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We demonstrate experimentally a strong plasmon-assisted enhancement of the transverse magneto-

optical Kerr effect in permalloy gratings. The enhanced transverse magneto-optical Kerr effect is

accompanied by an increased grating reflectivity with the maximum of enhancement being correlated

with plasmonic Fano resonances. This correlation was confirmed by an intuitive Fano model and also

through full-vectorial optical simulations. Simultaneously high reflectivity and transverse magneto-

optical Kerr effect as well as narrowest ferromagnetic resonance linewidth and vanishing anisotropy

make permalloy nanostructures attractive for applications in spintronics and nano-optics such as, for

example, all-optical excitation of propagating spin waves and spectral tuning of optical

nanoantennas. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798657]

Modern plasmonic devices based on metal nanostruc-

tures aim to control the excitation of plasmons, their propa-

gation, dispersion, confinement, and mode structure at a

length scale that is much shorter than an optical wavelength.1

Since all metals absorb light in the visible and IR spectral

ranges, maximum efficiency can be achieved only by using

metals with the lowest absorption cross-section. Therefore,

most of the plasmonic devices are made of gold or silver

because these two metals exhibit the lowest absorption losses

at optical frequencies. However, in many practical cases,

these metals must be combined with optically active materi-

als in order to provide active control of plasmons.1 In partic-

ular, plasmons can be controlled by a magnetic field applied

to a hybrid device consisting of a plasmonic metal nanostruc-

ture combined with a ferromagnetic layer.2–4 While the for-

mer supports propagating or localized plasmon modes with

the lowest possible absorption losses, the latter exhibits a

large magneto-optical activity that opens up routes for ultra-

fast control of light such as, e.g., magneto-plasmonic switch-

ing or high-sensitivity biosensing (for a review see, e.g.,

Ref. 5 and references therein). Similar functionality can be

achieved with pure ferromagnetic structures made of, e.g.,

nickel.6–8 Although ferromagnetic metals exhibit a stronger

optical damping as compared with gold or silver,7 resonance

excitation of surface plasmons in ferromagnetic nanostruc-

tures makes it possible to enhance the transversal magneto-

optical Kerr effect (TMOKE).9 The enhancement of

TMOKE is important to spintronics and magnetization dy-

namics.10 In particular, the TMOKE can be used as one of

the channels of interaction between plasmons and spin waves

with the ultimate goal to increase efficiency of optical modu-

lators based on scattering of light on travelling spin waves.11

Recently, an all-optical excitation and control of spin waves

with a light pulse focused on a magnet have been reported

showing that the spin wave wavenumber distribution is dif-

fraction-limited.12 This limitation can be circumvented

by using magneto-plasmonic nanostructures. Moreover, the

TMOKE enables space-resolved observation of fast magnet-

ization dynamics13–15 having characteristic frequencies in

the gigahertz range. In this case, standing and propagating

spin waves16 as well as magnetization switching17 are typical

examples of the magnetic dynamic phenomena that are of

paramount importance for microwave signal processing,14

magnetic memory, logic,17,18 and sensors.19,20

Most of these effects have been observed in permalloy

(Ni80Fe20) based nanostructures and multilayers. Permalloy

is paramount for all these applications because of the opti-

mum combination of magnetic properties: the vanishing

magnetic anisotropy and the smallest magnetic (Gilbert)

damping among ferromagnetic metals.13–15 As a result, mag-

netization dynamics in plane periodic permalloy nanostruc-

tures has attracted a lot of attention and has been largely

studied using optical methods in reflection.16

Nickel gratings were used in the previous magneto-

plasmonics studies.6–8 Unfortunately, nickel is characterized

by large magnetic losses and is known as a material with

very large magnetostriction. Furthermore, its saturation mag-

netization (6000/4p Oe) is small (almost two times smaller

than for permalloy and almost four times smaller than for

iron). For all these reasons, use of nickel in spintronics and

magnetization dynamics is quite limited.

