
Total time derivatives of operators in elementary quantum mechanics
Mark Andrews 
 
Citation: American Journal of Physics 71, 326 (2003); doi: 10.1119/1.1531579 
View online: http://dx.doi.org/10.1119/1.1531579 
View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/71/4?ver=pdfcov 
Published by the American Association of Physics Teachers 
 
Articles you may be interested in 
Madelung representation of damped parametric quantum oscillator and exactly solvable Schrödinger–Burgers
equations 
J. Math. Phys. 51, 122108 (2010); 10.1063/1.3524505 
 
Energy conservation in quantum mechanics 
Am. J. Phys. 72, 580 (2004); 10.1119/1.1648326 
 
Addendum to: “The one-dimensional harmonic oscillator in the presence of a dipole-like interaction” [Am. J. Phys.
71 (3), 247–249 (2003)] 
Am. J. Phys. 71, 956 (2003); 10.1119/1.1592514 
 
Fractals and quantum mechanics 
Chaos 10, 780 (2000); 10.1063/1.1050284 
 
Invariant operators for quadratic Hamiltonians 
Am. J. Phys. 67, 336 (1999); 10.1119/1.19259 
 
 

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

130.56.106.27 On: Thu, 17 Dec 2015 01:23:53

http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=Mark+Andrews&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.1531579
http://scitation.aip.org/content/aapt/journal/ajp/71/4?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/51/12/10.1063/1.3524505?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/51/12/10.1063/1.3524505?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/72/5/10.1119/1.1648326?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/71/9/10.1119/1.1592514?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/71/9/10.1119/1.1592514?ver=pdfcov
http://scitation.aip.org/content/aip/journal/chaos/10/4/10.1063/1.1050284?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/67/4/10.1119/1.19259?ver=pdfcov


Total time derivatives of operators in elementary quantum mechanics
Mark Andrews
Department of Physics, The Faculties, Australian National University, ACT 0200, Australia

~Received 25 April 2002; accepted 30 October 2002!

The use of a total time derivative of operators, that depends on the time evolution of the wave
function as well as on any intrinsic time dependence in the operators, simplifies the formal
development of quantum mechanics and allows its development to more closely follow the
corresponding development of classical mechanics. We illustrate the use of the total time derivative
for a free particle, the linear potential, the harmonic oscillator, and the repulsive inverse square
potential. In these cases, operators whose total time derivative is zero can be found and yield general
properties of wave packets and several useful time-dependent solutions of Schro¨dinger’s equation,
including the propagator. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

The expectation value of any operatorÂ changes with
time according to1

d

dt
^Â&5 K ]

]t
ÂL 1

i

\
^@Ĥ,Â#&. ~1.1!

The first term on the right-hand side comes from the intrinsic
time dependence inÂ, and the second from the way the
states change with time. It has occasionally been suggested2

that thetotal time derivativeof any operatorÂ be defined as

d

dt
Â[ Ȧ̂ª

]

]t
Â1

i

\
@Ĥ,Â#. ~1.2!

~The notationXªY indicates thatX is defined to beY.! Then
it is always true that

d

dt
^Â&5 K d

dt
ÂL , ~1.3!

and it can easily be seen that the definition implies that

d

dt
~ÂB̂!5 Ȧ̂B̂1ÂḂ̂ ~1.4!

and

d

dt
~ f ~ t !Â!5 ḟ Â1 f Ȧ̂, ~1.5!

which implies that the total derivative obeys the same alge-
braic rules as ordinary derivatives.

Because this total time derivative is not defined to be a
rate of change of anything, some may prefer to use a differ-
ent symbol for it, for example,Dt instead ofd/dt, but the
latter notation will be used here. The context determines its
meaning; when applied to an operator, its meaning is as in
Eq. ~1.2!. Its use eliminates much of the tedious calculation
of commutators in conventional treatments and allows calcu-
lations that closely follow those of classical mechanics. For
many systems it also enables simple methods to be used to
obtain the evolution of some wave packets and the propaga-
tor. It brings many of the advantages gained by moving to
Heisenberg’s picture of the time-evolution while actually re-
maining in the Schro¨dinger picture.

After showing how the formal development of quantum
mechanics and its application to some systems can be sim-
plified, we will find ‘‘invariant operators,’’ that is, operators
whose total time derivative is zero. This property is the ap-
propriate generalization of ‘‘constant of the motion’’ to op-
erators that depend on the time. Invariant operators are used
here to find general properties and specific examples of the
evolution of wave packets and to find the energy eigenvalues
of the harmonic oscillator.

II. FORMAL DEVELOPMENT FOR SYSTEMS
DESCRIBED BY A POTENTIAL

We first consider Hamiltonians of the form

Ĥ5
1

2m
p̂21V~ r̂ !. ~2.1!

