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This work addresses the question of whether it is possible to define simple pairwise interaction terms
to approximate free energies of proteins or polymers. Rather than ask how reliable a potential of
mean force is, one can ask how reliable it could possibly be. In a two-dimensional, infinite lattice
model system one can calculate exact free energies by exhaustive enumeration. A series of
approximations were fitted to exact results to assess the feasibility and utility of pairwise free energy
terms. Approximating the true free energy with pairwise interactions gives a poor fit with little
transferability between systems of different size. Adding extra artificial terms to the approximation
yields better fits, but does not improve the ability to generalize from one system size to another.
Furthermore, one cannot distinguish folding from nonfolding sequences via the approximated free
energies. Most usefully, the methodology shows how one can assess the utility of various terms in
lattice protein/polymer models. ©2001 American Institute of Physics.@DOI: 10.1063/1.1350575#

I. INTRODUCTION

Nature reflects many-body interactions and ensemble av-
erages, but practical calculations usually rely on pairwise
interactions and cheap approximations. For example, one is
often interested in properties such as protein or polymer sta-
bility or phase behavior. These are related to free energy, but
this is barely accessible, even with much patience and long
simulations. This has led to the use of potentials of mean
force and debates as to how they can be formulated. In this
work, we consider a different problem. Given a model sys-
tem, how good can a potential of mean force possibly be?
Since one never knows if a better approximation can be
found, can one construct machinery to test the approximation
to free energy?

This subject has become particularly topical in protein
modeling where there is an abundance of potentials of mean
force calculated from archived protein structures.1,2 On one
side, these have been interpreted as providing realistic Helm-
holtz free energies.3 On the other side, it has been stated that
the resulting quantities have no bearing on properties such as
stability.4 It has also been noted that accurate free energies
cannot be correctly extracted from collections of protein
structures.5

That debate is centered on the question of whether a
disparate collection of protein structures is a statistical me-

chanical ensemble or, at least an approximation to one. This
work addresses a fundamentally different question. If we are
not limited to a construction based on statistical mechanics,
can any arbitrary pairwise function be fit to reproduce free
energies? In other words, what are the limitations of pairwise
approximations, without entering the debate over the appli-
cability of Boltzmann-based force fields?

This can be addressed by taking a system whose Hamil-
tonian consists of pairwise interactions and seeing whether
the true free energy~a property of the ensemble! can be
meaningfully approximated by a single structure~the ground
state! using an appropriately reparametrized Hamiltonian.
The reparametrization can be done by fitting, rather than as-
suming Boltzmann statistics. For simple functions, regres-
sion methods guarantee a best fit and, by construction, an-
swer the question of just how good a potential of mean force
can be.

This strategy requires a system where one knows the
free energy exactly, but this can be found for simple models
such as a two-dimensional lattice polymer or protein. There,
one can define the Hamiltonian~by stating the potential en-
ergy! and calculate the free energy by exhaustive enumera-
tion ~visiting every possible conformation!. Doing this for
every sequence of a given length provides all the information
necessary for the fitting operation.

Two-dimensional lattice macromolecules may not be of
great practical use, but the machinery can be used to measure
certain properties and test models. For example, potentials of
mean force sometimes show an artifactual size dependence.
When systems are small enough to permit exhaustive enu-
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meration, one can ascertain the extent to which this is a
methodological problem and to what extent it is a fundamen-
tal limitation on the potential of mean force. Perhaps more
interesting is the ability to examine different lattice models
with different levels of sophistication. In the simplest case
one could define the potential energy of a two-dimensional
lattice protein or polymer with a classical hydrophobic-polar
~HP! model.6 This has only three interaction parameters
(eHH , eHP, and ePP) which might be set at~21, 0, 0!,
respectively.6a The first step would be to see if some new set
of (eHH* , eHP* , andePP* ) could be found so as to reproduce the
exact free energies. Next, one could try additional terms. For
example, monomers could interact with empty sites on the
lattice, reminiscent of lattice-solvent models.7 This would
introduce additional solvent interaction parameters (kH* and
kP* ) to be fit simultaneously. There is no rigorous basis for
the additional terms since they do not exist in the original
potential energy, but they are typical of the kinds of elabo-
ration added to simple models. They may even be no more
than pragmatic tools for the approximation of free energies.

