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We demonstrate the application of a biased Monte Carlo method for the optimization of protein
sequences. The concept of configurational-biased Monte Carlo has been used, but applied to
sequence/composition rather than coordinates. Sequences of two-dimensional lattice proteins were
optimized with the new approach and results compared with conventional Monte Carlo and a
self-consistent mean-field~SCMF! method. Biased Monte Carlo~MC! was far more efficient than
conventional MC, especially on more complex systems and with faster cooling rates. Biased MC did
not converge as quickly as SCMF, but often found better sequences. ©2000 American Institute of
Physics.@S0021-9606~00!51030-7#

I. INTRODUCTION

If the amino acid sequence of a protein is written down,
there is a very good chance a molecular biologist can pro-
duce it in useful quantities. Unfortunately, the ability to de-
sign a ‘‘better’’ amino acid sequence lags behind the experi-
mental capability to produce it.1 It remains remarkably
difficult to find an approximation to an ideal protein se-
quence and it is only recently that there have been examples
of large-scale protein redesign where one takes a given struc-
ture and attempts to find a sequence that will be more stable.2

The practical applications are clear. It would often be useful
to take a native protein and change the amino acid sequence
to make it more heat stable or perhaps change it in part so as
to accommodate some chemical modification.

There are two distinct aspects to the sequence design
problem. First, there is the issue of how to best represent and
calculate the compatibility of sequence and structure.3 This
requires a scoring function which may typically be based on
physical principles,4 knowledge-based approaches,5 or a spe-
cifically designed function.6 The second aspect is the search
problem and is the subject of this study. Given some score or
energy function, how can the optimum sequence be found?

The number of possible sequences grows very rapidly
with protein size (20N), but only a small number of these
will be compatible with the structure of interest. The choice
of search algorithm will depend on the computer time avail-
able and the type of answer desired. Sequence optimization
is normally considered a discrete problem and this suggests
certain optimization methods such as Monte Carlo~MC!4,7,8

or genetic algorithms.5,9 From the brute force point of view,
a pruning algorithm known as the dead end elimination prun-
ing algorithm10 has also been used to design a small protein.2

Recently, in an effort to try and avoid problems associated
with large energy barriers and rugged search spaces, mean-
field approaches have been receiving some interest.11 This
may be seen as an approach which by-passes the discrete
nature of the problem~sites have partial amino acid charac-
ter! and may also be promising for protein sequence
optimization.12–15

MC has several attractive properties in principle, with
practical disadvantages. With infinite computer time and
slow cooling ~simulated annealing! it will find the lowest
energy sequence. It also has the desirable property that at
finite temperature, it does not offer just one solution, but an
ensemble of solutions with a known~Boltzmann! distribu-
tion. Since computer time is finite, it would be desirable to
improve the sampling ability of the method while retaining
its advantages.

When this problem is encountered in other fields, one
approach is to introduce a bias in the selection of trial MC
moves whose influence can be corrected by a more elaborate
acceptance criterion~Rosenbluth! so as to maintain detailed
balance and a Boltzmann distribution.16 In this work, we
introduce such a scheme for protein sequence optimization.
By analogy with configuration-biased Monte Carlo~BMC!,17

the amino acid composition can be changed for several sites,
guided by the local energy surface, and followed by applica-
tion of the Rosenbluth acceptance criterion. BMC has been
used previously in sequence design studies to efficiently gen-
erate decoy structures,18 but not to actually optimize se-
quences.

The method has been tested on a very simple two-
dimensional lattice model system which could be a protein or
polymer. Calculations were run on systems of varying size
and complexity~number of monomer types!. For compari-
son, we have also implemented an SCMF method and con-
ventional MC.a!Electronic mail: Andrew.Torda@anu.edu.au

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 6 8 AUGUST 2000

24890021-9606/2000/113(6)/2489/8/$17.00 © 2000 American Institute of Physics

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.56.106.27 On: Thu, 15 Oct 2015 05:26:31



II. MATERIALS AND METHODS

A. The model

Compact proteins are represented as a self-avoiding
walk of monomers on a fully occupied square, two-
dimensional lattice. The sequence consists of the set of
amino acids$s i% where i is the position of the amino acid
along the length of the chain. Each structure consists of a set
of positions$r i%, where eachr i is assigned to the monomer
s i . The positions$r i% are defined so that the distance be-
tween consecutive monomers is one unit of the lattice and
that no more than one monomer can exist at any one site.
The structures surveyed were of lengthN516, 36, and 64
monomers. For each length, 20 compact structures were gen-
erated randomly on 434, 636, and 838 lattices, respec-
tively ~shown in additional material19!. Each structure within
each set of 20 structures was unique and not related to any
other within that set by rotational or translational symmetry.

