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A one-dimensional particle-in-cell code using Monte Carlo collision techniquessMCC/PICd for both
ions and electrons is used to simulate our earlier experimental results which showed that a
current-free electric double layersDLd can form in a plasma expanding along a diverging magnetic
field. These results differ from previous experimental or simulation systems where the double layers
are driven by a current or by imposed potential differences. Both experiment and simulation show
accelerated ions with energies up to about 60 eV on the low potential side of the plasma. A new
numerical method is added to the conventional PIC scheme to simulate inductive electron heating,
as distinct from the more common capacitively driven simulations. A loss process is introduced
along the axis of the simulation to mimic the density decrease along the axis of an expanding plasma
in a diverging magnetic field. The results from the MCC/PIC presented here suggest that the
expansion rate compared to the ionization frequency is a critical parameter for the existence of the
DL. For the DL to be absolutely current free, the source wall has to be allowed to charge: having
both ends of the simulation at the same potential always resulted in a current flow. Also, the effect
of the neutral pressure and of the size of the diffusion chamber are investigated. Finally we show
that this particular type of DL has electrons in Boltzmann equilibrium and that it creates a
supersonic ion beam. ©2005 American Institute of Physics. fDOI: 10.1063/1.1897390g

I. INTRODUCTION

An electric double layersDLd is a narrow localized re-
gion in a plasma which can sustain a large potential
difference.1 Alfven suggested about 50 years ago that DLs
could be responsible for the acceleration of electrons onto
the upper atmosphere creating the visible aurora.2 This hy-
pothesis was then confirmed by later measurements within
the aurora region.3,4 Since then, this phenomenon has been
studied experimentally,5–14 theoretically,15–17 and by com-
puter simulation.18–21However, it is important to note that in
most of these cases, the DL requires the presence of an elec-
tron current. If not it is generally imposed by a potential
difference or by two different electron temperatures.

Perkins and Sun suggested over 20 years ago, by an
analytical study, that a current-free double layer could
exist.22 A number of papers followed showing ion accelera-
tion in expanding current-free plasmas,23–26but no clear evi-
dence of double-layer formation was shown. Their existence
had not been clearly experimentally verified until quite re-
cently: Charles and Boswell27–29 have shown that a DL can
be created in a current-free plasma expanding in a diverging
magnetic field. These results have been later confirmed by
similar experiments.30,31The existence of current-free double

layers would free theoreticians of the need to find a current
closure condition and would open the possibility of postulat-
ing a nonlinear field aligned dissipation mechanism. Such a
mechanism would be of great help in explaining phenomena
associated with solar chromospheric expansion, etc.32,33

The current-free DL experiment was performed in a
horizontal helicon system,Chi-Kung,27–29shown in Fig. 1. It
consists of a 15 cm diameter, 31 cm long helicon source
joined contiguously to a 32 cm diameter, 30 cm long
grounded aluminum diffusion chamber. Two solenoids
around the source are used to create a magnetic field of about
130 G in the source center which decreases to a few tens of
gauss in the diffusion chamber. The current-free DL can be
generated for pressures less than about 1 mTorrsRef. 27d and
a supersonic ion beam has been measured downstream of
this DL both for argon29 and hydrogen28 discharges.

Although DLs driven by currentssor imposed potential
differencesd have been studied by computer simulation since
the early 1970s,19,20 the simulation described here is, to the
best of our knowledge, the first numerical attempt to gener-
ate a current-free DL in an expanding plasma.

Particle-in-cellsPICd is a purely kinetic representation of
a system containing ions and electrons, considered as indi-
vidual particles, which move under the influence of their
own self-consistent electric field.34–37 In other words, PIC
simulations use the first principlessPoisson’s equation and
Newton’s lawsd only. Each particle of the simulation is actu-
ally a macroparticle which is allowed to represent a large
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number of real particlesson the order of 109 or 1010 particles
per macroparticle per square meterd and which can move
inside the simulated domain. With a small number of these
macroparticlesftypically between 104 and 105 for a one-
dimensionals1Dd systemg, a realistic steady-state plasma can
be obtained in a few hours on a modern desk top computer.

