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Abstract

Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to
survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention
because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the
molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and
facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this
purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify
enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes
potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population
from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated
enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity
of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic
basis of insecticide resistance in wild mosquito populations.
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Introduction

Insecticide resistance in disease vectors is one of the greatest

challenges to the reduction of the burden caused by vector-borne

diseases in developing countries. Beyond their public health

importance insect vectors are increasingly regarded as model

organisms with insecticide resistance serving as an excellent

example of natural selection [1]. In many parts of Africa, the

malaria vector, Anopheles gambiae shows high levels of resistance to

pyrethroid insecticides which are the mainstay of vector control

[2] and there is evidence that this resistance may reduce the

efficacy of treated bednets and indoor residual spraying with

pyrethroids [3]. Moreover, some pyrethroid resistance mecha-

nisms that confer cross-resistance to DDT are geographically

widespread [4]. The stark reality facing control program managers

is that there is resistance to the primary compounds used for vector

control and that no new active ingredients have become

commercially available for public health use in the last 20 years.

Studies of resistance mechanisms are key to both understanding

the evolution of resistance and to minimising its impact on disease

control.

At the biochemical level, two classes of mechanism are

predominantly associated with insecticide resistance; changes in

the sensitivity of insecticide targets in the nervous system and

metabolism of insecticides before they reach their target [5]. In A.

gambiae, target-site resistance to DDT and pyrethroids is associated

with a knock-down resistance (kdr) mutation in the voltage-gated

sodium channel gene. The kdr alleles are characterised by two

point mutations resulting in either a L1014F [6] or L1014S [7]

substitution. The mutations may be present alone or in

combination and have arisen from multiple mutation events [1].

While insecticide resistance associated with kdr is well studied at

the physiological, behavioural and population level, much less is

known about the enzymes associated with metabolic resistance.

One route of metabolic resistance is through up-regulation of

detoxification enzymes. Overexpression of enzymes related to

insecticide resistance is generally assumed to be associated with

cytochrome P450-dependent monooxygenases (P450), carboxyles-

terases (COE), and glutathione-S transferases (GST). Among these

three families, evidence suggests that P450s commonly play a

primary role in pyrethroid resistance (for reviews see [8] and [9]).

To date, out of 111 putative A. gambiae s.s. P450s [10] four have
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been observed to be overexpressed in adult mosquitoes from

colonies characterised as pyrethroid resistant, namely CYP6Z1,

CYP6Z2, CYP6M2 and CYP325A3 [11–13]. Although the up-

regulation of these P450s was associated with resistance, their

potential to metabolise pyrethroids remains unclear. While Chiu et

al. [14] demonstrated that CYP6Z1 metabolises DDT, to date

only CYP6Z2 interacts with pyrethroids. McLaughlin et al. [15]

found that CYP6Z2 binds to two pyrethroids, permethrin and

cypermethrin. Their data, however, also suggested that the

pyrethroids were not metabolised by this P450 highlighting the

importance of functionally characterising putative candidates

involved in pyrethroid metabolism. These earlier studies have

potential confounding effects of colonisation including genetic drift

and physiological adaptations to the artificial laboratory environ-

ment. The study of immune response in natural mosquito

populations has highlighted that mechanisms found in laboratory

colonised material may be less relevant in nature [16].

While genetic markers for target site insensitivity are available

[6,7] and widely used, we lack simple screening methods for alleles

associated with up-regulation of detoxification enzymes. As a

result, the role of metabolic resistance in reducing the efficacy of

malaria vector control is unknown. The current study was carried

out as part of the Innovative Vector Control Consortium (IVCC)

to develop a tool to monitor mosquito field populations for

resistance alleles [17]. We set out to identify enzymes that

metabolise pyrethroid insecticides by selecting field-caught mos-

quitoes against the lethal time to kill 50% of the mosquito

population (LT50). Genes potentially associated with detoxification

of xenobiotics were screened for differential gene expression

between survivors and unexposed mosquitoes using the A. gambiae

detox chip [11]. We then expressed the most promising candidate in

Escherichia coli to examine its pyrethroid metabolising potential.

Materials and Methods

Mosquito Collections
Mosquito collections were carried out in the village of Dodowa,

Ghana (05u52.679N, 000u06.369W) between October and No-

vember 2006. A detailed description of the field site can be found

in Yawson et al. [18]. Mosquitoes morphologically identified as

members of the A. gambiae species complex [19,20] were sampled

from natural breeding sites and raised to adults in an insectary

located in Dodowa. Larvae were given ground TetraMin fish food

and adults were provided with 10% sugar solution. Newly

emerged adults were separated into females and males and kept

as cohorts of same age. All bioassays and selections were

performed on the third day post-eclosion.

In addition to the larval collections blood-fed females were

caught using aspirators inside houses and family lines reared as

described in Müller et al. [21]. These family lines were used to

compare constitutive versus induced gene expression (see below).