One can continue in this vein and add other terms to try to
capture the entropic contributions. For example, one could
base a term on second-nearest neighbors on the lattice. Re-
sults from such calculations are given in the next section.

The calculations below are simplified by considering a
subset of the fitting problem particularly relevant to proteins.
Most protein sequences do not fold to a specific structure and
are not seen in nature. The set of viable ‘‘folding’’ protein
sequences is actually tiny compared to the set of possible
protein sequences.8 As a consequence, a real potential of
mean force need not even work for all possible sequences. In
the fitting calculations, we do not even attempt to fit to all
possible protein sequences, but instead look for an approxi-
mation which works for ‘‘folding’’ sequences. In lattice
models it is particularly easy to identify the folding se-
quences. These are normally taken to be those with a single
lowest energy conformation9 since degeneracy of ground
states would correspond to a protein which moved between
equally attractive conformations rather than a single stable
structure.

At the risk of overinterpreting some very simple models,
one can pursue the concept of folding sequences and ask
whether a free energy approximation based on folding se-
quences can be used to recognize the difference between
folding and nonfolding sequences. This is an important issue
in protein and sometimes polymer design where one does not
merely want a low energy sequence-structure pair, but rather
one wants a sequence which folds to a single stable confor-
mation. Viewed schematically, we would like to know if a
free energy approximation works as shown in Fig. 1~a!
where there is excellent agreement between predicted and
observed free energies. With a less predictive fit, one may
see the situation of Fig. 1~b!. The approximation, being
based on the folding sequences only, is not good at predict-
ing free energies for nonfolding sequences with their degen-
erate ground states, but it is perfectly adequate at distinguish-
ing folding from nonfolding sequences. In the last case, one
may see the situation of Fig. 1~c!. Even though there is a
correlation between predicted and observed free energies,
there is such overlap between predicted values for folding
and nonfolding sequences that the function would not be
useful for protein design.

In the following section, there are a series of calculations
demonstrating issues which can be addressed. The calcula-
tions begin with an HP-like model6 of a two-dimensional
square lattice protein/heteropolymer where it is possible to
visit every conformation and every possible sequence up to
length 16. Since this model suffers from frequent degeneracy
of ground states,8 similar calculations were also performed
using a potential energy matrix designed to alleviate degen-
eracy while preserving the property that similar monomers
tend to aggregate.9 Because of the artificiality of the model,
comparisons were also done with a relaxed definition of de-
generacy. Finally, examples of artificial free energy approxi-
mations ~solvent interaction and second-nearest neighbor
terms! were tested.

FIG. 1. Possible scenarios for the quality of free energy approximation
functions.
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II. MODEL

Chains consisted of a set$s i% of connected monomers of
types at positioni. The potential energy,E, depended on the
corresponding set of coordinates$r i% as well as sequence and
was given by

E~$s i%,$r i%!5(
i , j

es is j
D~r i ,r j !, ~1!

where the summation runs over alli, j, pairs andD(r i ,r j ) is
a switching function dependent on the coordinates of the
interacting particles. It is equal to 0 for most pairs or 1 if the
coordinates are adjacent in space (ur i2r j u51), but not ad-
jacent in the sequence (u i 2 j u.1). es is j

gave the strength of
the interaction type.s adopted one of two types as given by
an interaction matrix from Table I. The two-monomer-type
matrices were the classic HP model6 and one labeled HA,9

loosely based on real protein statistics.2 The labels are only a
notational convenience and may not be the same as those of
the original authors.

