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Free carrier absorption in heavily doped silicon can have a significant impact on devices operating

in the infrared. In the near infrared, the free carrier absorption process can compete with band to

band absorption processes, thereby reducing the number of available photons to optoelectronic

devices such as solar cells. In this work, we fabricate 18 heavily doped regions by phosphorus and

boron diffusion into planar polished silicon wafers; the simple sample structure facilitates accurate

and precise measurement of the free carrier absorptance. We measure and model reflectance and

transmittance dispersion to arrive at a parameterisation for the free carrier absorption coefficient

that applies in the wavelength range between 1000 and 1500 nm, and the range of dopant densities

between �1018 and 3� 1020 cm�3. Our measurements indicate that previously published

parameterisations underestimate the free carrier absorptance in phosphorus diffusions. On the other

hand, published parameterisations are generally consistent with our measurements and model for

boron diffusions. Our new model is the first to be assigned uncertainty and is well-suited to routine

device analysis. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4893176]

I. INTRODUCTION

Free carrier absorption involves the transfer of photon

energy to an electron or hole in the semiconductor conduction

or valence band, respectively. Excited electrons transition to

a state in the same or another conduction band. Holes make

similar transitions in the valence bands. Naturally, free carrier

absorption is stronger in semiconductors with high electron

or hole concentrations, such as heavily doped1 or highly

injected silicon.2 At near-bandgap photon energies, where

band-to-band absorption is weak, free carrier absorption can

contribute significantly to the total absorption in the semicon-

ductor. In the case of silicon, the onset of this effect is in the

near infrared (photon wavelengths above �1000 nm).

Free carrier absorption is usually identified as a parasitic

process—it has a negative impact on the performance of

devices such as silicon solar cells,3 thermophotovoltaic

cells,4 and infrared photodetectors.5 On the other hand, when

its relationship to free carrier density and wavelength is

well-parameterised, free carrier absorption provides a means

to characterize or monitor electron-hole plasmas (i.e., free

carrier density)2 and implanted or diffused silicon.1,6

Although the fundamental theory7 and quantum-

mechanical extensions (see, e.g., Refs. 8 and 9) are well-

established, there exists a large discrepancy between the free

carrier absorption predicted by numerous published parame-

terisations for heavily doped silicon in the infrared.1,6,10–12

We examine, for example, the free carrier absorptance of the

heavily phosphorus diffused front surface of a contemporary

industrial silicon solar cell. We assume that the diffusion has

70 X/sq sheet resistance, that the phosphorus concentration at

the surface is 2� 1020 cm�3, and that the depth-dependence

of the concentration follows a Gaussian function. In this

exemplary case, the five parameterisations cited above predict

absorption of between 0.2 and 1.0% of 1200 nm light travers-

ing the diffusion at an angle normal to the surface. Moreover,

as we demonstrate later, all published parameterisations

underestimate the free carrier absorption measured experi-

mentally in this study. Our contention is that the available

parameterisations of free carrier absorption are either (i) not

suited to routine assessment of silicon devices in the infrared

or (ii) are derived from measurements of unknown precision.

In this work, we introduce the classical free carrier

absorption theory and quantum variants in order to elucidate

the genesis of the various aforementioned parameterisations

of the free carrier absorption coefficients. We prepare large

sets of boron- and phosphorus-diffused silicon wafers, and

then apply spectrophotometry to determine the free carrier

absorptance of near infrared radiation in these diffused

regions. We derive a new parameterization for the free car-

rier absorption coefficient in silicon that is applicable to dop-

ant densities between �1018 and 3� 1020 cm�3 and

wavelengths between 1 and 1.5 lm. We pay attention to

measurement uncertainty, thereby elucidating the potential

origin of apparently vast discrepancies between previously

published parameterisations.

II. FCA THEORY

The phenomenon of free carrier absorption occurs when

an electron (hole) in the conduction (valence) band of a

semiconductor absorbs a photon, thus making a transition to

a higher (lower) energy state within that band. Such a transi-

tion is assisted by an additional momentum-conserving pro-

cess. That is, simultaneously as the photon is absorbed by

the free carrier, a phonon must be emitted or absorbed, or the

carrier must be scattered from an ionised impurity

centre.13,14a)e-mail address: simeon.bakerfinch@gmail.com
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The classical theory of free carrier absorption is derived

from Drude’s simple model for the harmonic oscillation of

unbound electrons in a fixed array of scattering nuclei (or the

harmonic oscillation of the electric field of light interacting

with an array of electrons).15 Under the simplifying assumption

of this model, namely that the binding energies of the nuclei

approach zero, the oscillator damping term is inversely propor-

tional to the mean time s between collisions of the oscillating

particles and the nuclei.7,13,14,16,17 Note that s is independent of

the energy (and thereby the wavelength, k) of the exciting pho-

ton. The resulting free carrier absorption coefficient aFCA is7,13

aFCA ¼
Nk2q2

4p2e0mcc3ns
; (1)

where N is the concentration of free carriers, k is the free-

space wavelength, q is the fundamental charge, e0 is the vac-

uum permittivity, mc is the conductivity effective mass of

the free carrier, c is the speed of light, and n is the real com-

ponent of the semiconductor refractive index.

