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Shear stress relaxation in liquids
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We show that at high densities, as the system size decreases, liquid becomes able to permanently
sustain increasing internal shear stress after a constant deformation, although the other characteristic
liquid properties, such as the pair distribution function and diffusion coefficient do not change under
strain. The system size necessary for observation of this effect increases with the decrease in
temperature, and it is stronger in pair potentials with steeper repulsive part. We relate this result to
the size of the “cooperatively rearranging regions” of the Adam—Gibbs theory of glass transition.

© 2004 American Institute of Physic§DOI: 10.1063/1.1735628

I. INTRODUCTION grow and relaxations require coordinated participation of a
larger number of atoms, thus increasing the relaxation time.
Solids behave elastically under small deformations: theyrhe Adam—Gibbs theory relates the growth in relaxation
store the deformation energy and sustain shear stress propa@ifme to the decrease in configurational entropy associated
tional to strain. This ability is the consequence of the vanishwith supercooling on account of the growth of cooperatively
ing diffusion resulting in the impossibility of further rear- rearranging regions.
rangement of atoms, i.e., motion other than oscillatory  The size of the region thus provides a definition for a
around the shifted'strained”) lattice sites. The crystal shear divergent length scale which would accompany the glass
modulus is therefore primarily a potential energy moddius. transition. However, the theory does not say anything about
Aliquid can store deformation energy and sustain sheathe nature of this region and provides no prescription for
stress only for a time shorter than its shear stress relaxatiogalculating its size. Since the appearance of the Adam—Gibbs
time, before all energy is dissipated to the environment angheory, there has been a search for a plausible physical entity
all shear stress relaxes. The mechanism of decay of shegiat could represent the “cooperatively rearranging region.”
modulus is in the nonvanishing liquid diffusion coefficient, In most work they were speculated to be “domains” of dis-
which makes possible the complete particle rearrangement ifinct order (e.g., icosahedral clusters or “amorphoriy”
a flow with viscous dissipation of heat. The relaxation time isseparated by distinct “domain walls” and characterized by
the average time needed for rearrangement into a configurgtower (arrestedl dynamics compared to the rest of the sys-
tion without shear stress. The liquid does not lose its hightem. The search for these objects in experiments and molecu-
frequency shear rigidity, but since atomic rearrangements b&ar simulations gave contradictory results.
come possible, the modulus ceases to be simply described in  Later, Mountaifi pointed out that the existence of struc-
potential energy terms and takes on an entropic character. tyrally distinct domains is not necessary in order to define a
Atomic rearrangement that is at the bottom of the relax-growing length scale in supercooled liquids. He examined
ation process occurs not only during time, but also ovethe dispersion relation for the transverse momentum current.
space. This idea is the basis of the Adam—Gibbs theory ofh solids, a finite shear modulus at zero frequency exists
glass transitioR.In order that shear stress can relax in time,because long wavelength transverse elastic waves can propa-
it must be possible to have a configuration that incorporategate for a long time without damping. In a liquid, long wave-
the boundary strain irreversibly into the structure of the majengths are damped fast, but waves of sufficiently short
terial in such a way that the stresses disappear while th@avelengths and high frequencies can propagate for consid-
strains remain. As the system is rearranged into this configuerable distances before decaying. Even simple monatomic
ration, the shear modulus gradually falls to zero. However, afiquids can therefore support propagating elastic transverse
high density and low temperature, the number of possiblgnodes with atomic-scale wavelengths. From the dispersion
configurations in a small subsystem with prescribed boundrelation, it is possible to estimate the largest wavelength for
ary conditions becomes scarce. One needs progressiveliie transverse mode that a liquid can support. This wave-
larger groupings of atoms in order to obtain configurationgength increases with the decrease in temperature and mea-
without stress irrespective of the conditions at the boundsures the size of cooperatively rearranging regions, existing
aries. This leads to the definition of a “cooperatively rear-not only in supercooled liquids, but also at elevated tempera-
ranging region” as a group of atoms that can rearrange itselfyres.
into different configurations independent of its environment.  The implication in all the above work is that in liquids
As the liquid is cooled, cooperatively rearranging regionsthere is a well-defined correlation length of configurational
origin, over which shear stress can relax. This correlation
9present address: School of Chemistry F11, The University of Sydneyl€Ngth decreases with the increase in temperature and is re-
NSW 2006, Australia. Electronic mail: janka@chem.usyd.edu.au sponsible for the change in relaxation time. The direct con-
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sequence of this image is that in a liquid system of the sizenotion that fixes the kinetic energy of the system to a con-
smaller than the size of the cooperatively rearranging regiorstant before, during, and after shear. In the equilibrium and
under strain, shear stress does not relax. We test this idea liye final strained case it is