For each sequence$s i%, the potential energy of every
conformation$r i%m was calculated@Eq. ~1!# and the confor-
mational integral given by

Z$s i %
5(

m
expS 2E~$s i%,$r i%m!

kT
D , ~2!

where the summation runs over every conformationm and
the temperatureT was set to 0.1 unless otherwise stated. The
exact free energyF was given by

F $s i %
52kTln~Z$s i %

!. ~3!

In all cases, we work in reduced units with Boltzmann’s
constantk51 and the potential energies were offset so the
lowest energy state for a sequence was zero. Note that the
free energy is labeled as a property of the sequence$s i%.

For the parameter fitting, an approximate free energyF*
was defined,

F* ~$r i%
0,$e* %!5(

i , j
es is j
* D~r i ,r j !. ~4!

Because this is an approximation, we write it explicitly as a
function of the set of fit parameters,$e* % and coordinates of
the ground state,$r i%

0. SinceF* ($r i%
0, $e* %) is linear in the

interaction parameters, fitting was done with general least-
squares regression10 to minimize an error given by

error5(
p

„F $s i %p
2F* ~$r i%

0,$e* %!…2, ~5!

where the summation runs all overp ~folding! sequences of a
specific length. More generally, the approximate free energy
F* ($r i%

0, $e* %) could be redefined to include extra arbitrary
terms as described below.

For the fits including a ‘‘solvation’’ term, a free energy
approximation was defined by

F* ~$r i%
0,$e* %,$k* %!5(

i , j
es is j
* D~r i ,r j !1(

i
ks i

* s~r i !, ~6!

wheres(r i) is the number of empty lattice sites adjacent to
the positionr i andks i

* is an adjustable parameter indexed by

the type of monomeri.
For the approximations using second nearest pairs, we

define

F* ~$r i%
0,$e* %,$r* %!

5(
i , j

es is j
* D~r i ,r j !1(

i , j
rs is j
* u~r i ,r j !, ~7!

whereu(r i ,r j ) is usually 0, but set to 1 if the particles are
diagonal neighbors~distanceur i2r j u5A2) and separated by
more than one residue in the chain. Finally, one can add all
the extra terms and consider an approximation based on both
first- and second-nearest neighbor terms and solvation. One
will then end up with a~31312!58-parameter space in the
case of any two-monomer model:

F* ~$r i%
0,$e* %,$k* %!5(

i , j
es is j
* D~r i ,r j !1(

i , j
rs is j
* u~r i ,r j !

1(
i

ks i
* s~r i !. ~8!

III. RESULTS

In all cases, parameters were fit considering all folding
sequences. For checking if the fits generalized to nonfolding
sequences, statistics were collected from a sampling of the
order of 103 sequences chosen randomly from the 105 to 107

possibilities.

A. Simple approximations

Table II shows the sizes and properties of the systems
examined. Extensive calculations were carried out on the HP

TABLE I. Interaction matrices and values ofe i j interaction parameters.

2 monomer types

HP HA

H P H P

H 21 0 H 22.3 21
P 0 0 P 21 0

TABLE II. Statistics of problem size.Nseq is the number of sequences
possible for two or three monomer types,Nconf is the number of possible
conformations, andNfold the number of ‘‘folding’’ conformations. Values
are given for the interaction matrices as named in the text and with a defi-
nition of folding as the number of ground states (Nground) of one or two.