Smith7 describes a semi-classical extension to this model,

whereby the right hand side of Eq. (1) is multiplied by an ex-

pectation value g. This allows one to account for the change

in scattering mechanism with energy, and hence, the change

in s with k. The value of g was derived by Schumann and

Phillips18 for the case of ionised impurity scattering following

the Conwell–Weisskopf approximation (scattering events are

independent);19 the Schumann et al. analysis forms the theo-

retical basis of the parameterisation of Isenberg and Warta.6

Experimental work found g to be twice as large for carrier–

carrier interactions than carrier–impurity interactions.2

The Drude theory (and its semi-classical extension) pro-

vides a simple theoretical framework for free carrier absorp-

tion, but possesses several deficiencies.20 It is derived under

the condition that the semiconductor energy surface is

spherically symmetric and non-degenerate;16 the actual band

structure (e.g., in Si) is more complex. Additionally, the

Drude theory is accurate only when (i) the magnitude of the

energy absorbed by free carriers is small compared with the

mean carrier energy (implying k>�180 lm in Si at 300 K

assuming s> 10�13 s)20 and (ii) when the relaxation time s
is independent of energy.21 Finally, and most importantly in

the context of the present study, the Drude theory does not

consider the role of the third particle (a scattering impurity

or phonon) in the photon-free carrier interaction.8,9

In practice, and in a quantum analysis, the collision inter-

val s depends on the nature of the scattering mechanism and

the photon energy.8,13,14,22–26 This can result in a

k-dependence of aFCA that varies between k1.5 and k3.5 (rather

than the k2 predicted by Drude theory) in the limits of phonon

or ionised impurity scattering, respectively.27 Pankove,13

Seeger,8 and Ridley14 provide extensive background discus-

sion in this regard. In general, several scattering modes coex-

ist, with the dominant mode depending on the impurity

concentration and species. It is usually reasonable to expect

the exponent r in the dependence kr to increase with doping.13

III. PARAMETERISATIONS OF FCA IN HEAVILY DOPED
SILICON

Experimental measurements of free carrier absorption in

crystalline and polycrystalline silicon have been conducted

since the 1950s (see, e.g., Ref. 28), for a range of applica-

tions. Since then, various parameterisations of aFCA have

been presented; they are summarized in Table I.

The earliest of these parameterisations was performed by

Schroder et al.1 The structure of Schroder’s parameterisation

follows from the Drude theory (i.e., aFCA is proportional to k2),

with additional assumptions, namely: (i) conductivity effective

mass is constant with dopant or carrier concentration;

(ii) mobility is constant with dopant or carrier concentration.

Although the former assumption is well-supported for

TABLE I. Summary of parameterisations of the free carrier absorption coefficient in heavily boron- and phosphorus-doped silicon. Included are the results of

this work, calculated via the procedure described below. Parameters are adjusted from their original published values so that the unit of k is cm in every case,

and aFCA has units cm�1. The uncertainty in parameters derived in this work represents a 95% confidence interval.

Parameter value
k range N range

References Equation for aFCA Parameter p-Si n-Si (lm) (cm�3)

1 CNkc C 2.7� 10�10 1.0� 10�10 >4 <1019

c 2 2

10 CNkc C 2.6� 10�10 2.7� 10�6 <2.5 �1018

c 2 3

6 CNk2ð1þ Af1þ erf½m log ðN=N0Þ�gÞ C 10.72� 10�11 4.45� 10�11 1.2a 1016–1020

A 2.59 5.75

m 0.76 0.67

N0 3.2 6.3

11 CNkc C 1.04� 10�8 4.52� 10�8 1–2 �1017–1020

c 2.4 2.6

12b CNkc C 3.2� 10�6 3.0� 10�6 1–1.2 �1017–1020

c 3 3

This work CNkc C (1.80 6 0.83)� 10�9 (1.68 6 0.62)� 10� 6 1–1.5 �1018–5� 1020

c 2.18 6 0.01 2.88 6 0.08

aIsenberg and Warta6 provide parameterisations for k¼ 1.2, 5 and 8 lm, as well as a generic equation for arbitrary k.
bThe authors provided the values of C and c in a personal communication.
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N< 1020 cm�3,29–31 the latter is inconsistent with various mo-

bility models (e.g., Ref. 32) unless the applicable range of dop-

ant concentrations is heavily restricted.43 Indeed, the

parameterisation given by Schroder et al. is based on measure-

ments of aFCA at N< 1019 cm�3. Its validity is also limited to

k> 4 lm, so the parameterisation is of little utility near the

bandgap of silicon (1.0< k< 1.5 lm), and in the assessment

of heavily doped regions (for example, in solar cells, where N
often exceeds 1019 cm�3 and approaches �1021 cm�3).6,33

Following on from the work of Schroder et al., various

authors10–12 adopt the approach of defining two constants C
and c, with the free carrier absorption coefficient taking the

following dependence on N and k:

aFCA ¼ CNkc: (2)

With this general formula, the parameterisation is freed from

the Drude theory restriction of c¼ 2. That freedom typically

allows improved fits to experimental measurements of aFCA,

particularly in heavily doped n-type silicon.26

One such parameterisation was given by Green10 for car-

rier concentrations near 1018 cm�3 and k< 2500 nm. Later,

Isenberg and Warta6 developed a parameterisation for aFCA

with a more sophisticated theoretical basis. Rather than tak-

ing inspiration from the simple Drude theory (Eq. (1)) or fol-

lowing the general form of Eq. (2), they base their analysis

on the semi-classical model (see Sec. II). Included in the

parameterisation is a function including three fit parameters.