In this case all the operators are independent of the time, so
calculating the total time derivative requires only the com-
mutator with the Hamiltonian. A calculation of these com-
mutators gives

mr̂̇5p̂ and ṗ̂52¹V̂, ~2.2!

as in classical mechanics.
Ehrenfest’s theorem for the time evolution of expectation

values follows immediately from Eq.~1.3!:

m
d

dt
^ r̂ &5^p̂& and

d

dt
^p̂&52^¹V̂&. ~2.3!

The virial theorem also follows easily using Eq.~1.4! from
the expectation value of

d

dt
~ r̂ "p̂!5 r̂̇ "p̂1 r̂ "ṗ̂5

1

m
p̂22 r̂ "¹V̂. ~2.4!

The time derivative of the angular momentum is

d

dt
L̂5

d

dt
~ r̂3p̂!5 r̂̇3p̂1 r̂3 ṗ̂52 r̂3¹V̂, ~2.5!

because p̂3p̂50. For a central potential, ¹V

5r 21 (dV/dr)r and thereforeL̇50, andL is a constant of
the motion.
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These calculations are not only simpler, because the com-
mutators were used only for the equations of motion~2.2!,
but easier for students because the calculations closely fol-
low the corresponding classical calculations.

Next consider how the spread of the position and momen-
tum change with time for a free wave packet in one dimen-
sion. There is no force, somẋ̂5 p̂ and ṗ̂50. To obtain the
spread in position, we use the operator (x̂2^x̂&)2. Unlike the
above operators, this operator is time dependent. Up to now
ȧ̂ has just been a convenient shorthand fori\21@Ĥ,â#, but
now the intrinsic time dependence will also play a role. We
use the operator equations of motion to find

m
d

dt
~ x̂2^x̂&!25~ x̂2^x̂&!~ p̂2^ p̂&!1~ p̂2^ p̂&!~ x̂2^ x̂&!,

~2.6!

m2
d2

dt2
~ x̂2^x̂&!252~ p̂2^ p̂&!2. ~2.7!

If we define (Dx)2
ª^( x̂2^x̂&)2& and (Dp)2

ª^( p̂2^ p̂&)2&,
thenDp is constant and

m2
d2

dt2
~Dx!252~Dp!2. ~2.8!

@Note that d2^Â&/dt25d(d^Â&/dt)/dt5d(^dÂ/dt&)/dt

5^d2Â/dt2&, whered2Â/dt2 means the result of the action

in Eq. ~1.2! applied twice toÂ.] Therefore,Dx must have
the form

Dx5Dx0A11~ t2t0!2/t2, ~2.9!

where t5mDx0 /Dp. Hence, for a free wave packet, the
spreadDx goes through a minimumDx0 and approaches a
linear increase with time at large distances from the mini-
mum.

A similar, but slightly lengthier, calculation can be carried
out for the harmonic oscillator to show the centroid of every
wave packet not only follows the classical oscillation, but its
width oscillates at twice the frequency. For a linear potential
~motion under gravity or a uniform electric field! the width
behaves exactly as for the free case.

A comparison of these calculations with the conventional
methods3 will show how much simpler this approach is.

III. INVARIANT OPERATORS

An operator is ‘‘invariant’’ if its total time derivative is
zero. This definition includes the usual ‘‘constant of the mo-
tion,’’ that is, a time-independent operator that commutes
with the Hamiltonian. It will be seen below that time-
dependent invariant operators are especially interesting. It is
easy to see that ifâ andb̂ are invariant then so areâ1b̂, âb̂,

the adjointsâ† and b̂†, andlâ if l is a constant.
If an invariant operatorâ is applied to any solutionc of

Schrödinger’s equation

Ĥc5 i\
]c

]t
, ~3.1!

it will produce another solution, because

S Ĥ2 i\
]

]t D âc5S Ĥâ2 i\
]â

]t
2âĤ Dc52 i\ ȧ̂c ~3.2!

and ȧ̂50. Invariant operators will be used in this way to
produce different solutions of Schro¨dinger’s equation for
several systems.