In this letter, we demonstrate experimentally a consider-

able enhancement of the TMOKE in a permalloy grating in

the frequency range of plasmon resonance. This enhance-

ment is accompanied by an increase in grating reflectivity,

contrary to the previous experiment (conducted on corru-

gated nickel gratings) where enhancement of TMOKE was

accompanied by a considerable dip in reflectivity.6

Permalloy gratings studied in our experiments were

fabricated on a silicon substrate by deep UV lithography fol-

lowed by lift-off.21 They represent a periodic array of paral-

lel permalloy nanostripes separated by air gaps [Fig. 1(a)].
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Several samples of this batch were characterized previously

with a ferromagnetic resonance method and showed excel-

lent magnetic characteristics.22 Reference nonmagnetic gold

gratings with the same geometry were also fabricated and

optically characterized [Figs. 2(a) and 2(b)]. Reflectance val-

ues were measured at three different incident angles over a

wide spectral range using a variable angle spectroscopic el-

lipsometer (VASE),23 which gives reflectance as a ratio of

the intensities of the incident and reflected beams. Our

VASE setup [Fig. 1(b)] uses a standard wide white beam

(�4 mm in diameter) generated by a xenon lamp. The beam

is passed through a monochromator that adjusts the wave-

length to a required value with a bandwidth of 3 nm. The us-

able spectral range of the device, over which the sampled

data have an acceptable error, is approximately 400–800 nm.

Data were obtained for both s- and p-polarized beams with

statistical error of no more than 60.025.

The reflectivity spectra of the reference gold grating for

the s-polarization [Fig. 2(b)] are very similar compared to

the data obtained for the continuous gold film (not shown)

and do not exhibit any special feature. However, the reflec-

tion in the p-polarization [Fig. 2(a)] is dominated by sharp

peaks with asymmetric lineshape typical of Fano resonan-

ces.24,25 The asymmetric lineshape arises from the construc-

tive and destructive interference of a narrow discrete

resonance with a broad spectral line or continuum of modes.

Using MICROWAVE CST STUDIO software implementing a

finite-integration technique, we calculated reflectivity spectra

of the reference gold grating using refractive index of gold

from Ref. 26. The results of our simulations demonstrate

consistency of our experimental method and theoretical

approach [Figs. 2(a) and 2(b)] in terms of the lineshape of

the peaks in the spectra.27 We note that the grating also sup-

ports guided and evanescent modes that can be seen in the

reflectivity spectra as secondary peaks. In our experiment,

the contribution of these modes is rather weak because they

decay in large area gratings due to fabrication imperfections.

However, the secondary peaks can be identified as a peak

broadening from the short-wavelength side. Since no imper-

fections were included in our model, our theoretical spectra

FIG. 1. (a) Scanning electron micrograph and schematic of the investigated

permalloy grating. The total area of the grating is 0.5� 0.5 cm2, h¼ 100 nm,

w¼ 264 nm, and s¼ 113 nm. The thickness of the Si substrate is 0.8 mm.

The gold reference grating has the same dimensions. (b) Schematic of the

VASE-based experimental setup with a custom designed electromagnet

attachment.

FIG. 2. Measured (solid lines) and simulated (dashed lines) reflection spec-

tra of the (a, b) reference gold grating and (c, d) permalloy grating. The

insets show the grating orientation with respect the plane of incidence. Top

row—light is p-polarized. Bottom row—light is s-polarized.

121907-2 Kostylev et al. Appl. Phys. Lett. 102, 121907 (2013)
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exhibit stronger secondary peaks at frequencies consistent

with the experimentally observed peak broadening.

