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Abstract

We examine the key factors driving change in energy use globally over the past four decades.
We test for both strong decoupling where economic growth has less effect on energy use as
income increases, and weak decoupling where energy use declines over time in richer countries,
|emphceteris paribus. Our econometric approach is robust to the presence of unit roots,
unobserved time effects, and spatial effects. Our key findings are that the growth of per capita
energy use has been primarily driven by economic growth, convergence in energy intensity,
and weak decoupling. There is no sign of strong decoupling.
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1. Introduction

Though global energy use continues to increase (BP, 2015), energy intensity has declined faster in
some developed countries such as the United States (-1.94% annually from 1971 to 2010) and the
United Kingdom (-2.63%) than in the world as a whole (-1.08%).1 Does this mean that economic
growth has less of an effect on growth in energy use in richer countries - a decoupling of energy
and growth - or is this due to convergence of formerly more energy intensive countries towards the
global mean? Here, we show that: economic growth has a similar effect on the growth of energy use
across the full income continuum from less developed to highly developed countries; convergence
is very important in explaining the evolution of energy use; but that, ceteris paribus, energy use
per capita declines autonomously (not associated with growth) in high income countries.

The rise in energy consumption of rapidly growing developing countries, especially from China
and India, has accounted for the vast majority of the global increase in energy use in recent years.

aLudwig Maximilian University of Munich, Oettingenstrasse 67, 80538-Munich, Germany [B]
Zsuzsanna.Csereklyei@gsi.uni-muenchen.de.

bThe Australian National University, 132 Lennox Crossing, Acton, ACT 2601, Australia [B]
david.stern@anu.edu.au.

1Data sources are provided in the Appendix.
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Non-OECD countries currently account for approximately 60 percent of global energy demand,
which is predicted to rise to 70% by 2040 (International Energy Agency, 2014). This increasing
energy use exacerbates environmental problems including global climate change due to greenhouse
gas emissions and local environmental problems such as the recent episodes of extreme air pollution
in Beijing and other Chinese cities. Besides its environmental impacts, increasing energy use also
raises questions of national energy supply security. As the share of world energy use consumed in
developing countries increases, it is increasingly important to understand how energy use evolves
across the full income continuum from less developed to highly developed countries (Ruijven et al.,
2009).
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Figure 1: Growth rate of energy use and GDP per capita 1971-2010

Though the growth rate of per capita energy use is correlated with the growth rate of GDP
per capita ( Figure 1) there is clearly much variation in growth rates that might be explained
by decoupling, convergence, or other factors. However, the two main hypotheses explaining this
dynamics, the decoupling (e.g. Jakob et al., 2012; Lescaroux, 2010; Medlock and Soligo, 2001)
and convergence hypotheses (e.g. Ezcurra, 2007; Le Pen and Sévi, 2010; Liddle, 2010; Mulder and
de Groot, 2012) have mostly been tested independently of each other, when, in fact, they may
both be involved in driving changes in energy use. Csereklyei et al. (2016) find that over the last
forty years there has been a stable cross-sectional relationship between energy use per capita and
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income with an elasticity of energy use with respect to income of less than unity. This implies
that energy intensity has tended to decrease in countries that have become richer, but not in
others. But, in the long run, per capita energy use tends to rise with no sign of decoupling at
higher income levels. These results contrast with Jakob et al. (2012) who find decoupling between
energy use and growth at higher income levels. Csereklyei et al. (2016) also find that over the last
two centuries there has been convergence in energy intensity towards the current distribution of
energy intensity and income per capita. This contradicts some (e.g. Le Pen and Sévi, 2010) but
not other (e.g. Liddle, 2010) previous convergence studies.

In this paper, we examine the relationship between the average growth rate of energy use per
capita and the average growth rate of real GDP per capita over a forty-year period in 93 countries,
testing for the effects of convergence, decoupling, and other potential determinants of the growth
rate of per capita energy use in a simple single equation framework. Our main contribution is to
allow both these hypotheses to be tested in a single, econometrically robust model.

We do this by estimating a model in long-run growth rates rather than in levels of the variables.
This allows a simple test of beta convergence, where the growth rate of energy use per capita
depends on the initial level of energy intensity, as well as on the growth rate of GDP per capita.
We also test for strong decoupling by including an interaction term between the rate of economic
growth and the (log) level of income. If the coefficient of this variable is negative then growth
will increase energy use less at higher income levels and potentially there could be a turning point
beyond which further growth reduces per capita energy use. We also consider weak decoupling,
where the growth rate of energy use declines as income increases though this is unrelated to
economic growth. We test this hypothesis by including the (log) level of income in the regression.
We also include a number of control variables, which may affect the growth of energy use.

Rather than using first differences we use long-run growth rates to estimate our model. This
avoids many of the known econometric pitfalls that can affect panel data and cross-country studies.
First, energy consumption and GDP have both been found to be non-stationary in numerous
studies (Apergis and Payne, 2009; Csereklyei et al., 2016; Stern, 2000). Differencing the data
removes unit roots and, therefore, any concerns about spurious regressions or issues involved
in modeling non-linear functions of unit root variables (Wagner, 2008). Second, using long-run
differences rather than first differences, focuses attention on the long-run behavior of the time
series (Chirinko et al., 2011). Third, we only estimate the average size of the time effect across the
sample, avoiding the problems of explicitly modeling unobserved time effects (Vollebergh et al.,
2009). Fourth, our method also reduces the main problem associated with the between estimator
proposed by Stern (2010) – that omitted variables correlated with the levels of the explanatory
variables may result in biased estimates. In our approach, the means of these variables are removed
by differencing.

Working with a cross-sectional dataset raises the question of spatial dependence – changes
to a variable in one country may be correlated with changes in the same or other variables in
neighboring countries. Most of the research on energy consumption in the past has been in a
time-series or panel setting and, with the exception of Jiang et al. (2014), has not explicitly
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addressed the issue of spatial dependence. To deal with the problem of spatial dependence, we
apply spatial filtering (Tiefelsdorf and Griffith, 2007), rendering the remaining spatial dependence
in the residuals statistically insignificant, and therefore, reducing the potential bias of the
estimators. As our models include the growth rate of GDP as a regressor, reverse causality
from the growth rate of energy use to that of GDP could result in simultaneity bias and hinder
a causal interpretation of our regression results. Bruns et al. (2014) show that the only robust
result in the very large literature on causality between energy and economic output is that GDP
causes energy use (when energy prices are controlled for). This justifies including the GDP growth
rate on the right hand side of our regression model. However we also give an approximation of
the magnitude of the possible bias in the parameter estimates. We use income per capita data
that is adjusted for purchasing power parity and the IEA primary energy use data that we use
includes the use of traditional biomass, which are recommended choices for comparing developed
and developing countries (Csereklyei et al., 2016; Ruijven et al., 2009).