This function mimics the expectation value g (N,k). Although

the semi-classical model can be used to calculate aFCA at any

(k, N), Isenberg and Warta provide parameter values only at

selected wavelengths (1.2, 5, and 8 lm), and base the parame-

terisation on samples with 1016<N< 1019 cm�3. This limits

the value of the parameterisation in routine simulation, where

aFCA must be rapidly calculated for a range of k. In diffused

silicon solar cells, for example, the range 1.0< k< 1.3 lm

and N� 1020 cm�3 is of most importance.

In order to address the deficiencies of the previous work,

R€udiger et al.11 sought to assess silicon solar cell-relevant

free carrier absorption behavior. They developed a parame-

terisation for free carrier absorption based on reflectance

measurements, focusing on near-infrared wavelengths

(�1–2 lm) and doped regions of the kind found in typical

devices. In an attempt to increase the sensitivity of their

measurements to weak absorption, R€udiger et al. chose

structures (featuring surface texture and dielectric coatings)

that increase the path length of light in the silicon substrates

and diffusions. However, their approach was likely prone to

significant uncertainty due to a complex sample structure,

which introduces experimental error and necessitates other-

wise avoidable assumptions in the associated modelling.

Readily identifiable sources of potential error are (i) round-

ing or imperfection in the front texture realized on experi-

mental samples not accounted for in ray trace modelling;

(ii) use of a complex, potentially unphysical model for

rear internal reflection at a partially polished surface; (iii)

inhomogeneous diffused dopant concentration on texture

not accounted for in modelling; (iv) the assumption that

dopant concentration profiles at a planar (presumably

{100}-oriented) surface is a reasonable proxy for the profile

in a near-{111}-oriented pyramid facet; (v) potential spatial

variation or uncertainty in thickness or composition of

dielectric films on experimental samples not accounted for in

modelling; and (vi) systematic underestimate of reflectance

and transmittance incurred when weakly absorbed light pass-

ing multiple times across a sample at an oblique angle can be

eventually coupled out of the sample at some location out-

side the integrating sphere opening port. In the present work,

we mitigate these errors by measuring mechanically polished

planar samples without dielectric coating.

Most recently, Xu et al.12 parameterised free carrier

absorption through very good fits of measured and modelled

reflectance from silicon solar cell structures. The approach they

employed was similar to that of Rudiger et al., so was prone to

the aforementioned uncertainties. Confidence in their parame-

terisation is limited by the small number of samples analysed.

In the subsequent sections of this work, we address the

shortcomings of published parameterisations with an experi-

mental methodology that is insensitive to many of the afore-

mentioned sources of uncertainty. We arrive at a

parameterisation that we believe to be well-suited to the

analysis of doped regions for silicon solar cells and other

devices for which near infrared behaviour is important.

Additionally, our parameterisation is presented alongside an

assessment of experimental precision.

IV. EXPERIMENTAL PROCEDURE

A. Sample preparation

The magnitude of FCA on heavily doped silicon in the

near infrared was evaluated via the measurement of reflec-

tance from and transmittance through a series of silicon

wafers. These wafers were of �5 X cm resistivity, either 400

or 530 lm thick, and mechanically polished on both front

and rear surfaces. Heavily doped regions were created via

the symmetrical diffusion of either phosphorus (from POCl3
vapour source) or boron (from BBr3 vapour source) at high

temperature in a quartz tube furnace. The numerous resultant

concentration profiles examined in this study are shown in

Figure 1. The figure plots the concentration of substitutional
phosphorus or boron, measured with the electrochemical ca-

pacitance voltage (ECV) technique.44 As is demonstrated,

diffusion conditions were modified so as to achieve a range

of doping profiles, with varying depths, and peak concentra-

tion ranging from 8� 1018 to 3� 1020 cm�3 or 2� 1018 to

2� 1020 cm�3 for phosphorus or boron, respectively. After

diffusion, dilute HF immersion was used to remove the

grown layer of phosphosilicate or borosilicate glass, reveal-

ing bare silicon. For each diffused sample or set of diffused

samples, an undiffused equivalent reference wafer (with near

identical thickness) was retained.

B. Measurement of reflectance and transmittance

The hemispherical reflectance Rmeas and transmittance

Tmeas of both reference and diffused wafers were measured

with a Perkin Elmer Lambda 1050 spectrophotometer with

integrating sphere. Each quantity was measured at an angle

063106-3 Baker-Finch et al. J. Appl. Phys. 116, 063106 (2014)
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of incidence of 8�, in wavelength intervals of 5 nm with 2 nm

slit width in the range 800< k< 1500 nm. The incident radi-

ation is depolarized. The reflected or transmitted signal is

detected by photomultiplier or InGaAs detector, and com-

pared to a reference beam in order to correct for temporal

fluctuations in the source beam. Intensity is calibrated to a

white spectralon reflectance standard.