Selection Experiment
Before selecting mosquitoes against permethrin we determined

the lethal time (LT) of 0.75% permethrin treated filter paper for

50% mortality (LT50) using World Health Organization (WHO)

test kits following standardised conditions [22]. To estimate the

LT50 we first established a time-response curve by exposing

approximately 100 individuals to one of six different exposure

times (12.5, 25, 50, 100, 150 and 200 min). Mortality was

recorded 24 h post exposure and data were fitted by a logistic

regression model using logit-transformed probabilities [23] to

predict the LT50. All analyses were performed using the open

source statistical software package R (http://www.r-project.org).

All R-code required to perform these calculations is available from

the first author on request. Once the LT50 was determined,

cohorts of 3-day old adult females were split into two groups; one

group was exposed to 0.75% permethrin and the other group to a

control paper which contained only the insecticide carrier (silicone

oil). Both groups were exposed for the LT50 using WHO test tubes

and then transferred to holding tubes. In order to examine

constitutive differences in gene expression between selected and

unselected mosquitoes all individuals were kept in the holding

tubes for 48 h before they were killed in 70% ethanol. A recovery

time of 48 h was chosen to control for potential permethrin-

induced gene expression. Vontas et al. [24] showed that

permethrin-induced gene expression regains constitutive levels

within 24 h of a non-lethal exposure. To test for permethrin-

induced gene expression additional family lines were reared and 3-

day old adult females split into two groups. One group was

exposed to 0.75% permethrin for 30 min and the second group

served as a control. After a recovery time of 48 h post exposure

four to five female mosquitoes from each group were pooled and

RNA extracted. Using RT-PCR gene expression levels of exposed

and unexposed individuals were compared in a pair wise t-test.

For all mosquitoes one hind leg was removed for DNA

extraction and the remaining body parts were transferred to

RNAlater (Ambion) to prevent RNA degradation. Genomic DNA

was extracted from legs using the DNeasy kit (Qiagen) and used to

identify each specimen to species and molecular form [25]. The

same DNA was used to screen for the presence of the L1014F [6]

and L1014S [7] substitutions within the voltage-gated sodium

channel protein causing knockdown resistance (kdr) by a heated

oligonucleotide ligation assay (HOLA) [26].

Microarray
Only mosquitoes identified as members of A. gambiae s.s. S form

and homozygous for the L1014F kdr allele were included in the

microarray study. Total RNA was extracted from pools of 10

mosquitoes which were either selected against 0.75% permethrin

for the LT50 or not exposed to the insecticide. The quality and

quantity of all RNA pools was measured by a spectrophotometer

Author Summary

Malaria, a disease spread by anopheline mosquitoes, is a
global health problem with an enormous economic and
social impact. Pyrethroid insecticides are critical in reducing
malaria transmission, and resistance to these insecticides
threatens current control efforts. With a limited number of
public health insecticides available for the foreseeable
future, it is vital to monitor levels of resistance to facilitate
decisions on when new strategies should be implemented
before control fails. For monitoring, simple molecular assays
are highly desirable, because they can detect resistance at
very low frequencies and should identify the presence of
single recessive alleles well before bioassays. An under-
standing of the mechanisms conferring resistance facilitates
the development of such tools and may also lead to novel
strategies to restore the efficacy of the insecticide, or the
development of new compounds. We set out to identify
enzymes that may confer metabolic pyrethroid resistance
by comparing levels of messenger RNA between insecti-
cide-selected versus unselected mosquitoes. We caught
members of the major malaria vector, A. gambiae s.s. from a
highly pyrethroid resistant field population. We found
increased transcript levels for a cytochrome P450, CYP6P3,
and demonstrate that it encodes for an enzyme that
metabolises pyrethroids.

Pyrethroid Metabolism in Anopheles gambiae
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(Nanodrop Technologies) and a random subset was also assessed

using a 2100 Bioanalyzer (Agilent Technologies). RNA extraction,

amplification and labelling protocols followed those described in

Müller et al. [21]. Labelled targets were hybridised to an updated

version of the A. gambiae detox chip [11,21] which was printed with a

physical rearrangement of the probes (ArrayExpress accession A-

MEXP-863). The probes on the microarray include 103

cytochrome P450s, 31 esterases, 35 glutathione S-transferases

and 85 additional genes such as peroxidases, reductases,

superoxide dismutases, ATP-binding cassette transporters, tissue

specific genes and housekeeping genes.

The microarray experiment compared RNA pools from

selected vs. unselected mosquitoes, comprising six independent

replicates with dye-swaps (12 arrays in total). As each probe was

spotted in replicates of four and measurements were obtained for

both red and green wavelengths in each array, a total of 96

measurements per probe were obtained. After visual inspection of

each array, spot and background intensities were calculated from

the scanned array images using GenePix Pro 5.1 software (Axon

Instruments). Raw intensities were then analysed with Limma 2.4

software package [27] running in R. Any spot that showed a

median intensity in one or both channels at saturation was

excluded from the analysis. For each spot background intensities

were subtracted (i.e. method = ‘‘subtract’’) from the total spot

intensities and adjusted intensities were transformed into intensity

log-ratios and normalised. For the comparison between the two

groups, selected vs. unselected, estimates for technical replicates

(dye-swaps) were first averaged and then compared between the

two groups. A detailed description of the methods used for

normalisation and statistical analysis is given in Müller et al. [12].

