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Abstract

This thesis investigates active noise control over a large spatial region using effi-

cient control systems. Active noise control (ANC) utilises secondary sound sources

to cancel primary noise based on the principle of destructive interference, and has

the advantage of high flexibility and easy adaptability. ANC over a large spa-

tial region (spatial ANC), which requires multiple sensors and multiple secondary

sources in the system, creates a large-sized quiet zone for multiple listeners in three-

dimensional spaces. The existing multichannel approaches are not very efficient in

spatial ANC, as the noise cancellation is optimized only around the error sensors.

This thesis provides new adaptive solutions for spatial ANC in general noise fields

and optimal methods for spatial ANC in sparse noise fields.

In terms of adaptive solutions for spatial ANC in a general noise field, our ap-

proach is to utilize the wave-domain signal processing technique. Several outcomes

resulting from this approach are (1) the design of the feedback wave-domain ANC

system, and derivation of the filtered-x least mean square wave-domain approaches;

(2) systematical formulation of the wave-domain ANC into different minimization

problems and different updating variables, and derivation of four normalized wave-

domain approaches. We show that, compared to the conventional multichannel

approaches, the proposed wave-domain ANC approaches can achieve significant

noise reduction over the entire spatial region with faster convergence speed.

In terms of the optimal methods for spatial ANC in a sparse noise field, our

approach is to incorporate the `1-norm constraint from compressive sensing into

the spatial ANC. Several outcomes resulting from this approach are (1) derivation

of the `1-constrained multichannel approaches; (2) derivation of the `1-constrained

wave-domain approach. We show that, compared to the conventional multichannel

approaches, the proposed `1-norm constrained approaches can reduce the number

of active secondary sources with faster convergence speed.

In addition, this thesis investigates the best possible spatial ANC performance
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viii

for a given system, by analyzing the signal space spanned by the secondary sources

within a given acoustic environment. The proposed subspace method can obtain

best possible ANC performance and is demonstrated to be a feasible solution,

especially when the secondary sources are not sufficient to cover all orthogonal

spatial modes according to the spherical harmonic theory.
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Chapter 1

Introduction

1.1 Motivation and Scope

Acoustic noise is a common disturbance throughout our daily life. For example,

when reading this thesis, you may hear a wide range of noises which distract your

attention, such as noise from a construction site across the road, or a door slammed

by a colleague as they leave. As the amount of industrial equipment increases, such

as engines, blowers, fans, transformers, noise problems become more and more

evident [3]. Excessive amounts of acoustic noise above a certain level are the main

cause of hearing loss, which drastically reduces the quality of life [4]. This thesis

is focused on finding ways of reducing acoustic noises to improve our lives.

Noise control, or noise cancellation, is designed to control the noise we hear, to

minimize the ‘residual noise’ after the cancellation process. There are two methods

of controlling noise, passive noise control and active noise control (ANC), as shown

in Figure 1.1.

One noise control method is passive noise control, in which noise-isolating ma-

terials and acoustic structures are applied to attenuate noise [5]. Example of noise-

isolating materials includes insulation, sound-absorbing tiles, and mufflers. Passive

noise control capability is achieved through a range of different variables including

frequency of sound, material type, material thickness, and geometry of the material.

When the wavelength of the sound is thicker than the material, it is difficult for

the material to absorb the sound [6]. Passive noise control is more effective at mid

1
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Figure 1.1: Passive noise control and active noise control [1].

and high frequency ranges, but it is less effective in the low frequency range1 [8].

The second method used to control noise is active noise control (ANC). In

ANC systems, the noise to be cancelled is called ‘primary noise’. The system uses

‘secondary sound sources’ to generate ‘anti-noise signals’ to reduce the primary

noise. This is achieved through the principle of destructive interference [9, 10, 11].

ANC has the advantages of high flexibility and easy adaptability and over the last

30 years has become a well-researched topic. ANC has many applications, such as

noise cancelling headphones [12, 13], noise control in industrial machines [14] and

in-car noise cancellation [15,16,17,18,19]. Unlike the passive noise control strategy,

ANC works better in the low frequencies [20]. Low frequency noise is dominant in

many real-world scenarios, e.g., air-conditioning noise, vehicle engine noise [21,19]

and wind noise [18]. In this thesis, we apply the ANC technique to cancel low

frequency noise over a spatial region.

As typical noise sources and acoustic environments are always time-varying

and unknown, adaptive systems are commonly applied to iteratively calculate sec-

ondary source driving signals2. Adaptive systems are in either feed-forward or

feedback control configurations, depending on with or without reference sensors.

1Low frequency range is typically between 20 Hz to 500 Hz [7].
2Here, driving signal represents the signal of the driver of the secondary source.
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Figure 1.2: Basic ANC system structure.

Feed-forward configuration uses a reference sensor and an error sensor, as shown in

Figure 1.2 [22], while the feedback configuration only uses an error sensor. Hybrid

systems, a combination of feed-forward and feedback control structures, are also

used in ANC applications. In the ANC controller, some well-known algorithms

for implementation include the least-mean-square (LMS) method or its variants,

such as filtered-x LMS (FxLMS), adjoint LMS and recursive LMS [23]. The details

of feed-forward/feedback ANC structures and algorithms are given in Chapter 2,

Section 1.

There is a growing research interest in creating a large quiet zone for multiple

listeners in three-dimensional (3-D) spaces, such as noise cancellation in aircrafts

[24] and automobiles [17, 25, 18, 26]. In these applications, the control zones of

interest are large, and there are requirements for noise cancellation over the entire

region, instead of at spatial points. When people sit around a particular region,

such as around a desk in Figure 1.3, or when there are several people all requiring a

noise-free acoustic environment, noise cancellation is required to cover the relevant

spatial region. Meanwhile, ANC throughout a spatial region enables listeners to

move freely within the region. Therefore, in this thesis, we investigate ANC over a

spatially extended region, which is termed as ‘Spatial ANC’.

In spatial ANC applications, multichannel ANC systems equipped with multiple

sensors and multiple secondary sources are adopted [27]. In these systems, multiple
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Figure 1.3: An example of shared office space with personal sound zones for each
individual [2].

sensors are placed to measure the residual signals and multiple secondary sources

are utilized to generate the anti-noise signals. In the feed-forward control system,

additional reference sensors are placed to measure the primary noise. Both time-

domain [28, 29] and frequency-domain [30, 31] algorithms have been implemented

in multichannel ANC systems. For example, the frequency domain multichannel

ANC [32] and its variations (such as Leaky ANC [33]) are now widely developed for

noise cancellation at error sensor positions and their close surroundings [31]. The

details of multichannel ANC algorithms and applications are reviewed in Chapter

2, Section 2.

The multichannel method is not very efficient in spatial noise control over a re-

gion, as the noise cancellation is optimized only on the error sensors. One method

for solving this problem is to increase the number of sensors so as to cover more

space, which dramatically increases the cost of the ANC system. More efficient

spatial sound field control and sound reproduction techniques can be applied to

address spatial ANC problems including wave field synthesis (WFS) and spheri-

cal/cylindrical harmonic based wave domain processing.

Wave field synthesis, introduced by Berkhout [34, 35], is one of the spatial

sound field control and sound reproduction techniques, which can be applied to
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spatial ANC. WFS uses a holographic technique to reproduce a desired sound field

over a large area with a relatively large number of loudspeakers [36]. The WFS

approach is based on the Kirchhoff-Helmholtz integral [37,38,39]. In theory, WFS

uses continuous distribution of appropriately driven secondary sources arranged on

the boundary of the desired listening area to reproduce a virtual sound field [37].

This technique has already been applied in ANC applications [40, 41]. However,

WFS-based spatial sound control has the disadvantage of requiring many secondary

sources to approximate the continuous distribution on the boundary of the desired

listening area, which is not always practical to implement for noise cancellation

over the region of interest.

Spherical/cylindrical Harmonic based wave domain processing [42] is another

spatial sound field control and sound reproduction technique, which can be ap-

plied to spatial ANC. This method transfers the measurements into a spheri-

cal/cylindrical harmonic domain [43, 44, 45], and controls the entire spatial region

by manipulating the spherical/cylindrical harmonic coefficients. This technique

does not require secondary sources to be placed on the boundary of the region,

and can therefore be more feasible. The details of wave domain sound field rep-

resentation are reviewed in Chapter 2, Section 3. Up untill the beginning of this

research, Spherical/cylindrical Harmonic based wave domain processing had not

been applied to spatial ANC.

From the foregoing discussion, the key question which drives this thesis is as

follows:

How can we achieve ANC over a large spatial region using efficient

control systems?

1.2 Problem Description

We elaborate this problem into two further questions:

(i) How to achieve ANC over a large continuous region in a general noise field3?

3Here, general noise field includes free field and reverberant field, diffuse noise field and direc-
tional sparse noise field.



6 Introduction

(ii) How to exploit the sparse characteristics in a specific noise field, and based

on which to optimize the spatial ANC system?

For Question (i), we develop an ANC system to cancel the noise over a desig-

nated region of space. To achieve ANC in a large continuous region, the control

objective should be the sound field over the entire region rather than multiple

observation points within the region. The generic solution can be applied to a

general noise field, regardless of the acoustic environment and the features of the

primary sources. In the ANC system over a region, secondary source placement

and adaptive algorithms are two critical factors to be investigated. Noise cancel-

lation performance for a given secondary source arrangement is also important to

ANC system design in real implementations.

For Question (ii), we optimize the spatial ANC system in directional sparse

noise fields. In noise fields which have directional sparse features, noise sources

are sparsely distributed in space, and are located in one or a few directions with

respect to the origin of the region. As in general noise field, spatial ANC systems

require large numbers of secondary sources and high computational complexity, the

problem in the directional sparse noise field becomes:

How to reduce the number of secondary sources in the array, and how to reduce

the computational complexity of the algorithms?

1.3 Thesis Outline

Motivated by the above problems, in this thesis, we develop adaptive solutions for

spatial ANC within a continuous region. As shown in Figure 1.4, we investigate

the spatial ANC in general noise field, as well as in sparse noise field.

For noise cancellation in a general noise field, we (1) formulate the problem in

the wave domain based on cylindrical harmonics or spherical harmonics) to achieve

ANC over large continuous regions, and propose the wave-domain ANC algorithms;

(2) investigate wave-domain ANC in different cost functions and adaptations; and

(3) derive a subspace to represent the secondary sources and the acoustic environ-

ment, and evaluate the ANC performance in this subspace.

For noise cancellation in a sparse noise field, we exploit sparse features, and

introduce constraints from compressive sensing into the conventional multichan-
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Figure 1.4: Breakdown of the spatial ANC problem into each chapter. WD-ANC
denotes the wave-domain ANC.

nel ANC structure and the proposed wave-domain ANC structure to reduce the

number of secondary sources in the array and the computational complexity in the

algorithms.

The performance of the proposed systems and techniques are verified through

numerical simulations.

The structure of the thesis is as follows:

Chapter 2: Literature Review and Background Theory

In Chapter 2, we review the literature on ANC methods and the wave domain

noise field control technique. We first review the single-channel ANC method. In

terms of the control structure, we review the feed-forward and feed-back configu-

rations. In terms of the adaptive control, we review LMS, FxLMS, and normalized

LMS (NLMS) algorithms. Thereafter, we review the multichannel ANC algorithm

and different applications. We review the classical multichannel algorithm, and

then discuss the variations in global ANC applications and regional ANC applica-

tions. The classical multi-point algorithm which is commonly used for solution of

ANC in a large area, is one of the typical algorithms against which we compare
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new algorithms. We also study typical sound fields and the wave domain sound

field representation. The theory and methods reviewed in this chapter form the

fundamentals of my thesis.

Chapter 3: Multiple-point ANC for Directional Sparse Fields

In Chapter 3, we address question (ii) and investigate the noise control over

a region using a multichannel ANC framework in a directional sparse noise field.

We first review the conventional multi-point algorithm and Leaky multi-point algo-

rithm using the feedback control structure. Thereafter, we introduce the `1-norm

penalty to the multi-point algorithm, resulting in the complex `1-norm constrained

multi-point (C`1-MP) algorithm and the scalar `1-norm constrained multi-point

(S`1-MP) algorithm. In this chapter, driving signals of the secondary sources are

designed by minimizing the addition of a squared residual noise field and `1 norm

of the driving signal magnitude. We conduct simulations for spatial ANC appli-

cations while the noise sources are coming from a few directions. The simulation

results indicate that when the noise field has directional sparsity, the proposed C`1-

MP algorithm and proposed S`1-MP algorithm can reduce the number of active

secondary sources, with reasonable noise reduction performance.

Chapter 4: Wave Domain ANC: Basic Structure

The conventional multi-point algorithm and variations are not efficient in ANC

over a large continuous region. In Chapter 4, we apply a wave-domain signal

processing technique to spatial ANC applications. To addresses question (i), after

representing all the variables in the control system into wave-domain coefficients,

we propose a wave-domain FxLMS algorithm. Using this algorithm, we control

the noise field over the entire region directly. This results in significant noise

reduction with fast convergence speed. This advantage is evaluated in both free

field and reverberant environments. To address question (ii), we also propose the `1-

constrained wave-domain FxLMS algorithm, by introducing the `1-norm penalty

into the wave-domain ANC. This can be applied to spatial ANC in directional

sparse noise fields.

Chapter 5: Wave Domain ANC: Different Cost Functions and Adapta-

tions

In this chapter, we further address question (i) and investigate the wave-domain

spatial ANC. We represent the acoustic potential energy of the residual sound field
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in terms of the wave domain residual signal coefficients. We implement normalized

LMS adaptive algorithms in the wave domain by solving two minimization algo-

rithms: (i) minimizing the squared wave-domain residual signal coefficients, and

(ii) minimizing the acoustic potential energy. For each minimization problem, we

derive the update equations with respect to two variables: (i) updating the driv-

ing signals, and (ii) updating the wave-domain coefficients. This results in four

different wave domain algorithms (i) normalized wave domain algorithm updating

driving signals (NWD-D), (ii) normalized wave domain algorithm updating mode

coefficients (NWD-M), (iii) normalized energy-based wave domain algorithm up-

dating driving signals (NEWD-D), and (iv) normalized energy-based wave domain

algorithm updating mode coefficients (NEWD-M). We compare the four proposed

algorithms as well as the conventional multi-point algorithms in the simulation

section. We evaluate these five algorithms using three criteria: acoustic potential

energy reduction, convergence speed, and energy of the secondary-source driving

signals. These numerical simulations are conducted in the free field, as well as in

the reverberant environment.

Chapter 6: ANC Subspace Performance Analysis

In Chapter 6, we investigate the noise control performance in any 3-D reverber-

ant environment. We discuss a wave-domain least square method, which matches

the primary noise field coefficients to the secondary noise field coefficients in the

wave domain. Based on the wave-domain coefficients of the acoustic transfer func-

tion between loudspeakers and the control region, we derive the subspace repre-

senting the secondary sources and the acoustic environment. We then propose a

subspace method by matching the projection of the primary noise field coefficients

to the secondary noise field coefficients in the subspace. We conduct the simula-

tions to compare the proposed subspace method with the wave-domain least square

method. We compare the ANC performance under different noise source positions

and different loudspeaker configurations.

Chapter 7: Conclusion and Future Research Directions

Chapter 7 provides concluding remarks and possible directions for future work.





Chapter 2

Literature Review and

Background Theory

Overview: This chapter provides a brief overview of the background

knowledge concerning spatial ANC over a region. We first review

conventional single-channel active noise control structures, and then

focus on the use of multichannel active noise control techniques for

3-D noise field control. Furthermore, we discuss the sound field and

acoustic environment considered in this thesis. To further develop

the spatial ANC strategies in the later chapters, we review the basic

formulation of harmonics-based sound field representation. The theory

and methods reviewed in this chapter form the foundation for the rest

of the thesis.

2.1 Single-channel ANC Techniques

In ANC systems, noise sources are unknown and acoustic environments are time-

varying. Therefore, adaptive filters are employed to produce anti-noise signals. The

control structure of ANC can be broadly classified into two classes: feed-forward

control and feedback control. We review the basis of both theories and structures

in the next two subsections. The basic formulations we mentioned here can be

extended to multichannel cases as well.

11
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2.1.1 Feed-forward control system

The feed-forward ANC scheme requires a reference signal as an input to the adap-

tive filter. This scheme is widely used for industrial applications such as reducing

duct noises [46].

The objective of feed-forward ANC is to design the driving signal of the sec-

ondary source, using sound measurements captured by a reference sensor and an

error sensor. The fundamental block diagram of a feed-forward ANC system is

shown in Figure 2.1. Here, the ANC system consists of an error sensor, a reference

Figure 2.1: Fundamental components in a feed-forward ANC system.

sensor, a secondary source, and an adaptive algorithm. Here, we assume that there

is no acoustic feedback from the secondary source to the reference sensor 1.

Some well-known adaptive algorithms used to implement feed-forward ANC

include the least-mean-square (LMS) method or its variants, such as FxLMS [47],

NLMS [48], adjoint LMS [49] and recursive LMS [33]. LMS algorithms are a class

of adaptive algorithms, which minimize the least mean squares of the error signal.

In the following subsections, we review the LMS algorithm, FxLMS algorithm and

NLMS algorithm. Here, we introduce the secondary-path transfer function G(n)

into each algorithm.

1There are several solutions to eliminate the acoustic feedback. One solution is to use a
separate ‘feedback path neutralization filter’ [9].
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LMS algorithm

Figure 2.2: Block diagram of feedforward ANC using LMS algorithm, where xin(n)
is the input reference signal, v(n) is the primary signal on the error microphone

position, e(n) is the error signal, and d(n) is the driving signal.

The block diagram of a single-channel feed-forward ANC system using LMS

algorithm is shown in Figure 2.2. In this system, the controller is the adaptive filter

using the LMS algorithm. The adaptive filter ω continuously tracks variations in

the primary noise field.

In the LMS algorithm, the error signal e(·) for each iteration can be written by

e(n) = v(n) +G(n) ∗ d(n), (2.1)

where n is the iteration number, G(·) is the impulse response of secondary path

from the secondary source to the error sensor, v(·) is the primary noise field at the

error sensor, and

d(n) = xin(n) ∗ ω(n), (2.2)

is the driving signal of the secondary source.

Here, ∗ denotes linear convolution, ω(n) = [ω0(n), ω1(n), ..., ωLω−1(n)]T are the

filter coefficients with the filter order of Lω, xin(n) = [x(n), x(n−1), ..., x(n−Lω +
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1)]T are the input reference signal.

Minimizing the mean square of the error signal, the cost function becomes

ξ(n) = e2(n). (2.3)

Since the LMS algorithm is based on the steepest descent method, the update

equation is as follows,

ω(n+ 1) = ω(n)− µ

2
∇ξ(n), (2.4)

where µ is the adaptation step size, and ∇ is the gradient operator.

From (2.1) and (2.3), the gradient of the cost function with respect to the filter

coefficients ω is written as

∇ξ(n) = ∇(e2(n))

= 2e(n)∇e(n)

= 2e(n)x
′

in(n), (2.5)

where

x
′

in(n) = G(n) ∗ xin(n). (2.6)

Substituting (2.5) into (2.4), the final update equation of the LMS algorithm is

written as

ω(n+ 1) = ω(n)− µx′in(n)e(n). (2.7)

In (2.7), the filter coefficients ω in the next iteration are based on the error signal

and the filtered reference signal on the current iteration, by finding the gradient of

the mean square error.

The step size µ in (2.7) controls the convergence speed of the adaptive process,

which should be chosen properly based on the individual scenario. The upper

bound of the step size µ is given as follows [50],

µ <
2

λmax
in

, (2.8)

where λmax
in is the largest eigenvalue of the autocorrelation matrix of the input
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reference signal E{xin(n)xHin(n)}.

FxLMS algorithm

The performance of an ANC system depends largely on the secondary-path transfer

function G [3]. In the LMS algorithm, however, due to the secondary-path transfer

function, the error signal and the reference signal are not aligned in time. This

effect will generally cause instability [51].

One effective solution to compensate for the effect of the secondary-path is to

add an identical filter on the reference signal path, which is called the FxLMS

algorithm. The block diagram is illustrated in Figure 2.3. Compared with Figure

2.2, the reference signal is filtered by the estimation of the secondary path Ĝ,

before being used in the LMS filter. This is the main difference between the LMS

algorithm and the FxLMS algorithm.

Figure 2.3: Block diagram of FxLMS feed-forward ANC.

Therefore, the update equation of FxLMS algorithm can be written as:

ω(n+ 1) = ω(n)− µx′in(n)e(n), (2.9)
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where x
′
in(n) is the filtered reference signal, and

x
′

in(n) = xin(n) ∗ Ĝ(n). (2.10)

FxLMS is very tolerant of error between the secondary path G and the es-

timation filter Ĝ, which can be estimated using the off-line model during initial

training in most ANC applications [3]. Adaptive online secondary path modelling

has also been applied [52, 53]. Variations of the FxLMS algorithm exist, such as

the Leaky FxLMS [54,55] and the filtered-x normalized LMS algorithm [32], which

are proposed to improve the performance of the FxLMS.