C. Extracting single-pass absorptance from
reflectance and transmittance measurements

As is illustrated in Figure 2, Rmeas and Tmeas consist of the

sum of light rays that have passed through the silicon wafer

multiple times (or not at all, in the case of the first reflected

ray). On each pass across the wafer, both band-to-band and

free carrier absorption events take place, contributing to the

reduction of intensity of the ray, so that Rn<Rn�1 and

Tn< Tn�1. The strength of the carrier absorption events (i.e.,

the magnitude to which they reduce the intensity) depends on

k, and, in the case of free carrier absorption, on N or the pro-

file of N across the wafer and in any surface diffusions. In

order to isolate free carrier absorption and relate it in a mean-

ingful way to N and k, we extract the intensity reduction factor

A (the “single-pass absorptance”) from Rmeas and Tmeas fol-

lowing the procedure in Appendix 1.

To demonstrate the accuracy and limitations of our

experimental technique, we extract A(k) for an undiffused sil-

icon wafer of 400 lm thickness. The result is plotted as Aref

in Figure 3, where it is compared to AGreen calculated via the

Beer-Lambert law for a wafer of this thickness and band-to-

FIG. 2. Simple representation of the quantities (Rmeas and Tmeas) measured

with spectrophotometry.

FIG. 3. Measured (Aref) and modelled (AGreen) single pass absorptance

across a 400 lm thick undiffused silicon wafer. The relative difference

between measured and modelled quantities is plotted on the right-hand axis,

where it is compared to an uncertainty analysis undertaken by Schinke

et al.37 Note that Aref is imprecise at long wavelengths, where Aref<�0.01.

FIG. 1. Profiles of active dopant concentration of (a) phosphorus and (b) boron in the various diffused regions studied. The labels on the graph denote the sheet

resistance (X/sq) of the diffused region.

063106-4 Baker-Finch et al. J. Appl. Phys. 116, 063106 (2014)
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band absorption coefficients given by Green.35,36,45 The figure

additionally plots the relative deviation (Aref�AGreen)/AGreen

of our measurement from the calculated values. Predictably,

the magnitude of the deviation increases as Aref decreases; the

precision in Aref is governed by the experimental uncertainty in

Rmeas and Tmeas is large when their sum is close to unity (note

the large error bars on Aref for k> 1180 nm).

Notably, for k< 1120 nm, the deviation follows the

value USchinke of the uncertainty in Aref recently calculated

by Schinke et al.37 (refer to the symbols and right hand axis

in Figure 3). At higher wavelengths, USchinke refers to uncer-

tainty in Aref when measured by spectroscopic photolumines-

cence or solar cell spectral response, rather than

spectrophotometry. The similarity of (Aref�AGreen)/AGreen

and USchinke indicates that the deviation Aref�AGreen of our

measurement from the theory could derive nearly entirely

from uncertainty in AGreen (although it cannot be expected

that experimental uncertainty in Aref is zero).

More importantly, (Aref�AGreen)/AGreen is less than

10% for Aref> 0.07 and is below �50% for Aref> 0.01. This

limitation on the sensitivity of our experimental approach

and apparatus governs the range in which our measurement

of free carrier absorption is reliable. As is shown later, this

range is limited to k> 1000 nm and N>�1018 cm�3.

D. Extracting free carrier absorptance in a heavily
doped region from single-pass absorptance

The total free carrier absorption AFCA(k) in a heavily

doped region is calculated via the following relationship

between the single-pass absorptance A(k) for a symmetri-

cally diffused sample and the reference single-pass absorp-

tance Aref(k)

AFCA ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

1� Aref

s
: (3)

Note that the determination of AFCA via Eq. (3) does not

require that the symmetrically diffused and reference sam-

ples have identical silicon-air interface reflectance.

Therefore, our measurement is not affected through the

Fresnel equations by any change in the real component of

the refractive index of Si with dopant or carrier density.

Uncertainties in the measured AFCA for a diffusion

derive from uncertainties in A and Aref, and, therefore, from

the measured quantities Rmeas and Tmeas. We define the

uncertainty dAFCA in terms of dRmeas and dTmeas in accord-

ance with the procedure described in Appendix 2. The physi-

cal sources of dRmeas and dTmeas are predominantly (i) the

limited intensity resolution, nonlinearities, and calibration

error in the detectors of the spectrophotometer and (ii) inho-

mogeneities (e.g., surface imperfections and thickness varia-

tion) across the sample, since Rmeas and Tmeas are acquired at

slightly different locations on a sample. The limited resolu-

tion of the spectrophotometer has the largest impact on the

certainty of our parameterisation, since as Tmeas approaches

zero or TmeasþRmeas approaches unity to within that resolu-

tion, the uncertainty in that measured quantity approaches in-

finity. Note that, later in this paper, we deal separately with

the uncertainty introduced by the concentration profile of

dopants in the diffused regions (and their potential deviation

from ECV measurement, variation across the sample surface,

variation between front and rear surfaces and the like).

An exemplary data set is introduced in Figure 4. It

relates to a boron-diffused wafer (diffusion has 30 X/sq sheet

resistance). Directly measured quantities Rmeas and Tmeas are

plotted alongside the calculated quantities introduced in the

text, namely R, A, Aref, and AFCA.

