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Abstract—We propose a method that obtains a discriminative
visual dictionary and a nonlinear classifier for visual tracking
tasks in a sparse coding manner based on the globally linear
approximation for nonlinear learning theory. Traditional discrim-
inative tracking methods based on sparse representation learn a
dictionary in an unsupervised way and then train a classifier,
which may not generate both descriptive and discriminative
models for targets by treating dictionary learning and classifier
learning separately. In contrast, the proposed tracking approach
can construct a dictionary that fully reflects the intrinsic manifold
structure of visual data and introduces more discriminative
ability in a unified learning framework. Finally, an iterative
optimization approach, which computes the optimal dictionary,
the associated sparse coding and a classifier, is introduced. Exper-
iments on two benchmarks show that our tracker achieves better
performance compared with some popular tracking algorithms.

Index Terms—Object tracking, Nonlinear learning, Local co-
ordinate coding, Global linear approximation

I. INTRODUCTION

Visual tracking is a popular topic in computer vision, and
numerous tracking methods [1], [2], [3], [43], [54], [26] have
been proposed to deal with challenges, such as illumination
variation [12], [16], global or partial occlusion, shape defor-
mation, in-plane rotation and background clutters. To evaluate
the performance of different tracking algorithms quantitatively,
several tracking datasets, such as visual tracking benchmark
[4] and VOT2014 [5], have been established.

Among current tracking approaches, much attention has
been attracted by sparse representation based approaches be-
cause of their robust performances in vision tasks [6], [36],
[41]. Many sparse coding based tracking methods [7] have
been proposed by researchers. Broadly speaking, a given
candidate sample can be encoded by linear combination of a
few atoms spanning an over-complete dictionary that is learned
from a training set of samples in sparse coding based methods.
Different dictionary learning approaches [8], [9], [10], [52],
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[47], [49], [55] based on sparse coding have been proposed
for signal reconstruction and classification in the audio and
image processing domains. In visual tracking, the learning and
updating of a dictionary are crucial steps to handle and adapt
to appearance variation during tracking procedure as well.
Therefore, a suitable dictionary selection carries significant
importance. Mei and Ling [11] constructed a dictionary to
encode the candidate targets by employing the global target
templates. Bao et al. [13] introduced the accelerated proximal
gradient approach to promote the real time /; tracker with the
same dictionary learning strategy. Zhong et al. [14] introduced
a sparsity-based collaborative model with a generative and a
discriminative model. The discriminative classifier was trained
by a dictionary with holistic templates, while the generative
model was based on a local dictionary from local patches by
k-means. This method performs well under drastic appearance
changing. Most sparse coding based discriminative object
tracking methods [15] learn dictionary and train classifier
using a separated mechanisms. To acquire the dictionary for
coding, some unsupervised clustering methods, such as k-
means are usually adopt, but the produced dictionary may not
suitable for tracking task. Yang et al. [17] proposed an online
discriminative dictionary learning approach for visual tracking.
But this method leaves the locality of sparse codes out, and
has no consideration on the underlying manifold geometry
structure of neither labeled samples nor unlabeled samples
during dictionary learning.

A classification function learning using visual data is re-
stricted to be nonlinear as a necessity, because of the target
appearance variation during tracking process. In principle, the
so called “curse of dimensionality” may arise due to high
dimensional feature for modeling target appearance changing.
This phenomenon is seldom observed during practical tracking
procedure. Moreover, a satisfying tracking performance could
be obtained using only a handful of visual training samples.
One possible reason is that typically visual data represented
by high dimensional vectors reside in a low dimensionality
embedding manifold of the high dimensional space that they
lie in. Based on this inference, a nonlinear learning theory us-
ing Local Coordinate Coding (LCC) is proposed in [18], [19].
LCC is a general coding framework that approximates any
nonlinear Lipschitz smooth function using linear functions. It
consists of a sparse coding scheme that defines the local co-
ordinates and a dictionary that contains the local coordinates.
It shows that under some Lipschitz continuity assumption the
computation complexity for learning a nonlinear classification
function relys on the dimensionality of inherent manifold
sample space. Considering the manifold geometry structure
of sample space, we think that those dictionary items close
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to samples to be encoded should be activated. LCC could
keep locality of codes while reconstructing original samples
using the learned dictionary items. Impressive performance
is exhibited on nonlinear learning using LCC [20]. It also
shows high classification accuracies on large-scale image
classification [21] and object recognition [22], [24]. However,
those methods formulate their visual dictionary with a simple
unsupervised way. And they all treat dictionary learning and
classifier learning as a separated way, and take a two-stage
learning strategy. It may not generate an optimal dictionary
that owns discriminative power and reflects the spatial geom-
etry structure of sample space. Even so, the nonlinear theory
using LCC endows a firm theoretical foundation to promote
sparse coding based discriminative visual tracking algorithm.