The most common protein lattice representation may be
the HP model,20–22where each monomer is either hydropho-
bic ~H! or polar ~P!. Initial calculations suggested that a
slightly more complicated model would better highlight the
differences between methods. For this reason, 8 or 20 types
of amino acids were used and monomers interacted with
empty lattice sites. For convenience, this could be labeled a
solvation, burial, or contact term, but since we are concerned
with search methods, the physical interpretation is not rel-
evant.

The energy~score! was given by

Esequence5(
i

N

(
j . i

N

Es i ,s j

contactD~r i ,r j !1(
i

N

Es i ,d i

contact-number,

~1!

whereEs i ,d j

contactwas the energy of contact between amino acid

typess i and s j . The switching functionD(r i ,r j )51 if r i

andr j were adjacent in the structure, buti andj not adjacent
in sequence, and 0 otherwise.Es i ,d i

contact-number is similar to a

burial term used in many scoring functions.23,24 d i is an in-
dex set to 0~buried! if a site had zero or one empty adjacent
lattice sites and set to 1~exposed! otherwise.s i andd i were
then used as indices to extract an energyEs i ,d i

contact-number from

the interaction matrix.
Given n amino acid/monomer types, alln2Es i ,s j

contact

12nEs i ,d i

contact-number interaction parameters were taken from a

Gaussian distribution with an arbitrary mean and standard
deviation of 0 and 1, respectively. This has the interesting
property of giving asymmetric interactions (Es i ,s j

contact

ÞEs j ,s i

contact), but has been proposed as a model for random

protein sequences25 and apparently mimics real protein inter-
action statistics.26

B. Optimization schemes

1. Biased Monte Carlo (BMC)

The BMC scheme used was based on configuration-
biased Monte Carlo,17 but using monomer type as the vari-
able rather than configuration. A set ofM random sites$ l %

was selected for replacement, where the optimum value ofM
is system dependent and empirically determined. For themth
site, l m , the Boltzmann weight of each amino acid type is
given by

Bl m ,s l m
5e2(El m ,s lm

/kT), ~2!

wheres l m
refers to the residue type being placed at sitel m .

The energyE is calculated for the replaced residue in the
field of the remaining sequence, including the previously se-
lected amino acids~i.e., amino acids in the trial positionsl 1

to l m-1). The Boltzmann constantk was set to 1 for all cal-
culations. At positionl m , the probability of each amino acid
type s l m

is then calculated from

Pl m ,s l m
5

Bl m ,s l m

(q51
n Bl m ,q

. ~3!

At each site, an amino acid was chosen randomly, but
according to the probabilityPl m ,s l m

so as to introduce a bias

to moves more likely to be accepted.
Therefore, the probability of generation of the trial se-

quence segment is given by

P5 )
m51

M

Pl m ,s l m
. ~4!

The selection criterion, which corrects for the bias intro-
duced in the sampling of sequences, compares the Rosen-
bluth weights of the trial and the original sequence. The
Rosenbluth weight is given by

W5 )
m51

M
1

n (
q51

n

Bl m ,q . ~5!

The criterion to be met for the acceptance of the newly
generated sequence is

j<
Wtrial

Woriginal
, ~6!

wherej is a random number distributed uniformly between 0
and 1.

2. Self-consistent mean field

The energyEi ,s i
of an amino acid of types i at sequence

position i in the weighted average field of all amino acids at
all other positions in the structure is given by

Ei ,s i
5 (

s j 51

n

(
j Þ i

N

Es i ,s j

contactD~r i ,r j !Pj ,s j

old 1Es i ,d i

contact-number
~7!

where Pj ,s j

old is the probability of the amino acid types j

occupying the positionj from the calculation prior to the
current calculation. The Boltzmann weight of an amino acid
type s i at positioni is then given by

Bi ,s i
5e2(Ei ,s i

/T). ~8!

The probabilityPi ,s i

new of the amino acid types i occupying

the positioni in the structure is then given by
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Pi ,s i

new5
Bi ,s i

(q51
n Bi ,q

. ~9!

The probability matrixPnew calculated from the previous
matrix then gives the probability of occupation of each type
of amino acid at each site in the protein. In the first step, the
values for the probability matrix are taken randomly from
a uniform distribution and then normalized so that the
probabilities of each amino acid occurring at a given site
sum to 1.

