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Abstract

The primary focus of this thesis is to investigate the mathematical and physical

properties of spaces that are related by T-duality and its generalisations. In string

theory, T-duality is a relationship between two a priori different string backgrounds

which nevertheless behave identically from a physical point of view. These back-

grounds can have different geometries, different fluxes, and even be topologically

distinct manifolds. T-duality is a uniquely ‘stringy’ phenomenon, since it does not

occur in a theory of point particles, and together with other dualities has been in-

credibly useful in elucidating the nature of string theory and M-theory.

There exist various generalisations of the usual T-duality, some of which are

still putative, and none of which are fully understood. Some of these dualities are

inspired by mathematics and some are inspired by physics. These generalisations

include non-abelian T-duality, Poisson-Lie T-duality, non-isometric T-duality, and

spherical T-duality. In this thesis we review T-duality and its various generalisations,

studying the geometric, topological, and physical properties of spaces related by

these dualities.
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My father made no reproach in his letters, and only took notice of my

silence by enquiring into my occupations more particularly than before.

Winter, spring, and summer passed away during my labours; but I did

not watch the blossom or the expanding leaves - sights which before always

yielded me supreme delight - so deeply was I engrossed in my occupation.

The leaves of that year had withered before my work drew to a close;

and now every day showed me more plainly how well I had succeeded.

But my enthusiasm was checked by anxiety, and I appeared rather like

one doomed by slavery to toil in the mines, or any other unwholesome

trade than an artist occupied by his favourite employment. Every night

I was oppressed by a slow fever, and I became nervous to a most painful

degree; the fall of a leaf startled me, and I shunned my fellow-creatures

as if I had been guilty of a crime. Sometimes I grew alarmed at the

wreck I perceived that I had become; the energy of my purpose alone

sustained me: my labours would soon end, and I believed that exercise

and amusement would then drive away incipient disease; and I promised

myself both of these when my creation should be complete.

- Mary Shelley, Frankenstein; or, The Modern Prometheus





Chapter 1

Introduction

1.1 Dualities

In theoretical physics, a duality refers to two different descriptions of the same phys-

ical phenomenon. One of the simplest examples of such a duality occurs in classical

electromagnetism. Maxwell’s equations in a vacuum (or in the presence of electric

and magnetic sources) exhibit a symmetry under the interchange of the electric and

magnetic fields. More specifically, the equations determining the physics1

∇ · ~E = 0

∇ · ~B = 0

−∇× ~E =
∂ ~B

∂t

∇× ~B =
∂ ~E

∂t

are invariant under the transformation

~E 7−→ ~B (1.1a)

~B 7−→ − ~E. (1.1b)

That is, if there is a given configuration ( ~E, ~B) of electric and magnetic fields which

solves Maxwell’s equations, then the configuration ( ~B,− ~E) will also solve the equa-

tions. What we call an ‘electric field’ and what we call a ‘magnetic field’ are therefore

simply just conventions, since every magnetic field has an equivalent description as

an electric field, and vice versa. Let us see how the symmetry transformation (1.1)

behaves in terms of the action. Recall that we can package the electric and magnetic

1Note that we have set the speed of light c = 1.

1



2 CHAPTER 1. INTRODUCTION

fields into the field strength tensor:

F =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 .

That is, we have

E = Ex dt ∧ dx+ Ey dt ∧ dy + Ez dt ∧ dz

B = Bx dz ∧ dy +By dx ∧ dz +Bz dy ∧ dx,

and

F = E +B.

The action is then

SEM = −1

4

∫
F ∧ ?F.

A simple computation, however, reveals that ?F is given by

?F =


0 −Bx −By −Bz

Bx 0 −Ez Ey

By Ez 0 −Ex
Bz −Ey Ex 0

 .

It follows that the transformation (1.1) acts on F by

F 7−→ F ′ = ?F,

and so the action transforms by

S ′EM 7−→ −
1

4

∫
?F ∧ ? (?F )

=
1

4

∫
F ∧ ?F

=− SEM .

The action only changes by a global sign, and so the symmetry transformation (1.1)

leaves its variation, and therefore the equations of motion, invariant. This phrasing

of electromagnetic duality is a wonderful starting point to discuss the dualities that
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will appear in this thesis. As we shall see, T-duality can be similarly described as a

transformation of fields leaving an action invariant.

There are many different dualities in physics: examples include AdS/CFT [90],

electromagnetic duality, Kramers-Wannier duality [80], Montonen-Olive duality [98],

and the string dualities: S,T and U-dualities. Whilst dualities are certainly math-

ematical curiosities, they can also be incredibly useful. Consider, for example, S-

duality, which is a generalisation of electromagnetic duality. In string theory, S-

duality acts by inverting the coupling constant. If the value of the coupling constant

is small (much less than 1), then the system is weakly coupled and we can describe

the system using perturbation theory. When the coupling constant is large, the

system is strongly coupled, and we can no longer trust the perturbative exapansion.

Strongly coupled systems are therefore usually much more difficult to understand.

Since S-duality maps between strongly coupled and weakly coupled theories, it can

be used to help understand strongly coupled theories by first dualising to a weakly

coupled theory, and then studying that theory using perturbation theory.

1.2 Target space duality

T-duality is a duality which emerged from string theory in the early 1980’s [24,

72, 110, 54].2 At its core, it is a statement that there are two different string

backgrounds which behave identically as far as physically observable quantities are

concerned. Let’s discuss how T-duality first appears by studying the closed Bosonic

string moving in a target space of the form M = R1,24 × S1.3 That is, we want to

study maps X : Σ→M with components X(τ, σ) = (X0, X1, . . . , X24, X25), where

Σ is a two-dimensional world sheet of a string with coordinates (τ, σ). We want to

impose the constraint

X25(τ, σ + 2π) = X25(τ, σ) + 2πmR,

where m ∈ Z is the winding number of the string, and R ∈ R>0 is the radius of the

circular coordinate. The string equations of motion can be obtained by extremising

2The “T” either stands for “Torus” or “Target”, depending on whom you ask.
3In this section we follow closely the wonderfully readable lecture notes in [122]. This content

is widely known, however, and is covered in most of the standard string theory textbooks.
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the Polyakov action:

S =
1

4πα′

∫
Σ

dσ dτ
(
hαβ
√
−h gµν∂αXµ∂βX

ν
)
. (1.2)

The solution to the equations of motion can be written in terms of left-movers and

right-movers:

Xµ
L = 1

2
xµ + 1

2
α′pµL(τ + σ) + oscillator terms

Xµ
R = 1

2
xµ + 1

2
α′pµR(τ − σ) + oscillator terms.

The only difference for the periodic coordinate X25 is in the expression for pL and

pR:

p25
L =

n

R
+
mR

α′

p25
R =

n

R
− mR

α′
,

where n ∈ Z is the integer associated to the quantised momentum in the compact

direction. The spectrum of the theory is easy to calculate, and is given by

M2 = −pµpµ =
n2

R2
+
m2R2

(α′)2
+

2

α′

(
N + Ñ − 2

)
. (1.3)

The first term corresponds to a contribution of the momentum to the mass, which

is just the familiar “kinetic energy” term. To understand the origin of the second

term, we recall that strings have an intrinsic tension T = 1
2πα′

encouraging the

string to contract. Stretching a string increases its mass/energy, and since a string

wrapping m times around a circle of radius R has a minimum length of l = 2πmR,

the minimum mass of such a string is given by

M = lT =
mR

α′
,

and so the second term is simply the mass contribution that comes from the winding

of the string around the compact direction.

The expression for the spectrum (1.3) has a very curious feature. If we make the

following transformation

R 7−→ α′

R

n 7−→ m

m 7−→ n,
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then the spectrum remains invariant. That is, the masses of the particles observed

for a string moving in M are exactly the same as the masses observed for a string

moving in some other background M ′, where M ′ = R1,24×S1 and the S1 has radius

α′

R
. This invariance is the essence of T-duality.

Note that this duality is an inherently ‘stringy’ feature - although the quanti-

sation for a particle on M exhibits the same quantised momentum n, the winding

modes determined by m only exist for a string, since a particle cannot wind around

the compact direction. Indeed, this interchange of momentum and winding is, at

least thematically, representative of the features of ‘stringy geometry ’. Stringy ge-

ometry is simply the observation that strings behave differently to particles when

it comes to geometry, and indeed that geometry is not the relevant structure to

use when discussing the physics of strings, since there are inequivalent geometries

which give rise to the same physics. We will see in Chapter 2 and beyond that

under T-duality, the geometry is intermixed with the B-field, a stringy version of

electromagnetism. Other structures, such as complex and symplectic structures, are

also interchanged under T-duality.

These interchanges under duality suggest that we should consider generalised

structures incorporating both the original structures, under which T-duality acts by

an automorphism. For the geometry and B-field we will discuss in Chapter 2, such

a generalised structure goes by the name of generalised geometry. Complex and

symplectic structures can be incorporated in this framework as generalised complex

structures. A different approach, which aims to unify momentum and winding modes

into a single geometric framework goes by the name of Double Field Theory.

Let us briefly mention that this simple duality has far-reaching consequences.

The first thing to note is that this is a full symmetry of the entire conformal field

theory, and not just a symmetry of the spectrum. Even more, the symmetry also

holds for a theory of open strings. For open strings, we need to specify boundary

conditions for the endpoints of the string - either Neumann or Dirichlet. If the

boundary conditions are Dirichlet, then there is some submanifold of spacetime to

which the endpoints of the string are confined. A simple calculation shows, however,

that in the presence of such boundary conditions, momentum of the string is not

conserved. For some time it was assumed, therefore, that Dirichlet boundary con-

ditions were unphysical. This is where T-duality appears. T-duality acts on open

strings by interchanging the boundary conditions - Neumann boundary conditions
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get swapped with Dirichlet boundary conditions. This means that, from a physical

perspective, there is no distinction between a theory with entirely Neumann bound-

ary conditions and a theory with entirely Dirichlet boundary conditions - our theory

must incorporate both. The loss of momentum coming from Dirichlet boundary con-

ditions now has to be understood, and it was soon realised that the submanifold on

which the string ends carries away the momentum, and is itself a dynamical object,

now termed a D-brane.

Another facet of the importance of T-duality in string theory is the fact that in

10 dimensions, there are 5 consistent superstring theories: Type I, Type IIA and

Type IIB, Heterotic-O and Heterotic-E. The discovery that various dualities related

these theories to each other led Witten to the remarkable suggestion that these 5

string theories were simply different regimes of an underlying 11-dimensional theory,

mysteriously referred to as M-theory [124].

Finally, we remark that mathematicians also have plenty of reasons to be in-

terested in T-duality. In the context of algebraic geometry, mirror symmetry is

the conjectural relation between two Calabi-Yau varieties which, when formulated

as the target spaces of an N = 2 supersymmetric 2d conformal field theory, have

equivalent CFTs. The Hodge numbers h1,1 and h1,2 of a variety X and its dual X̂

are interchanged under Mirror symmetry. The SYZ conjecture says that if a Calabi-

Yau variety has a mirror pair, then it admits a T3 fibration, and mirror symmetry

corresponds to T-duality along these fibers. In the context of C∗-algebras, T-duality

can be thought of as a map between two algebras inducing an isomorphism of their

K-theories, see Section 2.2.6 for more details. Of course, we have already mentioned

generalised geometry, which has as much interest to mathematicians as to physicists.

T-duality has a plethora of generalisations, and one of the aims of this thesis is

to provide an overview of these generalisations. In particular, we are interested in

how the geometry and topology of spaces behave under these T-dualities.

1.3 Structure of thesis

Each chapter of this thesis is focussed around one of the generalisations of T-duality.

Care has been taken to ensure that examples are included for each of the different

forms of T-duality.

Chapter 2 is centred on the standard form of T-duality, also sometimes called
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abelian T-duality. We provide a detailed review of T-duality à la Buscher, and

discuss the geometric implications of this procedure. A new result in this section is

related to Sasaki-Einstein geometry - that a trivial circle bundle is Sasaki-Einstein

iff it is one-dimensional. We then discuss the topology of the Buscher procedure,

and mathematical aspects of topological T-duality.

Chapter 3 deals with non-abelian T-duality. We introduce and review relevant

aspects of the non-abelian T-duality procedure. We then discuss the open problem of

understanding the global aspects of non-abelian T-duality, reviewing existing work

from a physical perspective in this direction, and providing comments from a more

mathematical perspective.

Chapter 4 is a small digression on a generalisation of non-abelian T-duality

known as Poisson-Lie T-duality. We introduce Poisson-Lie T-duality and discuss its

relation to other forms of T-duality.

Chapter 5 discusses a relatively new generalisation of T-Duality known as non-

isometric T-duality. After introducing and discussing this new duality, we give the

proof, first published in [15], that this duality is equivalent to the standard notion of

non-abelian T-duality. We then introduce a generalisation of the original proposal,

and discuss the relation between the generalisation and Poisson-Lie T-duality.

Chapter 6 discusses a final generalisation of T-duality called spherical T-duality.

This mathematical generalisation of topological T-duality is a promising candidate

for new duality in M-theory/11-dimensional supergravity. We introduce and review

this putative new duality, and discuss its potential geometric and physical aspects.

Following Chapter 6 there are several appendices containing supplementary in-

formation which is occasionally referenced in the body of the text.
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Chapter 2

Abelian T-duality

2.1 Geometry

2.1.1 Buscher rules

The R → 1/R transformation rule of toroidal compactifications has a generalisa-

tion to curved string backgrounds possessing an abelian group of isometries. This

generalisation, due to Buscher [29, 30], uses a gauging procedure which will feature

prominently throughout this thesis.

Our starting point is the string non-linear sigma model, described by maps X :

Σ→M , where (Σ, hαβ) is a two-dimensional Lorentzian worldsheet, and (M, gµν) is

a (pseudo)-Riemannian manifold together with a B-field, a locally-defined two-form

gauge field. The action is

S =
1

4πα′

∫
Σ

dσ dτ
(
hαβ
√
−h gµν∂αXµ∂βX

ν + εαβBµν∂αX
µ∂βX

ν + α′
√
−hΦR(2)

)
(2.1)

where Φ is the dilaton, and R(2) is the Ricci scalar of the worldsheet. We will, for

the moment, ignore the contribution from the dilaton (returning to it in Section

2.1.2). We will also set α′ = 1 in what follows, unless we are talking about quantum

aspects (in which case α′ becomes relevant). We note that the action may be written

succinctly as

S =
1

4π

∫
Σ

gµν dXµ ∧ ? dXν +Bµν dXµ ∧ dXν , (2.2)

where ? is the Hodge dual on the worldsheet,1 and the fields are assumed to be

pulled back to the worldsheet. We will be pedantic in referring to (2.1) as the string

1?2 = 1 on one-forms, since our worldsheet is Lorentzian.

9
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non-linear sigma model, and (2.2) as a non-linear sigma model.

Suppose now that we have a vector field v = vi∂i on M , generating the following

global symmetry:

δεX
i = viε,

for a constant parameter ε. The variation of the action (2.2) under this symmetry

is

δεS =
1

4π

∫
Σ

δε(gij) dX i ∧ ? dXj + gij δε(dX
i) ∧ ? dXj + gij dX i ∧ δε(? dXj)

+ δε(Bij) dX i ∧ dXj +Bij δε(dX
i) ∧ dXj +Bij dX i ∧ δε(dXj)

=
1

4π

∫
Σ

ε
[
vk∂kgij + gkj∂iv

k + gik∂jv
k
]

dX i ∧ ? dXj

+ ε
[
vk∂kBij +Bkj∂iv

k +Bik∂jv
k
]

dX i ∧ dXj

=
1

4π

∫
Σ

ε(Lvg)ij dX i ∧ ? dXj + ε(LvB)ij dX i ∧ dXj. (2.3)

It follows that the action is invariant under the symmetry generated by the vector

field v if Lvg = 0 and LvB = 0. A vector field for which Lvg = 0 is known as a Killing

vector, and the flow generated by it is a one-parameter group of diffeomorphisms

preserving the metric - that is, a one-parameter group of isometries.

We now assume that our spacetime has at least one continuous isometry. The

infinitesimal generator of this isometry is a Killing vector, and we will work in

coordinates {Xµ} = {X i, θ} adapted to this Killing vector.2 This means that in

these coordinates the Killing vector is ∂θ, and the isometry generated by this Killing

vector is given by translation of the coordinate θ → θ + ε. Since ∂θ is a Killing

vector, the Lie derivative of the metric vanishes, L∂θg = 0, and we will also assume

that L∂θB = 0. In the system of adapted coordinates we are using, the infinitesimal

variation of the coordinates is

δεX
i = 0

δεθ = ε.

The symmetry generated by the Killing vector is a global symmetry, but we can

2See Appendix B.1 for a discussion of adapted coordinates
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promote it to a local symmetry by gauging.3 To gauge the symmetry, we introduce

an abelian gauge field A, and minimally couple it to the field θ by the replacement

dX i → DX i = dX i

dθ → Dθ = dθ −A.

The minimally-coupled action,

SMC =
1

4π

∫
Σ

gµνDX
µ ∧ ?DXν +BµνDX

µ ∧DXν , (2.6)

is now invariant under a local symmetry, provided the infinitesimal variation of the

gauge field is

δεA = dε.

In addition to the gauge field we add another term, 1
2π

∫
Σ
F θ̂, to the action. The

auxilliary field, θ̂, is an additional scalar field, and F = dA is the field strength of

the gauge field. This extra term is added to the action so that the gauged model

reduces to the original model. To see why this is true, observe that the equations of

motion for the auxilliary field force the field strength to vanish, F = 0, which implies

that the gauge field must be pure gauge,4 i.e. A = dχ. Thus when integrating out

the auxilliary field,5 the second term vanishes (since F = 0), and we may choose a

convenient gauge so that A = 0, thereby recovering the original model. Since the

minimally coupled action is independently gauge-invariant (that is, invariant under

the local symmetry transformations of {X i, θ,A}), and the additional term is also

gauge invariant (provided we specify δεθ̂ = 0), the entire gauged action is invariant.

In summary, the gauged action

SG =
1

4π

∫
Σ

gµνDX
µ ∧ ?DXν +BµνDX

µ ∧DXν

+
1

2π

∫
Σ

F θ̂ (2.7)

3We say that the translation θ → θ + ε is a global symmetry because the action is invariant

under this translation for constant ε. It is a local symmetry if the parameter ε is allowed to depend

on the worldsheet coordinates, i.e. ε = ε(σ, τ)
4This is true locally, but care needs to be taken here when discussing global properties of

T-duality. See Section 2.2.1 for a discussion of this point in topogically non-trivial worldsheets
5Integrating out a field means to solve for the equations of motion of this field, and then

substitute the solution back into the action.
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is invariant under the following local gauge transformations

δεX
i = 0 (2.8a)

δεθ = ε (2.8b)

δεA = dε (2.8c)

δεθ̂ = 0. (2.8d)

We have seen that starting from the gauged action, we can recover the original

model by integrating out the auxilliary variable and then gauge fixing. The Buscher

procedure hinges on the observation that we could instead integrate out the gauge

fields first and then gauge fix. One can verify that the model obtained by this

procedure is given in terms of coordinates {X̂µ} = {X i, θ̂} with the dual action

Ŝ =
1

4π

∫
Σ

ĝµν dX̂µ ∧ ? dX̂ν + B̂µν dX̂µ ∧ dX̂ν ,

where the new fields {ĝµν , B̂µν} are given in terms of the old fields {gµν , Bµν} by the

following transformation rules:

ĝθ̂θ̂ =
1

gθθ
(2.9a)

ĝiθ̂ =
Biθ

gθθ
(2.9b)

ĝij = gij −
1

gθθ
(giθgjθ −BiθBjθ) (2.9c)

B̂iθ̂ =
giθ
gθθ

(2.9d)

B̂ij = Bij −
1

gθθ
(Biθgjθ − giθBjθ) . (2.9e)

These are the famous Buscher rules for (abelian) T-duality [29, 30]. Note that the

dual of the dual recovers the original space. Notice also that the metric and the

B-field are mixed under this transformation - the geometry is intertwined with the

gauge field. This is the hallmark of “stringy geometry”. We note also that if we

begin with a flat metric on a cylinder,

ds2 =
∑
i

(dX i)2 +R2 dθ2,
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that is, if gij = δij and gθθ = R2, then the Buscher rules give ĝij = gij and gθ̂θ̂ =

R−2, establishing the R → 1/R relationship we found earlier. Modifications of the

Buscher procedure allow for more general forms of T-duality:

• The generalisation to multiple abelian isometries is straightforward. We dis-

cuss this in section 2.1.9, where we explicitly compute the Buscher rules for

n abelian isometries. The possibility of global obstructions to this procedure

are discussed in Section 2.2.5.

• The generalisation to gauging with respect to multiple, non-commuting Killing

vectors is known as non-abelian T-duality. This is discussed in detail in Chap-

ter 3.

• Attempting to gauge a model without requiring the strictness of isometries

leads to a generalisation known as non-isometric T-duality. This generalisation

forms the content of Chapter 5.

2.1.2 The dilaton

Thus far, we have neglected the contribution of the dilaton, and worked only with

the non-linear sigma model (2.2). Non-linear sigma models have interest outside of

string theory, so this is fine, but if we are interested in string theory then we need to

include the dilaton in our discussion of T-duality. On a flat worldsheet, the dilaton

term in the action (2.1) vanishes, so this is only relevant for curved worldsheets.

The first thing we note about (2.1) is that it is not conformally invariant, even at a

classical level. This is fixed by noting that the dilaton term in (2.1) appears at the

α′ level - the failure of conformal invariance in the dilaton is compensated by the

one-loop contribution from the metric and the B-field. We will discuss this in more

detail in section 2.1.6, but for now let us finish our discussion on the transformation

of the dilaton under T-duality.

Buscher found [29] that T-duality maps a conformally invariant theory to another

conformally invariant theory, only if the dilaton transforms in a specific way. In

particular, he found that the transformation

Φ̂ = Φ− 1
2

log gθθ (2.10)

should supplement the tranformation rules (2.9), in order for T-duality to preserve
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conformal invariance at the one-loop level. This shift is related in [30] to a functional

determinant resulting from elimination of the first-order gauge field.

2.1.3 The closed string spectrum

In Section 1.2, we discussed the spectrum for the theory of a closed string moving on

a background with a circular direction. We showed that the spectrum was invariant

under the R→ 1/R transformation, provided we also interchanged the momentum

and winding modes. For D-dimensional toroidal backgrounds, the mass formula

(1.3) can be written as

M2 = ZTGZ + (N + Ñ − 2), (2.11)

where Z is the 2D-dimensional column vector called the generalised momentum

ZM =

mi

ni

 , (2.12)

and G is the 2D × 2D generalised metric

G(g,B) =

g −Bg−1B Bg−1

−g−1B g−1

 . (2.13)

This expression for the mass is invariant under an SO(D,D;Z) group of transfor-

mations generated by the following transformations:

• Diffeomorphisms: If A ∈ GL(D;Z), then one can change the basis for

the compactification lattice Λ by AΛAT . This acts on the generalised metric

through A 0

0 A−T

 . (2.14)

• B-shifts: If Θ is an antisymmetric matrix with integer entries, then one can

use it to shift the B-field, acting on the generalised metric as1 Θ

0 1

 (2.15)

• Factorised dualities: This is the Z2 duality corresponding to the R→ 1/R

transformation for a single circular direction. It acts on G as1− ei ei

ei 1− ei

 , (2.16)

where ei is the D×D matrix with 1 in the (i, i)-th entry, and zeroes elsewhere.
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Using this formalism, one can show that the group SO(D,D;Z) acts as a canonical

transformation on the phase space of the system (that is, that the duality acts on

the oscillators in a way that preserves the commutators).6

2.1.4 Examples: abelian Buscher rules

In order to familiarise the reader with the nature of T-duality, we include some

simple examples. These are mostly well-studied examples, and although they aren’t

all honest string backgrounds, they provide useful toy models to study the properties

of T-duality.

S3 with no flux

Our first example is a simple and well-studied one: the three sphere with the round

metric and no flux. We shall use Hopf coordinates (η, ξ1, ξ2) for S3, related to

complex coordinates (z1, z2) ∈ C2 by

z1 = e
i(ξ1+ξ2)

2 sin η

z2 = e
i(ξ1−ξ2)

2 cos η,

or real coordinates (x1, x2, x3, x4) ∈ R4 by

x1 = cos

(
ξ1 + ξ2

2

)
sin η

x2 = sin

(
ξ1 + ξ2

2

)
sin η

x3 = cos

(
ξ1 − ξ2

2

)
cos η

x4 = sin

(
ξ1 − ξ2

2

)
cos η.

Here η lies in the range [0, π
2
], ξ2 lies in the range [0, 4π] and ξ1 runs over the range

[0, 2π]. These coordinates realise S3 as an embedded submanifold of R4, and the

flat metric on R4 induces a Riemannian metric on S3. This metric is just the usual

round metric on S3, and is given in these Hopf coordinates by

ds2 = dη2 +
1

4

(
dξ2

1 + dξ2
2 − 2 cos(2η) dξ1 dξ2

)
.

Note that with this normalisation, the radius of the S3 is one. We also suppose that

the B-field vanishes. Since the metric is independent of the (ξ1, ξ2) coordinates, it

6See [53] for more details.
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is clear that the corresponding vectors ∂ξ1 and ∂ξ2 are Killing vectors. In addition,

since B = 0, we have L∂ξ1B = L∂ξ2B = 0. We now perform T-duality along the

Hopf direction, parameterised by the ξ1 coordinate. The Buscher rules give us the

following dual metric and dual B-field:

d̂s2 = dη2 +
1

4
sin2(2η) dξ2

2 + 4 dξ̂1

2

B̂ =
1

2
cos(2η) dξ2 ∧ dξ̂1.

The dilaton acquires a shift under this duality, and as we will see later, this metric

is just a product metric on S2 × S1. Note that the H-flux is given by

Ĥ = dB̂

= sin(2η) dη ∧ dξ̂1 ∧ dξ2

= dVS2×S1

T3 with H-flux

Our second example is also a simple, well-studied example: the three torus with H-

flux. We will use cartesian coordinates (x, y, z) for T3, with periodic identifications

of the coordinates x ∼ x + 1, y ∼ y + 1, and z ∼ z + 1. The metric is simply the

flat metric,

ds2 = dx2 + dy2 + dz2,

and we wish to choose a B-field such that H = dB is non-trivial in cohomology.7

Explicitly, let us take

B = −x dy ∧ dz,

so that

H = dB = − dx ∧ dy ∧ dz.

If B was a globally defined form, then H would be exact, and therefore trivial in

cohomology. It is easy to see, however, that B cannot be globally defined on the

torus since the transformation x ∼ x+ 1 does not leave B invariant. Like the Dirac

7This will be explained further in 2.2.2



2.1. GEOMETRY 17

monopole of electromagnetism, the B-field potential is defined on open patches, and

glued together on the overlaps using gauge transformations. We note that

L∂zg = L∂zB = 0,

and so we proceed to perform T-duality along the z coordinate. Applying the

Buscher rules results in the following dual metric and B-field:

ĝ = dx2 + dy2 + (dẑ − x dy)2 (2.18a)

B̂ = 0. (2.18b)

We began with a flat metric and a non-trivial B-field, and we obtain a dual geometry

which is non-flat,8 together with a vanishing B-field. This dual model is known as

the f -flux background, and provides us with another clear example of how the gauge

field and the geometry intermix under T-duality.

This example is often studied in the T-duality literature because it is quite

simple, but exhibits a lot of the interesting features of T-duality. The three torus

directions of the original model provide, in principle, three different isometries to

gauge, and therefore three different T-dualities to perform. Indeed, the dual metric

we have obtained is the first of a series of dualities:

Txyz
∂z←→ fxy

z ∂y←→ Qx
yz ∂x←→ Rxyz. (2.19)

A quick glance at (2.18a) and (2.18b) is enough to see that the dual fields are

independent of y, and therefore ∂y is a Killing vector. That is, the dual metric and

B-field that we obtained after a T-duality transformation of the three torus with

flux still retains the residual isometry generated by ∂y. We can use this isometry to

perform a T-duality along the y coordinate. Applying the Buscher rules, we obtain

the so-called Q-flux background:

̂̂g = dx2 +
1

1 + x2

(
dŷ2 + dẑ2

)
(2.20a)

̂̂
B =

2x

1 + x2
dŷ ∧ dẑ. (2.20b)

This background will appear in several different areas of this thesis, so we refrain

from talking about the properties of it here. We note, however, that a näıve attempt

8The Ricci scalar curvature of this metric is R = − 1
2 .
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to perform a third T-duality along the x coordinate runs into a problem; the vector

∂x is no longer a Killing vector for the metric. A quick calculation shows that

L∂x̂̂g = − 2x

(1 + x2)2

(
dŷ2 + dẑ2

)
(2.21)

L∂x
̂̂
B =

2(1− x2)

(1 + x2)2
dŷ ∧ dẑ. (2.22)

Despite this, the putative dual appears often in the literature, particularly in the

context of double field theory. We will discuss this chain of dualities more in Section

2.2.5, Section 2.2.6, and Section 3.2.3.

The time-dual of Schwarzschild

Let us now look at an example of T-duality on a metric which is very familiar from

general relativity - the Schwarzschild solution. The metric is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2, (2.23)

with no B-field. This metric is Ricci flat (for r 6= 0), and therefore a vacuum solution

of the Einstein Field equations in 4 dimensions. We can promote this solution to a

solution of Type II supergravity by taking the trivial product with 6 additional flat

directions, and including a constant dilaton (which we take to be zero). The metric

(2.23) is independent of the coordinate t, and so ∂t is a Killing vector. Applying the

Buscher rules, we obtain the time-dual of the Schwarzschild background :

d̂s2 = −
(

1− 2M

r

)−1

dt̂2 +

(
1− 2M

r

)−1

dr2 + r2 dΩ2. (2.24)

This duality is along a time-like, non-compact direction, so is distinctly different to

the other T-dualities we have considered. We can see that this metric has curvature

singularities at r = 0 and r = 2M by computing the Ricci scalar curvature:

R̂ =
−4M2

r4
(
1− 2M

r

) . (2.25)

These are naked singularities, so this metric is perhaps not overly interesting from

a general relativity point of view. Furthermore, it doesn’t solve the vacuum Ein-

stein field equations since R̂µν 6= 0. It should, however, solve the 10 dimensional

supergravity equations of motion once the appropriate transformation of the dila-

ton is implemented. The dual dilaton is given by Φ̂ = −1
2

log
(
−1 + 2M

r

)
,9 and a

quick calculation shows that this solves the relevant SUGRA equations of motion:

Rµν + 2∇µ∇νΦ = 0 and (∇Φ)2 − 1
2
∇2Φ = 0.

9see Section 2.1.2
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A example with fixed points: S2

The round metric on S2 can be written using the usual spherical polar coordinates

as

ds2 = dθ2 + sin2 θ dφ2.

This metric is independent of the coordinate φ, and so ∂φ is a Killing vector for this

metric. The group action generated by this vector, however, has fixed points. This

can be seen by computing the norm of ∂φ using the metric:

|∂φ| =
√
g(∂φ, ∂φ) (2.26)

= sin2 θ. (2.27)

The norm therefore vanishes at θ = 0 and θ = π, corresponding to the north and

south poles. Geometrically, the orbits of the Killing vector define a circle fibration

for S2; the points at which the norm of the Killing vector vanish correspond to

points at which the circle fibers degenerate.

We will assume that B = 0. The T-dual metric follows from the Buscher rules,

and is given by

d̂s
2

= dθ2 +
1

sin2 θ
dφ̂2. (2.28)

This space has curvature singularities at θ = 0 and θ = π, as can be verified by

computing the Ricci scalar:

R̂ = 2
cos2 θ + 1

cos2 θ − 1

This is totally expected, however, since T-duality acts on the fibers by inverting the

radius, and at the poles the radius shrinks to zero. The space and its dual are shown

in Figure 2.1. Note that the dual B-field is also zero.

A puzzle: The dual space seems to have a non-trivial fundamental group. In

particular, π1(Ê) = Z, so the dual space should have integer winding modes, in

addition to momentum modes. The sphere, however, has a trivial fundamental

group: π1(S2) = 0. So although S2 can have momentum modes, it cannot have

winding modes. If T-duality acts by interchanging momentum and winding modes,

what happens to the momentum modes on Ê when you perform a T-duality to get

to S2?
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Figure 2.1: The round metric for S2 has a U(1) isometry corresponding to rotation

around the z-axis. The action has fixed points at the north and south pole, which

correspond to singularities in the dual space.

There are three possible resolutions to this paradox. The first possible resolution

is that the argument which states that winding modes and momentum modes get

interchanged under T-duality may be flawed - it may only hold for spacetimes of

the form M × S1. The second possible resolution is that S2 is not a valid string

background, and that perhaps the interchange of momentum and winding only holds

for valid string theory backgrounds. The final possible resolution hinges on the fact

that a B-field is turned on in the dual space through this duality. When there is

a non-zero B-field, the momenta conjugate to a circular coordinate couple to the

B-field through the winding modes.10 It is plausible that when there are no winding

modes in the original space, the momentum/B-field coupling occurs in such a way

that the observed momenta also vanish.

2.1.5 The effect on the curvature

The Buscher rules give a transformation of the metric and the B-field. As we saw in

Section 2.1.4, quantities like the scalar curvature are not invariant under T-duality.

The induced transformation on various geometric quantities is something we care

about, so we include them here. The decomposition of various quantities used in this

section follows, with some small changes, the notation of [57], where they were used

to derive consistency conditions for quantum corrections to T-duality.11 We assume

we have an abelian isometry, and work in coordinates, {Xµ} = {X i, θ}, adapted to

this isometry (so that the Killing vector is k = ∂θ). The metric decomposes in these

10See, for example, Exercise 17.4 in [126].
11This is discussed more in Section 2.1.6.
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coordinates as

gµν =

gij giθ

gθj gθθ


Since k is a Killing vector, we have Lkg = 0, which implies that none of the com-

ponents of this matrix depend on θ. We now decompose the metric à la Kaluza

Klein:

gµν =

ḡij + e2σAiAj e2σAi

e2σAj e2σ

 (2.29)

corresponding to the following relabelling of fields: gij = ḡij + e2σAiAj, giθ = e2σAi,

and gθθ = e2σ. It follows that none of these quantities can depend on θ either. In

line element form, we have

ds2 = ḡij dX i dXj + e2σ(dθ + Ai dX
i)2

The B-field also decomposes, as

Bµν =

Bij Bi

−Bi 0

 (2.30)

In form notation, we have

B = 1
2
Bij dX i ∧ dXj +Bi dX

i ∧ dθ

Applying the Buscher rules to the metric (2.29) and B-field (2.30) gives us the

following T-dual metric and B-field:

ĝµν =

ḡij + e−2σBiBj e−2σBi

e−2σBj e−2σ



B̂µν =

Bij +BiAj − AiBj Ai

−Ai 0


In line element and differential form notation, we have

d̂s
2

= ḡij dX i dXj + e−2σ(dθ̂ +Bi dX
i)2

B̂ = 1
2
(Bij +BiAj − AiBj) dX i ∧ dXj + Ai dX

i ∧ dθ̂.
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It’s now easy to see that with this decomposition, the T-duality transformation rules

correspond to the following simple map on the fields:

Ai

Bi

σ

ḡij

Bij


→



Bi

Ai

−σ

ḡij

Bij +BiAj − AiBj


. (2.31)

By writing geometric quantities, like the Ricci scalar curvature, in terms of the fields

appearing in (2.31), the corresponding geometric quantities for the T-dual are then

obtained by this simple transformation rule.

Lemma 2.1.1 (Haagenson [57]). The metric (2.29) and B-field (2.30) have the

following geometric data:

• Metric Determinant

det(g) = e2σ det ḡ

• Inverse Metric

gµν =

 ḡij −Ai

−Aj e−2σ + AiA
i


• Ricci Tensor

R00 = −e2σ

[
�σ +∇iσ∇iσ − e2σ

4
FijF

ij

]

Ri0 = AiR00 + 3e2σFij∇jσ +
e2σ

2
∇̄jFij

Rij = Rij + AiR0j + AjR0i − AiAjR00 − ∇̄i∇̄jσ − ∇̄iσ∇̄jσ −
e2σ

2
FikFj

k

• Torsion

H0ij = −∂iBj + ∂jBi = −Gij

Hijk = ∂iBjk + ∂jBki + ∂kBij

with other components vanishing.
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For ease of computation, we include the following:

H0µνH
µν
0 = GijG

ij

H0µνH
µν
i = −2GijG

jkAk −HijkG
jk

HiµνH
µν
j = 2

(
e−2σ + AmA

m
)
Gi

kGjk − 2AkAmGikGjm

+ 2
(
HkmiGj

kAm +HkmjGi
kAm

)
+HikmHj

km,

where barred quantities refer to the metric ḡ, and on decomposed tensors all indices

are raised and lowered with ḡij and its inverse.

Lemma 2.1.2. Let R be the Ricci scalar curvature of the original model. The Ricci

scalar curvature of the T-dual model, R̂, is given by

R̂ = R+
1

4
e2σ
(
FijF

ij − e−4σGijG
ij
)

+ 4�σ.

Proof. From Lemma 2.1.1, we can compute the Ricci scalar curvature of the original

model in terms of the reduced quantities appearing in (2.31). It is given by

R = R− 1

4
e2σFijF

ij − 2�σ − 2∇̄iσ∇̄iσ.

The simple transformation properties of the reduced quantities then gives us

R̂ = R− 1

4
e−2σGijG

ij + 2�σ − 2∇̄iσ∇̄iσ,

and the result follows from comparing these expressions.

It is worth pausing for a moment to mention a few comments on the geometric

interpretation of the quantities appearing here. Lemma 2.1.2 gives us a prescription

for calculating the Ricci scalar of the dual, provided we know the Ricci scalar of the

original space. In particular, if there is no B-field, and we normalise the length of

the fibers, the Ricci scalar of the dual space will have the form R̂ = R + 1
4
FijF

ij.