The particular PIC simulation developed here consists of
a bounded one-dimensional plasma where a planar geometry
is assumed. The potential of the left wall floats, whereas the
right wall is grounded to respect the experimental setupsFig.
1d. The left wall is allowed to float by placing a capacitor in
series with the plasma. Even if the simulation is one-
dimensionalsthe position of the particles is resolved along
thex axisd, the collisions are modeled with three dimensions
of velocities, hence the model is called 1D-3V. Our code,
which is calledJanuS, implements the Monte Carlo collision
sMCCd model, including thenull collision38 method, devel-
oped by Vahedi and Surendra,39 and handles electron-neutral
collisions selastic, exciting, and ionizingd and ion-neutral
collisions scharge exchange and elasticd. High energy
electron-neutral collision scattering angles are very small
sforward scatteringd, whereas low energy electron-neutral
collisions are isotropic. At high energysmore than 1 eVd
ion-neutral charge exchange collisions are predominant and
are anisotropic in the center-of-mass frame. At low energy,

ion-neutral elastic collisions are dominant and are isotropic
in the center-of-mass frame.

II. SIMULATION OF AN “INDUCTIVELY” HEATED
PLASMA

One-dimensional PIC simulations are commonly con-
cerned with capacitive coupling, where a rf voltage of some
hundreds of volts is applied to one of the boundaries. This
mechanism has been thoroughly studied40–42 and creates a
moving sheath that heats the electrons. The drawback of this
process is that it leads to an average rectified plasma poten-
tial that is in the order of half the rf amplitude. Our aim is to
study a potential drop of only a few tens of voltssSec. IIId,
which is extremely small compared to the rectified potential
from a capacitively heating process. Hence, it is inappropri-
ate for the present study. Therefore, we have developed a
mechanism to heat the electrons differently. The “new” heat-
ing mechanism is described below in detail and a study of its
effects is conducted in a nonexpanding plasma to show that it
does not introduce any noticeable pathologies in the plasma
potential or in the electron transport.

A. Electron heating model

This scheme is intended to model “inductive” excitation,
but without solving electromagnetic field equations. In addi-
tion to avoiding the rf excursions of the potential in the
plasma introduced by a capacitive coupling, the “inductive”
scheme was considered to be closer to the experimental con-
ditions than other possible algorithms: an rf electric fieldsEyd
of v0/2p=10 MHz is applied in the source region in the
direction normal to the PIC axissFig. 1d. Note that a fre-
quency of 10 MHz was used in this work in order to have a
finite number of time steps per rf cycle and to be close to the
frequency used in the laboratory experimentss13.56 MHzd.
The electric field amplitude was chosen not to be constant in
time to avoid electron overheating: with a constant electric
field amplitude the work done by the electric field would
depend on the electron density and would eventually lead to
an unstable simulation. Therefore, the current density ampli-
tude sJ0d was chosen to be the control parameter that fixes
the electric field amplitude and was chosen to be uniform in
the source region. The total current density at each point of
the source region is then

Jtotal = Jdisplacement+ Jconduction, s1d

Jtotal = J0 sinsv0td = e0
]Ey

]t
+ eGe,y, s2d

whereGe,y is the electron flux along they axis and is equal to

Ge,y = neve,y =
Ns

Lsource
o

i[source
ve,y,i , s3d

where ve,y is the average electron velocity alongy in the
source region,ve,y,i they velocity component of theith elec-
tron, Ns the weight of a macroparticle per square meter, and
Lsource the length of the source. Equations2d is then inte-
grated over the source region