In order to suppress oscillations from the SCMF proce-
dure, the new probability matrixPnew has a weighted contri-
bution from the previous probability matrixPold so that the
new matrixPcorrect

new is given by

Pcorrect
new 5lPold1~12l!Pnew. ~10!

l was set to a literature value27 of 0.5, but also to 0.1 in
some calculations as described in Sec. III.

3. Annealing schedule

For both MC/simulated annealing and SCMF calcula-
tions, the system was cooled by an exponential scheme
where the temperatureT at time t is given by

T~ t !5T0e2(t/c), ~11!

whereT0 is the temperature att50 andc is a constant dic-
tating the rate of cooling. Timet was taken as the processor
time ~proportional to the number of energy function evalua-
tions! to enable direct comparison between the MC, BMC,
and SCMF minimization algorithms.

The initial temperature was always set toT051000 so
that all sequences would be thermally accessible as the prob-
abilities of least and most likely are within a few percent of
each other. The cooling rates were labeled fast (c50.05),
medium (c50.1), and slow (c51.0). All minimization runs
were terminated atT51026. Since the difference in energy
between the lowest states is of the order of 1021 energy
units, this means that the calculations were stopped well after
the system was effectively frozen.

For each structure, 20 independent minimization runs
were conducted from a random starting sequence and the
average and standard deviation of the energy over these runs
was calculated every 0.01 time unit.

C. Sequence entropies

Sequence entropies were calculated only on example 16-
mer structures using constant temperature runs for both MC
~step size of 1! and SCMF. In these calculationsT50.2,
which was approximately the temperature at which the slow-
est optimization runs just converged. In MC, sufficient steps
were taken to sample;106 sequences and probabilities sim-
ply taken from the observed distributions. For the SCMF
algorithm, the calculation was conducted as described previ-
ously ~see Sec. II B 2! except that the temperature was held
constant until the probability matrix converged. The conver-
gence condition is given by

(
i

(
s i

~Pi ,s i

new2Pi ,s i

old !2/Nn<1029, ~12!

wherePi ,s i

new and Pi ,s i

old were the new and old probability ma-

trices, N the number of monomer, andn the number of
monomer types as above.

Given the probabilitiesPi ,s i
of each amino acid types i

at positioni, the sequence entropySi at positioni is defined
by

Si5 (
s i51

n

Pi ,s i
ln Pi ,s i

. ~13!

III. RESULTS

The first calculations compared convergence properties
of BMC, SCMF, and classic MC.

A. Dependence of MC and BMC algorithm on step
size

BMC involves changing a whole segment of sequence as
part of one trial move, but the size of the segment is not
known in advance. Tests were performed with one, two,
four, six, eight, or ten sites changed per trial. The results are
shown in Fig. 1~a! for the largest system studied~64-mer!
with the medium cooling rate. For the 20 compact structures
tested, changing more than four sites per trial did not im-
prove convergence speed, so this was used in subsequent
calculations. Runs on smaller systems or different cooling
rates showed the same trends. This result is almost certainly
a reflection of the lattice model and the fact that monomers
can never have more than three interacting neighbors.

It could be that conventional~unbiased! Monte Carlo
would also benefit from moves that consist of more than one
simultaneous change. This was tested by using moves that
consisted of randomly changing more than one site before
calculating the conventional Metropolis acceptance criterion.
Figure 1~b! suggests that there is no advantage in changing
more than one site at a time. Apparently, without any bias,
any benefit from larger step sizes is outweighed by an in-
creased rejection rate. All subsequent applications of the MC
algorithm changed only one amino acid per optimization
step.

B. Comparison of optimization methods

Sequence optimizations were conducted on structures of
16, 36, and 64 monomers using 20 maximally compact struc-
tures in each case and with three different cooling rates. In
Fig. 2 ~and subsequent Figs. 3, 5, 6, and 7!, panels~a!, ~b!,
and~c! represent the results of fast, medium, and slow cool-
ing, respectively.

Considering the smallest structures~16-mer!, Fig. 2
shows the average of minimizations with 20 different struc-
tures. For each rate of cooling, the SCMF algorithm clearly
converged to a low energy faster than either the MC or BMC
methods, but there was little difference between the MC and
BMC methods. All methods converged to sequences with
almost identical energies by the time the temperature cooled
to T51026 for each rate of cooling~data not shown!. Re-
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peating the calculations for all of the 16-mer structures listed
in Ref. 19 gave similar results~data not shown!. Repeating
the calculations for 36-mers suggested a difference between
MC and BMC methods, but it was within statistical error.