NLMS algorithm

The normalized LMS algorithm also minimizes the mean square error, with the

same cost function as LMS algorithm. The normalization term is according to the

energy of the reference input signal xin(n). The step size in LMS algorithm has

been modified to a data-dependent step size µ
a+‖xin(n)‖22

.

Therefore, the update equation of the NLMS algorithm is given by:

ω(n+ 1) = ω(n)− µ

a+ ‖xin(n)‖22
x
′

in(n)e(n), (2.11)

where ‖ · ‖2 denotes the `2 norm, and a > 0 is a constant to overcome the possible

numerical difficulties when ‖xin(n)‖22 is very close to zero.

The algorithm is stable for 0 < µ < 2. Like the LMS algorithm, the next

iteration of the NLMS algorithm is based on the error signal and the filtered refer-

ence signal on the current iteration. Compared to the LMS algorithm, the NLMS

algorithm has superior robustness [56].

2.1.2 Feedback control system

In the feed-forward control system described in Section 2.1.1, we assume that there

is no acoustic feedback from the secondary source to the reference sensor. Unfor-

tunately, in some applications, the upstream sound field from the secondary source

(loudspeaker) to the reference microphone can corrupt the reference signal. One
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solution is to model the acoustic feedback transfer function and incorporate it into

the system with a separate feedback cancellation filter [23]. Another solution is to

utilize the feedback structure, which is reviewed as follows.

In the feedback ANC system, only an error sensor (error microphone) and a

secondary source (loudspeaker) are utilised [57], as shown in Figure 2.4. The active

noise controller attempts to cancel the noise without the benefit of reference input.

There have been growing interests in implementing the feedback system as it avoids

the need for separate reference sensors to measure the primary noise [58]. This

reduces the number of system components and associated hardware. In particular,

it is more cost-effective and more suitable for use in large 3-D acoustic environments

with multiple noise sources [59]. However, in most cases, feedback control system

is only effective for dealing with narrowband noise.

Figure 2.4: Single-channel feedback ANC system.

2.2 Multichannel ANC Techniques

As discussed in Section 2.1, the single-channel configuration, with one error sensor

and one secondary source, is well suited for both narrowband and broadband can-

cellation in narrow ducts or small areas. When the noise field is monitored at a

specific spatial point by an error sensor, noise cancellation can be achieved around

the error sensor with the spatial limit being approximately λmax/10 [31], where λmax

is the wavelength of the highest undesired frequency. However, the single-channel

system is clearly insufficient for more complex enclosures or large dimension envi-

ronments. To achieve noise cancellation for an increased area, we can extend the
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single-channel ANC systems to multichannel ANC systems by employing multiple

error sensors and multiple secondary sources [33].

In the following subsections, we first review the basic multichannel ANC theory

and variations, and then discuss the investigations in global and regional ANC

applications.

2.2.1 Multichannel algorithm and variation

Σ
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+
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Ĝ

ω
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Figure 2.5: Block diagram of multichannel feedforward ANC system, where P r is

the primary path from reference sensors to error sensors, G and Ĝ represent the
secondary path and the estimation of secondary path, respectively.

A block diagram of the commonly used FxLMS multichannel algorithm is shown

in Figure 2.5. In the figure, P r is the primary path, which is the acoustic path

from reference sensors to error sensors. G and Ĝ represent the secondary path

from adaptive filters to error microphones and its estimation, i.e., the secondary

path model, respectively.

The reference input signals are xi(n), i = 1, . . . , I, and the instantaneous er-

ror microphone measurements are eq(n), q = 1, . . . , Q. Here, I is the number of

reference input signals, Q is the number of error microphones.

The error signals at the error microphones can be written as

eq(n) = vq(n) + sq(n), (2.12)

where sq(n) is the secondary noise field on the qth microphone, and vq(n) is the
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primary noise field on the qth microphone.

sq(n) =
L∑
l=1

dl(n) ∗Glq(n), (2.13)

where Glq(n) denotes the impulse response from the lth secondary source to the qth

error microphone, dl(n) are the loudspeaker driving signals.

The lth secondary speaker driving signal is generated as

dl(n) =
I∑
i=1

wT
il(n)xi(n), for l = 1, 2, . . . , L, (2.14)

where ωil(n) = [ωil,0(n), ωil,1(n), . . . , ωil,Lw−1(n)]T are the adaptive filter coefficients

of the lth loudspeaker in the nth iteration, xil(n) = [xi(n), xi(n − 1), . . . , xi(n −
Lw + 1)]T , and Lw is the length of the FIR adaptive filters.

The multichannel feedforward ANC minimizes the sum of mean squared error

signal, as follows:

ξ(n) =

Q∑
q=1

|eq(n)|2. (2.15)

Therefore, the update equation of the multichannel feed-forward algorithm for

ωil(n) is given by

ωil(n+ 1) = ωil(n)− µ
Q∑
q=1

x′ilq(n)eq(n), (2.16)

where µ is the step size, x′ilq(n) = [x′ilq(n), . . . , x′ilq(n − Lw + 1)]T is a vector of

filtered reference signals, and

x′ilq(n) = xi(n) ∗ Ĝlq(n). (2.17)

The positions and numbers of microphones and loudspeakers play important

roles in the multichannel ANC performance. The locations of the error microphones

are very important for estimating the residual noise field, as it has a significant effect

on the ANC performance.
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There are several multichannel variations, which can improve the ANC per-

formance. Thomas et al. proposed an eigenvalue equalization filtered-x LMS al-

gorithm, which can increase the convergence speed of the FxLMS multichannel

algorithm [60]. M. Bouchard proposed multichannel affine and fast affine projec-

tion algorithms, which can provide better convergence performance when non ideal

noisy acoustic plant models are used in the adaptive systems [61].

Compared to single-channel ANC, multichannel ANC can increase the control

region, which is applicable to spatial ANC. Meanwhile, compared to the single-

channel ANC, the computational complexity of the multichannel ANC system is

significantly increased. This is one of the main challenges for implementing multi-

channel ANC systems in real applications.

Next, we review some spatial ANC applications using multichannel algorithms.

In particular, we examines ANC in an enclosure, such as in a car cabin or inside

an aeroplane. Depending on whether the objective is the entire enclosure or only

a partial region, a multichannel algorithm has been applied in global ANC and

regional ANC.

2.2.2 Global ANC using multichannel algorithms

Global ANC aims to minimize the sound pressure level over a continuous space

throughout the enclosure. The effective cancellation frequency range is determined

by the acoustic modes of relevant noise components and the number and placement

of microphones and loudspeakers [62].

The performance of global ANC is dependent on a number of factors. The

number and location of the error sensors [63] is one factor. For example, to cover

more acoustic modes, error microphones can be located in opposite corners to

ensure wider coverage. The number of secondary sources is also a factor. To control

all the acoustic modes, the number of secondary sources must be approximately

equal to the number of acoustic modes [64]. Adaptive algorithm is another factor.

Traditional adaptive algorithms minimize the squared error signals, and some newly

proposed methods minimize the acoustic potential energy (APE) or energy density

of the noise field.
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Minimization of the squared error signals

Theoretically, global ANC using the multichannel method can be achieved by min-

imizing the total APE within an enclosure. However, in the initial investigations,

in practice, this must be approximated by minimizing the sum of the squared

pressures measured at a sufficient number of error microphone locations [65].

Minimization of the APE or energy density

To enlarge the control region, some researchers have proposed ANC systems based

on APE or energy density of the region.

Instead of minimizing the squared error signals, Romeu et al. modified the cost

function to the APE [63]. This method ensures to reach the optimal attenuation

that can be obtained by a set of secondary sources. Using APE as a cost function

is also more robust than the squared error signal methods and its robustness does

not depend on the location of the error sensors. Montazeri et al. described the

APE in terms of room modes, which depends greatly on the room geometry [66].

By utilizing acoustic energy density sensors [67, 68], Parkins sensed and mini-

mized the acoustic energy density (AED), which is the sum of the potential energy

density and the kinetic energy density. The energy density measurement is more

capable of observing the modes of a sound field. Using this method, Parkins used

approximately one-fourth of the number of sensors compared to the squared error

signal method.

Xu et al. proposed a similar ANC method by minimizing the generalized acous-

tic energy density (GED) [69, 70]. The GED method is defined by introducing

weighting factors into the formulation of the total AED. The results demonstrated

that GED-based ANC can further improve the results of AED-based ANC, when

the frequency was below the Schroeder frequency of a room 2. Compared to squared

error signal methods, by varying the weighting value of GED, it is possible to in-

crease the size of the control region as much as three times. As a trade off, the

maximum noise reduction may decrease to around 1.25 dB.

From the literatures above, we can conclude that, minimizing the APE or energy

2Schroeder frequency refers to the frequency at which rooms go from being resonators to being
reflectors/diffusors as the ‘crossover frequency’.
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density is more robust than minimizing the squared error signal, and the energy

density sensor is more suitable to observe the modes of the sound field.

2.2.3 Regional ANC using multichannel algorithms

In industrial applications, the large volumes of rooms makes the implementation

of global ANC difficult and costly [71]. Regional ANC, or locally global ANC, is

often used in real applications. The objective of the regional ANC strategy is to

achieve noise reduction in the region of interest. Using limited microphones and

loudspeakers, regional ANC using the multichannel method can achieve noise can-

cellation in small regions around the error microphones [71]. Compared with global

ANC, regional ANC can reduce the scale of the ANC system and the computational

complexity.

There are several researchers investigated locally global ANC. Li and Hodgson

[71] examined optimal microphones/loudspeaker placements to ensure that squared

error signals were minimized and the potential energy in the region of interest was

also significantly reduced. Cheer has published works related to regional ANC

in the automobile [25], and in a yacht [64]. For instance, in automobile noise

cancellation, the region of interest is the small areas around the passengers’ heads.

In this thesis, we focus on regional ANC. This area of research has been selected

as regional ANC which has advantages requiring lower system costs and compu-

tational complexity. To achieve spatial noise cancellation over the entire region of

interest, we apply wave-domain sound field processing technique rather than the

method in Section 2.2.1.

2.3 Wave-domain Sound Field Representation

Wave-domain signal processing3 is a technique commonly used for spatial sound

field recording/reproduction over spatial regions using discrete transducer arrays.

The principle of harmonic representation of sound fields is to use fundamental

solutions of the Helmholtz wave-equation as basis functions to express sound fields

3Note that in this thesis, we use the term ‘wave-domain signal processing’ to refer to harmonics
(cylindrical/spherical) based sound field processing.
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Figure 2.6: An arbitrary point in Cartesian coordinates and polar coordinates in
2-D space.

over a spatial region [72]. Thus, the sound field can be thought of as a superimposed

set of orthogonal and continuous basis fields (cylindrical/spherical harmonics) with

corresponding knobs to control relative weights (coefficients) of each basis wave

field. Since wave-domain signal processing controls propagating sound fields as a

whole rather than as a distributed set of target points, it naturally provides a more

insightful and efficient method for sound control over space.

Recently, wave-domain technique has been applied to achieve sound control over

large spatial regions, such as echo cancellation [73, 74, 75], room equalization for

massive multichannel sound field reproduction systems [76, 77, 78], acoustic quiet

zone generation [79, 80, 81, 82, 83, 84], and to design higher order loudspeakers [85,

86,87].

We review the basic theory of sound field and wave-domain sound field repre-

sentation technique in this section, and apply the wave-domain method for spatial

ANC investigation in Chapters 4, 5 and 6.
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2.3.1 Sound field and acoustic environment in a space

Coordinate systems

We start with defining the coordinate systems used in this thesis to represent a

sound field. We utilize both 2-D and 3-D coordinate systems.

In 2-D space, the polar coordinate system is shown in Figure 2.6. The trans-

formation formulas between Cartesian coordinates and polar coordinates are

x = r cosφ

y = r sinφ, (2.18)

where r is the radius of the arbitrary point with respect to the origin, and φ is

the azimuthal angle. In the sound field, the sound pressure is relevant to time and

space. Therefore, the pressure of an observation point x in space can be represented

by P = p(r, φ, t).

In 3-D space, as shown in Figure 2.7, a position x can be represented as follows,

x =

xy
z

 =

r cosφ

r sinφ

z

 =

r sinψ cosφ

r sinψ sinφ

r cosψ

 , (2.19)

where (x, y, z)T denotes the representation in Cartesian coordinates, (r cosφ, r sinφ, z)T

denotes the representation in cylindrical coordinates, and (r sinψ cosφ, r sinψ sinφ,

r cosψ)T is in spherical coordinates. Here, ψ is elevation angle, with the range of

[0, 180◦]. Using spherical coordinates, the pressure of a point in 3-D space can be

represented by P = p(r, φ, ψ, t).

In the next subsection, we further discuss the representation of sound pressures

p.
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Figure 2.7: Coordinate system in 3D space: (a) Cartesian coordinates and spherical
coordinates; (b) Cylindrical coordinates.
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Sound pressure

Considering the propagation of the sound wave, the wave equation at an arbitrary

x and time t can be represented by

∇2p(x, t) =
1

c2
∂2p(x, t)

∂t2
, (2.20)

where c denotes the speed of sound propagation, and ∇2 is the Laplacian oper-

ator, which is variant in different coordinate systems. For instance, in Cartesian

coordinates, the Laplacian operator can be written by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.21)

Using the Fourier transform, time domain sound pressure p(x, t) can be trans-

formed to the frequency domain p(x, w),

p(x, w) =

∫ ∞
−∞

p(x, t) exp(−iwt)dt, (2.22)

where w is the angular frequency, i =
√
−1, and exp(·) denotes the exponential

function.

In this thesis, we focus more on the space-dependent part of the sound field

p(x, w). Therefore, in the following chapters, the time dependence t in a sound

pressure is omitted for notational simplicity.

In the next subsection, we discuss the noise field and acoustic environments

considered in this thesis.

Noise field and acoustic environment

In terms of the relation between the source position and the region position, the

sound field is divided into two cases: interior sound field and exterior sound field.

The term interior sound field is used to describe the wave field within a spatial

region caused by sources completely outside the outer boundary, as shown in Figure

2.8. The term exterior sound field is used to describe the situation where the sound

sources are positioned within a limited area, and the region of interest is defined
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Figure 2.8: Interior sound field. The stars are positions of the noise sources.

as the space outside the source area. In this thesis, only the interior sound field is

considered.

In terms of acoustic environment, in this thesis, we mainly utilize the free-field

model and room reverberant model for spatial ANC investigation.

(i) Free-field environment:

Free-field is a noise field where sound waves propagate in an open space. The

free-field can be an open space without boundaries, or an anechoic chamber which

can absorb sound energy in all directions. The free-field model is a simple model,

which is applied for investigations and evaluations of new acoustic methods.

(ii) Room-reverberant environment:

In a typical environment, the received sound is never an exact copy of the original

sound. The received sound is comprised of sound scattered/reflected/diffracted off

various surfaces in the environment [36]. The collective effect of sound interaction

with the room walls and contents (e.g., loudspeakers) is known as reverberation [88]

[89]. A room reverberant environment is an enclosure with reflections. The model

of a ‘Room reverberant environment’ is applied to many enclosed environments,

such as office rooms, automobiles, aeroplanes and trains. ANC becomes difficult

under complex environments such as reverberant environments.



28 Literature Review and Background Theory

2.3.2 Wave-domain expansion of a sound field

Wave domain sound field representation uses the weighted sum of a set of orthog-

onal basis functions to describe the pressure field of propagating sound. The basis

are fundamental solutions to the Helmholtz wave-equation. In this subsection, we

begin from the wave-domain expansion of a general sound field, and then discuss

the wave-domain expansion in the near field and far field, respectively.

General sound field wave-domain expansion

The Helmholtz equation can be derived by substituting (2.22) into (2.20),

∇2p(x, w) = −k2p(x, w), (2.23)

where k denotes the wavenumber, and

k =
w

c
=

2π

λ0
, (2.24)

where λ0 is the wavelength.

This Helmholtz equation (2.23) determines all the sound fields in this thesis.

Assuming the speed of the sound is constant in the sound field, we often use

wavenumber k instead of angular frequency w to represent ‘frequency’ in this thesis.

In that case, we represent the sound pressure at an arbitrary point x as p(x, k).

By solving equation (2.23) in different coordinate systems, we can represent the

sound field in the wave domain. This formulation applies directly to a narrow band

sound field. It can be extended to the broadband sound fields as well.

In a 3D sound field, to solve the Helmoltz equation in a spherical coordinate

system, we apply the technique of variable separation. We assume that the solution

can be rewritten by a product of functions of each coordinate, as:

p(x, w) = X(r, w)Θ(ψ,w)Φ(φ,w). (2.25)



2.3 Wave-domain Sound Field Representation 29

The Laplacian operator in spherical coordinates can be written by

∇2(·) =
1

r2
∂

∂r
[r2

∂

∂r
(·)] +

1

r2 sinψ

∂

∂ψ
[sinψ

∂

∂ψ
(·)] +

1

r2 sin2 ψ

∂2

∂φ2
(·). (2.26)

Substituting (2.26) into the Helmholtz equation (2.23), three ordinary difference

equations can be written as [90]

d2Φ

dφ2
+m2Φ = 0, (2.27)

1

sinψ

d

dψ
(sinψ

dΘ

dψ
) + [u(u+ 1)− m2

sin2 ψ
]Θ = 0, (2.28)

1

r2
d

dr
(r2

dX

dr
) + k2X − u(u+ 1)

r2
X = 0, (2.29)

where u and m are integers.

The solution to (2.27) is

Φ(φ) = Φ1 exp(imφ) + Φ2 exp(−imφ), (2.30)

where Φ1 and Φ2 are arbitrary constants.

To further solve the (2.28), the finite solution is

Θ(ψ) = Θ1Pum(cosψ), (2.31)

where Pum(·) is the first kind of associated Legendre function, Θ1 is an arbitrary

constant.

The definitions of Pum(·) are

Pum(t) =
(1− t2)m/2

2uu!

dm+u

dtm+u
(t2 − 1)u. (2.32)

When m < 0 and m ≤ u,

Pu(−m)(t) = (−1)m
(u−m)!

(u+m)!
Pum(t); (2.33)
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when m > u,

Pum(·) = 0. (2.34)

Further solving (2.29), we obtain

X(r) = X1ju(kr) +X2yu(kr), (2.35)

where X1 and X2 are arbitrary constants, ju(·) and yu(·) are the first and the second

kind of Bessel functions, respectively. Another solution of (2.29) can be written by

X(r) = X3hu(kr) +X4h
(2)
u (kr), (2.36)

where X3 and X4 are arbitrary constants, hu(·) and h
(2)
u (·) are the first and the

second kind of spherical Hankel functions, respectively.

To simplify the calculation, we combine the angle frequency of (2.30) and (2.31)

into a new function, which is called ‘spherical harmonics’ [90,91]

Yum(φ, ψ) =

√
(2u+ 1)

4π

(u−m)!

(u+m)!
Pum(cosψ) exp(imφ), (2.37)

where u is the spherical harmonics order, m = −u, . . . , u is the number of spherical

harmonics basis of each order.

One important property of spherical harmonics is that, for different m and u,

all the spherical harmonics basis are orthogonal to each other [90], as follows:∫ 2π

0

∫ π

0

Yum(φ, ψ)Y ∗u′m′(φ, ψ) sinψdψdφ = δmm′δuu′ , (2.38)

where (·)∗ is the complex conjugate, δuu′ is the Kronecker delta function, and

δuu′ =

1, u = u
′

0, u 6= u
′
.
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From the derivation above, the general solution of the Helmholtz function is

p(x, k) =
∞∑
u=0

u∑
m=−u

(
βum(k)ju(kr) + β̂um(k)yu(kr)

)
Yum(φ, ψ), (2.39)

where βum(k) and β̂um(k) are the wave domain coefficients, which are dependent

on frequency.

In (2.39), the first kind of Bessel function is finite in the region. However, since the

origin is inside the sound field, the second kind of Bessel function yu(kr) is infinite

on the origin. We use (2.39) to express interior sound field, and set β̂um(k) = 0.

Therefore, in an interior sound field, any arbitrary point can be represented by

p(x, k) =
∞∑
u=0

u∑
m=−u

βum(k)ju(kr)Yum(φ, ψ). (2.40)

where βum(k) is the representation in the spherical harmonics domain.

A similar derivation, the cylindrical harmonics expansion for an interior sound

field can be written by

p(x, k) =
∞∑

m=−∞

βm(k)Jm(k||x||) exp(imφx), (2.41)

where Jm(·) is the Bessel function of of order m.