Now consider whether eigenstates of an invariant operator
will satisfy Eq. ~3.1!. The operators~in Schrödinger’s repre-
sentation! involve differentiation by position only, so if
f(r ,t) is a solution ofâf5af, thenf (t)f(r ,t) also will be
a solution. Thus it is not true that every eigenfunction will
satisfy Schro¨dinger’s equation. However, iff(r ,t) is an
eigenfunction at a particular timet0 , then there will be a
unique solutionc(r ,t) of Schrödinger’s equation~for all t!
such thatc(r ,t0)5f(r ,t0) and, from Eq.~3.2!, (â2a)c
will satisfy Schrödinger’s equation and therefore will remain
zero. That is,c(r ,t) will be both an eigenfunction ofâ ~with
constant eigenvaluea! and a solution of Schro¨dinger’s equa-
tion. Thus, if there is only one eigenfunction ofâ, it must
satisfy Eq.~3.1!, apart from a time-dependent factor. If there
are several linearly independent eigenfunctions ofâ, then
linear combinations with time-dependent coefficients may be
required to satisfy Eq.~3.1!.

Invariant operators will now be found for some simple
one-dimensional systems.

IV. A FREE PARTICLE

The operator equations of motion aremẋ̂5 p̂ and ṗ̂50.
Classically,mx2pt is constant and similarlymx̂2 p̂t is in-
variant. A constant can be added tot, even a complex one;
but a real constant just changes the origin of time, and we
take

âªmx̂2 p̂~ t2 i t! ~t real!. ~4.1!

To find an eigenstateca of â with eigenvaluea, we first find
the real valuesx̄0 , p̄0 such thata5mx̄01 i p̄0t. Then a
5mx̄2 p̄(t2 i t) for all time, wherex̄, p̄ are the solutions of
the classical equations of motion with initial valuesx̄0 , p̄0 .
Next define

âaªâ2a5m~ x̂2 x̄!2~ p̂2 p̄!~ t2 i t!. ~4.2!

Now ca will have âaca50 and thereforê âa&50, ^x̂&
5 x̄, and^ p̂&5 p̄ for an eigenstate ofâ. Furthermore

âa2âa
†52i t~ p̂2 p̄!,

~4.3!1
2~ âa1âa

† !5m~ x̂2 x̄!2~ p̂2 p̄!t,

and therefore

2m~ x̂2 x̄!5âa~12 i t /t!1âa
†~11 i t /t!. ~4.4!

Hence, using@ âa ,âa
† #5@ â,â†#52\mt, we have

4t2^~ p̂2 p̄!2&5^âaâa
†&5^âa

† âa12\mt&52\mt, ~4.5!

4m2^~ x̂2 x̄!2&5^âaâa
†&~11t2/t2!52\mt~11t2/t2!.

~4.6!

Thus, for any eigenstate ofâ,

Dp5A\m/2t and Dx5A\t/2mA11t2/t2, ~4.7!

consistent with Eq.~2.9!. Note that the minimum value of the
uncertainty productDxDp is 1

2\; so at its minimum this
eigenfunction is a minimum uncertainty wave packet.

It is easy to find the form of the wave functionca(x,t).
From âaca50, we have
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]c

]x
5

i

\ F p̄1
m~x2 x̄!

t2 i t Gc, ~4.8!

and hence

ca~x,t !5exp
i

\ Fq~ t !1 p̄x1
m~x2 x̄!2

2~ t2 i t! G , ~4.9!

whereq(t) can be determined by substitutingca(x,t) into
Schrödinger’s equation. This substitution gives

q̇5 1
2i\/~ t2 i t!2Ē, ~4.10!

whereĒª 1
2p̄

2/m, and therefore

ca~x,t !5
1

At2 i t
ei ~ p̄x2Ēt !/\ expS im~x2 x̄!2

2\~ t2 i t! D . ~4.11!

Equation~4.11! represents the moving Gaussian wave func-
tion found in most texts, but here its expectation values
(^ x̂&,^ p̂&,Dx,Dp) are known without any further integration.

The eigenfunctionca(x,t), with p̄50 and t50, must
~when appropriately normalized! be the propagator for the
free particle. The propagator is just the evolution of thed
function, and the eigenfunction~with eigenvaluex̄) of x̂ is
d(x2 x̄). Therefore, the eigenfunction ofx̂2 p̂t/m must ap-
proach d(x2 x̄) as t→0. Thus the propagatorK(x,x8,t),
such that

E
2`

`

K~x,x8,t !c~x8,t0!dx85c~x,t01t ! ~4.12!

for any wave functionc(x,t), can differ only by a constant
factor from

C~x,x8,t !ª
1

At
expS im

2\t
~x2x8! D . ~4.13!

To determine the factor, use the integral

E
2`

`

C~x,x8,t1!C~x8,x9,t2!dx8

5A2p i\/mC~x,x9,t11t2!, ~4.14!

which is easily calculated by direct integration. Because the
propagator must propagate itself, it must beK(x,x8,t)
5C(x,x8,t)/A2p i\/m.