Length Nseq Nconf

Nfold

Nground51 Nground52

HP HA HP HA

6 64 36 7 22 11 52
8 256 272 7 35 45 147

10 1024 3034 6 104 114 480
12 4096 15 037 87 782 417 2362
14 16 384 110 188 386 2770 1598 8924
16 65 536 802 075 1539 12 252 7255 37 980
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and HA model for chains up to lengthN516. Initial condi-
tions were determined by examining the HP model. Before
considering any approximations, the simplest system can be
used to show the effect of temperature and the role of en-
tropy. Figure 2 shows a comparison of free and ground state
potential energies for the HP model,N516 at two different
temperatures. Obviously, the free energy is correlated with
the potential energy, but the fit to a line becomes worse as
the temperature increases and the entropic contribution toF
increases. The temperatureT50.1 was used in all subse-
quent calculations since it includes some entropic contribu-
tion and has been shown to be below the temperature of
phase transition for this kind of system. The figure shows
another limitation of this model. Aside from the well-known,
high ground state degeneracy of the HP model,8 the plot
shows that this simple lattice system has very few energy
levels. This means that potential energies are restricted to a
relatively small number of discrete values, but that free en-
ergies will span something closer to a continuum. Any at-
tempt to approximate or predict free energies can also be
seen as an attempt to account for this entropic spread of free
energies.

One can now apply the fitting procedure to the original
functional form and show how the simple functional form
with the original number of parameters can be adjusted to
reproduce free energies~bring the points closer to a straight
line!. As an example, Table III shows the fit quality and
resultinge* parameters for lengthN512– 16. The smaller
chains (N,12) do not have enough energy levels to make a

fit for three parameters well defined. While one could argue
that the fits are better than random, the correlation coeffi-
cients are always less than 0.5 and the approximation is not
usefully predictive. The quality~or lack thereof! of the fit is
easily seen in Fig. 3. The top plot shows the inability of the
simple approximation to fit even the folding sequences alone.
For completeness, the bottom plot shows all the sequences.
Clearly this simple fit is so bad that even given the ground
state of a sequence, one cannot predict whether or not it will
be a folding sequence.

This result may be a property of the simple model used,
but another trend is clear from the results. The fit parameters,
eHH* , eHP* , andePP* are clearly dependent on system size. This
is a severe problem with this kind of free energy approxima-
tion and has been seen in other contexts.5 This is discussed
below.

B. Additional terms

Perhaps one cannot predict free energies using only Eq.
~4! ~simple HP model!. This does not mean that some other,
more elaborate, function will not work. This can be tested by
adding terms which are not in the functional form of the
original potential energy. We investigated cases which could
be seen as a solvation term@Eq. ~6!#, a second-nearest neigh-

FIG. 2. Comparison of free and potential energies for the HP model,N
516 at temperaturesT50.1 ~dots! andT50.5 ~crosses!.

TABLE III. Fits of approximated free energies for the HP model for lengths
12–16 without additional terms.eHH* , eHP* , andePP* are the approximating
parameters given in Eq.~4!. The parameterr has the meaning of correlation
coefficient.

N Model
eHH*

(1025)
eHP*

(1025)
ePP*

(1025) x2 r x2 r

Folding Nonfolding

12 HP 1.78 5.95 3.19 631028 0.34 0.01 20.21
14 HP 0.85 23.11 10.73 531026 0.45 0.02 0.08
16 HP 1.94 14.85 9.46 131026 0.35 0.05 0.04

FIG. 3. Fit using simple approximation for HP data for 16-mers. Crosses
denote folding sequences and dots nonfolding sequences.~a! Folding se-
quences only~no degeneracy! and ~b! all sequences. More than 105 points
were used in the calculation, but for clarity, a sampling of 4726 points is
shown.
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bor term@Eq. ~7!#, and both artificial terms@Eq. ~8!#. Labels
such as ‘‘solvation’’ imply a physical basis, but one could
regard the terms simply as numerical tools. Table IV gives
the quality of the fit, as well as the final parameters for vari-
ous system sizes. Since the largest number of unknown pa-
rameters is eight, there is never a problem with underdeter-
mined parameter sets.

Adding a second-nearest neighbor term increases the
quality of the fit for folding sequences, but has the most
dramatic effect for nonfolding sequences. Figure 4 shows the
fit quality for the 16-mer. One may consider a correlation
coefficient of 0.75~for the nonfolding sequences! to be suc-
cessful and informative, but there is another way to view the
data. A substantial number of points have a true free energy
around 0.5 units, but are predicted as having very low free
energies. Such an approximation would lead to incorrectly
classifying sequences as folding. Figure 5 shows a better fit
achieved with solvation terms.