Near-field and far-field wave-domain expansion

When sources are located outside of the region, we consider the near field and the

far field in this thesis depending on how far they are located.

(i) Near field: spherical wave model and cylindrical wave model

The near field of a source is the region close to a source where the sound pressure

and acoustic particle velocity are not in phase. When a point source is suitably

close to the region of interest, we apply the spherical wave model and cylindrical

wave model in this thesis.

In 3-D space, using the spherical wave model, the Green’s function of a point
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source at xs can be written by

g(x | xs, k) =
exp(ik‖x− xs‖)

4π‖x− xs‖
, (2.42)

where x = (r, φ, ψ) and xs = (rs, φs, ψs) are in spherical coordinates.

In the wave domain, (2.42) can be expanded as [42]

g(x | xs, k) = ik
∞∑
u=0

u∑
m=−u

hu(krs)Y
∗
um(φs, ψs)ju(kr)Yum(φ, ψ), rs > r. (2.43)

Therefore, the wave-domain coefficients of Green’s function using spherical har-

monics expansion can be written by

β(g)
um(k) = ikhu(krs)Y

∗
um(φs, ψs). (2.44)

In 2-D space, using the cylindrical wave model, the Green’s function can be

written by

g(x|xs, k) =
i

4
H0(k‖x− xs‖). (2.45)

Using the addition property of Hankel function [92], H0(k‖x − xs‖) in (2.45) can

be written by

H0(k‖x− xs‖) =
∞∑

m=−∞

Hm(krs) exp(−imφs)Jm(kr) exp(imφ). (2.46)

Therefore, the wave-domain coefficients of Green’s function using cylindrical har-

monics expansion can be written by

β(g)
m (k) =

i

4
Hm(krs) exp(−imφs). (2.47)

(ii) Far field: plane wave model

The far field of a source begins where the near field ends and extends to infinity.

When the radial distance rs is much greater than the wavelength of the sound

radiated, the source can be assumed to be at an infinite distance (rs → ∞) from

the region of interest and hence the received waveform from a single point source is
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planar. In this case, we use far-field approximation. The common rule of thumb for

the approximate distance at which the far-field approximation begins to be valid

is rs = 2R2
1/λ [42], where λ is the operating wavelength and R1 is the radius of the

region.

The sound field at arbitrary point p(x|xs, k) produced by plane wave source

can be represented by [72]

p(x|xs, k) =
∞∑
u=0

u∑
m=−u

4πiuju(kr)Y
∗(φs, ψs)Y (φ, ψ). (2.48)

The wave-domain expansion of the plane wave also satisfies (2.40). Therefore,

in 3-D space, wave domain coefficients of a plane wave can be written by

βum(k) = 4πiuY ∗(φs, ψs). (2.49)

As reviewed above, the wave-domain expansion represents the sound field in

wave-domain coefficients, as shown in (2.40) and (2.41). In the ANC system, we

can also represent the loudspeaker signals and microphone signals in wave-domain

coefficients. Details of wave-domain representation of ANC systems are discussed

in Section 4.2. In Chapter 4 and Chapter 5, we control the region of interest using

these wave-domain coefficients and achieve spatial ANC over the entire region of

interest. In Chapter 6, we investigate noise cancellation performance based on the

wave-domain coefficients representing the secondary source to the region of interest.

2.4 Summary

This chapter reviewed basic ANC techniques and harmonic-based wave-domain

sound field representation. The chapter is comprised of three sections: single-

channel ANC, multichannel ANC, and wave-domain sound field representation

technique. From single-channel ANC to multichannel ANC, the control system

becomes more complex and the control area is enlarged. To reduce the complexity

of the system in specific noise field environments, we modify the existing multichan-

nel ANC algorithm in Chapter 3. To further cancel the spatial sound field over a

continuous region of interest, we apply the wave-domain processing technique in
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Chapters 4, 5 and 6 to investigate new strategies for spatial ANC over a region.



Chapter 3

Multiple-point ANC for

Directional Sparse Noise Fields

Overview: Multichannel active noise control is currently an attractive

solution for the attenuation of low-frequency noise, in 3-D space. This

chapter develops multichannel ANC algorithms for the case when the

noise source components are sparsely distributed in space. We design

the loudspeaker driving signals as in conventional ANC to minimize

the residual signals but with an additional term containing an `l norm

regularization applied to the driving signal magnitude. Only secondary

sources close to the noise sources are required to be active for cancel-

lation of sparse noise fields. We propose adaptive algorithms with low

computational complexity and faster convergence speeds.

3.1 Introduction

As discussed in Section 2.2, multichannel algorithms have been utilized to achieve

noise cancellation in general noise fields. When the noise sources are sparsely dis-

tributed in space, (i.e., directional sparse noise field constructed by a few noise

sources), an effective strategy is to use only the secondary sources that are close to

the noise sources for noise cancellation. This means that many secondary source

candidates in the multichannel ANC system can be inactive, so that the overall

35
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system power and system complexity can be reduced. Such systems have applica-

tions in controlling industry noise fields in an open area and directional sources in

less reverberant rooms.

In sound field reproduction and system identification applications, the sparse

feature is exploited by introducing an additional term to the minimization problem

[93, 94, 95]. In particular, motivated by the least-absolute shrinkage and selection

operator (Lasso) algorithm, some algorithms have been proposed which introduce

an `1-norm penalty [94] on the adaptive coefficients of the cost function.

In ANC applications, the `1-norm penalty is applied on the loudspeaker driving

signals, which can be added onto the cost function of residual error signals. It

is important to note that, for frequency domain multichannel ANC, the adaptive

filters are designed in terms of complex vectors, so the `1-norm constraint should

be applied accordingly.

In this chapter, we develop two constrained multichannel ANC formulations to

deal with spatially sparse distribution of noise sources. We derive these algorithms

via combining two variants of the `1 norm of complex vectors into the conventional

multichannel cost function. This is the first time for the `1-norm constraint is in-

troduced to multichannel ANC. The complex `1 constrained multi-point algorithm

(C`1-MP) adds `1-norm constraint to the complex driving signals, and the scalar

`1-constrained multi-point algorithm (S`1-MP) adds constraint on the sum of `1

norm to the real and imaginary parts of the loudspeaker driving signals. Simula-

tions are conducted to evaluate the two proposed algorithms in comparison with

the conventional multi-point and Leaky multi-point algorithms.

The rest of the chapter is organized as follows. In Section 3.2 we formulate

the spatial noise cancellation problem and set up the ANC system. We review the

conventional multichannel ANC system in Section 3.3, and propose the constrained

multichannel ANC system in Section 3.4. In Section 3.5, we present the effect and

the selection of the sparsity parameter in the new algorithms. We demonstrate the

simulation results in Section 3.6 and draw some conclusions in Section 3.7.
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3.2 Spatial ANC Problem Formulation

In this section, we formulate the spatial ANC problem assuming a 2-D (or height-

invariant 3-D) sound field, to cancel the noise over a spatial region.

Σ
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Adaptive algorithm

+

+
d

ν(n)

s(n)
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Microphone array

Loudspeaker array

Noise source
x

R1

R2

φx

Figure 3.1: ANC setup with a circular region of interest and the block diagram of
the multi-point feedback ANC system.

Let the control zone of interest be a circular region with a radius R1. Assume

that the noise sources are located outside the region of interest, as shown in Figure

3.1. We consider an ANC system in two-dimensional space using (i) a single mi-

crophone array (Q microphones) on the boundary of the control region to measure

the residual signals and (ii) a single loudspeaker array (L loudspeakers) outside the

region to generate the secondary sound field [96]. The theory we developed in this

chapter can be extended to 3-D space.

The objective of spatial ANC is to cancel the noise field over the entire region

of interest using the loudspeaker array.

Any arbitrary observation point within the control region is denoted as x ≡
{r, φx}. In the ANC system, the residual signal at this point is given by

e(x, k) = ν(x, k) + s(x, k), (3.1)

where k = 2πf/c is the wave number, f is the frequency, c is the speed of sound

propagation, ν(x, k) is the primary noise signal and s(x, k) is the secondary sound

field generated by the loudspeakers.
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The secondary sound field generated by the loudspeaker array can be repre-

sented by

s(x, k) =
L∑
l=1

dl(k)G(x|yl, k), (3.2)

where dl(k) is the driving signal for the lth loudspeaker, and G(x|yl, k) denotes

the acoustic transfer function (ATF) between the lth loudspeaker and the obser-

vation point x. For example, for sound propagation in free field, G(x|yl, k) =
i
4
H(2)

0 (k‖yl − x‖) , where H(2)
0 (·) is the zeroth-order Hankel function of the second

kind.

Let the microphones be positioned at xq, q = 1, · · · , Q with respect to the origin

O. Then the residual signal vector at the microphone array is given by

e(k) = ν(k) +G(k)d(k), (3.3)

where G(k) is a Q× L matrix with the (q, l) element given by G(xq|yl, k), and

e(k) , [e(x1, k), . . . , e(xQ, k)]T ,

ν(k) , [ν(x1, k), . . . , ν(xQ, k)]T ,

d(k) , [d1(k), . . . , dL(k)]T .

Here, we assumed G(k) to be prior knowledge obtained from pre-calibration or

room modelling.

The objective is to design the driving signals d(k), using the minimum number

of active secondary sources to generate secondary sound field and force the residual

error signals e(k) towards zero.

In this chapter, we assume that the noise fields have directional sparsity.1 We

first briefly review the conventional multichannel algorithms, and then propose our

new constrained algorithms. The multichannel algorithms in this chapter apply

multiple microphone points in the region, and minimize the residual signals around

these points. In order to differentiate the multichannel algorithms in wave do-

main in the later chapters, here onwards, we utilize the terminology ’multi-point

1Here the directional sparsity means that the noise signals are arriving from few distinct
directions.



3.3 Conventional Multi-point Algorithms 39

algorithm’ instead of ’multichannel algorithm’.

3.3 Conventional Multi-point Algorithms

In this section, we briefly outline the existing frequency domain multi-point adap-

tive ANC algorithm and its variation using a feedback structure. A block-wise

operation is adopted and the microphone measurements are transformed into time-

frequency domain.

3.3.1 Multi-point algorithm

The conventional multi-point (MP) approach minimises the sum of squares of the

residual signals with the cost function

ξ(n, k) =

Q∑
q=1

|eq(n, k)|2, (3.4)

where n is the iteration index of the adaptive algorithm and eq(n, k) is the frequency

domain pressure eq(k) in the nth time frame.

In vector form, (3.4) can be written as

ξ(n, k) = eH(n, k)e(n, k). (3.5)

It can also be represented by the `2 norm of the residual signals, as follows

ξ(n, k) = ‖e(n, k)‖22. (3.6)

By using the steepest descent algorithm, the driving signals are updated by

d(n+ 1, k) = d(n, k)− µ

2
∇ξ(n, k), (3.7)

where µ is the adaptation step size, and ∇(·) denotes the gradient.

The gradient of the cost function can be written as

∇ξ(n, k) = ∇(‖e(n, k)‖22). (3.8)
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Substituting (3.3) into (3.8), the gradient can be represented by

∇ξ(n, k) = 2GH(k)e(n, k). (3.9)

Thus the loudspeaker update equation is [97]

d(n+ 1, k) = d(n, k)− µGH(k)e(n, k). (3.10)

In (3.10), the loudspeaker driving signals d(k) are updated directly. The block

diagram of the frequency domain multi-point feedback LMS algorithm is shown in

Figure 3.1.

3.3.2 Leaky multi-point algorithm

The traditional LMS algorithm may suffer from divergence due to insufficient spec-

tral excitation, like a sinusoid signal without noise, which consequently may cause

overflow for the weight vector during the updating process. This divergence prob-

lem can be resolved by proposing a ’leaky term’ during the update process of the

weight vector. A Leaky algorithm introduces output power constraints (leakage

factor) to the adaptive filter [98, 99, 54, 100]. This results in inferior performance;

however, the leakage factor is controlled, which is necessary to balance for the lost

performance. In addition, this adds complexity, but achieves more robustness of

the adaptive filter. Moreover, the leakage term can stabilize the LMS algorithm.

When the leaky factor is applied to the multi-point algorithm, the problem

becomes minimizing the sum of squared residual signals and the weighted sum

of loudspeaker driving signals [101]. Therefore, the modified cost function of the

Leaky multi-point (Leaky-MP) algorithm is written as

ξLeaky(n, k) = ‖e(n, k)‖22 + ρ‖d(n, k)‖22, (3.11)

where ρ > 0 is the leakage factor, ‖d(n, k)‖2 denotes the `2 norm of the loudspeaker

driving signals.

Substituting (3.3) into (3.11), the gradient of the cost function of the Leaky-MP
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algorithm can be written by

∇ξLeaky(n, k) = 2GH(k)e(n, k) + 2ρd(n, k). (3.12)

Hence, the adaptive weights of the Leaky-MP algorithm are updated as

d(n+ 1, k) = (1− µρ)d(n, k)− µGHe(n, k). (3.13)

Compared to the update equation (3.10) in the multi-point algorithm, (3.13) re-

duces the strength of driving signals in the previous iteration, which makes the

adaptive algorithm more stable.

3.4 Sparsity Constrained Multi-point Algorithms

In the multi-point algorithm and the Leaky multi-point algorithm discussed above,

the focus is in the general noise field without any directional constraint. These

approaches often result in large numbers of active loudspeakers. However, in real

applications, some noise fields have directional sparsity. In this section, we exploit

the sparse nature of the noise sources to reduce the active loudspeaker numbers and

improve the ANC systems. For spatially sparse noise fields, inspired by Leaky-MP,

we introduce an additional constraint on the loudspeaker driving signals in the cost

function of the conventional multi-point approach.

3.4.1 `0-norm constrained multi-point algorithm

One method to enforce a reduction in the number of loudspeakers in multi-point

ANC systems is by utilizing compressed sensing techniques [102]. This can be done

by selecting the amplitude of each of the loudspeakers’ driving signals to achieve

more zero elements in d. To be more specific, it is the solution of the following

constrained minimization problem

min
d(k)

‖e(k)‖22 + δ(k)‖d(k)‖0, (3.14)
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where δ(k) is the sparsity level of each frequency bin, and ‖d(k)‖0 represents the

total number of non-zero elements in the loudspeaker driving signal vector.

However, the problem in (3.14) is Non-Polynomial (NP) hard as it entails an

exhaustive search. Therefore, the `0 norm is either approximated by a continuous

function [103] or replaced by the `1 norm [93].

Because the `1-norm regularization is a convex problem, it can provide a sparse

solution with less computational time. In the following two subsections, we propose

two regularization methods involving `1 norm.

3.4.2 Complex `1-norm constrained multi-point algorithm

In the first method, we replace the `0 norm in (3.14) with the `1 norm on the

complex vector

min
d(k)

‖e(k)‖22 + λ(k)‖d(k)‖1, (3.15)

where ‖d(k)‖1 is the sum of the magnitudes of the complex entries of the vector

d(k), λ(k) is a controllable parameter to determine the degree of sparse constraint

for the adaptive coefficients.

In the frequency domain adaptive algorithm, combining the squared residual

error signals with the `1 norm of the weight vector, the cost function becomes

ξC`1-MP(n, k) = ‖eH(n, k)‖22 + λ(k)‖d(n, k)‖1, (3.16)

where n is the adaptive index.

The gradient of the cost function can be written as

∇ξC`1-MP(n) = ∇‖eH(n)‖22︸ ︷︷ ︸
∇ξ1(n)

+∇λ‖d(n)‖1︸ ︷︷ ︸
∇ξ2(n)

, (3.17)

where we dropped the frequency dependency k for notational simplicity.

Theorem 3.4.1 The gradient of the cost function ξC`1-MP(n) is given by

∇ξC`1-MP(n) = 2GHe(n) + λ exp(iθ(n)), (3.18)

where θ(n) is the vector of phases of complex driving signals dq(n), q = 1, ..., Q,
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and exp(·) denotes the exponential function.

Proof

The term ∇ξ1(n) of (3.17) is the same as that of the conventional MP algorithm,

i.e., ∇ξ1(n) = 2GHe(n).

From (3.17), we write ∇ξ2 as follows [50],

∇ξ2 = 2λ
∂(‖d‖1)
∂d∗

= 2λ

∂(
Q∑
q=1

|dq|)

∂d∗
, (3.19)

where we dropped the iteration dependency n for notational simplicity. Then

∂(
Q∑
q=1

|dq|)

∂d∗
=


∂|d1|
∂d∗1
...

∂|dQ|
∂d∗Q

 =
1

2


∂|d1|
∂<(d1) + i ∂|d1|

∂=(d1)
...

∂|dQ|
∂<(dQ)

+ i
∂|dQ|
∂=(dQ)

 . (3.20)

Given the absolute value of a complex number |dq| =
√
<(dq)2 + =(dq)2, we have

∂|dq|
∂<(dq)

=
<(dq)√

<(dq)2 + =(dq)2
= cos θq,

∂|dq|
∂=(dq)

=
=(dq)√

<(dq)2 + =(dq)2
= sin θq. (3.21)

By substituting (3.21) into (3.20), ∇ξ2 can be simplified to λ exp(iθ). This com-

pletes the proof.

Following the steepest descent updating and substituting (3.18) into (3.7), the final

update equation of the complex `1-constrained multi-point algorithm (C`1-MP) can

be written as

d(n+ 1) = d(n)− µGHe(n)− 1

2
µλ exp(iθ(n)). (3.22)

Compared to the conventional multi-point approach, the additional constraint
1
2
µλ exp(iθ(n)) tends to shrink more entries in the loudspeaker driving signals

vector to zero. As evidenced in Section 3.6, this method speeds up the convergence

in spatially sparse noise fields.
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In the first method, there is complex number calculation involved in the `1

constraint, which is computationally costly. In the next subsection, we propose the

second method to reduce the computational cost.

3.4.3 Scalar `1-norm constrained multi-point algorithm

In the second method, we replace the `0 norm in (3.14) with the sum of the `1

norm on the real and imaginary parts of the loudspeaker driving signals. The new

cost function becomes

ξS`1-MP(n) = ‖eH(n)‖22 + λ(‖<(d(n))‖1 + ‖=(d(n))‖1). (3.23)

Instead of forcing the complex weight entries towards zero directly, we force the

real and imaginary parts of the complex entries towards zero at the same rate.

Theorem 3.4.2 The gradient of the cost function ξS`1-MP(n) is given by

∇ξS`1-MP(n) = ∇‖eH(n)‖22︸ ︷︷ ︸
∇ξ1(n)

+∇λ(‖<(d(n))‖1 + ‖=(d(n))‖1)︸ ︷︷ ︸
∇ξ′2(n)

(3.24)

= 2GHe(n) + λ
(

sgn(<(d(n))) + i sgn(=(d(n)))
)

(3.25)

where sgn(·) is a component-wise function which is defined as sgn(d) =

{
d/|d| d 6= 0

0 d = 0
.

Proof

The second term in (3.24) can be represented by

∇ξ′2 = 2λ

(
∂(‖<(d)‖1)

∂d∗
+
∂(‖=(d)‖1)

∂d∗

)
. (3.26)

The complex partial differentiation based on d∗ can be separated by [104]

∂‖<(d)‖1
∂d∗

=
1

2

(
∂‖<(d)‖1
∂<(d)

+ i
∂‖<(d)‖1
∂=(d)

)
,

∂‖=(d)‖1
∂d∗

=
1

2

(
∂‖=(d)‖1
∂<(d)

+ i
∂‖=(d)‖1
∂=(d)

)
. (3.27)
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Each item in the (3.27) is given by

∂‖<(d)‖1
∂<(d)

= sgn(<(d)),

∂‖<(d)‖1
∂=(d)

=
∂‖=(d)‖1
∂<(d)

= 0,

∂‖=(d)‖1
∂=(d)

= sgn(=(d)). (3.28)

By substituting (3.27) and (3.28) into (3.26), we obtain the second term of (3.25).

Also note from Theorem 1 ∇ξ1(n) = 2GHe(n) which is the first term of (3.25).

Thus, substituting (3.25) into (3.7), the scalar `1-norm constrained multi-point

algorithm (S`1-MP) can be written as

d(n+ 1) = d(n)− µGHe(n)− 1

2
µλ
(

sgn(<(d(n))) + i sgn(=(d(n)))
)
. (3.29)

Compared to (3.22), in (3.29), the exponential function of a complex vector is

replaced by the sign function of two real vectors, which can save computational

complexity in each iteration. It is a significant advantage in real time implementa-

tions.

3.5 Parameter Selection

The most important parameter in both C`1-MP and S`1-MP is the sparsity-tuning

parameter λ(k). It is a frequency dependent positive number which controls the

relative importance of the sparsity constraint when generating loudspeaker driving

signals. A large value of λ(k) emphasizes the role of the `1-norm penalty in the

cost functions (3.16) and (3.23), that is, forcing more entries in the loudspeaker

weights d(k) towards zero or close to zero.

