90 nm) in InP. Moreover, the InGaAs layer effectively

absorbs PL emission from the InP substrate. Figure 2 reveals

very good luminescence properties of the NP arrays. The PL

intensity for the uniform array is comparable to that of the

as-grown layer under identical excitation conditions.

Considering the low fill factor (�20%), this strongly indi-

cates that the array geometry and shape of NPs contributes to

enhanced extraction and absorption of light. The data of

Fig. 2 show that the PL intensities qualitatively scale with

the NP density. PL spectra of NPs measured at room temper-

ature (Fig. 2) and 77 K (Fig. 2, inset) show line widths simi-

lar to that of the as grown reference sample. This clearly

suggests the material quality of the NPs is comparable to the

epilayer. However, independent measurements of carrier

lifetime and diffusion length provide a direct evaluation of

the optical quality of the fabricated NPs.

Time-resolved PL measurements were used to deter-

mine the carrier lifetimes at room temperature using a

synchroscan streak camera with a time resolution of 2 ps.a)Electronic mail: anand@kth.se
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A tunable mode-locked Ti:sapphire laser (pulse temporal

length �100 fs, repetition rate 76 MHz, wavelength

�800 nm) with a spot diameter of 20–25 lm was used for ex-

citation. The detected PL peak position was around 920 nm

corresponding to the bandgap of epi-grown InP. As shown in

Fig. 3, the measured PL decay curves show a double expo-

nent behavior for the NPs on native substrate with the

InGaAs layer. The PL decay for reference InP with the

InGaAs layer shows a similar double exponent process (not

shown here).

The measured TPRL decay curves were fitted using the

following double exponential decay function:

IðtÞ ¼ I0 þ I1e�ðt�t0Þ=s1 þ I2e�ðt�t0Þ=s2 ; (1)

where I (t) is the PL intensity at time t and I0 at t0. s1 and s2

are the PL lifetimes, for the two processes 1 and 2, respec-

tively. I1 and I2 are constant coefficients. The fitted curves

show very good agreement with measured TRPL data

(Fig. 3). A fast decay time of 255 ps and a slow one of

1.15 ns were obtained for NPs on the InGaAs layer. The

short decay time s1 is attributed to carrier feeding into the

InGaAs layer, and s2 to carrier recombination in the InP

NPs.21,22 A large fraction of the photo-generated carriers that

are not within the diffusion length from InGaAs layer recom-

bine in the InP NP, and correspond to the longer decay time.

To confirm the assumptions above, the carrier lifetimes of

“free” InP NPs obtained by selectively etching the InGaAs

layer (and transferred to a Si substrate) were measured.

A single exponential decay (Fig. 3) with a lifetime of 1.15 ns

is observed for the free NPs, indicating negligible surface

damage. This is comparable to the PL-lifetime (1.2 nS)

obtained in the unprocessed reference sample. To estimate

the effective diffusion length in the NPs, characteristic to the

InP NP material, the appropriate lifetime is that obtained for

the free InP NPs or the long lifetime (s2) obtained for the InP

NP/InGaAs structure (Fig. 3). The effective diffusion length

(LD) in the InP NPs corresponding to the measured lifetime

of 1.15 ns is in the range of 500–775 nm, which is calculated

from the relationship LD ¼
ffiffiffiffiffiffi

Ds
p

, where the diffusion coeffi-

cients, D¼ 2.2–5 cm2/s are used.15,23

In order to confirm the draining of carriers to the underly-

ing InGaAs and to determine the diffusion lengths in the InP

segment of the NPs experimentally, CL measurements were

performed using a dedicated SEM with a He cold stage.24 The

acceleration voltage was 5 keV, the probe current 10–25 Pa,

and the sample temperature 8 K. The NPs were investigated

in side-view along the cleaved edge of the sample. The spatial

resolution in CL imaging comes from the local excitation,

where the detection has no spatial resolution. The spatial reso-

lution is therefore limited by charge carrier diffusion in the

sample under investigation and is used to determine ambipo-

lar diffusion lengths from intensity profile.25,26 In the present

structure, the lower bandgap material (InGaAs) can be used

advantageously as a “detector” for the diffusing carriers in the

InP NP. Fig. 4(a) shows a typical SEM image of an area with

NPs together with monochromatic CL images in Fig. 4(b) for

InP (k¼ 876 nm) and in Fig. 4(c) for InGaAs (k¼ 1490 nm).

