
Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under
monochromatic light illumination
Xiaoming Huang, Chenfei Wu, Hai Lu, Fangfang Ren, Qingyu Xu, Huiling Ou, Rong Zhang, and Youdou Zheng 

 
Citation: Applied Physics Letters 100, 243505 (2012); doi: 10.1063/1.4729478 
View online: http://dx.doi.org/10.1063/1.4729478 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/100/24?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film
transistors under simultaneous negative gate bias and illumination 
J. Appl. Phys. 115, 134501 (2014); 10.1063/1.4870457 
 
Temperature dependence of negative bias under illumination stress and recovery in amorphous indium gallium
zinc oxide thin film transistors 
Appl. Phys. Lett. 102, 143506 (2013); 10.1063/1.4801762 
 
Light induced instabilities in amorphous indium–gallium–zinc–oxide thin-film transistors 
Appl. Phys. Lett. 97, 173506 (2010); 10.1063/1.3503971 
 
Electrical stress-induced instability of amorphous indium-gallium-zinc oxide thin-film transistors under bipolar ac
stress 
Appl. Phys. Lett. 95, 132101 (2009); 10.1063/1.3237169 
 
Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors 
Appl. Phys. Lett. 93, 123508 (2008); 10.1063/1.2990657 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.56.107.193 On: Tue, 08 Jul 2014 11:45:30

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/1691523420/x01/AIP/JAP_HA_JAPCovAd_1640banner_07_01_2014/AIP-2161_JAP_Editor_1640x440r2.jpg/4f6b43656e314e392f6534414369774f?x
http://scitation.aip.org/search?value1=Xiaoming+Huang&option1=author
http://scitation.aip.org/search?value1=Chenfei+Wu&option1=author
http://scitation.aip.org/search?value1=Hai+Lu&option1=author
http://scitation.aip.org/search?value1=Fangfang+Ren&option1=author
http://scitation.aip.org/search?value1=Qingyu+Xu&option1=author
http://scitation.aip.org/search?value1=Huiling+Ou&option1=author
http://scitation.aip.org/search?value1=Rong+Zhang&option1=author
http://scitation.aip.org/search?value1=Youdou+Zheng&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4729478
http://scitation.aip.org/content/aip/journal/apl/100/24?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/115/13/10.1063/1.4870457?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/115/13/10.1063/1.4870457?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/102/14/10.1063/1.4801762?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/102/14/10.1063/1.4801762?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/97/17/10.1063/1.3503971?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/95/13/10.1063/1.3237169?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/95/13/10.1063/1.3237169?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2990657?ver=pdfcov


Electrical instability of amorphous indium-gallium-zinc oxide thin film
transistors under monochromatic light illumination

Xiaoming Huang,1 Chenfei Wu,1 Hai Lu,1,a) Fangfang Ren,1 Qingyu Xu,2 Huiling Ou,2

Rong Zhang,1 and Youdou Zheng1

1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic
Science and Engineering, Nanjing University, Nanjing 210093, China
2Department of Physics, Southeast University, Nanjing 211189, China

(Received 14 March 2012; accepted 31 May 2012; published online 14 June 2012)

The electrical instability behaviors of a positive-gate-bias-stressed amorphous indium-gallium-zinc

oxide (a-IGZO) thin film transistor (TFT) are studied under monochromatic light illumination. It is

found that as the wavelength of incident light reduces from 750 nm to 450 nm, the threshold voltage

of the illuminated TFT shows a continuous negative shift, which is caused by photo-excitation of

trapped electrons at the channel/dielectric interface. Meanwhile, an increase of the sub-threshold

swing (SS) is observed when the illumination wavelength is below 625 nm (�2.0 eV). The SS

degradation is accompanied by a simultaneous increase of the field effect mobility (lFE) of the TFT,

which then decreases at even shorter wavelength beyond 540 nm (�2.3 eV). The variation of SS and

lFE is explained by a physical model based on generation of singly ionized oxygen vacancies (Vo
þ)

and double ionized oxygen vacancies (Vo
2þ) within the a-IGZO active layer by high energy photons,

which would form trap states near the mid-gap and the conduction band edge, respectively. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4729478]

Transparent oxide-based thin film transistors (TFTs)

have been attracting much attention recently due to their

excellent electrical and optical characteristics for display

applications. In particular, amorphous indium-gallium-zinc

oxide (a-IGZO) TFTs are intensively investigated as a

replacement for silicon-based TFTs in active matrix displays

as they could simultaneously offer high channel electron mo-

bility, high optical transparency, low off-state leakage, and

low processing temperature.1,2 Although a-IGZO TFTs have

shown good performance, these devices still generally suffer

from a number of reliability problems. In particular, since

switching TFTs used for liquid crystal or organic light emit-

ting diode displays are almost inevitably exposed to light

during operation, it is very important to investigate and

improve the reliability characteristics of a-IGZO TFTs under

various light illumination conditions.