All microarray data has been deposited in ArrayExpress (accession

E-MTAB-52).

In terms of absolute fold change our values are likely to

underestimate true fold differences between mosquitoes that would

survive an LT50 and those that would not. This is a result of the

study design whereby the LT50 survivors were compared with a

control group that would be expected to be a mixture of 50%

mosquitoes surviving and 50% mosquitoes dying after exposure to

0.75% permethrin. It was not possible to select a fully susceptible

control group due to the expected RNA degradation postmortem.

The underestimation of fold changes may occur wherever resistant

mosquitoes are compared with their parental line. Details of how

this study design limits maximum fold change are given in Figure

S1. As a consequence we have chosen to rank our genes by

statistical significance (i.e., 2log10 P-value) rather than setting an

arbitrary fold change cut-off to filter for candidates.

Quantitative RT-PCR
Quantitative RT-PCR was used to validate microarray data and

for comparisons with the ‘‘Kisumu’’ strain, a susceptible A. gambiae

s.s. laboratory colony. An aliquot of 75 ng from each pool of total

RNA served as template for making target specific cDNA by

reverse transcription in a single multiplex assay using the

GenomeLab GeXP Start Kit (Beckman Coulter) and the gene-

specific primers in Table 1. The primers were designed using the

eXpres Profiler software (Beckman Coulter) based on cDNA

sequences retrieved from the sources given in Table 1. The GeXP

multiplex system uses a combined primer of target-specific and a

universal sequence to reverse transcribe mRNA into cDNA. The

reverse transcription step was followed by a PCR step in which

during the first three cycles amplification was carried out by

chimerical forward and reverse primers (Table 1). For the

subsequent cycles (numbers 4 to 35), amplification was carried

out using universal forward and universal reverse primers provided

by the kit. The PCR conditions were 95uC for 10 min, followed by

35 cycles of 94uC for 30 s, 55uC for 30 s and 68uC for 1 min.

Multiplexing primer specificity was confirmed by sequencing the

PCR products obtained from single reactions. The universal

primers that come with the kit were fluorescently labelled and

yielded signals that corresponded to the amount of product in the

multiplex reaction. PCR products were quantified with a CEQ

8000 Genetic Analysis System (Beckman Coulter) running a

GenomeLab GeXP eXpress analysis program (Beckman Coulter)

that computes peak areas for each target. The peak area of a

control gene, S7 (VectorBase: AGAP010592) was used to

normalise for variation in total mRNA amount. Normalised peak

areas were then log2-transformed to approximate a normal

distribution.

Cloning CYP6P3 for Expression in Escherichia coli
Messenger RNA from the susceptible lab colony A. gambiae

‘‘Kisumu’’ (3-day old adults) was isolated using the PicoPure kit

(Arcturus) and cDNA prepared using Superscript III (Invitrogen).

Initial efforts to express CYP6P3 using the E. coli OmpA signal

peptide as previously described for CYP6Z2 [15] were unsuccess-

ful. Therefore, we used another common strategy for P450

expression, which is to replace the natural P450 amino-terminus

with a sequence (MALLLAVF) derived from the bovine steroid 17

a-hydroxylase [28]. To introduce the amino-terminal 17a
modification the 59-end of CYP6P3 cDNA was amplified using

KOD DNA polymerase (Novagen) with ECG169 (59TTTCA-

TATGGCTCTGTTATTAGCAGTTTTTGCCGCGTTCATC-

TTCGCAGTGTCGATCGTG 39), introducing a NdeI restriction

site at the initiation codon (underlined), and ECG137 (59-

ATGAATTCTACAACTTTTCCACCTTCAAG -39) comple-

mentary to the 39-end of the CYP6P3 cDNA, and introducing an

EcoRI site (underlined). The resulting 17a-CYP6P3 was ligated into

pCWompA2 via NdeI and EcoRI to create pCW::17a-cyp6p3. The

construct was sequenced and compared with the database sequence

of CYP6P3 (GenBank:AAL93295). In addition to the four amino

acid substitutions to the membrane anchoring sequence as a result

of the 17a modification (E2A, I4L, N5L, and L8F – numbering

relative to published sequenced), there were two nucleotide changes

that encoded amino acid substitutions R154W and L292V. These

nucleotides changes were are also present in CYP6P3 amplified from

Kisumu genomic DNA and are therefore not due to PCR errors.