The InP emission intensity decreases towards base of the NP

(Fig. 4(b)) while that of InGaAs decreases towards the top of

the pillars (Fig. 4(c)), consistent with carrier transfer from the

InP NP to the InGaAs layer.

FIG. 1. SEM images of InP NPs fabricated

by colloidal lithography and ICP-RIE etch-

ing (a) as-etched array (b) after removal of

remaining colloidal silica particles. Material

contrast for the InGaAs layer is visible in

(b).

FIG. 2. Room temperature PL spectra of array and single NPs. Inset shows

normalized PL spectra of the InP NPs and the reference InP wafer at 77 K.

FIG. 3. Room temperature TRPL decay curves measured from InP/InGaAs

NPs on InP substrate and free InP NPs transferred on a Si wafer. The expo-

nential fit to the data is represented with thick grey lines.
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Figure 5(a) shows the CL spectra of InP NPs and the

InGaAs layer, and the peak positions correspond to their

band-edge emission. The line scan, along the NP, obtained

from the monochromatic (k¼ 876 nm) CL image, is plotted

on Fig. 5(b). The intensity is high at the pillar edge and drops

exponentially towards the base. Conversely, the InGaAs in-

tensity obtained from the monochromatic (k¼ 1490 nm) CL

image is the highest at the base and decreases exponentially

towards the pillar edge. Due to the small diameter of the

NPs, we can approximate the diffusion as one-dimensional,

and the diffusion length can be determined by fitting a sim-

ple exponential to the intensity profile. The carrier diffusion

length LD as determined by the single exponential fit

made to the CL intensity profiles is �0.5 lm in InP

(Figs. 5(b)–5(d)). Similar results were obtained from meas-

urements made on several pillars. Here, we note that the

change in the slope in CL intensity profiles (Figs. 5(b)–5(d))

around the InP NP/InGaAs interface region is due to direct

excitation of the InGaAs layer. As the excitation spot gets

close to the InP/InGaAs interface, a part of the generation

volume is located inside the InGaAs layer. In other words,

the break in the slope is when we go from pure diffusion in

the InP NP to direct excitation of the InGaAs layer. Since the

CL spectra of the InP epitaxial layer (peak at 880 nm) and

InGaAs (peak around 1490 nm) are well separated, it is pos-

sible to combine line-scan data from the respective mono-

chromatic CL images. Such a combined plot of the intensity

profiles along the NP axis (Fig. 5(d)) clearly demonstrates

carrier transfer into the InGaAs layer. The InP intensity

increases on either side of the InGaAs layer. The determined

diffusion lengths are in good agreement with the value calcu-

lated from TRPL data. However, a rigorous determination of

the diffusion length should include a full three-dimensional

analysis.

In conclusion, we have performed a comprehensive

analysis of the optical properties of InP NPs fabricated by a

top-down approach. We demonstrated that these InP NPs

have very good optical quality, comparable to as-grown

epitaxial layers. The NPs show high PL intensities, PL line-

widths as in as-grown layers even for single NPs, and appre-

ciably long carrier lifetimes (�1 ns) comparable to bulk

values. The determined diffusion lengths in NPs using CL

mapping are about 0.5 lm. The appreciably long diffusion

lengths make them attractive for optoelectronic devices

including NW/NP solar cells both in axial and radial junction

configurations. In addition, CL measurements directly con-

firm carrier transfer from the InP NPs to the InGaAs layer at

their base, and demonstrate the use of a low-band gap layer

as a detector to monitor carrier transport in InP NPs. For

the specific InP NP/InGaAs structure investigated here, a

carrier transfer rate of �250 ps is determined by TPRL

measurements.
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FIG. 4. (a) SEM image of InP NPs with

300 nm thick InGaAs layer on InP substrate

and corresponding monochromatic CL

micrographs showing (b) InP emission and

(c) InGaAs emission.

FIG. 5. (a) CL spectra of InP NPs, InGaAs, and nþ
InP-substrate. (b) and (c)–Intensity profiles along

the NP axis obtained from monochromatic CL

images for InP and InGaAs, respectively. The

exponential fits used to determine the diffusion

lengths are also indicated using the expression CðXÞ
¼ Coe�X=LD . (d) Combined intensity profile

obtained from monochromatic CL images for InP

and for InGaAs emission. The location of the

InGaAs layer is indicated, by a box, in (b)–(d).
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