For the selection of sparsity level λ(k), in the Lasso algorithm [93], λ(k) is

searched over the set [0, ‖GH(k)ν(k)‖∞). A nominal value for selecting the sparsity-

tuning parameter is

λ(k) =
1

20
‖G(k)Hν(k)‖∞, (3.30)
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around which λ(k) is selected within a set [(‖G(k)Hν(k)‖∞)/30, (‖G(k)Hν(k)‖∞)/10].

In ANC applications, the primary noise field is often unknown and varying. To

calculate the searching range of λ(k), we utilize the initial recordings on the error

microphones to estimate the primary noise level. During the adaptive process, if

significant changes occur in the microphone recordings, we reset the value of λ(k)

to follow the varying noise field.

We conduct a simulation to further investigate the effect of λ(k). Let the

desired quiet zone be a circular region of radius of 1 m. The ANC system consists

of 11 microphones placed equi-angularly on the boundary of the region and 11

loudspeakers placed on a circle of R = 2 m. A signal-to-noise ratio (SNR) of 40 dB

white Gaussian noise is added at each microphone recording. The primary sound

field is generated by a point noise source placed at 0◦ at a radius of 2.5 m. Here,

λ(k) is in the range of [0, 0.2].

Figure 3.2 demonstrates the noise reduction performance and active loudspeaker

number under different λ(k). From Figure 3.2(a), it is evident that as the value

of λ(k) increases, the noise reduction level in the region decreases. For both C`1-

MP and S`1-MP algorithms, large λ(k) results fewer loudspeakers and reduce total

energy of the loudspeakers, as shown in Figure 3.2(b). Overall, in selection of

λ(k), there is a trade-off between the noise reduction level and the number of

active loudspeakers. Meanwhile, the step size µ has an effect on the sparsity-

tuning parameter selection. If we choose a large step size as well as a large sparse

parameter, the system will become unstable, as demonstrated by the red curve in

Figure 3.2(b).

3.6 Simulation Results

In this section, we compare the proposed algorithms (C`1-MP and S`1-MP) with the

Multi-point (MP) algorithm [32] and the Leaky multi-point (Leaky-MP) algorithm

[101] in a free-field environment. Let the desired quiet zone be a circular region

of 1 m radius. The ANC system consists of 11 microphones placed equi-angularly

on the boundary of the region and 11 loudspeakers placed on a circle of R = 2

m. A signal-to-noise ratio (SNR) of 40 dB white Gaussian noise is added at each
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Figure 3.2: Noise reduction and active loudspeaker number after convergence
using the `1-norm constrained ANC algorithm for different value of λ. (a) Noise

reduction over the region, (b) Active loudspeaker numbers.
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microphone recording 2. The transfer function is simulated based on the modeling

of sound propagation under the free-field assumption.

To evaluate the noise reduction performance inside the region (NRin), sound

pressures (ein) at M = 1296 uniformly placed points inside the regions are exam-

ined. We define NRin(n) as,

NRin(n) = 10 log10

‖ein(n)‖22/M
‖ein(0)‖22/M

, (3.31)

where ein(n) denotes the residual signals on the points inside the region at the nth

iteration, and ein(0) represents the primary noise field in the region. We choose

the sparsity parameter λ(k) = 0.02 and λ(k) = 0.04.

3.6.1 Single primary source scenario

In this subsection, the primary sound field is generated by one point noise source

placed at 0◦ at a radius of 2.5 m.

First, we investigate the narrowband performance of different algorithms. The

frequency of the noise field is 200 Hz. The initial value of d is d(0) = [0, 0, ..., 0]T ,

and hence θ(0) = [0, 0, ..., 0]T . Figure 3.3 shows the convergence performance and

the noise reduction (NR) level for each iteration. Compared with MP, adding

the `1 constraint will dramatically increase the convergence speed, especially for

noise reduction inside the region, but adding the power constraint (Leaky-MP)

can only slightly increase the speed. For noise reduction performance, adding the

constraint to the loudspeaker driving signals (C`1-MP, S`1-MP and Leaky-MP) will

decrease NR in the steady state. Larger value of λ results in less noise reduction,

as shown in the comparison of λ = 0.02 and λ = 0.04. From the comparison of

Figure 3.3(a) and Figure 3.3(b), it is evident that for the Leaky-MP algorithm,

after convergence, the noise reduction performance inside the region is much worse

than the noise reduction on the boundary. While for the same λ, both C`1-MP

and S`1-MP can achieve similar noise reduction levels in the steady state on the

microphone points and inside the region. Since our motivation is to cancel the

2Here, the SNR level is with respect to the primary noise field level on error microphones.
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Figure 3.3: Comparison of the convergence speed and noise reduction level using
different ANC algorithms, when the primary sound field is constructed by a primary
source: (a) noise reduction on the boundary, (b) noise reduction inside the region.
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Table 3.1: Noise reduction on the boundary, noise reduction inside the region,
and active loudspeaker numbers after convergence in different frequency bins using
different ANC algorithms, when the primary sound field is constructed by a primary

source.

Freque-
ncy(Hz)

NR boundary (dB) NR inside (dB) Active speaker number

MP C`1-MP S`1-MP MP C`1-MP S`1-MP MP C`1-MP S`1-MP

50 -53.04 -49.50 -48.83 -69.47 -62.28 -58.67 11 4 5
100 -48.30 -38.62 -38.76 -65.94 -49.39 -48.25 9 3 3
150 -46.88 -43.58 -40.49 -38.43 -49.61 -49.69 9 3 3
200 -50.89 -43.25 -40.41 -20.84 -41.04 -35.84 11 1 2
250 -81.20 -41.81 -38.57 -66.44 -41.22 -35.73 7 1 1
300 -49.85 -41.98 -40.05 -22.22 -38.98 -38.98 9 1 1

noise over the entire region, the proposed C`1-MP and S`1-MP algorithm exhibit

considerable improvement over the conventional MP and Leaky-MP algorithm.

Figure 3.4 demonstrates the performance in terms of the energy of loudspeaker

driving signals and active loudspeaker numbers. Here we define the jth loudspeaker

is active when ‖dj‖ > 0.02 ∗ ‖dmax‖. From Figure 3.4(a), compared to MP, the

constrained MP algorithms can reduce the total energy of the loudspeaker driving

signals, which can avoid the overloading of the secondary sources. A large value

of λ results in a lower energy of the loudspeaker driving signals. For the Leaky-

MP algorithm, all the loudspeaker candidates are active in the steady state, as

shown in Figure 3.4(b). Whereas both C`1-MP and S`1-MP can reduce the active

loudspeaker numbers, over the conventional algorithms. After convergence, the

loudspeakers which are distant from the noise source are non-active. Larger values

of λ will force more loudspeakers to be non-active. When λ = 0.04, both C`1-

MP and S`1-MP can reduce the active loudspeaker numbers from 11 to 1, which

corresponds to the case in which only the loudspeaker candidate located at 0◦ is

active in the steady state.

Table 3.1 shows the performance in the case of multi- frequency noise field for

different algorithms after 50 iterations. The frequency range of the noise field is

[50, 300] Hz. For the MP algorithm, the noise reduction is not converged, thus

the NR inside the region is not stable over the frequency range. For the proposed



3.6 Simulation Results 51

0 50 100 150 200 250 300

Number of iterations

10

20

30

40

50

60

70

80

D
riv

in
g 

si
gn

al
 e

ne
rg

y

MP
Leaky_MP ρ=0.002
CL

1
_MP λ=0.02

SL
1
_MP λ=0.02

CL
1
_MP λ=0.04

SL
1
_MP λ=0.04

(a)

0 50 100 150 200 250 300

Number of iterations

0

2

4

6

8

10

12

A
ct

iv
e 

lo
ud

sp
ea

ke
r 

nu
m

be
rs

MP
Leaky_MP ρ=0.002
CL

1
_MP λ=0.02

SL
1
_MP λ=0.02

CL
1
_MP λ=0.04

SL
1
_MP λ=0.04

(b)

Figure 3.4: Comparison of the loudspeakers using different ANC algorithms, when
the primary sound field is constructed by a primary source: (a) loudspeaker driving
signal energy for each iteration, (b) active loudspeaker numbers for each iteration.
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algorithms, by selecting proper parameter values for each frequency, 40 to 50 dB

NR can be achieved on the boundary and inside the region. Compared to the MP

algorithm, both C`1-MP and S`1-MP can reduce the active loudspeaker numbers.

From the comparison of the proposed algorithms, it is evident that C`1-MP has

slightly better noise reduction performance than S`1-MP in multiple frequency

bins, but S`1-MP can achieve significant noise reduction with less computational

complexity.

3.6.2 Multiple primary source scenario

If the primary sound field is constructed by multiple primary sources, for example

two primary sources in different locations, the proposed `1-norm constrained ANC

algorithms can still reduce the active loudspeaker numbers. To verify this, we place

one of the point sources to 0◦ at the radius of 2.5 m, and move the other source

from 0◦ to 360◦ at the radius of 2.2 m. The frequency of the noise field is 200

Hz. The performance of the ANC system after 300 iterations is shown in Table

3.2. The results are found to be similar to that containing a single primary source.

The noise reduction inside the region shows the worst performance when two noise

sources are located in the opposite direction (180◦).

Table 3.2: Noise reduction inside the region and active loudspeaker numbers after
convergence in different source locations, when the primary sound field is con-

structed by two primary sources.

Direction
NR boundary (dB) NR inside (dB) Active speaker number

MP C`1-MP S`1-MP MP C`1-MP S`1-MP MP C`1-MP S`1-MP

0◦ -80 -47 -46 -52 -50 -50 5 1 1
60◦ -80 -43 -40 -52 -45 -42 10 5 5
120◦ -80 -43 -40 -52 -38 -30 11 5 5
180◦ -80 -36 -35 -52 -34 -25 11 5 7
240◦ -80 -40 -35 -52 -38 -30 11 5 6
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3.7 Summary and Contributions

In this chapter, we investigated constrained multi-point methods for active noise

control over a spatial region, in the directional sparse noise field. We derived C`1-

MP algorithm via combining the `1-norm constraint on the complex loudspeaker

driving signals to the cost function of the conventional multi-point algorithm. We

derived S`1-MP algorithm via replacing the constraint in C`1-MP by sum of the `1

norm to the real and imaginary part of the loudspeaker driving signals, which can

reduce the computational complexity.

We conducted the simulation in a single source noise field as well as a multiple

sources noise field, and compared the proposed C`1-MP algorithm, proposed S`1-

MP algorithm, conventional MP algorithm, and conventional Leaky-MP algorithm.

From the simulation results in the directional sparse noise field, we concluded that

the proposed algorithms (C`1-MP and S`1-MP) could i) increase the convergence

speed, ii) reduce the active loudspeaker numbers in the steady state, and iii) de-

crease the noise reduction level in the steady state.

The major contribution made in this chapter is:

• We introduced `1 penalty to the multi-point algorithm to reduce the num-

ber of secondary sources and the computational complexity in a directional

sparse noise field, resulting in two new algorithms: (i) the complex `1-norm

constrained multi-point algorithm (C`1-MP), and (ii) the scalar `1-norm con-

strained multi-point algorithm (S`1-MP).

3.8 Related Publications

This chapter’s work has been published in the following journal paper.

[105] J. Zhang, T. D. Abhayapala, P. N. Samarasinghe, W. Zhang, and S. Jiang,

“Multichannel active noise control for spatially sparse noise fields”, J. Acoust. Soc.

Am., vol. 140, no. 6, pp. EL510− EL516, 2016.





Chapter 4

Wave Domain ANC: Basic

Structure

Overview: This chapter proposes wave-domain adaptive structure for

noise cancellation within a large spatial region. We use fundamental

solutions of the Helmholtz wave-equation as a basis function to express

the noise field over a spatial region and show the wave-domain pro-

cessing directly on the decomposition coefficients to control the entire

region. A feedback control system is implemented using a microphone

array and a loudspeaker array. The microphone array is placed at the

boundary of the control region to measure the residual signals. The

loudspeaker array is placed outside the region to generate the anti-

noise signals. We develop an adaptive wave-domain filtered-x least

mean square algorithm in a general noise field. We also incorporate

a sparsity constraint to the wave-domain noise cancellation, and pro-

pose an `1-constrained wave-domain filtered-x least mean squared al-

gorithm, which is mainly applicable to directional sparse noise fields.

Simulation results demonstrate the performance and advantages of the

proposed methods in terms of convergence speed and noise reduction

levels over space.

55
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4.1 Introduction

As discussed in Chapter 3, the multi-point version of the LMS algorithm in the

frequency domain (Section 3.3.1) and its variations (Section 3.3.2, etc.), are fairly

straightforward and have been widely used in practice [31, 32, 106, 30]. One draw-

back of the conventional multichannel ANC system is that to achieve a continuous

quiet zone, a large number of error microphones need to be uniformly placed inside

the region to measure the residual signals so that the noise energy within the entire

region can be cancelled completely.

Recently, ANC over space has been approached via wave field synthesis (WFS)

based adaptive algorithms [107,40,41]. For example, in S. Spors and H. Buchner’s

work [40, 41], one loudspeaker array and two microphone arrays, including one

reference microphone array placed outside the loudspeaker array and one error

microphone array placed at the boundary of the quiet zone, are adopted and the

feedforward ANC system is implemented. Significant noise cancellation over the

entire region of interest has been achieved, for both interior and exterior noise

control problems.

In this chapter, we propose a feedback ANC system in the wave domain using

one loudspeaker array and one microphone array: a loudspeaker array to produce

anti-noise signals and an error microphone array placed at the boundary of the

desired quiet zone to measure the residual signals (see Figure 4.1). We repre-

sent the sound field using cylindrical harmonics expansion. We make a continu-

ous loudspeaker array assumption, and propose an adaptive wave-domain FxLMS

algorithm. After calculating the loudspeaker distribution coefficients, we utilize a

discrete loudspeaker array to approximate the continuous loudspeaker distribution.

In addition, we introduce the wave-domain algorithm with the `1-norm constraint,

and design the discrete loudspeaker array directly to cancel noise in the direction-

ally sparse noise field. The proposed wave-domain algorithms demonstrate good

performance for spatial noise cancellation.

The rest of this chapter is organized as follows. In Section 2, we formulate the

spatial ANC problem in the wave domain. We derive an adaptive wave-domain

processing algorithm in Section 3, and further develop an `1-constrained wave-

domain algorithm in Section 4. In Section 5, simulations are conducted to evaluate
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the proposed algorithms in comparison with the conventional multi-point ANC

algorithm. Summary and contributions are provided in Section 6.

4.2 Wave Domain ANC Formulation

Microphone array

Loudspeaker array

Noise

sources
x

R1

R2

φx

Figure 4.1: A spatial ANC region (blue) consists of a circular microphone array of
radius R1 and a circular loudspeaker array of radius R2.

Instead of using measurements at the microphone points directly, the wave-

domain approach employs the wave equation solutions as basis functions to express

the sound field over the entire spatial region of interest, and designs the secondary

signals accordingly.

For convenience, we rewrite (3.1) in Chapter 3. In the ANC system, as shown

in Figure 4.1, the residual signal at any arbitrary observation point x ≡ {r, φx} is

given by

e(x, k) = ν(x, k) + s(x, k). (4.1)

Below we first transform each component in multi-point ANC system into the

wave domain using cylindrical harmonic based wave equation solution, and then

formulate the active noise control problem in terms of the wave-domain coefficients.
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4.2.1 Primary noise field

As described in (2.41), the cylindrical harmonic based wave equation solution de-

composes any homogeneous incident wave field v(x, k) observed at x into

v(x, k) =
∞∑

m=−∞

βm(k)Jm(kr) exp(imφx), (4.2)

where Jm(·) is the Bessel function of order m and exp(·) denotes the exponential

function [90]. The decomposition coefficients βm(k) represent the primary noise

field in the wave domain.

Within the circular region r ≤ R1, we can use a finite number of modes to

approximate1 the noise field [108], thus (4.2) reduces to

v(x, k) ≈
M∑

m=−M

βm(k)Jm(kr) exp(imφx), (4.3)

where M = dekR1/2e [108,109].

4.2.2 Secondary sound field

A circular array of L equiangularly placed loudspeakers are used to generate the

control signals. Below, we represent the secondary sound field in two strategies: (i)

Make a continuous loudspeaker array assumption first, and then design a discrete

loudspeaker array to approximate the continuous source distribution; (ii) Design

the discrete loudspeaker array directly.

Continuous loudspeaker array assumption

Using the strategy (i), we first assume a circular continuous loudspeaker array. A

continuous loudspeaker array is an aperture that is a function of space variables

and frequency [110].

Since the aperture function of the circular continuous loudspeaker χ(y, k) is

1The infinite summation in (4.2) can be truncated at M = dekr/2e [108,109] due to inherent
properties of Bessel functions
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periodic with respect to the angle φ, using Fourier series expansion, χ(y, k) can be

represented as

χ(y, k) =
∞∑

m=−∞

τm(k) exp(imφy), (4.4)

where τm(k) is the distribution coefficients.

Thus, the sound field generated can be written as

s(x, k) =

∫ 2π

0

χ(y, k)G(x|y, k)dφy. (4.5)

When the observation points are inside the quiet zone, the ATF can also be

parameterised in the wave domain [76] as

G(x|y, k) ≈
M∑

m=−M

Tm(y, k)Jm(k‖x‖) exp(imφx), (4.6)

where Tm(y, k) are ATF coefficients and assumed to be prior knowledge obtained

from pre-calibration or room modelling.

Substituting (4.4) and (4.6) into (4.5) leads to the wave-domain representation

of the sound field generated by the control sources, that is

s(x, k) ≈
M∑

m=−M

τm(k)σm(k)Jm(k‖x‖) exp(imφx), (4.7)

where

σm(k) =

∫ 2π

0

Tm(y, k) exp(imφy)dφy. (4.8)

For example, for sound propagation in the free field, G(x|y, k) = i
4
H

(1)
0 (k‖y−x‖)

and σm(k) = i
4
H

(1)
m (kR1), where H

(1)
m (·) denotes the first kind Hankel function of

order m.

Given the estimated source distribution coefficients τm(k), a discrete loud-

speaker array is designed to approximate the continuous loudspeaker distribution.

For example, assuming L ≥ 2M + 1 loudspeakers equiangularly placed in the cir-
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cular array, the lth loudspeaker driving signal is

d` = χ(yl, k)∆φ, (4.9)

where ∆φ = 2π/L.

Using the continuous loudspeaker array assumption to formulate the system, we

can obtain the loudspeaker aperture function without using matrix inversion [110].

While, using strategy (i), two steps are required to calculate the loudspeaker driving

signals: (a) make the continuous loudspeaker array assumption, and b) utilize the

discrete loudspeaker array to approximate.

Discrete loudspeaker array

Using the second strategy, we design the discrete loudspeaker array d(k) directly

without the continuous loudspeaker assumption.

For convenience, we rewrite the (3.2) in Chapter 3. The secondary sound field

generated by discrete loudspeaker array can be represented by

s(x, k) =
L∑
l=1

dl(k)G(x|yl, k), (4.10)

where G(x|yl, k) is the acoustic transfer function, as defined in Chapter 3.

Using the cylindrical harmonic expansion, the generated secondary sound field

inside the control region can also be represented by

s(x, k) ≈
M∑

m=−M

γm(k)Jm(kr) exp(imφx), (4.11)

where coefficients γm(k) represent the secondary sound field in the wave domain,

and M = dekR1/2e.
Similar to (4.6), the ATF in (4.10) can be parameterized in the wave domain [76]

as

G(x|yl, k) ≈
M∑

m=−M

Tm,l(k)Jm(kr) exp(imφx). (4.12)
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By substituting (4.11) and (4.12) into (4.10), we can get

γm(k) =
L∑
l=1

dl(k)Tm,l(k), for m = −M, · · · ,M. (4.13)

Therefore, in matrix form, the relationship between the secondary source decom-

position coefficients and the loudspeaker weights is given by

γ(k) = Td(k), (4.14)

where T is a (2M + 1)× L matrix, d is the vector of loudspeaker driving signals,

and

T =


T−M,1 · · · T−M,L

...
. . .

...

TM,1 · · · TM,L

 , d =


d1
...

dL

 . (4.15)

Using the discrete loudspeaker array directly to formulate the system, wave-

domain coefficients of the loudspeakers become γm(k). Therefore, using strategy

(ii), we calculate the vector form of the loudspeaker driving signals directly. While,

matrix inversion is involved in the further derivation.

4.2.3 Residual signals

Substituting (4.3) and (4.11) into (4.1), the residual signals can be represented by

e(x, k) ≈
M∑

m=−M

(βm(k) + γm(k)︸ ︷︷ ︸
αm(k)

)Jm(kr) exp(imφx), (4.16)

where αm(k) is the residual signal decomposition coefficients. In the ANC system,

e(x, k) is the frequency domain sound pressure measured by the error microphones.