Simultaneously fitting to solvation and second-nearest
neighbor terms adds no significant improvement in the cor-
relation coefficient. For example, in the 16-mersr 50.67
with solvent alone and moves tor 50.68 with both kinds of
terms. The quality of the data does not justify the extra pa-
rameters. Furthermore, there is no sign of a useful threshold
for distinguishing folding from nonfolding sequences.

C. Additional models

The fits described so far have been based on a model
which produces very few folding sequences~from 87 to
1539! and has few possible potential energy levels. Further-
more, the definition of folding is extremely narrow. Perhaps
the poor fits are merely a reflection of the model’s limita-
tions. One way to test this is to relax the restrictions and see
if the trends change in any way.

The first approach is to use a more complex interaction
matrix. The HA model still has only two monomer types, but
suffers less from degenerate ground states9 as shown in
Table II. The quality of fits is summarized in Table V and the
results for the HA model are generally the same as for the

HP model. The simple fit is appalling. Second-nearest neigh-
bor terms give a marked improvement and a solvation term
is more effective. The best fit is given by the formulation
with the most terms~second-nearest neighbor1solvation!,
but the improvement is too small to justify the additional

TABLE IV. Parameter values for fits for chains of lengthN512– 16 for the HP model. Solv and 2nd nbor
indicate if ‘‘solvent’’ and second nearest neighbor terms were used.eab* are the fit nearest neighbor interaction
parameters as given by Eq.~4!. kH* andkP* are the ‘‘solvation’’ parameters for hydrophobic and polar groups
corresponding to Eq.~6! and therab* correspond to the second-nearest neighbor interaction parameters of Eq.
~7!. r fold and r all refer to the correlation coefficient for the folding sequences and all sequences, respectively.

N Solv
2nd
nbor eHH* eHP* ePP* kH* kP* rHH* rHP* rPP* r fold r all

12 1.78 5.95 3.19 0.34 20.21
14 0.85 23.11 10.73 0.45 0.08
16 1.94 14.85 9.46 0.35 0.04
12 X 26.41 4.56 2.42 5.34 1.43 0.68 0.60
14 X 217.67 13.96 3.71 13.94 4.06 0.63 0.86
16 X 211.20 16.95 9.32 12.88 1.98 0.67 0.78
12 X 26.87 4.64 1.36 5.88 1.19 3.32 0.41 0.76
14 X 243.07 22.4 22.65 25.38 12.86 7.17 0.23 0.76
16 X 226.87 5.47 7.62 17.08 6.84 3.91 0.37 0.75
12 X X 25.29 5.77 0.47 3.48 21.44 2.13 2.43 5.53 0.72 0.10
14 X X 236.54 2.56 0.23 7.93 3.99 14.97 6.27 1.16 0.66 0.81
16 X X 214.52 15.81 10.61 12.24 3.57 1.9527.47 22.17 0.68 0.83

FIG. 4. Fit including second-nearest neighbor terms for the HP model, 16-
mers. Crosses denote folding sequences and dots nonfolding sequences.~a!
Folding sequences only and~b! all sequences. More than 106 points were
used in the fitting, but for clarity, a sampling of 5622 points is shown.
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adjustable parameters. The HA model results in a more in-
tricate energy surface, but free energies cannot be reliably fit
and predicted.

The definition of folding is another weakness of the ap-
proach. It has been said that a protein sequence will fold if it

has a unique ground state, but in a two-dimensional lattice
model, this may be an unreasonable restriction. The fits on
16-mers were repeated, but using a relaxed definition of fold-
ing where a sequence is allowed to have two conformations
of lowest energy. These are labeled with ‘‘folding def52’’ in
Table V. In general, the results are the same as for the re-
stricted definition of folding~folding def51!. Simple fits us-
ing three adjustable interaction parameters are not useful and
fits using second-nearest neighbor terms are better. The best
fits are seen with solvation terms where the correlation coef-
ficient is often aroundr 50.8 which may almost be useful.