In this work, we present a well-designed tracking algorithm
that aims to learn visual dictionary and nonlinear classification
function jointly enlighten by above mentioned nonlinear learn-
ing theory under a semi-supervised framework. The dictionary
is learned to describe the embedded manifold structure con-
structed by samples with and without labels, and it is also ex-
pected to maintain approving discriminative power. Therefore,
the proposed method could overcome several limitations arisen
in most of existing visual tracking approaches efficiently.
Furthermore, it employs the localized sparse representation to
provide guidance for discriminative visual tracking, which has
a solid theoretical basis. The final discriminative dictionary,
classification function and sparse codes are calculated by an
iterative optimization algorithm. One preliminary version of
this work was presented in [23], and this work is significantly
different. First, more theoretical foundations about the theory
of globally linear approximation to nonlinear learning are
introduced (Section II-A). Second, theoretical analysis of each
item is added and explained concretely, such as the semi-
supervised learning item (3) and the discriminative item (4).
Third, a new analysis about the relationships between the
classifier and the learned dictionary in our optimization algo-
rithm is explained in Section II-B. Fourth, drifting often occurs
during long term tracking due to occlusion and deformation
in many tracking tasks. In order to alleviate this issue, a
target re-detection method is introduced to relocate target once
tracking fails (Section III-D). Fifth, a center refining scheme
is introduced in the experiments (Section IV-A) to further
improve the tracking performance. Finally, we compare the
present work with more recent tracking methods on OTB2013
(Fig. 3 and Table I). And more experimental analysis (Section
IV-C) and experiments on VOT2015 (Fig. 5) are added as well.
Our source code will be available online '

II. GLOBALLY LINEAR APPROXIMATION TO NONLINEAR
LEARNING

A. Problem Description

Given a set of labeled samples X; = {x1,---,x,} with
their labels Y = {y1,--- ,y,} where x; € R? and a group
of unlabeled samples X,, = {Xp+1, " sXn4u}, Our goal is
to learn a nonlinear classification function, a discriminative

Unttp://github.com/shenjianbing/LLCtracking

dictionary, and sparse coefficients for samples represented
under dictionary. We aim to learn a nonlinear classifier on a
very high dimensional sample space originated from visual
tracking problem. In view of traditional statistical theory,
the performance decreases when dimensionality of sample
feature exceeds an optimal number. Thus, learning a nonlinear
function from this sample space is inaccurate. Fortunately, the
theory of globally linear approximation to nonlinear learning
show that a nonlinear function f(x) could be approximated by
a linear function with regard to local coordinate coefficients
of samples under manifold assumption [18].
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where v(x) = Da, and D = [dy,--- ,d,,] € R¥*™ is the
dictionary, and « is the code of sample x. This equation means
that a very high dimensional nonlinear learning problem can
be translated into a much simpler linear learning problem. By
minimizing the upper bound, we could obtain a much simpler
approximated linear function with codes of original samples
as its input instead of original complicated nonlinear function.
The upper bound of the approximation error is bounded by the
reconstruction error of a sample and the affinity between the
sample and dictionary items. For a sample x;, LCC, which is
just the upper bound, is approximated as

m
. ) _ ,
min [x; — Devi| +uzl|ag|||dj_xi||, 2
e
s.t. 1TO¢¢:1,

where 1 is a constant factor to balance reconstruction error
and locality, az denotes the j-th element of a; which is the
local coordinate code of sample x; under dictionary D, and
each element in vector 1 is a set to one.