The reflectivity spectra of ferromagnetic permalloy

gratings were measured under the same experimental condi-

tions. CST MICROWAVE STUDIO simulations were conducted

using the complex refractive index extracted from measure-

ment data of the continuous permalloy film. Since these data

were affected by roughness of the film surface, measures

were taken to compensate for artifacts. This ensured a rea-

sonable agreement between the calculations and measure-

ments [Figs. 2(c) and 2(d)]. The spectra of the permalloy

grating also exhibit asymmetric Fano resonances [Figs. 2(c)

and 2(d)] and are very similar to those of the reference gold

grating [Figs. 2(a) and 2(b)]. We note the presence of sec-

ondary peaks observed in the spectra of the reference gold

grating.

As a next step, we investigate the TMOKE in the perm-

alloy grating. We use p-polarized incident light because it

remains linearly polarized after reflection if the magnetiza-

tion is parallel to the surface of the sample and perpendicular

to the plane of incidence. The TMOKE is only observable in

magnetic structures and it is characterized by the relative

change of reflected light intensity I(M) when the magnetiza-

tion M is reversed9

d ¼ ½IðMÞ–Ið�MÞ�=Ið0Þ: (1)

The intensity changes due to the magnetic field induced

change of the boundary conditions at the surface of a magne-

tized medium. Magnetized media can be characterized by

the permittivity tensor e(M) having the following nonzero

components: e11¼ e22¼ e33¼ e, e13¼ ig, and e31¼�ig,

where g is the value of the gyration.9 If there is absorption,

both the e and g are complex functions of the frequency.

Most significantly, near the surface of a magnetized medium,

g is proportional to the cross product between the magnetiza-

tion vector and the surface normal vector and therefore it

changes its sign when the magnetization is reversed.4

In order to enable measurements of the TMOKE, the

VASE setup was extended by a custom-designed electro-

magnet attachment with coil windings serving as a source of

uniform uniaxial magnetic field [Fig. 1(b)]. The setup was

calibrated and the magnetic field strength inside the sole-

noids was measured with a Gaussmeter to be 250 Oe. The

TMOKE spectrum of the permalloy grating was recorded in

the spectral range of 400–800 nm at the incidence light angle

of 35� and the magnetic field periodically switched between

þ250 Oe and �250 Oe. This angle was found to be the opti-

mal setting to minimize diffraction from the edges of the

sample as well as to ensure that the light beam is not

obscured by the electromagnet.

Figure 3(a) shows the TMOKE response measured on a

100 nm thick continuous permalloy film (dashed line) and

the permalloy grating (solid line). The experiment shows a

considerable enhancement of the TMOKE response of the

grating at k� 590 nm. We observe simultaneously high
reflectivity [see Fig. 3(b)] and TMOKE response. (Recall

that in the previous studies, TMOKE enhancement coincided

with a dip in reflectivity.6) Maximization of reflectivity is

important for many practical applications such as, for

example, space-resolved observation of fast magnetization

dynamics.13–15

We used the Fano resonance profile fitting24 in order to

demonstrate a correlation between the plasmonic Fano reso-

nance of the permalloy grating and the experimentally observed

enhancement of the TMOKE response. A Fano-fit function

F(x)¼A0þF0{qþ 2(x�x0)/U}2/{1þ [2(x�x0)/U]2} was

used to produce best-fit curves that allows the determination of

the Fano resonance frequency x0 and the resonance linewidth

U. The parameter q stands for the asymmetry of the Fano line-

shape defined as a ratio between the strength of the resonant

and nonresonant light reflection mechanisms.24,28

An agreement between the resonance frequency found

using the Fano-fit function [vertical straight line in Figs. 3(a)

and 3(b)] and the maximum of the experimental TMOKE

response confirmed that the enhancement in the measured

TMOKE response is correlated with the plasmonic resonance

of the permalloy grating. This conclusion was further sup-

ported by numerical simulations in which the value of the

FIG. 3. (a) TMOKE response of the 100 nm reference permalloy film

(dashed line) and permalloy grating (solid line) measured at the incidence

angle of 35� and magnetic field set to þ250 Oe and �250 Oe. (b) Measured

reflectivity spectrum of the permalloy grating at the incidence angle of 35�.
Here and also in the panel (d), the vertical straight solid line denotes the

Fano resonance wavelengths. (c) Simulated TMOKE response of the 100 nm

permalloy reference film (dashed line) and permalloy grating (solid line) at

the incidence angle of 35� and at g¼60.2. (d) Simulated reflectivity spec-

trum of the permalloy grating at the incidence angle of 35�. We note that the

maximum of the experimentally observed TMOKE enhancement is very

close to the maximum slope of the experimental Fano resonance peak where

TMOKE is expected to be maximum. This discrepancy is due to inaccuracy

of the fitting procedure arising due to noise in experimental data.