Other invariants: For the free particle,p̂ is also invariant
~but independent oft!. Thus the spatial derivative of any
solution of the free Schro¨dinger equation is also a solution,
as are all higher derivatives as follows directly from Schro¨-
dinger’s equation. A similar property holds for indefinite spa-
tial integrals and time derivatives and integrals of any solu-
tion of the free Schro¨dinger equation. The spatial derivatives
of the propagator are the evolutions of the derivatives of the
d function, and can be related4 to Hermite polynomials using

~d/dj!ne2x2
5~21!nHn~j!e2x2

. ~4.15!

The integral of thed function is a step function and the
integral of the propagator can be expressed in terms of the
Fresnel integrals

C~y!1 iS~y!5E
0

y

exp~ 1
2ipz2!dz. ~4.16!

ThusC(y)1 iS(y) satisfies the free Schro¨dinger equation if
y5Am/p\tx, and fª

1
21 1

2(12 i )@C(y)1 iS(y)# is the
time evolution of the step function and also satisfiesâp̂w
50. @If xª p̂f, then âx50, so thatx5 f (t)c, wherec is
the propagator, and therefore f(x,t)5( i /\) f (t)
3*xc(x8,t)dx8.] Figure 1 showsuf2u. Many other invari-
ants can be made from powers, sums, and products ofâ and
p̂. These can be used to create a vast variety of solutions of
the free Schro¨dinger equation, but they will not be pursued
further here.

V. UNIFORM BUT TIME-VARYING FORCE

The Hamiltonian is

Ĥ5
1

2m
p̂22E~ t !x̂, ~5.1!

which could represent a charged particle in a time-varying
electric field. The operator equations of motion aremẋ̂5 p̂,

ṗ̂5E(t) which differ from the free case only in thatṗ̂ varies
with time, but is still independent ofx̂ and p̂. Thus, all we
need to do is change the invariantâ by adding a suitable
time-varying multiple of the unit operator:

âªmx̂2 p̂~ t2 i t!1s~ t !. ~5.2!

Then ȧ̂52E(t)(t2 i t)1ṡ, so that

s~ t !5E
0

t

~ t82 i t!E~ t8!dt8. ~5.3!

To generalize this invariant to refer to an arbitrary trajec-
tory, we define

âaªm~ x̂2 x̄!2~ p̂2 p̄!~ t2 i t!5â2a, ~5.4!

wherex̄, p̄ satisfy the classical equations of motionmẋ̄5 p̄

and ṗ̄5E(t) to ensure thatâa is invariant. Herea5mx̄
2 p̄(t2 i t)1s(t) and the real and imaginary parts of the
constanta give the classical motion

p̄5 p̄01E
0

t

E~ t8!dt8,

~5.5!
mx̄5mx̄01 p̄0t1E

0

t

~ t2t8!E~ t8!dt8.

Fig. 1. The free evolution of the step function. The graph showsuf2u where
f(x) is initially the step function. The shape is valid for all timest.0; all
that changes is the scale on thex-axis. The values ofx shown are fort
5m/p\.
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As before^âa&50 gives^ p̂&5 p̄ and^x̂&5 x̄. Thus^x̂&, ^ p̂&
exactly follow the classical trajectory. The widthsDx, Dp
are not affected bys(t) and therefore evolve exactly as they
would if no force were acting. The wave function has the
same form as for the free particle@see Eq.~4.11!#, except that
x̄, p̄ now follow a trajectory that depends on the fieldE(t).

VI. THE SIMPLE HARMONIC OSCILLATOR

The Hamiltonian is

Ĥ5
1

2m
p̂21

1

2
mv2 x̂2, ~6.1!

and the operator equations of motion aremẋ̂5 p̂, ṗ̂

52mv2x̂. From these equations, we haveẋ̂1 i ṗ̂/mv
52 iv( x̂1 i p̂/mv), and therefore

âªeivt~ x̂1 i p̂/mv!/L ~6.2!

is invariant. The divisorLªA2\/(mv) is inserted to make
@ â,â†#51, as usual.

Energy eigenstates: Using this invariant operator allows a
slightly different approach to finding the energy eigenstates.
When multiplied by exp(2iEt/\), an eigenstate with energy
E satisfies Schro¨dinger’s equation and therefore ifâ is ap-
plied to such an energy eigenstate, it either gives zero or a
solution of Schro¨dinger’s equation with its only time depen-
dence in the factor exp@2i(E2\v)t/\#, that is, an eigenstate
with E lower by \v. Similarly â†, which is also invariant,
raises the energy by\v. Because the energy eigenvalues
must be positive, if we repeatedly applyâ to any energy
eigenstate, we must eventually reach a ground statec0 such
that âc050. Thenâ†âc050, and

Ĥ5\v~ â†â1 1
2!, ~6.3!

so the lowest energy eigenvalue isE0
. 5 1

2\v, and every ei-
genvalue must be of the form (n1 1

2)\v with n50,1,2,... .
The spatial dependence of the wave functionc0(x,t) is
found from âc050, which gives

c0~x,t !5e2 ivt/2 exp~2x2/L2!. ~6.4!