Considering both labeled and unlabeled samples, we extend
the above equation as

u+n m
wmin > | i = Dewl* + 3 ledllld; —xill* |, 3
=1 =1
s.t. 1Tai:17 t=1,--- ,n+u
We denote A = [ala"' >an+u] S Rmx(nJru) as the

code matrix of all training samples. The locality of LCC
brings sparsity, but it is not true contrarily. The globally linear
approximation of f(x;) is formulated as f(x;) ~ o w under
the nonlinear learning theory using LCC. And the labeled
samples should be considered for discriminative dictionary
learning. Therefore, we introduce the discriminative item as

i [Afw =y’ st 1Tey =1 i=1-n @)
where code matrix A; = [a, -+ , ] corresponds to labeled
samples.

We intend to assign similar labels to those neighbor samples
considering the geometry spatial structure constructed by
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samples. In LCC, a sample could be sparsely constructed by
the bases in advance with a linear combination manner, like
other sparse coding approaches. For simplicity, a novel sparse
coding method is introduced as an approximation of LCC [21].
It encodes a sample with k dictionary items which are the
nearest neighbors of the sample. And the corresponding sparse
code is obtained by solving a least squares problem with some
equality constrains. It will reach our objective obviously, since
neighbor samples will be encoded by several same dictionary
items. Therefore, we introduce a Laplacian regularization item
to handle it. More theoretical analysis about Laplacian regu-
larization refers to [25]. Finally, the proposed semi-supervised
learning method for dictionary, sparse codes and classification
function is formulated as

u+n m )
Jun i = Davil|* + Y |od|||d; — x|
i=1 j=1
n+un+u
+ AW —y[P+ 2 )Y ol —afw|’By,
i=1 j=1
&)
st. 1Tay =1, i=1,---,n+u,

where the last item is the Laplacian constraint with B;; =
aiTaj, and A1, Ao are two preset constants that balance the
discriminative ability and manifold spatial constrain.
Manifold regularization has been used in several earlier
works [51]. But there are significant differences between our
method and [51], [53]. First, our method aims to track a single
general object in one video clip, while [51] performs tracking
for multiple persons in multiple videos using person detection
and face recognition techniques. Thus, these two methods
belong to different topics of visual tracking tasks. Second, our
tracking method is solved as a regression problem, and the
label of a sample is represented by a regression value. While
the label of sample in [51] is represented by a label vector, and
the tracking problem is treated as a multi-class classification
problem. Third, the proposed optimization algorithm utilizes a
linear regression model with respect to LCC codes of samples
to predict the labels of samples. The linear regression model is
a globally linear approximation of original nonlinear function
under nonlinear learning theory using LCC. But [51] and
[53] predict the labels vectors of data points using a linear
regression model with respect to original samples, which does
not satisfy the basic theory assumption of our approach. All
the Laplacian matrices in our method and theirs consider the
manifold structure of samples, and the main idea behind them
assumes that neighbor samples should have similar labels.
However, the Laplacian matrix in our method includes a
variable (sparse code matrix A) to be solved iteratively, while
the Laplacian matrices in [51] and [53] are constant matrices.
Additionly, the distance between different samples (B;; in
(5)) in our method has been continuously updated during the
iteration. The learned sparse code for each sample reflects its
real spatial position in the manifold space according to both
discriminative information and local geometry structures of all
data points. The optimization algorithm of the proposed model
is introduced in the next section, and the proposed algorithm

Algorithm 1 The Proposed Learning Algorithm
Input: {(x;, 4:)}io1, {Xi}i2a4 s 1 Ay and Xa.
Output: D, A and w.
1: Initialization: D is achieved using k-means algorithm,
A, = (DTD)"1(DTX), and X = [x1, - - -
2. t=1;
3: while t < T do
Classifier learning: Solve w using (7) with fixed D, A;

5 Xn—i—u]-

5:  Coding: Solve A by Algorithm 2 with fixed D, w;
. Dictionary learning: Learn D with fixed A, w by (17);

t=t+ 1.
8: end while

is summarized in Algorithm 1.

B. Optimization Algorithm

(5) could be solved directly, since it is not convex jointly
over variables D, w, and A. In this work, we seek to optimize
one variable while fixing the other two ones. To this end, the
objective function is decomposed into three sub-problems, and
the optimal results will be acquired using an iterative way.

Sub-problem A: Classifier Learning. By fixing dictionary
D and sparse code matrix A, the following optimization
problem is presented to learn classification function:

n+u n+u

min MIAfw =y + A2 Z Z lafw — ajw|?Bi;,
i=1 j=1
(6)
st. 1Tay =1, i=1,---,n.

