
3D SOUND FIELD ANALYSIS USING CIRCULAR HIGHER-ORDER MICROPHONE ARRAY

Hanchi Chen, Thushara D. Abhayapala, and Wen Zhang

Research School of Engineering, CECS, The Australian National University, Canberra, Australia

Email:{hanchi.chen, thushara.abhayapala, wen.zhang}@anu.edu.au

ABSTRACT

This paper proposes the theory and design of circular higher-order

microphone arrays for 3D sound field analysis using spherical har-

monics. Through employing the spherical harmonic translation the-

orem, the local spatial sound fields recorded by each higher-order

microphone placed in the circular arrays are combined to form the

sound field information of a large global spherical region. The pro-

posed design reduces the number of the required sampling points

and the geometrical complexity of microphone arrays. We develop a

two-step method to calculate sound field coefficients using the pro-

posed array structure, i) analytically combine local sound field co-

efficients on each circular array and ii) solve for global sound field

coefficients using data from the first step. Simulation and experi-

mental results show that the proposed array is capable of acquiring

the full 3D sound field information over a relatively large spherical

region with decent accuracy and computational simplicity.

Index Terms— Microphone arrays, higher-order micro-

phones, spherical harmonics

1. INTRODUCTION

Analyzing and controlling sounds over large regions of space

has become an important problem in practice with a broad

range of applications, such as security and surveillance sys-

tems, environment monitoring, active noise cancellation, and

3D audio rendering. Existing sound field recording tech-

niques using zeroth order (omni-directional) microphones

typically require a large set of spatial sampling points as well

as complex 3D sampling schemes in order to cover a large

spatial region [1]. Reducing the necessary spatial sampling

points as well as simplifying the microphone array geometry

can significantly reduce implementation difficulty of large

microphone arrays. For this purpose, irregular and distributed

microphone arrays have been investigated for sound acquisi-

tion and sound field measurement within a region [2–4].

Spherical harmonic decomposition of sound fields, also

known as mode domain representation of sound field, can be

used to interpolate the value of the sound field over a con-

tinuous spatial region from the array output [5]. However,

3D sound field analysis using spherical harmonics requires

the sensors to be placed uniformly in the three dimensional

space; especially, spherical microphone arrays are preferred
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given analytical methods exist to calculate the sound field co-

efficients [1, 6–9]. For high operating frequencies and large

observation regions, a massive number of omnidirectional mi-

crophones are required to capture the sound field.

Recently, a method of spatial sound field recording us-

ing higher-order microphones has been proposed [10, 11]. It

has been shown that with the use of multiple higher-order

microphones arranged in a spherical array, less sampling

points are required for sound field recording compare to

omni-directional microphone arrays. However, this method

involves the inversion of a very large matrix, which results in

high computational effort and risk of ill-conditioning.

The purpose of this paper is to propose a more compact

microphone array structure using higher-order microphones.

Through following a systematic approach, a microphone ar-

ray aperture consisting of one or more circular higher-order

microphone arrays is proposed. The proposed array aperture

only requires a small number of spatial sampling points on

a circular geometry. We propose a two-step method for cal-

culating spherical harmonic coefficients using the proposed

array structure, with the first step combining the local sound

field coefficients on each circular array, and the second step

calculating the global coefficients through a series of matrix

operations. We show that the proposed method only requires

small-sized matrix inversions, thus improving the robustness

and computational effectiveness of the system.

2. BACKGROUND THEORY

2.1. Sound field model

This paper uses spherical harmonic decomposition to describe

and analyze the sound field within a spherical region of in-

terest. It is assumed that this region is a free space with no

sound sources inside. The sound waves propagating inside

the region are due to sources outside the region. Defining a

spherical coordinate system with its origin O located at the

center of the sphere, the sound pressure P (R, ϑ, ϕ, k) at any

point and frequency within the sphere can be represented as a

weighted sum of spherical harmonics [12],

P (R, ϑ, ϕ, k) =

∞
∑

n=0

n
∑

m=−n

Cnm(k)jn(kR)Ynm(ϑ, ϕ), (1)



where k = 2πf/c is the wave number, f and c are the fre-

quency and the wave propagation speed, respectively. Cnm

are the spherical harmonic coefficients, jn(kR) is the spher-

ical Bessel function of order n, and Ynm(ϑ, ϕ) denotes the

spherical harmonic of order n and degree m, written as [13]

Ynm(ϑ, ϕ) = Pnm(cosϑ)Em(ϕ), (2)

where Em(ϕ) = eimϕ/
√
2π is the normalized circular har-

monic,

Pnm(cosϑ) = (−1)m
√

(2n+ 1)

2

(n−m)!