For the larger 64-mer structures, the optimization speeds
were, however, quite distinct. The calculations were done for
all the structures listed in Ref. 19, but for clarity, Fig. 3
shows the results from the first structure as it was typical of
all cases. The SCMF method minimizes fastest for all three
cooling rates. For MC and BMC, there is a more interesting
result. If cooling is slow enough@Fig. 3~c!#, there is little
difference. With faster cooling@Fig. 3~a!#, BMC is much
more efficient.

The example plots do not give any indication as to the
statistical significance of the differences in convergence
rates. One quick measure is to consider the standard devia-
tions among the different calculations. Figure 4 shows the
same runs as Fig. 2~b! ~16-mer! and Fig. 3~b! ~64-mer!, but
with error bars indicating the standard deviations among the
energies. For the 16-mer, any difference between MC and
BMC is not significant. For the larger 64-mer with medium
or fast cooling rates, the difference between methods is much
larger than the spread of results.

Based on the results so far, it would appear that SCMF is
simply superior to Monte Carlo of any kind. While it is true
that the convergence rate is much faster, there is a severe
problem. SCMF does not always find solutions of energy as
low as the Monte Carlo methods. This is shown in Fig. 5,
where final energies are plotted for each 64-mer for the three

FIG. 1. Dependence of Monte Carlo optimization on move size. Trial moves
consisted of one, two, four, or ten simultaneous residue changes as labeled
for ~a! BMC, and ~b! MC. The structure was the first 64-mer listed in
additional material and the cooling rate used isc50.1.

FIG. 2. Optimization of 16-mer. The average of 20 independent sequence
energy minimizations is shown for MC, BMC, and SCMF for cooling rates
c5 ~a! 0.05,~b! 0.1, and~c! 1. The structure used is the first 16-mer listed
in additional material~Ref. 19!.
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rates of cooling and for the three different methods. Unless
the cooling rate is very slow@Fig. 5~c!#, classic MC does not
find a good solution. For the middle cooling rate@Fig. 5~b!#,
BMC usually finds a better solution than SCMF, but the
differences may not be significant compared with the stan-
dard deviations. For the slowest cooling rate@Fig. 5~c!#,
BMC always finds a significantly better result than SCMF.
This can be interpreted in terms of final sequences. The mean

interaction energy parameter was 0.7 units, which is of simi-
lar size to the difference in final energies between the two
best methods. Although it is only an average value, it could
be said that there is typically one better interaction in the
BMC optimized sequences. While the BMC runs with the
slowest cooling produce the best results, there is no proof
that the results are the optimal solutions or that the system
was in equilibrium in all calculations. Most importantly, dif-
ferent runs do not converge to the same solution. Apparently
the cooling rate is in a regime where it will produce results
that are better than SCMF, but still not perfect.

C. Dependence on number of amino acids and SCMF
damping factor

All the calculations described above used eight amino
acid types, but it is interesting to see if the results change
when the system is made much more complex. For this rea-
son, a few calculations were done with 20 amino acid/
monomer types. This increases the size of the search space,
so it becomes difficult for any method to approach the global
minimum.

Figure 6 shows the results for three cooling rates for the
first 64-mer structure listed in additional19 material with each
method. For the slowest cooling rates@Fig. 6~c!#, the results

FIG. 3. Optimization of 64-mer. The average of 20 independent sequence
energy minimizations is shown for MC, BMC, and SCMF for cooling rates
c5 ~a! 0.05,~b! 0.1, and~c! 1. The structure used is the first 64-mer listed
in additional material~Ref. 19!.

FIG. 4. Energy scatter during optimization.~a! corresponds to Fig. 2~b! and
~b! to Fig. 3~b! except both have standard deviations of energies given as
error bars.
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are not surprising, suggesting that SCMF finds a solution
most rapidly. For the faster cooling rates@Fig. 6~a!#, how-
ever, there is a different result. For these cooling speeds,
BMC reaches a very good solution faster than SCMF. This
was not seen in the previous calculations with eight mono-
mer types.