Applying â† repeatedly toc0(x,t) gives the excited states, in
the usual way.

Coherent states:To deal with an eigenstate ofâ with ei-
genvaluea, we first find the classical motionx̄, p̄ that has
real initial valuesx̄0 , p̄0 such thata5( x̄01 i p̄0 /mv)/L.
Then eivt( x̄1 i p̄/mv)/L will be constant~and equal toa!
for all time. Now we define

âaªâ2a5eivt@~ x̂2 x̄!1 i ~ p̂2 p̄!/mv#/L. ~6.5!

Then the solutions ofâac50 will have ^âa&50, and there-
fore ^ x̂&5 x̄ and ^ p̂&5 p̄; that is, the wave packet evolves
with its centroid atx̄, p̄ following a sinusoidal oscillation. To
find the spread in position, we use

x̂2 x̄5 1
2L~ âae2 ivt1âa

†eivt!, ~6.6!

and obtain

^~ x̂2 x̄!2&5 1
4L

2^âaâa
†&. ~6.7!

Then using@ âa ,âa
† #5@ â,â†#51, we getDx5 1

2L. This re-
sult is the same as for the ground state energy eigenstate,

which corresponds tox̄5 p̄50. Similarly,Dp5\/L, so these
states always have the minimum uncertainty product.

The differential equationâac50 yields

c5expF i

\
~q~ t !1 p̄x!2~x2 x̄!2/L2G , ~6.8!

and q(t) can be found by inserting Eq.~6.8! into Schröd-
inger’s equation. The result is

q̇52
1

2
\v2

1

2m
p̄21

1

2
mv2x̄2, ~6.9!

so that

q52 1
2\vt2 1

2x̄p̄. ~6.10!

These states, which follow the classical oscillation without
change of width, are known as coherent states. The ‘‘raising
operator’’ âa

† can be applied to these states to obtain dis-
placed excited states that are essentially Hermite–Gaussians
that also follow a classical oscillation.4

Squeezed states: The operatorâ in Eq. ~6.2! is not the
most general invariant that is linear inx̂ and p̂. The form

b̂5mâ1vâ† ~6.11!

will be invariant if m andn are constants. To set the scale of
b̂, we also take@ b̂,b̂†#51, which implies thatm* m2n* n
51. In terms ofx̂ and p̂,

\b̂5j~ t ! p̂2p~ t !x̂, ~6.12!

where

j5 1
2iL ~meivt2ne2 ivt!,p52\~meivt1ne2 ivt!/L.

~6.13!

Note thatj andp have the dimensions of length and momen-
tum, respectively, and satisfy the classical equations of mo-
tion, mj̇5p, ṗ52mv2j, but can be complex. The phase

assigned tob̂ is not important, so we takem to be real. Then
adding a constant phaseq to n is equivalent to shifting the
time by 1

2q/v @because ma(t)1neiqa†(t)5meivta(0)

1ne2 i (vt2q)a†(0)5e1/2iqb̂(t2 1
2q/v)]. Thus, we can also

taken to be real. Instead of the two parametersm andn, it is
sometimes convenient to use the ‘‘squeezing factor’’sªm
1n. Then m22n251 leads tom2n51/s and s>1. The
coherent states correspond tom51, n50, or s51.

Next we introduce

\b̂aªj~ t !~ p̂2 p̄!2p~ t !~ x̂2 x̄!, ~6.14!

wherex̄, p̄ is a classical oscillation and again the solution of

b̂ac50 ~and therefore any eigenstate ofb̂) will follow the
classical motion in the sense that^ x̂&5 x̄ and ^ p̂&5 p̄. From
Eq. ~6.14! and using Im(j*p)51

2\, we find

x̂2 x̄5 i ~j* b̂a2jb̂a
† !, p̂2 p̄5 i ~p* b̂a2pb̂a

† !, ~6.15!

and therefore, similarly to the derivation of Eq.~6.7!, Dx
5uju and Dp5upu. From Eq. ~6.13!, at t50, Dx5 1

2L(m
2n)5 1

2L/s, andDp5\s/L. Then 2Dx/L andLDp/\ oscil-
late between the two extremes ofs and 1/s, each taking its
maximum value when the other takes its minimum. The dif-
ferential equation corresponding tob̂ac50 is easily solved
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@similarly to Eq.~6.8!# and the squeezed states of the oscil-
lator are also moving Gaussians.