Our paper extends the econometric method of Anjum et al. (2014), by considering spatial
dependence and by applying the approach to the evolution of energy use rather than pollution
emissions. We also extend the investigation in Csereklyei et al. (2016) by integrating the different
factors they consider into a single econometric model, which allows us to assess the contribution of
each factor to the growth in energy use. Our key findings are that over the period examined, the
growth of per capita energy use has been primarily driven by economic growth, weak decoupling,
and convergence effects. There is no sign of strong decoupling. We find that resource endowments
and climate also significantly affect the growth rate of per capita energy use. These findings need
to be taken into account in projections and forecasts of future energy use.

The next section of the paper introduces the data and methodology used, Section 3 discusses
the econometric results, while in Section 4 conclusions are presented. Data sources and the choice
of spatial weights are discussed in the Appendix.

2. Methods

2.1. Hypotheses and Models

We work with a balanced dataset covering 93 countries between 1971 and 2010. Our basic model
is:

g(E/P )i = α+ (β1 + β2(Y /P )i) ∗ g(Y /P )i + ϵi (1)

where g(E/P ) indicates the long-run growth rate of per capita energy use computed as described
in the Appendix, g(Y /P ) is the long-run growth rate of income per capita, and (Y /P )i is the
mean of the natural logarithm of income per capita over our forty-year sample period. The
interaction term tests the hypothesis that energy use and economic growth decouple as income
increases. When β2 is negative, energy use first increases and then decreases as income increases
above a given turning point, so that decoupling takes place. We call this the ”strong decoupling”
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hypothesis. As (Y /P )i is demeaned, that is the sample mean is subtracted from the variable,
β1 is the income elasticity of energy use at the sample mean log income level. As the variables
are expressed in growth rates, the intercept term, α is the average time effect in the sample–the
growth rate of energy use when the economic growth rate is zero. ϵ is a random error term.

Model 2 also tests the independent effect of the level of income on the growth rate of energy
use, or a weak decoupling hypothesis:

g(E/P )i = α+ (β1 + β2(Y /P )i) ∗ g(Y /P )i + β3(Y /P )i + ϵi (2)

If β3 is significantly less than zero, then controlling for the rate of economic growth, the growth
rate of energy use is lower in richer countries than in poorer countries.

We can test for beta convergence in energy intensity by adding the log of energy intensity at
the beginning of the sample period (1971) to Model 2:

g(E/P )i = α+ (β1 + β2(Y /P )i) ∗ g(Y /P )i + β3(Y /P )i + β4(E/Y )i,0 + ϵi (3)

where (E/Y )i,0 is the log of energy intensity in country i in the first year of the sample period,
in our case 1971. If β4 is significantly less than zero, then energy intensity grows more slowly in
countries that were energy intensive in 1971. and vice versa so that there is convergence in energy
intensity over time. We also test the effects of a number of additional control variables in Models
4 to 6. The general form of these models is:

g(E/P )i = α+ (β1 + β2(Y /P )i) ∗ g(Y /P )i + β3(Y /P )i + β4(E/Y )i,0 +
∑
j

ηjXj,i + ϵi (4)

where X is a vector of exogenous control variables. A large number of variables may affect per
capita energy use and energy intensity (Csereklyei and Humer, 2012; Stern, 2012). At the same
time, numerous potential control variables will be clearly influenced or driven by the economic
development and growth process. While these variables may be important in shaping energy use,
they will subtract from measuring the full effect of economic growth on energy use. Therefore,
we only include explanatory variables that are in our judgment not directly affected by economic
growth or the development level of a country. We include the following variables that Anjum
et al. (2014) found had significant effects on the growth rate of carbon dioxide emissions: summer
and winter average temperatures and fossil fuel endowments (Norman, 2009). We also test water
resource endowments (H2O) to reflect the potential for hydroelectric power (Burke, 2010). We
include a dummy for whether a country was centrally planned (CPE) during at least part of the
sample period. Stern (2012) found that this variable was statistically significant in explaining the
distance of countries from the energy intensity frontier, though Anjum et al. (2014) did not find
it had a significant effect on the growth rate of CO2 emissions. We also test for the effects of
democracy as measured by the Polity2 variable (Marshall et al., 2014).2 While Stern (2012) finds

2We estimated models including the interaction of polity and resources, to examine whether good governance
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the level of democracy is not significant in determining the level of energy efficiency, the question
of whether policies in more democratic countries, such as lower subsidies and stronger energy
efficiency programs, reduce the rate of growth of energy use, remains open. Comin and Hobijn
(2004) note that democracies seem more successful in maintaining the property rights necessary
for investment and in deterring pressure groups from preventing the adoption new technologies.
Similarly, Fredriksson and Neumayer (2013) find that a country’s level of democracy capital has
significant impact on its climate change policies, while Cheon et al. (2013) find that countries with
weaker institutions are found to be more prone to providing gasoline subsidies.

All control variables, with the exception of the centrally planned economy dummy are demeaned,
so that the intercept term in the regression can be interpreted as the mean time effect at the sample
mean for a non-centrally planned economy. The Appendix provides an exact description of the
data sources and transformations. The energy use and GDP variables are from the same sources
used by Csereklyei et al. (2016). In the current study we drop six countries from the sample
due to lack of data relating to freshwater reserves, fossil fuel endowments, democracy data, or a
combination of these. As climate and resource endowments as well as the degree of democracy
may affect a country’s rate of economic growth, in Models 4-6 the effect of economic growth on
the growth rate of energy use must be interpreted as the effect of those components of the growth
rate of GDP that are unaffected by these additional explanatory variables.

2.2. Reverse Causality

We estimate the six models using OLS with heteroskedasticity robust standard errors. Obviously,
it is possible that there is reverse causation from the growth in energy use to the growth of GDP.
Regression models need not be interpreted causally (Chen and Pearl, 2013). In this interpretation
the model simply shows how the growth rate of energy use varies with the other variables. There
is a very large and inconclusive literature that tests for Granger causality between the levels of
energy use and GDP (Bruns et al., 2014). Bruns et al. (2014) find that the most robust result in
that literature is that GDP causes energy use, when models control for energy prices. As energy
is an input to production, it is still reasonable to think that exogenous changes to energy use have
an effect on output, though Granger causality tests may have too low power to detect these effects
in the usual small samples used. We provide some intuition on the likely size of the bias induced
by reverse causality if we wish to interpret our models structurally. For simplicity, we consider a
model that is simpler even than our Model 1:

g(E/P )i = β1 + β2g(Y /P )i + ϵEi (5)