IV. DISCUSSION

Before interpreting these results it is worth seeing their
place in the context of free energy approximations in differ-
ent systems and models. At one extreme, one has atomistic
proteins or polymers where accurate free energies are not
easy to obtain experimentally or from simulation. At the next
level of approximation, one may accept data which comes
from different systems~archived structures! and it may be
useful to assume a Boltzmann-distribution of observations.1,2

One may note the problems in methodology4 or use iterative
methods to remedy them.11 Continuing to simpler models, it
is possible to construct examples where the sampling meth-
odology does not produce very accurate free energy
estimates.5 Going to the simplest and smallest systems, it is
possible to see what the limits of pairwise approximations to
free energy ultimately are. Unfortunately, there is no con-
tinuum of work going from two-dimensional toy models to
real proteins, so some speculation is warranted.

It is also important to compare results showing the limi-
tations of other approaches. Several workers have asked
whether functions can be constructed so as to favor native
conformations over all others.12 Others have shown that for
some formulations this way is exceedingly difficult.13 Here,
we are not interested in recognizing the single native confor-
mation, nor entering into the argument as to whether this is
the lowest free energy state. Instead, we ask whether the free
energy can be approximated for a collection of states over a
range of related systems.

One should also note small differences when making
comparisons to other work. The Hamiltonians used here
come from rather arbitrary models for potential energy and
different results would be obtained with more sophisticated
examples. The simplest model used here is referred to as the
HP model because of its similarity to classic work,6 but there
is a significant difference. In the original description of the
HP model, the interaction matrix~Table II! was regarded as
the free energy of the system. Here, we use the interaction
matrix for the potential energy and calculate the resulting
free energy exactly. This is valid since any plausible poten-
tial energy model will do. All that matters is that, given some
potential energy, the free energy can be rigorously calcu-
lated.

Given all of these caveats, one may find trends in the
results. The first three rows of Table IV show that the simple
contact interaction matrix cannot be adjusted to reproduce
both potential energies and entropic contributions simulta-
neously at the specified temperature. The next three lines of

FIG. 5. Fit including solvation neighbor terms for the HP model, 16-mers.
Crosses denote folding sequences and dots nonfolding sequences.~a! Fold-
ing sequences only and~b! all sequences.

TABLE V. Fit quality with model variations. The model refers to either HP
or the 2 monomer HA interaction matrix given in Table I. Solv and 2nd nbor
refer to the inclusion of solvation or second-nearest neighbor terms.r fold and
r all are the correlation coefficients with the same meaning as in Table IV.
‘‘Folding def’’ states, for given sequence, the number of conformations
allowed to have ground state energies in order to classify the given sequence
as a folding sequence.

Model
Folding

def Solv
2nd
nbor r fold r all

HA 1 0.09 0.30
HA 1 X 0.10 0.35
HA 1 X 0.43 0.80
HA 1 X X 0.46 0.78
HA 2 0.06 0.20
HA 2 X 0.11 0.34
HA 2 X 0.43 0.81
HA 2 X X 0.46 0.80
HP 2 0.04 20.49
HP 2 X 0.10 0.75
HP 2 X 0.21 0.84
HP 2 X X 0.29 0.78
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Table IV ~with a solvation term! are intuitively expected.
The HH interaction term (eHH* ) is always the most negative
and of the two solvent interaction parameters, the polar one,
kP* , is always the more favorable. The results with the
second-nearest neighbor terms are less expected. Table IV
shows theeHH* parameter to be most favorable, but therHH* is
not favorable. Trying to interpret this physically would sug-
gest that HH interactions were favorable at a distance of 1
unit, but unfavorable at a distance ofA2. This is, of course,
a complete artifact. HH interactions at a distance ofA2 are
not considered in the original potential energy. The distribu-
tion of the interaction types at this distance is somewhat
correlated with the exact free energy and this is reflected in
the fit rHH* parameter. In one sense, these results are typical
of fitting in real applications. A term may have a title such as
second nearest neighbor interaction, but numerically, it is
another degree of freedom in the fitting and in moving to
accommodate the data, it may not behave as its name sug-
gests.