On a Euclidean background, the quantity FijF
ij is positive, so the Ricci scalar is

non-decreasing in this situation.

This result has interesting consequences, since the existence of metrics with pre-

scribed curvatures provides restrictions on the topology of the underlying manifold.

In two dimensions, this is just a fancy way of restating the Gauss Bonnet theorem,

but in other dimensions it becomes more interesting. Explicitly for dimensions 2

and 3 we have the following results:
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Theorem 2.1.3 (Gauss-Bonnet). Let (M, g) be a closed, two-dimensional Rieman-

nian manifold with Ricci scalar curvature R. Then∫
M

R = 4πχ(M), (2.32)

where χ(M) is the Euler characteristic of M .

In particular, if a closed 2-manifoldM admits a metric a positive scalar curvature,

then χ(M) > 0, and so M must be either S2 or RP1

Theorem 2.1.4 (Schoen-Yau-Gromov-Lawson-Perelman). Let M be a closed, ori-

entable 3-manifold. Then M admits a metric of positive scalar curvature if and only

if it is a connected sum of spherical 3-manifolds and copies of S1 × S2.

2.1.6 Beta functions and generalised Ricci flow

In string theory, conformal invariance is a crucial property of the theory. In a general

quantum field theory, the failure of conformal invariance is measured by the trace of

the energy-momentum tensor, also called the Weyl anomaly. The theory is locally

conformally invariant if and only if the trace vanishes. The operator expression for

the Weyl anomaly is given by

4πα′T aa = ∂αXµ∂αX
ν β̄gµν +

εαβ√
−h

∂αX
µ∂βX

ν β̄Bµν + α′R(2)β̄Φ.

The functions {β̄gµν , β̄Bµν , β̄Φ} are the Weyl anomaly coefficients. They are related

to the β-functions of the quantum field theory:12

β̄gµν = βgµν + 2α′∇µ∇νΦ +∇(µWν) (2.33)

β̄Bµν = βBµν + α′H λ
µν ∇λΦ +

1

2
H λ
µν Wλ +∇[µLν] (2.34)

β̄Φ = βΦ + α′(∇Φ)2 +
1

2
W λ∇λΦ. (2.35)

The L and W functions vanish at the one-loop level, and we will ignore them in

what follows. The β-functions {βgµν , βBµν , βφ} are the Renormalisation Group (RG)

β-functions, determining how the couplings depend on a renormalisation cutoff scale

12See, for example, [58, 31, 32].



2.1. GEOMETRY 25

µ:

βgµν ≡ µ
d

dµ
gµν

βBµν ≡ µ
d

dµ
Bµν

βΦ ≡ µ
d

dµ
Φ.

These functions determine the coefficients of a vector field on the (infinite dimen-

sional) space of fields, the flow of which we refer to as the renormalisation group flow

(RG flow). A conformal theory is a fixed point of this flow - that is, the quantum

theory is conformal only if the beta functions vanish. For the string sigma model,

the beta functions are given at the one-loop level by

βgµν = α′
(
Rµν −

1

4
HµλσH

λσ
ν

)
(2.37a)

βBµν = −α
′

2
∇λHλµν (2.37b)

βΦ = −α
′

2

(
∇2Φ +

1

12
HαβγH

αβγ

)
. (2.37c)

Combining (2.37) and (2.33), we get the expression for the Weyl anomaly coefficients

at one-loop order:

β̄gµν = α′
(
Rµν −

1

4
HµλσH

λσ
ν + 2∇µ∇νΦ

)
(2.38a)

β̄Bµν = α′
(
−1

2
∇λHλµν +Hµνλ∇λΦ

)
(2.38b)

β̄Φ = α′
(

(∇Φ)2 − 1

2
∇2Φ− 1

24
HαβγH

αβγ

)
. (2.38c)

Let us look at the one-loop Weyl anomaly coefficients for a moment, and consider

the case where B and Φ are both vanishing. Then (2.38a) reduces to βgµν = Rµν .

The (one-loop) RG flow for this model is13

∂t gµν(t) = −2Rµν(t). (2.39)

This is exactly the Ricci flow studied by mathematicians in the context of geometric

analysis. It was first introduced by Hamilton in [60] to study the properties of three

13The factor of −2 comes from rescaling t and is not an essential feature. We choose this scaling

here to make clearer contact with the literature on Ricci flow.



26 CHAPTER 2. ABELIAN T-DUALITY

manifolds with positive scalar curvature. The dilaton version of this flow,

∂t gµν = −2 (Rµν + 2∇µ∇νΦ) ,

was later used by Perelman to prove the Thurston geometrization conjecture and

the Poincaré conjecture [104, 105, 106].

To get a feeling for the effect the Ricci flow has on a Riemannian manifold, let

us consider the simplest non-trivial example: the round sphere in n dimensions.

The round metric for a sphere of radius r is simply gµν = r2groundµν , where ground

is the round metric for a sphere of radius 1. The Ricci tensor is given by Rµν =

(n−1)groundµν , since the unit sphere in any dimension is an Einstein manifold and the

Ricci tensor is invariant under uniform scalings of the metric, and so the differential

equation (2.39) has the form:

∂t
(
r2ground

)
= −2 (n− 1) ground. (2.40)

Let us suppose that our solution has the form gµν(t) = r(t)2groundµν . That is, the

only dependence on t is through the radius r. Once we find that this is a solution,

then we can appeal to the proven uniqueness results to say this is the only solution.

Substituting this ansatz into (2.40) and integrating gives us

r2 = r2
0 − 2(n− 1)t,

with r0 the radius of the sphere at time t = 0. It follows that for increasing t the

sphere decreases in size, and shrinks to a point in finite time.14

In order that T-duality preserve conformal invariance, which is essential in string

theory, it must map fixed points of the RG flow to fixed points. On a more general

level, however, one could ask if T-duality is consistent with RG flow - that is, if

we are given a solution (gt, Bt, Φt) of (2.37) with initial data (g, B, Φ), does the

one-parameter family (ĝt, B̂t, Φ̂t) also satisfy (2.37) with initial data (ĝ, B̂, Φ̂)?15

Phrased another way, this question asks whether T-duality commutes with the RG

flow. This question was first studied by Haagenson in [57],16 who derived a set of

14Note that the parameter t refers to momentum, not time, when we are in the context of beta

functions and quantum field theory.
15The one-parameter family (ĝt, B̂t, Φ̂t) is defined by applying the T-duality transformations

(2.9) and (2.10) to (gt, Bt, Φt) for each t.
16This question was later studied in a more mathematical framework, and in the context of

generalized geometry in [118].
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consistency conditions that the one-loop beta functions must satisfy in order for

T-duality to be consistent with the RG flow. It is a remarkable fact that these

consistency conditions are not only satisfied by the one-loop beta functions, (2.37),

but they are stringent enough to derive the one-loop beta functions. That is, the

only one-loop beta functions (up to a global constant) which are consistent with

T-duality and the RG flow, are the ones given by (2.37).

The compatibility of T-duality and RG flow at the two-loop level has also been

studied in, for example, [59].

2.1.7 T-duality and Sasaki-Einstein manifolds

Let us take a small digression here to discuss a nice result that follows from the

Kaluza-Klein decomposition of the metric we have used in Section 2.1.5.

Most of the toy models studied in this thesis are not actual string backgrounds -

they are simplified versions of string backgrounds concocted in order to study par-

ticular aspects of string theory, such as how T-duality affects the topology of the

spacetime. Authentic string backgrounds must satisfy a variety of mathematical

conditions, coming from various physical assumptions. Assuming a string com-

pactification of the form M4 × K, where M4 is the four-dimensional Minkowski

background, and K is a compact six-dimensional background, the now-famous pa-

per [34] asserts that K must have holonomy contained in SU(3), that is, K must

be a particular type of Kähler manifold known as a Calabi-Yau manifold. Depend-

ing on the dimension, the presence of fluxes, and the amount of supersymmetry

preserved, these conditions can be weakened, so that one wants to consider more

generalised types of manifolds such as nearly-Kähler, Sasaki-Einstein, 3-Sasakian, or

weak G2-manifolds [5]. From another perspective, the AdS/CFT correspondence is

a relation between anti-de Sitter supergravity compactifications and certain confor-

mal field theories on the boundary [90]. Arguably one of the most influential ideas

in string theory, the AdS/CFT correspondence has generated significant interest in

Sasaki-Einstein manifolds, where they arise as a large class of examples of the form

AdS5 × L, where L is a Sasaki-Einstein 5-manifold and the dual theory is a four-

dimensional N = 1 superconformal field theory [71, 73, 5, 99]. Such backgrounds

have been studied from a non-abelian T-duality perspective in [116].

In order to define a Sasakian manifold, we require the notion of a cone metric.



28 CHAPTER 2. ABELIAN T-DUALITY

Given a Riemannian manifold (M, g), we define the cone metric as

g̃ = dr2 + r2g.

This metric is defined on the cone manifold C(M) = M ×R+, with the coordinate r

parametrising the R+. We say that (M, g) is a Sasakian manifold if the cone metric

g̃ is Kähler. Since a Kähler manifold is even-dimensional, a Sasakian manifold must

be odd-dimensional. If, in addition, the cone metric is Ricci-flat, then we call (M, g)

a Sasaki-Einstein manifold. If the cone of a Sasakian manifold is hyper-Kähler,

then we refer to (M, g) as a 3-Sasakian manifold. The canonical examples of Sasaki

manifolds are the odd-dimensional round spheres. The cone of S2n−1 is Cn, equipped

with the flat metric and standard complex structure.

Two important objects for Sasakian manifolds, from the geometric and topo-

logical perspective, are the homothetic vector field, and the associated Reeb vector

fields. The homothetic vector field is r∂r, and the associated Reeb vector field ξ is

given by

ξ = −J(r∂r),

where J is the complex structure on the cone (which always exists since the cone is

Kähler). The Reeb vector field defines a nowhere vanishing vector field on the cone,

and hence defines a foliation of C(M) into the orbits of ξ, called the Reeb foliation.

If the orbits close, then ξ induces a U(1) action on C(M). If this action is free, the

quotient space is a Kähler manifold and we refer to g as a regular Sasakian metric.

Otherwise the quotient is a Kähler orbifold and g is referred to as a quasi-regular

metric. The Reeb vector field is also interesting from a physics perspective. The

symmetry generated by the Reeb vector field corresponds, in the dual field theory, to

R-symmetry. In addition, the volume of the Sasaki-Einstein manifold corresponds

to the central charge, a, of the dual CFT, and volume minimisation on the gravity

side corresponds to a-maximisation on the field theory side [91, 92]. Because of the

interest in string theory for Sasaki-Einstein manifolds, it is natural to ask how they

interact with T-duality. Answering that question is the primary purpose of this

section.

It is a well-known result, following from a simple calculation, that the Ricci scalar

of the cone metric is related to the Ricci scalar of the base.
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Lemma 2.1.5. Let (M, g) be a Sasakian manifold of dimension 2D − 1, and let

XM = (X i, Xr) denote coordinates on the cone. The Ricci curvature tensor of the

cone metric, R̃MN , decomposes as

R̃MN =

R̃ij R̃ir

R̃rj R̃rr

 ,

where the components can be written in terms of the base metric, gij, and the Ricci

curvature tensor on the base, Rij:

R̃ij = Rij − 2(D − 1)gij

R̃ir = 0

R̃rj = 0

R̃rr = 0.

Proof. This proof reduces to a straightforward calculation. The metric components

decompose as

g̃MN =

g̃ij g̃ir

g̃rj g̃rr

 ,

where

g̃ij = r2gij

g̃ir = 0

g̃rj = 0

g̃rr = 1.

We can then calculate the Christoffel symbols of the cone in terms of the Christoffel
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symbols of the base:

Γ̃ijk = Γijk

Γ̃irj = Γ̃ijr =
1

r
δij

Γ̃rjk = −rgjk

Γ̃rri = Γ̃rir = 0

Γ̃rrr = 0.

The result then follows from the formula for the Ricci curvature tensor:

R̃MN = ∂KΓ̃KNM − ∂N Γ̃KKM + Γ̃KKLΓ̃LNM − Γ̃KNLΓ̃LKM .

Corollary 2.1.6. Let (M, g) be a Sasaki-Einstein manifold of dimension 2D − 1.

Then M is an Einstein manifold with λ = 2(D − 1).

Proof. Since a Sasaki-Einstein manifold is a Riemannian manifold whose cone is

Ricci flat (and Kähler), this follows immediately from Lemma 2.1.5.

Suppose now we have a manifold, E, with metric and B-field, (g,B) which we

can T-dualise, giving us a dual metric and B-field (ĝ, B̂) on the dual manifold Ê.

On both E and Ê, we can construct the cone manifold and cone metric. A natural

question to ask is whether the cone metrics of the original space and the dual space

are related by a T-duality transformation. That is, is there a T-duality map which

makes the following diagram commute?

C(E) C(Ê)

E Ê

T − duality?

T − duality

(2.41)

A few moments thought reveals that the answer to this question is no. The com-

ponent of the metric corresponding to the isometry direction can’t possibly be the

same in C(E) and C(Ê). On E, the component along the isometry direction is
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denoted by gθθ, and the Buscher rules tell us that the corresponding component in

Ê is 1
gθθ

. If we conify this we get r2

gθθ
. On the other hand, if we conify first we get

the component r2gθθ in C(E). Performing a T-duality on this will give us 1
r2gθθ

.

Since we have a decomposition of the geometric quantities for a manifold with

circular dimensions à la Kaluza-Klein, as well as a natural decomposition of the

geometric quantities for Sasakian manifolds, we can ask what we can say about

manifolds that have both structures. To that end, suppose that (E, g) is a Sasakian

manifold of dimension 2D− 1, and suppose also that E is the total space of a circle

bundle π : E →M .17 The spaces fit into the following diagram:

C(E)

E

M

dim(C(E)) = 2D

dim(E) = 2D − 1

dim(M) = 2D − 2

Choose coordinates Xµ = (X i, Xθ) for E, and suppose that the metric on E has the

Kaluza-Klein decomposition of (2.29):

gµν =

ḡij + AiAj Ai

Aj 1

 .

Note that we have rescaled the fibers to have constant length 1 (that is, set σ = 0).

This will affect the geometry, but not the topology of the space. The metric on the

cone then decomposes, in the coordinates XM = (X i, Xθ, Xr), as

g̃MN =


r2ḡij + r2AiAj r2Ai 0

r2Aj r2 0

0 0 1

 . (2.42)

The Ricci curvature tensor of the cone, R̃MN , decomposes from Lemma 2.1.5 into

geometric quantities on E. Geometric quantities on E, however, decompose by

Lemma 2.1.1 into geometric quantities on M , so we should be able to write the

Ricci curvature tensor of the cone entirely in terms of geometric quantities on the

base. This is the content of the next lemma.

17This notation will be described more in Section 2.2.2.
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Lemma 2.1.7. Let (E, g) be a Sasakian manifold, and suppose that E is also the

total space of a circle bundle π : E → M . Then the cone metric (2.42) has the

following Ricci curvature tensor:

R̃MN =


R̃ij R̃iθ R̃ir

R̃θj R̃θθ R̃θr

R̃rj R̃rθ R̃rr

 ,

where

R̃ij = 1
4
FmnF

mn − 2(D − 1) (2.43a)

R̃θi = R̃iθ = 1
4
AiFmnF

mn + 1
2
∇mFim − 2(D − 1)Ai (2.43b)

R̃θθ = R + 1
4
AiAjFmnF

mn + 1
2
Ai∇mFjm + 1

2
Aj∇mFim

− 1
2
FikFj

k − 2(D − 1)ḡij − 2(D − 1)AiAj. (2.43c)

If, in addition, (E, g) is Sasaki-Einstein, then we have the following identities:

1
4
FmnF

mn = 2(D − 1) (2.44a)

∇mFim = 0 (2.44b)

Rij = 1
2
FikFj

k + 2(D − 1)ḡij. (2.44c)

Proof. Equations (2.43) follow by combining the results of Lemma 2.1.5 and Lemma

2.1.1. Equations (2.44) then follow directly from (2.43) by setting the left hand sides

to zero, as is required for a Sasaki-Einstein manifold.

This lemma has the following interesting corollary.

Corollary 2.1.8. Let E = M × S1, equipped with a product metric g = ḡ + dθ2.

Then (E, g) is a Sasaki-Einstein manifold if and only if M is a point.

Proof. If M is a point, then E = S1, which is Sasaki-Einstein. For the converse

direction, suppose that E = M × S1 where the product metric is Sasaki-Einstein,

and apply the results of Lemma 2.1.7. For this metric, we have Ai = 0, and so

Fij = 0. It follows from (2.44a) that D = 1, and therefore dim(E) = 1.

A direct result of this corollary is that T-duality does not preserve the property

of being a Sasaki-Einstein manifold. As we will see in Section 2.2.2, the T-dual of
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a spacetime with no flux is always a trivial bundle. That is, if we begin with a

Sasaki-Einstein manifold (of dimension D > 1) with no flux, the T-dual will be a

trivial bundle which, by Corollary 2.1.8, cannot be Sasaki-Einstein. The T-duality

between S3 with no flux (which is Sasaki-Einstein) and S2×S1 with one unit of flux

(which is not Sasaki-Einstein) provides a concrete realisation of this statement.18

2.1.8 The Ramond-Ramond fluxes

The transformation rules that we have discussed so far have related only to the

massless bosonic fields of type II string theory - the so-called NS-NS fields. In order

to discuss T-duality as a symmetry of the full string theory, one should include a

discussion of the RR fluxes. This was first done for abelian T-duality in [10] from

a target space perspective, and later given a worldsheet derivation in [43, 81, 6].

There are also approaches using the pure spinor formalism [9], and as a canonical

transformation [117]. We will not include a thorough discussion of the RR fluxes

in this chapter - we wish to only recall some basic facts about the fluxes which will

be pertinent to our discussion in Section 2.2.4. A description of how the RR fields

transform under T-duality will can be found in [115], where the transformation of

the RR fluxes under non-abelian T-duality is given (which includes, as a special

case, abelian T-duality).

Recall that the RR fluxes are objects to which a Dp-brane couples. They are

differential (p + 2)-forms, Fp+2. For type IIA supergravity p is even, and for type

IIB supergravity p is odd. In terms of potentials, we have

Fp+2 = dCp+1 +H ∧ Cp−1.

These are not closed, but satisfy the Bianchi identities

dFp+2 −H ∧ Fp = 0.

D-branes, cohomology, and K-theory

When the H-flux is zero, the RR fluxes are closed, and therefore determine classes

in the (de-Rham) cohomology of spacetime. In fact, quantum consistency requires

these to live in cohomology with integral coefficients. When the H-flux is non-zero,

18This T-duality example is discussed from the geometric point of view in Section 2.1.4, and

from a topological point of view in 2.2.3.
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however, the fluxes are not closed, and therefore do not determine classes in ordinary

cohomology. We can assemble the fluxes into a polyform, G,

G =
∑
p

Fp+2

which is closed under the twisted differential, dH :

dHG := dG−H ∧G = 0.

Since H is a closed 3-form, we have

(dH)2α = (d−H∧)(dα−H ∧ α)

= d(dα)− d(H ∧ α)−H ∧ dα +H ∧H ∧ α

= − dH ∧ α +H ∧ dα−H ∧ dα

= 0.

The twisted differential is nilpotent, and determines its own cohomology theory on

the Z2-graded de Rham complex Ω•.

RR fluxes are sourced by D-branes, and so it would seem that D-brane charge is

therefore classified by the (twisted) cohomology of spacetime. On the other hand,

it has been argued that D-brane charge should actually live in the K-theory of

spacetime, rather than the cohomology [97, 125]. This argument, following from

Sen’s conjecture that all brane configurations can be obtained from stacks of space-

filling D9 and anti-D9 branes by tachyon condensation, proceeds as follows. Consider

a system of n coincident D9-branes, and m coincident anti-D9-branes. The zero mass

states in the spectrum of the configuration of D9-branes at low energies is a set of

interacting quantum fields which give rise to a U(n) gauge theory. We label such

a configuration by (E,F), where E is a U(n) complex gauge bundle carried by the

D-branes and F is a U(m) complex gauge bundle carried by the anti-D-branes.

The invariance of D-brane charge under tachyon condensation leads us to regard

as equivalent the configurations (E,F) and (E⊕H,F ⊕H), since the configuration

(H,H) can annihilate to the vacuum. Thus the allowed configurations, and therefore

the conserved D-brane charges, are classified by pairs of (complex) vector bundles

over the spacetime M , modulo the above equivalence relation. This is the very

definition of the (topological) K-theory of the spacetime M .
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In the presence of a non-trivial H-flux, this classification was shown to be in-

consistent, and instead the appropriate generalised cohomology theory was twisted

K-theory [70] (see also [125]). If T-duality is an honest symmetry of string theory,

one would expect that T-dual spaces have the same sets of D-brane charges. We

expect, therefore, that T-duality should determine an isomorphism in twisted K-

theory. Such an isomorphism was one of the main achievements of the topological

description of T-duality [17]. In Section 2.2.5 and Section 2.2.6 we shall see that

performing multiple T-dualities can take us outside the realm of manifolds - we en-

counter non-commutative or even non-associative spaces! Such spaces have natural

descriptions in terms of algebras, and the appropriate generalisation of K-theory

to this setting is algebraic K-theory. As we shall see, topological T-duality in this

context also includes a statement of the algebraic K-theories.

We finally mention that there are arguments that twisted K-theory is not, in

fact, the correct generalised cohomology theory to describe D-brane charge. This

argument is based on the lack of covariance with S-duality [46] (see also [50] for a

very readable review). We will not address this open problem.

2.1.9 Multiple abelian T-dualities

The Buscher rules generalise straightforwardly to multiple abelian isometries. We

find it instructive to explicitly compute these transformation rules, following [14].

We take the action of (2.1), and use conformal invariance of the sigma model to

choose a flat metric hαβ = ηαβ for the worldsheet. Switching to complex coordinates

(z, z̄), instead of (σ, τ), and defining EMN = gMN +BMN , we have

S =
1

4π

∫
Σ

d2z EMN ∂X
M ∂̄XN . (2.45)

As before, we will ignore the dilaton in what follows. We now assume that the action

has a U(1)n isometry, that is, there are n commuting Killing vectors. We choose

coordinates (XM) = (Xµ, Xm) adapted to these Killing vectors, and decompose E

as

EMN =

Eµν Eµn

Emν Emn
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The infinitesimal variations of the coordinates are given by

δεX
µ = 0

δεX
m = εm.

As before, we can promote this global symmetry to a local one by gauging. We

introduce abelian gauge fields Am = Am dz + Ām dz̄, and minimally couple them to

the fields Xm by introducing the gauge covariant derivatives DXm = dXm − Am.

Since dXm = ∂Xm dz + ∂̄Xm dz̄, this corresponds to the replacement:

∂Xm → DXm = ∂Xm − Am

∂̄Xm → D̄Xm = ∂̄Xm − Ām.

The U(1)n curvature is Fm = dAm = 1
2

(
∂Ām − ∂̄Am

)
d2z, and introducing the term

1
2π

∫
Σ
X̂mFm to the minimally coupled action, we obtain the gauged action

SG =
1

4π

∫
Σ

d2z

[
Eµν∂X

µ∂̄Xν + Eµn∂X
µD̄Xn + EmνDX

m∂̄Xν

+ EmnDX
mD̄Xn + X̂m

(
∂Ām − ∂̄Am

) ]
. (2.46)

The local gauge transformations leaving this action invariant are

δεX
µ = 0

δεX
m = εm

δεAm = dεm

δεX̂ = 0,

corresponding to the following transformations:

Xµ → Xµ

Xm → Xm + εm

Am → Am + ∂εm

Ām → Ām + ∂̄εm.

We first note that we can integrate out the auxilliary coordinates in the action (2.46)

and gauge fix to obtain the original action (2.45). Explicitly, the Euler-Lagrange

equations for X̂m are

∂L
∂X̂m

= ∂̄Am − ∂Ām = 0.
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Solving this for Am = Am dz + Ām dz̄ gives Am = dΛm = ∂Λm dz + ∂̄Λm dz̄, or in

other words, Am = ∂Λm and Ām = ∂̄Λm. We then substitute this into the gauged

action and use gauge invariance to set Am and Ām to zero, thus recovering the

original model (2.45). On the other hand, we can integrate out the gauge fields Am

and Ām. The Euler-Lagrange equation for Am gives an equation containing Ām,

and similarly, the Euler-Lagrange equation for Ām gives an equation containing Am.

Solving these equations for the corresponding variable gives

Am = ∂Xm + Eµn(E−1)nm∂X
µ + (E−1)nm∂X̂n

Ān = ∂̄Xn + (E−1)nsEsν ∂̄X
ν − (E−1)ns∂̄X̂s.

These can then be inserted into the gauged action (2.46). With a bit of algebra,

integration by parts, and some patience, one arrives at the following action:

Ŝ =
1

4π

∫
Σ

d2z

[
(Eµν − Eµm(E−1)mnEnν)∂X

µ∂̄Xν + Eµm(E−1)mn∂X
µ∂̄X̂n

− (E−1)mnEnν∂X̂m∂̄X
ν + (E−1)mn∂X̂m∂̄X̂n

]
.

This new action has an interpretation of a non-linear sigma model defined on the

coordinates (Xµ, X̂m), with new fields ÊMN , expressed in terms of the old fields

EMN as Êµν Êµn

Êmν Êmn

 =

 Eµν − Eµm(E−1)mnEnν Eµm(E−1)mn

−(E−1)mnEnν (E−1)mn

 . (2.47)

To obtain the dual metric and the dual B-field, we can simply extract the symmetric

and antisymmetric components of ÊMN :

ĝMN = 1
2

(
ÊMN + ÊNM

)
(2.48)

B̂MN = 1
2

(
ÊMN − ÊNM

)
. (2.49)

The transformation rules (2.47) are the Buscher rules for multiple abelian isometries,

and taking n = 1 recovers the original Buscher rules (2.9) for a single abelian

isometry. We note that the expression Êµν = Eµν − Eµm (E−1)mnEnν is simply the

Schur complement, E/Emn, of the original matrix, where the Schur complement,

M/D of a block matrix

M =

 A B

C D
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is defined by

M/D = A−BD−1C.

2.2 Topology

The Buscher rules are an inherently local set of transformation rules. They describe

transformation rules for the metric and B-field written in a particular set of local

coordinates. Given this local description, it is interesting to ask if we can say any-

thing about this procedure from a global, i.e. topological, perspective. In particular,

what is the topology of the dual space? Since the dual space is comprised of the base

space M , together with the fibers described by the Lagrange multiplier coordinates,

there are two components to this question: what is the topology of the fibers, and

how are these fibers patched together globally over the base?

The answer to the first question is included in the next section. The short

summary is that in string theory, the topology of the fibers must be preserved under

abelian T-duality. The second part of the question is answered in Section 2.2.2.

2.2.1 Topology of the fibers

The Buscher procedure relies on the existence of a Killing vector field k on the orig-

inal spacetime M . The flow of this vector field generates a one-parameter group of

diffeomorphisms of M , and since k is Killing, these diffeomorphisms are isometries.

The orbit of a single point under this group of diffeomorphisms is a one-dimensional,

immersed submanifold - either R or S1. From a classical perspective, there is noth-

ing which constrains these orbits. Indeed, as a solution generating technique in

supergravity, one can dualise along non-compact directions (see for example, Sec-

tion 2.1.4). We shall see, however, that higher genus considerations constrain the

periodicities of the dual coordinates. This argument, which we will now reproduce,

was first done in [109], although [3] and [121] also have very readable reviews.

In string theory we usually want our original spacetime to be compact, so we

often assume that the orbit of each point is compact - that is, the orbit of each

point is homeomorphic to S1. This is equivalent to asking that the R action of the

isometry on M descends to a U(1) action. In practical terms this means that in the

adapted coordinates {X i, θ} we have chosen, in which the Killing vector k is simply
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k = ∂θ, the coordinate θ is periodic.

Let us now be more careful about topological considerations. In Section 2.1.1

we carried out the Buscher procedure to gauge the isometries of a non-linear sigma

model. Once we had the gauged model, the equation of motion for the Lagrange

multiplier forced the curvature F = dA of the gauge field to vanish. We concluded

from this that A = dχ, and so there was an appropriate gauge transformation

setting A to zero, thus recovering the original model. The key observation here is

that although that argument always holds locally, this conclusion is invalid globally

in a non-trivial topology. More precisely, the cohomology of a manifold determines

whether a differential form on the manifold can be closed but not exact. If A is

a U(1) gauge field on Σ with vanishing curvature, then A determines a class [A]

in H1(Σ,Z). When the worldsheet is spherical, this cohomology vanishes, and so

A = dχ is true globally. On a genus g worldsheet, Σg, we have H1(Σg,Z) ∼= Z2g,

and so we need to be more careful.

After performing the Buscher procedure, we obtain a new spacetime with dual

coordinate θ̂ parameterising dual fibers. These dual fibers are also one dimensional,

and we can now ask whether they are compact (S1), or noncompact (R). To answer

this, we now consider the standard Buscher procedure on a genus 1 worldsheet.19 A

genus 1 worldsheet has two non-trivial homology cycles, which we label (a, b). The

gauged action (2.7) contains the Lagrange multiplier term

1

2π

∫
Σ

F θ̂,

which, after an integration by parts, becomes

1

2π

∫
Σ

dθ̂ ∧ A. (2.50)

Integrating out the Lagrange multiplier term forces the gauge field to be flat, but it

could have nontrivial holonomies around the cycles (a, b). This would cause problems

with the duality procedure, since the dual theory would then have twisted sectors.

We now consider the variation of the term (2.50) in the action. Since Σ is

topologically non-trivial, we can have large gauge transformations

δεA = dε = dε+ γ,

where ε ∈ C∞(Σ) and γ is closed but not exact. Note that since δεθ = ε, and θ

is multivalued with period 2π, we have that ε is also multivalued with period 2π.

19The extension to genus g worldsheets is straightforward.
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That is, γ ∈ H1(Σ,Z) and so
∮
C
γ ∈ 2πZ for some closed contour C in Σ. Then the

relevant term in the variation of the action becomes

δεS =
1

2π
δε

(∫
Σ

dθ̂ ∧ A
)

=
1

2π

∫
Σ

dθ̂ ∧ δεA

=
1

2π

∫
Σ

dθ̂ ∧ dε+
1

2π

∫
Σ

dθ̂ ∧ γ

=
1

2π

∫
Σ

d
(
−ε dθ̂

)
+

1

2π

∫
Σ

dθ̂ ∧ γ

=
1

2π

∫
Σ

dθ̂ ∧ γ.

Using the Riemann bilinear identity, this becomes

δεS =
1

2π

(∮
a

dθ̂

∮
b

γ −
∮
a

γ

∮
b

dθ̂

)
.

In order for this not to contribute to the path integral, we require δεS ∈ 2πZ for

each such gauge transformation γ. It follows that∮
C

dθ̂ ∈ 2πZ.

That is, θ̂ must be multivalued with period 2π.

Starting with a compact fiber, higher genus considerations lead us to the con-

clusion that the fibers in the dual space must also be compact. If we start with a

non-compact fiber, then by applying the same argument to the dual space, we con-

clude that the dual fiber must also be non-compact (if it were compact, then that

same argument says that its dual, i.e. the original fiber, would have to be compact).

Thus in string theory, the compactness or noncompactness of the fibers is preserved

under T-duality.

2.2.2 Topological T-duality for circle bundles

In the early days of T-duality, it was noticed that there are examples of T-duality

which not only change the geometry of the background, but also change the topology

[3]. A simple example is given by S3 with the round metric, and no H-Flux. Per-

forming a T-duality along the isometry generating the Hopf fibration (see Appendix

A.3) gives the T-dual which is S2×S1, with one unit of H-flux. The relation between
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the flux and topology of T-dual spacetimes is known as topological T-duality. This

was first described in [16, 17], and studied thoroughly since [22, 23, 28, 93, 94, 95].

From a geometric perspective, the Buscher rules intertwine the B-field with the

metric - they mix the geometry with the gauge field. From a topological perspec-

tive, the Buscher rules intertwine a topological invariant of the spacetime with the

cohomology class of the field strength - they mix the topology with the flux. Topo-

logical T-duality is the study of the topological aspects of T-duality, forgetting the

intricacies of the geometry. It is necessarily not the entire picture, but more of a

topological shadow of what underlies the traditional notion of T-duality.

The starting point of topological T-duality is a string background which admits

a description in terms of an (oriented) S1 bundle E over a base M :

S1 E

M

π

also written as π : E → M . The fibers have a continuous circle action on them

(rotation), and we assume that this action preserves the fibers, and is both tran-

sitive,20 and free.21 Such a structure defines a principal U(1)-bundle over M . The

total space E is a fiber bundle, and so is locally homeomorphic to S1×M (although

we allow the possibility that it may not be a cartesian product globally). We will

also assume that M is connected.

The relevant object to describe the Kalb-Ramond field is the H-flux - a closed,

degree 3 differential form on E. The H-flux is the curvature of the B-field - locally

it satisfies H = dB. We assume that H has integral periods. Since H is closed, it

therefore determines a class H in H3(E,Z). If B is a globally-defined differential 2-

form, then H = dB globally, and H is trivial in H3(E,Z). The topological properties

of the T-duality map don’t depend on the details of the B field, but only on the

class H.

The topology of the bundle E is characterised by its isomorphism class. The

set of isomorphism classes of principal G bundles over a base M are in bijective

20A group action G ↪→ X is transitive if for all x, y ∈ X there is a g ∈ G such that g · x = y
21A group action G ↪→ X is free if there are no fixed points. That is, if g ∈ G and g · x = x for

some x ∈ X, then g is the identity.
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correspondence with homotopy classes of maps from M to the classifying space:

PrinG(M) ' [M,BG].

Here, BG is the base space of the universal bundle π : EG → BG,22 which has the

property that any principle G-bundle is a pullback of the principal bundle

f ∗(EG) EG

M BG

π′ π

f

and any two bundles are isomorphic iff the maps, f , defining them are homotopic. A

model for BU(1) is the space CP∞, which is an Eilenberg-MacLane space K(Z, 2),

and so has the property that [M,K(Z, 2)] ' H2(M,Z).23 Thus principle U(1)-

bundles over a space M are classified by H2(M,Z). The element in H2(M,Z)

characterising the bundle π : E → M is realised by the first Chern class c1(LE)

of the associated complex line bundle LE = E ×U(1) C. It can be computed by

calculating the (suitably normalised) curvature of a principal U(1)-connection for

E.

In summary, topological T-duality begins the following topological data: A prin-

cipal U(1) bundle π : E → M , together with a pair of cohomology classes (F,H).

The class F ∈ H2(M,Z) is the first Chern class, and determines the isomorphism

class of the bundle, whilst the class H ∈ H3(E,Z) is the cohomology class of the

curvature of the B-field. We will see that T-duality intermixes the F and the H.

Let us pause for a moment to talk about the relationship between this data and

the data we have in the usual Buscher approach to T-duality. The normal Buscher

procedure begins with a target spacetime E, together with a metric g, Kalb-Ramond

field B, and a Killing vector field k satisfying

Lkg = LkB = 0.

The flow of the vector field k generate the U(1) isometries of P . The orbits of points

are circles, which we identify as the fibers of the bundle π : E →M . In other words,

22BG is only defined up to homotopy equvialence
23Technically speaking, M must have the structure of a CW complex for this to be true. This

will be the case in all the examples we are interested in.
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M is defined to be the quotient E/S1, i.e. orbit space. The H-flux is the field

strength of the B-field, and must be closed due to the Bianchi identity. In order for

H to give a well-defined contribution to the path integral, we must have∫
Σ3

X∗H ∈ 2πZ

for some Σ3 with Σ = ∂Σ3, and for all maps X : Σ → E. That is, H is a closed

3-form with integral periods, and therefore determines a class in H3(E,Z).

Choosing a connection A = dθ + Ai dX
i for the fibers allows us to decompose

the metric and B-field:24

ds2 = ḡij dX i dXj + (dθ + Ai dX
i)2 (2.51)

B = 1
2
Bij dX i ∧ dXj +Bi dX

i ∧ dθ

= 1
2
(Bij −BiAj + AiBj) dX i ∧ dXj +Bi dX

i ∧ (dθ + Ai dX
i). (2.52)

The connection, A, is the coordinate description of a principal U(1)-connection on a

principal U(1)-bundle π : E →M . The (cohomology class of the) curvature F = dA

of this connection is the element H2(M,Z) classifying the isomorphism class of the

bundle.

As we saw in Section 2.1.5, the Buscher rules correspond to the interchange of

Ai and Bi, giving us the dual metric and B-field:

d̂s2 = ḡij dX i dXj + (dθ̂ +Bi dX
i)2 (2.53)

B̂ =
(
Bij −BiAj + AiBj

)
dX i ∧ dXj + 2Ai dX

i ∧ dθ̂

= Bij dX i ∧ dXj + 2Ai dX
i ∧ (dθ̂ +Bj dXj). (2.54)

We interpret the quantity Â = dθ̂ + Bi dX
i as a connection on a new circle bundle

π̂ : Ê →M over the same base:

E Ê

M

π π̂

The curvature F̂ = dÂ of this connection is the element H2(M,Z) classifying the

isomorphism class of the bundle π̂ : Ê → M . Since differential forms on E and Ê

24c.f. Section 2.1.5.
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live in different bundles, we cannot compare them directly. We can, however, form

the correspondence space:

E ×M Ê = {(a, b) ∈ E × Ê : π(a) = π̂(b)}, (2.55)

which is simultaneously the pullback of the bundle π : E → M along π̂, and the

pullback of the bundle π̂ : Ê →M along π:

E ×M Ê

E Ê

M

p̂ = id.× π̂ p = π × id.