We can write a model for the effect of energy on GDP thus:

g(Y /P )i = α1 + α2g(E/P )i + γTXi + ϵY i (6)

influences the impact of resources on energy consumption. The relevant regression coefficients were statistically
insignificant.
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where X is a vector of additional explanatory variables. We now give the parameters a structural
interpretation. If we estimate (5) using OLS, then the limit in probability of β2 is given by:

plimβOLS
2 = β2 +

cov(ϵE , g(E/P )

var(g(Y /P ))
(7)

and it can be shown that:

cov(ϵE , g(E/P )) =
α2var(ϵE)

1− α2β2
(8)

In order to determine the potential size of the bias, we assess the likely magnitudes of the
parameters and moments in equations (7) and (8). In our data var(g(Y /P ))=0.0002 and the OLS
estimate of var(ϵE) is also 0.0002. Therefore, the ratio of these two moments is unity and the bias
is approximately α2

(1−α2β2)
. Next, we assess the likely size of α2, which is the elasticity of GDP

with respect to energy in equation (6). The cost share of energy is likely to be in the range of 0.05
to 0.1. When other materials are taken into account the cost share is likely to be near the lower
end of this range (Frondel and Schmidt, 2002). Using a traditional growth accounting approach
for GDP and under the assumptions made by Stern and Kander (2012) the elasticity of GDP with
respect to energy is given by

∂lnY

∂lnE
=

(
1− σ − 1

σ

)
∂lnG

∂lnE
(9)

where σ is the elasticity of substitution between energy and other inputs, and G is gross output.
This is probably an upper limit on the size of this elasticity.3 Assuming that the magnitude of β2,
the income elasticity of energy in equation (5), is near to unity, this means that the OLS estimate
of β2 is likely to be biased upwards in the region of 0.05.4

We also considered addressing the endogeneity problem using instrumental variable techniques.
Finding a suitable instrument for the long-term growth rate of GDP per capita is a very challenging
task. We tried several alternatives including human capital growth, or the initial value of human
capital at the beginning of the period, based on the Barro and Lee (2010) database, trade
openness, as well as the initial value of GDP per capita, and 5-year growth rates of GDP per
capita before the start of the period. Additionally we tested climate variables such as summer or
winter temperatures and average rainfall. We also considered the growth rates of each country’s
export partners as used by Acemoglu et al. (2008) and the modified version suggested by Burke
(2012). Other variables relating to long-term growth rates such as the number of hospital beds,
measuring health expenditures and thus driving growth (Rivera and Currais, 2003), were not
available for the entire period, while information pertaining to intellectual property rights, such
as the Ginarte-Park Index was not available for a large number of countries.

3The dynamic effects of growth in energy use might be larger if increased energy availability stimulates capital
accumulation (Stern and Kander, 2012) or induces technological change.

4The presence of the interaction term in our model considerably complicates this exposition. The structural
equation for the interaction term involves interactions of (Y /P ) and the regression parameters and error terms
as it is simply the structural equation for g(Y /P ) multiplied by (Y /P ) . The denominators of the reduced form
for both (Y /P )i and the interaction term involve a function of (Y /P ).
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Though some of these seemed acceptable as instruments for the growth rate of GDP, the
main difficulty is finding an instrument for (Y /P ) ∗ g(Y /P ). The usual approach is to interact
the instrument for g(Y /P ) with the actual data for (Y /P ) to obtain a second instrument.
However, usually this instrument is highly correlated with (Y /P ), which is also included in the
regression. As a result, the instrument provides little if any additional explanatory power in the
first stage regression and so fails to pass the weak instrument test of Stock and Yogo (2005). For
example, using the export partners’ growth rate instrument the correlation between the interacted
instrument and (Y /P ) is 0.975 but the correlation with (Y /P )∗g(Y /P ), which is actually targeted,
is only 0.64. Therefore, in the end we abandoned the quest for appropriate instruments.

2.3. Spatial Filtering

Recent research using panel data emphasizes the importance of taking cross-sectional dependence
into account (Wagner, 2008). Similarly, spatial dependence often arises in macroeconomic
cross-sectional data (LeSage and Pace, 2009; Tiefelsdorf and Griffith, 2007). In particular,
spatially autocorrelated omitted variables might induce spatial autocorrelation in the error term.
If these omitted variables are correlated with the explanatory variables included in the model,
then the parameter estimates will be biased and inconsistent, unless spatially lagged dependent
and explanatory variables are added to the model (LeSage and Pace, 2009), or spatial filtering is
used (Crespo Cuaresma and Feldkircher, 2013; Tiefelsdorf and Griffith, 2007). We used Moran’s
I (Moran, 1950) to test the null of spatial independence in both our dependent and explanatory
variables and in the OLS model residuals. We conclude that both the variables and the residuals
of the OLS models are spatially dependent.

We assume that the spatial autocorrelation in the residuals is due to omitted variables that are
spatially autocorrelated and may be correlated with the included regressors. Though this means
that the data could be represented by a spatial lag model (LeSage and Pace, 2009), we do not
think that the lagged values of the dependent variable actually cause variation in the dependent
variable and so we are not interested in estimating the spatial autocorrelation coefficient. Rather,
we think it is more appropriate to remove the spatial autocorrelation using the spatial filtering
approach, thus rendering the coefficients of the independent variables unbiased.

Spatial filtering aims to remove the residual spatial autocorrelation by adding additional spatial
control variables to the regression equation (Crespo Cuaresma and Feldkircher, 2013). Spatial
filtering can also reduce the correlation among the explanatory variables by accounting for their
common spatial patterns (Crespo Cuaresma and Feldkircher, 2013). Here, we follow the approach
of Griffith (2000) and Tiefelsdorf and Griffith (2007) in using a non-parametric spatial filtering
approach, in which a parsimonious subset of the eigenvectors of a transformed spatial contiguity
matrix, W , is used to capture dependencies among the disturbances of a spatial regression model.5

Tiefelsdorf and Griffith (2007) argue that a linear combination of these eigenvectors should be

5As a robustness check we also estimate the model with some alternative weighting matrices. The preferred and
alternative spatial matrices are described in the Appendix, which also provides some econometric results for the
alternative matrices.
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able to capture the spatial patterns of the stochastic component of the model, and to remove
this pattern from the residuals. The transformed matrix is given by M1

1
2(W + W T )M1, where

M1 = I − i(iT i)−1iT and i is the unity vector. We then estimate the regression with a subset of
m of the eigenvectors −→e 1, ...,