From (4.16), we can obtain the wave-domain αm(k), which is a good indicator of

the residual sound field over the entire region.

In the proposed system (Figure 4.1), a circular microphone array is placed on

the boundary of the quiet zone to measure the residual signals. Q microphones are

equiangularly placed in the error microphone array to measure the residual noise
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field e(x, k), i.e., the superposition of the noise field and sound field generated by

the secondary noise sources. The error signals in the wave domain are written as

αm(k) =
1

QJm(kr)

Q∑
q=1

e(xq, k) exp(−i2πm(q − 1)/Q),

m = −M, . . . ,M. (4.17)

It is clear that the number of microphones required is Q ≥ 2M + 1 so that all

the wave-domain error signals can be obtained without causing a spatial aliasing

problem. When Bessel function Jm(kr) is close to zero, the coefficient error is

amplified. The stability of the calculation will be reduced accordingly.

4.2.4 Wave-domain ANC

For the continuous loudspeaker array assumption, wave-domain noise cancellation

is to design the secondary source coefficients τm(k) based on the ATF informa-

tion σm(k) so that the noise field v(x, k) characterised by its coefficients βm(k) is

completely cancelled within the desired quiet zone. An optimal solution would be

τm(k) = −βm(k)/σm(k) if a stable noise field is assumed. However, in practice the

noise field is always unknown and could be time-varying, so an adaptive algorithm

is proposed in the next section.

For the discrete loudspeaker array without the continuous loudspeaker array

assumption, the objective of wave-domain adaptive ANC is to design the loud-

speaker driving signals d(k) based on the wave-domain residual signal αm(k) and

the acoustic transfer function coefficients T (k), so that the noise field v(x, k) is

cancelled by the generated secondary sound field S(x, k) over the control region of

interest.

The proposed ANC algorithms are introduced in the following sections.

4.3 Wave-domain FxLMS Algorithm

Now let us discuss the development of the wave-domain filtered-x least mean square

(WD-FxLMS) algorithm for cancelling the above noise field. Here, for secondary
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sound field, we make a continuous loudspeaker array assumption first, and then

design the discrete loudspeaker array to approximate the continuous source distri-

bution.

The residual signal in each iteration is expressed as

α̂m(n) = βm(n) + σm × τm(n), (4.18)

where n denotes the iteration step, and the wavenumber k is omitted for notational

simplicity. The sourse coefficients τm(n) can be written by

τm(n) = ωm(n)τ (0)m , (4.19)

where τ
(0)
m represents an arbitrary initial estimate of the source distribution coeffi-

cients, and ωm(n) are the updated weights.

The adaptive algorithm minimises the instantaneous squared error, so that the

cost function becomes

ξm(n) = |α̂m(n)|2 = α̂m(n)α̂∗m(n). (4.20)

Adopting the steepest descent algorithm, we have

ωm(n+ 1) = ωm(n)− µ

2
∇ξm(n). (4.21)

Note that complex numbers are involved here, and thus we use the complex LMS

algorithm to update the weights [111].

From (4.18) and (4.19), we can obtain

∂α̂∗m(n)

∂ω∗m(n)
= [σmτ

(0)
m ]∗. (4.22)

The gradient of the cost function can be written by

∇ξm(n) =2
∂ξm(n)

∂ω∗m(n)
. (4.23)
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Σ

Tr−1W G

v(x, k) e(x, k)

τm(k)
s(x, k)

+

+

TrLMSσm
αm(k)τ

(0)
m

Figure 4.2: Block diagram of the wave-domain FxLMS algorithm for ANC. Blocks

of Tr and Tr−1 represent the wave-domain transform and the inverse wave-domain
transform, respectively.

Therefore, substituting (4.20) and (4.22) into (4.23), we can get

∇ξm(n) = 2α̂m(n)[σmτ
(0)
m ]∗. (4.24)

Substituting (4.24) into (4.21), we have the wave-domain FxLMS algorithm,

ωm(n+ 1) = ωm(n)− µα̂m(n)[σmτ
(0)
m ]∗, (4.25)

where the maximum step size µmax = 1/‖σmτ (0)m ‖2 [23]. The block diagram of the

algorithm is shown in Figure 4.2.

4.4 Sparse Constrained Wave-domain FxLMS Al-

gorithm

In this section, we develop an `1-norm constrained complex FxLMS algorithm for

wave-domain noise cancellation. Differ from Section 4.3, for secondary sound field,

here we solve the sparsity constrained ANC problem by focusing directly on the

discrete loudspeaker array.

From (4.3), the cylindrical harmonic coefficients of the primary noise field are
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represented by βm(k). Similarly, from (4.17), the cylindrical harmonic coefficients

of the residual signal are represented by αm(k).

Therefore, the wave-domain error function is given by

α(n) = β(n) + γ(n), (4.26)

where α(n) = {α−M(n), . . . , αM(n)}T , β(n) = {β−M(n), . . . , βM(n)}T and γ(n) =

{γ−M(n), . . . , γM(n)}T . The wavenumber k is omitted for notational simplicity.

All three terms are (2N + 1)−long vectors in the complex domain. An FxLMS

type formulation of (4.26) is

α(n) = β(n) + diag(σ)w(n), (4.27)

where σ is ATF coefficients in the wave domain, and σ = [σ−M , · · · , σM ].

Note that w is not directly populated with loudspeaker weights d as before.

The relationship between w and d is

w = Ed, (4.28)

where E is the transformation matrix, and

E =


eiMφ1 ... eiMφL

...
. . .

...

e−iMφ1 ... e−iMφL

 . (4.29)

Similar to the multi-point case in Chapter 3, the cost function of the `1 con-

strained wave-domain algorithm can be written by

ξ`1−WD(n) =
1

2
α(n)2 + λ‖d(n)‖1, (4.30)

where λ is a controllable parameter that determines the degree of zero attraction

for the adaptive filter coefficients [112].

Using the steepest descent algorithm to calculate the updated equation in the
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wave domain, the gradient term in (4.21) can be written as

∇ξ`1−WD(n) = ∇1

2
α(n)2︸ ︷︷ ︸
∇ξ1

+∇λ‖d(n)‖1︸ ︷︷ ︸
∇ξ2

. (4.31)

From the wave-domain Filtered-X Least Mean Square algorithm [96], the term

∇ξ1 of (4.31) is simply represented by

∇ξ1 = (diag(σ))∗α. (4.32)

To find ∇ξ2 of (4.31), we use its relationship to the conjugate derivative [50]

∇ξ2 = 2
∂ξ2
∂w∗

, (4.33)

and approximate it by the summation of the real and the imaginary part

∂ξ2
∂w∗

≈ λ(
∂‖<(d)‖1
∂w∗

+
∂‖=(d)‖1
∂w∗

). (4.34)

If the complex w is decomposed into its real and imaginary parts as w = x + iy,

the complex partial differentiation based on w∗ can be separated [104] by

∂‖<(d)‖1
∂w∗

=
1

2

(
∂‖<(d)‖1

∂x
+ i ∗ ∂‖<(d)‖1

∂y

)
,

∂‖=(d)‖1
∂w∗

=
1

2

(
∂‖=(d)‖1

∂x
+ i ∗ ∂‖=(d)‖1

∂y

)
. (4.35)

Since w = Ed, each item in (4.35) in the wave domain can be given by

∂‖<(d)‖1
∂x

= <((E−1)T ) ∗ sign(<(d))

∂‖<(d)‖1
∂y

= −=((E−1)T ) ∗ sign(<(d))

∂‖=(d)‖1
∂x

= =((E−1)T ) ∗ sign(=(d))
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∂‖=(d)‖1
∂y

= <((E−1)T ) ∗ sign(=(d)). (4.36)

Substituting (4.36) into (4.34), ∂ξ2/∂w
∗ becomes

∂ξ2
∂w∗

=
1

2
λ{[<((E−1)T )− i ∗ =((E−1)T )] ∗ [sign(<(E−1w))

+ i ∗ sign(=(E−1w))]}. (4.37)

Thus, the `1-norm constrained wave-domain FxLMS algorithm (`1-WD-FxLMS)

can be derived as

w(n+ 1) =w(n)− 1

2
µ(diag(σ))∗α

− 1

2
µλ{[<((E−1)T )− i ∗ =((E−1)T )] ∗ [sign(<(E−1w))

+ i ∗ sign(=(E−1w))]}. (4.38)

4.5 Simulation Results

In this section, we conduct simulations to evaluate the proposed wave-domain adap-

tive algorithms (WD-FxLMS and `1-WD-FxLMS) in terms of the noise reduction

on the boundary, noise reduction inside the region, residual energy inside the re-

gion and convergence speed. For `1-WD-FxLMS algorithm, we also evaluate the `1

norm of the loudspeaker driving signals.

We consider following four cases: (i) single-frequency noise field, free-field envi-

ronment (ii) single-frequency noise field, room reverberant environment; (iii) multi-

frequency noise field, free-field environment; (iv) multi-frequency noise field, room

reverberant environment. In case (i), we compare WD-FxLMS, `1-WD-FxLMS, `1-

MP-FxLMS, and the conventional MP-FxLMS algorithm. In cases (ii), (iii), and

(iv), we compare the WD-FxLMS and the conventional MP-FxLMS algorithm.

In the simulation, the quiet zone is a circular region of radius 1 m (R1 = 1 m).

We place the loudspeaker array on a circle of R2 = 2 m and the microphones are

equally spaced on the boundary of the quiet zone (Rq = R1 = 1 m). A signal-to-

noise (SNR) ratio of 40 dB is added to the microphone recordings.
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Figure 4.3: The results of ANC in the free-field. The inner array is the microphone
array, outer array is the loudspeaker array. (a) The energy of the initial noise field.
(b) The residual energy after 30 iterations of WD-FxLMS. (c) The residual energy

after 30 iterations of MP-FxLMS.
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To evaluate the noise reduction performance inside the control region, sound

pressures at Z = 1296 points uniformly placed inside the regions ein are examined.

We define the instantaneous noise reduction inside the interest region N in
r (n) as

follows,

N in
r (n) , 10 log10

∑
z E{|ein z(n)|2}∑
z E{|ein z(0)|2}

, (4.39)

where ein z(n) denotes the residual signals at the zth point inside the region at the

nth iteration, and ein z(0) represents the primary noise field at the zth point in the

region.

4.5.1 Single-frequency noise field

We first investigate the ANC performance in a single-frequency noise field due to

a single 2D point source. The noise source is a 2D omni-directional point source

located at (5.5, 3), and operates at the frequency of 200 Hz. According to (4.3) and

the rule of thumb [108], such a noise field within the desired quiet zone (radius of 1

m) needs m ∈ [−5, 5] orthogonal modes to represent; thus, we place 11 loudspeakers

and 11 microphones in each corresponding array.

Case 1—Free-field Environment

Plots in Figure 4.3 show the results of cancelling the noise field in the free-field

environment using the proposed WD-FxLMS and conventional MP-FxLMS. Com-

pared with Figure 4.3(a), after 30 iterations of wave-domain adaptive processing,

Figure 4.3(b) shows that the noise energy inside the entire quiet zone has been re-

duced to a very low level. With the same loudspeaker array and microphone array

setup, the conventional MP-FxLMS algorithm [32] however can only achieve noise

cancellation at the microphone positions or at points very close to the microphones,

as shown in Figure 4.3(c). Inside the quiet zone, a fairly high level of the noise

field still exists.

The results in Figure 4.4 demonstrate the spatial residual signal energy over

the entire control region using the proposed `1-WD-FxLMS algorithm, proposed

`1-MP-FxLMS algorithm, and conventional MP-FxLMS algorithm. Compared with

Figure4.4(a), Figure 4.4(d) shows a significant noise reduction in the designated
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Figure 4.4: The results of ANC in the free-field. The inner array is a microphone
array and the outer array is a loudspeaker array. (a) The energy of the initial
sparse noise field. The residual energy after 30 iterations of (b) MP-FxLMS, (c)

`1-MP-FxLMS, and (d) `1-WD-FxLMS.
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Figure 4.5: Comparison of convergence performance for noise cancellation using
WD-FxLMS and MP-FxLMS algorithm in the free-field in the first 30 iterations.

region after 30 iterations of `1-WD-FxLMS. For comparison, the MP-FxLMS algo-

rithm can only achieve noise reduction on the boundary of the region of interest

after the same number of iterations, as shown in Figure 4.4(b). Here, Figure 4.4(c)

demonstrates the spatial ANC performance using the `1-MP-FxLMS algorithm,

which is the `1-norm constrained multi-point algorithm proposed in [113].

Figure 4.5 compares the convergence performance of the WD-FxLMS and MP-

FxLMS algorithm, where 11 microphone recordings are used to evaluate the noise

reduction on the boundary and measurements from 1296 points inside the regions

are used to evaluate the noise reduction inside the region. The WD-FxLMS demon-

strates faster convergence at both recording positions and at points inside the re-

gion. In particular, for the noise reduction inside the region, the ANC process

converges after 5 iterations using the WD-FxLMS algorithm, while it has not con-

verged after 30 iterations using the MP-FxLMS algorithm. Figure 4.6 compares

the noise reduction after convergence in the same scenario. In the free-field, for

both noise reduction on the boundary and noise reduction inside the region, MC-
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Figure 4.6: Comparison of noise cancellation after convergence using WD-FxLMS
and MP-FxLMS algorithm in the free-field in the first 300 iterations.

FxLMS method (blue curves) has better noise reduction (about 10-15 dB) on the

steady state compared to the WD-FxLMS method.

Plots in Figure 4.7 and Figure 4.8 compare the convergence performance for the

proposed WD-FxLMS, proposed `1-WD-FxLMS, proposed `1-MP-FxLMS, and the

conventional MP-FxLMS in a time-varying noise field. The amplitude of the noise

field increases at iteration 50.

Figure 4.7 shows the comparison of convergence performance vs spatial noise

reduction. The solid lines in Figure 4.7 show the convergence performance of `1-

WD-FxLMS. As expected, the convergence speed of `1-WD-FxLMS algorithms is

much faster than that of `1-MP-FxLMS for all values of λ. For each λ, the `1-

WD-FxLMS demonstrates more noise reduction and faster convergence, so that it

tracks the variation of the noise field and achieves better performance than the

`1-MP-FxLMS. Meanwhile, compared to the solid red line with λ = 0 in Figure 4.7

(which represents the WD-FxLMS [96]), adding the sparse constraint decreases the

noise reduction level of the ANC system (blue and black solid line in Figure 4.7).

The plots in Figure 4.8 show the comparison of the convergence performance

vs the `1-norm of the loudspeaker weights. With the sparse constraints added in
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Figure 4.7: Comparison of convergence performance for noise cancellation us-
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the WD-FxLMS and MP-FxLMS algorithms, the `1-norm of loudspeaker weights

can be reduced, indicating lower total energy of the loudspeaker weights.

From Figure 4.7 and Figure 4.8, we can also conclude that a large value of λ will

result in less noise reduction and a lower `1 norm of the loudspeaker driving signal

in the steady state, for both constrained wave-domain and constrained multi-point

algorithms.

Case 2—Reverberant Environment

The simulations in the reverberant environment are made in a room 6 m×6 m with

all side walls having the reflection coefficient of 0.9. The reflections are simulated by

image source method [114]. The origin of the loudspeaker and microphone arrays

is the centre of the room. The same noise source location as in the case of free-field

environment is simulated, which generates a time-invariant noise field.

The results in Figure 4.9 demonstrate the spatial ANC performance after 30

iterations. Compared with Figure4.9(a), the proposed WD-FxLMS algorithm can

cancel the noise field completely within the desired quiet zone, as shown in Figure

4.9(b). While the conventional MP-FxLMS can only cancel noises at the micro-

phone positions or the boundary of the quiet zone, as shown in Figure 4.9(c).

Figure 4.10 compares the convergence performance of the WD-FxLMS and MP-

FxLMS algorithms. Both algorithms can achieve noise cancellation at the recording

positions, i.e., the boundary of the designated quiet zone. It can be seen clearly that

the convergence speed of the proposed WD-FxLMS is much faster than that of the

conventional MP-FxLMS algorithm. For all the points inside the designed region,

only the wave-domain adaptive processing can achieve noise energy reduction to

a very low level. We can conclude that the proposed WD-FxLMS algorithm is

much more effective in the reverberant environment, especially for achieving noise

cancellation over a spatial region.

4.5.2 Multi-frequency noise field

We next investigate the ANC performance of the proposed WD-FxLMS algorithm

in multi-frequency noise field. The system is designed at the frequency of 1 kHz.
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Figure 4.9: Results of ANC in reverberant environment. The inner and outer arrays
are microphone array and loudspeaker array, respectively. (a) The energy of the
initial noise field. The residual energy after 30 iterations of (b) WD-FxLMS, and

(c) MP-FxLMS.
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Figure 4.10: Comparison of convergence performance for noise cancellation using
WD-FxLMS and MP-FxLMS algorithm in reverberant environment.

The noise field within a radius of 1 m is due to 10 noise sources uniformly distributed

on a circle 2.5 m from the origin and at angles [0 : 36 : 324]◦.

Figure 4.11 shows that for all frequencies below 1 kHz, using the WD-FxLMS

algorithm, the noise can be reduced significantly within the desired quiet zone. The

average noise reduction is around 80 dB and 50 dB in the free-field and reverberant

environment, respectively. Notice that the performance is significantly degraded

at 600 Hz and 900 Hz. This is due to the fact that at these particular frequencies,

the Bessel functions are close to zero (i.e., Jm(kr) ≈ 0) and the coefficient error is

amplified. This problem can be avoided by placing two closely spaced microphone

arrays [76].

4.6 Summary and Contributions

In this chapter, we presented adaptive wave-domain methods to achieve noise can-

cellation over a spatial region using feedback control structure. We proposed a
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Figure 4.11: Noise reduction using WD-FxLMS algorithm after 30 iterations in
multi-frequency noise field.

feedback control system using a circular microphone array to measure the residual

signals and a circular loudspeaker array to produce anti-noise signals. We rep-

resented all the variables of the noise field in the wave domain and formulated

the spatial ANC problem in terms of the wave-domain coefficients. We proposed

the WD-FxLMS algorithm, and it was evaluated in both free-field and reverber-

ant environments and compared with the conventional multi-point ANC algorithm.

Simulation results showed that the proposed WD-FxLMS algorithm achieved sig-

nificant noise reduction over the entire design region with fast convergence speed.

We also introduced the sparse constraint in the WD-FxLMS which can reduce the

total energy of the loudspeaker weights. There existed a trade off between noise

reduction and the energy of the loudspeaker weights.

The major contributions made in this chapter are:

• We proposed a feedback control system using a circular microphone array

and a circular loudspeaker array, and formulated the spatial ANC problem

in terms of the wave-domain coefficients.
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• We proposed a wave-domain FxLMS algorithm (WD-FxLMS) for active noise

control over spatial region in general noise field.

• Weproposed a `1-norm constrained wave-domain FxLMS algorithm (`1-WD-

FxLMS) for active noise control over a spatial region in a directional sparse

noise field.
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Chapter 5

Wave Domain ANC: Different

Cost Functions and Adaptations

Overview: In this chapter, we investigate wave-domain spatial ac-

tive noise control in terms of different cost functions and different

update variables. We propose normalized wave-domain active noise

control algorithms based on two minimization problems, (i) minimiz-

ing the wave-domain residual signal coefficients and (ii) minimizing

the acoustic potential energy over the region. We derive the update

equations with respect to two variables, (a) the loudspeaker driving sig-

nals and (b) wave-domain secondary source coefficients. Simulation

results demonstrate the effectiveness of the four proposed algorithms,

more specifically the convergence speed, energy of the loudspeaker driv-

ing signals, and the noise cancellation performance in terms of the

noise reduction level and acoustic potential energy reduction level over

the entire spatial region. We also investigate the spatial active noise

control performance with limited secondary sources in the simulations.

5.1 Introduction

As discussed in Chapter 3, the multi-point control systems minimize the sum of

the squared pressures, which is equal to minimizing the potential energy density

79
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at the microphone locations. Although these approaches lead to significant noise

reduction at the target points, the consistency over a continuous spatial region is

low.

In Chapter 4, we developed the wave domain ANC structure and proposed

FxLMS algorithm and the `1-norm constrained FxLMS algorithm in wave do-

main [96, 113]. We used cylindrical/spherical harmonics as basis functions and

their respective coefficients to represent the noise field and secondary field over

the desired spatial region. Instead of minimizing the sum of the squared error

signals [64], wave-domain ANC tends to minimize the harmonic coefficients, which

in turn control the entire spatial region directly. The simulation results [96, 113]

showed that wave-domain ANC achieved significant noise cancellation over the

entire region of interest with faster convergence speeds.