Preparation of E. coli Membranes for Functional CYP6P3
For functional expression of CYP6P3 and its redox partner

cytochrome P450 reductase (CPR), competent E. coli DH5a cells

were co-transformed with pCW::17a-cyp6p3 and pACYC-

AgCPR. This transformant was grown in 0.4 l of Terrific Broth

with ampicillin and chloramphenicol selection at 37uC until the

optical density at 595 nm reached 0.8 units. The culture was then

cooled to 25uC, supplemented with 0.5 mM 5-aminolevulinic acid

(Melford, UK) and 1 mM isopropyl b-D-1-thiogalactopyranoside

(Melford) before incubation continued at 25uC with orbital

shaking at 150 rpm. The cells were harvested and membranes

prepared as described previously [15]. P450 function was

quantified by CO-difference spectroscopy [29] and CPR activity

was estimated by cytochrome c reductase activity [30]. CYP6P3

was expressed at 50–100 nmol of P450 litre of culture. The

isolated bacterial membranes contained 0.5 nmol of CYP6P3 per

mg protein and the specific activity of CPR was 61 nmol

cytochrome c reduced min21 mg21 protein. Total protein

concentration was determined by Bradford assay, with bovine

serum albumin standards.

Pyrethroid Metabolism in Anopheles gambiae
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Pyrethroid Metabolism Assays
Deltamethrin and permethrin (Chemservice, West Chester, PA)

were incubated with 0.25 mM CYP6P3 in 0.2 M Tris.HCl,

pH 7.4, 0.25 mM MgCl2 in the presence or absence of an

NADPH generating system (1 mM glucose-6-phosphate (Melford),

0.1 mM NADP+ (Melford), 1 unit ml21 glucose-6-phosphate

dehydrogenase (G6PDH) in a total volume of 100 ml. Reactions

were carried out in triplicate at 30uC with 1,200 rpm shaking.

Samples were pre-warmed for 5 min before reactions were

initiated by addition of the membrane preparation. Reactions

were stopped with 100 ml of acetonitrile and incubated for a

further 20 min to ensure that all pyrethroid was dissolved.

The quenched reactions were centrifuged at 20,000 g for

10 min before transferring the supernatant to glass HPLC vials.

100 ml of the supernatant was loaded onto a mobile phase with a

flow rate of 1 ml min21 and 23uC for separation on a 250 mm

C18 column (Acclaim 120, Dionex). Time-trial reactions were run

with a linear gradient from 0% to 90% acetonitrile in water (v/v)

over the first 6 min, 90% was then held for 10 min before

returning 0% with a linear gradient over 2 min followed by

equilibration with 0% for another 4 min. Pyrethroid elution was

monitored by absorption at 232 nm and quantified by peak

integration (Chromeleon, Dionex).

For kinetics of deltamethrin, varying concentrations of substrate

(0.5–16 mM) were used. Deltamethrin concentrations were

determined by HPLC as describe above, but using an isocratic

mobile phase with 90% acetonitrile in water. Rates of deltame-

thrin turnover from three independent reactions were plotted

versus deltamethrin substrate concentration. Km and Vmax were

determined using SigmaPlot v10.0 (Systat Software, Inc) by fitting

to the Michaelis-Menton equation using non-linear regression.

Results

Spectrum of Permethrin Susceptibility
Before selecting individuals the LT50 to 0.75% permethrin was

determined by exposing 98 to 110 individuals per time point and

sex (Figure 1). Using logistic regression models we estimated an

LT50 of 122 min for females and 95 min for males. Mortality rates

for a WHO standard 1 h exposure were 16.8% and 30.5% for

Table 1. Oligonucleotide primer sequences used for microarray validation.