These results, however, show more interesting behavior

for SCMF. There are parts of the calculation where the en-
ergy value seems to plateau. This led to the question as to
whether the parameters were best adapted to the system. In
fact, SCMF does contain one very arbitrary parameter, thel
~damping! value given in Eq.~10!. It is essential thatl be
positive and nonzero to prevent oscillations. The value ofl
50.5, however, was simply taken from the literature. The
calculations with 20 amino acid types were then repeated,
but after settingl50.1; the results are shown in Fig. 7. With
this value ofl, SCMF generally appears to be faster con-

FIG. 5. Final energies for 64-mer structures with eight monomer types. The
average and standard deviations of final energies are shown for each struc-
ture. Structure number corresponds to the order structures are listed in ad-
ditional material. Cooling rates arec5 ~a! 0.05, ~b! 0.1 and~c! 1.

FIG. 6. Sequence optimization of 64-mer with 20 amino acid types. Labels
and symbols as per Fig. 2.
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verging and no oscillations in the probability matrix were
observed. These results highlight the fact that parameter set-
tings can often be set arbitrarily and will affect any compari-
son of methods.

IV. DISCUSSION

Classic Monte Carlo has a history of application to se-
quence optimization,4,7 but there appears to be no reason to
use it. The biased Monte Carlo method introduced here is
consistently and reproducibly more efficient while maintain-

ing the same statistical mechanical properties. This may not
be surprising given the success of analogous methods such as
configuration-biased Monte Carlo.17 Furthermore, it appears
that this is simply due to the difference in the sampling/
acceptance method. Even when a classic Monte Carlo step
involved changing more than one residue at a time, MC was
not a competitive approach.

Beyond this clear difference, the method of choice de-
pends on the system and the goals. If a sampling of se-
quences with a known~Boltzmann! distribution is wanted,
BMC may be the only useful method. It does, however, usu-
ally perform more slowly than SCMF. SCMF, however, has
the distinct disadvantage that the answers, which are quickly
produced, are not always correct~it is not guaranteed to con-
verge to the correct sequence!. Of course, in this study, se-
quences were optimized with relatively rapid cooling sched-
ules and it remains possible that SCMF would find the
correct sequence for these systems given a slower cooling
regime. In practice, applying SCMF with rapid cooling may
not be a problem since the quality of the results was never far
from BMC and the error due to lack of convergence may be
smaller than the error due to force field/score function ap-
proximations. SCMF also has a less obvious disadvantage.
Any fast implementation relies on a large matrix of stored
interactions. Withn monomer types and structures of length
N, this grows withn2N2.

The work here has not dwelt on the calculation of se-
quence entropies or sequence information content@Eq. ~13!#.
Its physical meaning is debatable, but it may be seen as a
measure of how much a particular site is allowed to vary. It
is readily accessible from the distributions in an equilibrium
BMC simulation or the probability matrix of an SCMF cal-
culation. For the calculation of sequence entropy, similar
considerations apply as to a minimization. This measure is a
property of the neighborhood being sampled. If it is the
wrong neighborhood, the results may suffer correspondingly.
Figure 8 gives examples of sequence entropies derived from
MC and SCMF simulations. Each diagram shows a structure
and at each site, the bars show the sequence entropy calcu-
lated by each method. In Fig. 8~a!, there is good agreement,
but Fig. 8~b! shows an example where SCMF converged to a
worse sequence. In this case, the larger/smaller bars show
where it has over-underestimated the sequence entropy.

After using a simple model system, the question of trans-
ferability to more realistic systems is always posed. Obvi-
ously, no specific parameters would be transferable to a more
complicated protein-like system with continuous~nonlattice!
coordinates, 20 amino acid types, and more intricate interac-
tion functions. It is also clear that this kind of approach is
best suited to coarse-grained, low-resolution~nonatomistic!
models. Possibly the most drastic change with a more real-
istic protein would be the number of sites changed per trial
move. In a real protein, each site has many more neighbors
and longer range interactions. Aside from specific param-
eters, some trends would certainly be transferable to a more
realistic protein model. The advantages of biased Monte
Carlo moves over simple MC are clear. The potential disad-
vantages of SCMF are also clear. The possibility of conver-
gence to an incorrect minimum will only increase as systems

FIG. 7. Effect ofl on SCMF optimization. Labels and symbols as per Fig.
6, but withl50.1.
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are made more complicated. Furthermore, results on even a
simple system highlight the importance of parameters such
as thel ~damping! parameter in SCMF and this would also
have to be tuned to any real system.

Finally, the work here has compared methods that have
well-understood distribution properties and has not touched

on methods that are purely optimization tools such as the
dead end elimination algorithm and genetic algorithm. If en-
semble properties are not of interest, these may be appropri-
ate devices.
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