π π̂

Then comparing the expressions for B and B̂ given by (2.52) and (2.54),25 we find:

B̂ −B = A ∧ Â− dθ ∧ dθ̂. (2.56)

Taking the exterior derivative of both sides and rearranging, we get

H − F̂ ∧ A = Ĥ − F ∧ Â. (2.57)

Equation (2.57) holds on the correspondence space E ×M Ê, but the left hand side

of the equation is the pullback of a form on E. Similarly, the right hand side is the

pullback of a form on Ê, and so we conclude they are both equal to some form H3

on the base M . That is, we have

H = H3 − F̂ ∧ A (2.58a)

Ĥ = H3 − F ∧ Â. (2.58b)

This is the key result motivating the definition of topological T-duality. Interpreted

geometrically, this result says that under T-duality, the “legs” of theH-flux along the

circle fiber get interchanged with the curvature of the connection, and the component

25We have omitted pullbacks to avoid unnecessary clutter.
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of the flux living on the base is unchanged. Integrating these equations over the S1

fibers, we obtain:

F̂ =

∫
S1

H (2.59a)

F =

∫
Ŝ1

Ĥ. (2.59b)

Description using Gysin sequences

As described in Appendix A.5.3, a sphere bundle has an associated exact sequence

in cohomology, known as the Gysin sequence.26 For an S1 bundle, π : E → M , the

sequence is

· · · Hn(M,Z) Hn(E,Z) Hn−1(M,Z) Hn+1(M,Z) · · ·π∗ π∗ F∪

We now see that the content of topological T-duality fits nicely into the n = 3

segment of this sequence:27

· · · H3(M) H3(E) H2(M) H4(M) · · ·π∗ π∗ F∪ (2.60)

The H-flux is an element of H3(E), so we can look at its image under the pushfor-

ward map π∗. The image, F̂ = π∗H, is an element of H2(M), and therefore defines

a new S1-bundle π̂ : Ê →M . Since the Gysin sequence is exact, the composition of

two maps is identically zero, and so it follows that F ∪ F̂ = 0.

· · · H3(M) H3(E) H2(M) H4(M)

H F̂ 0

π∗ π∗ F∪

The class F̂ defines the topology of the dual bundle, but how do we get the dual

flux? To find that, consider the dual bundle π̂ : Ê →M defined (up to isomorphism)

by the element F̂ = π∗H. Since it, too, is a principal S1 bundle, we can look at the

Gysin sequence associated to it:

· · · H3(M) H3(Ê) H2(M) H4(M) · · ·π̂∗ π̂∗ F̂∪ (2.61)

26Recall that an exact sequence is one in which the image of each map is equal to the kernel of

the following map.
27Note that for the remainder of this section we will suppress the Z in Hk(M,Z).
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Since F ∪ F̂ = F̂ ∪ F = 0 by our earlier argument, the image of F under the map

F̂∪ in the new Gysin sequence is zero. The new Gysin sequence is also exact, so F

must be the image of an element in H3(Ê):

· · · H3(M) H3(Ê) H2(M) H4(M)

Ĥ F 0

π̂∗ π̂∗ F̂∪

That is, F = π̂∗Ĥ. We have thus arrived at the topological description of T-duality.

Given a circle bundle π : E →M and a H-flux, together described by a pair (F,H),

we construct a new circle bundle and a new H-flux described by the pair (F̂ , Ĥ),

satisfying

F = π̂∗Ĥ (2.62a)

F̂ = π∗H. (2.62b)

Note that this is simply the cohomological version of (2.59). It is clear that there

is some ambiguity here in the choice of Ĥ; if we add to Ĥ a term which is in the

kernel of π̂∗, then the additional term won’t change (2.62). To consider the origin

of this ambiguity, we will need to examine the following double complex:

0 H1(M) H1(E) H0(M) · · ·

H1(M) H3(M) H3(E) H2(M) · · ·

H1(Ê) H3(Ê) H3(E × Ê) H2(Ê) · · ·

H0(M) H2(M) H2(E) H1(M) · · ·

...
...

...
...

π∗ π∗

F∪ π∗ π∗

π̂∗F ∪ p∗ p∗

F∪ π∗ π∗

π̂∗

π̂∗

F̂∪

π̂∗

π̂∗

π∗F̂∪

p̂∗

p̂∗

F̂∪

π̂∗

π̂∗

(2.63)

All rows and columns in the double complex are exact, and all squares commute.

The first, second, and fourth rows are simply different sections of the Gysin sequence

(2.60) for the bundle π : E → M . Similarly, the first, second, and fourth columns
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are different sections of the Gysin sequence (2.61) for the bundle π̂ : Ê → M . The

third row and third column are a little more complicated. Recall the correspondence

space relating the original space E and the dual space Ê:

E ×M Ê

E Ê

M

p̂ = id.× π̂ p = π × id.

π π̂

The bundle π̂ : Ê →M pulls back along the map π to the bundle p̂ : E×M Ê → E.

This bundle is also principal circle bundle, now over E, whose first Chern class is

simply the pullback of the first Chern class of π̂ : Ê → M . That is, the first Chern

class of the bundle p̂ : E ×M Ê → E is π∗F̂ . We now see that the third column of

the double complex (2.63) is just a section of the Gysin sequence associated to the

bundle p̂ : E ×M Ê → E.

Similarly, the bundle π : E → M pulls back along the map π̂ to the bundle

p̂ : E ×M Ê → E:

E ×M Ê

E Ê

M

p̂ = id.× π̂ p = π × id.

π π̂

The first Chern class of the bundle p : E ×M Ê → Ê is again given by a pullback,

π̂∗F , and the third row of the double complex (2.63) then corresponds to the Gysin

sequence of the principal bundle p : E ×M Ê → Ê. We will now prove the following

lemma, which will help us interpret the ambiguity in our choice of Ĥ.

Lemma 2.2.1. Let (F,H) be a pair corresponding to a circle bundle π : E → M
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with an H-flux. Let F̂ = π∗H define a dual circle bundle π̂ : Ê →M . Then

p̂∗H = p∗Ĥ

for some Ĥ ∈ H3(Ê)

Proof. This proof requires a bit of diagram chasing in the double complex 2.63. We

begin with H ∈ H3(E), and look at its image F̂ under π∗, moving horizontally

along the second row of the diagram. Then, in the third column, we notice that

since F̂ = F̂ ∪ 1, we must have π̂∗(F̂ ) = 0 by exactness.

1 · · ·

H F̂ · · ·

0 · · ·

· · ·

...
...

...
...

π∗
F̂∪

π̂∗

Now, since the squares in this diagram are commutative, we have π̂∗π∗H = p∗p̂
∗H =

0. Thus p̂∗H is in the kernel of p∗, and so by exactness of the third row it must be

in the image of p∗. That is, there is some Ĥ ∈ H3(Ê) such that p̂∗H = p∗Ĥ.

· · ·

H · · ·

Ĥ 0 · · ·

· · ·

...
...

...
...

p∗ p∗
p̂∗

Let us now discuss the uniqueness of the dual H-flux. Suppose we had two fluxes,

Ĥ and Ĥ ′, each satisfying π̂∗Ĥ = π̂∗Ĥ
′ = F . Then their difference d = Ĥ − Ĥ ′ is in
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the kernel of π̂∗:

π̂∗d = π̂∗Ĥ − π̂∗Ĥ ′ = F − F = 0.

Since π̂∗d = 0, exactness of the second column tells us that the difference must be

in the image of π̂∗. That is, d = π̂∗α, for some α ∈ H3(M).

· · ·

α · · ·

d · · ·

0 · · ·

...
...

...
...

π̂∗

π̂∗

This tells us that if there is some ambiguity, it must come from a form on the base.

From a physical perspective, however, we expect that this is unchanged under T-

duality. That is, T-duality should not affect the part of the flux which ‘lives’ on

the base manifold M . How can we encode this assumption in the language of this

double complex? We claim that it is encoded by the cohomological version of (2.56).

That is, on the correspondence space, we have:

Ĥ −H = d(A ∧ Â).

Explicitly writing the projections we omitted earlier, this means that in cohomology

p∗Ĥ − p̂∗H = 0.

That is, p∗Ĥ = p̂∗H in H3(E ×M Ê,Z). To see why this enforces the assumption

that the flux living on the base is unchanged under duality, consider what happens

if we have a flux H, and a dual flux Ĥ, satisfying

p̂∗H − p∗Ĥ = 0. (2.64)

Now change the dual flux by the pullback of a form on the base, Ĥ → Ĥ ′ = Ĥ+π̂∗α.

In order for (2.64) to remain true, how must we change the original flux H → H ′?
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We calculate

p̂∗H ′ − p∗Ĥ ′ = p̂∗H ′ − p∗Ĥ − p∗π̂∗α

= p̂∗H ′ − p̂∗H − p∗π̂∗α

= p̂∗H ′ − p̂∗H − p̂∗π∗α

= p̂∗(H ′ −H − π∗α).

It follows that (2.64) is satisfied provided that H ′ = H + π∗α, justifying our claim

that (2.64) is the cohomological version of the physical assumption that the flux

on the base is unchanged.28 Before, we were able to show the existence of a dual

H-flux Ĥ which satisfied F = π̂∗Ĥ. With our assumption that the flux on the base

is unchanged after duality, we are now in a position to prove the following theorem,

which asserts uniqueness of the found dual H-flux.

Theorem 2.2.2 (Bouwknegt, Evslin, Mathai [16], Bunke, Schick [28]). Let (F,H)

be a pair corresponding to a circle bundle π : E → M with an H-flux. Then there

is a pair, (F̂ , Ĥ), describing a dual circle bundle π̂ : Ê → M with a dual H-flux,

satisfying

F = π̂∗Ĥ (2.65a)

F̂ = π∗H. (2.65b)

If the the flux and the dual flux also satisfy

p̂∗H = p∗Ĥ, (2.66)

then the dual flux is unique up to a bundle automorphism.

Proof. We have already shown existence of a Ĥ satisfying (2.65), so we just need

to show that if Ĥ also satisfies (2.66), then it is unique. This will also consist of a

bit of diagram chasing. As before, we suppose there are two such H-fluxes, and let

d be their difference d = Ĥ − Ĥ ′. We have already seen that π̂∗d = 0, but now we

28The astute reader, looking at the third column of (2.63), may wish to point out that H ′−H−

π∗α need not be zero, since it could be in the image of π∗F̂∪. This will be discussed in the proof

of Theorem (2.2.2).
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also see that p∗d = 0. This follows from (2.66), since

p∗d = p∗Ĥ − p∗Ĥ ′ = p̂∗H − p̂∗H = 0.

Exactness then says that d = π̂∗F ∪ β, for some β ∈ H1(Ê). The pushforward of

this element, n = π̂∗β, maps to zero under the map F∪, since the squares of the

double complex commute.

· · ·

· · ·

β d 0 · · ·

n 0 · · ·

...
...

...
...

π̂∗F∪ p∗

F∪
π̂∗ π̂∗

Thus F ∪ n = 0, and so either n = 0, or F = 0.29 If F = 0, then d = 0∪ β = 0, and

the dual flux is unique. If n = 0, then β = π̂∗γ by exactness of the first column,

and it follows that d = π̂∗(F ∪ γ) by commutativity of the square.

· · ·

γ · · ·

β d · · ·

n = 0 · · ·

...
...

...
...

F∪

π̂∗F∪
π̂∗

π̂∗

π̂∗

That is, the ambiguity of the dual flux is actually determined by an element γ ∈

H1(M). We know, however, that since U(1) is a model for K(Z, 1) there is a natural

isomorphism [M,U(1)] ∼= H1(M,Z). That is, the element γ ∈ H1(M) corresponds

29Recall that n ∈ H0(M) = Z, since M is connected.
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to a map ϕ : M → U(1). Such a map induces an automorphism, ϕ, on E where the

U(1) acts by rotation on the fibers:

E E

M

π π

ϕ

It can then be shown that ϕ∗Ĥ ′ = Ĥ (see [28] for details).

The proof that two putative fluxes are related by the pullback of an automor-

phism given in [28] is a little abstract, and certainly not appealing to the average

physicist. There is, however, a nice way to see how the ambiguity determined by

the element γ ∈ H1(M) manifests itself. Consider what happens if we change the

dual connection Â by a large gauge transformation. That is, we consider

Â′ = Â+ γ,

where we require γ to be closed, although not necessarily exact. That is, γ ∈ H1(M).

Since dγ = 0, the dual curvature F̂ (and therefore the isomorphism class of the

bundle) is invariant, but the dual H-flux satisfies (2.58b), and so changes as

Ĥ ′ = H3 − F ∧ Â′

= H3 − F ∧ Â− F ∧ γ

= Ĥ − F ∧ γ.

That is, Ĥ − Ĥ ′ = F ∧ γ. The ambiguity d = π̂∗(F ∪ γ) appearing in the proof of

Theorem 2.2.2 is simply the cohomological version of this. Note that

H1(M,Z) ∼= Hom(π1(M),Z), (2.67)

so that the dual flux is unique if M is simply connected (or indeed, if π1(M) is

finite).

2.2.3 Examples: topological T-duality

S3 with no flux

We know from Section 2.1.4 that S3 provides a nice example of T-duality using the

Buscher rules. The dual metric appeared to be a product metric on S2×S1, together
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with a non-zero B-field. Drawing conclusions about the topology of the manifold

from coordinate descriptions is dangerous, since coordinates are not guaranteed to

be globally defined. Luckily, as we shall see, this guess agrees with the topological

description of T-duality.

Consider S3 as the Hopf fibration - that is, as a principal U(1)-bundle over S2.

As noted in Appendix A.5.1, we have H2(S2,Z) ∼= Z, and so isomorphism classes of

principal U(1)-bundles over S2 are classified by integers. Indeed, the Hopf fibration

corresponds to the generator of this group. We can explicitly write the curvature

F in coordinates by rewriting the round metric in terms of a metric on the base S2

and a connection:

ds2 = dη2 +
1

4
sin2(2η) dξ2

2 +
1

4

(
dξ1 − cos(2η) dξ2

)2

.

The connection here is given by A = 1
2

(
dξ1−cos(2η) dξ2

)
. The curvature is therefore

F = dA = sin(2η) dη ∧ dξ2.

The integer associated to this curvature via H2(S2,Z) ∼= Z is simply

1

4π

∫
S2

F = 1,

justifying our claim that the Hopf fibration is the generator of the group of principal

U(1)-bundles over S2. The B-field is identically zero, and so the flux is trivial:

H = 0. To obtain the dual bundle, we look at the pushforward of the H-flux, which

is of course 0. That is, the curvature of the dual bundle is zero:

F̂ = 0.

The existence of a flat connection on a principal bundle is not quite enough to

conclude the bundle is trivial. If the base is simply connected,30 however, then the

existence of a flat connection implies that the bundle is trivial [76]. Since S2 is

simply connected, we conclude that the dual space is the trivial bundle S2 × S1.

The dual metric obtained by the Buscher rules is then recognised as the product of

the round metric on the base S2, and the standard flat metric on the fiber S1:

d̂s2 = dη2 +
1

4
sin2(2η) dξ2

2︸ ︷︷ ︸
ds2(S2)

+ 4 dξ̂1

2︸ ︷︷ ︸
ds2(S1)

,

30A manifold M is simply connected if π1(M) = 0.
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where the dual connection is Â = 2 dξ̂1, which satisfies F̂ = dÂ = 0 as expected.

The dual B-field obtained from the Buscher rules is given by

B̂ =
1

2
cos(2η) dξ2 ∧ dξ̂1,

from which we obtain

Ĥ = sin(2η) dη ∧ dξ2 ∧ dξ̂1.

This flux is non-trivial in cohomology, which can be determined by integrating Ĥ

over the manifold S2×S1.31 We can calculate the pushforward of Ĥ, which on forms

is simply integration over the fiber, to obtain

1

2π

∫
Ŝ1

Ĥ = sin(2η) dη ∧ dξ2 = F.

Lens spaces

A Lens space is a quotient of S3 by a Zk action. We begin with S3, thought of as

the unit sphere in R4 = C2. That is,

S3 =
{

(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1
}
.

This space has a free U(1)-action on it:

e2πiθ : (z1, z2) 7→ (e2πiθz1, e
2πiθz2).

In Hopf coordinates, this is just the action of the Killing vector ∂ξ1 . Consider now

the action of the discrete subgroup Zk ⊂ U(1), for some fixed k ∈ N. The action

looks like

e2πiθ : (z1, z2) 7→ (e
2πi
k z1, e

2πi
k z2).

This action is free, and the (smooth) quotient space is the Lens space L(k, 1). It

inherits a metric from the round metric of S3, given in coordinates by

ds2 = dη2 +
1

4
sin2(2η) dξ2

2 +
1

4

(
dξ1 − k cos(2η) dξ2

)2

. (2.68)

This space is also a principal U(1)-bundle over S2, and a glance at (2.68) tells us

that a connection is given by

A =
1

2

(
dξ1 − k cos(2η) dξ2

)
,

31Since this integral is non-zero, it follows from Stokes’ theorem that Ĥ is not an exact form.



2.2. TOPOLOGY 55

from which we can calculate the Chern class:

F = dA = k sin(2η) dη ∧ dξ2.

The integer associated to this curvature via H2(S2,Z) ∼= Z is

1

4π

∫
S2

F = k.

Let us now consider this space, equipped with j units of flux - that is, we have

ds2 = dη2 +
1

4
sin2(2η) dξ2

2 +
1

4

(
dξ1 − k cos(2η) dξ2

)2

B = −j
2

cos(2η) dξ2 ∧ dξ1,

so that H = j sin(2η) dη∧dξ2∧dξ1. The dual Chern class is determined by F̂ = π∗H,

so we have

F̂ =
1

2π

∫
S1

H = j sin(2η) dη ∧ dξ2,

with associated integer

1

4π

∫
S2

F̂ = j.

It follows that for k 6= j, the topology of the dual space will be different to the

topology of the original space. The dual metric and B-field can be calculated from

the Buscher rules:

d̂s
2

= dη2 +
1

4
sin2(2η) dξ2

2 +
1

4

(
dξ1 − j cos(2η) dξ2

)2

B̂ = −k
2

cos(2η) dξ2 ∧ dξ1,

and we see that the dual space is also a Lens space L(j, 1), equipped with k units

of flux. That is, the original and T-dual invariants are swapped under T-duality:

[F ] = k [F̂ ] = j

[H] = j [Ĥ] = k.

This is a particularly clear example of how T-duality acts by interchanging flux with

topology.
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T3 with H-flux

We have already discussed the T-dual of T3 with one unit of flux in Section 2.1.4.

Let us generalise slightly to k units of flux, with k ∈ Z. The original metric and

B-field are:

ds2 = dx2 + dy2 + dz2

B = −kx dy ∧ dz.

The dual metric and B-field follow from a straightforward application of the Buscher

rules:

ĝ = dx2 + dy2 +
(

dẑ − kx dy
)2

(2.70a)

B̂ = 0. (2.70b)

We are interested in the topology of the dual space. Our original space, T3, is a

trivial S1-bundle over the 2-torus:

S1
z T3

S1
x × S1

y

A connection for the flat metric on T3 is simply A = dz, and we easily see that it is

flat since F = dA = 0. Note that although the base here is not simply connected, our

bundle is still trivial by construction. The topology of the dual bundle is determined

by the curvature F̂ , which we obtain by calculating the pushforward of H. Now, H

is given by

H = dB = −k dx ∧ dy ∧ dz,

and the pushforward acts on forms by integration over the fiber, so that

F̂ = π∗H =

∫
S1
z

−k dx ∧ dy ∧ dz = −k dx ∧ dy.

Alternatively, a quick glance at (2.70a) is enough to see that a connection for the

dual bundle π̂ : Ê →M is given by Â = dẑ−kx dy. The curvature of this connection

is

F̂ = −k dx ∧ dy.
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The curvature F̂ of the dual bundle determines its isomorphism class, and since F̂

is non-trivial in cohomology (for k 6= 0), the bundle is not a trivial bundle. That is,

the dual space is topologically distinct from T3. Indeed, from Appendix A.5.1, we

have that H2(S1 × S1,Z) = Z, so for each k ∈ Z, the dual space is a topologically

distinct manifold. In the physics literature, k is usually taken to be 1 (or -1), and

the background (i.e. the metric and B-field) is referred to as the f -flux background

or the twisted torus. In the mathematics literature, the manifold is usually referred

to as the 3D Heisenberg Nilmanifold. We will denote the dual space by Nil(k), or

simply Nil if k = 1. We may also, on occasion, use the notation fxy
z to refer to the

background. This notation is in common usage in the physics literature, and makes

it clear that it is obtained from the three torus with flux, Txyz, by T-dualising along

the z-coordinate. We can study the periodicity of the dual coordinate simply by

requiring the metric to be globally defined. The coordinates x and y are coordinates

on the base, so they should still have the same periodicity as the original space:

x 7→ x′ ∼ x+ 1

y 7→ y′ ∼ y + 1

z 7→ z′.

We now wish to see that the metric does not change under these identifications.

The one forms dx and dy are clearly invariant, so for the metric to be defined under

these identifications, we require

dẑ′ − kx′ dy′ = dẑ − kx dy.

This happens precisely when ẑ′ = z + ky. See Appendix B.2 for more discussion of

this procedure.

We can understand the dual space a little more from a group theory perspec-

tive. This understanding will be useful in Chapter 3 when we study non-abelian

T-duality. Let us now fix k = 1, and consider the Heisenberg group, consisting of

upper triangular 3× 3 real matrices with 1 along the diagonal:

Heis(R) =




1 x z

0 1 y

0 0 1

 : x, y, z ∈ R
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The group operation for this group is simply matrix multiplication. We can take

the quotient of this group by the subgroup consisting of only integer entries:

Heis(Z) =




1 a c

0 1 b

0 0 1

 : a, b, c ∈ Z

 .

This is not a normal subgroup, so the quotient space won’t be a group, but it turns

out to be precisely the manifold Nil. That is, Nil = Heis(R)/Heis(Z). The group

Heis(R) acts on Nil from the left (and right), and the vector fields generating this

action are the right-invariant (and left-invariant) vector fields.32 In terms of the

coordinates {x, y, z}, the left and right invariant vector fields are

La = {∂x, ∂y + x∂z, ∂z}

Ra = {∂x + y∂z, ∂y, ∂z} .

The left and right invariant one-forms are dual to these vector fields:

λa = {dx, dy, dz − x dy}

ρa = {dx, dy, dz − y dx} .

We can now see that the metric we obtained from the Buscher rules, (2.70a), is

simply the left-invariant metric for Heisenberg group:33

gL = δijλ
iλj

= (λ1)2 + (λ2)2 + (λ3)2.

The metric (2.70a) is independent of the coordinates y and z, so has the two obvious

Killing vectors ∂y and ∂z. On the other hand, because of the identity

LRaλb = 0,

it follows that the metric is invariant under the full set of right-invariant vector

32This is not a typo. The left action of a group on itself is generated by the right-invariant vector

fields, and vice versa.
33Note that the Heisenberg group is not a semisimple group (it is nilpotent), and therefore we

are not guaranteed a bi-invariant metric. We have gL 6= gR.
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fields. That is,

L∂x+x∂zgL = 0

L∂ygL = 0

L∂zgL = 0.

The right-invariant vector fields form a non-abelian Lie algebra whose only non-zero

commutator is

[R1, R2] = −R3.

This example will appear again in Section 3.1.2 when we discuss examples of non-

abelian T-duality.

2.2.4 Isomorphism of twisted cohomology and twisted K-

theory

In Section 2.1.8 we introduced the RR fluxes, and argued that they should be clas-

sified by (twisted) cohomology, or twisted K-theory. If T-duality is meant to to

be a symmetry of the full string theory, then we expect therefore that the twisted

cohomologies and twisted K-theories of a space and its T-dual should match, albeit

with a shift in degree to account for the transition between type IIA and type IIB.

This was shown in [16] by using the convenient Hori formula for the transformation

of the RR fluxes [65]. Recall that in Section 2.1.8, we packaged the RR fluxes into a

polyform G which was dH-closed. The Hori formula states that the dual RR fluxes

are encoded in the dual polyform:

Ĝ =

∫
S1

eÂ∧AG. (2.71)

The operation of producing the new fluxes therefore consists of the following steps:

package the RR fluxes into a polyform G and pull back to the correspondence space

E×M Ê, wedge with eÂ∧A, then integrate along the S1 fiber of E to obtain the dual

polyform Ĝ. Since d(Â ∧ A) = H − Ĥ from (2.56), we have that

dĤĜ =

∫
S1

eÂ∧AdHG,

so that the T-duality transformation maps dH-closed forms to dĤ-closed forms. For

a more thorough discussion of the isomorphism of the twisted cohomologies, and the

lift to twisted K-theories, we refer the reader to [16].
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2.2.5 Topological T-duality for torus bundles

The Buscher rules have a straightforward generalisation to multiple commuting

killing vectors, and so it is natural to consider topological T-duality for higher rank

torus bundles. We very quickly run into an issue, however. T-duality for a torus

bundle should represent multiple concurrent T-dualities, but we saw in Section 2.1.4

that it is possible for a chain of dualities to result in a space which is no longer a

manifold - indeed the third duality in the chain

Txyz
∂z←→ fxy

z ∂y←→ Qx
yz ∂x←→ Rxyz. (2.72)

doesn’t even appear to be well-defined, since ∂x is not an isometry of the space

Qx
yz. It would be nice to have a characterisation of the topological structure for

multiple T-dualities, and a criterion for when we can perform the duality and obtain

a (geometric) dual space. This was first studied in [21, 22]. We include here the

relevant details, and comment on the similarities and differences between rank one

and higher rank torus bundles. As we shall see, the obstruction to performing

multiple T-dualities lies in the structure of the H-flux.

We begin by considering a principal torus bundle

Tn E

M

π

Of course, when n = 1 we should recover the results of Section 2.2.2.

The isomorphism classes of principal torus bundles over M are classified by

H2(M,Zn), and we can identify the image of this in de Rham cohomology with

H2(M, g), where g is the Lie algebra of Tn, thought of as the Lie group U(1)n. We

denote by g∗ the dual Lie algebra to g.34 Given an element X ∈ g and an element

α ∈ g∗, there is a natural pairing α(X) ∈ R.

Physicists will be familiar with using dimensional reduction to decompose forms

on a fibration in terms of lower degree forms on the base. For those who are not,

recall from Appendix A.5.1 the Künneth theorem, Theorem A.5.1. We can apply

the Künneth theorem to the bundle π : E → M locally, since a principal torus

34Here, the word dual refers to a vector space dual. That is, g∗ is the vector space of linear maps

from g to R.
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bundle is locally M ×Tn. Combining this with Hq(Tn) =
∧q g∗, this gives a (local)

decomposition of a Tn-invariant form ω ∈ Ωk(E) as

ω = ωk ⊗ V0 + ωk−1 ⊗ V1 + · · ·+ ω1 ⊗ Vk−1 + ω0 ⊗ Vk

Making this decomposition global requires choosing a principal Tn connection A ∈

Ω1(E, g). Choosing such a connection determines an isomorphism

fA :
⊕
p+q=k

(
Ωp(M)⊗

q∧
g∗

)
−→ Ωk

inv(E)

which acts by

fA

(
ω ⊗ (α1 ∧ · · · ∧ αq)

)
= ω ∧ A(α1) ∧ . . . A(αq).

The upshot of all this is that we can think of the H-flux as a tuple (H3, H2, H1, H0),

where each Hi ∈ Ωi(M) ⊗
∧3−i g∗. Similarly, we can view the curvature F as a

tuple (F2, 0, 0), with Fi ∈ Ωi ⊗
∧2−i g∗. The tuples in these decompositions have a

nice geometric interpretation - the differential forms Hi are simply the components

of the form H with i legs in the base.

Let us think about this for the n = 1 case for a moment, since in that case

we have considerable simplification. When we have a principal circle bundle, the

dimension of g∗ is 1 and so
∧q g∗ = 0 for q ≥ 2. Then we have

H = (H3, H2, 0, 0)

F = (F2, 0, 0).

T-duality then acts by interchanging H2 and F2. That is,

Ĥ = (H3, F2, 0, 0)

F̂ = (H2, 0, 0).

The form F̂ is then identified with the curvature of a principal U(1) bundle π̂ : Ê →

M , and Ĥ is interpreted as the dual flux. This is precisely the content of (2.58).

More generally, T-duality acts by the interchange (F2, F1, F0)←→ (H2, H1, H0),

so that

H = (H3, H2, H1, H0)

F = (F2, F1, F0).

Ĥ = (H3, F2, F1, F0)

F̂ = (H2, H1, H0).

(2.73)
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We now see an immediate problem if either H1 or H0 are non-zero. Namely, the dual

F̂ can no longer be identified with the curvature of a principal Tn bundle. When

n = 1, these terms vanish identically for dimensional reasons, and so we always have

a dual which is a principal bundle. When n = 2, the term H0 always vanishes for

dimensional reasons, but H1 can be non-zero. When n ≥ 3, we can have both H1

and H0 which are non-zero. Both of these cases will be discussed in the following

sections. For the moment, let us refer to H-fluxes of the form H = (H3, H2, 0, 0)

as admissible fluxes. Any Tn bundle together with an admissible flux determines a

unique T-dual given by (2.73) [22].

2.2.6 The algebraic approach

T-folds

In the previous section, we saw that there was an obstruction to constructing T-

duals for higher-rank torus bundles when the H-flux had multiple legs along the

fiber directions. How do we reconcile this with the näıve Buscher rule calculation

for the T-dual of the flat torus with flux? That is, the duality chain

Txyz
∂z←→ fxy

z ∂y←→ Qx
yz (2.74)

suggests that we should be able to think of T3 as a trivial T2 bundle over S1 and

T-dualise. On the other hand, the H-flux decomposes as H = (0, 0, H1, 0), and so

there is an obstruction to doing so. Which computation is correct? To understand

the answer, we first note that the metric and B-field of the Q-flux background, given

by (2.20), are not globally defined tensor fields on a compact manifold. Of course,

the B-field is usually not globally-defined,35 but the metric definitely should be. We

can see this by looking at how the metric changes under the identification x ∼ x+1.

Although the one-forms {dx, dŷ, dẑ} are invariant, the metric includes the function

1

1 + x2
, (2.75)

which is not invariant. The resolution of this paradox is therefore that both calcula-

tions are correct! The Buscher rules give a dual space, and the topological argument

says that this space cannot be a principal torus bundle. Indeed, the dual space is

not even a manifold! This tells us that we need to expand our notion of what it

means to be a string background.

35The H-flux, however, should be globally defined.
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This Q-flux is a strange object - walking once around a circle and returning to

the same spot, we find that the landscape has changed! Miraculously, however, this

is not something a string notices. To a string, this background is the same as the

flat torus with H-flux. The Q-flux background is not a manifold, since we cannot

construct open patches for it and glue them together in a consistent way using

diffeomorphisms. On the other hand, if we allow more general transformations than

just diffeomorphisms, that is if we also allow T-duality transformations, then we can

glue together these open patches. Such an object goes by the name of a T-fold.

Non-commutative backgrounds and C∗-algebras

There is a very nice description of topological T-duality for higher-rank torus bundles

using the theory of C∗-algebras, which incorporates both the admissable fluxes, as

well as the T-fold background. The description is reasonably technical, and is not

content with which most physicists will be familiar. For this reason, we include here

only a bare-bones discussion of the construction of T-duality in this setting, and refer

the interested reader to the original papers for a more detailed account [93, 94, 95].

Note that non-commutative string backgrounds have appeared previously in the

physics literature [111, 41].

Let E be our spacetime, which we will eventually think of as a principal Tn-

bundle over M . Let us assume for simplicity that E is compact.36 There is a very

natural (unital) commutative C∗-algebra associated to E, namely the algebra of

continuous functions on E, denoted by C(E).37 In the theory of C∗-algebras, this

is not just a ‘special’ commutative algebra - it is in a sense the only commutative

C∗-algebra. To be a bit more concrete, the Gelfand-Naimark theorem for commuta-

tive C∗-algebras states that every (unital) commutative C∗-algebra is isometrically

isomorphic to C(X) for some compact space X, and that X is unique up to homeo-

morphism. Indeed, X is constructed from the algebra as its spectrum. By analogy,

more general (i.e. non-commutative) C∗-algebras can be thought of as the algebra

of functions on a ‘non-commutative’ space’, which doesn’t exist as a classical topo-

logical space. For this reason, the relationship between topology and C∗-algebras is

36This assumption is not necessary, but simplifies some aspects of the following discussion.
37A C∗-algebra is an algebra (i.e. a vector space with associative multiplication) on a com-

plete normed space, together with an involution satisfying certain ‘nice’ properties. The standard

examples are the complex numbers, C, or the bounded operators on a Hilbert space, B(H).
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often referred to as non-commutative topology.

We are now interested in a slight generalisation of the commutative algebras,

known as continuous trace C∗-algebras over E. It is result of Dixmier and Douady

that after stabilisation,38 these algebras are locally isomorphic to C
(
E,K(H)

)
[47].

Stable isomorphism classes of continuous trace algebras with spectrum E are clas-

sified by the Dixmier-Douady class, δ, in H3(E,Z). We will denote the continuous

trace C∗-algebra associated to a space E and a class δ ∈ H3(E,Z) by CT (E, δ).

Note that CT (E, 0) = C(E).

Here is another way to think of CT (E, δ): Given a stable, continuous-trace

algebra with spectrum E, there exists an algebra bundle A over E whose fibers

are the compact operators on an infinite-dimensional Hilbert space, K(H). The

structure group of the bundle is Aut(K(H)) ' PU(H), and so bundles of this type

are classified by homotopy classes of maps from E to BPU(H). It turns out that

BPU(H) is an Eilenberg-Maclane K(Z, 3) space, and so bundles are classified by

H3(E,Z), the Dixmier-Douady invariant. The space of sections of this bundle form a

stable, continuous-trace C∗-algebra with spectrum E and Dixmier-Douady invariant

δ, and this algebra is precisely CT (E, δ).

Let us assume, as we mentioned earlier, that E is a principal Tn bundle over M

with H-flux. This means that E has a free Tn action, and it is a reasonable question

to ask when such an action lifts to an action on CT (E,H). It is shown in [93] that

such an action lifts precisely when the H-flux has the form H = (H3, H2, H1, 0). If

that is the case, the T-dual algebra is now given by CT (E,H) o Rn, which is not

in general a stable, continuous-trace C∗-algebra.

When H1 = 0, the T-dual algebra is a stable, continuous-trace C∗-algebra whose

spectrum Ê is a principal Tn bundle and whose Dixmier-Douady invariant Ĥ satisfies

(2.62). This is referred to in the literature as a classical T-dual.

When H1 6= 0, the dual algebra is not a stable, continuous-trace C∗-algebra,

but it can still be considered as the algebra of sections of a bundle of algebras over

M . The fiber of this bundle of algebras over a point is Af(z) ⊗ K(H), where Aθ is

the irrational rotation algebra, commonly referred to as the noncommutative torus.

The non-commutativity parameter f is a representative f : M → U(1) of the class

π∗H ∈ H1(M,Z). That is, the T-dual is realised as a bundle of noncommutative

38That is, after tensoring with the compact operators, K(H), on an infinite dimensional separable

Hilbert space.
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tori fibered over M .

The dual of the dual (
CT (E,H) oRn

)
o R̂n

is not, in general, isomorphic to CT (E,H), but it is Morita equivalent to it (and

therefore has the same spectrum and K-theory of CT (E,H)). The Morita equiv-

alence of these algebras has been known in the mathematical literature for some

time, where it is referred to as Takai-duality [120].39

Non-commutative topology is the relation between topology and C∗-algebras

inspired by the Gelfand-Naimark theorem. In the context of string theory, however,

the topological spaces in which we are interested have additional structure - in

particular, they have a Riemannian metric. It is a natural question to ask whether

such a structure has an analogue in the theory of C∗-algebras. Connes initiated

the study of such structures in [39],40 and the theory goes by the name of non-

commutative geometry. It is possible to define a suitable notion of a connection in

the non-commutative setting, although the objects involved are complicated. We

have included a schematic correspondence between structures in the topological

setting and the C∗-algebra setting in the following table:

Topology Notation C∗-algebra Notation

Topological space X Commutative C∗-algebra A = C(X)

“Non-commutative space” X
Non-commutative C∗-algebra

with spectrum X
A

Vector bundle over X E Projective module over A M

Connection on vector bundle ∇
Linear operator on M

satisfying Leibniz rule
∇

Topological K-theory K(X) Algebraic K-theory K(A)

With this correspondence, the definition of a connection in the C∗-algebraic frame-

work gives us a natural notion of curvature:

R∇(U, V ) := ∇U∇V −∇V∇U −∇[U,V ]. (2.76)

39The convenience of still being able to refer to this as T-duality is fully appreciated by the

author.
40See [40] for an English translation.
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For the case that X = Rn and A = C∞(X), we obtain the standard definition of a

connection on a vector bundle.

This correspondence provides an interesting possibility! One the one hand, we

know that the Q-flux background fits into the C∗-algebraic framework, and is well-

described by a bundle of non-commutative tori fibered over S1. Such a bundle, by

Connes’ theory of non-commutative differential geometry, admits an analogue of a

connection and curvature. On the other hand, the Buscher rules give us a local

description of the Q-flux background metric, (2.20a). Such a coordinate description

allows for easy calculation of various geometric quantities, such as curvature tensors

and scalars. In particular, the scalar curvature of (2.20a) is

R = −2(5x2 − 2)

(x2 + 1)2
.

Of course, since x is a periodic coordinate on the base S1, this scalar curvature

is not a well-defined quantity under the identification x ∼ x + 1. Nevertheless, it

would be an interesting exercise to compare this quantity to the curvature quantities

appearing on the algebraic side. We leave such an undertaking to future work.

Non-associative backgrounds

In the previous section, we saw that as long as H0 = 0, the Tn action of E lifted to

an action on CT (E,H), and therefore defined a T-dual C∗-algebra. When H0 6= 0,

the action lifts to a twisted action, and so we can still define a T-dual as the twisted

crossed product CT (E,H) oα Rn, where α is the tricharacter associated to H0.