Gene Accession no. Primer Sequence (59-39) Concentration Size

ABCC11 VectorBase:AGAP008436-RA forward TCATCTACCGGGACTTTTCG 20 nM 135 bp

reverse TCCCAATGAAGCTGGATTTC 50 nM

ABCC9 VectorBase:AGAP008437-RA forward AACGTCCACACCGATCTTTC 20 nM 106 bp

reverse TTCCAATCGCTTTAATTGCC 50 nM

COEAE2G VectorBase:AGAP006723-RA forward TGATCAAGAACCTGTCGGTG 20 nM 177 bp

reverse CGGTAAGCAGATCGACCAAT 150 nM

CYP12F4 VectorBase:AGAP008018-RA forward GGATCGACGGGAATTCTGTA 20 nM 215 bp

reverse AGAACGAGGTCTTTTCCGGT 50 nM

CYP4D22 VectorBase:AGAP002419-RA forward GTTAGCGTTGTTCTGCACCA 20 nM 184 bp

reverse GATCTTGAAGTGAAAGGCGG 50 nM

CYP4H19 VectorBase:AGAP000088-RA forward TTCTCGTGACGCTATTGGTG 20 nM 238 bp

reverse CTGGTTACGACGACCATGTG 150 nM

CYP4H24 VectorBase:AGAP000088-RA forward CGCAAGTGTCTAACGAGCAG 20 nM 163 bp

reverse TCATGACCCTCGAACATGAA 50 nM

CYP6AK1 VectorBase:AGAP010961-RA forward GCTGCCACCTTCTATATGGC 20 nM 142 bp

reverse TTTCGCGTCCATATTTGACA 6.2 nM

CYP6M2 VectorBase:AGAP008212-RA forward TTCGTCGACTCTCCTCACCT 20 nM 199 bp

reverse GAAATGTACCGGGACTGGTG 50 nM

CYP6M3 VectorBase:AGAP008213-RA forward GATCAAGTACCGGGTGGAGA 20 nM 229 bp

reverse TCTGCCCTTATCTTGCACCT 24.4 pM

CYP6N1 GeneBank:AY028786 forward CTACTGGGAAAAGCGAGGTG 20 nM 149 bp

reverse GAATTCCTCCGAATGGTTGA 50 nM

CYP6P3 VectorBase:AGAP002865-RA forward AGCTAATTAACGCGGTGCTG 20 nM 121 bp

reverse AAGTGTGGATTCGGAGCGTA 50 nM

CYP6Z2 VectorBase:AGAP008218-RA forward TTATTTGTCCTGGGTTGTTGAA 20 nM 244 bp

reverse GTTTCTGCACCGGCAATGTA 50 nM

GSTD1-4 VectorBase:AGAP004164-RC forward TCGAGCGATCATGTGCTATC 20 nM 222 bp

reverse AACGCTAAAGCTTCCCCAAT 50 nM

S7 VectorBase:AGAP010592-RA forward CATTTCGTTGTGAACCCAAA 20 nM 128 bp

reverse AGTTCATCTCCAGCTCCAGG 0.8 nM

Primer sequences and product size are given without the universals needed for the qPCR method applied.
doi:10.1371/journal.pgen.1000286.t001

Pyrethroid Metabolism in Anopheles gambiae
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females and males, respectively (Figure 1). Mortality in the controls

was 2.3% for females (N = 171) and 2.1% for males (N = 116).

Species Composition and Genotypes
A total of 333 A. gambiae s.l. females were stored for gene

expression studies and identified to species level, molecular form

and kdr genotype (Table 2). The majority (99.4%) of the sampled

mosquitoes were A. gambiae s.s. belonging to the molecular S form,

and only two individuals in the control group were M form. The

L1014S kdr mutation was detected in three individuals, although it

was not possible to confirm this result by sequencing. There was

no difference in L1014F frequencies between the control and

selected groups (Fisher’s exact test, P = 0.22). This latter mutation

was close to fixation with 91.3% of the screened individuals in the

control group being homozygous for the L1014F mutation

(Table 2).

Gene Expression
All specimens included in the microarray analysis were A.

gambiae s.s., molecular S form and homozygous for the L1014F kdr

mutation to minimise confounding effects. Three P450s were

consistently (very low P-values) expressed at higher levels in LT50-

selected vs. unexposed mosquitoes; CYP6P3, CYP4H24 and

CYP4H19 (Figure 2, Table 3). CYP6P3 and CYP4H19 were 1.6-

fold over-expressed and CYP4H24 was 1.5-fold over-expressed in

specimens surviving the LT50.

The same RNA pools used in the microarray analysis were

additionally evaluated by multiplex quantitative reverse transcrip-

tion (RT) PCR for 14 selected genes (Table 1). The transcripts were

selected from the pool of genes that were differentially expressed in

the microarray analysis. Two genes, CYP4H19 and COEAE2G were

removed from the analysis due to missing PCR products for some of

the RNA pools. Both methods were in concordance for several

genes, though not for all, including CYP6P3, CYP6M2, CYP6AK1,

GSTD1-4, ABCC9 and CYP6Z2 (Figure 3A). For all other genes,

ABCC11, CYP4D22, CYP4H24, CYP6M3, CYP6N1 and CYP12F4

the lack of concurrence between the two methods is probably

related to low levels of fold change [31].

On the basis of having the most consistent gene expression

pattern, the catalytic properties of CYP6P3 enzyme was further

investigated by heterologous expression in E. coli. The comparison

of CYP6P3 expression levels between LT50-selected mosquitoes

and a susceptible laboratory (Kisumu, A. gambiae s.s.) strain also

showed increased levels in the wild mosquito population

(Figure 3B), showing additional evidence for an association

between CYP6P3-overexpression and permethrin resistance. A

comparison of CYP6P3 expression levels between permethrin-

exposed and unexposed female siblings 48 h post exposure showed

no sign of gene induction (pair wise t-test, P-value = 0.49, N = 7

families; data not shown). Hence, overexpression of CYP6P3 may

Figure 1. Spectrum of permethrin susceptibility in A. gambiae
s.l. from Dodowa, southern Ghana. Proportion of 3-day old adult A.
gambiae s.l. individuals killed as a function of exposure time to 0.75%
permethrin following WHO standard protocols [22]. Dots represent
summaries from performed susceptibility tests with between 98 and
110 individuals per time point and sex. Time-response curves were
fitted to data using logit analysis [23]. Dotted lines indicate LT50s which
were 2 h 2 min and 1 h 35 min for females and males, respectively.
doi:10.1371/journal.pgen.1000286.g001

Table 2. Distribution of S and M molecular forms and kdr
allele frequencies in the control and selected group collected
for gene expression analysis.