performing molecular dynamics simulations of successively
smaller liquid systems with strain imposed by periodic — a= > JE F,—/ > pJ.Z, (4
boundary conditions. J=1N I=1N
and with the Sllod equations it is equal to
Il. SIMULATION METHOD a:;;m (pj'Fj_')’pxipyi)/ j;m pZ. (5)
The system studied consistshf=256 atoms interacting ’ ' o
with the Lennard—Jone&.J) pair potential, Thel presence of a Fhermostat does not qualitatively affect the
1 5 equilibrium properties, and can change the value of the en-
ij(rij) =4[ (olri)) "= (alri))"], ) semble averages to the order oN1With respect to constant

wherer;; is the distance between the partidlesdj, o isthe ~ energy simulations. It becomes important in the shear flow
exclusion diameter, and is the depth of the potential well. Simulations with strong strain raté.It would also strongly

In this article we use the LJ reduced system of units, wirere affect the shear stress relaxation process when shear stops,
is the unit of distanceg is the unit of energy, and mass is because it instantly starts to interpret the remnant velocity
measured in units of particle mass. The potential cutoff warofile as heat and causes it to decay faster. However, our
applied at the distance of 2r55This interaction gives rise to interest is not in the decay process but in the final relaxed
the phase diagram containing three phases and thestates, all of which contain no net particle flux and are there-
coexistencé. fore equivalent to equilibrium.

In all cases, the density of the system was1.0. De- The equations of motion were solved using the fifth or-
pending on temperature, at this density the system exists ii€r Gear predictor—corrector integrator with the timestep of
the liquid and in the solid phase. We studied the influence of.001 time units. The system was first equilibrated at the
strain on the liquid properties for several temperatures abov@esired temperature for 1Gime steps, after which it was
and below the freezing temperatureTof=1.46% sheared with strain rates ranging from 0.001 to(ibOorder

In order to avoid confinement effects, the simulation wasto check for the strain rate dependence of resultgil the
done in periodic boundary conditions, which in equilibrium chosen strain was reached, and finally equilibrated for the
consist of periodic replicas of the simulation celfhe  additional 16 timesteps for shear stress relaxation to take
strained system was represented by periodic cells shifted bylace.

a distance\ in the x direction. The dimensionless strairis Viscosity was evaluated in equilibrium and strained
the ratio of the shift with respect to the sidelengthof the  states from the Green—Kubo integral. The isotropic nature of
simulation cell,e =A/L. a liquid permits the use of a more general fétnof the

The “shifted” periodic boundary conditionéor a static ~ Green—Kubo expression, where fluctuations in all the ele-
version of the Lees—Edwards “sliding brick” periodic ments of the traceless symmetric stress tensor are taken into

boundarie¥) are identical to a tiling with tilted cells. The account

geometric equivalence and interchangeability of the two rep- V [

resentations is an essential ingredient used in the computer 7= —— 2 IT,5(t)I1,45(0) ) dt (6)
. . . LH kBT 0 \ a,f=XYy,Z

simulation algorithm for constant homogeneous shearflow

and in the formulation of the Ewald sum for sheared systemshereV is the volume of the simulation bokg is the Bolt-

with electrostatic interaction'. zmann constant is the kinetic temperature defined from the
Itis not possible to change instantaneously from an equiequipartition theorem, anid ,; are the Cartesian elements of

librium simulation cell configuration to a strained configura- the symmetric traceless pressure tensor.

tion because of the atom overlap, so we shear the system at a

homogeneous chosen strain rateising the so-called Sllod

algorithm?! until the desired deformation is achieved. Thelll. RESULTS

equations of motion for the positions and momentap;

. . I ) ) A. Temperature dependence
(i=1,..N) in the equilibrium and the final strained state are P P

The rather astonishing simulation results for 256 LJ at-
oms at three temperature$=2.0 (pure liquid statg T
whereF; is the total force on the particlearising from the =1.5 (liquid very close to freezing and T=1.2 (super-
potential[Eqg. (1)]. During shearing the Sllod equations are cooled liquid are shown in Fig. 1 for the periodic boundary

. . conditions with no strain, and fog=0.25 ande=0.375.