(n+m)!
Pnm(cosϑ),

(3)

Pnm denotes the normalized associated Legendre Polynomial

of order n and degree m.

In this paper, the sound field with respect to O is consid-

ered the global sound field, and the corresponding coefficients

Cnm are the global sound field coefficients.

Local sound field

Defining a local origin Oq whose position with respect to

O is Rq = (Rq, ϑq, ϕq), then the sound pressure at a point

r = (r, θ, φ) with respect to Oq can be expressed by

P (r, θ, φ) =

∞
∑

ν=0

ν
∑

µ=−ν

Bνµ(k)jν(kr)Yνµ(θ, φ), (4)

where Bνµ(k) represent the sound field coefficients with re-

spect to the local origin Oq . The sound field with respect to

Oq is called the local sound field. For simplicity, the wave

number k is omitted for the rest of the paper.

2.2. Spherical harmonic translation theorem

The relationship between the local sound field coefficients

with respect to Oq and the global coefficients with respect

to O can be described by the Spherical harmonic translation

theorem [13]. The relationship can be written as [10]

Bνµ =

∞
∑

n=0

n
∑

m=−n

CnmŜmµ
nν (Rq), (5)

where

Ŝmµ
nν (Rq) =

4πiν−n

n+ν+1
∑

ℓ=|µ−m|

iℓ(−1)2m−µjℓ(kRq)Y
∗
ℓ(µ−m)(ϑq, ϕq)W,

(6)

W =

√

(2n+ 1)(2ν + 1)(2ℓ+ 1)

4π
W1W2. (7)

Here, W1 and W2 denote Wigner 3-j symbols, with

W1 =

(

n ν ℓ
0 0 0

)

,W2 =

(

n ν ℓ
m −µ µ−m

)

. (8)

In (5), Bνµ are the local sound field coefficients in (4) and

Cnm are the global sound field coefficients in (1). It can be

seen that by substituting (5) into (4), one can derive the sound

pressure decomposition of a given point with respect to Oq

using the spherical harmonic coefficients with respect to O.

3. HIGHER-ORDER MICROPHONE ARRAY

3.1. Higher-order microphone

A higher-order microphone is capable of measuring the local

sound field within its proximity, and extracting the sound field

coefficients up to a certain spherical harmonics order. Thus

if a higher-order microphone of order V is placed at a local

origin Oq , the sound pressure at a point close to Oq can be

expressed by a limited summation of spherical harmonics

Pq(r, θ, φ) =

V
∑

ν=0

ν
∑

µ=−ν

Bνµjν(kr)Yνµ(θ, φ). (9)

A total of (V + 1)2 spherical harmonics and their respective

weighing coefficients are present in the summation.

3.2. Continuous circular higher-order microphone array

A concept of continuous circular microphone array has been

proposed in [14]. In this paper, this concept is extended for

the higher-order microphone case.

Consider a continuous distribution of V th order micro-

phones are placed along a circle (Rs, ϑs), then each higher-

order microphone, at a particular azimuth angle ϕ, is able to

detect its local sound field coefficients, denoted as Bνµ(ϕ).
The relationship between Bνµ(ϕ) and Cnm is given by the

following theorem:

Theorem 1. Given a set of local sound field coefficients

Bνµ(ϕ) which are measured along a circle, and an integer

m′, their relationship with the global sound field coefficients

can be given by

∫ 2π

0

Bνµ(ϕ)Em′(ϕ)dϕ =

∞
∑

n=|µ−m′|

Cn(µ−m′)H
(µ−m′)µ
nν (Rs, ϑs). (10)

where

Hmµ
nν (Rs, ϑs) =

4πiν−n

n+ν+1
∑

ℓ=|µ−m|

iℓ(−1)2m−µjℓ(kRs)Pℓ(µ−m)(ϑs)W. (11)



Proof. Using (2), (6) can be rewritten with Rs = (Rs, ϑs, ϕ),

Ŝmµ
nν (Rs, ϑs, ϕ) = Hmµ

nν (Rs, ϑs)E(m−µ)(ϕ), (12)

where Hmµ
nν (Rs, ϑs) is given by (11). Substituting (12) into

(5) yields

Bνµ(ϕ) =

∞
∑

n=0

n
∑

m=−n

CnmHmµ
nν (Rs, ϑs)E(m−µ)(ϕ). (13)

Multiplying both sides of (13) with Em′(ϕ) and integrating

with respect to ϕ over [0, 2π), due to the orthogonality prop-

erty of complex exponential functions

∫ 2π

0

E(m−µ)(ϕ)Em′(ϕ)∗dϕ = δm−µ,m′ , (14)

the integration
∫ 2π

0
CnmHmµ

nν (Rs, ϑs)E(m−µ)(ϕ)Em′(ϕ)dϕ
is non-zero only when m = µ−m′, thus (13) reduces to (10),

which completes the proof.