121907-3 Kostylev et al. Appl. Phys. Lett. 102, 121907 (2013)
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gyration g was chosen based on a large number of numerical

data and their projection onto experimental results. Even

though in practice g is a complex value and a function of the

frequency,9 our simulations for a fixed value of g¼60.2

showed large non-monotonic variation of the simulated

TMOKE response of the grating with the wavelength in the

vicinity of the Fano resonance. Similar to the experiment,

this variation is significantly larger than for the continuous

film [Fig. 3(c)]. The simulations also showed a good correla-

tion between the extremum in the simulated TMOKE

response (Fig. 3(c)) and the plasmonic resonance of the

permalloy grating [straight line in Figs. 3(c) and 3(d)].

The experimental conditions did not allow us measuring

the absolute values of reflectivity for the two opposite direc-

tions of the magnetization vector with accuracy which is suf-

ficient for reliable extraction of the value of the shift in the

Fano resonance frequency upon reversal of magnetization.

Using the simulation data, we estimated this shift to be of at

least 1.5 nm. Graphical analysis of changes in the grating

reflectivity caused by this shift and the interpretation of the

origin of the TMOKE enhancement are difficult because the

corresponding curves coincide to the graphical accuracy.

Therefore, for the sake of clarity, in Fig. 4, we analyze a

model of general asymmetric Fano resonance profile with

magnified characteristic features described by the formula

r¼ (Xþ q)2/(X2þ 1) with X being the reduced frequency

defined as 2(x�x0)/U.24 We deliberately choose q¼ 1

because in this case, the Fano resonance frequency is located

exactly at half the distance between the minimum and the

maximum of the profile24 [X¼ 0 in Fig. 4(a)]. The resonance

frequency of the plasmon resonance changes as the direction

of the magnetization is flipped. This change shows up as the

maximum of the TMOKE when the reflectivity curves for

the opposite directions of magnetization vector are sub-

tracted [Fig. 4(b)]. For the chosen Fano parameter (q¼ 1),

this occurs at X¼ 0, where the slope of the Fano resonance

peak is maximum.

The theory of Belotelov et al.4 explains the TMOKE

enhancement as a modification of the light-plasmon coupling

in the presence of the external magnetic field. The result we

obtain with the simple Fano resonance model is consistent

with this model. Furthermore, in numerical simulations, we

observed that the relative gain in the reflectivity for the nega-

tive values of g is smaller than the relative loss observed for

the positive values. This also agrees with the theory predict-

ing an optical nonreciprocity due to a symmetry breaking at

the interface of a transversely magnetized medium.4,29

In summary, we demonstrated convincingly that a perm-

alloy magneto-plasmonic grating can efficiently support

plasmonic resonances leading to a considerable enhancement

of the TMOKE response. This enhancement is also accompa-

nied by an increase in grating reflectivity. Despite a larger

resonance linewidth as compared with that of the reference

gold grating of the same geometry, the magnetically con-

trolled plasmonic effects in permalloy may be a viable way

to enhance the efficiency of light interaction with microwave

spin waves. The observed enhancement of TMOKE also

opens up other exciting opportunities in increasing efficiency

of those magneto-electronic devices whose functionality

requires optical reading of the magnetic state of permalloy

nano-objects. We also anticipate the application of permalloy

in subwavelength plasmonic devices such as tunable optical

nanoantennas30 controlled by external magnetic fields.
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