T-duality now takes us outside the realms of C∗-algebras - the dual algebra is in

general a nonassociative, noncommutative algebra, which we can realise as a bundle

of nonassociative tori fibered over M [23]. This is the situation for the R-flux

background, obtained as the putative third T-dual of the 3-torus with H-flux.



Chapter 3

Non-abelian T-duality

Non-abelian T-duality began with the work of de la Ossa and Quevedo [45], which

generalised the gauging procedure of Buscher to non-abelian isometries. As with

many generalisations in mathematics and physics, we shall see that non-abelian T-

duality does not inherit all of the nice properties that abelian T-duality enjoys, and

the role that non-abelian T-duality plays in string theory is still unclear. In partic-

ular, the extension of the Buscher procedure to higher genus worldsheets is lacking,

and quantum properties of the duality are largely unknown. Despite this, it has been

employed successfully as a solution generating technique in supergravity and gener-

alised supergravity. In this Chapter we will introduce non-abelian T-duality via the

Buscher procedure, although we note that a discussion of the quantum aspects of

non-abelian T-duality is outside the scope of this thesis.

Note that we shall set 4πα′ = 1 to avoid numerical factors in front of the actions.

3.1 Geometry

3.1.1 The non-abelian Buscher rules

We begin, as with abelian T-duality, with the non-linear sigma model:

S =

∫
d2z (gmn +Bmn)∂Xm∂̄Xn (3.1)

=

∫
Σ

gmn dXm ∧ ? dXn +Bmn dXm ∧ dXn. (3.2)

We will assume, for the moment, that the target space is a compact, non-abelian Lie

group G. The group G acts on itself by right multiplication, and the fundamental

67
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vector fields associated to this action are the left-invariant vector fields. The set of

one-forms, {λa}, dual to this frame are defined by

〈La, λb〉 = δba. (3.3)

These one-forms define a coframe, and are components of the left-invariant Maurer-

Cartan form, λ, expressed in the basis {La} of g:

λ = λaLa ∈ Ω1(G)⊗ g. (3.4)

The basis {La} of g define the structure constants of the Lie algebra:

[La, Lb] = f̃ cabLc. (3.5)

Note that λ satisfies the Maurer-Cartan equation

dλc = −1

2
f̃ cab λ

a ∧ λb, (3.6)

and can therefore be written as λ = g−1 dg for an embedding g : G ↪→ GL(n). Here,

we have chosen to identify the space of left-invariant vector fields with the Lie algebra

g of G. Note that we could also have chosen to use the space of right-invariant vector

fields. The two Lie algebras are isomorphic, with the differential of the inversion

map on G providing the required isomorphism. Under this isomorphism, the right-

invariant vector fields have structure constants [Ra, Rb] = f cabRc. These are related

to the structure constants by the relation f̃ cab = −f cab.

We now consider a metric on G defined in terms of this left-invariant coframe:

ds2 = δab λ
aλb. (3.7)

The right-invariant vector fields, {Ra} = {Rµ
a∂µ}, are isometries of the metric, since

LRaλb = 0. (3.8)

More generally, we can take a dim(G) × dim(G), invertible and G-invariant matrix

Eab, and form

E := Eab λ
a ⊗ λb. (3.9)

Since every matrix can be written as the sum of a symmetric and antisymmetric

matrix

Eab =
1

2
(Eab + Eba) +

1

2
(Eab − Eba)

= gab +Bab,
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this tensor decomposes into a symmetric and an antisymmetric part:

E = gabλ
a ⊗ λb +Babλ

a ⊗ λb (3.10)

= gabλ
aλb +Babλ

a ∧ λb. (3.11)

We will assume that both the metric and the B-field are written in terms of the

Maurer-Cartan forms, and we can therefore specify them by giving the matrix Eab.

The action (3.1) with such a metric and B field is a generalisation of the Principal

Chiral Model (PCM),1 and is often written in different notation as:

SPCM [g] =

∫
d2 z Eab

(
g−1∂g

)a (
g−1∂̄g

)b
. (3.12)

This notation makes it clear that the matrix Eab is a choice of bilinear form on the

Lie algebra g of G. It follows from (3.8) that LRaE = 0, and so this action should be

invariant under the infinitesimal action of the right-invariant vector fields. In fact,

the right-invariant vector fields correspond to, i.e. integrate out to, the left action

of the group on itself, and one would expect that the PCM is also invariant with

respect to this group action. It is, and another advantage to using this notation for

the action is that this invariance is manifest:

SPCM [hg] =

∫
dσ dτ Eab

(
(hg)−1∂µ(hg)

)a (
(hg)−1∂µ(hg)

)b
(3.13)

=

∫
dσ dτ Eab

(
g−1h−1h∂µg

)a (
g−1h−1h ∂µg

)b
(3.14)

= SPCM [g]. (3.15)

The Buscher procedure for abelian T-duality relied on the existence of a global

symmetry, which we then promoted to a local symmetry by gauging. Equivalence

with the original model was enforced by including a Lagrange multiplier constraining

the field strength, and then choosing a gauge which reduced to the original model.

The dual model was obtained by first integrating out the gauge fields, and then

gauge fixing.

Non-abelian T-duality is based on the same basic procedure. Explicitly, we

begin by gauging the rigid (i.e. global) symmetry, g 7→ hg, of the model (3.12).

1The standard Principal Chiral Model corresponds to the special case with Eab = δab. We shall

make no distinction between the standard PCM and the generalised form we have used here.
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This is equivalent to gauging the infinitesimal symmetry of (3.1) generated by the

right-invariant vector fields {Ra}:

δεX
µ = Rµ

aε
a. (3.16)

The group action is non-abelian, and the vector fields {Ra} form a non-abelian

Lie algebra with structure constants f cab. As in the abelian case, we promote this

global symmetry to a local one by introducing (non-abelian) gauge fields Aa and

minimally coupling them to the action. There is a point of distinction to make here

between the abelian gauging procedure and the non-abelian gauging procedure. In

the abelian case, we only had a single gauge field, A, which like all gauge fields,

was a Lie-algebra valued one-form. In that case, the Lie-algebra was abelian, so

A ∈ Ω1(M ; g) ∼ Ω1(M), and A was an honest one-form. Here, we need to be

more careful with commutation, since we have a Lie-algebra valued one-form and

the Lie-algebra is non-abelian. Explicitly, the minimal coupling procedure involves

the replacement dXµ 7→ DXµ = dXµ −Rµ
aAa. The minimally coupled action

SMC =

∫
Σ

gµνDX
µ ∧ ?DXν +BµνDX

µ ∧DXν (3.17)

is invariant under the following (local) gauge transformations:

δεX
µ = Rµ

aε
a (3.18)

δεAa = dεa + fabcAbεc. (3.19)

In addition to the minimally coupled action, we want to add another gauge invariant

term to enforce the flatness of the gauge fields. The extra term we add to the action

is ∫
Σ

χaFa, (3.20)

where

F := dA+A ∧A =
(
dAa + 1

2
fabcAb ∧ Ac

)
Ra = FaRa (3.21)

is the standard Yang-Mills field strength, and χa are scalar fields on Σ with values

in g∗.2 This term is gauge invariant, provided the Lagrange multiplier transforms

2Note that in Chapter 2 these Lagrange multipliers were called X̂a, and in Chapter 5 they are

called ηa. In each case, they are simply scalar fields on Σ with values in g∗.
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as

δεχa = −f cabεbχc. (3.22)

In summary, the gauged action

SG =

∫
Σ

gmnDX
m ∧ ?DXn +BmnDX

m ∧DXn +

∫
Σ

χaFa (3.23)

is invariant under the following local gauge transformations:

δεX
m = Rm

a ε
a (3.24)

δεAa = dεa + fabcAbεc (3.25)

δεχa = −f cabεbχc. (3.26)

The gauged action (3.23) can be written in alternative notation as:

SG =

∫
Σ

d2z EmnDX
mD̄Xn. (3.27)

We will now perform the non-abelian Buscher procedure by integrating out the two

sets of fields separately, in order to see how T-duality works in the non-abelian case.

Let us consider a slightly more generalised situation than a group with left-invariant

metric. We suppose that our target space has a free G action leaving Eij = gij +Bij

invariant. The metric and the B-field decompose with the Maurer-Cartan forms of

G as

ds2 = gµν dXµ dXν + 2gµn dXµλn + gmnλ
mλn (3.28a)

B = Bµν dXµ ∧ dXν + 2Bµn dXµ ∧ λn +Bmnλ
m ∧ λn, (3.28b)

where the coordinates Xµ are the spectator coordinates parametrising the base.

Introducing coordinates Xm parametrising the G fiber, the non-linear sigma model

action is

S =

∫
Σ

d2 z
[
Eµν∂X

µ∂̄Xν + Emν∂X
m∂̄Xν + Eµn∂X

µ∂̄Xn + Emn∂X
m∂̄Xn

]
.

(3.29)

Gauging this by minimally coupling the non-abelian gauge fields Am = Am dz +

Ām dz̄, via the replacement:

∂Xm → DXm = ∂Xm − Am (3.30)

∂̄Xm → D̄Xm = ∂̄Xm − Ām, (3.31)
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and adding in the field strength F and Lagrange multiplier term, we obtain the

gauged action

SG =

∫
Σ

d2 z

[
Eµν∂X

µ∂̄Xν + EmνDX
m∂̄Xν + Eµn∂X

µD̄Xn + EmnDX
mD̄Xn

+ χa
(
∂Āa − ∂̄Aa + fabcA

bĀc
) ]

(3.32)

As with the abelian case, integrating out the Lagrange multipliers enforces the

contraints Fa = dAa + 1
2
fabcAb ∧ Ac = 0. The solution to this is A = g−1 dg

for any g : Σ → G, which we can substitute into the action to get SG[X,A, χ] =

SMC [X, g−1 dg]. Each choice of g corresponds to a different choice of gauge, and

fixing the gauge to g = 1 gives us back the original model (3.1).

On the other hand, we can integrate out the gauge fields first. The calculation

follows the same basic procedure as in Section 2.1.9. The only difference is that now

there is an additional term χaf
a
bcA

bĀc in the action arising from the non-abelian

field strength. Solving the Euler-Lagrange equations for the fields Am and Ām for

the appropriate variable gives

Am = Eqt(M
−1)tm∂Xq + Eµt(M

−1)tm∂Xµ + (M−1)tm∂χt (3.33)

Ān = (M−1)nsEsp∂̄X
p + (M−1)nsEsν ∂̄X

ν − (M−1)ns∂̄χs, (3.34)

where we have introduced

Mmn = Emn + χaf
a
mn. (3.35)

Substituting this into the gauged action (3.32) and integrating the curvature

term by parts gives the following complicated expression:

S =

∫
Σ

d2 z

[ (
Eµν − Eµm(M−1)mnEnν

)
∂Xµ∂̄Xν +

(
Emν − Emn(M−1)nsEsν

)
∂Xm∂̄Xν

+
(
Eµn − Eµt(M−1)tmEmn

)
∂Xµ∂̄Xn +

(
Emn − Emp(M−1)psEsn

)
∂Xm∂̄Xn

+
(
−(M−1)msEsν

)
∂χm∂̄X

ν +
(
−(M−1)msEsn

)
∂χm∂̄X

n

+
(
Eµt(M

−1)tn
)
∂Xµ∂̄χn +

(
Emt(M

−1)tn
)
∂Xm∂̄χn +

(
(M−1)mn

)
∂χm∂̄χn

]
What’s going on here? This expression is far more complicated than the situation

with abelian T-duality. Worse, the expression appears to still contain terms that

have components along the original fiber coordinates ∂Xm and ∂̄Xm. We can see

that in the abelian case we didn’t have this problem. When the structure constants
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are zero, Mmn = Emn, and so the offending terms such as (Emn − Emp(M−1)psEsn)

vanish from this expression. Thankfully, the action still retains the gauge invariance

generated by the right-invariant vector fields. We can use this to fix ∂Xm = ∂̄Xn =

0. We interpret the resulting action as a non-linear sigma model on the coordinates

X̂ = {Xµ, χm}:

S =

∫
Σ

d2 z
[
Êµν∂X

µ∂̄Xν + Êmν∂χm∂̄X
ν + Êµn∂X

µ∂̄χn + Êmn∂χm∂̄χn

]
, (3.36)

where the new fields are given by

Êµν = Eµν − Eµm(M−1)mnEnν (3.37a)

Êmν = −(M−1)msE
sν (3.37b)

Êµn = Eµt(M
−1)tn (3.37c)

Êmn = (M−1)mn. (3.37d)

These are the “non-abelian Buscher rules” for non-abelian T-duality [45]. To obtain

the metric and the B field from these, we simply take the symmetric and antisym-

metric parts, as per (2.48). Note that for vanishing structure constants, this reduces

to the expression (2.47) for an abelian U(1)k T-duality.

3.1.2 Examples: NATD

S3 with no flux

When discussing non-abelian T-duality, the first example is usually S3, thought of

as the group manifold SU(2). The round metric on S3 is bi-invariant, so is invariant

under the left action of SU(2), as well as under the right action of SU(2). In fact, the

full isometry group is SO(4) ' (SU(2)× SU(2)) /Z2. We will perform a dualisation

with respect to one of these SU(2) isometries.

To perform the calculation, we will use the Hopf coordinates, (η, ξ1, ξ2), in-

troduced in Section 2.1.4. Recall that these are related to complex coordinates

(z1, z2) ∈ C2 by

z1 = e
i(ξ1+ξ2)

2 sin η (3.38)

z2 = e
i(ξ1−ξ2)

2 cos η. (3.39)
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A parameterisation of a group element U ∈ SU(2) is then given by

U =

 z1 z2

−z̄2 z̄1,

 (3.40)

and the (left-invariant) Maurer-Cartan forms are given by λ = U−1 dU . Choosing

as a basis for su(2) the set {iσ1, iσ2, iσ3}, where σj are the Pauli matrices:

σ1 =

0 1

1 0

 (3.41)

σ2 =

0 −i

i 0

 (3.42)

σ3 =

1 0

0 −1

 , (3.43)

we have the following expressions for the components of the (left-invariant) Maurer-

Cartan forms:

λ1 = 1
2

sin(2η) cos(ξ2) dξ1 + sin(ξ2) dη (3.44a)

λ2 = 1
2

sin(2η) sin(ξ2) dξ1 − cos(ξ2) dη (3.44b)

λ3 = 1
2

dξ2 − 1
2

cos(2η) dξ1. (3.44c)

The round metric is written in terms of these Maurer-Cartan forms as

ds2 = δijλ
iλj (3.45)

= dη2 +
1

4

(
dξ2

1 + dξ2
2 − 2 cos(2η) dξ1ξ2

)
. (3.46)

The Lie algebra, so(4), of Killing vectors for this metric decomposes into su(2)L ×

su(2)R, corresponding to the left-invariant and right-invariant vector fields. In our

coordinates, the right-invariant fields are:

R1 = sin(ξ1)∂η +
2 cos(2η) cos(ξ1)

sin(2η)
∂ξ1 +

2 cos(ξ1)

sin(2η)
∂ξ2 (3.47)

R2 = − cos(ξ1)∂η +
2 cos(2η) sin(ξ1)

sin(2η)
∂ξ1 +

2 sin(ξ1)

sin(2η)
∂ξ2 (3.48)

R3 = −2∂ξ1 , (3.49)
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and the structure constants associated to the Lie algebra, su(2)R, of right-invariant

vector fields are determined by the corresponding commutation relations:

[R1, R2] = 2R3, [R2, R3] = 2R1, [R3, R1] = 2R2. (3.50)

A short calculation lets us verify that

LR1g = 0 (3.51)

LR2g = 0 (3.52)

LR3g = 0. (3.53)

Let us now perform a non-abelian T-duality for the right action of SU(2). Note

that since the metric is written in terms of the left-invariant Maurer-Cartan forms,

we don’t actually require the coordinate description any more. The non-abelian

Buscher rules tell us that we can obtain the dual metric and B-field from

Êmn = (δmn + famnχa)
−1 . (3.54)

Disentangling the symmetric and antisymmetric components of this expression gives

us the dual metric and B-field:

d̂s
2

=
1

1 + χ2
(δij + χiχj) dχi dχj (3.55a)

B̂ = −εijk
χk

1 + χ2
dχi ∧ dχj, (3.55b)

where χ2 = χ2
1 + χ2

2 + χ2
3. This metric still has a residual su(2) isometry, which we

can identify with the original su(2)L isometry of the round metric. Indeed, instead

of the round metric on S3, we could have started with the metric of the squashed

S3:

ds2 = e2a(λ1)2 + e2b(λ2)2 + e2c(λ3)2, (3.56)

where a, b, and c are real constants which are not all equal. The right-invariant

vector fields are still isometries of this metric, but we have now broken the su(2)L

isometry. If a = b, then the isometry breaks to u(1)× su(2)R, and if a, b, and c are

all different then the only isometries are the ones generated by the right-invariant

vector fields. We can still T-dualise the metric of the squashed S3, obtaining a dual

metric and B-field determined by:

Êmn =
(
δm1δn1e

2a + δm2δn2e
2b + δm3δn3e

2c + famnχa
)−1

(3.57)
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When a = b the resulting metric has the residual u(1) isometry, but if a, b, and c

are all different, then the resulting metric has no isometries at all. We will discuss

this loss of isometry more in Section 3.1.3.

Bianchi V

The Bianchi V spacetime was first studied in the context of non-abelian T-duality

in [54]. The model is a three-dimensional model, with coordinates {x, y, z}, together

with a free parameter t. There is no B-field or dilaton, and the metric has the form

ds2 = t2 dx2 + t2e−2x dy2 + t2e−2x dz2. (3.58)

This metric has the standard form for performing non-abelian T-duality,

E = Eijλ
iλj,

where

Eij =


t2 0 0

0 t2 0

0 0 t2

 ,

and the left-invariant Maurer-Cartan forms are

λ1 = dx

λ2 = e−x dy

λ3 = e−x dz.

As a three-dimensional metric,3 (3.58) is curved since it has a Ricci scalar curvature

of R = − 6
t2

. When we include the timelike direction, however, we note that the met-

ric is simply a different parametrisation of Minkowski spacetime. The right-invariant

vector fields are isometries of this metric. They are given in these coordinates by

v1 = ∂x + y∂y + z∂z

v2 = ∂y

v3 = ∂z.

3That is, for fixed t.
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The structure constants for this model are f 2
12 = f 3

13 = −1, and so the dual model

is obtained by inverting the following matrix:

M =


t2 −y −z

y t2 0

z 0 t2



We obtain the following metric and B-field:

ĝ =
1

t2(t4 + y2 + z2)


t4 0 0

0 (t4 + z2) −yz

0 −yz (t4 + y2)



B̂ =
1

t2(t4 + y2 + z2)


0 t2y t2z

−t2y 0

−t2z 0 0

 .

This example is of particular historical significance, since when it was first studied

it was realised that this non-abelian T-duality does not lead to a conformal dual

model. We discuss this further in Section 3.1.6.

Non-abelian duals of Minkowski

Non-abelian T-duals of flat space have been systematically studied in a recent series

of papers [64, 108, 63]. Four-dimensional Minkowski spacetime, M4 has a ten-

dimensional group of isometries - the Poincaré group, R3,1 n O(3, 1). By choosing

a four dimensional subgroup, H, of this which acts freely and transitively on M4,

we can identify H with the spacetime on which it acts. Writing the flat Minkowski

metric, η, in terms of the Maurer-Cartan forms of H then allows us to perform a non-

abelian T-duality with respect to H. Let us elucidate this procedure by following

the calculation of the first example studied in [64]. Recall that the Poincaré algebra

has generators {Pµ, Li, Ki}, where the Pµ generate the spacetime translations, the

Li generate spatial rotations, and the Ki generate boosts, and {µ} = {0, i} =
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{0, 1, 2, 3}. These generators satisfy the following commutation relations:

[Pµ, Pν ] = 0

[Li, Lj] = εijkLk

[Ki, Kj] = −εijkLk

[Li, Kj] = εijkKk

[Li, P0] = 0

[Li, Pj] = εijkPk

[Ki, P0] = Pi

[Ki, Pj] = δijP0.

There are many four-dimensional subalgebras for which the associated group action

on M4 is free and transitive [103]. One such subalgebra is spanned by {K3, L2 +

K1, L1−K2, P0−P3}. In the usual cartesian coordinates {t, x, y, z} for M4, we have:

v1 = K3 = −z∂t − t∂z (3.59)

v2 = L2 +K1 = −x∂t − (t+ z)∂x + x∂z (3.60)

v3 = L1 −K2 = y∂t + (t+ z)∂y − y∂z (3.61)

v4 = P0 − P3 = ∂t − ∂z. (3.62)

The non-vanishing commutation relations satisfied by this subalgebra are

[v1, v2] = −v2, [v1, v3] = −v3, [v1, v4] = −v4. (3.63)

Note that similarity with the previously studied example of the Bianchi V spacetime.

We choose coordinates {x1, x2, x3, x4} for the group generated by these vector fields,

and take the parametrisation of a group element to be:

g = ex
1T1ex

2T2ex
3T3ex

4T4 ,

where the Ti are, say, a basis for the adjoint representation of the Lie algebra defined

by (3.63). We can calculate the left-invariant vector fields for this parametrisation

of the group, obtaining:

V1 = ∂1 + x2∂2 + x3∂3 + x4∂4 (3.64)

V2 = ∂2 (3.65)

V3 = ∂3 (3.66)

V4 = ∂4. (3.67)
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Identifying the vector fields in terms of the original spacetime coordinates (3.59)

with the vector fields in terms of the group coordinates (3.64) allows us to calculate

the coordinate transformation between the spacetime coordinates {t, x, y, z} and the

group coordinates {x1, x2, x3, x4}. The explicit coordinate transformation is:

t = 1
2
e−x

1 (
(x2)2 + (x3)2 + 1

)
+ x4

z = −1
2
e−x

1 (
(x2)2 + (x3)2 − 1

)
− x4

x = −e−x1x2

y = e−x
1

x3.

We can use this to directly calculate the flat metric in the group coordinates. It is

given by

ds2 = − dt2 + dx2 + dy2 + dz2

= e−x
1

dx1 dx4 + e−2x1 dx2 dx2 + e−2x1 dx3 dx3 + e−x
1

dx4 dx1. (3.68)

Alternatively, we can compute the right-invariant Maurer-Cartan forms,

ρ = ρiTa = dg g−1

where

ρ1 = dx1

ρ2 = e−x
1

dx2

ρ3 = e−x
1

dx3

ρ4 = e−x
1

dx4.

Then, we note that the metric (3.68) can be written in terms of the right-invariant

Maurer-Cartan forms as

ds2 = Eijρ
iρj,
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with Eij is given by:

E =


0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 .

The non-abelian T-dual can now be computed, and one obtains the dual E as

Ê =


0 0 0 1

1−x̃4

0 1 0 x̃2

1−x̃4

0 0 1 x̃3

1−x̃4

1
1+x̃4

− x̃2

1+x̃4
− x̃3

1+x̃4
− (x̃2)2+(x̃3)2

1−(x̃4)2

 .

This background becomes, after a change of coordinates, the Brinkmann form of the

pp-wave metric, with vanishing H-flux.

One can perform a non-abelian T-duality with respect to other subalgebras of

the Poincaré algebra, including lower dimensional subalgebras (taken to be a non-

abelian T-duality with spectators). For a catalogue of the results of the non-abelian

T-duals for Minkowski space, we refer the interested reader to [64, 108, 63].

f-flux background

We have already discussed the f -flux background in the context of abelian T-duality

in Section 2.1.4 and Section 2.2.3. There, we noted that there is a natural group

structure on the background obtained by taking the quotient of the Heisenberg group

by its integer counterpart:

Nil = Heis(R)/Heis(Z).

Choosing coordinates {x, y, z} for Nil, we found that the metric obtained from the

Buscher procedure was simply the left-invariant metric on the group:

g = dx2 + dy2 + (dz − kx dy)2.

The right-invariant vector fields, corresponding to the left group action, are Killing

vectors for this metric. They are given by

R1 = ∂x + ky∂z

R2 = ∂y

R3 = ∂z.
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From this, the only non-vanishing structure constant is f 3
12 = −k. We now perform a

non-abelian T-duality with respect to the isometry generated by the right-invariant

vector fields. There are no spectator fields, and so we only need to compute the

inverse of the matrix M implementing the duality. By a slight abuse of notation,

we take the dual coordinates to be {x, y, z}, and so the matrix M is given by:

M =


1 −kz 0

kz 1 0

0 0 1


The inverse is

M−1 =


1

1+k2z2
kz

1+k2z2
0

−kz
1+k2z2

1
1+k2z2

0

0 0 1


Disentangling the symmetric and antisymmetric parts of this gives us the dual metric

and B-field:

ĝ = dz2 +
1

1 + k2z2

(
dx2 + dy2

)
B̂ =

2kz

1 + k2z2
dx ∧ dy.

For k = 1, this is Qxy
z, which is just the Q-flux background from Section 2.1.4,

albeit with a relabelling of coordinates. We shall discuss this non-abelian T-duality

in relation to a chain of abelian T-dualities in Section 3.2.3.

3.1.3 Loss of isometry

When we perform abelian T-duality along a U(1) isometry, the dual metric always

has a U(1) isometry corresponding to the dual coordinate, and T-dualising along

this direction takes us back to the original metric. We have seen, on the other hand,

that non-abelian T-duality does not exhibit such behaviour. When one performs

a T-duality with respect to a non-abelian group of isometries G, the dual model

will generically have fewer isometries than the original model. Indeed, the only

symmetries which survive in the dual space are the symmetries which commute

with the symmetry to be gauged. For the case of a single abelian isometry, a proof

may be found in [107].
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Lemma 3.1.1. When a subgroup H ⊂ G of a symmetry group is gauged, the re-

maining symmetry (global symmetries, that is) of the dual space is given by the

commutant:

H′ := {g ∈ G : hg = gh ∀h ∈ H}

Proof. Let us suppose that we have gauged a subgroup H of the isometries of a

sigma model corresponding to some set of vectors {vb}, resulting in the gauged

action (3.32). For simplicity, let us assume that we are on a group manifold, so that

there are no spectator fields, and the action (3.32) becomes:

SG =

∫
Σ

gµνDX
µ ∧ ?DXν +BµνDX

µ ∧DXν

+

∫
Σ

F bχb.

We are interested in whether this action is invariant under the remaining isometries

of the original model. That is, suppose {Za} is a set of vectors, disjoint from {vb},

which are global symmetries of the original model:

LZa g = LZaB = 0.

The (global) variations generated by this set of vector fields are:

δεX
µ = εaZi

a

δεA
b = 0

δεχb = 0,
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where εa are constants. The variation of the gauged action is therefore

δεSG =

∫
Σ

[
δε(gµν)DX

µ ∧ ?DXν + gµν δε(DX
µ) ∧ ?DXν + gµνDX

µ ∧ δε(?DXν)

+ δε(Bµν)DX
µ ∧DXν +Bµν δε(DX

µ) ∧DXν +BµνDX
µ ∧ δε(DXν)

]
+

∫
Σ

(δεF b)χb + F b(δεχb)

=

∫
Σ

εa
[
(LZag)µνDX

µ ∧ ?DXν + (LZaB)µνDX
µ ∧DXν

]
+

∫
Σ

εa (gµν + gνµ)
[
vσb (∂σZ

µ
a )− Zσ

a (∂σv
µ
b )
]
Ab ∧ ?DXν

+

∫
Σ

εa (Bµν −Bνµ)
[
vσb (∂σZ

µ
a )− Zσ

a (∂σv
µ
b )
]
Ab ∧DXν

= 2

∫
Σ

εagµν [Za, vb]
µAb ∧ ?DXν

+ 2

∫
Σ

εaBµν [Za, vb]
µAb ∧ ?DXν .

It follows that the gauged action is invariant under the symmetry generated by the

{Za} if and only if

[Za, vb] = 0.

This feature of non-abelian T-duality makes it very different to its abelian coun-

terpart. Once we dualise with respect to a non-abelian group G, the dual model

generically won’t have isometries with which to gauge. That is, we don’t know how

to perform another T-duality to get us back to the original model. Non-abelian

T-duality is therefore not invertible in the traditional sense, and calling it a duality

is a slight misnomer (which we are stuck with for historical reasons). Poisson-Lie

T-duality, described in Chapter 4, is a generalisation that inverts non-abelian T-

duality in a suitably defined sense, although it is of a slightly different flavour, and

one must know a priori that the two spaces are dual. In Chapter 5 we discuss our

attempts to provide a gauging prescription for inverting non-abelian T-duality.

3.1.4 Generalisation to coset manifolds

In our derivation of the non-abelian Buscher rules, we assumed that the group G had

a free action on the target space - that is, there were no points on the target space
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which were fixed by a non-identity group element. A more general group action will

have group elements which fix points on the manifold. Let G act on M , and consider

a point x ∈M . The set of group elements which fix x is

Gx = {g ∈ G : gx = x} . (3.69)

For each x ∈M , this is a subgroup of G. Mathematicians refer to Gx as the stabiliser

subgroup of G with respect to x. For physicists, the term isotropy subgroup seems

to be more common. A free group action has no non-trivial isotropy subgroups. A

simple example of a group acting with isotropy is the three-dimensional rotation

group SO(3) acting on S2. Thinking of S2 as the unit sphere in R3, we have a

natural SO(3) group action acting by rotation. Now consider, for instance, the

north pole of S2. This point is fixed by rotations around the z-axis, so the isotropy

subgroup of the north pole is SO(2) = U(1).

If a group G acts transitively on a space M , then the isotropy subgroups are all

conjugate, and we refer to M as a homogeneous space, or in the physics parlance,

as a coset space. We can identify the points in M with the quotient space G/Gx.

There is a nice geometric way of understanding this, which we can illustrate with

the S2 example. Define a correspondence between points in S2 and elements of the

group SO(3) by associating to each point m ∈ S2 an SO(3) rotation, φm, which

sends the north pole, N , to the point m. That is,

φ ·N = m.

This rotation is not unique, however, precisely because SO(3) acts with isotropy. In

particular, for any ψ in the isotropy subgroup of N , we have

(φψ) ·N = φ · (ψ ·N) = φ ·N = m.

The points in S2 can therefore be identified with the quotient of SO(3) by the

isotropy subgroup SO(2):

S2 = SO(3)/SO(2).

Note that we are only interested in examples for which the group G acts by isome-

tries, rather than just homeomorphisms. That is, we are interested in homogeneous

Riemannian manifolds, rather than just homogeneous topological spaces. As pointed

out in [48], the symbol S2 used here should implicitly refer to the topological space
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S2 equipped with the round metric. If we were to distort the metric on S2, for

example by taking the induced metric on the embedding

x2 + y2 +
z2

α2
= 1, (3.70)

then although the space is still topologically S2, the isometry group is reduced. We

no longer have a full SO(3) rotation symmetry, since we have ‘stretched’ the sphere

along the z-direction (see Figure 3.1). The isometry group is now just SO(2), corre-

sponding to rotation around the z-axis, however this group does not act transitively

(in particular, the isotropy subgroup of the north pole is the full group SO(2)).

One should keep in mind that, when writing homogeneous spaces as M = G/H, the

implicit assumption is that G acts transitively by isometries.

Figure 3.1: The isometry group of a round S2 is SO(3). Stretching the sphere in

the z-direction breaks the isometry group down to SO(2).

Let us now discuss the generalisation of non-abelian T-duality to coset spaces.

This was introduced in [87], where is was used to construct new solutions to type

II supergravity. Our starting point is a coset target space M = G/H, where H is

a subgroup of some (non-abelian) group G. We aim to perform a non-abelian T-

duality with respect to the G action on M . On the group G, we choose a splitting

of coordinate indices m = (α, i), where the indices α belong to the coset G/H and

the indices i belong to the subgroup H. For concreteness, let dim(G/H) = n and

dim(H) = k, so that dim(G) = n + k. We now consider a matrix E for the action

(3.12) of the form:

Emn =

E0 0

0 µ1k

 , (3.71)

where E0 is an n× n G-invariant matrix, µ ∈ R is a parameter, and 1k is the k × k
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identity matrix.4 This matrix defines a Principal Chiral Model on the group G,

whose T-dual is given by (3.37d):

S =

∫
Σ

d2z Êmn∂χm∂̄χn, (3.72)

where

Êmn = (M−1)mn. (3.73)

As before, Mmn = Emn + χaf
a
mn. Taking the limit λ → 0 on the original side

gives us a sigma model on the coset space G/H. On the dual side, we have n + k

Lagrange multiplier coordinates, and we need to gauge fix k of them. This is done

on a case-by-case basis.

3.1.5 Examples: NATD on coset manifolds

The ideas in the previous subsection will become a lot clearer once we study some

concrete examples.

NATD of S2 with respect to SO(3)

There exist a class of 11-dimensional supergravity solutions labelled O(n1, n2, n3)

whose internal spaces are U(1)-bundles over S2 × S2 × S2 [100, 48]. Dimensionally

reducing over the U(1) gives a type-IIA supergravity solution on AdS4×S2×S2×S2.

This class of type-IIA solutions was used as an example in [87] to apply their newly-

developed non-abelian T-duality for coset geometries. There, they identified each of

the S2 as the homogeneous space SU(2)/U(1), and performed non-abelian T-duality

with respect to the SU(2) symmetry on each of the S2 factors. Here, we shall only

be interested in the NS sector of their analysis.

We recall that the bi-invariant metric on SU(2) can be written in terms of the

left-invariant one forms, (3.44), as:

ds2 = δmnλ
mλn

= dη2 +
1

4

(
dξ2

1 + dξ2
2 − 2 cos(2η) dξ1 dξ2

)
.

4Note that we have used µ as the limiting parameter rather than λ, as in [87]. This is to avoid

notational clashes with left-invariant one-forms, which we are denoting by λ.
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Based on our previous discussion, and in the presence of a vanishing B-field, we

modify the bi-invariant metric slightly to discuss the coset space S2 = SU(2)/U(1):

Emn = λ1λ1 + λ2λ2 + µλ3λ3

= dη2 +
1

4
sin2(2η) dξ2

1 +
µ

4

(
dξ2 − cos(2η) dξ1

)2

(3.74)

Taking µ → 1 gives us the normal bi-invariant metric on SU(2), whilst taking the

limit µ → 0 gives us the round metric on the coset space S2. Performing a non-

abelian T-duality on the metric (3.74) with respect to the SU(2) isometry follows

simply from (3.37d). We first construct M by

Mmn = Emn + χaf
a
mn.

Denoting the dual coordinates by χa = (x, ρ, z),5 we have:

M =


1 z −ρ

−z 1 x

ρ −x µ


from which we immediately have

M−1 =
1

µz2 + ρ2 + x2 + µ


x2 + µ ρx− µz xz + ρ

ρx+ µz ρ2 + µ ρz − x

xz − ρ ρz + x z2 + 1

 .

We now use the residual gauge freedom to set x = 0, and take the µ → 0 limit,

obtaining the following model:

Êij =
1

ρ2

ρ2 ρz

ρz z2 + 1

 .

Extracting the symmetric and antisymmetric components, we get:

d̂s
2

=
dz2

ρ2
+

(
dρ+

z

ρ
dz

)2

(3.75a)

B̂ = 0. (3.75b)

This metric has a curvature singularity at ρ = 0, as can be seen by computing the

Ricci scalar:

R̂ = −2(ρ2 + 2z2 + 2)

ρ2
.

5This seemingly strange choice of notation is to match the notation of [87]
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The Ricci scalar here is a negative definite function on the dual manifold. One might

be tempted to compare this metric to the T-dual of S2, (2.28), obtained in Section

2.1.4. Both metrics are obtained from a T-duality of S2, have negative definite scalar

curvatures (with singularities), and vanishing B-field. Are they actually different

coordinate descriptions of the same metric? This is, in general, a hard question to

answer. Here, we have a simple way to see that the answer is no. We first note that

the metric (2.28) is independent of the coordinate φ̂, and so ∂φ̂ is a Killing vector for

the metric. On the other hand, the metric (3.75a) has no Killing vectors. It follows

that the two spaces are not isometric.

A new NATD for the D3 near horizon

Type IIB supergravity has an AdS5 × S5 solution describing the near horizon limit

of the D3-brane background. This solution was another one of the coset geometry

examples studied in [87], where they computed the non-abelian T-dual with respect

to the SO(6) isometry group of the S5. The SO(6) isometry acts with isotropy on

S5, and the non-abelian T-duality was performed by realising S5 as the coset space

S5 = SO(6)/SO(5).

In this section we make the observation that S5 can also be written as the coset

space SU(3)/SU(2).6 This observation allows us to perform a non-abelian T-duality

with respect to the SU(3) isometry group using the coset construction in [87].

The metric for the D3 near horizon solution is

ds2 = ds2(AdS5) + ds2(S5).

There is no dilaton and no B-field. The only non-vanishing Ramond flux is

F5 = 4
(

Vol(AdS5)− Vol(S5)
)
,

which is self-dual, since we are in type IIB.

6This observation comes by realising S5 as the unit complex sphere in C3.
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We consider the modified metric

Emn =



µ 0 0 0 0 0 0 0

0 µ 0 0 0 0 0 0

0 0 µ 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



,

where we have put the subgroup metric in the top left corner for convenience. When

µ → 1 we get the standard bi-invariant metric on SU(3), and when µ → 0 we get

the round metric on S5.

To determine the matrix M , we need to choose a basis for the Lie algebra su(3).

To do so, consider the matrices:

X1 =


0 1 0

0 0 0

0 0 0

 X2 =


0 0 0

0 0 1

0 0 0

 X3 =


0 0 1

0 0 0

0 0 0



Y1 =


0 0 0

1 0 0

0 0 0

 Y2 =


0 0 0

0 0 0

0 1 0

 Y3 =


0 0 0

0 0 0

1 0 0



H0 =


1
2

0 0

0 1
2

0

0 0 −1

 H1 =


1 0 0

0 −1 0

0 0 0

 .