By replacing Bνµ(ϕ) with Bνµ(ϕq), the discrete form of

(10) can be written as

1

Q

Q
∑

q=1

Bνµ(ϕq)Eµ−m(ϕq) ≈
∞
∑

n=|m|

CnmHmµ
nν (Rs, ϑs),

(15)

where Q is the number of sampling points evenly distributed

on the circle. In (15), the variable m′ has been replaced by

(µ−m) to illustrate the direct relationship between Bνµ and

Cnm. Due to the spatial sampling, an upper bound for the

range of (µ−m) that can be evaluated is given by

| µ−m |≤ ⌊ (Q− 1)

2
⌋. (16)

3.3. Solving for global coefficients

A method for calculating the global sound field coefficients

Cnm up to order N using the local coefficients Bνµ(ϕq) can

be formulated based on (15).

Step 1 of the method is to evaluate the summation on

the left hand side of (15). For each existing global sound

field mode m, evaluate the summation for all combinations

of Bνµ(ϕq) and m that satisfy (16). Denote the summation as

αm
νµ, then

αm
νµ =

1

Q

Q
∑

q=1

Bνµ(ϕq)E(m−µ)(ϕq). (17)

The second step is to solve a matrix inversion problem to find

Cnm. Using (15) and (17), the relationship between Cnm and

αm
νµ can be represented in matrix form as

αm = HmCm, (18)

where αm =
[

αm
00 αm

1−1 αm
10 . . . αm

νµ

]T
, and Cm =

[

C|m|m C(|m|+1)m . . . CNm

]T
is the set of global coeffi-

cients of mode m.

Hm =













Hm0
|m|0 Hm0

(|m|+1)0 . . . Hm0
N0

H
m(−1)
|m|1 H

m(−1)
(|m|+1)1 . . . H

m(−1)
N1

...
...

. . .
...

Hmµ

|m|ν Hmµ

(|m|+1)ν . . . Hmµ
Nν













is the matrix that contains the weights for spherical harmonics

translation. A solution for Cm can be found by calculating

the Moore-Penrose Pseudo Inverse of Hm. The size of Hm is

(V +1)2 by (N−|m|+1), which is significantly smaller than

the (N +1)2-by-(N +1)2 matrix inversion proposed in [10],

thus both the computational simplicity and the condition of

the matrix inversion are significantly better compared to the

method in [10].

The complete set of global sound field coefficients is

found by solving (18) for m = [−N : N ], where N is the

maximum order of the global sound field.

Implementing multiple circular higher-order microphone

arrays in the global region can improve the robustness and

precision of the microphone system. Assuming a total num-

ber of K circular arrays are implemented, then in order to

calculate the global coefficients, one needs to formulate (18)

for each circular array, denoted as αm;K = Hm;KCm, then

the solution for Cm can be expressed as

Cm = (Ĥ
∗

mĤm + λI)−1Ĥ
∗

mα̂m (19)

where Ĥm = [Hm;1
T Hm;2

T . . .Hm;K
T ]T , λ is the regular-

ization parameter, and α̂
m = [αm;1

T
αm;2

T . . .αm;K
T ]T .

Evaluating (19) for m = [−N : N ] yields the complete set of

global sound field coefficients.

3.4. Dimensionality analysis

Due to the nature of Spherical Bessel functions, only a num-

ber of jℓ(kRs) are active within a certain radius. A commonly

used rule for deciding the active orders of jℓ(kRs) is given

by [15], i.e.

ℓ ≤ ⌈ekRs

2
⌉. (20)

From (20) and the range of ℓ in (11), we can derive he maxi-

mum global spherical harmonic order detectable by a circular

Vth order microphone array

N = V + ⌈ekRs

2
⌉, (21)

where N is the maximum global sound field order detectable

and Rs is the radius of the circular array.

The minimum number of sampling points Q on a circle

can be derived from eqs (16) and (20), using ℓ ≥ |µ−m|,

Q ≥ 2⌈ekRs

2
⌉+ 1. (22)



4. SIMULATION RESULTS

A series of simulations have been conducted to validate the

performance of the proposed array structure. Two instances

of the proposed array structure are used in the following sim-

ulations. Both array configurations are designed to capture

sound fields up to 700 Hz within a sphere with 0.5m radius,

with their dimensions determined based on eqs (21) and (22).