The propagator requiresj50 to ensure that the eigenfunc-

tions of b̂ will be d(x2 x̄) and j will be zero att50 if s

5`. ~A factor of s must be removed fromb̂a to keep it finite
in this limit.!

VII. REPULSIVE INVERSE SQUARE POTENTIAL

The Hamiltonian is

Ĥ5
1

2m
p̂21c/x2. ~7.1!

Only the repulsive case (c.0) will be considered because
the attractive case is too singular and requires special
treatment.5 Such a potential arises, withc5\2,(,11)/2m,
for the radial part of the wave function~multiplied by r! for
a spherically symmetric system in three dimensions, and the
spherical Bessel functions are familiar as the radial part of
the energy eigenfunctions for the free particle. We will treat
the general case of arbitraryc.0 in one dimension. The
repulsive hill is impenetrable so there can be no tunneling
through the origin. Therefore, onlyx.0 need be considered,
and we expect the wave function to vanish asx→0.

The operator equations of motion aremẋ̂5 p̂, ṗ̂52c/x3.
Therefore

d

dt
~ x̂p̂!5

d

dt
~ p̂x̂!5

1

m
p̂212c/x252Ĥ ~7.2!

and

âª 1
2~ x̂p̂1 p̂x̂!22tĤ ~7.3!

is invariant.~We have used the symmetrized form to keep it
Hermitean.! Furthermore,

1

2
m

d

dt
~ x̂2!5

1

2
~ x̂p̂1 p̂x̂!5â12tĤ, ~7.4!

so that

b̂ª 1
2mx̂22tâ2t2Ĥ5 1

2mx̂22 1
2~ x̂p̂1 p̂x̂!1t2Ĥ ~7.5!

is also invariant. It follows that̂x2& is quadratic int for any
state.

Also the eigenfunction ofb̂, with arbitrary eigenvalueb,
will give the propagator for the system because ast→0, it
must approach an eigenfunction ofx̂2, that is, d(x2

22b/m) apart from a factor.~The variablex2 is just as good
asx for this system because we need only consider positive
values ofx.!

The solution of the differential equationb̂w5bw is

w5exp~ i 1
2mx2/\t !AxJn~A2mb/\2x/t !, ~7.6!

wheren2
ª

1
412cm/\2. A discussion of how to find this so-

lution is given in the Appendix. The positive value ofn gives
the regular solution; the negative value also gives a solution,
but it is singular atx50. As before, this eigenfunction re-
quires a time-dependent factor to also satisfy Schro¨dinger’s
equation. The factor can be found to be exp(ib/\t)/t by in-
sertingw in Eq. ~7.6! into Schrödinger’s equation. Thus

c5exp@ i ~b1 1
2mx2!/\t#~Ax/t !Jn~A2mb/\2x/t ! ~7.7!

is the eigenfunction ofb̂ that also evolves as a wave func-
tion.

As before, a more general wave function will be obtained
by replacingt by t2 i t. The propagator results from the limit
t→0, while for sufficiently larget, the wave function corre-
sponds to a localized ‘‘particle’’ coming toward the origin,
being slowed to a standstill by the repulsive force and then
retreating, as in the classical case. The details of this calcu-
lation, and the exact normalization and calculation of^x2&,
^Ĥ&, and^â&, will be pursued in the Appendix.

VIII. RELATION TO THE HEISENBERG PICTURE

For the operatorÂ, the equivalent in the Heisenberg

picture6 is ÂHªT̂†ÂT̂, whereT̂ is the time-evolution opera-

tor such thatc(t)5T̂c(0) and i\dT̂/dt5ĤT̂. It follows
that

ih
dÂH

dt
5@ÂH ,ĤH#1 ihT̂†

]Â

]t
T̂. ~8.1!

That is,

dÂ

dt
5T̂

dÂH

dt
T̂†. ~8.2!

~Note that whered/dt is applied to an operator in Heisen-
berg’s picture, it does not have the special meaning it has
when applied to an operator in Schro¨dinger’s picture!.

Thus the total time derivative of any operator is the Schro¨-
dinger picture version of the time derivative of its Heisen-
berg picture version, which implies that the operator equa-
tions of motion will have the same form in the Heisenberg
picture as they have in Schro¨dinger picture using the total
time derivative.

The formal development in Sec. II and the determination
and application of the invariant operators could therefore be
presented in the Heisenberg picture, but the advantage of
using the total time derivative in an elementary course is that
the Heisenberg picture requires much more mathematical
machinery. One must deal with exponentials of operators
and, for Hamiltonians that depend on the time, the determi-
nation of the explicit form of the transformation is often
quite difficult.