FIG. 1. Experimental and numerical setup.sad Schematic ofChi-Kung a
horizontal helicon systemsRefs. 27–29d. sbd one-dimensional numerical
model of an expanding plasma. In bothsad andsbd, the electrons are heated
in the source region, i.e., upstream. Insbd, this is done by a uniform rf
electric field at 10 MHz perpendicular to the resolution axis of the simula-
tion. The plasma expands in the diffusion chamber, i.e., downstream. Insad,
this is obtained by an expanding magnetic field, while insbd, the on-axis
expansion is modeled by a loss process that removes charged particles at a
given loss frequency.
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E
source

Jtotaldx= LsourceJ0 sinsv0td, s4d

E
source

Jdisplacementdx= Lsourcee0
]Ey

]t
, s5d

E
source

Jconductiondx= eNs o
i[source

ve,y,i , s6d

and rearranged into

]Ey

]t
=

1

e0
FJ0 sinsv0td −

eNs

Lsource
o

i[source
ve,y,iG . s7d

The perpendicular electric fieldEystd is evaluated using the
finite difference corresponding to Eq.s7d and the previous
time-step valueEyst−1d.

Note that we have chosen to make the heating process
anisotropic and act only on they axis instead of being iso-
tropic in the plane perpendicular to thex axis. An advantage
of this scheme is that the computational cost is compara-
tively low and since the simulation handles electron-neutral
collisions in three dimensions, the momentum and energy
given to the electrons in they direction are eventually trans-
ferred sat least partiallyd to the other directions. In other
words, if the electron-neutral collisions are “turned off” in
the simulation, this heating process is ineffective.

B. Study of the effects of the heating mechanism

In order to test the perturbations introduced by our new
heating technique, a set of simulations was conducted where
the heating region was localized in the left half of the system
s0–5 cmd and where no expansion process was appliedsSec.
III d.

Figure 2 shows the different positions of the heating pro-
cess tested in the simulation. A neutral pressure of 1 mTorr
and an electron density of 231015 m−3 were used. The cur-
rent density in the heating mechanism was 100 A/m2 and
the rf frequency was 10 MHz. Figure 3 shows that the
plasma potential is little affected by the position of the heat-
ing region. Indeed, for relatively large source regions, e.g., a
quarter of the system, the profile of the plasma potential is
not noticeably affected: the potential is the same in the dif-
fusion chamber and in the source. However, if the heating

region is sufficiently small, the plasma potential is somewhat
higher on the side of the heating region, which is shown by
the dotted line.

The effect on the plasma potential of pressures from 0.5
mTorr to 5 mTorr and where the heating source is located
only in the first quarter of the simulationfFig. 2, casesbdg is
shown in Fig. 4. The solid and dashed lines represent the
plasma potential for 0.5 mTorr and 1 mTorr, respectively.
Despite the fact that the heating source is located in the first
quarter of the simulation, the plasma diffuses sufficiently that
the potential is uniform in the source and the diffusion cham-
ber. For higher pressures, e.g., 5 mTorrsdotted-dashed lined,
the plasma does not diffuse as much, the plasma potential is
therefore affected and it is higher in the source region than in
the diffusion chamber, which is presumably due to the elec-
tron temperature decreasing away from the source.

Here we study how the heating source, localized in the
left-hand side of the simulationfFig. 2, casesadg affects the
electron transport for a neutral pressure of 1 mTorr. Figure 5
shows the logarithm of the electron velocity distribution as a
function of the electron energy at different positions. The
logarithm of the electron distribution can be linearly fitted
for energies up to 20 eV with an average relative error on the
fit of less than 1%. In other words, the percentage of Max-

FIG. 2. Illustration of the heating process in the simulation, where the gray
areas represent the different heating regions studied.

FIG. 3. Steady-state plasma potential profiles along the axis of the simula-
tion; the heating positions are shown in Fig. 2.