V. SIMULATION PROCEDURE AND
PARAMETERISATION

Having calculated AFCA for numerous boron- and

phosphorus-doped regions of silicon, we seek to determine

an expression for aFCA that predicts AFCA(N,k). In the follow-

ing sections, we (i) establish that good agreement with our

experimental results can be achieved with a function of the

form aFCA¼CNkc, where both C and c are independent of N
and k; (ii) describe a technique for fitting a model of aFCA to

measurements of AFCA; (iii) apply the technique to our large

data set of measurements from boron- and phosphorus-

diffused silicon; and finally (iv) present the resultant parame-

terization of aFCA.

A. Choice of function for a parameterisation of the free
carrier absorption coefficient

Previous parameterisations of aFCA, summarised in

Table I, take two distinct forms. The first, most common

approach is to choose a function f¼CNkc with two constants

C and c, both of which are independent of k and N.1,10,11

Usually, this limits the applicability of the parameterisation

to a certain range of k and N. As we discuss in Sec. II, the

classical theory predicts aFCA to exhibit linearity in N and a

parabolic dependence on k so that aFCA¼CNk2. However,

FIG. 4. An example of the measured quantities (Rmeas, Tmeas, and Aref) and

intermediate calculations (A) used to arrive at single pass free carrier absorp-

tion in a heavily doped region AFCA. The data relate to the analysis of a bo-

ron diffused wafer.
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quantum theory (and some experimental work) suggests that

aFCA / kc, where c is not 2, and c itself may be a function of

N. The matter of the N-dependence of c is investigated

experimentally in this work, before the broader work of

parameterising aFCA is undertaken.

The second approach—applied by Isenberg and

Warta6—is to parameterise aFCA at a specific value of k for a

range of N. The function f may have the same form for vari-

ous k, but the parameters of f all vary with N and k. Though it

is well-suited to characterization performed at a single wave-

length (e.g., measurement of free carrier density via IR laser

transmission), this second approach becomes complex if the

resultant parameterisation is to be applied in simulations in

which a spectrum of wavelengths is incident on a device.

Given that we identify no clear advantage in the latter

approach in initial fits to our measurements, we adopt the

simpler first methodology. We do not, however, immediately

assume that the parameters C and c in f¼CNkc are inde-

pendent of N. Instead, we seek to confirm or deny such a de-

pendence through experiment. In particular, we examined

narrow heavily doped regions, across which N is nearly con-

stant. To do so, we applied the measurement technique and

analysis described in Sec. IV to a phosphorus-diffused sili-

con wafer from which very thin surface layers of thickness t
were sequentially etched. By comparison of measurements

before and after sequential surface layer removals, we isolate

the free carrier absorption AFCA(N) occurring in the thin

etched region. We then compute aFCA from AFCA(N) via the

inverse of the Beer-Lambert law

aFCA N; kð Þ ¼
�ln 1� AFCA Nð Þ
� �

t
: (4)

Next, by least squares fitting of aFCA to the function

CNkc for each thin layer, we find the relationship between c
and N. This relationship is plotted in Figure 5.

It is apparent that the classical c¼ 2 dependence does

not apply to our experimental measurements of aFCA in phos-

phorus diffused silicon. Figure 5 indicates that the exponent

c is nearer to 3, thereby corroborating the parameterisations

of Green,10 Xu et al.,12 and Rudiger et al.,11 as well as exper-

imental work (e.g., by Schmid26). Considerable scatter in our

data is also apparent. The source of the scatter is the large

uncertainty in AFCA(N). In this experiment, since the subse-

quently etched layers were very thin (t� 10 nm), that uncer-

tainty derives from the fact that we measured very small

differential values of absorptance. A superior approach

would involve the preparation and measurement of a set of

relatively thick (t> 1 lm) films of (e.g., epitaxially grown)

doped silicon with controlled and constant N. Such an

approach would also allow one to investigate the behavior of

c at N< 1019 cm�3; our present approach breaks down in this

regime, since free carrier absorptance in 10 nm of less heav-

ily doped silicon is small and imprecisely detected.

For the purposes of our parameterization, we draw no

clear conclusions from Fig. 5 with regard to a relationship

between c and N. We proceed by simplifying the problem—

we assume that c is independent of N in our samples (both

for phosphorus and boron doped silicon). Confidence in the

physical basis of our parameterization is limited for

N< 1019 cm�3, where we have no data for c. However, we

show later that choosing a constant c does not preclude

excellent fits of modelled aFCA to experiment for lower N
(1017–1018 cm�3). Furthermore, the linear dependence of

aFCA on N means that any such lack of confidence has little

impact on device performance in most important cases

(assuming that when aFCA is small, it is less important).

B. Modelling AFCA and fitting to experiment

Having chosen the form aFCA¼CNkc, we seek to deter-

mine the optimal set (C, c) of constant parameters to describe

our experimental observations. This involves modelling the

free carrier absorptance in heavily doped regions of varying

dopant concentration, profile, and thickness, then fitting this

model (via parameter variation) to measurements.