IX. DISCUSSION

Time-dependent invariant operators that are linear inx̂ and
p̂ can be found4 for any Hamiltonian that is quadratic~or
linear! in x̂ and p̂, even with arbitrary time dependence in
the Hamiltonian. These systems include, for example, har-
monic oscillators that are driven~a time-varying linear term
in H! or have varying frequency, as well as the cases treated
previously. The case ofV5c/x2 shows that the method is not
restricted to quadratic Hamiltonians. However, I have not
found a useful invariant for the important case ofV5c/x.
An indication that this potential might be more difficult can
be seen from the corresponding classical system. For all clas-
sical one-dimensional potentials, an integral gives the time as
a function ofx and the energy. In the previous examples, the
time ~or some function of the time! can be expressed in a
form that is linear in the velocity and the energy and then the
eigenfunctions of the corresponding quantum operator can be
found easily. But forV5c/x, the classical result is highly
non-linear in the energy.
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In summary, the use of the total derivative of operators~in
Schrödinger’s picture of the time evolution! simplifies the
formal development of quantum mechanics and its applica-
tion to particular systems. This approach eliminates many of
the tedious calculations of commutators that are required in
the usual treatment and allows a development that more
closely follows the familiar classical treatment. Furthermore,
it makes it easy to use the simple invariant operators that can
be found for many of the systems often studied in elementary
quantum mechanics to find simple wave packets that illus-
trate the dynamics of the system and to find the propagator.

APPENDIX: ANALYSIS OF THE WAVE FUNCTION
FOR THE POTENTIAL VÄcÕx2

The equationb̂w5bw is, in Schrödinger’s representation,
an ordinary differential equation~ODE! in x with t as a pa-
rameter. Its solution, apart from a possible time-dependent
factor, will satisfy Schro¨dinger’s equation, which is a partial
differential equation~PDE!. But b̂w5bw is not easy to solve
even though it is only an ODE.@The solution was given in
Eq. ~7.7!.# Equation-solving programs such as Maple or
Mathematica will probably not solve it because they will not

attempt to factor out the required factor ofAx exp(12imx2/\t)
to reduce the equation to Bessel’s form.

Surprisingly, one way to obtain the solution is to convert
the equation to a PDE using the requirement that the solution
also satisfy Schro¨dinger’s equation. First writeb̂ª 1

2mx̂2

2t( x̂p̂2 1
2i\)1t2Ĥ, and then insertp̂52 i\]/]x and Ĥ

5 i\]/]t to give the PDE,

tx
]w

]x
1t2

]w

]t
1F1

2
t1

i

\ S b2
1

2
mx2D Gw50. ~A1!

Such first-order, linear PDEs can be solved easily by stan-
dard methods~or using equation-solving programs!, and it is
easy to verify directly thatw5exp@i(b11

2mx2)/(\t)#f(x/t)/Ax
satisfies Eq.~A1!, if f is an arbitrary function ofx/t. If we
substitute this form ofw into Schrödinger’s equation, we see
that f (u), with u5x/t, must satisfy the ODE

u2f 92u f81~c11c2u2! f 50, ~A2!

wherec15 3
422cm/\2 andc252mb/\2. It is not difficult to

recognize that Eq.~A2! can be converted to Bessel’s equa-
tion by dividing f (u) by u. Thus

w5exp@ i ~b1 1
2mx2!/~\t !#uJn~A2mb/\2u!/Ax, ~A3!

wheren2512c15 1
412cm/\2. The form of Eq.~A3! agrees

with Eq. ~7.7!.
Expectation values: As before,t can be complex and the

function

c5expF i

\

b1 1
2mx2

t2 i t
G Ax

t2 i t
JnSA2mb

\2

x

t2 i t D ~A4!

is the eigenfunction, with eigenvalueb, of the invariant op-
erator

B̂ª 1
2mx̂22 1

2~ t2 i t!~ x̂p̂1 p̂x̂!1~ t2 i t!2Ĥ, ~A5!

andc satisfies the time-dependent Schro¨dinger equation for
the potentialV5c/x2.

To calculate expectation values, we first normalize the
wave function using

c* c5expF2
2

\

t~b r1
1
2 mx2!1b i t

t21t2 G
3

x

t21t2 Jn~a* x!Jn~ax!, ~A6!

where aªA2mb/\2/(t2 i t) and b5b r1 ib i . Now apply
the integral

E
0

`

exp~2 1
2lx2!Jn~ax!Jn~bx!x dx

5l21 exp@2 1
2l

21~a21b2!#I n~ab/l! ~A7!

@for Re(n).21] given by Weber in 1868.7 We substituteb
5a* andl52tm/\(t21t2), and obtain

E
0

`

c* c dx5
\

2tm
expS 2

b r

\t D I nS ubu
\t D . ~A8!