−→e n of M1
1
2(W +W T )M1:

g(E/P )i =

m∑
i=1

γi
−→e i + χTZi + uEi (10)

where Z is a vector of explanatory variables, and the uEi are the disturbances of the filtered
model. The key challenge is to choose a unique and parsimonious set of eigenvectors to be
added to the regression equation, thus adequately reducing the level of spatial autocorrelation
in the residuals with the least number of eigenvectors. We use the spatial filtering procedure of
Tiefelsdorf and Griffith (2007), setting the threshold level of tolerated autocorrelation

|z[I(ûE)]| < δ, δ = 1 (11)

where |z[I(ûE)]| is the standardized Moran’s I statistic, for the estimated regression residuals
ûE . While Tiefelsdorf and Griffith (2007) set the threshold at 0.1, they note that for smaller
panels, with less than 50 spatial observations δ = 1 could be used. We set the tolerance level
z at 1, which is the same tolerance level used by stepwise regression procedures that maximize
adjusted R squared.6

3. Results

3.1. Estimates without Spatial Filtering

The long-run growth rate of income per capita is highly statistically significant in all models. The
elasticity mostly increases when additional variables are added (Table 1). In Model 6 the elasticity
is 0.80. Figure 1 shows the mean annual growth rate of energy use and the mean annual growth
rate of GDP per capita. The intercept term is not statistically significantly different from zero,
implying that in the absence of economic growth or other effects there is no particular tendency
for per capita energy use to change. Given the results presented by Csereklyei et al. (2016) neither
of these findings comes as a surprise. But we also find a significantly negative coefficient for the
level of the mean log income per capita for four out of the five models where we include it. This
means that as countries get richer, their rate of growth of energy use per capita will decline, ceteris
paribus. This validates the weak decoupling story.

The interaction term of the income per capita growth rate and the log income per capita

6 In the time series context, it is possible to select the appropriate number of lags using either serial correlation
tests or goodness of fit statistics such as the Akaike Information Criterion or likelihood ratios. In the spatial
context, goodness of fit statistics are not appropriate because in the presence of autocorrelation the parameters
will be estimated inconsistently, which is not the case in the time series setting. Therefore, we do not use
goodness of fit statistics to select the number of eigenvectors to include in the model and instead use a spatial
autocorrelation statistic.
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level tests the strong decoupling hypothesis that per capita GDP growth has reduced or even
had negative effects on energy use growth at higher income levels. For Models 1-2 this term is
statistically insignificant, while for models 3-6 it is positive and significant. We find no evidence
in the results in Table 1 in support of the strong decoupling story. Even for Model 1, which
does not control for any other variables, the coefficient on the interaction term is positive though
not statistically significant. This contrasts strongly with the results of researchers such as Jakob
et al. (2012) who claim that the strong decoupling story holds, yet it is in line with Csereklyei
et al. (2016) who also do not find evidence of decoupling at higher income levels. These strong
differences appear to arise from the different sample of countries examined by Jakob et al. (2012)
and Csereklyei et al. (2016). Using the method of Jakob et al. (2012) as shown in equation (2) of
their paper and our sample of 93 countries we estimate that the elasticity of energy use growth with
respect to GDP growth is 0.37 in non-OECD countries and 0.48 in OECD countries. Jakob et al.
(2012) estimate these elasticities as 0.63 and -0.35 (for PPP data) for samples of 30 non-OECD
and 21 OECD countries, respectively.

The beta convergence effect coefficient is remarkably consistent in value across models and
highly significant. These results confirm the findings of Liddle (2010) and Csereklyei et al. (2016)
but contrast with the results of convergence tests using other approaches, such as Le Pen and Sévi
(2010).

Democracy values only have a significant coefficient at the 5% level in one out of three of the
models that we include them in; the effect is negative. As expected, fossil fuel endowments are
found to be highly significant and affect the growth rate of energy use positively. Higher fossil fuel
reserves are often coupled with lower prices and higher subsidies. However, water resoruces are
not statistically significant. Summer temperatures have a positive effect on the energy use growth
rate, which might be explained by the increased spread of air conditioning over time. Winter
temperatures have a negative effect, though this effect is smaller in absolute value than the effect
of higher summer temperatures. This means that countries with colder winters saw a faster rate of
growth of energy use, ceteris paribus. This is somewhat surprising as we would have expected that
countries with cold winters, which are generally developed countries, heated homes and workspaces
significantly already at the beginning of our sample period and have also improved their energy
efficiency over time, so that cold winters would not boost the rate of growth of energy use. It is, of
course, possible that these climate variables, which are highly spatially autocorrelated, are picking
up the effect of other omitted spatially autocorrelated variables. Centrally planned status has a
negative and significant effect. The majority of these countries, most remarkably China, reformed
their economies around the middle of our sample period, and reduced their energy intensity very
significantly as a result (Ma and Stern, 2008; Stern, 2012).

3.2. Estimates with Spatial Filters

The spatially filtered estimates, shown in Table 2, indicate that the unfiltered estimate of the
effect of the growth rate of GDP on the growth of energy use is biased upward in the first four
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Table 1: Model Estimates without Spatial Filtering
Mod 1 Mod 2 Mod 3 Mod 4 Mod 5 Mod 6

(Intercept) 0.0025 0.0018 -0.0018 -0.0014 -0.0019 -0.0012
0.002 0.003 0.002 0.002 0.002 0.002

g(Y/P) 0.5750 *** 0.6083 *** 0.7937 *** 0.7725 *** 0.7954 *** 0.7958 ***
0.118 0.145 0.110 0.097 0.086 0.078

(Y/P)*g(Y/P) 0.0691 0.1041 0.1948 *** 0.1967 *** 0.2246 *** 0.2308 ***
0.067 0.092 0.067 0.061 0.053 0.046

Y/P -0.0010 -0.0071 *** -0.0049 *** -0.0071 *** -0.0077 ***
0.002 0.002 0.002 0.002 0.001

E/Y1971 -0.0171 *** -0.0163 *** -0.0171 *** -0.0154 ***
0.003 0.002 0.002 0.002

Democracy -0.0006 ** -0.0003 -0.0002
0.000 0.000 0.000

FFE 0.0010 *** 0.0010 ***
0.000 0.000

H20 -0.0004
0.001

SumT 0.0008 **
0.000

WinT -0.0004 **
0.000

CPE -0.0086 **
0.003

N 93 93 93 93 93 93
adj. R-sq 0.23 0.22 0.62 0.65 0.69 0.74
Moran’s I (p) 0.00 0.00 0.00 0.00 0.00 0.02

Note1: OLS estimates with robust standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Note2: E/Y1971 measures the energy intensity convergence, Democracy denotes the Polity values, FFE the fossil
fuel endowment of a country, H2O accounts for the freshwater reserves, SumT and WinT denote summer and
winter temperatures respectively, while CPE stands for centrally planned economies.
Note3: Moran’s I (p) gives the p-value of Moran’s I statistic for the residual of the estimated models.

of our models. The interaction of the income per capita growth rate and its level now has a
statistically significant positive effect in all our models, further supporting our claim that there is
no strong decoupling between energy consumption growth and income per capita growth at higher
income levels. For the last two models, however, the unfiltered estimates tend to underestimate
the elasticity of income per capita growth.