FIG. 4. Steady-state plasma potential profiles along the axis of the simula-
tion for different neutral pressures. The heating region is located in the first
quarter of the system, from 0 to 2.5 cm, Fig. 2sbd.
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wellian electrons in the bulk is more than 99%. The spatially
resolved electron distribution shows that the distribution is
uniform in the bulksuniform temperatured despite the local-
ized heating region.

In summary, we have shown that the source position and
extent do not have any particular effect on the plasma poten-
tial and the electron transport for pressures below 1 mTorr.
The small percentage of electrons with energy higher than
the bulk are not Maxwellian. Their evolution and energy
where they join the bulk electrons is currently being studied
in depth and will be presented in a future publication.

III. SIMULATION OF AN EXPANDING PLASMA

A. Plasma expansion model

Seen from the axis, the expansion of a plasma in a di-
verging magnetic field can be considered as a process in
which particles are removed from the system at a given fre-
quency snlossd which depends on their position, where the
loss frequency is the probability of removing a particle from
the simulation per unit of time. This loss process produces an
axial decrease in the plasma density and an associated poten-
tial drop. Figure 1, casesbd, shows one of the loss-process
profiles which has been investigated: particles are removed
more or less suddenly with a given frequency from the be-
ginning of the diffusion chamberssudden expansion due to
the magnetic field and/or the geometry of the plasma source/
diffusion chamber systemd and then the loss frequency is
constant or decreasing when moving in the direction of the
right wall sequivalent to a constant volume and a less diver-
gent magnetic fieldd. A more realistic method would have
been to carry out a full two-dimensional PIC with magnetic
field but for us this would have been prohibitively expensive
in both computers and run time. Nevertheless, we show be-
low that the loss algorithm produces density and potential
profiles in our 1D PIC which are quite similar to the experi-
mental results.

B. Study of the influence of different parameters

In this section, we study the influence of the expansion
rate and profile, the size of the diffusion chamber, and the
neutral pressure. The results presented here were obtained
using the set of standard conditions given in Table I.

1. Development of the steady state

The simulation is initiated by loading a certain number
of macroparticlesselectrons and ionsd between the floating
left wall and the earthed right wall. After the loading, the
simulation evolves in time and space and if the conditions of
stability and accuracy of the PIC simulation are
respected,36,37 a steady state is eventually reached.

Figure 6 shows the density and potential profiles of a
current-free DL obtained with a loss frequency slightly
greater than the creation frequencysi.e., ionization fre-
quencyd for the standard parameters. Note that the plasma

TABLE I. Standard parameters of the simulation.

Quantity Value

Neutral pressure 1 mTorr

Electron density 631014 m−3

rf frequencysv0/2pd 10 MHz

Current density amplitudesJ0d 100 A/m2

System length 10 cm

Cell number 250

Total duration 25ms

Time step 5310−11 s

Macroparticle weightsNsd 43109 m−2

Ion masssargond 6.68310−26

Room temperature 297 K

Capacitance 22 nF

FIG. 5. Electron velocity distributionslog scaled as a function of the elec-
tron energy at different axial positions in the plasma.

FIG. 6. Typical PIC simulated double-layer profiles:sad steady-state elec-
tron density andsbd steady-state plasma potential as a function of the axial
position.
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density and potential profiles are averaged over 10 rf cycles
and given with respect to the grounded wall. The electron
density decreases by an order of magnitude when passing
from the source regionsupstream plasmad to the diffusion
chambersdownstream plasmad. A charging of the source of
about 10 V is obtained. The potential drop associated with
the density drop is 12 V. Within the DL, the neutrality of the
plasma breaks down, and the upper and lower limit of the
non-neutral region were used to precisely determine the po-
sition of the DL and evaluate the density and potential drop.
Commonly, DLs are characterized by the ratioeFDL /kTe and
the thickness over which the potential drop occurs. In this
caseeFDL /kTe,2.7 swhereTe is average “Boltzmann” tem-
perature obtained in Sec. III C 1d. The DL thickness is less
than 20 Debye lengths.