The optimal solution of w could be achieved by setting the
derivative of (6) to zero. And the final closed-form solution is
calculated as

w=(MAAT + MAA - ATAAT) T (MAY), ()
where A = diag(Ay, Ag, -+, Ayip) with A; = 3407 B,

Sub-problem B: Coding. To obtain the sparse codés 1matlrix
A, we solve the objective function with D and w fixed. In
fact, the resulting minimization problem is just (5). But it
couldn’t be solved directly by derivation, since this function
is non-differentiable with regard to sparse codes matrix. Thus,
locality-constrained linear coding [20] is introduced as an
approximate formulation of (5), which could be solved ana-
lytically. In this work, we neglect the Laplacian regularization
term here for simplicity. Let ¢; = [c}, -+, c]T where ¢] =
||x; — d;|| denotes the Euclidean distance between dictionary
entry d; and sample x;. The approximated minimization

problem could be formulated as
u+n

H}in; (Ixi = D + plici © ew[?) + M ||Afw - y|[?
st. 1Toy=1, i=1,---,n+u, (8)

where ® represents the Hadamard product. This minimization
problem could be solved by calculating one column of A
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Algorithm 2 The Coding Algorithm

Input: {(x;,y:)}i=1, {xi}i2a 10 1o A1, D and w.
Output: A

1. t=1;

2: while ¢t < T do

33 fori=1:n+wudo

4 P = D'D + pdiag(c?);
5: Q = DTXZ‘;

6: if 7 < n then

7: P=P+\ww’;

8: Q=Q+ \wy;;

9: end if

10: a, =P! (Q — %1);
11:  end for

12: t=1t+1.

13: end while

with fixed others. The solving procedure is iterated until
convergence. Then, each «; could be calculated analytically
with a closed-form solution:

1"P~1Q1 -1

For the ay;s corresponding to sample x;s with labels,

P = D'D + pdiag(c?) + Myww?’, (10)

Q=D"x; + \iwy;, (11)

where (¢/)? is the j-th element of diagonal matrix diag(c?).
For those ay;s corresponding to samples without labels,

P = D'D + pudiag(c?), (12)

Q =D"x;. (13)
The detailed derivation of sub-problem A is given in Appendix
A. Algorithm 2 summarizes the proposed coding algorithm.

Sub-problem C: Dictionary Learning. To learn the dic-
tionary D, we aim to minimize the following problem with
fixed A and w

u+n m ]
Hgnz i = Dewil|* + 1) |od[[|d; —
i=1 j=1

After derivation (refer to [22] for more details), the above
minimization problem is equivalent to

mDintr(DTDG) —2tr(DT'S), (14)
n—+u
G =) (ia] + pdiag(|vi])) , (15)
i=1
n+u
S = Z (xiaiT + ,uxi|ai|T) , (16)

i=1

where the trace operator ¢r(-) acts on a square matrix. The
block-coordinate descent algorithm in [22] can be a viable

approach to obtain the optimal dictionary. But in this work, it
exists a closed-form formulation, which could be written as

D=SG . (17)

The detailed derivation of sub-problem B is given in Ap-
pendix B. Actually, the dictionary entry could be regarded
as labeled item, and the sign of its corresponding element in
classifier w is just its label.

III. TRACKING APPROACH
A. Samples Collection

Generally, the initial state of an interesting object in tracking
methods is annotated in the first frame manually. In this work,
we crop a group of holistic templates {x;}?_, within a certain
scope of the object region randomly according to a Gaussian
distribution as the labeled samples. Most discriminative visual
tracking methods are usually seen as a binary classification
problem, and the label of each sample is annotated as a discrete
value, such as 0 or 1. For more accurate annotation, we set the
labels of samples using continuous values which lie in [0, 1]
in our method. The label of a sample x; is computed as

o Arg N Ary
%i = Ar, U Ar,’

where Ary is the area of object region, and Ar; is the area of a
template. It is observed that the similarity between the target
and a sample increases with rise of the sample label value. The
value of the label is 1 for a sample overlapped with the target
region completely, and O if no overlap exists between them. It
is reasonable because the samples drifting from the target are
between target and non-target, and we could not assign them
to 1 or O crudely. Thus, continuous labels are a good choice.