fi=pi/m+enryi, pi=Fi—&ypyi—api, G Without any strain, the viscosity integral in E&) converges
wheree, is the unit vector in the direction andy the strain  to a finite value that, as expected, decreases with increase in
rate. temperature. However, in the “strained” periodic boundary

Shear causes viscous heating, and we would like theonditions, even 10000 time units after straining, so that
initial and final state to be at the same temperature. Theraghere was plenty of time for shear stress to relax, viscosity is
fore, we add a Gauss thermostat tesnto the equations of infinite. Part of the shear stress never relaxes. The shear

ri=pi/m, p=F—ap;, 2
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FIG. 3. System size dependence of divergence of viscosity calculated from

FIG. 1. Viscosity calculated from Ed6) for 256 Lennard—Jones atoms at
v d6) fl. (6) for the strained WCA fluid aT=1.2.

three temperatures and three values of constant strain. The divergence 5
viscosity in the “strained” periodic boundary conditions disappears at

higher temperatures. the fluctuations inll,y, as it randomly switches from con-

figurations consistent witle =0.5 ande = —0.5, are larger
than withe=0 and for this reason viscosity, although not

stress autocorrelation function does not converge to zero b@tivergent, is higher in the strained system. The difference in
to finite positive values dependent on strain and decreasingscosities decreases with the increasing temperature.
with increase in temperature. Unrelaxed stress definitely still ~ This result is reproducible in every detail in the sense
exists above freezing. that it does not at all depend on the manner in which the
The unrelaxed stress is distributed betwébry and the strained periodic boundary conditions were generated. Ex-
normal stress differences where the effect is lak§fég. 2.  actly the same distribution of stress tensor elements under
Notice thatlI,, is antisymmetric with respect to strain of 0.5, strain as in Fig. 2 was obtained after relaxation from con-
whereas the diagonal elements of the traceless stress tendigurations created with the whole range of strain rates, and
are symmetric. The reason is that at each instant we cawith configurations strained and “equilibrated” at the high
regard our simulation cell as a “primitive cell” of a different temperature of 2.5, quenched after equilibration to the tem-
strained crystal. First, we note that the “lattice” with the peratures of 1.5 and 1.2 and again equilibrated afterwards.
strain of +¢ is a mirror image(with respect to the/z plane
of a lattice with the strain-e. If a configuration is consistent
with the straing, its mirror image is consistent withs. A In order to test the system-size dependence of this effect,
configuration and its mirror image have the same diagonalve changed from the LJ potential to Weeks—Chandler—
elements andl,, of opposite sign. Next, we observe that the Andersen(WCA) potential}® which is a shorter-range ver-
strain of +¢ is identical to the strain of (1—¢). Therefore, ~sion with the cutoff at the potential energy minimyie., at
the strain ofe=0.5— 6 is the mirror image oft=0.5+4.  the distance of #°0) and shifted by, because at this den-
The strain of 0.5 is a mirror image o6f0.5, so that a con- Sity the Lennard—Jones cutoff left the simulation box. The
figuration and its mirror image are equally probablesat Size-dependence simulations were don&-atl.2, where the
=0.5, just as fore=0, andlIl,, vanishes on average. Inci- effects are the strongest.
dentally, normal stresses also vanish for this strain. However, Decreasing the system size had a huge impact. As shown
in Fig. 3, the divergence of viscosity under strain is very fast
with N=108 while it almost disappears f&df=500 at the

B. System-size dependence

0.06 : ol . , same temperature. The values of the tail of the shear stress
004l P 9 ] autocorrelation function for different strains are shown in
o --°_. o 0. 9 a Fig. 4. The total average unrelaxed stress decreases rapidly
0.02 ,',;f. ,-'O ‘00‘2 Q 1 with the increase in the system size. The tall is always posi-
0 3 o' oé L o é tive (shear stress does not reverse its signd symmetric
" L e g }? @t with respect to strain of 0.5. For different system sizes the
0.02 [ ' & , \6"4 S value of the tail has different strain dependence. In the small-
004 A ! \ 2] est system the largest stress is for the strain of 0.5, and in this
N i \ / case it is purely in the diagonal elemefi®rmal stress dif-
0.06 | a1 | A ey ferenceg for symmetry reasons. As system size is increased,
0.08 L AN L\,’ '_'21 H;;‘) f[his_stres_s disappe_ars first, and we qnly see a small increase
(Ol in viscosity due to increased fluctuationslih,, .
T T VR ey One would expect the huge unrelaxed stress for the

e strain of 0.5 in theN=108 system to be related to a large

FIG. 2. Strain dependence of average values of the elements of the tracele@gferenc.e in StrUCt_Ure and POte_m.ial energy. In fa_Ct: the form
symmetric stress tensor for tie= 256 Lennard—Jones systemTat 1.5. of the pair distribution function is in both casestrained and
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FIG. 4. Strain dependence of the tail of the shear stress autocorrelatiolg . [ .
IG. 6. Mean square displacement for the equilibrium and straired
function for three sizes of the WCA fluid dt=1.2. =0.5) WCA fluidq:tT: 1 |2p quiibriu : (