While the freshwater resources variable, or the potential for hydroelectric power, was not
significant in the unfiltered results, it is now significant at the 5% level, with a positive sign,
meaning that in common with fossil fuel resource endowments, the presence of hydroelectric
potential tends to increase the growth rate of per capita energy use over the period. Also,
democracy is now significant at the 10% level in Model 6, indicating that countries with more
democratic governments experience slower rates of growth in per capita energy use, ceteris paribus.
All other coefficients retain the same sign and remain significant or not, and are generally corrected
downwards in these estimates compared to the unfiltered estimates. The spatial autocorrelation
in the residuals has been reduced to an acceptable level, and the null hypothesis of Moran’s I test
can no longer be rejected.
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Table 2: Model Estimates with Spatial Filtering
Model 1 Estimate Std. Error Model 2 Estimate Std. Error

(Intercept) 0.0034 0.002 ** (Intercept) 0.0021 0.002
g(Y/P) 0.5047 0.083 *** g(Y/P) 0.5648 0.113 ***
(Y/P)*g(Y/P) 0.1525 0.058 ** (Y/P)*g(Y/P) 0.2026 0.067 ***
fitted(lagcol)vec6 0.0517 0.012 *** Y/P -0.0017 0.001
fitted(lagcol)vec5 0.0408 0.010 *** fitted(lagcol2)vec6 0.0526 0.012 ***
fitted(lagcol)vec15 -0.0369 0.014 ** fitted(lagcol2)vec5 0.0418 0.010 ***
fitted(lagcol)vec2 0.0421 0.010 *** fitted(lagcol2)vec15 -0.0389 0.014 ***
fitted(lagcol)vec11 0.0270 0.012 ** fitted(lagcol2)vec2 0.0395 0.012 ***
fitted(lagcol)vec14 0.0277 0.011 ** fitted(lagcol2)vec11 0.0259 0.011 **
Adjusted R2 0.554 fitted(lagcol2)vec14 0.0271 0.010 ***
Moran’s I stat. (p) 0.253 Adjusted R2 0.556

Moran’s I stat. (p) 0.208

Model 3 Estimate Std. Error Model 4 Estimate Std. Error

(Intercept) -0.0014 0.001 (Intercept) -0.0008 0.001
g(Y/P) 0.7644 0.073 *** g(Y/P) 0.7324 0.075 ***
(Y/P)*g(Y/P) 0.2154 0.053 *** (Y/P)*g(Y/P) 0.2178 0.062 ***
Y/P -0.0047 0.001 *** Y/P -0.0024 0.001 **
E/Y1971 -0.0157 0.002 *** E/Y1971 -0.0173 0.002 ***
fitted(lagcol3)vec8 0.0279 0.008 *** Democracy -0.0006 0.000 ***
fitted(lagcol3)vec14 0.0297 0.006 *** fitted(lagcol4)vec14 0.0298 0.005 ***
fitted(lagcol3)vec23 -0.0279 0.011 ** fitted(lagcol4)vec8 0.0341 0.009 ***
fitted(lagcol3)vec15 -0.0210 0.006 *** fitted(lagcol4)vec21 -0.0258 0.005 ***
fitted(lagcol3)vec5 0.0194 0.007 *** fitted(lagcol4)vec23 -0.0275 0.011 **
fitted(lagcol3)vec6 0.0241 0.006 *** fitted(lagcol4)vec2 0.0313 0.007 ***
fitted(lagcol3)vec11 0.0181 0.007 ** fitted(lagcol4)vec9 -0.0163 0.008 **
fitted(lagcol3)vec2 0.0276 0.007 *** fitted(lagcol4)vec11 0.0165 0.007 **
fitted(lagcol3)vec9 -0.0163 0.007 ** fitted(lagcol4)vec6 0.0180 0.007 **
fitted(lagcol3)vec21 -0.0185 0.005 *** Adjusted R2 0.805
Adjusted R2 0.805 Moran’s I stat. (p) 0.205
Moran’s I stat. (p) 0.243

Model 5 Estimate Std. Error Model 6 Estimate Std. Error

(Intercept) -0.0024 0.001 . (Intercept) -0.0028 0.001 *
g(Y/P) 0.8264 0.058 *** g(Y/P) 0.8635 0.061 ***
(Y/P)*g(Y/P) 0.1996 0.049 *** (Y/P)*g(Y/P) 0.2274 0.044 ***
Y/P -0.0065 0.002 *** Y/P -0.0070 0.002 ***
E/Y1971 -0.0191 0.002 *** E/Y1971 -0.0191 0.002 ***
FFE 0.0012 0.000 *** FFE 0.0007 0.000 ***
Democracy -0.0003 0.000 Democracy -0.0003 0.000 *
fitted(lagcol5)vec14 0.0323 0.006 *** H20 0.0010 0.000 **
fitted(lagcol5)vec29 0.0277 0.009 *** SumT 0.0008 0.000 ***
fitted(lagcol5)vec21 -0.0251 0.005 *** WinT -0.0004 0.000 ***
fitted(lagcol5)vec11 0.0163 0.007 ** CPE -0.0033 0.003
fitted(lagcol5)vec24 -0.0164 0.005 *** fitted(lagcol6)vec14 0.0293 0.006 ***
fitted(lagcol5)vec8 0.0186 0.013 fitted(lagcol6)vec21 -0.0283 0.006 ***
Adjusted R2 0.812 fitted(lagcol6)vec23 -0.0272 0.008 ***
Moran’s I stat. (p) 0.162 fitted(lagcol6)vec29 0.0214 0.009 **

fitted(lagcol6)vec9 0.0226 0.010 **
fitted(lagcol6)vec8 -0.0144 0.006 *
Adjusted R2 0.832
Moran’s I stat. (p) 0.285

Note1: OLS estimates with eigenvector filtering, & robust standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Note2: E/Y1971 measures the energy intensity convergence, Democracy denotes the Polity values, FFE
the fossil fuel endowment of a country, H2O accounts for the freshwater reserves, SumT and WinT denote
summer and winter temperatures respectively, while CPE stands for centrally planned economies.
Note3: Moran’s I (p) gives the p-value of Moran’s I statistic for the residual of the estimated models.

12



Global Energy Use: Decoupling or Convergence?