The optimization of (5) needs n labeled samples and
unlabeled samples, and we assign similar labels for neighbor
samples in the manifold space. Thus, unlabeled samples are
also needed to the proposed method. The target candidates
{x;}7F " | selected in the current frame within a certain scope
of the previous target state are treated as unlabeled ones. Then
we train a classifier to assign labels for target candidates using
all these samples in an online manner.

(18)

B. Confidence Calculation

The training samples containing labeled and unlabeled ones
collected in previous sub-section will be utilized to train the
proposed model in (5), and then the optimal dictionary D,
LCC matrix A of samples and the linear classifier w will
be obtained. The regression value of a target candidate x;
is calculated as f(x;) = alw where «; is the LCC of x;.
It measures the affinity similarity of a candidate target to real
object. Thus, we could obtain all the confidences of candidates.

Nevertheless, only global template considered in tracking
is inadequate to cope with partial occlusion problem arisen
in tracking. To handle that, the target region is separated to
several small blocks, and several groups of samples of the
blocks are obtained. We assign the label of different blocks
as the way mentioned in previous sub-section. Meanwhile,
we divide the target candidates in current frame into several
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First Frame

Fig. 1.
in calculation all the time.

blocks as well, and they are used as unlabeled samples of
different blocks. Denote fr(x;) and {f5(x])}5_, indicate
the regression values of holistic candidate template x; and its
corresponding blocks respectively. Each block classifier f7 is
trained using the block samples extracted from all the j-th
blocks of holistic templates, thus different block dictionaries
will be learned for different classifiers. Finally, the confidence
value of a sample x; is calculated as

b
F0si) = wfn ) + (1= 0)y S b6, (19)

j=1
where x{ is the j-th block of sample x;, and v is the balance
weight between holistic candidates and partial candidate tem-
plates. Those classifiers are retained every a few frames for
computational efficiency. And the sparse codes of samples are
obtained by executing (2) using the learned dictionary.

C. PFarticle Filter Framework

The proposed tracking algorithm is implemented under
the particle filter framework. Given the observation o;.; =
{o;}l_; up to time ¢, the maximum a posterior (MAP)
estimation of object state s; can be estimated by

argmax p(s; | 01.¢), (20)
St
which is inferred based on the Bayesian theorem
p(stlo1:t) O(p(ot|st)/p(st|St71)p<st71|01:t71)dst71a
21

Sample
Collection

e —

\

| New
N : Training Set

)

Updating Scheme. The new training sample set is obtained from labeled and unlabeled pools. The samples collected from the first frame are involved

where p(s¢|s;—1) is the motion model and p(o¢|s;) the like-
lihood function. The posterior p(s¢|o1.;) is approximated by
a set of samples {s},sZ,--- sN} with their corresponding
weights {w}, w?,--- ,w]N }. The candidates are sampled from
a proposal distribution ¢(s¢|s1.4—1,01.¢) = p(s¢|s¢—1). In our
tracking algorithm, the target motion between two consecutive
frames is modeled by an affine image warp. And the state s;
is modeled by (&,&y,0,s,n,¢) where (&;,&,) is the target
center coordinate in the image and 6, s,7n, ¢ the parameters
of rotation angle, scale, aspect ratio and skew, respectively.
Without loss of generality, a Gaussian distribution is used to
model the motion model with p(s¢|si—1) = N(s¢;st-1,2)
where ¥ is a diagonal covariance matrix.

The likelihood function p(y;|s;) of candidate x; is con-
structed by

ploilsi) o< f(xi). (22)

The target candidate with highest probability is determined
as current estimated target state.

D. Target Re-detection

It is common that drifting occurs during long term tracking
and causes tracking failure. Especially, when a target is fully
occluded by background, trackers are difficult to locate where
a target is, and the estimated targets in these frames are almost
random. Therefore, a target re-detection algorithm is necessary
once the target reappears in new frames. Thus, we introduce
the target re-detection strategy [27] to handle this problem.
Different from [27], we train a SVM classifier [28] based on
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Fig. 2. Convergence of our coding algorithm (left) and the proposed joint discriminative dictionary, sparse codes and classifier learning algorithm (right).
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pixels are presented in the legend.

the initial target appearance instead of an online random fern
classifier [29]. The re-detector is activated in case that the
maximum response of the target center location is below a
predefined threshold 7, which means that tracking fails in the
current frame. With this re-detection strategy, the performance
of our tracker is promoted as we can see in Section. IV.