Each investigated heavily doped region is discretised

into m elements of width Dx1. Dxm, with free carrier density

assumed constant across each element and denoted N1. Nm.

We calculate the Ni by applying Altermatt et al.’s parameter-

isation for incomplete ionisation38,39 to the ECV data.34 We

assume that since N does not vary across each element, nei-

ther does the local value of aFCA for a given k. The modelled

free carrier absorption in a single pass across the heavily

doped region is written as

A�FCAðkÞ ¼ 1�
Ym
i¼1

Ti; (5)

where

TiðkÞ ¼ exp ½�aFCAðk;NiÞ � Dxi�: (6)

To determine the most appropriate values of C and p (in

this exemplary for a single heavily doped region, but later,

FIG. 5. Experimentally determined relationship between the k-exponent c
and free carrier density in a phosphorus diffused region. No clear relation-

ship is exposed, though the classical c¼ 2 dependence is not apparent.
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for the full set of regions), we minimise the uncertainty-

weighted sum of square-differences between modelled

and measured free carrier absorption. We consider the wave-

lengths ki at intervals of 5 nm between 1000 and 1500 nm

(i.e., k0¼ 1050 nm and k90¼ 1500 nm), so that the figure

of merit e for the quality of the model fit to experiment is

given by

e ¼
X90

i¼0

A�FCA � AFCAð Þ2

DAFCA=AFCAð Þ2
: (7)

The best fit for a single heavily diffused region occurs when

c and C are chosen such that e is minimised. For the

phosphorus doped sample presented in Figure 6, we find

a minimum e¼ 8.3� 10�3 when c¼ 2.94 and C¼
2.46� 10�6.

To extend the analysis from a single diffusion to the

entire set of free carrier absorption measurements, we mini-

mise a global figure of merit E. For a set of m measurements

(j¼ 1… m), we define

E ¼
Xm

j¼1

ej; (8)

where ej is calculated with Eq. (7) for a given measurement.

C. Resultant parameterization for aFCA and parameter
uncertainty

The full set of measurements and their respective global

best fits is presented in Figures 7(a) and 7(b) for phosphorus-

and boron-doped regions, respectively. In terms of the free

carrier absorption coefficient, we calculate

aFCA;P ¼ 1:68� 10�6Nk2:88 (9)

and

aFCA;B ¼ 1:82� 10�9Nk2:18: (10)

We highlight, however, that the values of the parameters in

Eqs. (9) (C¼ 1.68� 10�6 and c¼ 2.88) and (10)

(C¼ 1.82� 10� 9 and c¼ 2.18) are associated with addi-

tional uncertainty arising from our combined experimental

and modelling approach. In particular, the use of experimen-

tally determined Ni causes uncertainty in AFCA* which prop-

agate into C and c. These uncertainties are quantified with a

Monte Carlo simulation in Appendix 3. Through this Monte

Carlo simulation, we additionally unveil a dependence of C
on c (refer to Eqs. (A5) and (A6)). Our complete model for

FIG. 7. Experimental measurements and global best fits to the free carrier absorptance in the near infrared for a range of (a) phosphorus and (b) boron doped

regions. Markers (measurement) and lines (model) are plotted in similar colours. Marker colours correspond to the marker colours for the diffusion profiles in

Figure 1.

FIG. 6. Example of the fit to (measured) AFCA by (modelled) AFCA* when

parameters C and c are chosen to minimise the weighted-least-squares dif-

ference between the two. The example is for a phosphorus diffusion of 9 X/

sq sheet resistance.
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the free carrier absorption coefficient in heavily doped sili-

con in the near infrared is presented in Table I.

D. Comparison of parameterizations

Examining Table I, it is apparent that there exist rather

large discrepancies between our parameterisations and those

published in the past. In Figures 8 and 9, we compare aFCA at

either fixed wavelength (k¼ 1200 nm) or fixed carrier den-

sity (N¼ 1019 cm�3). Focusing first on phosphorus doped

material, it is apparent that our parameterisation indicates

higher aFCA than calculated by the alternatives. Our parame-

terisation and that of Isenberg and Warta6 converges at

N> 1020 cm�3 for k¼ 1200 nm. This is an interesting obser-

vation given that Isenberg and Warta’s parameterisation was

based on experimental data with N< 1019 cm�3. Potentially,

their parameterisation is more accurate at N< 1018 cm�3

than the one we present; our measurements of doped regions

with varying concentration were inherently insensitive at

low N, though given the sample set, this effect could not be

captured in our uncertainty analysis. With regard to phospho-

rus doped silicon, the parameterisation of Isenberg and

Warta appears to be a reasonable choice for free carrier

absorption in the infrared. However, given that parameters

are only supplied for k¼ 1200 nm, our parameterisation may

be a more practical choice for routine device simulation. We

further conclude that the alternative published parameterisa-

tions would underestimate free carrier absorption in a heav-

ily phosphorus doped region for 1000< k< 1500 nm. We

note however, that our parameterisation is, to our knowledge,

the first to be provided with an associated calculation of

uncertainty. Assuming identical uncertainty in the previously

FIG. 9. Near infrared wavelength dependence of the free carrier absorption coefficient for an N¼ 1019 cm�3 in (a) phosphorus and (b) boron doped silicon.