Here we show that an adaptation to our case of the clas-
sical derivation of the sheath potentialsRef. 42, p. 160d is in
good agreement witheFDL /kTe measured above. LetDG be

DG = Ge − Gi , s8d

where Ge and Gi are the electron and ion fluxes through a
plane located at the downstream edge of the DL, respec-
tively. The ions are assumed collisionless in the DL since the
mean free path for these conditions is<3 cm, which is much
larger than the DL thickness. The ions are supposed to enter
the sheath with the sound speed velocitysalso called Bohm
velocityd

cs =ÎkTe

mi
, s9d

wheremi is the ion mass. The ion flux is then given by

Gi = ancs, s10d

with n being the downstream density andan the upstream
density. The electrons are assumed to be Maxwelliansdis-
cussed in Sec. III C 1d and their net flux is given by the sum
of the flux coming from the upstream side and the flux com-
ing from the downstream side:

Ge =
1

4
nveFa expS−

eFDL

kTe
D − 1G , s11d

with

ve =Î8kTe

pme
s12d

and FDL the potential drop. By substituting Eqs.s10d and
s11d into Eq. s8d and rearranging, we obtain

eFDL

kTe
= − lnSg +Î2pme

mi
+

1

a
D , s13d

whereg is the ratio between the net current and the upstream
electron current, given by

g =
DG

Ge,upstream
=

DG

1

4
anve

. s14d

In the present case, the double layer is current freeswhich
will be discussed laterd, hence, there are equal fluxes of ions
and electrons,g is therefore equal to zero. In addition, for
aø100, Eq.s13d can be approximated to

eFDL

kTe
, ln a. s15d

On the other hand, whena becomes infinite, that is to say
when there is no downstream plasma, the asymptote of Eq.
s13d is the classical wall sheath potential, whereeFDL /kTe

,4.7 for argon. For the DL shown abovesFig. 6d, a=15,
which leads to a ratioeFDL /kTe=2.7, which is in very good
agreement with the value measured in the simulation and the
experiment.27

2. Study of the influence of expansion profile

Experimentally, Charles and Boswell have shown that
the magnetic field is a critical parameter concerning the ex-
istence of the DL.27 In our model, the shape and the ampli-
tude of the loss process are directly related to the magnetic
field of the experiment. Therefore, the influence of the loss
process is a parameter which has to be studied in detail.

FIG. 7. Illustration of the different expansion rate, i.e., loss frequency ap-
plied in the simulation. The source region is located in the first half of the
system, the loss process in the second half.sad nloss=0. sbd nloss=104 s−1. scd
nloss=105 s−1. sdd nloss=106 s−1.

FIG. 8. Electron density as a function of the axial position, obtained for the
different loss frequencies shown in Fig. 7, at a pressure of 1 mTorr.
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A series of simulations was performed with the standard
parameters having different loss frequencies varying from 0
to 107 s−1 sFig. 7d and for different pressuress0.1, 1, and 10
mTorrd. Figures 8 and 9 show that no DLsi.e., no dramatic
density or potential dropd is created for frequencies below a
certain thresholdsdiscussed in detail belowd. Figure 9 shows
that the plasma potential does not drop for a loss frequency
of 104 s−1 sdashed lined and that it drops slightly for 105 s−1

sdotted-dashed lined. For a loss frequency of 106 s−1 sdotted
lined a potential drop around 12 V is observed over a distance
of about 20 Debye lengths. To explain the sudden appearance
of the DL above the critical threshold, the potential drop was
studied as function of the loss frequency, normalized to the
ionization frequency for different pressures with the ioniza-
tion frequency being determined by

nion = nnksvl = nnR, s16d

wherenion is the ionization frequency,nn the neutral density,
s the ionization cross section,v the electron velocity, andR
the rate coefficient. The temperatures, the rate coefficients,
and the corresponding ionization frequencies for the different
pressures are given in Table II. Figure 10 represents the po-
tential drop as a function of the loss frequency normalized to
the corresponding ionization frequency for different pres-
sures. For loss frequencies smaller than the ionization fre-
quency, no potential drop is created. However, if the loss
frequency is of the order of or greater than the ionization
frequency then a potential drop proportional to the logarithm
of the loss frequency is created.