-3%

-2%

-1%

0%

1%

2%

3%

4%

Low Income Lower Middle
Income

Upper Middle
Income

High IncomeM
ea

n
 G

ro
w

th
 R

at
e 

of
 E

n
er

g
y 

U
se

 p
er

 C
ap

it
a 

1
9

7
1

-2
0

1
0

Residual
Growth effect
Weak decoupling effect
Convergence effect
Other time effects
Dependent variable

Figure 2: Decomposition of Energy Use per Capita Growth into Growth and Other Effects

Figure 2 illustrates these results using the parameter estimates for Model 6 in Table 2 and our
dataset. We divided our 93 countries into four income groups using the World Bank’s classification
in 1990 (The World Bank, 1992), which is near the midpoint of our sample. We then computed the
mean of each of the variables apart from the eigenvector variables in Model 6 and multiplied these
values by the relevant regression coefficients. Summing the effect of the growth rate of per capita
GDP and its interaction term, we arrive at the ”growth effect” in Figure 2. The weak decoupling
effect is the effect of the level of GDP per capita, the convergence effect is the effect of the initial
energy intensity, and the time effect aggregates the remaining effects. The unexplained remainder
is the ”residual”. We see that the growth effect was in fact largest in the high income countries,
while the time effect and weak decoupling effect are negative and counteract the effect of growth.
The convergence effect is positive but quite small - most developed countries had relatively low
energy intensity in 1971 but a few, including the United States and Canada, were very energy
intensive. The picture for upper-middle income countries is very different, as the weak decoupling
effect is much smaller, the time effect is positive but very small, and the convergence effect is
larger. As a result, average energy use per capita growth rates rise with income up to the upper
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middle income level, but were lower in the high income countries. In low income countries the
weak decoupling effect results in positive growth of energy use rather than decoupling and the
time and convergence effects are both quite large and negative. Many of the low income countries,
which include China here, were very energy intensive in 1971.

3.3. Robustness Checks

As robustness checks, we estimate our models using different time periods and also a different
spatial matrix. We estimate Model 6 for four different sample periods. As it is of particular interest
whether the relationship changes as we approach the present, we chose the periods 1971–2010,
1981–2010, 1991-2010 and 2001-2010. The results can be found in Table 3. Interestingly, the
coefficient on the growth rate of GDP per capita declines while the coefficient on the interaction
term increases. This implies that the elasticity at the sample mean has declined over time as the
average income at the sample mean has increased. On the other hand, the difference in elasticities
for two countries at given different income levels has increased over time. But none of these
changes alters our main results.

The alternative spatial weighting matrix uses a distance-based rule to select neighbors rather
than a contiguity rule. The matrix design is described in the Appendix. We present the results
using the alternative spatial weighting matrix in Table 4. The differences in coefficient estimates
between those using the original contiguity matrix and this ”minimum distance neighbour” matrix
are minimal, although the impact of water resources and democracy are not found to be significant
in these alternative estimates. Based on these results, the coefficient estimates of our original
filtered results are robust.

4. Conclusions

In this paper, we examined the determinants of the growth rate of per capita energy use between
1971-2010 for a representative panel of developing and developed countries using a long-run growth
rates model, taking into account spatial dependence. We significantly extend the econometric
method of Anjum et al. (2014), by correcting for spatial dependence and by applying the approach
to the evolution of energy use rather than pollution emissions. We also extend the investigation
in Csereklyei et al. (2016) by integrating the different factors they consider into a single model.
The novelty of our approach is thus that it allows us to test the relative importance of growth,
decoupling, convergence, and other time related effects in a single equation framework, that is
robust to the presence of spatial autocorrelation.

Our key findings are that, over the examined period, the most robust driver of the growth of
energy use has been economic growth. There is no sign of decoupling of economic growth and
the growth of energy use at higher income levels. In fact the elasticity of energy with respect to
economic growth is greater in richer countries. However, there is a negative time effect in high
income countries and a positive time effect in low income countries. So we can accept the ”weak
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Table 3: Model Estimates with Spatial Filtering for Different Time Periods
Model 6: 1971-2010 Estimate Std. Error Model 6: 1981-2010 Estimate Std. Error

(Intercept) -0.0028 0.001 * (Intercept) -0.0029 0.001 **
g(Y/P) 0.8635 0.061 *** g(Y/P) 0.8486 0.063 ***
(Y/P)*g(Y/P) 0.2274 0.044 *** (Y/P)*g(Y/P) 0.2590 0.045 ***
Y/P -0.0070 0.002 *** Y/P -0.0079 0.001 ***
E/Y1971 -0.0191 0.002 *** E/Y1971 -0.0175 0.003 ***
FFE 0.0007 0.000 *** FFE 0.0009 0.000 ***
Democracy -0.0003 0.000 * Democracy -0.0006 0.000 **
H20 0.0010 0.000 ** H20 0.0013 0.001 **
SumT 0.0008 0.000 *** SumT 0.0007 0.000 ***
WinT -0.0004 0.000 *** WinT -0.0003 0.000 **
CPE -0.0033 0.003 CPE -0.0088 0.004 **
fitted(lagcol6)vec14 0.0293 0.006 *** fitted(lagcol6)vec7 -0.0197 0.011 *
fitted(lagcol6)vec21 -0.0283 0.006 *** fitted(lagcol6)vec14 0.0310 0.008 ***
fitted(lagcol6)vec23 -0.0272 0.008 *** fitted(lagcol6)vec23 -0.0281 0.013 **
fitted(lagcol6)vec29 0.0214 0.009 ** fitted(lagcol6)vec21 -0.0268 0.007 ***
fitted(lagcol6)vec9 0.0226 0.010 ** fitted(lagcol6)vec29 0.0288 0.011 **
fitted(lagcol6)vec8 -0.0144 0.006 *
Adjusted R2 0.832 Adjusted R2 0.739
Moran’s I stat. (p) 0.285 Moran’s I stat. (p) 0.167

Model 6: 1991-2010 Estimate Std. Error Model 6: 2001-2010 Estimate Std. Error

(Intercept) -0.0040 0.002 ** (Intercept) -0.0013 0.002
g(Y/P) 0.7835 0.096 *** g(Y/P) 0.6676 0.083 ***
(Y/P)*g(Y/P) 0.2560 0.056 *** (Y/P)*g(Y/P) 0.3028 0.068 ***
Y/P -0.0070 0.002 *** Y/P -0.0107 0.004 ***
E/Y1971 -0.0099 0.002 *** E/Y1971 -0.0117 0.004 ***
FFE 0.0004 0.000 FFE 0.0013 0.000 ***
Democracy -0.0005 0.000 Democracy -0.0008 0.001
H20 0.0011 0.001 H20 0.0017 0.001 *
SumT 0.0007 0.000 ** SumT 0.0005 0.000
WinT -0.0001 0.000 WinT -0.0002 0.000
CPE -0.0121 0.006 ** CPE -0.0124 0.008
fitted(lagcol6)vec7 -0.0304 0.011 ** fitted(lagcol6) -0.0624 0.017 ***
fitted(lagcol6)vec35 0.0378 0.011 ***
fitted(lagcol6)vec11 0.0254 0.003 ***
Adjusted R2 0.612 Adjusted R2 0.512
Moran’s I stat. (p) 0.185 Moran’s I stat. (p) 0.181