Note that X3 = [X1, X2] and Y3 = [Y2, Y1]. These matrices form a basis for the Lie

algebra of su(3):

{Y1, X1, H1, Y2, Y3, X2, X3, H0}.

The matrices {Y1, H1, X1} form an su(2) subalgebra, corresponding to the injective

map of ρ : SU(2) ↪→ SU(3)

ρ(A) =

A 0

0 1

 .
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Under this SU(3) → SU(2), the adjoint of decomposes as 8 → 3 ⊕ 2 ⊕ 2 ⊕ 1.

We label the triplet as {y1, h1, x1}, the first doublet as {y2, y3}, the second doublet

as {x2, x3}, and the singlet as {h0}. We then have

va = {y1, h1, x1, y2, y3, x2, x3, h0},

and the matrix M is given by

M =

M11 M12

M21 M22

 ,

where

M11 =


µ −h1 2y1

h1 µ −2x1

−2y1 2x1 µ

 ,

M12 =


−y3 0 0 x2 0

0 −y2 x3 0 0

y2 −y3 −x2 x3 0


= −MT

21,

and

M22 =



1 0 −h0 + 1
2
h1 −x1

3
2
y2

0 1 −y1 −h0 − 1
2
h1

3
2
y3

h0 − 1
2
h1 y1 1 0 −3

2
x2

x1 h0 + 1
2
h1 0 1 −3

2
x3

−3
2
y2 −3

2
y3 −3

2
x2 −3

2
x3 1


.

Note that there are five independent invariants under SU(2) that one can construct

from these multiplets [102], given by

I1 = h0

I2 = h2
1 + 4x1y1

I3 = x2y2 + x3y3

I4 = h1y2y3 + y1y
2
2 − x1y

2
3

I5 = h1x2x3 + x1x
2
2 − x2

3y1,
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together with a sixth invariant

I6 = h1(x2y2 − x3y3)− 2(y1y2x3 + x1x2y3),

which is not algebraically independent, since

I2I2
3 − 4I4I5 = I2

6 .

We want to gauge fix three of the variables in such a way that the invariants are

in one to one correspondence with the remaining variables. A convenient choice,

though by no means the only one, is to fix y1 = y2 = 0, and y3 = 1. The invariants

are then given by

I1 = h0

I2 = h2
1

I3 = x3

I4 = −x1

I5 = h1x2x3 + x1x
2
2.

The resulting dual fields Ê = ĝ + B̂ are then found by inverting M , setting µ→ 0,

and applying this choice of gauge. The dual fields are quite complicated, but there

is a nonvanishing B-field, and the metric has singularities since the determinant

vanishes at certain values of the dual coordinates.

A puzzle

The ‘rule of thumb’ requirement for having a valid choice of gauge fixing is that

after gauge fixing, the remaining coordinates should be in one-to-one correspondence

with the invariants [87]. Whilst our choice of gauge fixing here certainly satisfies this

requirement, it appears that not all such choices result in a dual geometry. Consider,
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for example, the choice of gauge given by x2 = y2 = h1 = 1. The invariants are then

I1 = h0

I2 = 4x1y1 + 1

I3 = x3y3 + 1

I4 = −x1y
2
3 + y1 + y3

I5 = −x2
3y1 + x1 + x3.

These relations can be inverted to give the coordinates as functions of the invariants.

One finds, however that with this choice of gauge the dual metric has

det(ĝ) = O(µ),

so that taking the limit as µ→ 0 we get

lim
µ→0

det(ĝ) = 0.

Dimension of the T-dual space

A peculiarity of non-abelian T-duality is the gauge fixing procedure we need to

perform in order to obtain the dual space. The dimension of the Lie algebra of

Killing vectors is typically not the same dimension as the manifold, so without

gauge fixing, the dual space would have a dimension which differs from the original

space. Given this, one might be concerned that before gauge fixing, the dimension

of the dual space could be arbitrarily high, and that we therefore need to gauge fix

arbitrarily many Lagrange multipliers. The following lemma, proved for example in

[101], provides a bound on the dimension of the Lie algebra.

Lemma 3.1.2. Let (M, g) be a Riemannian manifold of dimension D. Then the

Lie algebra of Killing vectors on M has dimension at most D(D+1)
2

.

It follows that when gauge fixing, we need to fix at most D(D−1)
2

of the Lagrange

multipliers.

3.1.6 NATD and non-semisimple groups

Shortly after the introduction of non-abelian T-duality, examples were constructed

where the non-abelian T-dual space was not a valid supergravity background, even
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when the original space was a valid supergravity background [54, 52]. The non-

abelian duals for the Minkowski and Bianchi V spacetimes of Section 3.1.2 provide

illustrations of this. For the Bianchi V spacetime in particular, one can show that the

dual model does not solve the supegravity equations of motion with the prescribed

transformation of the dilaton, and indeed that there is no transformation of the

dilaton which solves the equations of motion [54].

It was pointed out in [55] that the Lie algebras of the isometry groups for these

examples had structure constants with non-vanishing trace, and were therefore not

semisimple Lie algebras. This was also suggested to give rise to an anomaly. In [4],

it was shown that a mixed gauge/gravity anomaly does indeed appear in the dual

model, and this was studied further in [49].

Recent work has studied non-abelian T-duality for these nonsemisimple groups

[62]. The authors show that if the group being gauged is non-semisimple, the dual

model is not a solution of the supergravity equations of motion, but it is a solution

of generalised supergravity.

3.1.7 Singularities in the dual space

The SU(2) NATD of the D3 near-horizon

In Abelian T-duality, singularities arose in the dual space when the U(1) symmetry

acted with fixed points, or equivalently, when the norm of the Killing vector van-

ished. We think of T-duality acting on a background by inverting the S1 fibers,

so if the fiber shrinks to a point in the original space, this should correspond to a

singularity in the dual space. This kind of singularity can also occur in non-abelian

T-duality. Consider, for example, performing an SU(2) non-abelian T-duality on

the D3 near-horizon background,7 which was done in [115]. We have already seen

this background in Section 3.1.5, where we performed a coset space non-abelian T-

duality by treating the S5 as the coset space SU(3)/SU(2). It was also considered

in [87], where they performed a coset space non-abelian T-duality by treating the

S5 as the coset space SO(6)/SO(5). In this section we are interested in the SU(2)

isometry acting on the S5, which has fixed points. The metric for the S5 is

ds2(S5) = 4
(
dθ2 + sin2 θ dφ2

)
+ cos2 θ ds2(S3).

7Recall the D3 near-horizon is a type-IIB AdS5 × S5 solution
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This metric exhibits S5 as a degenerate S3 fibration over S2. That is, at θ = ±π
2
,

the S3 fiber shrinks to zero size. The non-abelian T-dual with respect to the SU(2)

action on the S3 is calculated in [115], and the dual metric and B-field are given by

ĝ = ds2 (AdS5) + 4
(
dθ2 + sin2 θ dφ

)
+

dr2

cos2 θ
+

r2 cos2 θ

cos4 θ + r2
dΩ2

2

B̂ =
r3

cos4 θ + r2
Vol(S2).

Note that at θ = ±π
2

the metric blows up, corresponding to the shrinking S3 fibers

in the original space. Of course, we should check to see that these singularities aren’t

simply coordinate artifacts. A straightforward calculation confirms that the Ricci

scalar diverges at θ = ±π
2
, so these are indeed curvature singularities.

3.2 Topology?

What can we say about the topology of the non-abelian T-dual? Let’s consider

for the moment the case of the non-abelian T-dual of S3. The coordinates are the

Lagrange multipliers from the gauging procedure, and are therefore defined on the

dual Lie algebra, su(2)∗, of the isometry group SU(2). Näıvely, this suggests that

the topology of the space is R3, since Lie algebras are linear spaces. Recall, however,

that we obtained a similar result for abelian T-duality - the coordinates there were

also Lagrange multipliers, a priori taking arbitrary real values. From a supergravity

perspective, this is the end of the story. It was a string theoretic argument in Section

2.2.1, which constrained the range of the dual coordinates in terms of the range of

the original coordinates. In particular, if the original coordinates were compact with

period 2π, then the dual coordinates were also required to be compact with period

2π.

As we shall see in Section 3.2.1, this argument no longer holds for non-abelian

T-duals. Although we still have the supergravity interpretation, we don’t have an

understanding of how non-abelian gauging works in higher genus worldsheets, and

therefore no information on the range of the dual coordinates. There have been some

recent attempts to understand this from a physics perspective, which we discuss

briefly in Section 3.2.2. In Section 3.2.3 and Section 3.2.3 we offer some comments

from a more mathematical perspective.
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3.2.1 Topology of the fibers - what fails?

In Section 2.2.1, we reviewed the string-theoretic argument which allowed us to

conclude that the topology of the fiber does not change when we perform a T-

duality. If the original fiber is compact, i.e. the Killing vector has closed orbits,

then the dual coordinate is constrained by the holonomies of the gauge fields to be

periodic, so the dual fiber is also compact. If the original fiber is non-compact, then

applying the same argument to the dual space allows us to conclude that the dual

fiber cannot be compact, and must therefore be non-compact. A natural question to

ask is what happens to the topology of the fiber in the case of non-abelian T-duality.

As in the abelian case, the dual coordinates are defined a priori on the Lie algebra

g of the group of isometries G. For simplicity, let us assume that G = SU(2), so

that the coordinates are defined on su(2)∗. Since su(2)∗ is a real vector space, it is

topologically R3, and therefore non-compact. It is a reasonable question to ask if

we can compactify this non-compact space, and if so, if there is a string theoretic

argument which tells us how to do this. Unfortunately, a näıve application of the

same argument in Section 2.2.1 fails. In the non-abelian case, winding modes of the

dual coordinates (if that can be given a meaning) don’t multiply the holonomies of

the gauge fields, which require path-ordering [4]. A general procedure for performing

non-abelian T-duality for higher genus worldsheets is currently lacking.

3.2.2 Topology from the physics perspective

Recently, there have been some very interesting attempts to determine global prop-

erties of non-abelian T-duality coming from a physics perspective. These attempts

utilise the AdS/CFT duality to attempt to determine global properties of the non-

abelian T-dual space.

B-field holonomy

The general principle is to consider an AdS ×M background, and then perform a

non-abelian T-duality for some group of isometries acting trivially on the AdS part

of the spacetime. The dual background, AdS × M̂ then has a CFT dual by the

AdS/CFT correspondence, and it is hoped that by studying the properties of this
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CFT, one can determine global properties of the dual space M̂ .8 The observation of

[83, 86] relied on the boundedness of the action for a string wrapping a non-trivial

2-cycle, leading to a bound on the quantity:

b =
1

4π2

∣∣∣∣∫
M2

B

∣∣∣∣ , (3.76)

where M2 is a suitably chosen 2-cycle in M . In particular, we want to require that

b ∈ [0, 1]. We first note that in the abelian case, this gives the correct prescription

for obtaining the periodicity of the dual coordinates. Consider, for example, the

abelian Hopf T-duality of S3 with no flux, studied in Section 2.1.4. The dual metric

and the dual B-field is given by:

d̂s2 = dη2 +
1

4
sin2(2η) dξ2

2 + 4 dξ̂1

2

B̂ =
1

2
cos(2η) dξ2 ∧ dξ̂1.

Here, the original coordinates have ranges (η, ξ2) ∈ [0, π
2
] × [0, 4π], and we are in-

terested in the range of the dual coordinate ξ̂1. By fixing η = η0, we obtain a sub-

manifold over which we can integrate the B-field. Setting the as-yet-undetermined

periodicity of the dual coordinate to be α, the result is:

b =
1

4π2

∣∣∣∣∫
M2

B̂

∣∣∣∣
=

1

8π2

∣∣∣∣∣
∫ ξ2=4π

ξ2=0

∫ ξ̂1=α

ξ̂1=0

cos(2η0) dξ2 ∧ dξ̂1

∣∣∣∣∣
=

α

2π
|cos(2η0)| .

It follows that b lies in the range [0, 1], independent of η0, provided that the peri-

odicity of the dual coordinate is α = 2π. This agrees with the analysis of Section

2.2.1, where we found that ∫
dθ ∧ dθ̂ = (2π)2. (3.78)

What does this tell us when we are considering non-abelian T-duality? For the

non-abelian T-dual of S3, studied in Section 3.1.2, we can apply the same analysis.

8Once again, the word “duality” is a heavily overused word in this thesis. To avoid confusion,

we will try to avoid dropping the “T” in T-duality, and will always refer to the dual conformal

field theory obtained via the AdS/CFT correspondence as the “CFT dual”.
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Switching to polar coordinates,9 the dual metric and B-field are given by:

ds2 = dr2 +
r2

1 + r2

(
dθ2 + sin2 θ dφ2

)
(3.79a)

B = −r
3 sin θ

1 + r2
dθ ∧ dφ. (3.79b)

Computing the quantity (3.76) requires us to choose a 2-manifold over which to

integrate. Symmetry suggests that we should choose a 2-sphere of constant radius

r = r0. Of course, we don’t have global information about the topology of the dual

manifold, so we can’t be sure that there are non-trivial 2-cycles at finite r. We

assume that there are, and obtain:

b =
1

4π2

∣∣∣∣∫
M2

B̂

∣∣∣∣
=

1

4π2

∣∣∣∣∫ θ=π

θ=0

∫ φ=2π

φ=0

r3
0

1 + r2
0

sin θ dθ ∧ dφ

∣∣∣∣
=

1

π

∣∣∣∣ r3
0

1 + r2
0

∣∣∣∣ .
For this to be the range b ∈ [0, 1], we require that the radial coordinate should be

constrained to r ∈ [0, R], for some finite R.10 Of course, the B-field is not uniquely

defined - it is a gauge field, and therefore physically equivalent configurations are

related by gauge transformations. It is easy to see that under a gauge transformation

of the form

B 7→ B + dC, (3.80)

the expression (3.76) is invariant, since
∫
M2

dC = 0 by Stokes’ theorem. If, however,

we perform a large gauge transformation of the form

B 7→ B + nπV ol(S2),

with n an integer, we find that

b =

∣∣∣∣ r3
0

e2σ + r2
0

+ nπ

∣∣∣∣ . (3.81)

We refer the interested reader to [86] for a more detailed analysis of this situation.

The takeaway of their analysis is that physical arguments suggest we should consider

9See Section 3.2.3.
10R is the unique real root of the cubic f(r) = r3 − πr2 − π. It is possible to obtain an exact

expression for this, but it is rather complicated so we have omitted it.
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a cutoff for the radial coordinate. Such a cutoff would seem to introduce a boundary

to the manifold, which would normally require the addition of localised sources so

that the equations of motion are still satisfied. This is a somewhat unsatisfactory

conclusion, since the geometry is perfectly smooth there.11 Similar arguments are

used for the non-abelian T-duals of AdS5 × S5, AdS5 × T 1,1, and AdS5 × Y p,q in

[89]. There, they find that radial coordinate ρ should lie in the range ρ ∈ [0, π].

Large gauge transformations shift the radial function so that it is ‘quantised’ in the

range ρ ∈ [nπ, (n+ 1)π]. There have been attempts to explain this from a physical

perspective as a type of Seiberg duality.

Interestingly, it is noted in [84, 85, 88] that the r →∞ limit of the fields in the

non-abelian T-dual of S3 coincides with the fields obtained in the abelian T-dual of

S3 along the Hopf fibration.

lim
r→∞


g

B

eΦF


NATD

=


g

B

eΦF


ATD

(3.82)

where the RR fluxes are collected with the dilaton into the polyform eΦF . At large

r, the metric (3.79a) has the same form of the product metric on R×S2, and periodic

identification of the r coordinate gives a topology of S1 × S2, precisely matching

the topology of the abelian T-dual of S3. Whether this limit has any additional

meaning or is simply a coincidence is yet to be determined.

3.2.3 Topology from the maths perspective

Comments on topology: The NATD of S3

We consider in this section the non-abelian T-dual of S3 with no B-field, discussed

in 3.1.2. Recall that the dual data is defined on the Lagrange multiplier coordinates

{χi} = {x, y, z}, and we have the following metric, B-field, and dilaton:

ds2 =
1

1 + χ2
(δij + χiχj) dχi dχj

B = −εijk
χk

1 + χ2
dχi ∧ dχj

φ = log

(
1

1 + χ2

)
,

11Indeed, the geometry is perfectly smooth for all r ∈ [0,∞).
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where χ2 = x2 + y2 + z2. We can switch to polar coordinates, using the transforma-

tions:

x = r sin θ cosφ (3.83a)

y = r sin θ sinφ (3.83b)

z = r cos θ. (3.83c)

In these coordinates, we obtain:

ds2 = dr2 +
r2

1 + r2

(
dθ2 + sin2 θ dφ2

)
(3.84a)

B = −r
3 sin θ

1 + r2
dθ ∧ dφ (3.84b)

φ = log

(
1

1 + r2

)
. (3.84c)

This metric is, a priori, defined on the dual Lie algebra su(2)∗, which, since it is a

vector space, is topologically R3. Recall that a similar thing happened in the abelian

case - the dual metric was defined in terms of the dual coordinate θ̂, which was a

Lagrange multiplier living in the dual Lie algebra, u(1)∗ ' R, of U(1). In that case,

a string theoretic argument constrained the range of the dual coordinate. Although

the corresponding string theoretic argument is lacking in the non-abelian case, one

could ask whether there is a ‘correct’ compactification of the dual manifold which is

compatible with the dual metric. This is a difficult question since, in principle, there

are often many manifolds which are compatible with a given coordinate description

of a metric. For this particular example, however, we are fortunate. The Ricci scalar

of the metric (3.84a) is

R =
2 (r4 + 3r2 + 9)

(1 + r2)2
. (3.85)

This is manifestly positive, so (3.84a) is a metric of positive scalar curvature. It

follows from Theorem 2.1.4, that the only closed, orientable manifolds with which

this metric is compatible are spherical 3-manifolds, copies of S1 × S2, and connect

sums of these. Guided by the results of Theorem 2.1.4, we could try to compactify

the dual manifold to give it the topology of S3. This seems like a natural choice,

and would be close in spirit to abelian T-duality, where the fibers of the original
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and the dual spaces are required to have the same topology. Let us attempt to do

this näıvely, and see what goes wrong.

We begin by noting that S3 is the one-point compactification of R3, so we can

try to compactify the dual space to S3 simply by identifying the ‘point at infinity’.

The Ricci scalar (3.85), as well as the Kretschmann scalar

K =
4 (r8 + 6r6 + 15r4 + 18r2 + 27)

(1 + r2)4
, (3.86)

are both finite as r → ∞. To see the problem, consider two points at a fixed

radius r. For concreteness, take the two points to be x1 = {r, θ = π
2
, φ = 0} and

x2 = {r, θ = π
2
, φ = π}. The geodesic distance between these two points approaches

a finite, non-zero value as r →∞, so the points can’t be identified with each other

in the limit.

There is, in fact, an easy way to see that the dual manifold is necessarily non-

compact if we take r ∈ [0,∞), and not just a compact manifold in disguise (as in

the abelian case). To see why, recall the definition of the diameter of a Riemannian

manifold:

diam(M) = sup
p,q∈M

d(p, q). (3.87)

If M is compact, then this is a continuous function on a compact set, and therefore

attains a maximum. That is, the diameter of a compact set is finite. On the other

hand, it is easy to see that with the metric (3.84a), the diameter is not finite. Take

N ∈ N, and consider the distance between the points p = (r, θ, φ) = (1, π
2
, 0) and

q = (N + 1, π
2
, 0). We have

d(p, q) = N, (3.88)

and so it follows that the diameter cannot be finite, and therefore M cannot be

compact.

Analytic continuation and speculation

For arbitrary x, y, z ∈ R, the r coordinate is constrained to r ∈ [0,∞). We no-

tice, however, that the metric (3.84a) depends only on r quadratically. Indeed,

even though taking r < 0 corresponds to a complex transformation (3.83a), the

line element (3.84a) remains real.12 The B-field, dilaton, as well as the Ricci and

12This also happens, for instance, in the Kruskal-Szekeres coordinates for the Kerr black hole.
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Kretschmann scalars are all perfectly well-defined for all r ∈ R. Motivated by this

observation, we make the coordinate change r = tan t. The new metric, B-field and

dilaton are given by

ds2 =
1

cos4 t
dt2 + sin2 t

(
dθ2 + sin2 θ dφ2

)
(3.89)

B = −sin3 t sin θ

cos t
dθ ∧ dφ (3.90)

φ = 2 log (cos t) . (3.91)

For 0 < r < ∞, the new coordinate t ranges from 0 to π
2
, however r is an analytic

function of t, so we can analytically continue it, at least until we get to the nearest

pole. The poles of tan t are at t = π
2

+ nπ, so we can extend the range of t to be

(−π
2
, π

2
). Note that this corresponds to taking r ∈ R. The metric still degenerates

at r = t = 0, and now we have a (coordinate) singularity at t = ±π
2
, corresponding

to r = ±∞. Nevertheless, on the intervals t ∈ (−π
2
, 0) and (0, π

2
), all of our fields

are well-defined and smooth. The scalar curvature in these coordinates is

R = 14 cos4 t+ 2 cos2 t+ 2,

which we plot as a function of t in Figure 3.2.

It is tempting to consider t a periodic coordinate - the metric is invariant under

the substitution t→ t+ π, as are the B-field, the dilaton, and the scalar invariants.

This would have the effect of identifying r = −∞ with r =∞.

Comments on topology: The NATD of the Twisted Torus

The twisted torus was discussed in Section 2.1.4, where it occurred as the T-dual of

the three torus with H-flux. More specifically, it was the first in a series of dualites:

Txyz
∂z←→ fxy

z ∂y←→ Qx
yz ∂x←→ Rxyz. (3.92)

We also discussed this example in 3.1.2, where we noticed that in addition to the

abelian isometry taking us back to the three-torus with H-flux, the twisted torus

had in fact a non-abelian group of isometries. This comes from the fact that we

can also view the twisted torus as the quotient of the real Heisenberg group by its

integer counterpart

Nil = Heis(R)/Heis(Z). (3.93)
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Figure 3.2: A plot of the scalar curvature of the metric (3.89) as a function of t. The

region t ∈ (0, π
2
) is highlighted in yellow, corresponding to the original coordinate

range of r ∈ [0,∞).

Performing a non-abelian T-duality on an f -flux background with respect to this

non-abelian isometry group gives a remarkable result - the T-dual is a Q-flux back-

ground with the indices interchanged. This was noticed in [15], following the results

of [35, 36], and is discussed within the context of non-isometric T-duality in Section

5.1.2.

As noted in [35, 36], the single non-abelian duality fxy
z −→ Qxy

z can be written

as a chain of abelian dualities:

Txyz fxyz

fxy
z Qxy

z

∂x

∂z

NATD

∂y

δB

(3.94)

where we must perform a gauge transformation for the B-field in order to continue

the T-duality chain. In fact, there is an even nicer picture here. Starting with the

three torus with flux, the various abelian T-dualities can be incorporated into the

following duality cube:
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Qx
yz Rxyz

fxy
z Qx

y
z

fx
y
z Qxy

z

Txyz fxyz

∂x

∂y

∂x

∂y

∂x

∂z

∂z

∂z

∂x

∂y

∂z

∂y

The non-abelian T-duality we have been discussing then corresponds to a map from

opposite sides of the cube, sending f → Q. This can be realised as a chain of abelian

T-dualities by tracing along the edges of the cube. One such path is the one we

have already discussed in (3.94):

Qx
yz Rxyz

fxy
z Qx

y
z

fx
y
z Qxy

z

Txyz fxyz

∂x

∂y

∂x

∂y

∂x

∂z

∂z

∂z

∂x

∂y

∂z

∂y

Note that the inverse map isn’t well-defined as a single non-abelian T-duality, since

the Q-flux background does not have a globally defined non-abelian group of isome-

tries with which we can dualise. This is in line with our expectations from non-

abelian T-duality - we aren’t normally able to invert non-abelian T-duality. On the

other hand, the inverse chain of abelian T-dualities is certainly well-defined. This

coincidence - that a non-abelian T-duality agrees with a chain of abelian T-dualities

- is more than a curiosity. Topological aspects of non-abelian T-duality are still not

understood, even for the simplest examples of gauging the left action of a group on

itself. The twisted torus, however, provides us with an example where we know ex-

plicitly the topology of the non-abelian T-dual, since the non-abelian T-dual agrees

with a chain of abelian T-dualities, whose topological behaviour is well-understood.

In this case, the non-abelian T-dual is no longer a manifold, so “topological aspects
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of non-abelian T-duality” should be suitably interpreted. The appearance of the Q-

flux background as the non-abelian T-dual of the f -flux background suggests that

global aspects of non-abelian T-duality might only be understood in the broader

context of noncommutative and non-associative geometry and T-folds. It is perhaps

through this observation that we can make sense of the ‘periodicity’ of the radial

coordinate appearing in the non-abelian T-dual of S3, described in Section 3.2.2.



Chapter 4

Poisson-Lie T-duality

Poisson-Lie T-duality, first introduced by Klimč́ık and Ševera in [75, 74], is a gen-

eralisation of non-abelian T-duality. Non-abelian T-duality, at least from the path

integral perspective, suffers from an inability to invert the procedure - given a sigma

model with isometries, it is straightforward to construct a dual sigma model. The

dual model, however, will generically have fewer isometries than the original model.

In particular, we aren’t guaranteed the existence of a group of isometries we can

perform a non-abelian T-duality with respect to which will return us to the original

model.1 This observation led Klimč́ık and Ševera to propose that the relevant al-

gebraic structure wasn’t the group of isometries (or its associated Lie algebra), but

some other structure which appears as a group of isometries under some circum-

stances. Their suggestion was that the relevant algebraic structure is in fact a Lie

bialgebra.

In Section 4.1, we discuss the algebraic structure underlying Poisson-Lie T-

duality, the Drinfeld double. Then, in Section 4.2, we will discuss the Poisson-Lie

symmetry conditions and the various classes of Poisson-Lie T-duality. Finally, in

Section 4.3 we will discuss examples of Poisson-Lie T-duality.

4.1 Drinfeld double

In the context of this thesis, a Drinfeld double is a Lie group D whose Lie algebra

d can be decomposed into a pair of maximally isotropic subalgebras with respect

to a non-degenerate invariant bilinear form on d. The term Drinfeld double has

1See, however, [42, 82] for a discussion of the invertability of non-abelian T-duality as a canonical

transformation.

105
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a more general meaning in the context of quantum groups, where it is used to

refer to a construction which takes a Hopf algebra and creates a quasitriangular

Hopf algebra. These objects are interesting from a mathematical perspective, since

the quasitriangularity property gives the R matrix, a solution to the Yang-Baxter

equation, which can also be used to construct invariants for knots. The meaning

which we will take in this thesis is the so-called “semiclassical analogue” of the

quantum double.

Let d be the Lie algebra of a Lie group D, and suppose that 〈·, ·〉 is a non-

degenerate invariant bilinear form on d. An isotropic subspace of d is a vector

subspace on which the bilinear form vanishes. An isotropic subspace is maximal

if it is not a proper subspace of another istropic subspace. We now say that d is

a Drinfeld double if it can be decomposed into the direct sum of two maximally

isotropic subalgebras. A given decomposition d = g ⊕ g̃ is called a Manin triple,

and we will label it by the pair (g, g̃). Note that since the bilinear form on d is

non-degenerate, we can use it to identify g̃ with the dual vector space:

g̃ = g∗. (4.1)

The Lie subalgebra structure on g̃ then makes d into a Lie bialgebra.2 Conversely,

every Lie bialgebra defines a Manin triple by identifying the dual Lie algebra g∗

with g̃, and defining the commutator between g and g̃ to make the bilinear form

invariant.3 Choosing generators Ta for g, and T̃ a for g̃, we have

〈Ta, Tb〉 = 0

〈T̃ a, T̃ b〉 = 0

〈Ta, T̃ b〉 = δba.

These generators have the following relations:

[Ta, Tb] = f cabTc

[T̃ a, T̃ b] = f̃c
abT̃ c

[Ta, T̃
b] = f̃a

bcTc − f bacT̃ c.

2A Lie bialgebra is a Lie algebra g with a compatible Lie algebra structure on the dual vector

space g∗.
3For details, see [77].
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The Jacobi identity on d imposes non-trivial constraints on the structure constants

for g and g̃. In particular, they must satisfy

f̃a
mcf bdm − f̃ambf cdm − f̃dmcf bam + f̃d

mbf cam − f̃mbcfmda = 0. (4.2)

We note that this condition is symmetric in the structure constants and their duals.

In addition, the condition (4.2) is always satisfied whenever at least one of g or g̃

is abelian. Thus if g is a Lie algebra of dimension n, we always have at least two

Manin triples (g,Rn) and (Rn, g).

4.2 Poisson-Lie symmetry

We now consider, once again, the nonlinear sigma model (3.1) on a manifold M :

S =

∫
d2z Eij∂X

i∂̄Xj.

Suppose that a group G acts freely on M from the right. The infinitesimal generators

of this group action are the left-invariant vector fields {La}:

δεX
i = Liaε

a.

The currents associated to this group action are the Noetherian forms: they are

one-forms associated to this group action, and are given by

Ja = LiaEij ∂̄X
j dz̄ − LiaEji∂Xj dz. (4.3)

If we compute the variation of the action with respect to this group action for

constant ε = εaTa, we obtain the non-abelian version of (2.3):

δεS =

∫
Σ

εa (Lvag)ij dX i ∧ ? dXj + εa (LvaB)ij dX i ∧ dXj.

Here, we have defined va = Lia∂i.

On the other hand, if we compute the variation of the action with respect to

the group action with a worldsheet dependent parameter ε = εa(z, z̄)Ta, that is the

variation under a local gauge transformation, we obtain

δεS =

∫
Σ

εa (Lvag)ij dX i ∧ ? dXj + εa (LvaB)ij dX i ∧ dXj

+

∫
Σ

dεa ∧ Ja.
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An extremal surface is a mapping X such that δεS vanishes. If the Lie derivatives

of g and B vanish, then on an extremal surface we have∫
Σ

dεa ∧ Ja =

∫
Σ

d (εaJa)−
∫

Σ

εa dJa

= −
∫

Σ

εa dJa.

Since this must hold for arbitrary ε, we must have that dJa = 0. That is, Ja is closed

on extremal surfaces. We now suppose that Ja is not closed, but rather satisfies the

Maurer-Cartan equation:

dJa =
1

2
f̃a
bcJb ∧ Jc. (4.4)

We assume here that the constants f̃a
bc are the structure constants for some Lie

algebra g̃. If the one-forms satisfy this equation, then they have the Maurer-Cartan

form, and therefore can be written in the form

Ja = dg̃ g̃−1,

for some map g̃ : Σ→ G̃, where g̃ is the Lie algebra associated to G̃. The condition

(4.4) can be expressed in terms of Eij by:

(LvaE)ij = EimL
m
c f̃a

bcLnbEnj. (4.5)

The integrability condition on the set of first order differential equations (4.5) gives

a compatibility condition for the pairs of structure constants. The integrability

condition is

[Lva ,Lvb ]Eij = f cabLvcEij,

from which it follows that

f̃a
mcf bdm − f̃ambf cdm − f̃dmcf bam + f̃d

mbf cam − f̃mbcfmda = 0.

This is precisely the condition (4.2) that a Lie bialgebra must satisfy. That is, for

our sigma model with group action, we have an associated Manin triple (g, g̃). Due

to the manifest duality of the Lie bialgebra structure, one might expect that there

is a dual model which has the associated bialgebra (g̃, g). This was precisely the

observation made in [75]. The dual model should satisfy

(LṽaẼ)ij = Ẽimṽ
m
c fa

bcṽnb Ẽnj. (4.6)
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Before we go on to discuss the relation of the original model and the dual model,

let us briefly recapitulate the setup for Poisson-Lie T-duality. The Lie algebra g is

the algebra associated to the group action on the sigma model. It is determined by

the vector fields {va} generating the group action. This algebra can be abelian, in

the case of a U(1)N or RN action, or non-abelian, corresponding to the action of

some non-abelian group G. There are Noether currents Ja associated to this group

action via (4.3). These Noether currents are not closed, but satisfy the Maurer-

Cartan equation (4.4) for a different group G̃. The dual Lie algebra g̃ associated

to this group can be abelian, in which case (4.5) tells us that the group G acts on

the original model by isometries. If the dual Lie algebra is non-abelian, the group

G acting on M does not act by isometries since LvaE 6= 0. Duality acts on the

double (g, g̃) by interchanging the algebras, giving (g̃, g). We then have three types

of dualities:

• Abelian doubles: In this case, both algebras in (g, g̃) =
(
u(1)N , u(1)N

)
are

abelian. The group action on the sigma model is abelian, and acts by isometries

since the dual group is abelian. The dual model, determined by (g̃, g), also has

an isometric abelian group action on it. This situation corresponds to abelian

T-duality.

• Semi-abelian doubles: A semi-abelian double is one in which we have a

non-abelian Lie algebra g, with an abelian dual structure g̃ = u(1)N . Since

the dual group is abelian, the group action on the original model acts by

isometries. The dual model corresponds to (u(1)N , g). The group action is an

abelian group action, but since the dual group is now non-abelian, it doesn’t

act by isometries. This situation corresponds to non-abelian T-duality. The

original model has a non-abelian group of isometries, but those isometries are

no longer present in the dual model. We therefore see that although non-

abelian T-duality is not invertible from a gauging perspective, it is invertible

from the perspective of Poisson-Lie T-duality since duality acts by simply

swapping the algebras.

• Non-abelian doubles: The final type of double is a true non-abelian double,

where both g and g̃ are non-abelian. These examples correspond to dual pairs

of models with non-abelian group actions which don’t act by isometries.
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In order to describe the relations between the dual models, we find in convenient to

introduce the following notation:4

αba(g̃) = 〈g̃ Ta g̃−1, T̃ b〉 (4.7a)

βab(g̃) = 〈g̃ Ta g̃−1, Tb〉 (4.7b)

µab(g) = 〈g T̃ a g−1, T̃ b〉 (4.7c)

νab (g) = 〈g T̃ a g−1, Tb〉, (4.7d)

so that

g̃ Ta g̃
−1 = αbaTb + βabT̃

b (4.8a)

g T̃ a g−1 = µabTb + νab T̃
b. (4.8b)

Consistency requires that

α(g̃−1) = α−1(g̃) (4.9a)

β(g̃−1) = βT (g̃) (4.9b)

µ(g−1) = µT (g) (4.9c)

ν(g−1) = ν−1(g). (4.9d)

The original and the dual model are then given by

Eab(g) =
( (
E0
ab

)−1
+ µacνbc

)−1

(4.10a)

Ẽab(g̃) =
(
E0
ab + βacα

c
b

)−1

, (4.10b)

where E0
ab is some constant matrix. In the case of non-abelian T-duality, we have

αba = δab (4.11a)

βab = f cabχc, (4.11b)

and so the dual space is given by

Ẽab = (E0
ab + f cabχc)

−1, (4.12)

in accord with Section 3.1.1. Whilst Poisson-Lie T-duality has been formulated as

a canonical transformation on the phase space of the classical theory in [112, 113],

global issues prevent a full path-integral derivation of the duality (cf. [2, 123]).

4This particular notation comes from [123].
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4.3 Examples

The non-abelian T-dual of S3

For the first example, let us consider again the non-abelian T-dual of S3 ' SU(2),

to see how it fits into the framework of Poisson-Lie T-duality. Since the pair (G,G ′)

consists of a non-abelian Lie algebra G = su(2), and an abelian Lie algebra G ′ = R3,

it is a semi-abelian double as described in Section 4.1. Let us now describe the

Drinfeld double D for this case.

Recall the following construction of an (outer) semi-direct product. Let N and H

be two (possibly unrelated) groups, and consider a group homomorphism ϕ : H →

Aut(N). The outer semi-direct product H nϕ N as a set is simply the cartesian

product H× N. We equip this set with a group structure

(h1, n1) ∗ (h2, n2) = (h1h2, n1ϕ(h1)(n2)). (4.13)

Applying this construction to S3, we take H = SU(2), and N to be g∗ ' R3, thought

of as an abelian group. For ϕ, we take the coadjoint action of SU(2). That is, we

have a map ϕ : SU(2)→ Aut(g∗), with ϕ(g) = ϕg defined by

ϕg(φ)(X) := φ(Ad(g−1)X), (4.14)

for φ ∈ g∗, and X ∈ g. The Drinfeld double we then define as D = SU(2) nϕ g∗,

which is also the cotangent bundle of SU(2). The Lie algebra is

D = g + g∗ = su(2) + R3,

and so the associated pair is (su(2),R3), which is a semi-abelian double as described

in Section 4.1.

To get a geometric realisation of this double, we equip S3 with the round metric

and no B-field. We can identify g with the right-invariant vector fields of SU(2).

The dual Lie algebra is abelian, so we should have

(LvaE)ij = 0.

This is immediate, however, since the round metric on S3 is the bi-invariant metric

on SU(2), and the right-invariant vector fields are therefore isometries. The dual

metric and B-field can be obtained from the non-abelian T-duality procedure, as we
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have done in Section 3.1.2. The result is

Ẽ =
1

1 + x2 + y2 + z2


1 + x2 −z + xy y + xz

z + xy 1 + y2 x− yz

−y + xz x+ yz 1 + z2

 . (4.15)

We can obtain the metric and B-field (3.55) by extracting the symmetric and an-

tisymmetric parts. Since g∗ is abelian, the dual vector fields form a commutative

Lie algebra. It is a straightforward, albeit tedious exercise to show that the vec-

tor fields ṽa = {∂x, ∂y, ∂z} and Ẽ given by (4.15) satisfy the dual non-commutative

conservation laws (4.6):

(LṽaẼ)ij = Ẽimṽ
m
c fa

bcṽnb Ẽnj,

with the su(2) structure constants.