A series of simulations was performed with the standard
parameterssTable Id to study the importance of the charging
of the source on the current-free double layer. Figure 11

shows the steady-state source end wall potential when the
boundary is allowed to chargesfloating boundary conditiond
for different loss frequenciessnormalized to the ionization
frequencyd and pressures. When the loss frequency is smaller
than the ionization frequency, the source does not charge up,
but, when the loss frequency becomes the order of or greater
than the ionization frequency, the source wall charges up to a
few volts.

The plasma potential obtained for identical parameters is
shown in Fig. 12. The source end wall is floating in one case
sdashed lined, while it is grounded in the other casessolid
lined. For both cases the profiles and potential drops are very
close. However the sheath on the right boundary is very low
for the grounded source end wall casessolid lined, which
indicates that the electrons are not confined as much as in the
floating source end wall case and that an electron current
may flow. A diagnostic on both boundaries shows that in the
floating source end wall case there is no current flowing
through the system, the DL is current free. By assuming that
the temperature is uniform in the system, the electrons are in
Boltzmann equilibriumswhich is discussed in Sec. III C 1d,
and the ions enter the left sheath at the sound velocity and
the right sheath at an average velocity ofvi, we can show
why the wall charges up to the potentialFw. If a is the

TABLE II. Electron temperaturessTed, rate coefficientssRd and ionization
frequenciessviond, for different neutral pressuressPd, the other parameters
being constant.

P smTorrd 0.1 1 10

Te seVd 38 6 4

Rs310−15 m3/sd 100 5 1

nions3105 Hzd 3.3 1.6 3.3

FIG. 9. Plasma potential as a function of the axial position, obtained for the
different loss frequencies shown in Fig. 7, at a pressure of 1 mTorr.

FIG. 10. Double-layer potential drop as a function of the loss frequency.

FIG. 11. Potential of the source end wall at 0 cm, as a function of the loss
frequency.
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upstream and downstream density ratio, the flux conserva-
tion equations at the boundaries and downstream of the DL
fEq. s15dg lead to

eFw

kTe
, lnSa

cs

vi
D ø

efDL

kTe
. s17d

If both walls are grounded, a small electron current flows
through the system from the source to the diffusion chamber.
For a pressure of 1 mTorr, an average electron density of 7
31014 m−3 and a loss frequency of 106 s−1, the measured
current density averaged on 7.5ms is 0.21 A/m2. The term
g, introduced in Eq.s13d, has in this case a finite value, but
it is still an order of magnitude less than 1/a. Therefore its
contribution to the potential drop is negligible: the DL is not
current free anymore, although the DL is not driven by this
current.

As we are artificially creating a particle loss to mimic the
expansion of the plasma in a magnetic field, it is important to
investigate the length scale over which the loss frequency
rises to its maximal valuesi.e., the expansion lengthd. Fig-
ures 13 and 14 the electron density and the plasma potential
for the different spatial expansion lengths as shown in Fig.
15. For the finite expansion lengthsfcasessbd, scd and sddg,
the thickness of the DL corresponds to the actual expansion

length. On the other hand, it is interesting to note that despite
a null expansion lengthfcasesadg, the DL has a finite thick-
ness of<20 Debye lengths. Despite an extensive investiga-
tion, the thickness of the DL could not be reduced further.

