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Abstract 
Excitation-contraction (EC) coupling describes the process that links the excitatory 

action potential to muscle fibre contraction. Essential to this process is the release of Ca
2
+ from 

the sarcoplasmic reticulum (SR) via the ligand gated ryanodine receptor (RyR) in the SR 
membrane. In cardiac muscle fibres , RyR2 ( cardiac isoforrn) activation is initiated by Ca2

+ entry 
through the cardiac L-type voltage-gated dihydropyridine receptor (DH.PR). In contrast, EC 
coupling in skeletal muscle fibres requires a physical interaction between skeletal DH.PR and 
RyRl (skeletal isoform), although the physical components of this interaction are unclear. 

It had previously been shown that the C-terminus of the DH.PR Bia subunit strongly 
influences EC coupling in skeletal myotubes, since mutation of a heptad repeat motif (L4 78, 
V 485 and V 492) and C-terminal truncations > 29 residues reduce EC coupling. It has also been 
shown that the role of the C-terminal residues in EC coupling is likely via direct interaction with 
RyRl , because a polybasic K3495-R3502 motif in a RyRl fragment (M3201-W3661) is 
important for Bia association in pull-down assays and this region influences EC coupling in 
mouse myotubes. My previous work showed that a peptide (Bia V490-M524) corresponding to 
the extreme 35 C-terminal residues directly increases RyRl activity in planar lipid bilayers to 
the same . level as Bia subunit. One third of this peptide adopts an a-helix with a hydrophobic 
surface (residues L496, L500 and W503) on one side, which provides a putative RyRl binding 
site. For this thesis I investigated the relative importance of the Bia C-terrninal heptad repeat and 
hydrophobic surface residues, and the RyRl K3495-R3502 polybasic motif in the action of Bia 
on RyRl in lipid bilayers. I also compared the action of Bia between RyRl and RyR2, which 
was of particular interest given their systematic differences in receiving the EC coupling signal 
from DH.PR. 

Cytosolic exposure of Bi a A474-A508 peptide (containing both the heptad repeat and 
hydrophobic surface residues) to native RyRl channels increased channel activity by 2-fold, 
which was similar to the action of Bi a V490-M524 peptide. Alanine substitution of heptad repeat 
residues did not alter the action of Bi a A474-A508 peptide on RyRl. In contrast, alanine 
substitution of hydrophobic surface residues abolished the action of Bia V 490-M524 on RyRl 
and reduced pull-down of RyRl by 85%. Curiously, individual substitution of the hydrophobic 
surface residues abolished the effect of the Bia V 490-M524 peptide at +40 m V, but not at -40 
m V. Overall, the results show that the modulatory action of Bi a on RyRl depends on all three Bi a 
hydrophobic surface residues, but not the heptad repeat. 

The action of Bia on RyRl was abolished when the six basic residues in the RyRl 
K3 495-R3502 region were neutralised by mutation to glutamine residues. In addition and 
intriguingly, the B1J subunit increased RyR2 activity in a similar manner as RyRl . This suggests 
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that Bia may bind to a hydrophobic pocket conserved in RyRl and RyR2 and that is influenced 

by the presence of the polybasic K3495-R3502 motif. 
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CHAPTER ONE - INTRODUCTION 

In this chapter, I provide a general background to muscle physiology and an extensive 

review of the mechanisms and proteins involved in skeletal excitation-contraction coupling. In 

particular, focusing on the components involved in the direct interaction between the 

dihydropyridine receptor and ryanodine receptor during skeletal muscle contraction. To provide 

context for the chimera studies that use heart specific isoforms, I also provide brief background 

to cardiac excitation-contraction coupling. 

1.1 Muscle physiology 

In mammals, there are three different classifications of muscle tissue, namely skeletal, 

cardiac and smooth. Each muscle type is composed of self-specific muscle fibres and cells 

(Figure 1.1), which are defined by physiological features catering for the specialised function of 

the muscle that they form. Unless cited otherwise, all general information in sections l. l and 1.2 

is derived from text book sources (Kandel et al., 2000, Hille, 2001 , Marieb & Hoehn, 2010, Hill 

& Olson, 2012). 

1.1.1 Skeletal muscle 

Attached to the skeleton by tendons, skeletal muscle enables voluntary skeletal 

movement and helps maintain body posture. The primary requirements of skeletal muscle are to 

rapidly contract whilst maintaining a fine-tuned control over the strength of contraction. In 

brief, this is modulated by both the frequency of stimulations and percentage of fibres 

stimulated in a muscle, and is voluntarily controlled through the innervation of each muscle 

fibre by a motor neuron. 

Structurally, skeletal muscle fibres are 10-100 µm in diameter and in humans, typically 

span the length of the muscle, which can be as long as 50 cm (Harris et al. , 2005). This 

exceptional fibre length is possible through the fusion of many embryonic progenitor cells, 

known as myoblasts, resulting in the multi-nucleated feature of skeletal muscle fibres (Figure 

1.lA)-

Each fibre 1s d.ensely packed with bundles of longitudinally placed contractile 

components, known as myofibrils, which account for 80% of the cellular volume. The 

myofibrils are composed of overlapping thick and thin microfilaments constructed from myosin 

and actin molecules, respectively (Huxley & Niedergerke, 1954, Huxley & Hanson, 1954) 

(Figure 1.2). Each myofibril is segmented by contractile units, known as sarcomeres, which are 

individually boarded by Z discs and align with sarcomeres of neighbouring myofibrils. 