Recently, although several studies have reported that a-

IGZO TFTs could exhibit electrical instability under ultra-

violet or sub-bandgap light illumination, these reports mainly

focus on illumination-induced threshold voltage (Vth) shift

of the TFTs, which is explained as being carrier trapping/

detrapping-related.3–7 Comparatively, detailed electrical

transport properties of the a-IGZO TFTs under various

monochromatic light illumination are less studied. In this

report, we find that at certain photon energy range, subthres-

hold swing (SS) and field effect mobility (lFE) of the illumi-

nated TFTs could also exhibit instability behavior, which is

explained by a transport model based on oxygen-vacancy-

related new trap generation.

The back-gate a-IGZO TFTs studied in this work are

fabricated on heavily doped n-type silicon substrate. A

200 nm SiO2 gate insulator is firstly deposited by plasma

enhanced chemical vapor deposition at 300 �C on wafer front

side, which is followed by deposition of a 50 nm a-IGZO

active layer by using pulsed laser deposition at room temper-

ature in an oxygen partial pressure of 0.5 Pa. The composi-

tion of the ceramic target used is In2O3:Ga2O3:ZnO¼ 1:1:1

in mole ratio. The active device region is then defined by op-

tical photolithography and wet chemical etching. Next, the

source/drain contact electrodes consisting of Ti/Au (30/

70 nm) bi-layer are deposited by e-beam evaporation and are

further patterned by lift-off technique, resulting a device

channel width/length (W/L) of 100/20 lm. Finally, after dep-

osition of the Ti/Au back-gate contact metal, the a-IGZO

TFTs are annealed in air at 300 �C for 1 h.

The measurement procedures are designed as follows:

before illumination treatment, the a-IGZO TFT is firstly

stressed with a positive gate voltage of 20 V for a total time

of 5000 s with both its source and drain electrodes grounded.

Then, monochromatic light sorted by a monochromator from

the output port of a 500 W Xe arc lamp is directed onto the

sample surface through an optical fiber. The illumination

wavelength gradually varies from 750 nm to 450 nm with a

step spacing of 5 nm. At each selected wavelength, the de-

vice under test is illuminated for 2 min, and its transfer char-

acteristics are measured right away without turning off the

monochromatic light, which is followed by an additional

illumination/measurement cycle.

Transfer curves of the fresh and the stressed a-IGZO

TFT are shown in Fig. 1. A positive DVth of � 6.0 V is

observed after the positive gate bias stress, which should be

caused by field-induced electron trapping at the channel/gate

dielectric interface.8 Meanwhile, based on simple fitting and

calculation, there is no apparent change (<10%) for SS as

well as lFE of the stressed TFT. This result agrees with past

reports that moderate bias stress would not considerablya)Electronic mail: hailu@nju.edu.cn.
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generate additional trap states within a-IGZO TFTs.9 There-

fore, the electrical instability behaviors to be discussed later

are mostly caused by light illumination.

When the a-IGZO TFT is exposed to monochromatic

light, the device exhibits a series of electrical instabilities.

Figures 2(a) and 2(b) show the transfer curves of the stressed

a-IGZO TFT after light illumination at various wavelengths

in linear scale and logarithmic scale, respectively. First, an

overall negative back-shift of the transfer curves is observed

as the illumination wavelength decreases from 750 nm to

450 nm. This negative shift should be caused by photo-

excitation of trapped electrons at the channel/dielectric inter-

face. Since electrons trapped at deeper interface states have

to be released by photons with higher energy, the corre-

sponding DVth as a function of illumination wavelength can

be used to extract the density profile of interfacial states.10

Second, although the transfer curves plotted in logarithmic

scale are nearly parallel to each other in long illumination

wavelength range, the SS of the TFT exhibits apparent

increase at shorter wavelength. Figure 3 shows the SS values

as a function of illumination wavelength revealing a turning

point at� 625 nm, after which the SS continuously increases.

Third, it is found that lFE of the TFT also systemically varies

under certain illumination conditions. Here, lFE is calculated

by using the following equation:11

lFE ¼
Lgm�max

WCiVDS
;

where Ci and gm-max are gate capacitance per unit area and

maximum transconductance, respectively. The gm-max is deter-

mined by differentiation of the linear-scale transfer curves in

Fig. 2(a). As shown in Fig. 3, lFE with an initial value of

� 6.7 cm2/Vs shows fairly small change when the illumina-

tion photon energy is below 1.9 eV, which is followed by a

rapid increase in the photon energy range of � 2.0�2.3 eV.

After reaching a peak value of � 11.1 cm2/Vs, lFE continu-

ously decreases for even larger photon energy.