. o . . tem, there is the same overall number of possible configura-
unstrainegl completely liquidiike, with smooth equidistant tions consistent with ordinary and strained boundary condi-
peaks showing no peak-splitting structure associated Wit'ﬂons and diffusion does not change. However, the
clustering or grystallization. It is exactly the same ,i” two configurations in the strained system are such that they on
syst(ﬁrg_s for distances Ep to half thfe hbox. Ienlgth, with only,yerage contain some shear stress, while the ones in the equi-
small discrepancies in the corners of the simulation#0g. system do not. Again, in accord with the configura-

5)' This ;mall difference is respongble for mmu_te Va”"’,‘t'onstional entropy dependence, the diffusion coefficient increases
in potential energy and hydrostatic pressure with strain Ies&/ith the system size

than 2% at most wittN=108.

A change in viscosity is usually closely related to a
change in diffusion coefficier{the Stokes—Einstein relation-
ship). Shear stress relaxation is through flow, and Iage

infinite) relaxation time intuitively implies low particle mo- small dense system this can be achieved only with atomic
bilit_y_and a low diffusion coefficient. On(_a would therefore arrangements that generate shear stress. This is a conse-
anthpate a reduced mean square dlsplacement n tl“t‘fuence of the fact that in a small dense system with a given
strained system, a_ssoQated W'Fh, its diverging viscosity. Or3:onfiguration at the surface there are not many possibilities
th.e contrf’:\ry, the diffusion coeff|C|ent does no.t cha'nge' at al*or packing the remaining particles in the volume inside the
with strain, even _when the d|vergence_ of V'SCOS_'ty IS theboundaries. If the boundary conditions contain strain, the
most dramatic as in thid =108 system witte=0.5(Fig. 6. 1 ai5rity of arrangements without shear stress are energeti-
This result indicates a relationship between diffusion ancI:ally unfavorable, i.e., contain too much particle overlap. In
configurational entrop$.® There is only one possible con- e vwords, as a cor’nsequence of the decrease in configura-
figuration (“inherent structure’) corresponding to a strained tional entropy(i.e., the number of energetically acceptable
crystal, therefore there is no diffusion. In a small liquid Sys'configuration}; in a small dense system, the nature of the
possible packings and the amount of shear stress contained in
N=108. T=1.2 the system are determined by the configura_ltion a}t the bound-
a5 , ‘ . ’ . ' . . ary. In the language of Goldstetnthe configurations that
“incorporate the boundary strain in such a way that the
] stresses disappear while the strains remain” are scarce com-
o0 - pared to the configurations that incorporate the strained
--------- €=0.5 boundary conditions while retaining some unrelaxed shear
stress.
3 Although the simulations of liquid samples with the pe-
riodic boundary conditions of any kind are artificigduch

M systems do not exist in natyrehey allow us to study how

In our simulation this effect is a consequence of the pe-
riodic boundary conditions reflected in the minimum image
convention, i.e., it is a consequence of the requirement that
the density of atoms atis the same as at+¢Li+Lj. In a

0.5 imposing different boundary conditions on a small sub-
0 L2 ] system affects its properties. Therefore our result has a
physical meaning for bulk liquid systems. In any sufficiently

-0.505~~1' P Ty small subsystem with different conditions at boundaries,
' ' r- ' shear stress will be such as dictated by the boundary condi-