To determinê x̂2& we differentiate Weber’s integral in Eq.
~A7! with respect tol to obtain8

E
0

`

exp~2 1
2lx2!Jn~ax!Jn~bx!x3 dx

52l22e2w$~n112w!I n~z!1zIn11~z!%, ~A9!

where wª

1
2(a

21b2)/l and zªab/l. Equation ~A9! im-
plies that

1

2
m^x̂2&5b r1

t

t
b i1~ t21t2!

\

2t Fn111z
I n11~z!

I n~z!
2

b r

\tG ,
~A10!

andz5ubu/\t. But Eq. ~A5! can be written as

B̂ª 1
2mx̂22~ t2 i t!â2~ t21t2!Ĥ, ~A11!

and therefore, taking the real and imaginary parts of the ex-
pectation value ofB̂, b i5t^â&, and

1
2m^x̂2&5b r1~ t/t!b i1~ t21t2!^Ĥ&. ~A12!

If we compare this form with Eq.~A10!, we see that

^Ĥ&5
\

2t Fn111z
I n11~z!

I n~z!
2

b r

\tG . ~A13!

The propagator: A more symmetrical form for the eigen-
function of b̂, with eigenvalue1

2mx82, is

C~x,x8,t !5
Axx8

t
expF im

2\t
~x21x82!GJnS mxx8

\t D . ~A14!

As shown in Sec. V, this eigenfunction must be the propaga-
tor apart from a factor independent ofx and t that will now
be determined. The eigenfunction satisfies Schro¨dinger’s
equation and therefore should propagate itself. If we use the
integral in Eq.~A7!, we can evaluate the relevant integral to
give

E
0

`

C~x,x8,t1!C~x8,x9,t2!dx8

5 i n11~\/m!C~x,x9,t11t2!, ~A15!

where the relationI n( iz)5 i nJn(z) @for Im(z).0] has been
used. Hence the propagatorK, such that
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E
0

`

K~x,x8,t !c~x8,t0!dx85c~x,t01t ! ~A16!

for any wave functionc(x,t), is

K~x,x8,t !5 i 2~n11!~m/\!C~x,x8,t !. ~A17!

The single-hump regime: The argumentuªax of the
Bessel function inc has uu2u5zlx2. But c* c contains a
factor exp(21

2lx2). Hence if ubu!\t, that isz!1, then ucu
will become small~because of the exponential factor! before
the argument of the Bessel function leaves the region where

uuu!1, and therefore8 Jn(u)'( 1
2u)n/G(n11). In this regime

the spatial form ofc is xn11/2exp@ 1
2im\21x2/(t2it)#, and ucu

has just a single hump. If we substituteI n(z)'( 1
2z)n/G(n

11) into Eq.~A13!, we obtain^Ĥ&' 1
2\t21(n11), and

1
2m^x̂2&'^Ĥ&~ t21t2!. ~A18!

Equation~A18! can be compared with the classical motion
1
2mx25Et21 1

2mc/E. ~A19!

The first termEt2 corresponds as closely as possible to the

quantum term̂ Ĥ&t2, while the second term, specifying the

closest approach to the origin, is^Ĥ&t2' 1
4\

2(n11)2/^Ĥ& in
the quantum case. This quantity is to be compared with
1
2mc/E noting that 1

2mc5 1
4\

2(n22 1
4). The closest approach

in the quantum case has a lower limit for12m^x̂2& of
9

16\
2/^Ĥ& for a very weak potential (c'0) and is always

greater than in the classical case with the same energy. This
behavior is due to the existence of a completely repulsive
barrier atx50 ~becausec is always zero there!, and there-
fore c is squeezed against this barrier, whereas the classical
particle will approach the origin arbitrarily closely for suffi-
ciently small c. In this regime, the wave packet motion is
similar to that of the classical particle coming toward the
origin, slowing to a standstill, and then retracing its inward
trajectory; however, there are quantum effects that are great-
est near the closest approach to the origin.

Figure 2 shows two examples of the evolution of this
wave function; one hasz!1 and therefore has a single hump
while the other hasz@1 and is shown at a time when it has
two maxima.
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Fig. 2. Two wave packets for the potentialV5c/x2. In each case the wave
function is as in Eq.~A4!; uc2u is plotted withm5\5c51 and eigenvalue

b5
1
2. In case~a!, t510 and the wave function is shown fort50 ~solid!

and for t520 ~dashed!. This case is in the ‘‘single-hump’’ regime. In case
~b!, t50.05 and the wave function is shown fort50 ~solid line! and for t
52 ~dashed line!. For t50, the maximum value is about 2.5. This case is in
the regime where the Bessel function gives rise to multiple maxima.
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