Comparatively, the electrical instability behaviors of an

initial device without undergoing positive-gate-bias stress

are also characterized, which exhibit similar changes under

monochromatic light illumination. It means that the electri-

cal instability behaviors observed here are intrinsic for

a-IGZO TFTs. As shown in Fig. 4 and its inset, besides the

same variation trends of SS and lFE, a negative shift of Vth

is also observed for an initial device after light illumination.

It means that even under equilibrium condition some deep

interfacial traps within the a-IGZO TFT are already filled by

free electrons. The only difference is that the amount of its

illumination-induced Vth shift is smaller and less apparent

than that of the stressed device, which is because that there

are less trapped electrons within an initial device.

Our analysis for the above observations focuses on the

evolution of SS and lFE. It is commonly accepted that the

change of SS is mainly depended on the variation of total

trap density (Nt) within the device active region, which is

described by the following equation:12

FIG. 1. The transfer curves of the a-IGZO TFT before and after the positive

gate bias stress.

FIG. 2. Transfer characteristics of the stressed a-IGZO TFT after various

monochromatic light illumination in linear scale (a) and in logarithmic scale

(b).

FIG. 3. The lFE and SS of the stressed a-IGZO TFT as a function of light

illumination wavelength.
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DSS ¼ DNtlnð10ÞkT

Ci
;

where k is Boltzmann’s constant and T is absolute tempera-

ture. Thus, the degradation of SS under light illumination of

k� 625 nm can be attributed to extra trap state generation. It

has been reported that in oxide-based semiconductors, like a-

IGZO, defect-induced sub-gap states are commonly origi-

nated from oxygen vacancies.13–16 In particular, based on

theoretical calculation and experimental verifications, neutral

oxygen vacancies (Vo) would form fully occupied states

above valence band maximum (VBM) with an energy width

up to �1.5 eV.6,14 Furthermore, the activation energy (Ea)

needed for the transition of Vo to singly ionized oxygen

vacancies (Vo
þ) and double ionized oxygen vacancies

(Vo
2þ) were reported to be �2.0 eV and�2.3 eV, repec-

tively.14,16 When photo-induced transition from Vo to Vo
þ

occurs, the neighboring metal atoms would undergo small

outward relaxation, forming unoccupied defect states near

the mid-gap. When photo-induced transition from Vo to

Vo
2þ occurs, the larger outward lattice relaxation in the vi-

cinity of Vo
2þ would create a defect level near the bottom of

conduction band.14,16,17 Here, it is important to note that in

our devices, the significant SS shift is observed when the

light illumination wavelength k� 625 nm (�2.0 eV), which

agrees well with the activation energy of Vo to Vo
þ. There-

fore, the defect levels of Vo
þ and Vo

2þ induced by high

energy photons should be reason for the increase of total trap

density. This proposed SS degradation mechanism is illus-

trated in Fig. 5.

The above physical picture can also explain the varia-

tion of lFE as a function of incident photon energy. When

photo-induced transition from Vo to Vo
þ occurs, photo-

excited electrons from the high-density occupied Vo states

near valence band maximum would increase average carrier

density within the conductive channel, which would then

enhance the percolation conduction through distributed

potential barriers around the conduction band edge.18,19 This

effect could explain the increase of lFE in the photon energy

range of �1.9�2.3 eV. Although Vo
þ-related trap states

would form around the mid-gap simultaneously, compared

with band-tail states near conduction band, these mid-gap

states have less influence on channel mobility. When photon

energy is higher than 2.3 eV, transition from Vo to Vo
2þ

occurs, which would generate Vo
2þ-related defect states near

the conduction band edge. Since band-tail states are strong

scattering centers, lFE would stop increasing and instead

start to decrease in spite of the continuously increased chan-

nel carrier density.20,21

In addition, when lFE is being calculated from the trans-

fer curves at different illumination wavelength, it is found

that gm�max occurs at different Vg, which is due to the

carrier-detrapping-related Vth shift. Thus, the factor of Vg

dependence shift in mobility and the variation of its differen-

tial on Vg might also play a role for the anomalous lFE varia-

tion as a function of illumination wavelength, which was

originally purposed in the reliability study of poly-Si

TFTs.22

In summary, the effect of monochromatic light illumina-

tion on electrical instability behaviors of a-IGZO TFTs is

studied in this work. Besides the widely reported Vth shift,

SS and lFE of the TFT are also found to exhibit systemic

change at short illumination wavelength range (k� 625 nm).

A physical model based on generation of Vo
þ and Vo

2þ-

related defect states within the a-IGZO active channel by

high energy photons is proposed to explain the evolution of

device transport properties. In addition, our suggested

defect-generation model should be also applicable to an ini-

tial device without undergoing positive-gate-bias stress,

which is found to exhibit similar SS and lFE evolution

behaviors under monochromatic light illumination.
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