Although the systems here are small and simple, it is
worth trying to compare to larger or more elaborate systems.
From the first few lines of Table IV, it is clear that thees is j

*

parameters are not transferable between different system
sizes. This problem is seen with the more common
Boltzmann/knowledge-based methodology on simple
systems.5 This reflects the parameters adjusting to accommo-
date the different ratios of exposed to buried sites. A more
interesting question is whether the terms labeled ‘‘solvation’’
remove the size dependence. If they truly accounted for sol-
vation and were additive with the pairwise terms, the size
dependence would vanish. The numerical contribution from
the solvation would scale appropriately with the surface to
buried ratio as the system size was changed. From Table IV,
this is certainly not happening. The reason is that the intui-
tive separation of contributions is not appropriate. Although
a term might be labeled ‘‘solvation,’’ the parameters are ad-
justed to reflect the contributions from all the structures and
reflect distributions of all the structures which contribute to
the partition function. By simple arguments, one can see that
the terms are not independent since a large number of
monomer—monomer interactions is highly correlated with a
smaller number of monomer–solvent~empty site! interac-
tions. This can be confirmed by examination of the correla-
tion matrices from the fitting procedure~data not shown!. It
is certainly true that better, multibody representations of sol-
vent exist14 and should lead to better size independence.
These, however, would run counter to the spirit of simple
pairwise approximations.

There is another way to view the result from the so-
called solvation terms. They can be compared to the second
nearest neighbor terms for efficacy. In this case the results
are interesting. While neither term is obviously more realis-
tic, the interaction with empty lattice sites is the better term
for modeling free energy. This bodes well for the use of the
term in lattice simulations7 and perhaps, by analogy, the use
of solvent exposure terms in atomistic simulations.

With any lattice model, there is always the question of
how transferable the results are to a more realistic system or
even a different simple model. From the literature, one

knows that changing the representation would change the
results. For example, it is known that about 2% of sequences
on a square lattice have nondegenerate ground states, but the
fraction is much higher on triangular lattices.15 Similarly,
using a larger number of monomer types would also give
more folding sequences16–18 ~and a better dispersion of po-
tential energy levels!. Unfortunately, given the exponential
growth of calculation size, no systematic calculations could
be performed with more than two monomer types.

Quantitative results may not be transferable between
systems, but it may be useful to see which trends continue
with more realistic systems. Some results should be clear
with more computational time. If one wants to pursue simple
proteins, it would be possible to see how long chains must be
before parameters become less size dependent. Some results
are less easy to anticipate. It has been shown that properties
such as designability and foldability are strongly dependent
on the interaction matrix and most importantly, the number
of monomer types.16 Unfortunately, when doing exhaustive
calculations on these systems, the computational effort is
factorial in the chain size and exponential in the number of
monomer types. One may have to use a sampling approach
to tackle these systems at the cost of losing the elegance of
exhaustive enumeration.

Overall, the results suggest that it will always be difficult
to reproduce free energies, when limited to two-body terms
and the problem would be even harder if one wanted an
approximation which worked at more than one temperature.
On the other hand, the observed fit of free energies is quite
encouraging. With increasing system size~more protein/
polymer like!, the quality of fit improves. This leaves open
the question of whether one can get a good enough approxi-
mation to at least recognize folding sequences in larger pro-
teins or polymers. If one has a limited application area and is
satisfied with an approximation for some small range of sys-
tems, then the use of apparently artificial terms may be prac-
tical.
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