The shaded yellow bands indicate the 95% confidence interval about our parameterisation, as described in the text and listed in Table I.

FIG. 8. Free carrier density dependence of the free carrier absorption coefficient at k¼ 1200 nm in (a) phosphorus and (b) boron doped silicon. Published

parameterisations are compared with the one developed in this work. The shaded yellow bands indicate the 95% confidence interval about our parameterisa-

tion, as described in the text and listed in Table I.
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published work would result in overlapping 95% confidence

intervals for parameterisations including ours but excluding

that of Schroder et al.1

On the other hand, for boron doped silicon, we find

agreement between our parameterisation and several others

for the full range of N and k.1,10–12 We additionally corrobo-

rate Isenberg and Warta’s6 analysis for 1018<N< 1019 cm�3.

Again, our relative experimental insensitivity for

N< 1018 cm�3 means that we cannot refute the Isenberg and

Warta parameterisation in this range.

Note that our parameterisation is more consistent with

others in the case of boron doping than phosphorus doping

(though as we indicate earlier, many parameterisations are

consistent to within calculated or assumed uncertainty). We

are not yet able to attribute a physical mechanism or driving

factor for this distinction between dopants. It is possible that

precipitated phosphorus atoms have an optical impact that

confounds our measurement or that of others. Precipitates

could exist in very different concentrations in various sample

sets depending on diffusion conditions. It is also possible

that for the textured samples,11,12 the conformance of the dif-

fusion profile to the surface differs significantly for phospho-

rus and boron, with the effect resulting in a larger

underestimate of aFCA for phosphorus than boron.

E. Implications for practical doped regions

To attach practical relevance to the discrepancies

between parameterisations, we use a simple, freely available

online calculator40 to simulate the free carrier absorptance in

a range of heavily doped regions that might be achieved by

diffusion or ion implantation. We consider light that passes

normal to a silicon surface into which a Gaussian profile of

dopants has been diffused. To vary sheet resistance, we vary

surface concentration only, maintaining a constant (1 lm)

standard deviation of the Gaussian.46 We assume

k¼ 1200 nm, this wavelength being sufficiently near the sili-

con absorption band edge and sufficiently high to suffer from

potentially measurable parasitic free carrier absorption. We

thus predict a likely upper limit to the free carrier absorption

that would be relevant to the operation of a device such as a

solar cell or infrared photodetector.

The simulation results are plotted in Figure 10; as

expected, the discrepancy between models, particularly when

assessing phosphorus doped regions, is clear. Our parameter-

isation predicts slightly higher absorption in phosphorus

doped regions. In an exemplary 78 X/sq region, our parame-

terisation gives 0.4 6 0.1% absorptance; this is significantly

higher than the absorptance calculated with all other models.

For boron diffusions, our parameterisation predicts (to within

its uncertainty) the absorptance calculated with almost the

full suite of previously published parameterisations. The

exception to the consistency of the data is that Isenberg and

Warta predict up to 70% relative more free carrier absorption

in very heavily boron doped regions (�10 X/sq).

VI. CONCLUSIONS

We determined experimentally, via reflection and trans-

mission measurements, the free carrier absorptance of heav-

ily phosphorus- and boron-doped silicon in the near infrared.

Our choice of a simple sample structure (planar, diffused sil-

icon wafers) contributes positively to the confidence with

which we can extract free carrier absorptance from the meas-

ured quantities. We arrived at a parameterisation for the free

carrier absorption coefficient aFCA for each dopant type. Like

various previous works,1,10–12 we find an appropriate func-

tion for aFCA with two constants, C and c, which takes the

form aFCA¼CNkc. Global best fits to 9 samples of a given

dopant species were (C, c)¼ (1.68� 10�6, 2.88) and (C, c)

¼ (1.82� 10�9, 2.18) for phosphorus and boron, respec-

tively. We undertake an analysis of the uncertainty of the pa-

rameters; to our knowledge, this is the first such analysis.

The majority of previously published parameterisations

appears to underestimate the degree of free carrier absorption

in heavily phosphorus doped silicon (N> 1018 cm�3) in the

FIG. 10. Proportion of 1200 nm light absorbed by free carriers in a (a) phosphorus or (b) boron doped region with Gaussian concentration profile with varying

surface concentration and depth factor 1 lm. Free carrier absorptance is calculated by applying a range of parameterisations for aFCA.
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infrared (1000< k< 1500 nm). On the other hand, when the

dopant is boron, we find no significant difference between

our parameterisation and those published in the past.