Molecular
form kdr allele frequency

RW,RW RW,+ RW,RE
1 RE,RE RE,+ +,+

Control group (172)

S 91.3% (157) 5.8% (10) 1.7% (3) - - -

M - - - - - 1.2% (2)

Selected group (161)

S 95.0% (153) 5.0% (8) - - - -

M - - - - - -

Figures in brackets show the number of specimens scored.
RW: L1014F kdr substitution.
RE: L1014S kdr substitution.
1not confirmed by sequencing.
doi:10.1371/journal.pgen.1000286.t002

Figure 2. Microarray analysis of loci showing differences in
expression levels between LT50-selected and unselected spec-
imens. Each dot represents the mean estimates, P-value vs. fold
difference for one unique probe on the microarray. Names are given for
the 10 statistically most significant genes (values are given in Table 3).
To account for multiple testing, P-values were adjusted adopting the
approach of Benjamini and Hochberg [41] to control for the false
discovery rate as described in Smyth [27].
doi:10.1371/journal.pgen.1000286.g002

Pyrethroid Metabolism in Anopheles gambiae
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be assumed to be constitutive rather than induced upon

permethrin exposure.

Pyrethroid Metabolism
CYP6P3 was co-expressed with A. gambiae cytochrome P450

reductase (CPR) in E. coli to produce a functional monooxygenase

complex, and the ability of CYP6P3 to metabolise permethrin was

evaluated from time-dependant elimination of a 10 mM mixture of

four isomers. Permethrin eluted with R and S trans-isomers at

16.1 min and R and S cis-isomers at 17.4 min in HPLC analysis.

In the absence of NADPH there was no significant change in

permethrin concentration over the 30 min incubation period

(Figures 4A and 5A). With the NADPH regeneration system

included, 72% of the total permethrin was eliminated in 30 min

(Figure 4B) with a steady rate of elimination (Figure 5A). This

indicates a turnover of 0.5960.04 min21, (slope from linear

regression6S.E.M.) for the trans-permethrin isomers and

0.3760.02 min21 for the cis-permethrin isomers (combined rate

of 0.9760.06 min21).

CYP6P3 activity was also tested against an alpha-cyano

pyrethroid, deltamethrin, commonly used on insecticide-treated

bednets. Deltamethrin eluted at 14.5 min and like permethrin,

NADPH-dependent elimination by CYP6P3 was observed

(Figures 4C, 4D, and 5B). The single isomer at 10 mM was turned

over slightly slower than permethrin at a constant rate of

0.8660.03 min21. Deltamethrin metabolism was studied in

Table 3. Microarray results of top ten differentially expressed genes between selected and unselected mosquitoes.

Gene Accession no. Function Location Measured fold Putative fold1 P-value2

Overexpressed in selected mosquitoes

CYP6P3 VectorBase: AGAP002865-RA Cytochrome P450 2R 1.61 2.82 6.69610219

CYP4H24 VectorBase: AGAP000088-RA Cytochrome P450 X 1.47 2.21 6.69610219

CYP4H19 VectorBase: AGAP000088-RA Cytochrome P450 X 1.61 2.83 1.63610216

CYP6AK1 VectorBase: AGAP010961-RA Cytochrome P450 3L 1.27 1.57 1.19610208

COEAE1D VectorBase: AGAP005756-RA Carboxylesterase 2L 1.30 1.66 3.71610208

CYP6M2 VectorBase: AGAP008212-RA Cytochrome P450 3R 1.29 1.64 6.28610207

ABCC11 VectorBase: AGAP008436-RA ABC transporter 3R 1.19 1.38 1.15610206

ABCC9 VectorBase: AGAP008437-RA ABC transporter 3R 1.30 1.66 2.01610206

Overexpressed in unselected mosquitoes

CYP6N1 GenBank: AY028786 Cytochrome P450 3R 21.20 21.35 1.84610207

CYP12F4 VectorBase: AGAP008018-RA Cytochrome P450 3R 21.19 21.32 3.67610206

1Gives the estimated ratio in gene expression levels if survivors were directly compared with dead mosquitoes (See Figure S1 for its calculation).
2To account for multiple testing, P-values were adjusted adopting the approach of Benjamini and Hochberg [41] to control for the false discovery rate as described in
Smyth [27].

doi:10.1371/journal.pgen.1000286.t003

Figure 3. Microarray validation by quantitative RT-PCR. (A) Correlation between microarray data and RT-PCR of selected genes given in
Table 1 (CYP4H19 and COEAE2G were removed from the analysis). While both microarray and multiplex RT-PCR showed similar fold differences for
CYP6P3, the overall correlation was weak (r = 0.46, P = 0.129). (B) CYP6P3 expression levels including additional specimens (Mean values6S.E.M.).
Unselected: unselected field specimens (N = 14 replicates, n = 140 individuals). Selected: LT50-selected specimens (N = 15 replicates, n = 150
individuals). Kisumu: susceptible lab strain (N = 3 replicates, n = 30 individuals). CYP6P3 levels in the susceptible Kisumu lab strain were 1.7-fold lower
than in the selected, field-caught mosquitoes (one-sided t-test, P,0.05). Note that the y-axis shows normalised, log-transformed expression levels.
doi:10.1371/journal.pgen.1000286.g003
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greater kinetic detail due its availability as a single isomer. Analysis

of initial metabolic rate (5 min reactions) in response to

deltamethrin concentration revealed Michaelis-Menten kinetics:

the Vmax was 1.860.2 min21 and the Km was 5.961.2 mM

(6S.E.M., N = 3).