FIG. 5. Pair distribution functions of the equilibrium and strained ( t|on§ and will be correlateq over its characteristic length at,
=0.5) WCA fluid atT=1.2 up to the corners of the simulation box. The @ny Instant, althQUQh the time average of the shear stress in
vertical dotted line represents half the box length. the subsystem will vanish.
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18 rorreee 8:6 - - 1i’l-6 o - 14:6 . IV. CONCLUSION
F —=% A small dense liquid system in periodic boundary condi-
E ey tions subjected to constant strain retains liquid structure and
. 1 o diffusion coefficient, but as in a solid its shear stress does not
‘°E ] relax. Unrelaxed stress is larger for smaller systems. System
= F ] . size needed for complete stress relaxation under strain de-
[ i S . 7 e creases with temperature increase. Just like in anomalous
5 :/,,=~:-'-'-"" [ e ’/ crystg!lizatign of ;mall systems in. periodic bqundary
— (/— / c_ondltlons% the origin of this effe(?t is purely conflgu_ra-
tional, a consequence of the scarcity of possible configura-
tions in a small dense system with some constraint on the
R 3 P P P P~ bogndary conditions. In a small subsy_stem t_he _only configu-
t t t rations that can connect between strained distributions of at-

oms on the boundaries are those that on average contain
some shear stress of configurational origin. In this sense, the
critical system size needed for a rearrangement without any
shear stress in strained periodic boundary conditions is in

fact a measure of the size of the “cooperatively rearranging

C. Dependence on potential region” of the Adam—Gibbs theor.

Since the unrelaxed stress decreases with the increase in N other words, the size of the cooperatively rearranging
temperature, and the overall consequence of raising the terf@9ion is the sizi.e., the box lengthof the simulation cell
perature is the increased “softness” of the interaction potenfor Which shear stress vanishes for all imposed strains. By
tial, we compare the effect for the WCA potential and two 9radually increasing the system silieat constant tempera-

other short-ranged potentials of different softness, but théUre and density, computing the averaged elements of the
same definition of the length and energy scatesand ¢ traceless stress tensor for a number of strains at each system

respectively. The “harder” potential is 14-6 repulsive— size, and plotting the maximum value of unrelaxed shear
attractive: stress as a function of box length, one can in principle esti-
mate the critical box length where shear stress becomes zero
for all strains for a given state point. Although this is a
lengthy and tedious computation that requires long simula-
tion times(especially at high densities and low temperatures
where the size would be largehere is now a definition of a
(8)  correlation length that can be computed in simulations. We
are currently using this method to calculate the temperature
Both have the cutoff at their potential minima, (78y and  and pressure/density dependence of the correlation length in
(413)Y?0, respectively. simple liquids and binary mixtures.

Figure 7 shows the integral of the stress autocorrelation  The results in this article show that cooperative effects in
function in Eq.(6) for the three potentials. The divergence of stress relaxation causing the increase of relaxation time and
viscosity and the unrelaxed shear stress is by far the largesiscosity do not require the existence of domains of different
for the “hardest” potential. This is intuitively acceptable, order, although distinct domains might still appear upon su-
since if the atoms are soft enough, a sufficient kinetic energpercooling and enhance the effect.
fluctuation permits them to “squeeze” past each other and The effect is completely configurational and the same
allows local rearrangements, whereas if they are hard thesverages of the stress tensor elements would be found in a
can rearrange only globally in a cooperative way. Monte Carlo simulation with strained periodic boundary con-

At the same state point with the same system size anditions and minimum image convention. Similar results have
under the same strain, the effect is somewhat stronger in ia fact been obtained in Monte Carlo simulations of strained
Lennard—Jones than in a WCA system, showing that theonfined films, showing finite shear stré&sHowever, in
long-range cohesive forces increase the cooperative effect®ef. 20 the results are enhanced by the rigid restriction of
In contrast, a molten sodium chloride system of 216 ionsvolume and rigid constraints on the boundary distribution of
interacting with the Born—Huggins—Meyer potentiat the  atoms.
density of 1.7 g/crhand at the temperature of 1200 K shows
no strain dependence of viscosity, despit_e the infinite potens -, NOWLEDGMENTS
tial range when calculations are done using the Ewald sum-
mation. However, it is difficult to draw general conclusions ~ The author wishes to thank the National Facility of Aus-
about the influence of the potential range from the propertieyalian Partnership for Advanced Computing for a substantial
of the sodium chloride melt for several reasons: there ar@llocation of computer time for this project.
strong screening effects, the “softness” of the potential de-
pends on pair charges, and only one melting point on thewy goldstein, J. Phys. Cherb1, 3728(1969.
liquid—solid phase diagram is knowf. 2G. Adam and J. H. Gibbs, J. Phys. Chets, 139 (1965.

FIG. 7. Divergence of viscosity calculated from E®) for the strained
potentials of different “hardness” af=1.2.

Qii(ri)) = (7133718 ¢ (alrij) Y~ (alrij)®1+ & (7)
and the “softer” one is 8—6 repulsive—attractive:

(1)) =3(413)* @[ (colr;;)®— (alr )]+ ¢.
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