E. Update Strategy

Target appearance changes continuously caused by illumina-
tion variations, occlusions, deformation, efc. during tracking.
The manifold geometry structure constructed with samples
will be different with the changing of appearance. Thus, we
should re-update the dictionary, linear classifiers and sparse
codes to adapt to appearance variation. The target re-detector
should also be updated.

Dictionary Updating: We retain two sample pools as shown
in Fig. 1 during tracking. The labeled samples are stored
in labeled pool, and the unlabeled samples are contained in
unlabeled ones. The labeled samples will be cropped based on
current target location and then added into labeled pool when
the confidence value of current target is greater than a constant
0. Otherwise, we will consider the candidates in current frame
to be unlabeled samples and place them into unlabeled pool.

Success plots
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Then, a certain amount of samples will be selected from these
pools randomly every a few frames, and they are regarded as
a new training sample set. The discriminative dictionary and
classifier will be recalculated by Algorithm 1. To alleviate
the pollution of current training set, we remain the samples
collected from the first frame in our new training sample set,
which is efficient for long term tracking. The updating scheme
is applied on both holistic and block templates.

Re-detector Updating: In order to get more accurate re-
detecting results, the re-detector should be updated during
tracking as well. An online passive-aggressive algorithm [30]
is applied to update the SVM re-detector using features
sampled in the current frame. More details about the online
SVM algorithm can be found in [30].

IV. EXPERIMENTS

The proposed object tracking approach is verified on two
challenging tracking benchmarks including OTB2013 [4] and
VOT2015 [31]. We set the number of particles (600) to the
same number of these tracking algorithms under framework
of particle filters. The affine parameters of particle filters
are set to [10,10,0.04,0,0.001,0]. The number of positive,
negative and unlabeled samples are set to 20, 200 and 200
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Fig. 4. Comparison results between our tracker using the proposed SVM

re-detector, our tracker with the random fern re-detector [27], and the LNLT
tracker [23].

respectively for the proposed learning algorithm. We then
intended to separate the holistic template into four parts which
were located in the upper left, upper right, bottom left, and
bottom right of the template. Thus, the block size was set
to half of template size. We normalize the size of holistic
templates to 24 x 24, the block size and step size are set to
12 x 12 and [12 12] respectively. The number of dictionary
items for global templates is 20. The parameters p, A1, and Ao
in (5) are set to 0.03, 0.09, and 0.1 respectively. The balance
factor is set to 0.8 to determine the impact of holistic and block
classifiers. We set the threshold 8 = 0.65 for pool updating.

A. Implementation Details

We combine the three channels of CIE Lab color features
[32] and the histograms of oriented gradients (HOG) feature
[33] of samples as the final template feature vector. The feature
in our experiments for each template is a vector combined by
the three channels of CIE Lab color features [32] stretched row
by row of the target and the histograms of oriented gradients
(HOG) feature [33] of samples.

The final confidence in (19) of a target candidate is influ-
enced by the weight v. Thus, some inaccuracy may exist in the
center location of the estimated target. To refine the estimated
target state, we train a correlation filter [3], [34] using the
holistic target template cropped in the initial frame. Different
from their methods, the correlation filter is trained using only
the target template without any background information in
our implementation. Then, once a candidate state is chosen
as the state of the current estimated target by (22), we resize
the current target as the same size with target template and
calculate a refined center location of confidence response map
using the correlation filter learned ahead. The refined center
location is determined as the position corresponding to the
maximum response in this map. Other parameters such as
rotation angle, scale, aspect ratio and skew, in the estimated
target state are then transferred to the refined target. The
correlation filter updating method is the same as [3].

B. Convergence Analysis

To verify the convergence of the proposed globally linear
approximation to nonlinear learning algorithm intuitively, the
iterations of the proposed algorithm are calculated. To verify
the convergence of the coding algorithm with the increase
of iteration number, we show the difference between two
iterations on the experimental data in the left of Fig. 2. It
can be found that the proposed algorithm converges rapidly.
In fact, 4 rounds of iteration are enough for the experiments.
The right sub-figure in Fig. 2 shows the convergence curve
of the whole learning algorithm which is used to calculate the
discriminative dictionary, sparse codes and linear classifier. All
of these variables converge rapidly, and 8 rounds of iterations
are needed at most. The values of these parameters are set to
1#=0.03, A\1=0.09, and A\2=0.1 in our experiments.