Note1: OLS estimates with eigenvector filtering 4 periods, & robust standard errors. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
Note2: E/Y1971 measures the energy intensity convergence, Democracy denotes the Polity values, FFE
the fossil fuel endowment of a country, H2O accounts for the freshwater reserves, SumT and WinT denote
summer and winter temperatures respectively, while CPE stands for centrally planned economies.
Note3: Moran’s I (p) gives the p-value of Moran’s I statistic for the residual of the estimated models.
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Table 4: Model Estimates with Spatial Filtering with 1.4 Minimum Distance Weights
Model 1 Estimate Std. Error Model 2 Estimate Std. Error

(Intercept) 0.003 0.002 * (Intercept) 0.002 0.002
g(Y/P) 0.548 0.090 *** g(Y/P) 0.622 0.105 ***
(Y/P)*g(Y/P) 0.032 0.057 (Y/P)*g(Y/P) 0.106 0.073
fitted(lagcol)vec20 0.047 0.022 ** dm_ypmean -0.002 0.001 *
fitted(lagcol)vec12 0.038 0.009 *** fitted(lagcol2)vec20 0.050 0.021 **
fitted(lagcol)vec2 -0.045 0.009 *** fitted(lagcol2)vec12 0.039 0.009 ***
Adjusted R2 0.446 fitted(lagcol2)vec2 -0.045 0.009 ***
Moran’s I stat. (p value) 0.339 Adjusted R2 0.453

Moran’s I stat. (p value) 0.260

Model 3 Estimate Std. Error Model 4 Estimate Std. Error

(Intercept) -0.001 0.001 (Intercept) -0.002 0.001
g(Y/P) 0.766 0.067 *** g(Y/P) 0.801 0.063 ***
(Y/P)*g(Y/P) 0.152 0.039 *** (Y/P)*g(Y/P) 0.191 0.046 ***
Y/P -0.008 0.001 *** Y/P -0.008 0.001 ***
E/Y1971 -0.016 0.002 *** E/Y1971 -0.017 0.002 ***
fitted(lagcol3)vec20 0.043 0.009 *** dm_avpolity 0.000 0.000
fitted(lagcol3)vec17 -0.041 0.010 *** fitted(lagcol4)vec17 -0.041 0.010 ***
fitted(lagcol3)vec2 -0.023 0.007 *** fitted(lagcol4)vec3 -0.019 0.008 **
fitted(lagcol3)vec3 -0.018 0.008 ** fitted(lagcol4)vec20 0.037 0.011 ***
fitted(lagcol3)vec12 0.013 0.006 ** fitted(lagcol4)vec2 -0.021 0.007 ***
fitted(lagcol3)vec35 -0.020 0.008 ** fitted(lagcol4)vec12 0.011 0.006 *
Adjusted R2 0.792 fitted(lagcol4)vec19 0.020 0.007 ***
Moran’s I stat. (p value) 0.231 Adjusted R2 0.792

Moran’s I stat. (p value) 0.205

Model 5 Estimate Std. Error Model 6 Estimate Std. Error

(Intercept) -0.003 0.001 * (Intercept) -0.002 0.001
g(Y/P) 0.837 0.064 *** g(Y/P) 0.852 0.057 ***
(Y/P)*g(Y/P) 0.218 0.038 *** (Y/P)*g(Y/P) 0.254 0.050 ***
Y/P -0.009 0.001 *** Y/P -0.007 0.001 ***
E/Y1971 -0.016 0.002 *** E/Y1971 -0.015 0.002 ***
FFE 0.001 0.000 *** FFE 0.001 0.000 ***
Democracy 0.000 0.000 Democracy 0.000 0.000
fitted(lagcol5)vec17 -0.027 0.009 *** H20 0.000 0.001
fitted(lagcol5)vec20 0.037 0.011 *** SumT 0.001 0.000 ***
fitted(lagcol5)vec2 -0.024 0.008 *** WinT -0.001 0.000 ***
fitted(lagcol5)vec12 0.016 0.006 *** CPE -0.012 0.003 ***
fitted(lagcol5)vec8 -0.018 0.002 *** fitted(lagcol6)vec21 0.028 0.009 ***
fitted(lagcol5)vec21 0.016 0.006 ** fitted(lagcol6)vec27 0.020 0.008 **
Adjusted R2 0.799 fitted(lagcol6)vec23 0.018 0.007 **
Moran’s I stat. (p value) 0.235 Adjusted R2 0.784

Moran’s I stat. (p value) 0.192

Note1: OLS estimates with eigenvector filtering, & robust standard errors. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
Note2: E/Y1971 measures energy intensity convergence, Democracy denotes the Polity values, FFE the fossil fuel
endowment of a country, H2O accounts for the freshwater reserves, SumT and WinT denote summer and winter
temperatures respectively, while CPE stands for centrally planned economies.
Note3: Moran’s I (p) gives the p-value of Moran’s I statistic for the residual of the estimated models.
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decoupling hypothesis” but not the ”strong decoupling hypothesis”. The beta convergence effect
is also very robust across our different model specifications. It has a net negative effect on the
growth of energy use in low income countries because some of these, such as China, were the
most energy intensive countries in our sample in 1971. Convergence actually has a small positive
effect on average in high income countries. But this varies a lot across countries. In Canada,
Luxembourg, and the United States, which were all very energy intensive in 1971, convergence
contributed -0.9%, -1.6%, and -1.0% p.a. to the growth rate of energy use according to our model.
We find that resource endowments, climate, and centrally planned status were all also significant in
shaping the dynamics of per capita energy use. Our results finding no apparent sign of decoupling
between economic growth and the growth of per capita energy use are in contrast with the results
of, among others, Jakob et al. (e.g. 2012), Lescaroux (2010), and Medlock and Soligo (2001), but
in line with the findings of Csereklyei et al. (2016). The empirical evidence on the significance
of beta convergence of energy intensity supports the findings of Liddle (2010), and Mulder and
de Groot (2012), but not of Le Pen and Sévi (2010).