In summary, the study of the loss-process parameters has
shown that both, the amplitude and the profile of the expan-
sion ratesrelated to the magnetic field and/or to the geometry
of the plasma reactor in the experimentd are critical param-
eters concerning the existence of the DL. In addition, we saw
that the double layer we create in an expanding plasma is
current free when the source end wall is floating. These re-
sults differ from previous experimental13,43 or simu-
lation19–21systems in which the DL is driven by a current or
imposed by a potential difference.

3. Study of the influence of the length of the diffusion
chamber and the neutral pressure

Figures 16 and 17 show the electron density and the
plasma potential profiles for different right wall positions as
shown in Figure 18sfrom 2.5 cm to 10 cm from the DLd.
First, it is interesting to notice that the position of the DL is
not affected by the position of the right grounded wall. Sec-
ond, the nonsolid lines in Fig. 17 show that, if the right wall
is far enough from the DL, i.e., a few ion mean free paths,

FIG. 12. Plasma potential profile as a function of the axial position. The
solid and dashed lines represent the grounded and floating source end wall,
respectively.

FIG. 13. Illustration of the different expansion lengthsi. e., loss profiled
studied in the simulation. The loss frequency is null in the source.sad The
loss frequency jumps suddenly to its maximal values106 s−1d. sbd The loss
frequency reaches its maximal value after 2 cm from the beginning of the
diffusion chamber.scd After 3 cm. sdd After 5 cm send of the diffusion
chamberd.

FIG. 14. Electron density as a function of the axial position, obtained for the
different loss profiles shown in Fig. 13.

FIG. 15. Plasma potential as a function of the axial position, obtained for
the different loss profiles shown in Fig. 13.
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then its position does not seem to have any influence on the
potential profile: the wall was even moved 50 cm away from
the DL, and the plasma potential as well as the potential drop
did not present any significant differences. By extrapolation,
we can suppose that the right wall can be moved away from
the current-free double layer indefinitely without changing
its properties. On the other hand, if the right wall is close
enough from the DLsless than an ion mean free pathd, then
the average velocity of the ions entering the sheathfvi, in-
troduced in Eq.s17dg is greater than the sound speed, which
is due to the ions accelerated through the DLsSec. III C 2d.
As a consequence of the current-free condition, and as is
shown by Eq.s17d, havingvi ùcs produces a decrease of the
left wall potential sFwd, and therefore a decrease of the
whole potential profile. This is visible by the solid line in
Fig. 17, where the whole plasma potential profile is shifted
down by a few volts with respect to the other profiles.

The evolution of the potential drop as a function of the
neutral pressure is shown in Fig. 19. Both, the downstream
and upstream plasma potentials are maximum for a neutral
pressure of 0.2 mTorr, but the maximal potential drop for the
DL occurs for a neutral pressure of 0.1 mTorr. When the
pressure is increased, the potential drop decreases slightly.
However, above 1 mTorr, the potential drop starts increasing
again, and this is presumably an artifact of the localized heat-
ing mechanism: Recall from Sec. II B that, above a few mil-
litorrs, the plasma potential is higher on the side of the heat-
ing region than on the other side. In other words, above a
few millitorrs, the heating process starts having a significant

effect on the properties of the DL. However, in the pressure
range that was simulated, the potential drop seems to be
weakly dependent on the neutral pressure.

C. Particle transport in the current-free double layer

1. Maxwell-Boltzmann electrons distribution

The electron velocity distribution has been determined
along the length of the simulation and most of the electrons
supstream and downstream of the double layerd are Maxwell-
ian. In all cases an upstream electron beam has not been
observed, despite extensive attempts to measure such a phe-
nomenon. The downstream temperature is slightly less than
the upstream one: the average upstream temperature being
5.8 eV, while 5.6 eV for downstream. A more detailed study
of the electron distribution and the temperature is presently
being conducted.