C. Experimental Results on OTB2013

OTB2013 is a tracking benchmark [4] with 51 videos,
where different difficulties encountered in visual tracking are
contained. Our tracker is compared with 10 popular tracking
methods, including Struck [35], KCF [3], FST [38], TGPR
[39], two related methods (DSSM [37] and ODDL [17]),
two deep learning trackers (CNN-SVM [40], HDT [42]), and
our original version (LNLT) [23] is also included in the
comparisons. We apply two measurements including distance
precision (DP) and overlap precision (OP) by one-pass evalu-
ation to evaluate the tracking performance. More details about
measurements refer to [4].

Overall Estimation: The tracking results of our tracker are
compared with those of different popular tracking approaches,
and Fig. 3 shows the precision plots and success plots. We
collect the center location errors on all sequences of all
those tracking methods, and regard the performance scores
at 20 pixels as the ranking criterion. The legend of precision
plots shows the performance scores. We compute the areas
under curves in the success plots as the performance scores
of overlap rate. Visual tracking methods based on sparse
representation are DSSM and ODDL among these trackers.
In precision plots, Struck obtains the best score except for a
few other popular tracking methods, which does good work
on these image sequences. However, these trackers have no
consideration on the embedding manifold spatial structure.
Besides, dictionary learning is crucial for tracking methods,
for ODDL obtains comparable tracking performance on this
benchmark. The proposed tracking approach performs well
on the benchmark and even better than the newly proposed
works such as KCF and TGPR. The location error performance
score is 0.840, and the overlap performance score is 0.598.
In addition, all performance scores of the mentioned trackers
are listed in the first two rows of Table I. It verifies the
effectiveness of the proposed joint learning algorithm. Those
deep learning [57] based trackers (such as CNN-SVM and
HDT) generally learn their classifiers with a large number of
training samples from different image datasets. These methods
are easy to obtain appearance models with more discriminative
power than that in other method, while our method only trains
the proposed model with samples from several frames. In
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THE PERFORMANCE SCORES FOR THE POPULAR TRACKERS ON OTB2013.

TABLE 1

I

[ HDT | DSSM] Struck | FST | CNN-SVM | ODDL | KCF| TGPR | WDL | LNLT | Ours_|
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Fig. 6. Experiments comparison between our tracker and the one using holistic template only.

spite of this, our tracker still performs comparable results with
CNN-SVM and HDT, and even better than them according to
the overlap evaluation in Fig. 3.

Attributes-based Estimation: Different attributes encoun-
tered during tracking are annotated for these videos in the
benchmark. Eleven attributes, such as background clutter-
s, deformation, fast motion, illumination variation, in-plane
rotation, motion blur, occlusion, out-of-plane rotation, low
resolution, out-of-view and scale variation, are designed based
on different challenging situations. The performance scores of
different tracking methods estimated on this attributes to prove
the effectiveness of them. As shown in Fig. 7, the success plots
of all tracking algorithms under these challenges are presented
the precision plots. The proposed tracking method performs
well on most of these factors.

Analysis of Dictionary Learning: Our tracker is also
compared with ourself without dictionary learning (denoted
as WDL) to further prove the validation of discriminative

dictionary learning. The parameter setting is consistent with
the proposed tracking method. The performance scores of
WDL are shown in Table I. The distance precision and overlap
precision of this method are 0.689 and 0.493 respectively,
which are inferior to the scores of the proposed tracking ap-
proach without target re-detection, which are 0.737 and 0.508
respectively. It is observed that the performance of the tracking
method with discriminative dictionary learning performs better
than the version without discriminative dictionary learning.

Re-detector Comparison: We compare our tracking per-
formances using the introduced re-detection method and the
random fern re-detector used in [27], respectively. As shown
in Fig. 4, the DP value of our tracking algorithm on OTB2013
is 84.0% which is also better than the one using random
fern classifier (81.0%). Compared with our original tracker
(LNLT) [23], the introduced re-detection method improves
the DP performance about 10 percent, while the random fern
re-detector promotes about 8 percent. Thus, these two re-
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detection methods both improve the final performance.