The Borelian double

This simple two-dimensional example comes from [74].5 Take as the Drinfeld double

the group GL(2;R), together with the following basis for its Lie algebra

T1 =

1 0

0 0

 , T2 =

0 1

0 0


T̃ 1 =

0 0

0 1

 , T̃ 2 =

 0 0

−1 0

 .

The group, B2, whose Lie algebra is spanned by {T1, T2}, has an explicit parametri-

sation:

g =

eχ θ

0 1

 ,

and the group G̃2, whose Lie algebra is spanned by {T̃ 1, T̃ 2}, has an explicit parametri-

sation:

g̃ =

 1 0

−θ̃ eχ̃

 .

5Although note that we are using a slightly different convention.
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A quick calculation gives us that

µ =

 0 θ

−θe−χ θ2e−χ


ν =

 1 0

θe−χ e−χ

 ,

and

α =

 1 0

θ̃e−χ̃ e−χ̃


β =

 0 θ̃

−θ̃e−χ̃ θ̃2e−χ̃

 .

By choosing E0
ab to be the 2× 2 identity matrix, we obtain the original model

Eab =
1

2θ2e−2χ + θ2e−χ + 1

 1 + θ2e−2χ −θe−χ

−θe−χ (θ2e−χ − 1) 1 + θ2e−χ

 . (4.16)

This model is self-dual, and the dual model can be obtained from (4.16) by replacing

the coordinates {χ, θ} with their dual versions, {χ̃, θ̃}. Note that this expression for

the model and its dual differs from that in [74] by a similarity transformation, as

explained in [123].

A three-dimensional example in various limits

This final set of examples is from [114], where the author considers Poisson-Lie

T-duality for the Drinfeld double whose algebras are given by su(2) and e3. Ex-

plicitly, we have generators {Ta} for su(2), and generators {T̃ a} for e3, where the

commutation relations (for a, b, c = 1, 2, 3 and i, j = 1, 2) are given by:6

[Ta, Tb] = iεabcTc,

[T̃ 3, T̃ i] = T̃ i, [T̃ i, T̃ j] = 0.

The ‘mixed’ relations are given by

[Ti, T̃
j] = iεijT̃

3 − δijT3, [T3, T̃
i] = iεijT̃

j

[T̃ 3, Ti] = iεijT̃
j − Ti.

6Note that the notation for this example differs from the notation in the rest of this chapter,

in order to stay consistent with the results of [114].
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By choosing E0 = diag(λ1, λ2, λ3), the author of [114] finds the dual models given

by

ds2 =
1

V

(
AaAb +

λ1λ2λ3

λa
δab

)
LaLb

B =
1

V
εabcλcAcLa ∧ Lb

and

d̃s
2

=
1

Ṽ

(
ÃaÃb +

λa
λ1λ2λ3

δab

)
L̃aL̃b

B =
1

Ṽ
εabc

1

λc
ÃcL̃a ∧ L̃b,

where

~A = (cosψ sin θ, sinψ sin θ, cos θ − 1) ,

~̃
A =

(
y1e
−χ, y2e

−χ, sinhχe−χ − 1
2
(y2

1 + y2
2)e−2χ

)
and

V = λ1λ2λ3 + λaA
2
a

Ṽ =
1

λ1λ2λ3

+
Ã2
a

λa
.

Here, La and L̃a are the left-invariant Maurer-Cartan forms for the groups associated

to su(2) and e3 respectively, and are given by

L1 = cosψ sin θ dφ− sinψ dθ

L2 = sinψ sin θ dφ+ cosψ dθ

L3 = dψ + cos θ dφ,

and

L̃1 = e−χ dy1

L̃2 = e−χ dy2

L̃3 = dχ.

These dual models have three interesting limits which have been considered in [114].

The first is to take a limit in which the untilded metric becomes a metric on the

deformed S3, whilst rescaling the dual coordinates in such a way that the dual group
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becomes abelian. This then reproduces the results of Section 3.1.2 and Section 4.3,

which is simply the non-abelian T-dual of S3 with respect to an SU(2) isometry.

The second limit considered is to contract SU(2) into an abelian group, and the

result is the non-abelian T-dual of the group associated to e3. The final and most

interesting limit is to take one of the λa to infinity, whilst keeping the other two

finite. The resulting models have two-dimensional target spaces, and the untilded

metric becomes a deformed metric on S2:

ds2 =
1

1 + a2 sin4 θ
2

(
dθ2 + sin2 θ dφ2

)
,

whilst the tilded metric becomes a curved metric on a non-compact space:

d̃s
2

=
1

2r(1 + az)

(
dz2 +

(
dr +

z − ar
2

1 + az
dz

)2
)
.

In the a → 0 limit this becomes the non-abelian T-dual of S2 with respect to the

SU(2) (discussed in Section 3.1.5).
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Chapter 5

Non-isometric T-duality

Non-isometric T-duality is an attempt to generalise non-abelian T-duality to a set

of vector fields generating infinitesimal variations which do not necessarily leave the

metric and B-field invariant, but which nevertheless leave a suitably gauged action

invariant.

In Section 5.1 we describe the initial proposal by Chatzistavrakidis, Deser, and

Jonke (CDJ) for non-isometric T-duality [36, 35]. We describe the setup, examples

of this putative duality, and finally the proof that it is actually just non-abelian

T-duality in disguise [15].

In Section 5.2 we discuss extensions of the original proposal, and its relation to

Poisson-Lie T-duality.

5.1 ω-deformed gauging

5.1.1 The setup

Recall from Chapter 3 that our prescription for non-abelian T-duality involved a

metric g and a B-field B, both invariant under the action of a non-abelian Lie

algebra of vector fields {va}. In this chapter, we will restrict our attention to the

case that the flux H = dB is an exact form. The action is the standard non-linear

sigma model action:

S =

∫
Σ

gij dX i ∧ ? dXj +Bij dX i ∧ dXj,

and the minimally-coupled action is

SMC =

∫
Σ

gijDX
i ∧ ?DXj +BijDX

i ∧DXj,

117
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where DX i = dX i − viaAa. The minimally-coupled action is invariant under the

(local) gauge transformations:

δεX
i = viaε

a

δεAa = dεa + fabcAbεc.

The modification proposed in [36, 35] is a twofold generalisation of this basic setup.

The first is the promotion of the structure constants f cab to structure functions

f cab(X). The second is to allow an extended notion of gauging, by considering the

following ω-modified gauge transformations:

δεX
i = viaε

a (5.2a)

δεAa = dεa + fabcAbεc + ωabiε
bDX i (5.2b)

The quantity ωabi is an X-dependent matrix of one-forms. We will discuss the ge-

ometric interpretation of this quantity in Section 5.1.4. Let us examine now the

consequences of allowing such modified gauge transformations. The gauge covariant

derivative transforms homogeneously under these (local) gauge transformations:1

δεDX
i =

[
εa(∂jv

i
a)− viaωabjεb

]
DXj

=: M i
jDX

j.

With this convenient transformation, we now compute the (local) variation of the

minimially-coupled action:

δεSMC =

∫
Σ

[
vka(∂kgij)ε

a + gkjM
k
i + gikM

k
j

]
DX i ∧ ?DXj

+
[
vka(∂kBij)ε

a +BkjM
k
i +BikM

k
j

]
DX i ∧DXj

=

∫
Σ

εa
[
(Lvag)ij − (gkjv

k
bω

b
ai + gikv

k
bω

b
aj)
]
DX i ∧ ?DXj

+ εa
[
(LvaB)ij − (Bkjv

k
bω

b
ai +Bikv

k
bω

b
aj)
]
DX i ∧DXj.

1This calculation uses the identity via(∂iv
j
b)− vib(∂ivja) = f cabv

j
c , which is the coordinate expres-

sion of [va, vb] = f cabvc.
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It follows that the minimally coupled action is invariant under the ω-modified gauge

transformations (5.2), provided

(Lvag)ij = gkjv
k
bω

b
ai + gikv

k
bω

b
aj (5.3a)

(LvaB)ij = Bkjv
k
bω

b
ai +Bikv

k
bω

b
aj. (5.3b)

Written in more succinct notation, the conditions (5.3) read:

Lvag = ωba ∨ ιvbg (5.4a)

LvaB = ωba ∧ ιvbB, (5.4b)

where ιXT = T (X, ·), or in components (ιXT )j = XkTkj.
2 This calculation says that

we can write down a gauged action which is invariant under local gauge transfor-

mations, provided the metric and the B-field satisfy conditions (5.4). In particular,

since ω is not required to be zero, this says that the vector fields we are gauging do

not need to be isometries for the metric and B-field! Since the existence of isometries

is a ‘rare’ property amongst the space of all (pseudo)-Riemannian metrics,3 being

only able to do T-duality on metrics that had isometries was quite a restrictive re-

quirement. This modification is an attempt to expand the class of backgrounds on

which we may perform a T-duality.

In order to attempt T-duality for this modified gauging, we need to add a term

to the minimally coupled action enforcing conditions on the gauge fields Aa which

give us back the original model. In the abelian/non-abelian case, this was simply

the field strength of the gauge fields. The proposal of CDJ was to use the ω-modified

field strength:

Faω = dAa +
1

2
fabcAb ∧ Ac − ωabiAb ∧DX i. (5.5)

The total gauged action was then

S =

∫
Σ

gijDX
i ∧ ?DXj +BijDX

i ∧DXj +

∫
Σ

ηaFaω. (5.6)

2Note that in this Chapter we are using the following normalisations for the symmetric and

antisymmetric products:

(A ∨B)ij = AiBj +AjBi

(A ∧B)ij = AiBj −AjBi.

3A generic Riemannian metric will have no continuous symmetries.
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We shall postpone to Section 5.1.3 the discussion of the gauge invariance of the

final term. For now, let us continue with the proposed procedure of non-isometric

T-duality. As usual, from the gauged action we wish to be able to obtain the original

ungauged action, as well as the dual model. The equation of motion obtained by

integrating out the Lagrange multiplier is:

Faω = dAa +
1

2
f cbcAb ∧ Ac − ωabiAb ∧DX i = 0.

If this were simply the standard field strength for a non-abelian gauge field, we

could now happily conclude that since Fa = 0, the gauge fields must be pure gauge

A = g−1 dg. Then, by performing a suitable gauge transformation, we could set A

to any convenient value (choosing the gauge transformation which sets A = 0 is a

convenient choice, allowing us to recover the original model). Unfortunately, with

the modified gauge fields transforming in a non-standard way, it’s not clear that

every solution, A, to the constraint F = 0 will be in the gauge orbit of A = 0. That

is, if the constraint F = 0 is applied, it is not clear that there always exists a gauge

transformation, generated by (5.2b), which we can use to set A to zero.

To obtain a dual model, we can apply the same strategy as in the case of (non)-

abelian T-duality. Namely, integrate out the gauge fields A from the action. Since

the conclusion of this chapter is that this modification cannot generate new examples

of dual models, we won’t include the details of this calculation here, but will instead

refer the interested reader to the original articles [36, 35].

5.1.2 Examples: non-isometric T-duality

We include in this section a few examples of the putative duality. The first two

examples concern the Heisenberg nilmanifold, and are included in the original papers

[35, 36].

Heisenberg nilmanifold Part 1

The Heisenberg nilmanifold, also called the twisted torus or the f -flux background,

is a frequent example in this thesis. It arose in Section 2.1.4 as the dual space to

the flat 3-torus with H-flux under a single abelian T-duality. It also popped up in

Section 3.2.3 when we discussed examples of non-abelian T-duality. It also appears

in this section as an example of non-isometric T-duality, although as we shall see in

Section 5.1.3, this is simply just the normal non-abelian duality in disguise.
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We begin with the metric as obtained in Section 2.1.4. It is

ds2 = dx2 + dy2 + (dz2 − x dy)2, (5.7)

with a vanishing B field. Since we are thinking of this as the original space on

which we want to perform a duality, we have dropped the hat on the z coordinate.

We now wish to perform a non-isometric T-duality on this space, which amounts

to choosing a set of vector fields and then trying to find a set of ωba so that the

symmetry conditions (5.4) are satisfied. Following [35], we choose an abelian set

of vector fields {∂x, ∂z}. These commute, but are not both Killing vectors for the

metric:

L∂xg = 2x dy2 − 2 dy dz

L∂zg = 0.

A simple calculation is enough to verify that taking

ω3
1 = − dy,

with all other terms vanishing, solves the symmetry conditions (5.4). In addition,

this choice of ωba also solves the additional constraints coming from the requirement

of gauge invariance of the action (see [36, 35] for details). We can therefore perform

a non-isometric T-duality with respect to these vector fields. The result is a dual

model which has the metric

d̂s
2

= (dx̂− ẑ dy)2 + dy2 + dẑ2,

with vanishing B-field. This is simply the metric of another f -flux background. In

particular, we can obtain it from our original metric by following a chain of abelian

T-dualites (with a B-field transformation in the middle)[35]:

Txyz fxyz

fxy
z

∂x

∂z

(∂x, ∂z)NITD

δB
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Note that it is not always possible to find ωba for a given set of vector fields, even

when the vector fields commute. An example is given by the pair {∂x, ∂y}, where it

is straightforward to verify that there is no ωba which will solve (5.4).

Heisenberg nilmanifold Part 2

For this example, we perform a non-isometric T-duality on the nilmanifold again,

but this time with the vector fields {∂x, ∂y + x∂z, ∂z}.4 The metric is the same as

the previous section, (5.7), and the Lie derivatives are

L∂xg = 2x dy2 − 2 dy dz

L∂y+x∂zg = −2x dx dy + 2 dx dz

L∂zg = 0.

We have already performed a non-abelian T-duality for this background in Section

3.1.2, but here we are performing a non-abelian T-duality with a different set of

vector fields which are not isometries. It is not difficult to verify that by taking

ω3
1 = − dy

ω3
2 = dx,

we can solve the required constraints. The dual space is a Q-flux background:

d̂s
2

= dẑ2 +
1

1 + ẑ2

(
dx̂2 + dŷ2

)
B̂ =

2ẑ

1 + ẑ2
dx̂ ∧ dŷ.

This is exactly the same space we obtained when we performed a non-abelian T-

duality! As we shall see, this is not a coincidence.

5.1.3 Proof that NITD = NATD

The gauge invariance conditions (5.4) are more general than the isometry conditions

normally required for T-duality, so non-isometric T-duality appears to be applicable

4Note that this example is essentially just a relabelling of the example given in [36], correspond-

ing to {x2, x3} ←→ {z, y}.
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in situations where we are unable to perform non-abelian T-duality. In this section,

we shall see that the non-isometric T-duality as just described is actually just the

standard non-abelian T-duality in disguise.

Recall the definition of the ω-modified curvature:

Faω = dAa +
1

2
fabcAb ∧ Ac − ωabiAb ∧DX i.

This field strength appears in the gauged action (5.6) through the term
∫

Σ
ηaFaω. In

order for this term to be gauge invariant, we require Faω to transform homogeneously:

δεFaω = αFaω.

Computing the variation of Faω using the transformation properties of the gauge

fields (5.2), we get

δεFaω =
(
fabc − ωacivib

)
εcF bω +

1

2
Ra
bijε

bDX i ∧DXj + SabciεcDX i ∧ Ab, (5.8)

where

Ra
b = dωab + ωac ∧ ωcb (5.9a)

Sabc = dfabc + f ebc ω
a
e + 2fad[b ω

d
c] + 2ιvdω

a
[cω

d
b] + 2Lv[cω

a
b] + ιv[bR

a
c]. (5.9b)

For the field strength to transform homogeneously for any choice of A, we therefore

require the vanishing of Ra
b and Sabc. One might be tempted to think that there could

be a non-zero combination of Ra
b and Sabc which nevertheless allow Faω to transform

homogeneously. We see that that can’t be the case, by noting that the requirement

that Ra
b vanish can be seen quite simply by computing the variation of the term

ηaFaω, and expanding in powers of A:

δε(ηaFaω) = (δεηa)Faω + ηa(δεFaω)

= ηaR
a
b ε
b +O(A) +O(A2). (5.10)

All three terms must vanish separately, so we require Ra
b = 0. The condition that

Sabc must also vanish can be derived independently by considering the closure of the

gauge algebroid, as described in Section 5.1.4.

Let us now look at the consequences of these constraints. The constraint Ra
b = 0

is easy to solve, since it has the Maurer-Cartan form. This tells us that there exists

a matrix Ka
b such that

ωab = (K−1)ac dKc
b. (5.11)
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Rather than substituting this blindly into the various quantities we have and doing

calculations, let us take this K and judiciously make the following field redefinitions:

Ãa = Ka
bAb (5.12a)

ṽia = vib(K
−1)ba (5.12b)

η̃a = ηb(K
−1)ba. (5.12c)

Note that DX i is invariant under this field redefinition. The action now has the

form

S =

∫
Σ

gijDX
i ∧ ?DXj +BijDX

i ∧DXj (5.13)

+

∫
Σ

η̃a

(
dÃa +

1

2
f̃abcÃb ∧ Ãc

)
, (5.14)

where

f̃abc = Ka
d((K

−1)eb(K
−1)fcf

d
ef + (K−1)ebv

i
e∂i(K

−1)dc − (K−1)ecv
i
e∂i(K

−1)db.

Note that the vanishing of Sabc now reduces to the simple condition df̃abc = 0. We see

that the action (5.13) has the standard form of the gauged action from non-abelian

T-duality. Remarkably, the gauge invariance conditions (5.4) become the isometry

conditions:

Ka
bLṽag = Ka

bLvc(K−1)ca
g = Lvbg − (K−1)ac dKc

b ∨ ιvag = Lvb − ωab ∨ ιvag = 0

Ka
bLṽaB = Ka

bLvc(K−1)ca
B = LvbB − (K−1)ac dKc

b ∧ ιvaB = Lvb − ωab ∧ ιvaB = 0.

That is

Lṽag = 0

LṽaB = 0.

It follows that if there is a non-isometric gauging of a non-linear sigma model with

which we are able to perform a T-duality transformation, then there is an equivalent

description of the model as an isometrically gauged model. Arguing in the other

direction, suppose we start with a non-linear sigma model with isometries and then
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construct the gauged action. Taking any invertible matrix K, we can make the field

redefinitions

Ãa = (K−1)abAb

ṽia = vibK
b
a

η̃a = ηbK
b
a.

The corresponding action will then be invariant under the ω-modified gauge trans-

formations (5.4), with ωab = Ka
c(dK

−1)cb. It follows that the proposed non-isometric

T-duality is simply a field redefinition of the usual non-abelian T-duality.

A comment on the field strength

The core of the argument showing that the non-isometric T-duality procedure is

equivalent to the standard non-abelian T-duality procedure relies on the specific

form (5.5) of the ω-modified field strength, and in particular, that ω satisfied Ra
b = 0.

With that in mind, one might try to argue that a different field strength could give

different constraints which don’t reduce to the non-abelian case.

In [79] such a generalised field strength was considered. In order to allow for a

curved gauging (i.e. Ra
b = 0), the field strength had to have the form

Ga = Faω +
1

2
Ba
ijDX

i ∧DXj,

where B is an E-valued two-form on M .5 Of course, for B = 0 we reduce to the Faω
already considered. If B 6= 0 however, our analysis in Section 5.1.3 no longer holds.

Under the ω-modified gauge transformations (5.2), the field strength Ga transforms

homogeneously provided

Ra
b + LvbBa − ωcb ∧ ιvcBa + ιvb(ω

a
c )B

c − T abcBc = 0.

Although this is an interesting observation, it can’t be used to perform non-isometric

T-duality. The inclusion of the field strength into the gauged action in the Buscher

procedure is done so that by integrating out the Lagrange multipliers, we get an

equation of motion forcing the field strength to vanish. We then conclude that there

is a gauge transformation in which the gauge fields vanish. If the field strength Ga

5See Section 5.1.4.
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vanishes, however, there is no gauge transformation which will set the gauge fields

to zero. This is because Aa = 0 is not a solution to Ga = 0. Thus if we use the

gauge covariant field strength Ga in the gauged action, the gauged model won’t be

equivalent to the original model.

5.1.4 Geometric interpretation

The ω-deformed gauging has a nice geometric description in terms of Lie algebroid

gauge theories.6 The geometric description of the gauging is as follows. We have a

Lie algebroid π : E →M , together with a choice of local frame {ea}. The image of

this frame under the anchor map ρ(ea) = va = via∂i are the vector fields with which

we will gauge, and they have associated to them the structure functions

[ea, eb] = f cabec. (5.15)

The gauge fields, A, are one-forms on the worldsheet with values in the pullback

bundle X∗E. The fields X are simply scalars on the worldsheet, and the Lagrange

multipliers are scalars on the worldsheet with values in the dual pullback bundle

X∗E∗. Under a change of frame ea → e′a = ebΛ
b
a, the fields A, X and η are

tensorial, so their components change as

X i → X i

Aa → (Λ−1)abAb

ηa → ηbΛ
b
a.

Lemma 5.1.1. Under the change of frame ea → e′a = ebΛ
b
a, the structure functions

change as

fabc → f ′abc = (Λ−1)adΛ
e
bΛ

f
c f

d
ef − (Λ−1)adΛ

e
bΛ

d
c,iv

i
e + (Λ−1)adΛ

e
cΛ

d
b,iv

i
e (5.16)

Proof. This follows from the defining property of the fundamental vector fields

(5.15). After a change of frame, the new structure functions are defined by [e′b, e
′
c] =

f ′abce
′
a. Expanding the bracket [e′b, e

′
c] = [emΛm

b , enΛn
c ] by applying the Leibniz prop-

erty

[X, fY ] = (ρ(X)f)Y + f [X, Y ]

6See Appendix C for a brief introduction to Lie algebroid gauge theories.
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and antisymmetry of the bracket, and then re-expressing in terms of e′ gives us

(5.16).

Lemma 5.1.2. Under the change of frame ea → e′a = ebΛ
b
a, the matrix of one-forms

ωab changes as

ωab → ω′ab = (Λ−1)amω
m
n Λn

b + (Λ−1)am dΛm
b .

It follows from Appendix C that ω determines the connection coefficients for a con-

nection ∇ on E:

∇ea = eb ω
b
a

Proof. This follows from insisting that the form of the gauge transformations (5.2)

does not change under the change of frame.

The connection ∇ determined by the connection form ωab pulls back naturally to

a connection on X∗E, which we will denote by the same symbol to avoid cluttering

notation. We can also define an E-connection, E∇,7 by

E∇(s, t) = ∇ρ(s)(t). (5.17)

We will refer to E∇ as the E-connection associated to ∇, with the tacit understand-

ing that there may be many possible E-connections we can construct from a given

connection ∇ . We now note that we can write the field strength for the gauge field

in the following way:8

Fa = dAa + ωab ∧ Ab +
1

2

(
fabc + ωabiv

i
c − ωacivib

)
Ab ∧ Ac

= (∇A)a − 1

2
T abcAb ∧ Ac,

where T abc = −(fabc + ωabiv
i
c − ωacivib) is simply the torsion of the E-connection E∇.

Note that although the field strength is written as a sum of terms which are covariant

in E, the same is not true of the variation of the gauge fields:

δεA
a = (∇ε)a − T abcAbεc + ωabiv

i
cAbεc.

The requirements that the field strength transform homogeneously, that is the van-

ishing of (5.9a) and (5.9b), now take on a geometric interpretation. The expression

7See Appendix C for details
8Again, we have omitted pullbacks to avoid cumbersome notation.
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(5.9a) for Ra
b is precisely the expression for the components of the curvature of the

connection ∇, or the associated E-connection E∇. These vanish if and only if the

connection is flat. The expression (5.9b) for Sabc can be written in terms of geometric

quantities as

Sabc = ∇T abc + ιvbR
a
c − ιvcRa

b (5.18)

Since we require Ra
b = 0, the condition Sabc = 0 reduces to

∇T abc = 0. (5.19)

From the flat connection we deduce (5.11), and then the ‘field redefinitions’ (5.12)

are simply the change in the components of the fields induced by the change of

frame:

ea → eb(K
−1)ba.

Once we know the connection must be flat, we can simply choose a frame in which

the connection form ωab is zero. Note that in this frame, the condition (5.19) reduces

to dfabc = 0, and so the structure functions are simply structure constants. We thus

recover the standard non-abelian gauging.

A different E-connection

There are many ways to lift a connection ∇ on a Lie algebroid to an E-connection.

Our definition (5.17) has the advantage of being rather simple. A different E-

connection which could have been useful to use is the so-called dual connection

([13]),9 defined by

E∇̃(s, t) = E∇(t, s) + [s, t]

= ∇ρ(t)(s) + [s, t].

The E-torsion of the dual connection is (minus) the E-torsion of the E-connection

we have defined, and the E-curvature of the dual connection can be written in terms

of our E-connection as:

(R̃mn)ab = (∇bTmn)a + (Rmb)
a
n − (Rnb)

a
m.

9Dual is an unfortunately loaded word in this thesis. Here it is used to point out that the

operation ? : E∇ 7→ ?(E∇) satisfies ?(?(∇)) = ∇, where ?(E∇)(s, t) = E∇(t, s) + [s, t].



5.1. ω-DEFORMED GAUGING 129

The quantity appearing in (5.9b) now has a much simpler geometric interpretation.

We have

(R̃mn)ab = ιρ(eb)S
a
mn.

The gauging constraints enforcing the vanishing of Sabc can therefore be interpreted

as the requirement that the dual connection has a vanishing E-curvature.

It is useful to have an expression for connection coefficients of an E-connection.

For the E-connection E∇, we have

E∇(ea, eb) = ∇ρ(ea)eb

= ∇via∂i
eb

= via∇ieb

= (viaω
c
bi) ec.

For the dual connection E∇̃, we have

E∇̃(ea, eb) = ∇ρ(eb)ea + [ea, eb]

= ∇vib∂i
ea + f cabec

= vib∇ieb + f cabec

=
(
vibω

c
ai + f cab

)
ec.

That is, the connection coefficients for the E-connection and the dual connection

are

Eωcab = viaω
c
bi

Eω̃cab = vibω
c
ai + f cab.

It is an interesting fact that the E-torsion of the E-connection is simply the difference

between the connection coefficients of the E-connection and its dual:

T abc = Eωabc − Eω̃abc = −T̃ abc.
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Closure of the gauge algebroid

We can also see the constraints which arise from gauge invariance of the action from

a different perspective, and that is by considering the closure of the gauge algebroid

on the space of fields. In order for the gauge algebroid to have a representation on

the space of fields, we require(
δε1δε2 − δε2δε1 − δ[ε1,ε2]

)
Aa = 0.

We need to be careful here, however, since ε ∈ C∞(Σ, X∗E), and we are not guar-

anteed to have a bracket structure on the pullback bundle, since the Lie algebroid

structure doesn’t naturally pull back. We can, however, always pull back a Lie alge-

broid to a Lie algebroid with trivial anchor map. To see how, note that a basis for

sections of E pulls back to a basis of sections of X∗E, so any εi can be expressed as

εi = εai (X∗ea).

We can now define a C∞(Σ)-linear bracket [·, ·]∗ on the pullback bundle by simply

taking the bracket [·, ·]E on the corresponding sections in E, and then pulling it

back:

[ε1, ε2]∗ = [εb1X
∗(eb), ε

c
2X

∗(ec)]∗

:= εb1ε
c
2X

∗([eb, ec]E)

= fabc ε
b
1ε
c
2X

∗(ea).

Note that this bracket satisfies

[X, hY ]∗ = h[X, Y ]

for functions h ∈ C∞(Σ), and therefore defines a Lie algebroid bracket on the vector

bundle X∗E → Σ where the anchor map is zero. In other words, X∗E is a bundle

of Lie algebras over Σ. With this bracket, we now have a well-defined way of asking

if the gauge algebroid closes on the space of fields. That is, does the quantity(
δε1δε2 − δε2δε1 − δ[ε1,ε2]∗

)
Aa

vanish? This calculation was done in [96], where the authors found that the gauge

algebra closes only up to a term proportional to DX i:(
δε1δε2 − δε2δε1 − δ[ε1,ε2]

)
Aa = εbaε

c
2 (Sabc)iDX i,
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where Sabc is the quantity given in (5.9b), or equivalently (5.18). Thus from a gauging

perspective we only require the vanishing of Sabc. That is, we could in principle have a

non-flat connection ∇, although the dual connection ∇̃ must still be flat. Of course,

if we want to do T-duality we need a field strength transforming homogeneously,

and therefore also require a flat connection.

5.1.5 Examples: non-isometric T-duality revisited

The Heisenberg nilmanifold Part 1

With the results of the previous sections in hand, we now revisit the previous exam-

ples of non-isometric T-duality considered in Section 5.1.2. Since the ω we obtained

was flat, we know there should exist a K such that ω = K−1 dK. Indeed, consider

the following matrix:

K =

 1 0

−y 1

 .

This matrix satisfies ω = K−1 dK, and we find that transforming the vector fields

va = {∂x, ∂z} using (5.12b), we get ṽa = {∂x + y∂z, ∂z}. These vector fields are

Killing vectors, and performing a non-abelian T-duality with respect to them gives

the f -flux background, as expected.

The Heisenberg nilmanifold Part 2

For the second gauging, we note that the matrix

K =


1 0 0

0 1 0

−y x 0


satisfies ω = K−1 dK. The change of frame

ṽa = vb(K
−1)ba

then gives ṽ = {∂x + y∂z, ∂y, ∂z}. These are Killing vector fields, and indeed the

exact same vector fields we performed a non-abelian T-duality with respect to in

Section 3.1.2. As noted earlier, the appearance of the Q-flux background under a

non-isometric T-duality was not a coincidence - it was simply the standard non-

abelian T-duality in disguise.
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5.2 (ω, φ)-deformed gauging

In this section we study a generalisation of the proposed non-isometric T-duality

corresponding to a further modification of the gauge transformation rules. Non-

isometric T-duality was based on a form of non-isometric gauging in which the

standard non-abelian gauge fields transformed in a non-standard way, by including

a term proportional to DX i in the variation. The generalisation we study, proposed

in [37] and discussed more in [38], includes an additional term proportional to ?DX i.

This generalisation is interesting from a mathematical perspective, bringing a nice

symmetry to the previous non-isometric gauging. This generalisation has not, to

our knowledge, been used previously in the context of T-duality.

5.2.1 The setup

We begin with the setup of Section 5.1: a metric and B-field, together with the

infinitesimal action of a set of vector fields {va}. The action was the non-linear

sigma model

S =

∫
Σ

gij dX i ∧ ? dXj +Bij dX i ∧ dXj,

together with the corresponding minimally coupled action

SMC =

∫
Σ

gijDX
i ∧ ?DXj +BijDX

i ∧DXj.

We allow the structure constants to be structure functions

[va, vb] = f cab(X)vc,

and we consider extended gauge transformations of the form:

δεX
i = viaε

a (5.20a)

δεA
a = dεa + fabcAbεc + ωabiε

bDX i + φabiε
b ?DX i. (5.20b)

With the hindsight of already having had done these calculations, we now introduce

some simplifying notation.

Ω± := ω ± φ, d±X
i := dX i ± ? dX i, Aa± = Aa ± ?Aa

We also define

D±X
i := DX i ± ?DX i = d±X

i − viaAa±
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and

E± := g ±B.

Note that since B is antisymmetric, taking the transpose of E+ gives E−. The

minimally coupled action (5.20a) now takes the simpler form:

SMC =
1

2

∫
Σ

(E+)ijD−X
i ∧D+X

j. (5.21)

The variation of the gauge covariant derivatives are

δε(D±X
i) = (M±)i jD±X

j,

where

(M±)i j = εa(∂jv
i
a)− via(Ω±)abjε

b.

We now compute the variation of the minimally coupled action, obtaining

δεSMC =

∫
Σ

δε(E
+)ijD−X

i ∧D+X
j + (E+)ijδε(D−X

i) ∧D+X
j

+ (E+)ijD−X
i ∧ δε(D+X

j)

=

∫
Σ

[
vka(∂kE

+)ijε
a + (E+)kj(M

−)ki + (E+)ik(M
+)kj

]
D−X

i ∧D+X
j

=

∫
Σ

[
(LvaE+)ij − (E+)kjv

k
b (Ω−)bai − (E+)ikv

k
b (Ω+)baj

]
εaD−X

i ∧D+X
j.

It follows that the minimally coupled action is invariant under the (ω, φ)-modified

gauge transformations (5.20), provided

(LvaE+)ij = (E+)mjv
m
b (Ω−)bai + (E+)imv

m
b (Ω+)baj. (5.22)

Separating the symmetric and antisymmetric components of this equation lets us

rewrite the gauge invariance conditions in terms of ω and φ:

Lvag = ωba ∨ ιvbg − φba ∨ ιvbB (5.23a)

LvaB = ωba ∧ ιvbB − φba ∧ ιvbg. (5.23b)

5.2.2 Geometric interpretation

As before, the ωab transforms as a connection form, but the φab transforms homoge-

neously. That is, φab are the components of a one-form with values in E ⊗ E∗ ∼=
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End(E). The ωab and φab therefore determine two connections,

∇± = ∇± φ

on E. The connection forms for these connections are simply Ω±, so that

∇±ea = eb(Ω
±)ba = eb(ω

b
a ± φba).

We shall see that the gauging provides constraints on the geometric quantities as-

sociated to these connections.

Closure of the gauge algebroid

The gauging described in this section is controlled by two connections ∇± on E.

For the standard non-isometric gauging, closure of the gauge algebroid enforced the

vanishing of the quantity Sabc = ∇iT abc + ιvbR
a
c − ιvcRa

b . For the (ω, φ)-modified gauge

transformations (5.20), closure of the gauge algebra imposes similar constraints on

the two connections ∇+ and ∇−. To fix notation, let R+ be the curvature of the

connection ∇+, and R− be the curvature of the connection ∇−. In components, we

have

(R±)ab = d(Ω±)ab + (Ω±)am ∧ (Ω±)mb .

We lift the connections ∇± to the associated E-connections E∇± through the anchor

map

E∇±(s, t) = ∇±ρ(s)(t).

The E-torsions are then defined as usual:

(T ±)(s, t) = E∇±s t− E∇±t s− [s, t].

In components, we have

(T ±)abc = −
(
fabc + (Ω±)abiv

i
c − (Ω±)aciv

i
b

)
.

We can now state the result on the closure of the gauge algebroid.

Lemma 5.2.1. On the Aa fields, the closure of the gauge transformations (5.20) is

determined by

(δε1δε2 − δε2δε1 − δε3)Aa =
1

2
εb1ε

c
2(S+

i )abcD+X
i +

1

2
εb1ε

c
2(S−i )abcD−X

i
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where εa3 = fabcε
b
1ε
c
2 is defined as in Section 5.1.4, and

(S±j )abc = (∇±j T ±)abc + vib(R
±
ij)

a
c − vic(R±ij)ab . (5.24)

Since D+X
i and D−X

i are linearly independent, closure of the gauge algebroid on

the space of fields therefore requires the vanishing of (S+)abc and (S−)abc.

Proof. The proof is a straightforward, yet lengthy calculation, which we omit here.

5.2.3 Examples

A non-flat example

Consider the following metric and B-field:

g = dx2 + eλxy dy2

B = eλxy dx ∧ dy,

where λ 6= 0. This metric appeared in [79], as an example of a non-flat ω-deformed

gauging. Here, we consider the metric with a non-zero B-field, and want to gauge

the action of the vector field ∂y. This metric has no Killing vectors, and we have

L∂yg = λxeλxy dy ∨ dy

L∂yB = λxeλxy dx ∧ dy.

We can modify the gauging in [79] to include the B-field, as well as include a non-zero

φ. Consider:

ω = s(x, y) dx+ λx dy

φ = −s(x, y) dy,

for an arbitrary function s(x, y). One readily verifies that the conditions (5.23) are

satisfied. On the other hand, the curvatures do not vanish:

R± = dΩ± + Ω± ∧ Ω±

=

(
λ∓ ∂s

∂x
− ∂s

∂y

)
dx ∧ dy.
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Gauging Poisson-Lie symmetry

Recall from Chapter 4 that Poisson-Lie T-duality is a generalisation of the standard

non-abelian T-duality. For this example, we show that we are able to gauge the

Poisson-Lie symmetry condition using the (ω, φ)-modified gauging. To that end, let

us suppose that we have a standard non-linear sigma model action satisfying the

Poisson-Lie symmetry condition

(LvaE)ij = f̃ bca v
m
b v

n
cEmjEin, (5.25)

for some set of dual structure constants f̃ bca . We now note that the modified Killing

equations for the (ω, φ)-deformed gauging, (5.22), have following special form when

Ω+ vanishes (which forces ω = −φ):

(LvaE)ij = 2ωbaiv
m
b Emj. (5.26)

If we compare (5.26) with (5.25), we see that by choosing

ωbai =
1

2
f̃ bca v

n
cEin (5.27a)

φbai = −1

2
f̃ bca v

n
cEin, (5.27b)

the modified Killing equations are automatically satisfied. This is an interesting

result! It suggests that we can provide a gauging derivation of Poisson-Lie T-duality.

Before we get carried away, we should check that the gauge algebroid closes on the

space of fields. By Lemma 5.2.1, it is enough to check that S± vanish. This is the

content of the next Lemma.

Lemma 5.2.2. Let Eij = gij+Bij be a metric and B-field satisfying the Poisson-Lie

symmetry condition (5.25). Then the connections defined by (5.27) satisfy

(S±)abc = 0.

Proof. Since Ω+ = 0 and the structure functions are constant, the result for S+

follows immediately from (5.24). For S−, we need to perform a more lengthy calcu-

lation, which we do not include here.

It follows from Lemma 5.2.2 that for this particular choice of ω and φ, the

gauge algebra closes on the space of fields. This is a non-trivial constraint, and it is

interesting that this choice also satisfies the modified Killing equations. We make no

claims of uniqueness for a choice of connection satisfying both the modified Killing

conditions and for which the gauge algebra closes.
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5.2.4 The field strength

The gauging procedure described in Section 5.2.1 is complete if all we care about

is gauging a non-linear sigma model. Our primary interest, however, is to see if we

can use this gauging procedure to perform T-duality. In order to do this, we need

to supplement the minimally coupled action (5.20a) with a term
∫

Σ
ηaFaΩ which

enforces the constraint on the gauge fields allowing us to recover the original model.