In this chapter, we further investigate the wave domain ANC strategy. As

discussed in Chapter 2, ANC using multi-point structure can be solved by (i) min-

imizing the squared residual signals and (ii) minimizing the energy densities. In

this chapter, we investigate the spatial ANC problem by solving the minimization

of (i) squared wave domain coefficients and (ii) acoustic potential energy. For each

minimization problem, we update two different variables: (i) driving signals, and

(ii) wave domain coefficients. We propose normalized version of the wave domain

algorithms, and evaluate the proposed algorithms in terms of noise reduction over

the region, acoustic potential energy reduction over the region and convergence

performance. Simulations are conducted in both free field and reverberant envi-

ronment, and in different numbers of loudspeaker setup.

The rest of the chapter is organized as follows. In Section 5.2, we refer back

to Section 4.2, and formulate the spatial noise cancellation problem and the ANC

system in the wave domain. The wave-domain multichannel ANC algorithms min-

imizing the squared residual signal coeffients are proposed in Section 5.3, and the

wave-domain multichannel ANC algorithms minimizing the acoustic potential en-

ergy are proposed in Section 5.4. We demonstrate the simulation results to compare

the ANC performance of the proposed wave-domain methods and the conventional

multi-point method in Section 5.5, and draw some conclusions in Section 5.6.
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5.2 Problem Formulation

In this chapter, we adopt the same array setup (Figure 5.1) as in Chapter 4, and

address the ANC problem in 2-D space. The theory we develop in this chapter can

be extended to 3-D space.

5.2.1 System model

The wave domain representation of all the variables in the ANC system are same

as Section 4.2. In the wave domain, the primary sound field (v(x, k)), secondary

sound field (s(x, k)), and residual sound field (e(x, k)) can be represented by βm(k),

γm(k), and αm(k), respectively.

For convenience, we rewrite some formulas of wave domain representation in

Section 4.2.

Microphone array

Loudspeaker array

Noise

sources
x

R1

R2

φx

Figure 5.1: A spatial ANC region (blue) consists of a circular microphone array of
radius R1 and a circular loudspeaker array of radius R2.

Within the circular region r ≤ R1, the cylindrical harmonic based wave equation

solution decomposes any incident wave field v(x, k) observed at x into

v(x, k) =
M∑

m=−M

βm(k)Jm(kr) exp(imφx). (5.1)
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Using the cylindrical harmonic expansion, the generated secondary sound field

inside the control region can also be represented by

s(x, k) ≈
M∑

m=−M

γm(k)Jm(kr) exp(imφx). (5.2)

In this chapter, we utilize the second strategy (4.2.2) to formulate the secondary

sound field, and design the discrete loudspeaker array d(k) directly without the

continuous loudspeaker assumption.

In matrix form, the relationship between the secondary source decomposition

coefficients and the loudspeaker weights are given by

γ(k) = Td(k). (5.3)

In this section, ATF coefficients T are assumed to be prior knowledge obtained

from pre-calibration or room modelling.

The residual signals on the microphone points can be represented by

e(x, k) ≈
M∑

m=−M

(βm(k) + γm(k)︸ ︷︷ ︸
αm(k)

)Jm(kr) exp(imφx). (5.4)

The error signal coefficients in the wave domain are written as

αm(k) =
1

QJm(kr)

Q∑
q=1

e(xq, k) exp(−i2πm(q − 1)/Q),

m = −M, . . . ,M. (5.5)

5.2.2 Multichannel wave-domain active noise control

In this chapter, we adopt a block-wise operation and transform the microphone

measurements (residual signals) into the time-frequency domain, and decompose

the residual noise field into the wave-domain coefficients using (5.5).

In the wave-domain adaptive algorithm, the residual signals in each iteration
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(the nth time block) can be expressed as

α(n, k) = β(n, k) + γ(n, k), (5.6)

where α(n, k) = [α−M(n, k), . . . , αM(n, k)]T , the superscript (·)T denotes the trans-

pose of a vector,

β(n, k) = [β−M(n, k), . . . , βM(n, k)]T ,

and

γ(n, k) = [γ−M(n, k), . . . , γM(n, k)]T .

From here onwards, we omit the dependency k in each vector for notational

simplicity, thus have

α(n) = β(n) + γ(n). (5.7)

In the next two sections, we derive different wave-domain adaptive algorithms by

solving two minimization problems, (a) squared residual signal coefficients, and (b)

acoustic potential energy.

5.3 Wave Domain ANC Algorithms - Minimiza-

tion of Squared Residual Signal Coefficients

By minimizing the sum of the squared residual signal coefficients, the cost function

becomes

ξ1(n) =
M∑

m=−M

|αm(n)|2 = αH(n)α(n), (5.8)

where the superscript (·)H denotes the conjugate transpose. Using the steepest

descent algorithm, the adaptive algorithm follows the update equation

w(n+ 1) = w(n)− µ

2
∇ξ1(n), (5.9)

where w is the update variable and µ is the step size.

Below we derive the wave-domain update function for two cases, (1) loudspeaker

weights are updated directly, and (2) secondary sound field coefficients are updated
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Figure 5.2: Block diagram of wave-domain ANC system, when updating the loud-
speaker driving signals. The WD transform block represents the wave-domain

transform for the residual signals.

directly.

5.3.1 Normalized wave-domain algorithm updating driving

signals (NWD-D)

If we perform the adaptive process on the loudspeaker weights directly, we can

obtain the loudspeaker weights for each iteration from the update equation. In

this case, the update variable in (5.9) can be replaced by d, that is w = d =

[d1, . . . , dL]T .

By the complex LMS algorithm [111], taking a derivative of ξ1(n) with respect

to d, the gradient of the cost function can be written by

∇ξ1(n) = 2THα(n). (5.10)

The proof is given in Appendix 5.8.1.

Substituting (5.10) into (5.9), the final adaptive equation in wave domain can be

written as

d(n+ 1) = d(n)− µTHα(n). (5.11)

The block diagram of the algorithm is shown in Figure 5.2.

By replacing the LMS filter by the normalized LMS filter, the final update
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equation of the normalized wave-domain algorithm updating driving signals (NWD-

D) can be written as

d(n+ 1) = d(n)− µ0

‖TH‖22
THα(n), (5.12)

where ‖ · ‖2 denotes the Euclidean norm for a vector or matrix, and µ0 ∈ [0, 1]

denotes the normalized step size.

5.3.2 Normalized wave-domain algorithm updating mode

coefficients (NWD-M)

If we update the wave-domain secondary sound field coefficients (γ) first, and

calculate the loudspeaker driving signals (d) later, the update variable in (5.9) can

be replaced by γ, then we have w = γ = [γ−M , . . . , γM ]T . Taking a derivative of

ξ1(n) with respect to γ, the gradient of the cost function can be written by

∇ξ1(n) = 2α(n). (5.13)

The proof is given in Appendix 5.8.2.

Substituting (5.13) into (5.9), the adaptive equation in wave-domain coefficients

can be written as

γ(n+ 1) = γ(n)− µα(n). (5.14)

Thus, the final update equation of the normalized wave-domain algorithm up-

dating mode coefficients (NWD-M) is

γ(n+ 1) = γ(n)− µ0α(n). (5.15)

From (5.3), we obtain the loudspeaker weights d(n) by d = T+γ, where the

superscript (·)+ denotes the pseudoinverse of a matrix. The block diagram for

updating the wave-domain coefficients is shown in Figure 5.3.
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Figure 5.3: Block diagram of wave-domain ANC system, when updating the wave-
domain coefficients. The WD transform block represents the wave domain trans-

form for the residual signals.

5.4 Wave Domain ANC Algorithms - Minimiza-

tion of Acoustic Potential Energy

Minimizing the total acoustic potential energy (APE) in an enclosed noise field can

achieve global reduction in sound pressure throughout the enclosure [115,63]. Here

we derive the acoustic potential energy in terms of the wave-domain coefficients to

obtain global reduction over the control region.

By definition, acoustic potential energy is

Ep(k) =
1

2ρ0c2
P (k), (5.16)

where ρ0 denotes the density of the media and P (k) is the average energy of the

residual signal given by

P (k) =

∫
S

e∗(x, k)e(x, k)dS =

∫ 2π

0

∫ R1

0

e∗(x, k)e(x, k)rdrdφx, (5.17)

with superscript (·)∗ denoting the complex conjugate. Since the potential energy

is a scalar multiple of the average spatial energy, by defining P (k) to be the cost

function, we can effectively minimize the potential energy.
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We represent P (k) in the cylindrical harmonics domain by substituting (5.4)

into (5.17) as,

P (k) =
M∑

m=−M

α∗m(k)αm(k)(2π

∫ R1

0

(Jm(kr))2rdr︸ ︷︷ ︸
um(k)

), (5.18)

where the integral in (5.18) is estimated by numerically evaluating the integral

between 0 and R1, which is the integral over the region of interest.

The above result shows that acoustic potential energy within a circular region is

given by a sum of squared cylindrical harmonic coefficients with the weight um(k).

The weight um(k) can be pre-calculated for each frequency and each harmonic

order, therefore it does not incur additional computational complexity during the

adaptive process.

Then, (5.18) can be written in matrix form as

P (k) = αHUα, (5.19)

where α = [α−M , . . . , αM ]T , U = diag(u−M , . . . , u−M), and

um = 2π

∫ R1

0

(Jm(kr))2rdr.

Therefore, the new cost function becomes

ξp(n) = P (n) = αH(n)Uα(n). (5.20)

where the frequency dependency k is omitted for notational simplicity.

Similar to Section 5.3, we derive the update equation for the new cost function

in two cases as follows.
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5.4.1 Normalized energy-based wave domain algorithm up-

dating driving signals (NEWD-D)

The gradient of the cost function can be written by

∇ξp(n) = 2THUα(n). (5.21)

The proof is given in Appendix 5.8.3.

Substituting (5.21) into (5.9), the final adaptive equation in wave domain can be

written as

d(n+ 1) = d(n)− µTHUα(n). (5.22)

Similar to (5.12), the update equation of the normalized energy-based wave

domain algorithm updating driving signals (NEWD-D) can be written as

d(n+ 1) = d(n)− µ0

‖THU‖22
THUα(n). (5.23)

5.4.2 Normalized energy-based wave domain algorithm up-

dating mode coefficients (NEWD-M)

The gradient of the cost function can be written as

∇ξp(n) = 2Uα(n). (5.24)

The proof is given in Appendix 5.8.4.

Substituting (5.24) into (5.9), the adaptive equation in the wave-domain coefficients

can be written as

γ(n+ 1) = γ(n)− µUα(n). (5.25)

The final update equation of the normalized energy-based wave domain algo-

rithm updating the mode coefficients (NEWD-M) can be written as

γ(n+ 1) = γ(n)− µ0

‖U‖22
Uα(n). (5.26)

Then the loudspeaker weights d(n) can be calculated by d = T+γ in each iteration.
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5.5 Simulation Results Analysis

5.5.1 Simulation setup

In this section, performance of the proposed four wave domain algorithms (i) nor-

malized wave domain algorithm updating driving signals (NWD-D), (ii) normal-

ized wave domain algorithm updating mode coefficients (NWD-M), (iii) normal-

ized energy-based wave domain algorithm updating driving signals (NEWD-D),

and (iv) normalized energy-based wave domain algorithm updating the mode co-

efficients (NEWD-M) are compared with the conventional normalized multi-point

(NMP) algorithm1, in both free-field and reverberant environments. We assume

the desired control zone to be a circular region of a radius of 1 m (black area in

Figure 5.1), and the noise field to be generated by point sources, which are outside

the control region.

We utilize a feedback ANC system for control on a 2D plane, where the circular

microphone array of radius 1 m is placed on the boundary of the control region and

the circular loudspeaker array of radius 2 m is placed outside the control region.

The speed of sound is c = 343 m/s and the density of the air is ρ0 = 1.225 kg/m3.

The simulation of the reverberant environment is modelled as a rectangular room

6 m×6 m with perfectly absorbing ceiling and floor, and all the side walls have a

reflection coefficient of 0.75. The reverberation is simulated using the image-source

method [114].

The simulation begins in the time domain. We adopt a block-wise operation

and transform the microphone recordings into the time-frequency domain. Based

on Equation (9), we further transfer the signal into wave-domain coefficients. A

sampling rate of 8 kHz and a window length of 3200 samples are employed. White

Gaussian noise with SNR of 40 dB is added to each microphone recording to model

the internal thermal noise of microphones.

To evaluate the primary noise reduction performance, we study the (i) instan-

taneous noise reduction on the microphones Nb
r (n), (ii) noise reduction within the

1Here, the NMP algorithm is the normalized version of the MC algorithm in [105].
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region of interest N in
r (n), and (iii) acoustic potential energy over region Ep(n).

The instantaneous noise reduction on the microphones can be defined as

Nb
r (n) , 10 log10

∑
q E{|eq(n)|2}∑
q E{|eq(0)|2}

, (5.27)

where eq(n) represents the sound pressure received on the qth microphone at

the nth iteration, and eq(0) represents the sound pressure received on the qth mi-

crophone before the ANC process.

To evaluate the noise reduction performance within the control region, the

sound pressure at Z = 1296 points uniformly placed within the regions ein are

examined. We define the instantaneous noise reduction inside the region of interest

N in
r (n) as:

N in
r (n) , 10 log10

∑
z E{|ein z(n)|2}∑
z E{|ein z(0)|2}

, (5.28)

where ein z(n) denotes the residual signals at the zth point within the region at the

nth iteration, and ein z(0) represents the primary noise field at the zth point in the

region.

As mentioned above, acoustic potential energy is another measure of the noise

reduction over the entire spatial region [116], which can be considered a more

insightful measure in practice. From (5.16) and (5.19), the acoustic potential energy

over the control region for each iteration can be calculated by

Ep(n) =
1

2ρ0c2
αH(n)Uα(n), (5.29)

where α(n) can be conveniently captured by circular microphone arrays, and cal-

culated based on (5.4).

In addition to the noise reduction measures mentioned above, we analyse two

more performance measures, (i) the residual noise field in the control region, and

(ii) the convergence speed. We simulate the ANC algorithms to deal with a single

frequency noise field and a multi-frequency noise field as shown in the following

two subsections.
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Figure 5.4: Noise cancellation performance after 50 iterations using different ANC
algorithms in free field: (a) Primary noise field (200 Hz) (b) Normalized MP (c)

NWD-M (d) NWD-D (e) NEWD-M (f) NEWD-D.
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5.5.2 Single frequency scenario

First, we investigate the narrowband performance of different algorithms. Three

noise sources are located at (2.2, 0◦), (2.5, 45◦), and (3, 240◦) with the magnitude

of 10, 15 and 5, which are shown as pink ′+′ in Figure 5.4 and Figure 5.5. The

frequency of the noise field is 200 Hz. The control region (R1 = 1 m) in such a

noise field can be represented by mε[−5, 5] modes, thus, we place 2N + 1 = 11

microphones on the boundary to capture the information of the residual noise field

for each mode. We select the same normalized step values for different algorithms,

µ0 = 0.8 in free field and µ0 = 0.5 in reverberant environments.

Loudspeaker number meeting the requirement

In order to control all the modes in the entire spatial region, 2N + 1 = 11 loud-

speakers are required to be placed in the corresponding array.

Figure 5.4 and Figure 5.5 demonstrate the energy of residual noise fields over

region before ANC and after 50 iterations of ANC process, in free field and in re-

verberant environments. NWD-D, NWD-M, NEWD-D and NEWD-M can achieve

noise cancellation over the entire region. Whereas NMP can only reduce the noise

on the boundary close to the microphone points after 50 iterations. Compared to

the primary noise field (Figure 5.4(a) and Figure 5.5(a)), we can see that all the

wave-domain methods can achieve higher noise reduction over the entire region

than the NMP method, in both free field and reverberation environments within

50 iterations. Figure 5.6, Figure 5.7, Figure 5.8 and Figure 5.9 compare the noise

reduction level and convergence performance for each algorithm in free field and in

a room environment. Figure 5.6 and Figure 5.8 are zoomed-in versions of Figure

5.7 and Figure 5.9 in the first 50 iterations, respectively. The acoustic potential

energy reduction over the region shows a similar trend to the noise reduction over

the region, as they both monitor the overall energy of the control region.

From Figure 5.7 and Figure 5.9, we can see that all the wave domain algorithms

can cancel the noise on the boundary and over the entire region. In the steady state,

different algorithms can achieve similar N in
r (n) attenuation, the same as for Nb

r (n)

and APE reduction.

Figure 5.6 and Figure 5.8 demonstrate the convergence speed in free field and in
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Figure 5.5: Noise cancellation performance after 50 iterations using different
ANC algorithms in reverberant environments: (a) primary noise field (200 Hz)

(b)Normalized MP (c) NWD-M (d) NWD-D (e) NEWD-M (f) NEWD-D.
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Figure 5.6: Convergence performance using different ANC algorithm in free field
(50 iterations): (a) Nb

r (n) (b) N in
r (n) (c) APE reduction over the region.
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Figure 5.7: Convergence performance using different ANC algorithm in free field
(500 iterations): (a) Nb

r (n) (b) N in
r (n) (c) APE reduction over the region.
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Figure 5.8: Convergence performance in reverberant environment (50 iterations):
(a) Nb

r (n) (b) N in
r (n) (c) APE reduction over the region.
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Figure 5.9: Convergence performance in reverberant environment (1000 itera-
tions): (a) Nb

r (n) (b) N in
r (n) (c) APE reduction over the region.



98 Wave Domain ANC: Different Cost Functions and Adaptations

a room reverberant environment. NMP converges fast on the boundary, but much

more slowly within the region. In free field, coefficients-based algorithms (NWD-M

and NWD-D) converge faster than the energy-based WD algorithms. In the room

reverberant environment, the algorithms updating wave coefficients (NWD-M and

NEWD-M) have better convergence performance than the algorithms updating

driving signals directly (NWD-D and NEWD-D). From the comparison of the free

field case and room case, we can see that NWD-M has the fastest convergence

speed in both free field and reverberant environments. While NWD-D works well

in the free field, but converges much more slowly in a room.

Fewer loudspeakers than the requirement

In real applications, it is possible that secondary sources are limited, so that fewer

loudspeakers are available than the requirement (2N+1). In the simulation below,

a small number of loudspeakers are equi-angularly placed in the circular array,

which cannot cover all the modes in the spatial region.

Figure 5.10 demonstrates the convergence performance in the reverberant envi-

ronment using 9 loudspeakers. The algorithms updating mode coefficients converge

faster than the algorithms updating driving signals directly. The NMP algorithm

has the slowest convergence speed. Since 9 loudspeakers cannot reconstruct all

the modes in the control region, the noise reduction performance in the steady

state degrades significantly compared to that when 11 loudspeakers are used. By

minimizing the weighted (um(k)) squared sum of the wave domain residual signals,

the energy-based wave domain algorithms emphasize the importance of the low

order modes and reduce the importance of the high order modes. Therefore, it is

found that the energy-based wave domain algorithms (NEWD-D and NEWD-M)

can achieve more noise reduction over the entire control region than the other al-

gorithms. Meanwhile, in the steady state the wave domain algorithms have better

NRin and APE attenuation performance compared to the NMP algorithm.

We further reduce the loudspeaker number to 7 and 5, and evaluate the noise

cancellation performance after 1000 iterations, as shown in Table 5.1. NEWD-D

and NEWD-M outperform the other algorithms in each case. In general, a smaller

number of loudspeakers decreases the noise reduction performance, especially the
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Figure 5.10: Convergence performance using 9 loudspeakers in reverberant environ-
ment (1000 iterations): (a) noise reduction inside the region (b) acoustic potential

energy reduction over the region.
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Table 5.1: Attenuation level using different numbers of loudspeakers.

Nin
r (dB) APE (dB)

9 7 5 9 7 5

NEWD-D -22 -14 -4 -20 -14 -5
NEWD-M -22 -14 -4 -20 -14 -5
NWD-D -12 -6 -1 -13 -7 -2
NWD-M -12 -6 -1 -13 -7 -2

NMP -7 -5 0 -7 -5 -1

NRin and APE attenuation. For example, when 5 loudspeakers are used, none

of the algorithms can achieve more than -10 dB noise reduction, which indicates

deteriorated ANC performance.

Loudspeaker energy consumption

To evaluate the loudspeaker energy consumption during the ANC process, we com-

pare the total energy of all the loudspeakers2 (dTd) using different algorithms in

the reverberant environment, as shown in Figure 5.11.

When 11 loudspeakers are utilized to generate the secondary sound field (Fig-

ure 5.11(a)), the algorithms which update the driving signals gradually increase

the total energy, and reach the steady state smoothly. While the loudspeaker

energy using NEWD-M has a peak before the steady state. All the algorithms

reach the same energy level after convergence. When the resources are limited,

the loudspeakers consume more energy to achieve noise cancellation, as shown in

Figure 5.11(b). Meanwhile, the energy-based algorithms will end up with more

loudspeaker energy compared to the other algorithms.