Projections and forecasts of future energy use should not, therefore, assume that economic
growth will be associated with decreased energy use in the future. Instead, the scale effect seems
to be alive and well. On the other hand, there appear to be improvements in energy efficiency
across high income countries irrespective of their growth rates or their initial level of energy
intensity. These would tend to moderate the growth in energy use as countries get richer at the
upper end of the income continuum. At the lower end of the income continuum the same effects
serve to raise energy intensity. But, some of the major reductions in energy intensity in countries,
such as the United States and China, have probably been the result of convergence towards the
global mean, and so are unlikely to be reproduced in the future.
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A. Appendix

A.1. Data Sources

Our analysis is based on a balanced panel dataset for 93 countries covering the period 1971 to
2010. The countries included in our sample are Albania, Algeria, Angola, Argentina, Australia,
Austria, Bahrain, Bangladesh, Belgium, Benin, Bolivia, Brazil, Bulgaria, Cameroon, Canada,
Chile, China, Colombia, Congo, Costa Rica, Cote d’Ivoire, Cuba, Cyprus, Democratic Republic
of Congo, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Finland, France, Gabon,
Ghana, Greece, Guatemala, Haiti, Honduras, Hungary, India, Indonesia, Iran, Iraq, Ireland, Israel,
Italy, Jamaica, Japan, Jordan, Kenya, Korea, Lebanon, Luxembourg, Malaysia, Mexico, Morocco,
Mozambique, Nepal, Netherlands, New Zealand, Nicaragua, Nigeria, Norway, Oman, Pakistan,
Panama, Paraguay, Peru, Philippines, Poland, Portugal, Romania, Senegal, Singapore, South
Africa, Spain, Sri Lanka, Sudan, Sweden, Switzerland, Syria, Tanzania, Thailand, Togo, Trinidad
and Tobago, Tunisia, Turkey, United Kingdom, United States, Uruguay, Venezuela, Vietnam,
Zambia, and Zimbabwe.

Population and real income per capita adjusted for purchasing power parity between 1971 and
2010 were sourced from the Penn World Table, Version 7.1. (Heston et al., 2012). To ensure
working with a balanced panel, we excluded a number of Eastern-European and Middle-Eastern
countries, where data was not available for the entire period. However these geopolitical regions
are still represented by a few countries, such as Albania, Bulgaria, Hungary, Poland and Romania
in Eastern Europe; and by Algeria, Bahrain, Iran, Iraq and Oman in the Middle-Eastern and
North-African region. Primary energy consumption data originate from the International Energy
Agency database and is measured in TJ, and includes coal, oil, natural gas, primary electricity,
and biomass.

We calculate the long-run growth rates as interval differences, using the natural logarithm of
the level variable in 2010 less the natural logarithm of the level variable in 1971 divided by T-1,
in our case 39. The long-run growth rate of per capita energy use was gained thus by:

g(E/P ) =
lnE/P2010 − lnE/P1971

39
(12)

We applied the same method to the growth rate of real income per capita ”g(Y/P)”.
Freshwater resources (H2O) per capita are sourced from the World Development Indicators.

Data is available at five-year intervals over the period from 1972 to 2007. We average the available
data over time, add one and log it for the regressions. Average monthly temperatures from 1960
to 1990 were available from Mitchell et al. (2002). Summer temperatures are gained by averaging
the values for the three summer months from June to August in the Northern Hemisphere and
December to February in the Southern Hemisphere. Resource endowments (FFE) are calculated
as in Anjum et al. (2014) by multiplying Norman’s (2009) ratio of the value of fossil fuel reserves
to GDP in 1971 by GDP per capita at market exchange rates in 1971 (World Bank) to gain the
value of per capita fossil fuel endowments in 1971. We use the Polity2 variable from the Polity
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IV database (Marshall et al., 2014) as an indicator of the level of democracy. This variable scores
regimes from 0 to 10 on a democracy scale and 0 to 10 on an autocracy scale and then subtracts
the autocracy score from the democracy score.

We demeaned most of the levels variables in the regressions, including the natural log of energy
intensity in 1971, summer and winter temperatures, resource endowments, average democracy
values, and the mean of the log of real GDP per capita. The growth rates of the variables are not
demeaned, including when they are interacted with the demeaned level variables. To construct
the instruments discussed in Section 2, we use the data assembled by Paul Burke (Burke, 2012)
data on the shares of a country’s exports going to each export partner.

A.2. Spatial Weighting Matrices

We constructed the contiguity matrix used in the original spatial analysis as follows: First we
build a contiguity matrix with zero entries for pairs of countries that are not neighbors, and ones
for pairs of countries that are neighbors. In our definition all countries that share land borders
are neighbors. These land borders also include borders on lakes such as between DR Congo and
Tanzania. For all countries without a land border with any country in our dataset we judged
which country is its nearest neighbor. As an example, Australia’s nearest neighbor is Indonesia.
New Zealand’s nearest neighbor is Australia. As a result, Australia has two neighboring countries.
New Zealand has only one. Indonesia also shares a land border with Malaysia. As Singapore is
nearer to Malaysia than to Indonesia and is connected by road to Malaysia, Singapore is not
deemed a neighbor of Indonesia. The United Kingdom and Ireland share a land border and so
each only has one neighbor. The diagonal entries are all zero and this matrix is symmetric. We
then row-normalized the matrix so that each row sums to unity.

The choice of the spatial weighting matrix might influence the emergence and identification
of common spatial patterns. Therefore, as a robustness check, we also created an alternative
weighting matrix. For this matrix, we use a distance-based rule to select neighbors. All countries
whose centroid lies within a given distance of a country are considered to be neighbors of the latter
country. However, if all countries must have at least one neighbor, and we use a uniform distance
to select neighbors then the cutoff distance has to be over 4000km in order to allow New Zealand
to have a neighbor. But this would mean that, for example, that Switzerland is a neighbor to all
countries as far away as Jordan. Therefore, our rule allows the distance to vary by country size.

We first computed the distances between all countries using the Spherical Law of Cosines. The
distance between two countries i and j is given by:

dij = acos(sin(ϕi)sin(ϕj) + cos(ϕi)cos(λj − λi))r (13)

where ϕ is latitude and λ is longitude in radians and r is the radius of the Earth.
Latitudes and longitudes are the country centroids taken from the CIA World Factbook
(https://www.cia.gov/library/publications/the-world-factbook/fields/2011.html). Next we found
each country i’s nearest neighbor in terms of the distance between the two country centroids. The
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distance between these two countries is δi. All country centroids that fall within 1.4δi of country i’s
centroid are then considered neighbors. We chose the factor 1.4 so that the number of countries
neighboring each other was similar to that in the matrix in the main analysis. There are still
many differences between the two matrices, including 21 countries with fewer, and 45 countries
with more spatial links. For example, countries in Latin American countries such as Brazil, Peru,
Bolivia, Argentina, Chile, or Colombia have considerably fewer neighbors while many countries
in Africa and the Middle East have moderately more neighbors. In the extreme, Brazil and Peru
have 5 and 4 fewer neighbors, respectively, and Egypt and Lebanon have 3 and 5 more neighbors,
respectively. The contiguity matrix has on average 2.4 neighbors per country. The alternative
”minimum distance neighbor matrix” with a 1.4 distance factor has 2.7 neighbors per country on
average. The mean absolute difference in number of neighbors for each country is 1.1.
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