Discussion

In this study, we selected wild-caught mosquitoes from a highly

permethrin resistant field population in southern Ghana against

the insecticide permethrin. Using a custom made microarray we

identified CYP6P3, a P450 that was overexpressed in mosquitoes

surviving exposure to 0.75% permethrin for 2 h, the time that kills

50% of the mosquito population. Heterologous expression of

CYP6P3 in E. coli yielded a protein that metabolises permethrin

and deltamethrin. This is the first study to identify a gene encoding

for an enzyme that mediates pyrethroid detoxification in the

malaria vector A. gambiae s.s.. As our findings are based on the

study of gene expression in wild-caught, phenotyped mosquitoes,

the results are of significant importance in the field context.

3-day old females of the mosquito population under study

showed 83% survival rate at the WHO diagnostic to 0.75%

permethrin for 1 h. To our knowledge, this is the highest survival

rate reported against permethrin in an A. gambiae field population

to date. This population has a high frequency of the L1014F kdr

allele, which confers resistance to pyrethroids and DDT [6]. The

population is almost fixed with 91% of screened individuals found

to be homozygous for the L1014F substitution at the this locus, a

12% increase compared to a survey conducted in 2002 at the same

field site [18]. There has been much debate over the extent to

which target-site and metabolic resistance mechanisms contribute

to the observed phenotype [3,7,32]. To exclude any possible effect

of known target-site mutations we performed all gene expression

analyses only on RNA extracted from specimens homozygous for

the L1014F kdr type. This is a considerable improvement over

previous expression studies which were potentially confounded by

Figure 4. HPLC chromatograms of CYP6P3 reactions. (A) and (B) show CYP6P3 reactions with 10 mM permethrin. (C) and (D) show CYP6P3
reactions with 10 mM deltamethrin. Substrate peaks for cis- and trans-permethrin stereoisomers and deltamethrin are indicated. (B) and (D) are
overlaid traces of reactions quenched after 0 min (light trace) and 30 min (dark trace) showing substrate elimination in the presence of NADPH. (A)
and (C) are overlaid negative control reactions quenched after 0 and 30 min in the absence of NADPH. Putative NADPH-dependant metabolite peaks
are indicated by arrows.
doi:10.1371/journal.pgen.1000286.g004
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comparing the susceptible Kisumu strain with resistant laboratory

strains having either the L1014S [11,13,24] or L1014F [12] kdr

mutation. Furthermore, in the field population studied L1014F

allele was close to fixation and hence the observed variability in

resistance phenotype is most likely attributable to an additional

mechanism. The time-response, showing mortality as a function of

exposure time to 0.75% permethrin, is represented by a very

broad symmetrically shaped sigmoid curve. This implies that the

population has a broad distribution of resistant phenotypes [33]

which suggests that there are multiple resistance mechanisms

present in the population.

Three P450s up-regulated in the permethrin-selected specimens

showed good accordance between the microarray and RT-PCR

data, including CYP6P3, CYP6M2 and CYP6AK1. P450s are an

abundant family of enzymes which can mediate resistance to all

classes of insecticides and their up-regulation has been document-

ed in a broad range of insect species [8,9]. Although up-regulation

has been identified for a large number of P450s in insecticide

resistant insects, studies of catalytic activity are generally limited

[9]. To date two A. gambiae P450s (CYP6Z1 and CYP6Z2) have

been functionally characterised [14,15]. While CYP6Z1 is capable

of metabolising DDT [14] and CYP6Z2 binds to pyrethroids, a

catalytic capacity could not be shown for pyrethroids [15]. The

current study focused on the characterisation of CYP6P3 because

there was a strong association between gene expression and

resistance phenotype. CYP6P3 is the first enzyme with a

demonstrated potential for catalytic activity with pyrethroids in

A. gambiae. Intriguingly, CYP6P9, the A. funestus ortholog of CYP6P3

[34], is located within a major Quantitative Trait Locus (QTL)

conferring pyrethroid resistance [35] and overexpressed in adults

of the pyrethroid resistant FUMOZ-R strain [36]. As both the

QTL marker and the A. funestus CYP6P9 locus are physically

mapped to the same region on chromosome 2R, it has been

postulated that up-regulation is mediated via mutations in cis-

acting elements [36]. In A. gambiae s.s. the question whether

CYP6P3 is cis- or trans-regulated remains unanswered and further

studies are needed to identify how up-regulation is controlled. This

information will facilitate the development of expression-associat-

ed DNA markers that would allow screening of wild populations

for the presence of metabolic resistance alleles.

The second P450 which showed convincing evidence for

association with permethrin-resistance was CYP6M2. Moreover,

CYP6M2 has previously been identified in a colonised laboratory

strain from the same field site [12]. Enzyme characterisation of

CYP6M2 is currently underway.

The third P450, CYP6AK1, has not previously been associated

with pyrethroid resistance and was down-regulated in the DDT-

resistant ZAN/U strain [11]. CYP6AK1 has not been investigated

further, but this gene may become an interesting candidate if

found in future studies.