5.5.3 Multi-frequency scenario

For broadband noise field, we assume that only one noise source is located at

(2.5, 0◦), and it can be synthesised by the combination of J = 19 dominant nar-

rowband components. The frequency range is from 50 Hz to 500 Hz with the same

pressure level in each frequency bin fj, j = 1, 2, ..., J . The system is designed for

2Here, we evaluate the summation of squared driving signals, for all the 11 loudspeakers.
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Figure 5.11: Loudspeaker energy (dTd) using different ANC algorithms during
1000 iterations in reverberant environment: (a) 11 loudspeakers (b) 9 loudspeakers.
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the frequency upper bound, so that we place 2M + 1 = 27 loudspeakers and 27

microphones in each corresponding array.

The noise reduction performance within the control region in free field and

reverberant environments are shown in Figure 5.12 and Figure 5.13 respectively.

Over a wide frequency range, the wave-domain ANC algorithms can cancel the noise

within the entire region. In free field, the average noise reduction is around −25 dB

and −50 dB, for energy-based WD algorithms and WD algorithms, respectively.

Similar results have been shown in reverberant environments. Notice that the

noise reduction performance is significantly degraded at 300 Hz and 475 Hz. This

is due to the ‘irregular frequencies’ problem, where the Bessel functions in the

corresponding frequencies are close to zero and the coefficient errors are amplified.

This is a limitation of the wave domain technique when using a single circular

microphone array. However, there are well understood methods to tackle this

problem, such as using two closely spaced microphone arrays [76,117], using multi-

radii shell arrays [118], and using a planar array of differential microphones [119].

In the reverberant environment, the variation of Nin
r and APE reduction between

different frequency bins are relatively larger than in the free field, especially for the

WD algorithms.

5.6 Summary and Contributions

In this chapter, we presented a comprehensive analysis of adaptive wave-domain

ANC based on a feedback control system. We utilized the harmonic coefficients

to calculate the acoustic potential energy. We investigated multiple cost functions

and multiple update variables, resulting in four different methods of implementing

harmonics based wave-domain ANC systems.

The major contributions in this chapter are:

• We developed normalized wave-domain ANC algorithms in two different ways:

(i) minimizing the residual sound field coefficients and (ii) minimizing the

acoustic potential energy of the residual sound field.

• We derived the update equations with respect to two variables: (a) the loud-

speaker weights and (b) secondary sound field coefficients.
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Figure 5.12: Multi-frequency performance using different wave-domain ANC algo-
rithms in free field after 50 iterations: (a) noise reduction within the region (b)

acoustic potential energy reduction over the region.
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Figure 5.13: Multi-frequency performance using different wave-domain ANC algo-
rithms in reverberant environment after 50 iterations: (a) noise reduction within

the region (b) acoustic potential energy reduction over the region.
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• We compared four proposed algorithms with respect to each other as well as

with the conventional multi-point method. We showed that there are trade-

offs in selecting any one of the four algorithms over the other. To the best

of our knowledge, such detailed analyses of these four wave-domain adaptive

algorithms have not been reported in the literature.
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5.8 Appendices

5.8.1 Proof of equation (5.10)

The gradient vector and the conjugate derivative [50] are related by

∇ξ1 = 2
∂ξ1
∂d∗

= 2
∂(αHα)

∂d∗
, (5.30)

where we use (5.8) and omit the iteration index n for notational simplicity.

Substitute (5.3) and (5.7) into (5.30),

∇ξ1 = 2

(
∂(βHβ)

∂d∗
+
∂(βHTd)

∂d∗
+
∂(dHTHβ)

∂d∗
+
∂(dHTHTd)

∂d∗

)
. (5.31)

Calculate each item separately to get,

∂(βHβ)

∂d∗
=
∂(βHTd)

∂d∗
= 0,
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∂(dHTHβ)

∂d∗
= THβ,

∂(dHTHTd)

∂d∗
= THTd. (5.32)

Substituting (5.32) into (5.31),

∇ξ1 = 2TH(β + Td). (5.33)

Substituting (5.3) and (5.7) into (5.33), we complete the proof.

5.8.2 Proof of equation (5.13)

The gradient vector and the conjugate derivative are related by

∇ξ1 = 2
∂ξ

∂γ∗
= 2

∂(αHα)

∂γ∗
. (5.34)

Substitute (5.3) and (5.7) into (5.34),

∇ξ1 = 2

(
∂(βHβ)

∂γ∗
+
∂(βHγ)

∂γ∗
+
∂(γHβ)

∂γ∗
+
∂(γHγ)

∂γ∗

)
. (5.35)

Calculate each item separately,

∂(βHβ)

∂γ∗
=
∂(βHγ)

∂γ∗
= 0,

∂(γHβ)

∂γ∗
= β,

∂(γHγ)

∂γ∗
= γ. (5.36)

Substituting (5.7) and (5.36) into (5.35), we complete the proof.
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5.8.3 Proof of equation (5.21)

The gradient vector and the conjugate derivative [50] are related by

∇ξp = 2
∂ξp
∂d∗

, (5.37)

where the iteration index n has been omitted for notational simplicity.

Therefore the gradient is expressed as

∇ξp = 2
∂(αHUα)

∂d∗
. (5.38)

Substitute (5.3) and (5.7) into (5.38),

∇ξp = 2

(
∂(βHUβ)

∂d∗
+
∂(βHUTd)

∂d∗
+
∂(dHTHUβ)

∂d∗
+
∂(dHTHUTd)

∂d∗

)
. (5.39)

Calculate each item separately,

∂(βHUβ)

∂d∗
=
∂(βHUTd)

∂d∗
= 0,

∂(dHTHUβ)

∂d∗
= THUβ,

∂(dHTHUTd)

∂d∗
= THUTd. (5.40)

Substituting (5.40) into (5.39),

∇ξp = 2THU(β + Td). (5.41)

Substituting (5.3) and (5.7) into (5.41), we complete the proof.

5.8.4 Proof of equation (5.24)

The gradient vector and the conjugate derivative are related by

∇ξp = 2
∂ξp
∂γ∗

= 2
∂(αHUα)

∂γ∗
. (5.42)
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Substitute (5.3) and (5.7) into (5.42),

∇ξp = 2

(
∂(βHUβ)

∂γ∗
+
∂(βHUγ)

∂γ∗
+
∂(γHUβ)

∂γ∗
+
∂(γHUγ)

∂γ∗

)
. (5.43)

Calculate each item separately,

∂(βHUβ)

∂γ∗
=
∂(βHUγ)

∂γ∗
= 0,

∂(γHUβ)

∂γ∗
= Uβ,

∂(γHUγ)

∂γ∗
= Uγ. (5.44)

Substituting (5.7) and (5.44) into (5.43), we complete the proof.



Chapter 6

ANC Subspace Performance

Analysis

Overview: In this chapter, we investigate the maximum active noise

control performance over a three-dimensional spatial space, by inves-

tigating the capability of secondary sources in particular environment.

We first formulate the spatial ANC problem in a 3-D room. Then

we discuss a wave-domain least square method by matching the sec-

ondary sound field to the primary sound field in wave domain. Fur-

thermore, we extract the subspace from wave-domain coefficients of

the secondary paths. We propose a subspace method by matching the

secondary sound field to the projection of primary sound field in the

subspace. Simulation results demonstrate the comparison between the

wave-domain least square method and the subspace method, in terms

of energy of the loudspeaker driving signals, noise reduction inside the

region, and residual noise field outside the region. We also investigate

the ANC performance under different loudspeaker configurations and

noise source positions.

109
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6.1 Introduction

As discussed in Section 5.5.2, when the number of loudspeakers cannot control

all the modes in the spatial region, using the proposed adaptive algorithms and

conventional adaptive algorithms, simulation results demonstrated that the noise

reduction performance in the steady state degrades significantly. In practical appli-

cations, numbers and locations of the loudspeakers have more constraints compared

to simulation setups in Section 5.5.2. For instance, in a vehicle, the numbers and

positions of the loudspeakers are highly constrained by the vehicle size and passen-

ger convenience. It is valuable for design engineers to estimate whether the avail-

able numbers and positions of the loudspeakers are sufficient to the noise reduction

requirements, before they implement an ANC system in a real environment.

Meanwhile, since the noise reduction performance varies with different ANC

algorithms, it is important to investigate the maximum performance for the given

system, which should only be dependent on the secondary source characteristics

and locations, room environments and the sound field characteristics.

In literature, for spatial ANC performance estimation over an entire region,

Chen et al. investigated ANC performance by noise pattern analysis of the pri-

mary noise field [121, 6]. Buerger et al. investigated the coherence between two

observation points in the noise field evoked by given continuous source distribu-

tions, which can be applied to predict the upper bound of ANC performance in

the region of interest [122]. However, capability of secondary sources in particular

room environments has not yet been explored.

In this chapter, we investigate the maximum noise control performance by inves-

tigating capability of secondary sources in particular room environments. We find

the subspace spanned by the wave-domain secondary path coefficients, and evalu-

ate the ANC performance in the subspace. Using the proposed subspace method,

the design engineers can predict the noise cancelation performance before an ac-

tual ANC system is implemented in a product. Simulations are conducted in a 3-D

room environment under different noise source positions, when the loudspeakers

have constraints on numbers and positions. The solution in the subspace method

is more feasible than the wave-domain least square method.

The rest of this chapter is organized as follows. In Section 6.2, we formulate
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the ANC problem in a 3-D room. We investigate the maximum ANC performance

using the wave-domain least square method in Section 6.3, and investigate the max-

imum ANC performance using the subspace method in Section 6.4. The simulation

validation is demonstrated in Section 6.5. We draw some conclusions in Section

6.6.

6.2 Problem Formulation

In this section, we formulate the ANC problem in a 3-D room.

As shown in Figure 6.1, let the quiet zone of interest (blue area) be a spherical

region (S) with a radius R1. Assume that the noise sources (red loudspeakers)

and the secondary sources (black loudspeakers) are located outside the region of

interest. In the ANC process, we measure the noise field by placing a spherical

microphone array (dark blue stars) on the boundary of the region.

Figure 6.1: ANC system in a 3-D room.

Instead of using measurements of the microphone points directly, the wave-

domain approach employs the wave equation solutions as basis functions to express
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any wave field over the spatial region, and designs the secondary sound field based

on the wave-domain decomposition coefficients.

In the ANC system, the residual signal at any arbitrary observation point is

given by (3.1), which we rewrite here for convenience,

e(x, k) = ν(x, k) + s(x, k), (6.1)

where the secondary sound field generated by a discrete loudspeaker array with L

loudspeakers can be represented by

s(x, k) =
L∑
l=1

dl(k)G(x|yl, k). (6.2)

Here, dl(k) is the driving signal for the lth loudspeaker. Note that in the reverberant

environment, G(x|yl, k) includes the room reflections.

We then represent the primary sound field and secondary sound field in the

wave domain.

As described in (2.40), the spherical harmonics based wave equation solution

decomposes any homogeneous incident wave field ν(x, k) observed at x into

ν(x, k) =
∞∑
u=0

u∑
m=−u

βum(k)ju(kr)Yum(φx, ψx), (6.3)

where ju(·) is the spherical Bessel function of order u and Yum(·) denotes the spher-

ical harmonics. Here, ψ and φ are the elevation angle and the azimuthal angle, re-

spectively. Therefore, the decomposition coefficients βum(k) represent the primary

noise field in the wave domain. In the vector version, β(k) = [β0,0(k), β1,−1(k),

. . . , βN,N(k)]T . Within the region of interest r ≤ R1, a finite number of modes can

be used to approximate the noise field [108]. Thus, the primary sound field in (6.3)

can be truncated by

ν(x, k) ≈
N∑
u=0

u∑
m=−u

βum(k)ju(kr)Yum(φx, ψx), (6.4)

where the number of N = dekR1/2e [108,109,123].
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Using the spherical harmonic expansion, the secondary sound field within the

quiet zone can also be represented by

s(x, k) =
∞∑
u=0

u∑
m=−u

γum(k)ju(kr)Yum(φx, ψx). (6.5)

The coefficients γum(k) represent the secondary sound field in the wave domain.

Similar to the primary noise field, inside the region of interest with the radius of

R1, the secondary sound field can be truncated by

s(x, k) ≈
N∑
u=0

u∑
m=−u

γum(k)ju(kr)Yum(φx, ψx). (6.6)

The acoustic transfer function (ATF) in (6.2) can be parameterized in the wave

domain [76] as

G(x|yl, k) ≈
N∑
u=0

u∑
m=−u

η(l)um(k)ju(kr)Yum(φx, ψx). (6.7)

where η
(l)
um(k) is the ATF in wave domain for each loudspeaker.

Substituting (6.7) and (6.6) into (6.2), the secondary sound coefficients γum(k)

can also be represented by

γum(k) =
L∑
l=1

dl(k)η(l)um(k). (6.8)

In matrix form, the relationship between the secondary source decomposition co-

efficients and the loudspeaker driving signals are given by

γ(k) = η(k)d(k), (6.9)

where

η(k) =


η
(1)
00 (k) η

(2)
00 (k) · · · η

(L)
00 (k)

η
(1)
−11(k) η

(2)
−11(k) · · · η

(L)
−11(k)

...
...

. . .
...

η
(1)
NN(k) η

(2)
NN(k) · · · η

(L)
NN(k)

 , (6.10)
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and d(k) = [d1(k), . . . , dL(k)]T .

We investigate the maximum ANC performance based on the primary sound

field coefficients β(k) and the secondary-path information η(k) in the wave domain,

and derive loudspeaker driving signals using two methods: the wave-domain least

square method and the subspace method.

6.3 Wave-domain Least Square Method

In the following two sections, we analyse noise cancellation capability using wave-

domain coefficients of the primary noise field and the secondary path.

One method for deriving the loudspeaker driving signal d(k) is to match the

secondary sound field coefficients to the primary sound field coefficients, in the

region of interest. Therefore,

η(k)d(k) = −β(k). (6.11)

Here, we denote the set of all linear combinations of the columns in η(k) as column

space C. The dimension of the column space C is called the rank of matrix η(k).

In equation (6.11), (i) the number of loudspeakers, (ii) the rank of η(k) and

(iii) the rank of matrix η(k) augmented by β(k) specify the number of solutions

for the linear system (6.11).

• Case 1: L = (N + 1)2

If the number of loudspeakers is same as the number of modes in the region of

interest, (6.11) has one unique solution, which is given by

d(k) = −(η(k))−1β(k). (6.12)

• Case 2: L > (N + 1)2

If the number of loudspeakers is greater than the mode requirement, (6.11) is

an under-determined system. There is either no solution or an infinite number of

solutions. In practice, however, this case rarely happens, as extra loudspeakers do

not result in better ANC results but increase the device cost and computational

cost.
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• Case 3: L < (N + 1)2

If the loudspeaker number L is less than the number of modes (N + 1)2 in the

region of interest, (6.11) is an over-determined system. There are more equations

than unknowns, resulting in either a single unique solution or no solution.

When the measurements are in a very special case, which requires

rank(η|β) = rank(η), (6.13)

equation (6.11) has an exact solution. Here, rank(η) denotes the rank of η, and

rank(η|β) denotes the rank of the matrix η(k) augmented by β(k).

When

rank(η|β) 6= rank(η), (6.14)

equation (6.11) has no exact solution.

The solution can be approximated using the least square method [124]. The

least square method tries to find the best approximation which results in minimum

mean square errors [125], by solving the following problem

min‖η(k)d(k)− (−β(k))‖2. (6.15)

The optimal solution of this minimization problem can be written as

d(k) = −(η(k))†β(k), (6.16)

where (·)† denotes the pseudoinverse of a matrix.

For some circumstances, β(k) could be totally inside the column spaceC. While

most of time, β(k) have components outside the space C. In general, the result of

the driving signal in (6.16) is achieved by solving the equation as follows:

η(k)d(k) = −ProjCβ(k), (6.17)

where ProjCβ(k) denotes the projected part of the primary noise field coefficients

β(k) in the column space C. The projection matrix can be also written by

ProjCβ(k) = η(k)(ηH(k)η(k))−1ηH(k). (6.18)
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In most applications, the number of loudspeakers is less than the requirement.

Then the driving signals can be designed by least square solutions in (6.16). There-

fore, this method is here called the ‘wave-domain least square method’ (WDLS).

6.4 Subspace Method

In the second method, we obtain the secondary-path coefficient η(l)(k), extract the

subspace spanned by secondary-path coefficients which represents the secondary

sources in this environment, and only cancel the primary noise field which can be

projected into this subspace.

6.4.1 Principal component analysis of the secondary path

Let η(l)(k) the wave-domain secondary-path coefficients for the lth loudspeaker.

Matrix η(k) in (6.10) for the entire loudspeaker array represents the secondary

path, where

η(k) = [η(1)(k), . . . ,η(L)(k)]. (6.19)

In an arbitrary loudspeaker array setup, each column of matrix η(k) is not necessar-

ily orthogonal. We use the principal component analysis (PCA) of the correlation

matrix to obtain an orthonormal eigen-basis for the space of the secondary path in

the wave domain.

We take the correlation matrix E{ηH(k)η(k)}, and then decompose this ma-

trix into a set of orthonormal eigenvectors and their corresponding eigenvalues, as

follows:

E{ηHη} = uλv, (6.20)

where u = [u1, . . . ,ui, . . . ,uL] are the eigenvectors of the wave-domain ATF,

v = uT , and the ith column corresponds to the eigenvalue λi. Here onwards,

the frequency dependent k is omitted for notational simplicity.
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The eigenvalues in the matrix form are

λ =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λL

 . (6.21)

Here, the vectors u are written in order of descending eigenvalues λ [126].

On this basis u, the largest eigenvalues correspond to the principal components of

the secondary path in wave domain (η), which contain the most useful information.

Depending on the acoustic environment and the loudspeaker placement, the

first B components are used to represent the loudspeakers, then the corresponding

eigenvectors are u� = [u1, . . . ,uB],

O = ηu�, (6.22)

where the dimension of u� is L×B, and B ≤ L.

By normalizing each column of matrix O, the orthonormal vectors o1, . . . ,oB are

obtained. These vectors generate a subspace, which represents the loudspeaker

array and the acoustic environment. The dimensions of basis O are (N + 1)2 ×B.

For the lth loudspeaker, the average ATF coefficients over certain short frames

can be represented in this space as

η(l) =
B∑
b=1

κ
(l)
b ob, (6.23)

where κ
(l)
b are the projection coefficients. In vector form, (6.23) can be written by

η(l) = Oκ(l), (6.24)

where κ(l) = {κ(l)1 , . . . , κ
(l)
b , . . . , κ

(l)
B }T and

κ
(l)
b =< η(l),ob > . (6.25)

Here, < ·, · > is the inner product of two vectors. κ is the secondary-path coeffi-
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cients in the subspace O, with the dimension of B × L.

6.4.2 Projection from the primary sound field into the sub-

space

Below we project the wave-domain coefficients of the primary sound field into the

subspace O.

For a new primary sound field represented by vector β, by projecting β into

the subspace O, we can obtain

ProjOβ =
B∑
b=1

< β,ob >ob = < β,o1 >o1 + · · ·+< β,oB >oB, (6.26)

where ProjOβ denotes the projection of vector β into subspace O. The matrix

form of the projection is represented by

ProjOβ = Oy, (6.27)

where y = {y1, y2, . . . , yB}T are the primary sound field coefficients in the subspace,

and yb = < β,ob >.

Therefore, the primary sound field can be separated by two parts: the projected

part and the remaining part,

β = ProjOβ +R(β), (6.28)

where R(β) is the orthogonal complement of the subspace O. The projected part

indicates the primary sound field which can be cancelled in this system setup, and

the orthogonal complement indicates the primary sound field which can not be

cancelled in this system.

If R(β) = 0, β lies in the subspace, then the primary sound field can be

completely cancelled by the loudspeaker array.

In more general cases, R(β) 6= 0. This indicates the limitation of noise cancel-

lation over the region of interest, under the particular loudspeaker placement and

acoustic environment.
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Next, we design the driving signal of loudspeaker dl(k) to cancel the primary

noise field projected into the subspace (ProjOβ).

6.4.3 Noise control in the subspace

In the subspace, matching the secondary sound field coefficients to the projected

primary sound field coefficients, the optimal solution of the secondary sound field

coefficients can be written by

γ = −ProjOβ. (6.29)

The projection from the primary sound field into the loudspeaker subspace ProjOβ

can be calculated by (6.27).