The electron density can be expressed as a function of
the plasma potential for the electrons which are in Boltz-
mann equilibrium:

ne = n0 exp
eF

kTe
, s18d

where ne is the electron density,n0 the electron reference
density where the potential is null,F is the plasma potential,
andTe the electron temperature. For such electrons, the plot

FIG. 16. Illustration of the different diffusion chamber sizes studied in the
simulation: the right boundary is moved from 2.5 cm from the DL to 10 cm
from the DL.

FIG. 17. Electron density as a function of the axial position, obtained for the
different right wall positions shown in Fig. 16.

FIG. 18. Plasma potential as a function of the axial position, obtained for
the different right wall positions shown in Fig. 16.

FIG. 19. Double-layer potential drop as a function of the neutral pressure.
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of the natural logarithm of the electron density as a function
of the plasma potential is a straight line, the slope of which
yields the electron temperature. Figure 20 shows the natural
logarithm of the electron density as a function of the plasma
potential for a DL obtained under the standard parameters
sTable Id and for a loss frequency of 106 s−1. Two distinct
parts are noticeable and obviously linear, where two linear
fits are obtained with an average relative error of less than
0.5% for each one. This shows that the electrons are in Bolt-
zmann equilibrium everywhere in the system, even across
the DL. However, two electron populations coexist: a hot
population upstream and within the DL, with a temperature
of 5.2 eV, and a colder population downstream of the DL,
with a temperature of 3.9 eV. This result is quite important
and different from earlier studies: although several experi-
mental DLs have shown two different electron temperatures,
in addition to their current-driven nature, they generally
present an upstream electron beamsfree electronsd and do
not show any clear evidence of Boltzmann electrons.8,44,45It
has been known that the charged particles associated with
previous laboratory generated DLs may be classified into
four types: free electrons, free ions, trapped electrons, and
trapped ions. In general, three of these are sufficient to main-
tain a DL.44 It is interesting to note that although the simu-
lation shows a downstream ion beamsfree ions, Sec. III C 2d,
no upstream electron beamsfree electronsd has been detected
despite extensive investigation. This result confirms that this
type of DLs has electrons in Boltzmann equilibrium, which
is rather different from the DLs which are generally simu-
lated or are at the origin of electron acceleration in the aurora
and suggests that the present DL is a different phenomenon
to those previously studied.

2. Supersonic ion beam

Figure 21 represents the ion velocity distribution in
phase space, where thex axis represents the position and the
y axis the ion velocity. Increased brightness indicates in-
creased density. Throughout the simulation length, we ob-
serve a low energy population of ions, which corresponds to
the ions created by ionization and charge exchange colli-
sions. Downstream of the DL a high energy population can

be seen, which corresponds to the ions accelerated while
traversing the potential drop of the DL. The density of this
ion beam decreases away from the DL as a result of ion-
neutral collisionsscharge exchange and elastic collisionsd
and of the loss process which removes fast particles as well
as slow particles, as seen in Fig. 21sbd. The sound speedcs in
argon for an electron temperature of 5.8 eVsupstream effec-
tive temperatured is 3.7 km/sfEq. s9dg. Figure 21sad shows
that there is a presheath upstream of the DL that accelerates
the ions up to the sound speed. As soon as the ion flow
becomes supersonic, the DL appears and the ions are then
accelerated up to twice the sound speedsthe average velocity
of the ion beam is 8.1 km/sd after less than 20 Debye lengths.
The DL appears to be a detached sheath that behaves like a
normal wall sheath.

IV. CONCLUSION

In this paper we have shown that a DL can be formed in
a 1D-3V simulation of an expanding plasma. A new heating
mechanism for 1D PIC simulation has been introduced and
has shown that it does not introduce any noticeable patholo-
gies in the spatial distribution of the plasma potential or the
electron transport. The expansion ratesi.e., loss frequencyd
has been shown to be a critical parameter concerning the
formation of the DL. This particular DL is current free and
has electrons in Boltzmann equilibrium, which is rather dif-
ferent from all the DLs which have been simulated before.
Finally we showed that the DL generates a supersonic ion
beam.
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