Effectiveness of Block Classifiers: We have also tested our
tracker with only holistic templates. As shown in Fig. 6, our
method with both holistic and block templates achieves better
performance than the one with only holistic target templates.
The DP score of our method is higher than that with only
holistic templates about 10 percent and the OP score is higher
than that about 12 percent. Thus, the block classifiers improve
the final tracking performance.

We further test our tracking approach on a more chal-
lenging benchmark, the visual object tracking challenge 2015
(VOT2015) [31]. The performance of our tracker is compared
with IVT [44], KCF2 [3], L1APG [13], MDNet [45], MIL
[46], MatFlow [48], STC [50], TGPR [39], zhang (see A.4 in
[31]) reported in this benchmark. In these experiments, each
tracker is initialized with the ground truth bounding box, and it
is also initialized by a perturbed bounding box centered around
the ground truth bounding box randomly. The estimation
toolkit 2 reports the final tracking results including accuracy
and robustness. The accuracy measures the bounding box
overlap ratio with ground truth, and the robustness assesses the
number of failures which indicate when the overlap measure
equals zero. As is shown in Fig. 5, we compare our tracking
method with 16 popular tracking approaches in VOT2015
by the expected overlap curves, scores and AR plots of all

Zhttp://www.votchallenge.net/vot2015/

these trackers. Our method performs better than these popular
trackers on this more challenging dataset.

D. More Experiments and Visual Comparisons

Experiments with Deep Features. We have also applied
the deep feature to our method. We extract convolutional
feature from ResNet [57] for each particle including holistic
and block templates. The pertained ResNet model “imagenet-
resnet-50-dag” is used as deep features. Under the particle
filter tracking framework, the computational complexity is
related to the particle numbers. Two video clips including
‘Basketball’ and ‘Bolt’ are randomly tested to verify the
effectiveness of deep feature. As shown in Fig. 8, deep feature
improves the tracking performance. However, the average
tracking speed of the deep feature version is 1200s per frame,
while our original tracking speed is about 3s per frame. Our
method is much faster than the one with deep feature.

We further show a part of the tracking results obtained
by the proposed tracking approach and other trackers in Fig.
9. In the ‘Car4’, ‘CarDark’, and ‘Singerl’ sequences from
OTB2013, the illumination of these targets change drastically.
Benefiting from the discriminative appearance model, the
proposed tracker is robust to illumination changes and can
track these targets all the time. In ‘David3’ and ‘Faceocc2’,
we show the tracking results on the videos where targets
are confronted with heavy global and partial occlusions. For
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example, in ‘David3’ , the pedestrian suffers from global
occlusion when he walks behind a tree (#83). TLD and CXT
fail to track the target even when he is occluded by a lamp
pole (#24). Struck and SCM also fail after the pedestrian walks
away from the tree (#141). Only our tracker and TGPR could
track the pedestrian in the whole sequence successfully. The
appearances of some targets change caused by scale variation
such as ‘Singerl’.

V. CONCLUSIONS

Based on the theory of globally linear approximations to
nonlinear learning, a principled method has been presented
to learn sparse codes, discriminative dictionary and nonlinear
classifier jointly for visual tracking. We then introduce an
optimization algorithm to calculate the discriminative dictio-
nary, sparse codes and classifier iteratively. We develop a
visual tracking method under the particle filter framework, and
adopt an online updating scheme to adapt to target appearance
changes. To further improve the tracking performance, the
target re-detection strategy is introduced. Experiments on
challenging video clips demonstrate the superior performance
of the proposed method in comparison to popular trackers. In
the future, we will attempt to extend our method to multiple
target tracking with multi-task spare learning [56].

APPENDIX A
DERIVATIONS OF SUB-PROBLEM B
The approximated objective function can be written as
u+n
min ; (Ix: = Devi* + pllc; © ai?)
n+un+u
AT = yIP 42 30 e — oy P By,

i=1 j=1
m
s.t. Zai =1, i=1,---,n,n+1,--- ,n+u
J=1

where c; represents the distance vector composed by i-th
sample and all the dictionary items with its j-th elements

c; = [x; — dj].
Let
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n n+u
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Let the derivation be zero, and we denote
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APPENDIX B
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By substituting G and S in above equation, the original
objective is equivalent to minimizing
min tr(D'DG) — 2tr(DTS).

The minimization problem has a closed-form solution by
setting the derivative of above equation to zero. Finally, we
get the final solution

D=SG .
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