In a given loudspeaker setup, substituting (6.24) into (6.9), the representation

of secondary sound field coefficients can be rewritten by

γ = Oκd, (6.30)

where d = {d1, . . . , dL}T , κ = {κ(1), . . . ,κ(L)}.
Substituting (6.30) and (6.27) into (6.29), we can get

Oκd = −Oy. (6.31)

Multiplying the left inverse of O on both sides, (6.31) becomes

O†Oκd = −O†Oy. (6.32)

Further simplifying (6.32), the final equation to design the driving signal can be

written as

κd = −y. (6.33)

The loudspeaker driving signals can be calculated by solving the system of

linear equations described by (6.33). The number of principal components specifies

whether the linear system (6.33) can be solved exactly.

• Case 1: B = L
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When we reserve all the information in the PCA, (6.33) has only one unique

solution. In that case, the driving signals can be represented by

d = −(κ)−1y. (6.34)

• Case 2: B < L

When we only use the largest components to generate the subspaces, instead

of solving the over-determined system in (6.11), equation (6.33) solves an

under-determined system. In that case, the driving signals d can be derived

by

d = −(κ)†y, (6.35)

where (κ)† is the pseudoinverse of the secondary-path coefficients in the sub-

space, with the dimension of L×B.

Loudspeaker driving signals d are designed by the secondary-path information in

the subspace κ and the primary sound field coefficients in the subspace y, as shown

in (6.35). Therefore, the method is here called the ‘subspace method’.

6.5 Simulation Results

In this section, we conduct simulations to investigate the maximum ANC per-

formance in the 3-D sound field by using the WDLS and the proposed subspace

method.

When the driving signal is unit amplitude, and only the lth loudspeaker produces

sound, η
(l)
um(k) = γ

(l)
um(k). Therefore, we can capture η

(l)
um(k) from the measurement

of s(x, k) based on (6.6). For the subspace method, following the PCA, from

(6.22), we can extract the subspace O from the loudspeaker coefficients η
(l)
um(k).

Representing the η
(l)
um(k) in the subspace as κ, and projecting the primary source

into the subspace as y, we can derive the driving signals by solving (6.33).



6.5 Simulation Results 121

0
6

1

2

6

z

4

3

y

4

4

x

5

2
2

0 0

(a)

0
6

1

2

6

z

4

3

y

4

4

x

5

2
2

0 0

(b)

Figure 6.2: ANC system setup, where the pink point is the noise source position,
blue points are loudspeaker positions, and red points are microphone positions: (a)

case 1; (b) case 2.
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6.5.1 Simulation setup

In this simulation, we investigate the ANC performance in the reverberant environ-

ment. The reverberant environment is modelled as a cuboid room of 6 m ×6 m ×5

m. The reflection coefficients are [0.75, 0.8, 0.77, 0.85, 0.1, 0.1]. The reverberation

is simulated by the image source method with the image order of 5. The origin of

the room is on the left bottom corner. The region of interest is a spherical area

with a radius of 0.5 m, and the center of the region is (3, 3, 1.5) with respect to

the origin.

We assume that the noise field only contains a single-frequency component. In

the following investigations, the primary noise field is a spherical wave coming from

a point source located at (r, φ, ψ) with respect to the center of the region, with a

constant magnitude of 10. The locations of primary sources are different in each

case, as shown in Table 6.1.

We assume the frequency of the noise field is 200 Hz. From (6.4), the region of

interest in such a noise field can be represented by N = dekR1/2e = 3 modes. Thus,

at least (N +1)2 = 16 microphones must be placed on the boundary to capture the

information of the residual noise field for each mode. In this simulation, we place

32 microphones on the spherical boundary, following the Gauss-Legendre sampling

method. White Gaussian noise is added to each microphone recording to simulate

the internal thermal noise of microphones.

To control all the modes, 16 loudspeakers are required to be placed outside the

control region. To emulate a practical scenario, however, in this simulation, only

12 loudspeakers are placed outside the region. 8 loudspeakers are placed in the

x-y plane with two different geometries, as shown in Table 6.1. In both cases, four

loudspeakers are placed on another plane, which is on the plane close to the ceiling.

The loudspeaker positions for each case are shown in Table 6.2.

We evaluate the ANC performance in terms of residual noise field, noise re-

duction on the sample points inside the region N in
r , and the energy of the driving

signals Ed.

To evaluate the actual noise reduction performance within the control region,

residual sound fields ein at Z = 1296 points uniformly placed within the cross

section between the region of interest and the x-y plane are examined. As in
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Table 6.1: Loudspeaker array setup and noise source location in each case.
aaaaaaaaaaa

Noise
source position

Loudspeaker
array non-symmetry symmetry

(2, 315◦, 45◦) case 1
(2, 315◦, 90◦) case 2
24 position candidates case 3 case 4

Table 6.2: Loudspeaker positions for non-symmetric placement and symmetric
placement.

loudspeakers in the x-y plane loudspeakers outside the x-y plane

No. non-symmetry symmetry No.

1 (4, 3, 2.5) (4.5, 3, 2.5) 9 (0.5, 0.5, 4.5)
2 (1.8, 3, 2.5) (1.5, 3, 2.5) 10 (5.5, 5.5, 4.5)
3 (3, 2, 2.5) (3, 1.5, 2.5) 11 (5.5, 0.5, 4.5)
4 (3, 4.2, 2.5) (3, 4.5, 2.5) 12 (0.5, 5.5, 4.5)
5 (4.3, 3.2, 2.5) (4.2, 1.8, 2.5)
6 (1.7, 2.8, 2.5) (1.8, 1.8, 2.5)
7 (3.2, 1.7, 2.5) (4.2, 4.2, 2.5)
8 (2.8, 4.2, 2.5) (1.8, 4.2, 2.5)
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Chapter 5 (5.28), the noise reduction inside the region of interest over Z points

N in
r can be written by

N in
r , 10 log10

∑
z E{|ein z|2}∑

z E{|ein z(0)|2}
, (6.36)

where E{|ein z(0)|2} is the energy of the primary sound field at the zth sample

point, and E{|ein z|2} is the energy of the residual sound field at the zth sample

point.

To evaluate the loudspeaker energy consumption, we compare the total energy

of all the loudspeakers Ed. The loudspeaker energy consumption can be represented

by

Ed = dTd. (6.37)

For the subspace method, during the PCA process for the secondary path, we

only reserve the principle components in u. Components in u which correspond to

λi occupied less than 5% of the largest eigenvalue λ1 are omitted in u�.
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Figure 6.3: Energy of the primary noise field, where pink point is the projection of
the primary source on the x-y plane, blue points are the loudspeaker points located
on the x-y plane, and the red dashed circle is the boundary of the region of interest:

(a) case 1; (b) case 2.
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6.5.2 Cancellation performance using different methods

We first compare cancellation performance using the subspace method and the

WDLS method in two different noise source positions. In this simulation, white

Gaussian noise with SNR1 of 60 dB is added to each microphone recording. For

simplicity of plotting, the cancellation performance over the region is confined to

horizontal planes at elevation of 90◦ (x-y plane) of the 3-D region.

As shown in Figure 6.2, we assume noise field is generated by a point source

located at (2, 315◦, 45◦)(case 1) or (2, 315◦, 90◦) (case 2) in the spherical coordinates.

The geometry of loudspeakers in the x-y plane is not symmetrical. The energy of

the primary sound field is shown in Figure 6.3.

Figure 6.4 demonstrates the energy of the residual noise field in the x-y plane.

As we expected, since the number of loudspeakers (12) can-not cover all the modes

(16) in the region, in all four figures, the primary noise field in the region of interest

can-not be fully cancelled. In case 2, compared with the primary noise field (Figure

6.3(b)), both the WDLS method and the subspace method can achieve significant

noise reduction in the region of interest, which are dark areas in the middle of Figure

6.4(b) and Figure 6.4(d). In case 1, since the noise source is located in a different

hemisphere as the loudspeaker array, compared with Figure 6.3(a), cancellation

performance inside the region is fairly limited for both WDLS and the subspace

method, as shown in Figure 6.4(a) and Figure 6.4(c).

Meanwhile, compared with Figure 6.4(a) and Figure 6.4(b), in Figure 6.4(c)

and Figure 6.4(d), the subspace method results in lower energy of the residual

noise field outside the region of interest. the WDLS method increases the sound

energy outside the region, especially when the noise reduction level is fairly limited

inside the region. Using the subspace method, we reduce the sound amplification

to people sitting outside the control area.

1Here, the SNR level is with respect to the primary noise field level on virtual microphone in
the center of the region.



126 ANC Subspace Performance Analysis

0 2 4 6
x (m)

0

1

2

3

4

5

6

y 
(m

)

-30

-20

-10

0

10

(a)

0 2 4 6
x (m)

0

1

2

3

4

5

6

y 
(m

)
-30

-20

-10

0

10

(b)

0 2 4 6
x (m)

0

1

2

3

4

5

6

y 
(m

)

-30

-20

-10

0

10

(c)

0 2 4 6
x (m)

0

1

2

3

4

5

6

y 
(m

)

-30

-20

-10

0

10

(d)

Figure 6.4: Energy of the residual noise field, when the noise field is generated by
one primary source using different methods. Here, pink point is the projection of
the primary source on the x-y plane and blue points are the loudspeaker points
located on the x-y plane: (a) the WDLS method in case 1; (b) the WDLS method
in case 2; (c) the subspace method in case 1; (d) the subspace method in case 2.
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Figure 6.5: Two different array setups, when the noise source moves around a
sphere, where in both setups, pink points are the primary source positions, blue
points are loudspeaker positions, and red points are microphone positions: (a) Case

3; (b) Case 4.
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6.5.3 Comparison of the effect of different noise source po-

sitions

After investigating the cancellation performance in two different noise source po-

sitions, we move the source position around different elevations (45◦, 90◦, 135◦)

and different azimuthal angles (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦). As shown

in Figure 6.5(a), 24 source position candidates are chosen on the sphere with radius

of 2 m. We measure the primary sound field coefficients and secondary sound field

coefficients by microphones with different SNR levels, which are 60 dB and 30 dB,

respectively, for each source position candidate.

Figure 6.6 demonstrates the noise reduction performance for different source

positions. For most of the positions, the WDLS method can achieve slightly better

noise reduction than the subspace method. This is due to the subspace method

only uses the principal components while the WDLS method considers all the

information of the secondary path. Since 8 out of 12 loudspeakers are located in

the x-y plane, the noise source positions indicated better noise reduction levels in

Figure 6.6(a) and Figure 6.6(b) are position No. 2, 5, 8, 11, 14, 17, 20, 23, which

are the candidates on the x-y plane. As the accuracy of the microphone recordings

is reduced, the performance prediction becomes less accurate. As shown in Figure

6.6(b), at the noise source position 15, using both methods, the noise reduction

levels are positive, which indicates the opposite result as Figure 6.6(a).

Figure 6.7 demonstrates the energy of the loudspeaker driving signals using

different methods. As shown in Figure 6.7(a) and Figure 6.7(b), in both cases,

compared with the WDLS method, the proposed subspace method can reduce the

total energy on the loudspeakers significantly, which can avoid the overloading of

the secondary sources.

6.5.4 Comparison of the effect of different loudspeaker place-

ments

Since the loudspeaker placements effect the numbers of principal components in

the subspace method, we investigate the noise reduction performance and energy

of driving signal under different loudspeaker configurations. The ANC systems
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Figure 6.6: Noise reduction performance in case 3, when the noise field is generated
by one primary source moving around the sphere using different methods: (a) with
SNR = 60 dB white noise on the microphone recordings; (b) with SNR = 30 dB

white noise on the microphone recordings.
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Figure 6.7: Energy of the driving signals in case 3, when the noise field is generated
by one primary source moving around the sphere using different methods: (a) with
SNR = 60 dB white noise on the microphone recordings; (b) with SNR = 30 dB

white noise on the microphone recordings.
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with two configurations are shown in Figure 6.5. Figure 6.8 and Figure 6.9

demonstrate the noise reduction and the energy of the loudspeaker driving signals

for each noise source positions. For both loudspeaker configurations, compared with

the WDLS method, the proposed subspace method achieves less noise reduction

and less total energy on the loudspeakers. The significantly reduced energy of the

driving signals can avoid the overloading of the secondary sources and reduce the

sound amplification to people outside the control area. In case 3, the correlation

between different loudspeakers is higher than that in case 4. In case 4, the numbers

of principal components is larger than that in case 3. Therefore, compared with

Figure 6.8(a) and Figure 6.9(a), in Figure 6.8(b) and Figure 6.9(b), there are less

difference between the subspace method and the WDLS method.

6.6 Summary and Contributions

In this chapter, we analysed the noise cancellation performance in 3-D reverberant

environments, especially when the secondary sources have constraints on numbers

and locations. We discussed a wave-domain least square method to analyse the

maximum ANC performance by matching the secondary sound field to the pri-

mary sound field in wave domain. We proposed a subspace method to analyse the

maximum ANC performance by investigating the subspace of secondary path coef-

ficients. We validated the noise reduction performance, energy of the loudspeakers,

and energy of the residual signals outside the region under different loudspeaker

configurations and different noise source positions.

The major contributions in this chapter are:

• By principal component analysis of the secondary path coefficients, we ex-

tracted the basis of the subspace generated by the secondary path.

• We derived the loudspeaker driving signals by matching the projection of the

primary noise field coefficients to the secondary noise field coefficients in the

subspace.

• We compared the proposed subspace method with the wave-domain least

square method, when the number of secondary sources could not control
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Figure 6.8: Noise reduction over the region using different loudspeaker setups, when
the noise field generated by one primary source moving around the sphere using

different methods: (a) case 3; (b) case 4.
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Figure 6.9: Energy of the driving signals generated by one primary source moving
around the sphere using different methods: (a) case 3; (b) case 4.
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all the modes in the region. Using the subspace method, we obtained a

feasible solution with slightly lower noise reduction level inside the region,

significantly less energy on the secondary sources, and significantly less energy

on the residual noise field outside the control region.

6.7 Related Publications

[127]: J. Zhang, T. D. Abhayapala, W. Zhang, and P. N. Samarasinghe, “Active

Noise Control over Space: A Subspace Method for Performance Analysis,” Applied

Sciences, vol. 9, no. 6, pp. 1250, March 2019.



Chapter 7

Conclusion and Future Research

Directions

In this chapter, we state the general conclusions drawn from this the-

sis. We also outline future research directions arising from this work.

7.1 Conclusions

This thesis aimed to develop new theory to effectively control the noise field over a

large spatial region. In particular, we investigated spatial ANC in a general noise

field, as well as in a sparse noise field. For the general noise field, we proposed the

wave-domain ANC structure, developed wave-domain algorithms in different cost

functions and adaptations, and investigated ANC performance in subspace of the

wave-domain secondary path. For the sparse noise field, we incorporated the sparse

constraints to the conventional multi-point ANC and the proposed wave-domain

ANC. The works which have been done in this thesis are represented as blue blocks

in Figure 7.1.

In the literature, spatial ANC in a general noise field has been addressed using

multichannel control structures, as reviewed in Chapter 2. In particular, multiple

microphones and multiple loudspeakers formulate the basic setup, and well-known

algorithms such as NLMS and FxLMS have been applied to iteratively create the

secondary source driving signals. Although these algorithms lead to significant

135
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Figure 7.1: Conclusion and future works for spatial ANC over region. The blue
blocks represent the works have been done in this thesis, and the grey blocks

represent the future research directions.
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noise reduction at the sensor points, the consistency over a continuous spatial region

is low. Meanwhile, conventional multi-point algorithms utilize massive systems

requiring a large number of loudspeakers to generate a secondary sound field.

We solved the problem of ‘(ii) How to reduce the number of sec-

ondary sources in the array, and how to reduce the computational com-

plexity of the algorithms’ using the multi-point structure in Chapter 3,

and solved this problem using the wave-domain structure in Chapter 4.

In Chapter 3, to reduce the active loudspeaker number of the multi-point ANC

system in a directional sparse noise field, we incorporated the `1-norm penalty from

the compressive sensing technique into the multi-point structure, resulting in C`1-

MP and S`1-MP algorithms. The proposed C`1-MP and S`1-MP demonstrated

faster convergence speed and fewer active loudspeaker numbers in the directional

sparse noise field. In Chapter 4, we incorporated the `1-norm penalty into the

wave domain filtered-x least mean square, resulting in the `1-constrained FxLMS

algorithm.

We solved the problem ‘(i) How to achieve ANC over a large con-

tinuous region in a general noise field’ using wave-domain structure in

Chapter 4 and Chapter 5.

We formulated the spatial ANC problem using the wave domain signal process-

ing technique in Chapter 4. For spatial ANC in the general noise field, we imple-

mented the conventional filtered-x least mean square framework in wave domain,

resulting in the wave-domain FxLMS algorithm. To the best of our knowledge,

we are the first team to systematically formulate the wave-domain ANC into dif-

ferent minimization problems and different updating variables in Chapter 5. The

algorithms we proposed have been evaluated in free field and room environment

through numerical simulations. Meanwhile, in the numerical simulations, we ex-

ploited the spatial ANC performance using different numbers of secondary sources.

In the scenario of fewer secondary source than the requirement, we demonstrated

that normalized energy based wave-domain algorithms could achieve better noise

reduction performance over the region. Meanwhile, the reduced noise reduction

performance in the steady state demonstrated the limit of wave-domain ANC us-

ing finite resources.

We solved the problem ‘(i) How to achieve ANC in a large contin-
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uous region in a general noise field’ by investigating the ANC perfor-

mance in Chapter 6.

We mathematically formulated the ANC performance in 3-D reverberant en-

vironments. By principal component analysis of the secondary path coefficients,

we extracted the basis of the subspace generated from the secondary path coeffi-

cients, and projected the primary noise field coefficients onto this subspace. We

derived the optimal solution by matching the projection of the primary noise field

coefficients to the secondary noise field coefficients in the subspace. By utilising

main components rather than all components of the secondary path coefficients,

the subspace method can avoid overloading the loudspeakers, specifically when the

ANC capability was very limited in the given secondary sources and acoustic envi-

ronment. Using the proposed subspace method, we can achieve feasible solutions

with reasonable noise reduction inside the region and less energy on the sound field

outside the region.

Overall, it can be concluded that this thesis provides a number of significant and

original contributions to the field of spatial ANC. The outcomes of this research

can underpin the future development of the use of spatial ANC in industry and

can be applied across a number of applications such as automobiles, theatres, and

aeroplanes.

Despite this achievement, a number of challenges still require further research.

7.2 Future Work

Based on the material in this thesis, we list three future research directions, which

could lead to deeper understanding of ANC over spatial regions: (i) spatial ANC

implementation in 3D noise fields, (ii) adaptive performance improvement using

variable step size, and (iii) spatial ANC in subspace. The future research directions

are represented as grey blocks in Figure 7.1.

(i) Spatial ANC implementation in 3-D noise fields

We developed ANC theory in Chapter 3, Chapter 4 and Chapter 5 based on 2-D

noise fields. One possible future direction is to extend these theories to 3-D and

investigate the related spatial ANC problems in 3-D noise fields. In general, 3-D

wave-domain signal processing can be implemented by using spherical microphone
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arrays [128] and spherical loudspeaker arrays. However, the spherical shape and

high cost of spherical arrays make the system impractical. Meanwhile, the com-

putational complexity of multichannel ANC algorithms increases significantly with

the number of secondary sources and error sensors, which reduces the feasibility of

the system. There are some recent works addressing the spherical array problem.

For the microphone arrays, a compact hybrid microphone array distributed on a 2-

D plane was presented for 3-D sound field analysis [119,129,130]. For the spherical

loudspeaker arrays, P. Chen et al. proposed a planar array of dipole loudspeakers

to reproduce a full 3-D exterior sound field [131]. It is possible to apply these two

arrays on spatial ANC implementations. Applying feed-forward structure to cancel

broadband noise field is also a future work in 3-D ANC implementation, and the

additional computation cost due to the multiple reference signals need to be well

addressed to increase the feasibility of the system.

(ii) Adaptive performance improvement using variable step size

We applied the LMS, FxLMS and NLMS adaptive structures in this thesis,

and utilized the fixed step size in all iterations. One possible future research is

to investigate wave-domain adaptive algorithms with variable step size. When we

use fixed step sizes, a large step size will increase the tracking capability, while it

will also increase the mean-square error in the steady state. Variable step size can

solve the conflict between convergence speed and mean-square error in the steady

state [132, 133]. It can be applied to the wave-domain algorithms to improve the

convergence speed as well as the steady-state behavior.

(iii) Spatial ANC in subspace

In Chapter 6, we derived the subspace based on information about secondary

source and acoustic environment, and evaluated the maximum noise reduction

performance for some specific loudspeaker array arrangements. Since the primary

noise field and secondary noise field have been represented in this new subspace,

it is possible to derive the adaptive algorithm in this subspace. In this subspace,

it is possible to directly cancel the primary noise field which can be controlled by

the current secondary source configuration and acoustic environment.
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