The parameterisation presented in this work is well-

suited to routine analysis of devices in which near infrared

free carrier absorption is an issue. The simulation of silicon

solar cells, for example, will benefit from this parameterisa-

tion. Further improvement to the accuracy and precision of

the free carrier absorption coefficient could be realised by

applying our experimental methodology to epitaxial silicon,

which can be grown to several microns of thickness with a

constant and controllable dopant concentration. Particular

focus could be applied to less heavily doped silicon

(N< 1018 cm�3), to which the presented experiment was

insensitive, and for which the precision of the current param-

eterisation is low.
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APPENDIX: SUPPLEMENTARY CALCULATIONS

1. Extraction of single pass absorptance A from Rmeas

and Tmeas

Extraction of A and R requires the solution of the simul-

taneous equations for measured Rmeas and Tmeas. These equa-

tions involve infinite sums of A and R (see Ref. 41 for an

explanation). The resultant definitions of A and R are

A ¼ RAmeas � Ameas

RAmeas þ R� 1
; (A1)

where

Ameas ¼ 1� Rmeas � Tmeas (A2)

and

R ¼
� 1þ T2

meas þ 2Rmeas � R2
meas

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

meas þ 2Rmeas � R2
meas

� �2 þ 4 Rmeas � 2ð ÞRmeas

q
2 Rmeas � 2ð Þ : (A3)

2. Propagation of experimental uncertainty; from
dRmeas and dTmeas to dAFCA.

Uncertainties in the two measured quantities Rmeas and

Tmeas propagate through to AFCA. We measure random ex-

perimental error dRmeas and dTmeas by measuring reference

silicon wafers 5 times, and define the uncertainty by a 95%

confidence interval about the mean in the measured parame-

ter at each k. This uncertainty reflects the intensity resolu-

tion of the spectrophotometer, variation (e.g., in thickness,

surface condition, or dopant concentration) across a sample,

and drift in the source and sensing electronics of the spectro-

photometer. Refer to Figure 3, where we showed that we

were able to precisely measure the band to band absorption

coefficient; this confirmed that our measurements do not

possess additional systematic errors for which we must

account.

Propagation of uncertainties from the measured quan-

tities through to A is calculated by assuming normal dis-

tributions of uncertainty. Note that, per Eq. (3), AFCA

depends on Ameas for both the reference (Aref) and dif-

fused sample (A). The resultant uncertainty dAFCA is

given by

dAFCA ¼
1� A

1� Aref

� �1=2

þ 1=2
dA

1� A
þ dAref

1� Aref

� � !
;

(A4)

where both dA and dAref are uncertainties propagated from

the measured quantities through Eqs. (A1)–(A3).

3. Uncertainty in parameters C and c of aFCA

The modelled quantity AFCA* depends on Ni (i.e., the

profile of dopant concentration through which the light

passes in our spectrophotometric analysis). The model is

therefore uncertain, with its uncertainty linked to uncertainty

dNi in each Ni. Key potential sources for dNi are (i) non-

uniform dopant profiles across the sample (e.g., the location

probed with spectrophotometry has a different concentration

of dopants than the location probed with ECV) and (ii)

uncertainties deriving from the ECV measurement. By meas-

uring the sheet resistance of the heavily doped region with a

four point probe at five locations across the sample, we

determine that the former source contributes a�5% standard

deviation.47 An additional uncertainty of �5% derives from

ECV measurement and is primarily related to the imprecise

definition of electrode area (e.g., due to bubbles in the elec-

trolyte or imperfection in the ring-seal) and, to a lesser

degree, a parasitic contribution of the etched walls to the

depletion capacitance.42 Note that both key contributions to

dNi are dominated by uncertainty that scales N for all i; we

therefore assume that for a given experimental sample

dNi	 dN for all i. Note further that dN for each sample is in-

dependent (the nature of the key sources of uncertainty are

such that Ni may be overestimated for one sample, and

underestimated for the next).

To account for the impact of dNi on c and C, we per-

formed a Monte-Carlo analysis. We assumed that Ni can

vary from its measured value with a normal distribution hav-

ing a standard deviation of 10% (i.e., dN/Ni has normal
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distribution with zero mean and 0.1 standard deviation). In a

single Monte Carlo run, each experimental sample was

assigned a randomly selected value of dN/Ni from the distri-

bution, and a new “effective” Ni was determined. Next, the

parameters c and C were varied until E was minimised in ac-

cordance with the procedure described in Sec. V B; optimal

values of c and C were recorded. This process was repeated

until 500 Monte-Carlo runs were performed.

Taking our set of phosphorus diffused samples as an

example, we plot a frequency histogram c in Figure 11(a).

Note that the centre of the normal distribution value is equal

to the value of c presented in Eq. (9) (where zero uncertainty

in Ni was assumed). We found, for phosphorus doped silicon,

c¼ 2.88 6 0.08 to be a 95% confidence interval. Performing

the Monte Carlo simulations revealed that the prefactor pa-

rameter C is exponentially dependent on c, per Figure 11(b).

The distribution of C values is therefore not normal. Note

that we account for the uncertainty in the parameters of this

exponential fit, arriving at

C ¼ ð8:163:0Þ � 10�19 exp ½ð9:860:1Þc�: (A5)

We follow the same procedure for boron doped silicon, to

find

C ¼ ð1:360:6Þ � 10�17 exp ½ð8:660:2Þc�: (A6)

In summary, accounting for uncertainties in c and in its

exponential relationship with C, we arrive at a 95% confi-

dence interval for the FCA coefficient for phosphorus doped

silicon

1:05� 10�6Nk2:80 < aFCA < 2:30� 10�6Nk2:96; (A7)

and for boron doped silicon

0:97� 10�9Nk2:17 < aFCA < 2:64� 10�9Nk2:19: (A8)

In Eqs. (A7) and (A8), N has units cm�3, k has units cm, and

aFCA has units cm�1.
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