Multiple circular arrays are employed in both cases to guar-

antee the quality of the matrix inversion in (19). One design

consists of first order microphones arranged into four circu-

lar arrays, positioned at (Rs, ϑs) = (0.4, 90◦), (0.34, 72◦),
(0.28, 108◦) and (0.22, 72◦), the number of first order micro-

phones on each array is 17, 15, 13 and 11, respectively. The

second design utilizes only second order microphone arrays,

with two circular arrays located at (Rs, ϑs) = (0.4, 90◦) and

(0.2, 72◦), with 17 and 9 second order microphones placed

on each array. AWGN is added to the microphone input of all

simulations with a SNR of 40 dB. A point source is placed at

(R, ϑ, ϕ) = (1.6, 60◦,−60◦) for all the simulation setups.
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Fig. 1. Comparison of original and recorded sound field due to

700 Hz point source, reconstructed at z=0 and z=0.2 m plane

Figure 1 shows the simulation result for the first order

array configuration. In this simulation, the sound field gen-

erated by the point source is recorded by the array, and the

resulting sound field coefficients are used to reconstruct the

sound field. The sound field is plotted for two layers: the

z = 0 plane and z = 0.2 m plane. Plots (a) and (c) show

the original sound field at these two planes, and plots (b) and

(d) show the reconstruction of the sound field coefficients ob-

tained from the microphone array. The result shows that the

microphone array is capable of accurately capture the sound

field within its coverage (yellow circle).
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Fig. 3. Reproduction error at different elevations and frequen-

cies for first and second order array configurations

Figure 2 depicts the error performance for two different

array configurations at a frequency range of 100 − 1000 Hz.

For this figure, the error is calculated by averaging the am-

plitude error over the entire region of interest, and normaliz-

ing by the average sound pressure in the same region. Since

both array configurations are designed to operate at up to 700

Hz, it can be seen from Fig. 2 that the reproduction error

for both configurations are low for frequencies below 700 Hz,

and the error increases rapidly once the frequency becomes

higher than the design frequency.

The reproduction error is also evaluated at different planes

using the same method, but with the region limited to horizon-

tal planes within the spherical area. The results are shown in

Fig. 3. The recorded sound field is reconstructed on planes of

different heights, ranging from z = 0 to z = 0.3 m. The sim-

ulation shows that the reproduction error is smaller around the

equator compared to that near the poles of the sphere, which

is due to the fact that the microphones are clustered around

the equator plane.

5. EXPERIMENTAL RESULT

In order to further validate the proposed method, we con-

ducted an experiment of recording a three-dimensional sound

field using higher order microphone. We use a single Eigen-

mike as a 4th order microphone, which consists of 32 con-

denser microphone capsules placed on a rigid sphere of 4.2cm

radius. The goal of the experiment is to test the robustness of

the algorithm with the presence of noise and interference in a

real-life system.



The region of interest is set to be a sphere of 25cm diam-

eter, a loudspeaker is placed at (R, θ, φ) = (1.5m, 90◦, 30◦)
with respect to the center of the region of interest. The Eigen-

mike is placed on the equatorial plane of the spherical region

and is moved around a circle of 10cm radius. A total of 25
sampling points are evenly distributed along the circle. At

each sampling point, the Eigenmike records a sweeping sig-

nal played by the loudspeaker, which is then converted to a

set of 4th order spherical harmonic coefficients. The 25 sets

of local coefficients are then combined using the proposed

method to compute the 13th order global coefficients. A vi-

sualization of the reconstructed sound field at 3500 Hz within

the region of interest is shown in Fig. 4.
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Fig. 4. Reconstructed sound field at 3500Hz due to a loud-

speaker placed at (1.5m, 90◦, 30◦), sampling points are indi-

cated by blue circles.

We have identified the primary causes of error to be the

sensitivity variation of the microphone capsules, and the re-

verberation inside the laboratory. Despite said interferences,

the Eigenmike was able to record the sound field with accept-

able accuracy.

We believe that the proposed spatial sampling method

allows for easier implementation of sound field recording

systems compared to spherical sampling methods, especially

when combined with the recording technique used in this

experiment, and for applications such as room response mod-

elling over a large space.

6. CONCLUSION

This paper presents a circular higher-order microphone ar-

ray structure and an associated analytical algorithm for sound

field analysis based on spherical harmonics decomposition.

Simulations and experiments show that the proposed array

architecture offers decent accuracy and robustness, and has

the potential of simplifying sound field recording systems in

certain applications.
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