What is the correct field strength? In choosing this, we are guided by a few

principles. Clearly the field strength should reduce to the standard non-abelian

Yang-Mills field strength when ω and φ vanish, and when φ vanishes it should reduce

to the Mayer-Strobl field strength. We also want to insist that the field strength

transforms homogeneously under the (ω, φ)-modified gauge transformations. We

require this so that the Lagrange multipliers can be transformed in the appropriate

way, leaving the term
∫

Σ
ηaFaΩ gauge invariant. To that end, consider the variation

of the Yang-Mills field strength:

δεFaYM = δε

(
dAa +

1

2
fabcAb ∧ Ac

)

= d(δεAa) +
1

2
δε(f

a
bc)Ab ∧ Ac + fabc(δεAb) ∧ Ac

= ωabi dε
b ∧DX i + φabi dε ∧ ?DX i + . . .

where we have omitted terms which don’t contain dε. We can see that in order to

cancel the terms in the variation containing dε, we will need to add additional terms

to the field strength. The Mayer-Strobl field strength contains the additional term

−ωabiAb ∧DX i, whose variation is given by

δε
(
−ωabiAb ∧DX i

)
= −ωabi dεb ∧DX i + . . .

where, again, we have omitted terms which do not contain dε. Similarly, we see that

variation of the term −φabiAb ∧ ?DX i gives

δε
(
−φabiAb ∧ ?DX i

)
= −φabi dεb ∧ ?DX i + . . . .

We therefore propose the following field strength for the gauge fields A:

FaΩ = dAa +
1

2
fabcAb ∧ Ac − ωabiAb ∧DX i − φabiAb ∧ ?DX i. (5.28)

The variation of this proposed field strength is a lengthy calculation. We summarise

the results in the following lemma.
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Lemma 5.2.3. The variation of the field strength (5.28) is given by

δεFaΩ =

(
fabc −

1

2

(
Ω+
)a
ci
vib −

1

2

(
Ω−
)a
ci
vib

)
εcF bΩ (5.29)

+
1

2

(
S+
i

)a
bc
εcAb ∧D+X

i +
1

2

(
S−i
)a
bc
εcAb ∧D−X

i

+
1

4
εcD+X

i ∧D−X
j
(
2(R+ a

c)ij + 2(R− a
c)ij −∇ω

i φ
a
cj −∇ω

j φ
a
ci

)
+ εcAm ∧D+X

j

(
−1

2
φaci∇+

j v
i
m

)
+ εcAm ∧D−X

j

(
1

2
φaci∇−vim

)
+ εcφaci d (?DX i).

Proof. A long and messy calculation gives us

δεFaΩ =

(
fabc −

1

2

(
Ω+
)a
ci
vib −

1

2

(
Ω−
)a
ci
vib

)
εcF bΩ

+
1

2

(
S+
i

)a
bc
εcAb ∧D+X

i +
1

2

(
S−i
)a
bc
εcAb ∧D−X

i

+ εcDX i ∧DXj

(
1

2

(
∂iω

a
cj − ∂jωaci + ωabiω

b
cj − ωabjωbci − φabiφbcj + φabjφ

b
ci

))
+ εcDX i ∧ ?DXj

(
1

2

(
∂iφ

a
cj + ∂jφ

a
ci + ωabiφ

b
cj + ωabjφ

b
ci − φabiωbcj − φabjωbci

))
+ εcAm ∧D+X

j

(
1

2

(
vibφ

a
ciφ

b
mj + vibφ

a
ciω

b
mj − φaci(∂jvim)

))
+ εcAm ∧D−X

j

(
1

2

(
vibφ

a
ciφ

b
mj − vibφaciωbmj + φaci(∂jv

i
m)
))

+ εcφaci d (?DX i).

which we can write as

δεFaΩ =

(
fabc −

1

2

(
Ω+
)a
ci
vib −

1

2

(
Ω−
)a
ci
vib

)
εcF bΩ

+
1

2

(
S+
i

)a
bc
εcAb ∧D+X

i +
1

2

(
S−i
)a
bc
εcAb ∧D−X

i

+
1

4
εcD+X

i ∧D−X
j

 ∂iω
a
cj − ∂jωaci + ωabiω

b
cj − ωabjωbci − φabiφbcj + φabjφ

b
ci

−∂iφacj − ∂jφaci − ωabiφbcj − ωabjφbci + φabiω
b
cj + φabjω

b
ci


+ εcAm ∧D+X

j

(
1

2

(
vibφ

a
ciφ

b
mj + vibφ

a
ciω

b
mj − φaci(∂jvim)

))
+ εcAm ∧D−X

j

(
1

2

(
vibφ

a
ciφ

b
mj − vibφaciωbmj + φaci(∂jv

i
m)
))

+ εcφaci d (?DX i).
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We make here a few comments about this variation. To start, we note that when

φ = 0, this variation reduces to the variation of the ω-modified field strength, given

by (5.8). Since our main motivation for the introduction of this field strength is to

determine if we are able to provide a gauging derivation of Poisson-Lie T-duality,

we are interested in the variation of F a
Ω when Ω± satisfy the Poisson-Lie conditions.

Corollary 5.2.4. When Ω+ = 0, and therefore ω = −φ, the variation of FaΩ reduces

to

δεFaΩ =
(
fabc − ωacivib

)
εcF bΩ +

1

2

(
S−i
)a
bc
εcAb ∧D−X

i

+
1

2
εcD+X

i ∧D−X
j(∂iω

a
cj)

+
1

2
εcAm ∧D+X

j(ωaci∂jv
i
m)

+
1

2
εcAm ∧D−X

j(−ωaci∂jvim + 2ωaciω
b
mjv

i
b)

− εcωaci d (?DX i)

For clarity, let’s see what happens with an explicit example when we choose ω

and φ as in (5.27). Let us take the simple example of the Q-flux background. This

is an example which can be obtained as the non-abelian dual of the twisted torus,

as in Section 3.1.2. From the Poisson-Lie perspective, the Lie bialgebra associated

to this model is (R3,Heis), since it is the dual of the twisted torus which has an

isometric action of the Heisenberg group.

Explicit calculation

We begin with the metric and B-field

g = dz2 +
1

1 + z2

(
dx2 + dy2

)
(5.30)

B =
2z

1 + z2
dx ∧ dy, (5.31)

and we would like to non-isometrically gauge the vector fields {∂x, ∂y, ∂z}. Let us

use the ω and φ given by

ωbai =
1

2
f̃ bca v

n
cEin (5.32)

φbai = −1

2
f̃ bca v

n
cEin. (5.33)
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The dual structure constants are given by the Heisenberg algebra:

f 12
3 = −1 (5.34)

f 21
3 = 1 (5.35)

The non-zero components of ω are then

ω1
3 = −1

2

(
z

1 + z2
dx+

1

1 + z2
dy

)

ω2
3 =

1

2

(
1

1 + z2
dx− z

1 + z2
dy

)
,

and for φ we have:

φ1
3 =

1

2

(
z

1 + z2
dx+

1

1 + z2
dy

)

φ2
3 = −1

2

(
1

1 + z2
dx− z

1 + z2
dy

)
.

That is, we have

(Ω−)1
3 = −

(
z

1 + z2

)
dx−

(
1

1 + z2

)
dy

(Ω−)2
3 =

(
1

1 + z2

)
dx−

(
z

1 + z2

)
dy,

and of course Ω+ = 0. These satisfy the modified killing equations (5.22) as well as

the Poisson-Lie symmetry conditions (5.25), as can be verified by a straightforward

calculation. What are the variations of the field strengths? The field strengths are

given by (5.28):

FaΩ = dAa +
1

2
fabcAb ∧ Ac − ωabiAb ∧DX i − φabiAb ∧ ?DX i. (5.36)

The structure constants vanish, and ω = −φ, so we have

FaΩ = dAa − ωabiAb ∧D−X
i. (5.37)

That is,

F1 = dA1 − ω1
3iA3 ∧D−X

i

F2 = dA2 − ω2
3iA3 ∧D−X

i

F3 = dA3
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The variation of F3 is easy, and we find it vanishes identically. The variation of

F2 and F3 is a bit harder. This can either be done directly, or with reference to

Corollary 5.2.4. Either way, the result is

δεF1 = −ω1
31ε

3F1 − ω1
32ε

3F2

+ ε3(∂3ω
1
3j)DX

3 ∧D−X
j + ε3ω1

3iω
i
3jA3 ∧D−X

j

− ε3ω1
3j d

(
?DXj

)
.

and

δεF2 = −ω2
31ε

3F1 − ω2
32ε

3F2

+ ε3(∂3ω
2
3j)DX

3 ∧D−X
j + ε3ω2

3iω
i
3jA3 ∧D−X

j

− ε3ω2
3j d

(
?DXj

)
.

This doesn’t appear to be covariant, but perhaps it is in a non-obvious way. Let us

look at the variation of the full Lagrange multiplier term by expanding in powers of

A, in a similar way to (5.10):

δε (ηaFaΩ) = ηaε
3
[

dωa3j ∧ dXj − dωa3j ∧ ? dXj − ωa3j d? dXj
]

+O(A) +O(A2)

We require this to vanish independent of A and η, so the terms

K1 := dω1
3j ∧ dXj − dω1

3j ∧ ? dXj − ω1
3j d? dXj, (5.38)

and

K2 := dω2
3j ∧ dXj − dω2

3j ∧ ? dXj − ω2
3j d? dXj (5.39)

must both vanish. We will get back to these in a moment, but for now let us recall

the definition of the Noether currents that arose in Poisson-Lie T-duality. These

were one-forms associated to the action of the group. They are given by

Ji = gij ? dXj +Bij dXj.

In our case, we have

J1 =
1

1 + z2
? dx+

z

1 + z2
dy (5.40a)

J2 =
1

1 + z2
? dy − z

1 + z2
dx (5.40b)

J3 = ? dz. (5.40c)
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These one-forms were required to satisfy the Maurer-Cartan equation:

dJa =
1

2
f̃a
bcJb ∧ Jc.

In particular, this means that in our case we must have dJ1 = dJ2 = 0. Using this

closure together with the expressions (5.40) for J1 and J2, and then rearranging for

d? dx and d? dy gives us the following relations:

1

2

(
1

1 + z2

)
d? dx = −1

2
d

(
1

1 + z2

)
∧ ? dx− 1

2
d

(
z

1 + z2

)
∧ dy

1

2

(
1

1 + z2

)
d? dy = −1

2
d

(
1

1 + z2

)
∧ ? dy +

1

2
d

(
z

1 + z2

)
∧ dx.

We are now in a position to check whether the terms given by (5.38) and (5.39)

vanish. We compute explicitly

K1 = −1

2
d

(
z

1 + z2

)
∧ dx− 1

2
d

(
1

1 + z2

)
∧ dy

+
1

2
d

(
z

1 + z2

)
∧ ? dx+

1

2
d

(
1

1 + z2

)
∧ ? dy

+
1

2

(
z

1 + z2

)
d? dx+

1

2

(
1

1 + z2

)
d? dy

=
1

2

[
d

(
z

1 + z2

)
− z d

(
1

1 + z2

)]
∧ ? dx

− 1

2

[
d

(
1

1 + z2

)
+ z d

(
z

1 + z2

)]
∧ dy

=
1

2

(
1

1 + z2

)
dz ∧ ? dx+

1

2

(
z

1 + z2

)
dz ∧ dy.

We can similarly compute K2:

K2 = −1

2

(
z

1 + z2

)
dz ∧ dx+

1

2

(
1

1 + z2

)
dz ∧ ? dy.

It follows that, to order 0 in A, we have

δε (ηaFaΩ) = ε3
[
η1K1 + η2K2

]
=
ε3

2

(
dz

1 + z2

)
∧

[
η1 ? dx− zη2 dx+ zη1 dy + η2 ? dy

]
.
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Unfortunately, barring computational errors, we can see no obvious reason why this

should vanish, as is required for the term
∫
ηaFaΩ to be gauge invariant. With this

in mind, let us conclude this chapter with a few comments on the current status of

non-isometric T-duality.

Non-isometric T-duality, as introduced in [36, 35], was shown here and in [15]

to be equivalent to the standard notion of non-abelian T-duality. In this chapter,

we have suggested that a modified notion of gauging, introduced in [37, 38], has the

potential to be a non-trivial generalisation of the usual T-duality. The generalisation

requires choosing a pair of connections specified by ω ± φ. The connections cannot

be arbitrarily chosen - they must be chosen to satisfy three constraints. First, they

must satisfy the modified Killing conditions. Requiring that the gauge algebra close

on the space of fields provides an additional constraint, and finally, gauge invariance

of the Lagrange multiplier/field strength term in the gauged action provides the

final constraint. Our main goal in pursuing this work was to provide a gauging

approach to Poisson-Lie T-duality, and in pursuing this we identified such a choice

which satisfied the first two constraints. The calculations at the end of this chapter,

however, show that it fails to satisfy the third constraint. For models satisfying

the Poisson-Lie condition, it is therefore a very interesting question whether there

exist pairs of connections satisfying all three constraints. If there are, then we could

use non-isometric gauging to perform T-duality on these models. In particular, this

would give a sigma model procedure of inverting non-abelian T-duality.

We hope to report on progress towards this open question in future publications.
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Chapter 6

Spherical T-duality

Spherical T-duality is a generalisation of the topological aspects of abelian T-duality.

First introduced in [18], and further developed in [19, 20], Spherical T-duality

is a putative duality based on replacing the U(1) bundles of abelian T-duality

with SU(2) bundles. The relevance as a target space duality in string theory/M-

theory/supergravity is currently unclear.

6.1 Topology

In Section 2.2.2, we reviewed the topological aspects of abelian T-duality. The

primary ingredient for topological T-duality is a pair (F,H) of cohomology classes.

To obtain this pair, we started with a principal U(1) bundle π : E → M whose

isomorphism class determined an element F ∈ H2(M,Z), together with an H-flux

determining an element H ∈ H3(E,Z). We then saw that there was a set of dual

data (F̂ , Ĥ) for some dual bundle π̂ : Ê →M , satisfying

F̂ = π∗H (6.1a)

F = π̂∗Ĥ. (6.1b)

The arguments for topological T-duality relied heavily on the fibers of the fibration

π : E → M having two specific properties: the fibers were a group (the total space

was a principal G bundle with a free and transitive group action on the fibers), and

the fibers were also spheres (since the fibration was a sphere bundle we could form

the associated Gysin sequences in cohomology). There is precisely one other space

which is both a sphere and a group, and it is SU(2) = S3. From a mathematical

145
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perspective, then, it is a natural question to ask whether there is a similar notion of

duality for principal SU(2) bundles.

Before we delve into the construction of spherical T-duality presented in [18,

19, 20], let us pause for a moment to see if we can motivate the appearance of

the data appearing in the next section. We expect that, as with abelian T-duality,

spherical T-duality should involve some topological data (F,H), determined by the

topological properties of the bundle and some form of flux, and that this data is

intermixed under the duality. Furthermore, we expect that the flux will be defined

on the total space, while the topological data will only be defined on the base (since

this data should be related to the possible types of bundle over the base). Thus

if Fk ∈ Hk(M), then we expect that Hk+3 ∈ Hk+3(E), since the fibers are 3-

dimensional. Since integrating the flux over the three-dimensional fiber would give

us something in Hk(M), we are looking for a relationship along the lines of (6.1):

F̂k = π∗Hk+3

Fk = π̂∗Ĥk+3,

for some pair of SU(2) bundles

E Ê

M

π π̂

In abelian T-duality, the isomorphism class of the bundle is the (cohomology class

of the) curvature of a connection, F ∈ H2(M,Z). This cohomology class is realised

by the first Chern class, c1(E), of the associated complex line bundle. For an SU(2)

bundle, we could try to find characteristic classes for the associated quaternionic

line bundle.1 The relevant characteristic class is the second Chern class, c2(E) ∈

H4(M).2 A de-Rham representative for this class is given by

c2(E) =
1

8π2
Tr(F ∧ F),

1Quaternions arise here because, just as U(1) can be thought of as the unit sphere in C, so too

can SU(2) be thought of as the unit sphere in H.
2For principal SU(2)-bundles, which we will be exclusively interested in here, the second Chern

class is also known as the Euler class. For a four-dimensional base M , the integral
∫
M
c2(E) is

known as the instanton number or topological charge.
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where F is the Yang-Mills curvature of a principal su(2) connection A:

F = dA+A ∧A.

Thus the relevant topological data corresponds to k = 4, and we will start with

a principal SU(2) bundle π : E → M , together with a pair (F4, H7), with F4 ∈

H4(M,Z) and H7 ∈ H7(M,Z). This is also motivated by the description in terms

of Gysin sequences, discussed more in Section 6.1.2.

6.1.1 Topological T-duality for sphere bundles

Let us now follow [18] and describe how spherical T-duality works. We begin with

a principal SU(2) bundle π : E →M ,

S3 E

M

π

together with a flux H7 ∈ H7(E). We will assume that M is both compact and

orientable.

We would like a way of classifying the isomorphism classes of the bundle π :

E → M , but the topological classification of the isomorphism classes of principal

SU(2) bundles over M is highly dependent on the dimension of M . If dim(M) ≤ 3,

then the only principal SU(2) bundles are trivial, and so E = SU(2) ×M . When

dim(M) = 4, the isomorphism class of the bundle is in one to one correspondence

with the second Chern class that we mentioned in the previous section. Indeed,

since H4(M,Z) ∼= Z for a compact oriented four-manifold, there are countably many

principal SU(2) bundles over M . When the dimension of M exceeds 4, the situation

is a bit messier. In that case, the second Chern class no longer classifies isomorphism

classes of principal SU(2) bundles. That is, there exist non-isomorphic bundles with

equal second Chern classes. In addition, there are elements of H4(M,Z) which are

not realised as the second Chern class of any principal SU(2) bundle.

dim(M) ≤ 4

Let us, for the moment, consider the case of dim(M) ≤ 4. In that case, the set of

isomorphism classes of principal SU(2) bundles over M is classified by the second
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Chern class c2(E) ∈ H4(M,Z). To see this, recall that principal G bundles over a

space M are classified by homotopy classes of maps from M to the classifying space

BG of G. That is, we have

PrinSU(2)(M) = [M,BSU(2)].

A convenient property that all classifying spaces share is that

πk(BG) = πk−1(G). (6.2)

In particular, we have that πk(BSU(2)) = πk−1(SU(2)) = πk−1(S3). It follows from

the table in Appendix A.5.2 that

π4(BSU(2)) = Z

π3(BSU(2)) = 0

π2(BSU(2)) = 0

π1(BSU(2)) = 0.

That is, BSU(2) is a 3-connected space. Now, we can’t claim that BSU(2) is an

Eilenberg-Maclane space K(Z, 4), since the higher homotopy groups of S3 don’t

vanish. We can, however, realise BSU(2) as a subcomplex of a K(Z, 4) space,3

by attaching cells of higher dimension. Then, provided M is a CW-complex of

dimension at most 4, we have

[M,BSU(2)] = [M,K(Z, 4)] = H4(M,Z).

It follows that isomorphism classes of principal SU(2) bundles over a four-dimensional

(compact, orientable, CW-complex) manifold are classified by H4(M,Z).

Note that we have assumed that M is compact so we can’t say anything about,

for example, SU(2) bundles over R4 \ {0}. In this particular instance, however, we

can use (6.2) to our advantage. Since R4 \ {0} is homotopy equivalent to S3, we

have that

[R4 \ {0},BSU(2)] = [S3,BSU(2)] = π3(BSU(2)) = 0,

3Here we are thinking of BSU(2) as a CW-complex.
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so that any SU(2) bundle over R4\{0} or S3 is trivial.4 A similar argument, together

with the fact that π4(BSU(2)) = Z, shows that the set of principal SU(2) bundles

over both S4 and R5 \ {0} is in one-to-one correspondence with Z.

Let us now define, following [18], the spherical T-dual data. As in the abelian

case, there is a homomorphism π∗ : H7(E,Z)→ H4(M,Z) which acts on de-Rham

representatives by integration over the fiber. The image of the H-flux therefore

determines an element F̂4 = π∗H7 ∈ H4(M,Z). Since dim(M) ≤ 4, this determines

the isomorphism class of a principal SU(2) bundle π̂ : Ê → M , giving us the

following picture:

E Ê

M

π π̂

We now define a dual H-flux as any class Ĥ7 ∈ H7(Ê,Z), whose image under π̂∗

gives back F4. That is, the dual data is a principal SU(2) bundle π̂ : Ê → M ,

together with a pair (F̂4, Ĥ7), satisfying the SU(2) analogue of (6.1):

F̂4 = π∗H7 (6.3a)

F4 = π̂∗Ĥ7. (6.3b)

dim(M) > 4

When the dimension of M is greater than 4, bundles are no longer classified by their

second Chern class, but we may still define spherical T-duality in an analogous way.

That is, suppose we have a principal SU(2) bundle π : E →M , together with a pair

(F4, H7), where F4 ∈ H4(M,Z) is the second Chern class of the associated bundle,

and H7 ∈ H7(E,Z). The dual data is then a bundle π̂ : Ê → M , together with

a pair (F̂4, Ĥ7), where F̂4 ∈ H4(M,Z) is the second Chern class of the associated

4Of course, we can see that SU(2) bundles over S3 must be trivial in another way, simply by

noting that H4(S3,Z) vanishes for dimensional reasons. It is for this reason that all principal

SU(2) bundles over manifolds of dimension less than 4 are trivial, as previously claimed.
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bundle, and Ĥ7 ∈ H7(Ê,Z), satisfying

F̂4 = π∗H7

F4 = π̂∗Ĥ7.

The distinction is that above dimension 4 the results are weaker, and existence/u-

niqueness of T-duals may no longer hold.

6.1.2 Desciption using Gysin sequences

The Gysin sequence description of abelian topological T-duality is one of the most

obvious places where the question of generalising T-duality comes up. Indeed, every

sphere bundle has an associated Gysin sequence, so it is a natural question to ask

if we can generalise the arguments in Section 2.2.2 to higher dimensional spheres.

Recall from Appendix A.5.3 the Gysin sequence for a fiber bundle π : E →M with

fiber S3 = SU(2):

· · · −→ Hn(M,Z)
π∗−→ Hn(E,Z)

π∗−→ Hn−3(M,Z)
e∧−→ Hn+1(M,Z) −→ · · ·

Looking at the n = 7 section in the associated sequence for Čech cohomology, we

have:

· · · −→ H7(M,Z)
π∗−→ H7(E,Z)

π∗−→ H4(M,Z)
F4∪−→ H8(M,Z) −→ · · ·

The description now follows the same procedure as the abelian case in Section 2.2.2.

Beginning with the topological data π : E →M and (F4, H7), we note that the flux

H7 lives in H7(E,Z), and so we can consider it’s image F̂4 = π∗H7, under π∗. Since

the Gysin sequence is exact, the composition of two maps is zero, and so it follows

that F4 ∪ F̂4 = 0.

· · · H7(M) H7(E) H4(M) H8(M)

H7 F̂4 0

π∗ π∗ F4∪

If a spherical T-dual exists, it is another principal SU(2) bundle with second Chern

class F̂4 = π∗H7. It therefore determines its own Gysin sequence:

· · · −→ H7(M,Z)
π̂∗−→ H7(Ê,Z)

π̂∗−→ H4(M,Z)
F̂4∪−→ H8(M,Z) −→ · · ·
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We have already seen that F̂4 ∪ F4 = F4 ∪ F̂4 = 0, so by exactness of the Gysin

sequence for π̂ : Ê →M , we must have that F4 is in the image of π̂∗:

· · · H7(M) H7(E) H4(M) H8(M)

Ĥ7 F4 0.

π̂∗ π̂∗ F̂4∪

That is, if the dual bundle exists then there is some Ĥ7 satisfying (6.3). By assuming,

as in the abelian case, that the part of the flux living on the base in unchanged after

duality, the authors of [18] were able to prove uniqueness of this dual flux. This is

the SU(2) analogue of Theorem 2.2.2.

Theorem 6.1.1 (Bouwknegt, Evslin, Mathai [18]). Let (F4, H7) be a pair corre-

sponding to a principal SU(2) bundle π : E → M with a flux. Suppose there exists

a principal SU(2) bundle π̂ : Ê →M such that the second Chern class of Ê is given

by F̂4 = π∗H7. Then:

1. (Existence) there exists an Ĥ7 ∈ H7(Ê,Z) satisfying (6.3a) and

p̂∗H7 = p∗Ĥ7

2. (Uniqueness) Ĥ7 is unique up to the addition of a term π̂∗ (F4 ∪ γ) with γ ∈

H3(M,Z).

We will not prove this theorem here,5 but we will pause briefly to make a few

comments on the difference between this theorem and the analogous result for S1

bundles, Theorem 2.2.2. Unlike the case for abelian T-duality, we are not guaranteed

that a T-dual will always exist, and even if it does exist, we are not guaranteed that

it will be unique. Another difference is the ambiguity of the dual flux in the two

cases. For abelian T-duality, the ambiguity is an element of H1(M,Z), and since

H1(M,Z) is isomorphic to [M,U(1)], this ambiguity is in one-to-one correspondence

with automorphisms of the bundle. For the non-abelian case, the ambiguity is an

element of H3(M,Z), which in general is not isomorphic to [M,SU(2)]. That is, we

can’t always think of the ambiguity as coming from a bundle automorphism, and

there are bundle automorphisms which do not arise as an ambiguity of the flux.

5The proof is not overly difficult, and involves some diagram chasing as in Theorem 2.2.2. The

interested reader can find the proof in the original paper [18].
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6.1.3 Examples: spherical T-duality

In this section we will discuss different examples of spherical T-duality.

The quaternionic Hopf fibration

The first example we will discuss is, in some sense, the prototypical example of

spherical T-duality. Indeed, this example is the higher-dimensional version of the

Hopf fibration abelian T-duality described in Section 2.2.3. It, together with the

next example, were discussed in the original paper [18]. The total space is S7, and

the base space is S4, so this bundle is the ‘quaternionic Hopf fibration’ mentioned

in Appendix A.3. We will assume that there is no flux.6

The base space, S4, has cohomologyH4(S4,Z) = Z. Since S4 is a four-dimensional

manifold, we know therefore that principal SU(2) bundles over S4 are classified

by the integers. The quaternionic Hopf fibration corresponds to the generator of

H4(S4,Z).

We can compute the second Chern class of S7 by rewriting the round metric in

terms of a metric on the base S4 and a principal SU(2) connection:

ds2 = ds2
S4 + A2.

Following [18], we can use quaternionic coordinates

q1 = cos θq

q2 = sin θpq,

where p and q are unit quaternions, identified with elements of S3. The metric on

the round unit sphere in R8 ' H×H is given by

ds2 = | dq1|2 + | dq2|2

= dθ2 + 1
4

sin2 2θ |p̄ dp|2 +
∣∣q̄ dq + sin2 θq̄(p̄ dp)q

∣∣2 ,
from which we identify

ds2
S4 = dθ2 + 1

4
sin2 2θ |p̄ dp|2

6The more general situation with flux is described in the next example.
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and

A = q̄ dq + sin2 θq̄(p̄ dp)q.

The second Chern class is then

c2(S7) =
1

8π2

∫
S4

Tr (F ∧ F ) = 1.

Thus it follows that the second Chern class of S7 is the generator of H4(S4,Z). The

second Chern class of the dual bundle is determined by

π∗H7 = 0,

from which it follows that the dual bundle is trivial. That is, Ê = S3 × S4. The

dual flux is uniquely determined, since H3(S4,Z), and is given by the generator of

H7(S3 × S4,Z). A de-Rham representative for this is Ĥ7 = dVS3×S4 . The dual is

therefore a trivial bundle with one unit of flux, directly paralleling the abelian Hopf

T-duality of S3.

All SU(2) bundles over S4

The previous example is naturally generalised. We take as total space, E, the

SU(2) bundle over S4 with second Chern class equal to k times the generator,

and take an initial flux which is j times the volume form on E. Note that since

H4(S4,Z) = H7(E,Z) = Z, this exhausts all possible examples with base S4. The

previous example of S7 with no flux corresponds to k = 1 and j = 0.

Duality in this situation corresponds, as with the Lens space with flux example

of Section 2.2.3, to interchanging k and j, so that the dual bundle has second Chern

class equal to j times the generator, together with k units of flux. That is,

F4 = k F̂4 = j

H7 = j Ĥ7 = k.

In particular, S7 with one unit of flux is self-dual.

SU(2)-bundles over S5: What goes wrong?

To see an example where H4(M,Z) does not classify the bundle, consider an S5 base.

We have H4(S5,Z) = 0, but there are in fact two principal SU(2) bundles over S5.
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To see why, we again use (6.2). Principal SU(2) bundles over S5 are classified by

[S5,BSU(2)] = π5(BSU(2)) = π4(SU(2)) = Z2,

and so it follows that there are two such bundles. The two bundles are the trivial

one, S3 × S5, and the non-trivial bundle, which happens to be diffeomorphic to

SU(3). Note that both of these bundles have vanishing second Chern class. Let us

consider this example and see if we can perform a spherical T-duality. The bundle

is

S3 SU(3)

S5

π

In order to see what the allowed fluxes are, we need to compute H7(SU(3),Z).

Although the manifold SU(3) is not diffeomorphic to S3 × S5, they do have the

same cohomology groups. That is,

Hk(SU(3),Z) = Hk(S3 × S5,Z).

With this is mind, we can now use the Künneth theorem (see Appendix A.5.1)), to

obtain

H7(SU(3),Z) = H7(S3 × S5,Z)

=
(
H0(S3,Z)⊗H7(S5,Z)

)
⊕
(
H1(S3,Z)⊗H6(S5,Z)

)
⊕
(
H2(S3,Z)⊗H5(S5,Z)

)
⊕
(
H3(S3,Z)⊗H4(S5,Z)

)
⊕
(
H4(S3,Z)⊗H3(S5,Z)

)
⊕
(
H5(S3,Z)⊗H2(S5,Z)

)
⊕
(
H6(S3,Z)⊗H1(S5,Z)

)
⊕
(
H7(S3,Z)⊗H0(S5,Z)

)
= 0

That is, there are no topologically non-trivial fluxes. A putative dual would have to

have second Chern class

F̂4 = π∗H7 = π∗0 = 0.

Of course, we already know that H4(S5,Z) = 0, so both bundles over S5 have

vanishing second Chern class. Thus both S3 × S5 and SU(3) are candidates for a



6.2. GEOMETRY AND PHYSICS? 155

spherical T-dual of SU(3). The allowed fluxes on both spaces are both trivial since

H7(SU(3),Z) = H7(S3 × S5,Z) = 0, so we have in fact three different spherical

T-dualities:

SU(3)←→ SU(3)

SU(3)←→ S3 × S5

S3 × S5 ←→ S3 × S5,

where the flux vanishes in all of the spaces. Thus bundles over S5 provide an explicit

realisation of the claim that spherical T-duals may not be unique.

6.2 Geometry and physics?

The physical relevance, if any, of spherical T-duality is currently unclear. In this

section, we offer a few comments which suggest that this is an interesting link worth

exploring.

6.2.1 A physical duality?

The lack of existence and uniqueness results for spherical T-duality might lead one

to suspect that it has no physical basis. On the other hand, it should be noted that

for 11-dimensional supergravity compactifications, we are primarily interested in

(possibly warped) )backgrounds of the form M4×E7. If E7 is an SU(2) bundle, then

the base space of the bundle has dimension 4, and it is precisely in that situation

in which spherical T-duality has interesting results. Although motivated from a

completely mathematical perspective, it is interesting to note that the ingredients

appearing in spherical T-duality all have counterparts in 11 dimensional supergravity

compactifications. The massless bosonic field content of 11-dimensional supergravity

consists of the graviton, together with a 4-form flux and the dilaton. The magnetic

dual to the 4-form flux is a 7-form flux, and the objects that couple to these fluxes

are the M2 and the M5 branes. Wrapping an M5 brane around a 3 cycle, such as

an SU(2) fiber, leaves an M2 brane on the transverse space.

We can try to identify how spherical T-duality works by looking at the simplest

non-trivial example and trying to find a supergravity background in which that
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space occurs. The simplest (non-trivial) examples of spherical T-duality are the

ones that we have discussed previously, namely the S7/Zk spaces with N units of

flux. These spaces occur in the AdS4 × S7/Zk supergravity solutions, describing

the near horizon limit of a stack of N M2-branes wrapping a C4/Zk orbifold. The

curvature of this supergravity solution needs to be supported by a flux, and so there

is a 4-form flux living on the AdS4 space, or equivalently, the magnetic dual 7-form

flux living on the S7/Zk.

These solutions can be discussed in the context of the AdS/CFT correspondence,

where it forms one of the few well-studied examples. In this context, the conjecture,

originally stated in [1], says that M -theory on AdS4 × S7/Zk with N units of RR

flux living on the AdS space is dynamically equivalent to N = 6 superconformal

Chern-Simons matter theory in 2 + 1 dimensions with gauge group U(N) × U(N)

and Chern-Simons levels k and −k.

Recall from Section 6.1.3 that S7/Zk with N units of flux was spherically T-dual

to S7/ZN with k units of flux. If spherical T-duality is a symmetry of M-theory, then

it makes a corresponding prediction for the ABJM theories - namely that ABJM

with gauge group U(N)× U(N) at level (k,−k) is equivalent to ABJM with gauge

group U(k) × U(k) at level (N,−N). An exploration of this rank/level duality

conjecture is underway, and we hope to report on progress soon.

A small puzzle

If we are to think of spherical T-duality as a generalisation of the usual notion of

abelian T-duality, then we might expect that it also interchanges some generalised

notion of momentum and winding modes. For abelian T-duality, wrapping a closed

string around the S1 fiber gives rise to an integer winding mode, since π1(S1) = Z.

On the other hand, if we were to wrap a closed (spherical) 5 brane around the

S3 fiber, we might expect to get winding modes of the form π5(S3) = Z2. Do

we see these winding modes in any physical solutions? Of course, there are many

closed 5-manifolds other than S5, so the spectrum of winding modes should be

much richer than just this. Note that although there is no corresponding notion of

S3 momentum, there are wrapping modes for the M2 brane. If spherical T-duality

is related to U-duality, as we conjecture, then we might expect the interchange of

M2 and M5 wrapping modes.
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6.2.2 Geometry from U-duality and exceptional field theory

Topological T-duality in the abelian case was motivated by Buscher’s transforma-

tion rules of the metric and B-field. Topological T-duality can be thought of as the

‘topological shadow’ of the geometric duality. Spherical T-duality, in contrast, was

simply a mathematical generalisation of abelian topological T-duality, and wasn’t

motivated by any underlying geometric transformation rules. If spherical T-duality

is in fact a symmetry of M-theory and/or supergravity, then we expect that there

are some underlying geometric transformation rules for which spherical T-duality is

the ‘topological shadow’. Determining such a set of spherical Buscher rules would

be a mutually beneficial exercise for both mathematicians and physicists. For math-

ematicians, finding a physical and/or geometric realisation of the topological duality

could help shed light on some of the differences between spherical T-duality and its

abelian counterpart, such as lack of existence/uniqueness. Spherical Buscher rules

would be of interest to physicists as well, since such a set of rules would provide a

putative new duality in M-theory/supergravity, and could potentially be used as a

new solution generating technique. In this section we will outline a proposed method

to derive such a set of spherical Buscher rules.

Abelian Buscher rules from generalised geometry

Before we delve into a proposal to extract Buscher rules for spherical T-duality, let

is briefly mention another way we can extract Buscher rules for abelian T-duality,

using the convenient language of generalised geometry.

Generalised geometry, first introduced by Hitchin [61], and elucidated in Gualtieri’s

now-famous thesis [56], extends the standard notion of geometry by replacing the

tangent bundle TM of a d-dimensional manifold M with the generalised tangent

bundle TM ⊕ T ∗M .7 There is a natural inner product on sections of this bundle,

〈·, ·〉 given by pairing the vectors with the one forms:

〈X + ξ, Y + ζ〉 = 1
2

(
X(ζ) + Y (ξ)

)
.

This inner product has an associated matrix

η =

0 1

1 0

 ,

7We will use the shorthand T ⊕ T ∗ for TM ⊕ T ∗M when the manifold is understood.



158 CHAPTER 6. SPHERICAL T-DUALITY

and is invariant under the special orthogonal group SO(d, d). Integrability questions

of structures on this bundle can be elegantly phrased in terms of the Courant bracket:

[X + ξ, Y + ζ]C = [X, Y ] + LXζ − LY dξ − 1
2

d
(
ιXζ − ιY ξ

)
The bundle T⊕T ∗, together with the natural inner product and the Courant bracket,

is an example of a Courant algebroid.

Why is this interesting to physicists? Well, it turns out that the Courant bracket

admits more symmetries than just diffeomorphisms, in stark contrast to the Lie

bracket. The symmetries of the Courant bracket turn out to be precisely the sym-

metries on the non-linear sigma model! That is, the group acting by bundle au-

tomorphisms of T ⊕ T ∗ preserving the Courant algebroid structure is a semi-direct

product of the diffeomorphisms of M , Diff(M), and B-field transformations, Ω2
cl(M).

The Courant bracket can also be twisted by a closed three-form H by defining

[X + ξ, Y + ζ]H = [X + ξ, Y + ζ]C + ιY ιXH.

The generalised geometry of T ⊕ T ∗ is therefore a natural framework to describe

sigma models, and by extension, (abelian) T-duality.