We expressed the full-length cDNA of CYP6P3 in E. coli along

with its cognate redox partner CPR to produce a functional enzyme

for characterisation studies. Consistent with a role in detoxification,

CYP6P3 was found to metabolise permethrin. Permethrin consists

of four isomers: (R) cis, (R) trans, (S) cis, (S) trans, and it is the cis

isomers that has greater insecticidal activity, possibly due to slower

metabolism [37]. Since two peak mixtures of cis R/S and trans R/S

isomers are separated by HPLC chromatography, rates of

metabolism of individual isomers could not be determined.

However, both (1RS) cis and (1RS) trans isomers were eliminated

from enzyme reactions indicating that metabolism of the active form

occurs. Moreover the enzyme was efficient in metabolising

deltamethrin, which is widely used in agriculture and in the

production of insecticide-treated bednets, further emphasising a

potentially important role in metabolic resistance.

Modest rates of metabolism of the pyrethroids by the

heterologously expressed CYP6P3 were observed. Substrate

turnover values were in the range 0.5–2 min21, which were 5 to

10-fold slower than the rates observed for the in vitro P450

metabolism of pyrethroids reported from other species; the

lepidopteran CYP6B8 has a Vmax for a-cypermethrin of

13 min21 [38] whereas rat CYP3A2 has 14-fold higher turnover

than CYP6P3, although the Km for deltamethrin is not

significantly different [39]. This could potentially be due to the

absence of cytochrome b5 in our system, which is known to

enhance the activity of some P450s [8]. Indeed, increased levels of

cytochrome b5 are associated with P450 mediated insecticide

resistance in some insects and are directly involved in CYP6D1

mediated cypermethrin metabolism in the house fly [40].

Investigations are underway to examine the influence of

Figure 5. Time course of pyrethroid metabolism. (A) Reactions were performed at 30uC with 10 mM deltamethrin or (B) 10 mM permethrin
stereoisomer mixture. Concentrations were determined by HPLC peak integration (Mean values6S.E.M., N = 3).
doi:10.1371/journal.pgen.1000286.g005
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cytochrome b5 on metabolism and to further define the molecular

interactions of pyrethroids and other insecticides with CYP6P3.

Our data demonstrates that a P450, CYP6P3 is up-regulated in

highly permethrin resistant A. gambiae s.s. mosquitoes in the field

and functional characterisation of the enzyme strongly suggest that

CYP6P3 metabolises both permethrin and deltamethrin. The

overexpression of its ortholog in A. funestus provides further support

to the importance of this enzyme for pyrethroid resistance in

malaria vectors. CYP6M2 was also overexpressed in this study and

a study on a laboratory strain colonised from the same area [12]

and thus merits further investigation. Yet, although its origin is

from the same locality as the existing population, the previous

analysis did not detect the change in CYP6P3. The current study

emphasises the importance of studying metabolic resistance in

natural mosquito populations.

Supporting Information

Figure S1 Transformation of fold differences for mixed RNA

pools. (A) A simplified mathematical model that adjusts for

limitations in the fold change of mRNA levels if RNA pools from

insecticide-selected (S) vs. a mixed (insecticide-selected combined

with unselected) group (M) of mosquitoes are compared. The

transformed ratio, S/D gives the ratio as if RNA could be

extracted from survivors (S) and dead (D) mosquitoes alike and

would be directly compared, a situation which may not be possible

for selection experiments due to post-mortem RNA degradation.

The model may be applicable wherever mosquitoes are selected

from a population/laboratory colony and then compared back to

their ‘‘parental’’ group or strain. The function depends on the

mortality rate which is given by the number of susceptible

individuals in the selection experiment. (B) The graph plots the

relationship between observed and ‘‘true’’ ratio for the mortality

observed in this study (m = 0.58) and for a 25% and 75% mortality

rate.

Found at: doi:10.1371/journal.pgen.1000286.s001 (0.32 MB TIF)

Acknowledgments

We are grateful to David Weetman, Sam Dadzie and family for field

support in Ghana. Margaret Hughes and Andrew Cossins from the

Liverpool Microarray Facility helped with the printing of microarray slides.

We would also like to thank the members of the LSTM Vector Group for

fruitful discussions.

Author Contributions

Conceived and designed the experiments: PM EW BJS PMP MJIP MJD.

Performed the experiments: PM EW BJS PMP JCM AS SNM MJD.

Analyzed the data: PM EW BJS. Contributed reagents/materials/analysis

tools: AEY. Wrote the paper: PM EW BJS HR JH MJIP MJD. Oversaw

experimental design and analysis: HR MJIP MJD.

References

1. Pinto J, Lynd A, Vicente JL, Santolamazza F, Randle NP, et al. (2007) Multiple

origins of knockdown resistance mutations in the Afrotropical mosquito vector

Anopheles gambiae. PLoS ONE 2: e1243.

2. WHO, UNICEF (2005) World Malaria Report. Geneva, Switzerland: World

Health Organization.
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