In differential geometry, we are able to describe geometric structures on a man-

ifold M by defining structures on the tangent bundle. For example, an almost

complex manifold is a manifold with a smooth vector bundle isomorphism

J : TM → TM

which squares to the identity J 2 = −1. Questions of integrability for this struc-

ture then lead us into complex geometry. Extending this to the generalised tangent

bundle, a generalised almost complex structure is simply an almost complex struc-

ture, J , for T ⊕ T ∗.8 If this is integrable, that is, if J plays nicely with the

Courant bracket, then we have a generalised complex structure. Generalised com-

plex structures are remarkably interesting from a mathematical point of view, since

they include as special cases both complex structures and symplectic structures,

and indeed interpolate between the two. Other generalised structures can be de-

fined, such as a generalised metric, generalised Kähler structures, and generalised

contact structures. Of these, the generalised metric is most relevant to our current

discussion.

8We also want the inner product on T ⊕ T ∗ to be preserved by J .



6.2. GEOMETRY AND PHYSICS? 159

Recall that the generalised tangent bundle has an O(d, d) action leaving the inner

product invariant. It is useful (and well-supported by T-duality in string theory)

to consider more general bundles E over M with structure group O(d, d), that is,

bundles over M where the transition functions are in O(d, d). The maximal compact

subgroup of O(d, d) is O(d) × O(d), and we can consider sub-bundles of E which

have this as their structure group. A choice of such a sub-bundle is a reduction of

the structure group, and is equivalent to choosing a sub-bundle E+ on which η is

positive definite. It follows that η is negative definite on the orthogonal complement

E−, and we have E = E+ ⊕ E−. We can now define a positive definite metric, G,

on E by taking

G = ηE+ − ηE− .

We call G the generalised metric, and a choice of generalised metric is in fact equiv-

alent to the reduction of the structure group. The moduli space of such reductions

is given by the coset

O(d, d)

O(d)×O(d)
.

At a point x ∈M , this coset has d2 independent components, and can be parametrised

in terms of a symmetric matrix g, and an antisymmetric matrix B as

G =

gij −Bikg
klBlj Bilg

ln

−gmkBkj gmn

 (6.4)

There is a beautiful picture involving generalised geometry and T-duality, as

described in [33].9 Within this framework, we can view (abelian) T-duality as an

isomorphism of the Courant algebroids associated to the original space and its T-

dual. In the simplest case with dim(M) = 1, the isomorphism just interchanges TM

with T ∗M . This isomorphism allows us to transport structures on the generalised

tangent bundle from one space to another. Thus, although T-duality may not pre-

serve a given geometric structure such as a Sasaki-Einstein structure, (see Section

2.1.7), there are generalised geometric structures which are naturally preserved. To

rederive the Buscher rules for a given T-duality transformation in this context, we

first need to identify the isomorphism of the Courant algebroids associated to that

T-duality. This isomorphism then induces a map on the generalised metric (6.4),

and from the image of this map we can read of the dual metric and B-field.

9For an extension of this concept to Heterotic string theory see [8].



160 CHAPTER 6. SPHERICAL T-DUALITY

Spherical Buscher rules from exceptional geometry

For the purposes of this thesis, generalised geometry corresponds to replacing the

tangent bundle T with the generalised tangent bundle T ⊕T ∗, as well as introducing

the Courant bracket. A reduction of the structure group to the maximal compact

subgroup gives a generalised metric parametrised in terms of the metric and B-field,

and the group O(d, d) acts on the generalised metric by diffeomorphisms and B-field

transformations. T-duality corresponds to an isomorphism between two Courant

algebroids, and the induced map on the generalised metric allows one to recover the

transformation rules of the metric and B-field, that is, the Buscher rules.

While Courant algebroids seem to be the appropriate algebraic structure to dis-

cuss the geometry of certain flux compactifications in type II string theory and super-

gravity, the field content of 11-dimensional supergravity is different, and so it seems

we should consider other algebraic structures. Exceptional generalised geometry is

a conjectural way to extend the generalised geometry of type II to M-theory/11-

dimensional supergravity. It is based on the observation that compactifications of

11-dimensional supergravity to n internal dimensions has a symmetry group related

to the exceptional Lie groups En [67, 11, 12]. This symmetry is referred to as

U-duality.

We are interested, for the moment, in 11-dimensional supergravity compactifi-

cations of the form M4 × E. The field content is given by a metric g and a closed

4-form flux F4. Locally, we can define a 3-form potential C3 such that F4 = dC3.

We can also consider the magnetic dual to the flux, defined by F7 = ?F4. This is

not closed, but satisfies the Bianchi identity:

dF7 + 1
2
F4 ∧ F4 = 0.

That is,

d
(
F7 + 1

2
C3 ∧ F4

)
= 0.

It follows that, locally, we can write

F7 = dC6 − 1
2
C3 ∧ F4,

for some 6-form potential C6. The correct algebraic structure should therefore have

the action of some group on it, which acts by diffeomorphisms together with gauge
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transformations of the gauge potentials C3 and C6. A well-studied candidate is the

vector bundle

TE ⊕ Λ2T ∗E ⊕ Λ5T ∗E. (6.5)

The 2-forms and 5-forms correspond to 2-brane and 5-brane charges respectively.

This bundle appears when considering the E6 exceptional duality group of M-theory

[12]. It has a natural E6 action on it, and the reduction of the structure group to the

maximal subgroup SL(6,R), that is the generalised metric G, is parametrised by a

metric g, a 3-form C3, and a 6-form C6.10 There is a (Dorfman) bracket, {·, ·}, on

sections of this bundle, invariant under diffeomorphisms and gauge transformations

by closed 3-forms and 6-forms, making it into a Leibniz algebroid [7]:

{X + σ2 + σ5, Y + τ2 + τ5} = [X, Y ]

+ LXτ2 − ιY dσ2

+ LXτ5 − ιY dσ5 + dσ2 ∧ τ2.

We can also twist this with a 4-flux and a 7-flux, giving the twisted bracket:

{X + σ2 + σ5, Y + τ2 + τ5}F4,F7 = [X, Y ]

+ LXτ2 − ιY dσ2 + ιXιY F4

+ LXτ5 − ιY dσ5 + dσ2 ∧ τ2 + ιXF4 ∧ τ2 + ιXιY F7,

provided that

dF4 = 0

dF7 + 1
2
F4 ∧ F4 = 0.

Our prescription now is relatively straightforward, albeit technically difficult. We

want to consider a compactification of the formM4×E, where E is a seven dimen-

sional manifold that is also a principal SU(2) bundle over a base M :

S3 E

M

π

10The generalised metric is essentially a more complicated version of (6.4).
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Since dim(M) = 4, principal SU(2) bundles over M are classified by the sec-

ond Chern class F4 ∈ H4(M,Z), and we want to assume that there is a 7-flux

H7 ∈ H7(E,Z), living on E. Note that there is a distinction here between the 4-flux

determining the topology of the bundle, and the 4-flux of the supergravity solution.

The 4-flux coming from the supergravity side defines the 7-flux through the Hodge

dual: F7 = ?H4. Assuming that F7 lives entirely on E is equivalent to assuming

that the dual 4-flux lives on M4. We also want to assume that we have an SU(2)-

invariant generalised metric G parametrised by SU(2)-invariant fields {g, C3, C6}.

We must then identify how spherical T-duality acts as a Leibniz algebroid isomor-

phism on (6.5). Under this isomorphism, the induced map on the SU(2) invariant

generalised metric G should give a generalised metric for the dual bundle from which

the component fields can be read off. The new fields {ĝ, Ĉ3, Ĉ6}, expressed in terms

of the original fields are precisely the sought-after Buscher rules.

Note that there is another vector bundle we could consider, namely

T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T.

The additional factor in the bundle is to account for Kaluza-Klein monopole charge

[66, 67]. When the dimension of E is 7, as it is in our case, bundle is related to

T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕
(
Λ7T ∗ ⊗ T ∗

)
.

The latter bundle has a a canonical Dorfman bracket on its sections making it a Leib-

niz algebroid. It also has a natural E7×R∗ structure that includes transformations

by closed 3-forms and 6-forms [7]. The bracket is given by

{X + σ2 + σ5 + u, Y + τ2 + τ5 + w} = [X, Y ]

+ LXτ2 − ιY dσ2

+ LXτ5 − ιY dσ5 + dσ2 ∧ τ2

+ LXw − dσ2 � τ5 + dσ5 � τ2,

where (α � β)(X) = ιXα ∧ β. This bracket can be twisted by a 4-flux and a 7-flux

satisfying

dF4 = 0

dF7 + 1
2
F4 ∧ F4 = 0.
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The twisted bracket is given by

{X + σ2 + σ5 + u, Y + τ2 + τ5 + w}

= [X, Y ]

+ LXτ2 − ιY dσ2 + ιXιY F4

+ LXτ5 − ιY dσ5 + dσ2 ∧ τ2 + ιXιY F7 + ιXF4 ∧ τ2

+ LXw − dσ2 � τ5 + dσ5 � τ2 − (ιXF4) � τ5 + (ιXF7) � τ2.

Generalised metrics for the E6 and E7 geometries have been studied in [12].
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Chapter 7

Conclusions and Outlook

In this thesis we have reviewed and discussed mathematical and physical aspects

of T-duality and its many generalisations. In particular, we discussed abelian T-

duality, non-abelian T-duality, Poisson-Lie T-duality, non-isometric T-duality, and

spherical T-duality. This thesis is largely pedagogical, providing the interested

reader with an overview of T-duality in string theory, and giving contrasts and

comparisons between the standard notion of T-duality and the various generalisa-

tions. The bulk of the novel results of this thesis are in Chapter 5, where we discuss

the recent proposal of non-isometric T-duality. We proved that the original pro-

posal is equivalent to the standard non-abelian T-duality, although this equivalence

is certainly not obvious from the outset. We then discussed generalisations of this

proposal, and concluded with some tantalising hints that this generalisation could

be related to Poisson-Lie T-duality.

The results of this thesis offer an outlook on what the author considers to be

the three main open problems in T-duality. The first of these is the longstanding

open problem of the global nature of non-abelian T-duality. Since its introduction,

the topological nature of the non-abelian dual space has been unclear. Recent work

in the physics community has made some interesting headway in this direction,

although we are far from approaching a comprehensive understanding. The obser-

vations of Chapter 3 put this open problem in a new perspective, suggesting that the

appropriate framework to think of the global structure of the dual space is as some

generalisation of a manifold such as a T-fold (or an appropriate non-abelian modifi-

cation). It would be interesting to frame this duality in the C∗-algebraic framework

of Section 2.2.6.
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The second open problem concerns the relation between the generalisation of

non-isometric T-duality discussed in Chapter 5. Poisson-Lie T-duality has attracted

considerable attention from physicists, partly due to its appearance and application

within integrable systems. The full nature of Poisson-Lie T-duality is not currently

understood. The results of Chapter 5 strongly suggest that it can be described

within a gauging framework, which would certainly help elucidate the true nature

of the duality and its status as a duality in string theory. Further work on the

properties of this non-isometric gauging, and in particular on the properties of the

proposed non-isometric field strength, is currently in progress.

The third and final open problem is the geometric nature of spherical duality.

The topological results of spherical T-duality so closely mirror the topological results

of abelian T-duality precisely in the dimensions required by M-theory that one would

be surprised if M-theory made no use of this putative duality. In Chapter 6 we

reviewed spherical T-duality and outlined a proposal for deriving a set of Buscher

rules for spherical T-duality based on exceptional geometry. Detailed calculations

of this proposal are currently in progress, and we expect to include them in an

upcoming publication.



Appendix A

An ode to S3

The three sphere is undoubtedly one of the most interesting objects in mathematics.

It is a (real) sphere, a complex sphere, a Lie group, the unit quaternions, a sphere

bundle, a principal G-bundle, and a parallelizable manifold to name a few of its

guises. It is also, perhaps, the most prevalent example appearing in all of the various

T-dualities, and so features prominently in this thesis. In this appendix, we describe

a few of the properties of S3 which are of relevance to our work. References will be

sparse since these are widely known results, collated here only for convenience.

A.1 Coordinate descriptions

There are many coordinate descriptions of S3, each of which have their advantages

and disadvantages. Note that since S3 is not globally R3, there are no global system

of coordinates for S3. It follows that every coordinate description of the round

metric in this section is defined only in some open patch of S3.

A.1.1 Cartesian coordinates

By far the most straightforward description of S3 is as the unit sphere in R4. By

definition, we have

S3 = {(x1, x2, x3, x4) ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 = 1}. (A.1)

Alternatively, we may think of R4 ' C2, and write

z1 = x1 + ix2 (A.2)

z2 = x3 + ix4. (A.3)
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It follows straightforwardly that S3 is also the unit sphere in C2:

S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}. (A.4)

S3 is a 3-manifold, so locally we only need three coordinates to describe it. We can

eliminate any one of the coordinates by using the defining equation. For example,

we can rewrite x4 = ±
√

1− x2
1 − x2

2 − x2
3. The flat metric on R4 induces a metric

on S3 known as the round metric. To obtain it in a patch with x4 6= 0, we apply

the exterior derivative to the defining equation to get

x1 dx1 + x2 dx2 + x3 dx3 + x4 dx4 = 0. (A.5)

Rearranging for dx4, and substituting into the flat metric

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4, (A.6)

we get the induced metric on S3 \ {x4 = 0}:

ds2
S3 = dx2

1 + dx2
2 + dx2

3 +
1

1− x2
1 − x2

2 − x2
3

(x1 dx1 + x2 dx2 + x3 dx3)2 . (A.7)

We can also apply the same procedure to get coordinate descriptions of the metric

in other patches.

A.1.2 Stereographic coordinates

The cartesian description of S3 is defined as an embedding in R4, but it is often

useful to have a three dimensional description of S3. To achieve this, we can use

stereographic projection. From a pole (1, 0, 0, 0) on S3 we project onto the equatorial

R3 hyperplane by

X =
x1

1− x4

, Y =
x2

1− x4

, Z =
x3

1− x4

. (A.8)

The inverse of this map is

x1 =
2X

X2 + Y 2 + Z2 + 1
, x3 =

2Z

X2 + Y 2 + Z2 + 1
, (A.9)

x2 =
2Y

X2 + Y 2 + Z2 + 1
, x4 =

X2 + Y 2 + Z2 − 1

X2 + Y 2 + Z2 + 1
. (A.10)

In these coordinates, the round metric is

ds2
S3 =

4

(1 +X2 + Y 2 + Z2)2

(
dX2 + dY 2 + dZ2

)
. (A.11)

Note that we could also have projected any other point on the sphere.
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A.1.3 Hyperspherical coordinates

Hyperspherical coordinates are the generalisation of the usual polar coordinates we

use in lower dimensions. There are multiple different choices, one of which is given

by the transformation

x1 = r cos θ (A.12)

x2 = r sin θ cosφ (A.13)

x3 = r sin θ sinφ cosψ (A.14)

x4 = r sin θ sinφ sinψ. (A.15)

The range of these coordinates is r ∈ [0,∞), θ ∈ [0, 2π], φ ∈ [0, π], and ψ ∈ [0, π].

As in the case for lower dimensions, the surface with r = 1 is the unit sphere. The

round metric is

ds2
S3 = dθ2 + sin2 θ

(
dφ2 + sin2 φ dψ2

)
. (A.16)

A.1.4 Hopf coordinates

As the name would suggest, Hopf coordinates are most useful when describing S3

as the Hopf fibration (see Section A.3). They are given by

x1 = cos

(
ξ1 + ξ2

2

)
sin η (A.17)

x2 = sin

(
ξ1 + ξ2

2

)
sin η (A.18)

x3 = cos

(
ξ1 − ξ2

2

)
cos η (A.19)

x4 = sin

(
ξ1 − ξ2

2

)
cos η. (A.20)

In complex coordinates, these have a simple expression

z1 = e
i(ξ1+ξ2)

2 sin η (A.21)

z2 = e
i(ξ1−ξ2)

2 cos η. (A.22)

The range of these coordinates is η ∈ [0, π
2
], ξ1 ∈ [0, 2π], and ξ2 ∈ [0, π]. The round

metric is

ds2
S3 = dη2 +

1

4

(
dξ2

1 + dξ2
2 − 2 cos(2η) dξ1 dξ2

)
. (A.23)
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A.2 Group structure

The sphere S3 is also diffeomorphic to the Lie group SU(2). To see this, recall the

definition of SU(2):

SU(2) =
{
U ∈M2(C) : UU † = U †U = I and det(U) = 1

}
. (A.24)

By writing

U =

z1 z2

z3 z4

 , (A.25)

and using the unitary property, we find that for U ∈ SU(2) we must have z3 = −z̄2

and z4 = z̄1. Then the determinant of U is

det(U) =

∣∣∣∣∣∣ z1 z2

−z̄2 z̄1

∣∣∣∣∣∣ (A.26)

= |z1|2 + |z2|2. (A.27)

The diffeomorphism mapping S3 to SU(2) is then

(z1, z2) 7→

 z1 z2

−z̄2 z̄1.

 (A.28)

There is another way we can see this correspondence, by considering the quaternions

H. An arbitrary quaternion is written as

q = x1 + x2i + x3j + x4k. (A.29)

The unit quaternions, as a manifold, have the structure of S3. This follows from

|q|2 = qq∗ = x2
1 + x2

2 + x2
3 + x2

4. (A.30)

On the other hand, the quaternions have a group structure given by multiplication,

and the unit quaternions are a subgroup. We can define a group isomorphism from

the unit quaternions to SU(2) by sending

q = x1 + x2i + x3j + x4k 7→

 x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

 . (A.31)

Note that the only spheres which posses a group structure are S1 = U(1) and

S3 = SU(2).
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A.3 The Hopf fibration

The Hopf fibration is a description of S3 as a fiber bundle. More specifically, it is a

circle over S2:

S1 S3

S2

Since this is a fibration, this tells us that S3 is locally trivial - i.e. S3 can be locally

identified with S1 × S2. Of course, this is not true globally, as can be seen by

comparing topological invariants such as the cohomology (see A.5).

Let us explicitly construct the Hopf projection π : S3 → S2 in cartesian coordi-

nates. For (x1, x2, x3, x4) ∈ S3, we have

π(x1, x2, x3, x4) =
(
2(x1x3 + x2x4), 2(x2x3 − x1x4), −x2

1 − x2
2 + x2

3 + x2
4

)
. (A.32)

The right hand side of (A.32) is an element (x, y, z) ∈ R3. A quick calculation shows

that

x2 + y2 + z2 = (x2
1 + x2

2 + x2
3 + x2

4)2,

so that π maps a point on S3 ⊂ R4 to a point on S2 ⊂ R3. In Hopf coordinates, the

image of π is

x = sin(2η) cos(ξ2) (A.33)

y = sin(2η) sin(ξ2) (A.34)

z = cos(2η), (A.35)

which coincides with the usual polar coordinate description of S2 with inclination

θ = 2η and azimuth ϕ = ξ2. In these coordinates, the S2 base is parameterised by

the coordinates (η, ξ2), while the S1 fibers are parameterised by the coordinate ξ1.

It is easy to see S3 as a principal U(1)-bundle if use complex coordinates (z1, z2).

There is a natural U(1) group action, acting by (eiλz1, e
iλz2), for which it is easy to

see that the quotient is S2.

Fibrations of spherical fibers, total space, and base can only occur in certain

dimensions. These fibrations are related to the fact that real division algebras can

only occur in dimensions 1, 2, 4, and 8, corresponding to the real division algebras
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Figure A.1: A visualisation of the Hopf projection. Points on the base are coloured

in correspondence with the colour of the fiber in the total space. This image utilises

the stereographic projection of S3 to R3.1

R, C, H, and O. The related fibrations are:

S1 ↪→ S1 → S0 (A.36)

S1 ↪→ S3 → S2 (A.37)

S3 ↪→ S7 → S4 (A.38)

S7 ↪→ S15 → S8. (A.39)

A.4 Geometry of the round metric

We have given several coordinate descriptions of S3, and with all of them we have

included the coordinate description of the round metric. Although there is an infinite

dimensional space of Riemannian metrics we can equip S3 with, the round metric is

in some sense a natural one. For one thing, it is the metric induced by the defining

embedding and the flat metric in R4. Another property of the round metric is that

it is a bi-invariant metric on the group SU(2). Indeed, every compact Lie group

1Used with permission [69].
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admits a bi-invariant metric,2 and if the group is simple then bi-invariant metrics

are unique up to a constant, so the round metric is the bi-invariant metric on SU(2).

Bi-invariant metrics are useful because they have a variety of nice properties. For a

bi-invariant metric, the geodesics are the integral curves of the left-invariant vector

fields. Furthermore, such a metric has constant Ricci curvature. We can verify this

calculation for S3 in any of the coordinate systems we have described, and we find

that

R = 6. (A.40)

The round metric also makes S3 into an Einstein manifold. That is, the round

metric satisfies

Rij = 2gij. (A.41)

The isometry group of the round metric is SO(4). This is manifest when taking

the standard embedding of S3 into R4. The Lie algebra so(4) corresponding to this

group of isometries decomposes into su(2)× su(2)

A.5 Topological properties

A.5.1 (Co)Homology groups

S3 has the following Čech cohomology groups, with integer coefficients:

H0(S3,Z) = Z (A.42)

H1(S3,Z) = 0 (A.43)

H2(S3,Z) = 0 (A.44)

H3(S3,Z) = Z. (A.45)

Poincaré dual to this, we have the homology groups:

H0(S3,Z) = Z (A.46)

H1(S3,Z) = 0 (A.47)

H2(S3,Z) = 0 (A.48)

H3(S3,Z) = Z. (A.49)

2The only connected Lie groups admitting bi-invariant metrics are cartesian products of compact

Lie groups and Rm.
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More generally, for spheres we have:

Hk(Sn,Z) = Hk(S
n,Z) =

Z if k = 0 or n

0 otherwise.

(A.50)

The following theorem is useful for computing the cohomology groups of product

spaces.

Theorem A.5.1 (Künneth formula). Let X and Y be topological spaces, and sup-

pose that H i(X,Z) or H i(Y,Z) are torsion free for all i. Then

Hk(X × Y,Z) =
⊕
i+j=k

(
H i(X,Z)⊗Hj(Y,Z)

)
. (A.51)

The Künneth formula, together with knowledge of the cohomology groups of the

spheres, allows us to compute the cohomology groups of two other spaces we are

very interested in: Tn and S1 × S2.

Corollary A.5.2. The cohomology of S1 × S2 is

Hk(S1 × S2,Z) =

Z if k = 0, 1, 2

0 for k > 3

(A.52)

Corollary A.5.3. The cohomology of Tn = (S1)n is

Hk(Tn,Z) = Z(nk). (A.53)

A.5.2 Homotopy groups

Some homotopy groups for spheres are shown in the following table:

k 1 2 3 4 5 6 7 8 9 10

πk(S
1) Z 0 0 0 0 0 0 0 0 0

πk(S
2) 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

πk(S
3) 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15

The higher homotopy groups of spheres are largely unknown, and do not follow an

obvious pattern. The homotopy groups for S2 and S3 are the same for k ≥ 3. This

can be seen by noting that the Hopf fibration

S1 S3

S2.

π
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induces the following long exact sequence of homotopy groups:

· · · −→ πk(S
1) −→ πk(S

3) −→ πk(S
2) −→ πk−1(S1) −→ · · · −→ π0(S1) −→ π0(S3).

Since πk(S
1) = 0 for k ≥ 2, the sequence divides into smaller seqeuences

0 −→ πk(S
3) −→ πk(S

2) −→ 0 (A.54)

for k ≥ 3, whence it follows that πk(S
3) ∼= πk(S

2) for k ≥ 3.

A.5.3 Gysin sequences

Sphere bundles are fiber bundles where the fiber is a sphere. Associated to ev-

ery sphere bundle is a particularly useful long exact sequence known as the Gysin

sequence.

Theorem A.5.4 (Gysin). Let π : E →M be a fiber bundle with fiber Sk. Then the

following sequence is exact at the level of de Rham cohomology:

· · · −→ Hn(M)
π∗−→ Hn(E)

π∗−→ Hn−k(M)
e∧−→ Hn+1(M) −→ · · · (A.55)

The map π∗ is the pushforward map π∗ : Hn(E) → Hn−k(M), which acts by inte-

gration of differential forms over the fiber, and π∗ is just the pullback induced by the

projection π : E → M . The map e∧ : Hn−k(M) → Hn+1(M) is the wedge product

with the Euler class.

The Gysin sequence is also exact at the level of Čech cohomology with integral

coefficients, though one must replace the wedge product of e with the cup product,

and the pushforward map is no longer simply integration over the fiber.
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Appendix B

Miscellaneous results

We collect in this Appendix some miscellaneous results which are useful for reference

throughout this thesis.

B.1 Adapted coordinates

Abelian T-duality following the Buscher rules is straightforward provided one works

in a system of coordinates adapted to the Killing vector. A system of coordinates

is said to be adapted to a Killing vector if the isometry generated by the Killing

vector acts as a translation on a single coordinate. If the components of a metric

are independent of a particular coordinate Z, then the corresponding vector field ∂Z

is a Killing vector field, and the coordinates will be automatically adapted to this

Killing vector. More generally, a Killing vector can generate isometries which won’t

act as translations on the given coordinates. In this subsection we provide a simple

method of obtaining a system of coordinates adapted to a Killing vector.

Let (M, g) be a Riemannian manifold of dimension D, and let k be a Killing vec-

tor of g. Suppose we have a set of coordinates ({Xµ}) for M, where µ ∈ {1, . . . , D}.

In these coordinates,the Killing vector has the form k = kµ∂µ. We are looking for a

coordinate change φ = {Y i(Xµ), θ(Xµ)}, for i ∈ {1, . . . , D−1}, such that φ∗k = ∂θ.

To find such a coordinate change, we simply solve the following system of partial

177
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differential equations:

kµ∂µY
1 = 0

kµ∂µY
2 = 0

...

kµ∂µY
D−1 = 0

kµ∂µθ = 1.

That is, we solve the system {k(φi) = 0, k(θ) = 1}. A concrete example will serve

to illustrate this, so consider the Heisenberg 3D manifold given by the following

metric:

ds2 = dx2 + (dy − xdz)2 + dz2

The 4 (local) Killing vectors for this metric are{
x∂z − z∂x +

(
x2

2
− z2

2
+ 1

)
∂y, ∂x + z∂y, ∂y, ∂z

}
.

We notice that the components of the metric are independent of the coordinates y

and z, and so this system of coordinates is already adapted to the corresponding

Killing vectors ∂y and ∂z. Suppose instead that we wanted to find coordinates

adapted to the Killing vector ∂x+z∂y. To find such coordinates, we solve the system

of partial differential equations (where we have relabelled {Y 1, Y 2, θ} as {X, Y, θ}

for convenience):

∂X

∂x
+ z

∂X

∂y
= 0

∂Y

∂x
+ z

∂Y

∂y
= 0

∂θ

∂x
+ z

∂θ

∂y
= 1.

Generally this can be solved with the aid of a computer software package, but in

this case it is easy to see that the following set of functions solve the system:

X = y − xz

Y = z

θ = x
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The inverse transformation is given by:

x = θ

y = X + θY

z = Y

It is relatively straightforward now to compute the pushforward of the Killing vector

∂x + z∂y under this coordinate transformation, and indeed one finds that φ∗(∂x +

z∂y) = ∂θ, as required. The new metric in these coordinates is

ds2 = dX2 + 2Y dX dθ + dY 2 + (1 + Y 2) dθ2.

This metric is independent of θ, so it is clear that ∂θ is a Killing vector.

B.2 Why the f-flux background defines a metric

on a compact space.

In the previous subsection we considered the Heisenberg 3D manifold, with the

metric

ds2 = dx2 + (dy − xdz)2 + dz2

A priori, the coordinates (x, y, z) are real coordinates, and the above line element

defines a curved metric on a non-compact space, R3. From a physics perspective

we are more interested in a compactified form of this manifold, which arises as the

abelian T-dual of a three-torus T 3 = S1 × S1 × S1, equipped with a non-trivial

H-flux.

More concretely, performing an abelian T-duality along the y-coordinate of T 3,

with a B-field given by B = −xdy ∧ dz, we get the above Nilmanifold metric with

vanishing B-field.1

To compactify, we identify the coordinates periodically, in much the same way

that coordinates for the circle can be defined by {θ ∈ R : θ ∼ θ + 1}. Of course, we

want to make sure that the metric we have for the Nilmanifold still makes sense after

1Note that we are being a little imprecise here - strictly speaking, the y-coordinate in the

Nilmanifold metric is the dual coordinate, or Lagrange multiplier, from the T-duality procedure,

and we should probably call it ŷ.
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these identifications, so we need to do the identification in a way which preserves

the metric. An easy way to do this is to make sure that the basis of one-forms

(dx, dy−xdz, dz) is invariant under any identification. A more mathematical way of

saying this is that we want the deck transformations defining the compactification

to be isometries. For example, the following identification

(x, y, z) ∼ (x, y + 1, z)

periodically identifies the y-coordinate. Thinking of this as a diffeomorphism

φ1 : (x, y, z) 7→ (x, y + 1, z)

the basis of one-forms change under this diffeomorphism via the pullback. The other

identifications we need to make are given by

φ2 : (x, y, z) 7→ (x, y, z + 1)

φ3 : (x, y, z) 7→ (x+ 1, y + z, z)

To see explicitly that this leaves the basis of one-forms (and therefore the met-

ric) invariant, let’s compute, as an example, how the one forms change under the

identification φ3:

dx 7→ φ∗3(dx) = d(x+ 1) = dx

dy 7→ φ∗3(dy − xdz) = d(y + z)− (x+ 1)dz = dy + dz − xdz − dz = dy − xdz

dz 7→ φ∗3(dz) = dz

Notice that φ3 twists the y-coordinate with the z-coordinate as x is periodically

identified. This is why the Nilmanifold is sometimes referred to as the ‘twisted

torus’ - it is a non-trivial circle bundle over a two torus. The three identifications

are often written in the succinct notation:

(x, y, z) ∼ (x, y + 1, z) ∼ (x, y, z + 1) ∼ (x+ 1, y + z, z)
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Lie algebroid gauge theory

C.1 The essentials

A Lie algebroid gauge theory replaces the Lie algebra bundle M × g of a gauge

theory over M with a Lie algebroid π : E → M . This is a vector bundle E over

M , together with an anchor map ρ : E → TM , and a Lie algebra bracket [·, ·] on

sections of E satisfying the Leibniz rule

[s1, fs2] = f [s1, s2] + ρ(s1)(f) s2. (C.1)

Choosing a local frame {ea} for E,1 defines the structure functions

[ea, eb] = f cabec. (C.2)

The image of the basis {ea} under the anchor map is a set of vector fields on M

ρ(ea) = via∂i. (C.3)

The anchor map is a morphism of the bracket

ρ([X, Y ]) = [ρ(X), ρ(Y )], (C.4)

where the bracket on the right is the usual commutator of vector fields on TM .

Recall that a connection ∇ on a vector bundle E is a differential operator

∇ : Γ(E)→ Γ(E)⊗ Ω1(M) (C.5)

satisfying

∇(sf) = (df)s+ f∇(s), (C.6)

1i.e. a local basis of sections.
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for all f ∈ C∞(M) and s ∈ Γ(E). Applying this operator to a basis vector from a

local frame and expanding in terms of that frame determines the components of the

connection form

∇ea = eb ω
b
a. (C.7)

The components of the connection form, ωab , is a matrix of one-forms on M . When

we apply the connection ∇ to an arbitrary section, s, of E, we can expand

∇(s) = ∇(eas
a) (C.8)

= ea(ds
a) + sa∇(ea) (C.9)

= eb(ds
b + ωbas

a). (C.10)

Thus when acting on sections, ∇ is often written as d+ω, where it is understood

that the exterior derivative and the connection form act on the components of the

section expanded in the basis ea. Under a change of frame ea → e′a = ebΛ
b
a, the

connection form transforms as

ω′ab = (Λ−1)amω
m
n Λn

b + (Λ−1)am dΛm
b . (C.11)

Note that, as we have defined it, the connection form is a local object. It is defined

as a matrix of one-forms on M , or at least, on the open set U ⊂ M on which the

frame ea defines a trivialisation. Local descriptions of a connection one-form can

be patched together into a global connection form, provided they satisfy a patching

condition

Every vector bundle admits a connection, but connections are certainly not

unique. Given two connections ∇1 and ∇2 on E, their difference is a one-form

on the base with values in the endomorphism bundle

∇1 −∇2 ∈ Ω1(M,End(E)). (C.12)

It is easy to see this in coordinates, by looking at ∇1 −∇2 acting on a section s:

∇1(s)−∇2(s) = eb(ds
b + (ω1)bas

a)− eb(dsb + (ω2)bas
a) (C.13)

= eb(ω1 − ω2)bas
a (C.14)

Conversely, given a connection ∇ and an endomorphism-valued one-form φ, we can

construct a new connection ∇+ φ. In local coordinates, we have

(∇+ φ)(s) = eb(ds
b + ωbas

a) + ebφ
b
as
a (C.15)

= eb(ds
b + (ω + φ)bas

a) (C.16)



C.1. THE ESSENTIALS 183

The definition of the connection can be extended to act on vector-valued differ-

ential forms:

∇ : Γ(E)⊗ Ωk(M)→ Γ(E)⊗ Ωk+1(M) (C.17)

by

∇(sα) = s dα +∇(s) ∧ α. (C.18)

The curvature of the connection measures the failure of the covariant derivative to

square to zero. Applying the covariant derivative twice to a section, and using the

property (C.18) gives us:

∇(∇(s)) = ∇(∇(eas
a)) (C.19)

= ∇(eb(ds
b + ωbas

a)) (C.20)

= ea(dω
a
b + ωac ∧ ωcb)sb (C.21)

= ebR
b
as
a. (C.22)

We find that the curvature has the coordinate description Ra
b = dωab + ωac ∧ ωcb, and

is a 2-form on M taking values in End(E). It may also be defined by the expression

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ], (C.23)

for X, Y ∈ Γ(TM).

The connection ∇ on E is a connection on a vector bundle, and so doesn’t use

the condition that E is also a Lie algebroid. When E is a Lie algebroid, we can

use the anchor map to lift any vector bundle connection ∇ on E, to a so-called

E-connection E∇ on E:

E∇ : Γ(E)→ Γ(E)⊗ Γ(E∗). (C.24)

It is often more convenient to think of E∇ as a map from Γ(E)⊗ Γ(E) to Γ(E). In

this thesis, we will use a specific E-connection, given by

E∇s1(s2) := ∇ρ(s1)(s2). (C.25)

More generally, however, an E-connection is simply required to satisfy the Leibnitz

rule

E∇(s, ft) = fE∇(s, t) + (ρ(s)f)t. (C.26)
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Once we have an E-connection, we can define the E-curvature of E∇ as

R(s, t) = E∇s
E∇t − E∇t

E∇s − E∇[s,t], (C.27)

and the E-torsion of E∇ as

T (s, t) = E∇st− E∇ts− [s, t], (C.28)

where the bracket is the Lie algebroid bracket on sections of E. The E-curvature

and the E-torsion are maps

R : Γ(E)⊗ Γ(E)→ End(E) (C.29)

T : Γ(E)→ End(E). (C.30)

In coordinates, we have

R(em,en)(eb) = ea(Rmn)ab (C.31)

= ea
[
(vimv

j
n − vinvjm)(∂iω

a
bj + ωaciω

c
bj)
]

(C.32)

= ea (ιvnιvmR
a
b ) , (C.33)

where Ra
b is the curvature of the connection ∇, and

Teb(ec) = eaT abc (C.34)

= −ea
(
fabc + ωabiv

i
c − ωacivib

)
. (C.35)

That is, the coordinate expressions for the E-curvature and E-torsion of the E-

connection are

(Rmn)ab = ιvnιvmR
a
b (C.36)

T abc = −
(
fabc + ωabiv

i
c − ωacivib

)
. (C.37)
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[3] E. Álvarez, L. Álvarez-Gaumé, J.L.F. Barbón and Y. Lozano, Some

global aspects of duality in string theory, Nucl. Phys. B415 (1994) 71-100,

[arXiv:9309039 [hep-th]].
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[85] Y. Lozano, C. Núñez, Field theory aspects of non-Abelian T-duality

and N = 2 linear quivers, J. High Energy Phys. 05 (2016) 107,

[arXiv:1603.04440 [hep-th]].
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Poincaré group and their invariants, J. Math. Phys. (1976) 977.

[104] G. Perelman, The entropy formula for the Ricci flow and its geometric appli-

cations, [arXiv:0211159 [math-dg]].

[105] G. Perelman, Ricci flow with surgery on three-manifolds,

[arXiv:0303109 [math-dg]].

[106] G. Perelman, Finite extinction time for the solutions to the Ricci flow on

certain three-manifolds, [arXiv:0307245 [math-dg]].

https://projecteuclid.org/euclid.atmp/1154236240
https://arxiv.org/abs/hep-th/0508084
https://doi.org/10.1142/9789812772527_0030
https://doi.org/10.1142/9789812772527_0030
https://arxiv.org/abs/hep-th/0409073
http://dx.doi.org/10.1016/j.geomphys.2009.07.018
http://dx.doi.org/10.1016/j.geomphys.2009.07.018
http://arxiv.org/abs/0908.3161
https://doi.org/10.1088/1126-6708/1997/11/002
https://doi.org/10.1088/1126-6708/1997/11/002
https://arxiv.org/abs/hep-th/9710230
https://doi.org/10.1016/0370-2693(77)90076-4
https://doi.org/10.1016/0370-2693(77)90076-4
https://arxiv.org/abs/hep-th/9810201
https://doi.org/10.1088/0264-9381/1/5/005
https://arxiv.org/abs/1206.4395
https://doi.org/10.1063/1.522991
https://arxiv.org/abs/math/0211159
https://arxiv.org/abs/math/0303109
https://arxiv.org/abs/math/0307245


194 BIBLIOGRAPHY

[107] E. Plauschinn, T-duality revisited, J. High Energy Phys. 1 (2014) 131,

[arXiv:1310.4194 [hep-th]].

[108] F. Petrasek, L. Hlavaty, I. Petr, Plane-parallel waves as duals of the flat

background II: T-duality with spectators, Class. Quant. Grav. 34 (2017),

[arXiv:1612.08015 [hep-th]].
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