Consequently, alignment of the regions of thick microfilaments (A bands) and the non­

overlapped thin microfilaments (I bands) appear as dark and light bands, respectively, under a 

light microscope; giving a striated appearance (Figure 1.lA & Figure 1.2B). 
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A Skeletal muscle 

B Cardiac rnuscJe 

C Smooth muscle 

Figure I. 1 Three types of muscle tissue. 

Intercalated 
discs 

Nucleus 

Nucleus 

The typical location (pink cartoon) and photomicrograph of Skeletal (A), Cardiac (B) and Smooth muscle (C). 
Scale bar (b lack) for each micrograph is -100 µm. Skeletal and cardiac muscle fibres are characterised by 
striations, which are visible in the micrographs. A) Skeletal muscle tissue is connected to the skeleton via tendons. 
Each fibre typicall y extends the length of the tissue in humans and is multi-nucleated. B) Cardiac muscle tissue is 
excl usive to the heart, primarily lining the heart wall. Notab ly, small muscles extend from the wall into ventricular 
chamber to maintain valve closure. The fibres are mono- or di-nucleated , branched and connected at either end with 
intercalated discs . C) The smooth muscle lines the walls of hollow organs. Each cell is characterised by only one, 
centrally located nucleus. Images slightly adapted fro m Marieb and Hoehn (20 10), Hill and Olson (2012). 

2 



A Part of a skeletal 
muscle fibre 

I 

Sarcolemma 

Zdisc 

B 

yofibrils 

Sarcomere 

A band 
I 

Figure 1. 2 Structure of a mammalian skeletal muscle fibre. 

I band 

~ ~ :;--'\-- Mitochondria 

~~F.lr.'li- Myofibrils 

:::;:;====!~ Longitudinal 
Sarcoplasmic Reticulum 

~ ~ ~~,... Terminal Cisterna of 
Sarcoplasmic Reticulum 

A) The drawing shows a section of a skeletal muscle fibre, illustrating the parallel bundles of myofibrils that 

compose the bulk of a muscle fibre. B) A section of the fibre at higher magnification reveals each myofibril is 

composed of contracting units (individually known as sarcomeres) that are made up of partially overlapping thick 

and thin filaments. A prominent feature is the contrast between the regions consisting of thick filament (A-band) 

and the regions consisting of the non-overlapped thin filament (I-band) that provides the striated appearance. Each 

myofibril is surrounded by tubular networks of the sa.rcoplasmic reticulum. The transverse tubule invaginates from 

the surface to run along the A-I band junction and is flanked either side by the sarcoplasmic reticulum to form the 

triad. Image slightly adapted from Marieb and Hoehn (2010). 

Muscle fibres have a specialised plasma membrane, known as the sarcolemma. As 

characteristic of excitable membranes, the sarcolemma contains voltage-gated ion channels that 

enable membrane depolarisation and hyperpolarisation for action potential propagation. The 

sarcolemrna forms invaginations, known as transverse tubules CT-tubules) (Franzini-Armstrong 

& Porter~ 1964). T-tubules penetrate deep into the fibre, running level with the A-I band 

junction, to permit action- potential propagation throughout the fibre and local depolarisation 

near the contractile units (Huxley & Taylor, 1958). Each T-tubule is typically flanked on either 

side by ·the terminal cistemae (TC) of a modified endoplasmic reticulum tubular network, 

known as the sarcoplasmic reticulum (SR) (Franzini-Armstrong, 1972, Franzini-Armstrong, 

1973). In skeletal muscle, the region where two TC associate with a T-tubule is known as the 

triad (Figure 1.2B), which was originally described as the flanking of endoplasmic reticulum on 

either side of an unclassified tubular network (Porter & Palade, 1957). This region is crucial for 

muscle contraction, as it enables close association between the components involved in 
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transforming membrane depolarisation into mass increase in cytoplasmic calcium ion 

concentration ([Ca2+]cyto), which in turn triggers muscle fibre shortening, as to be discussed 

further in section 1.2. 

The SR is composed of two parts: the longitudinal, or free, SR that surrounds the 

sarcomere; and, junctional SR that flanks the T-tubule. Notably, there are longitudinal 

continuations of the SR that bypasses the T-tubule, which enables the large SR luminal reservoir 

of Ca2
+ to be homogenous along the muscle fibre. 

1.1.2 Cardiac muscle 

.Cardiac muscle fibres form cardiac muscle tissue, which in turn primarily form the 

contractile walls (known as the myocardium) of the heart that enable rhythmic pumping of 

blood around the body. In addition, small papillary muscles extend from the ventricular walls 

and enforce proper closure of valves in the heart to prevent blood backflow. Proper functioning 

of the heart requires the myocytes to contract as a co-operative unit that does not fatigue. One 

facilitating feature is that the action potential is regularly initiated by specialised myocytes, 

known as pacemaker cells in the sinoatrial node. Depolarisation is propagated from cell-to-cell 

across gap junctions at the intercalated discs bordering the end of each cell. Consequently, this 

provides uniform and paced contraction within sections of the heart. Another facilitating feature 

is that there is a high percentage of mitochondria, making up ~ 22-3 5% of the cytoplasm, which 

is thought to accommodate the high demand of adenosine 5' triphosphate (ATP) synthesis that 

is required for muscle contraction (section 1.2) and consequently preventing muscle fatigue. In 

contrast to skeletal muscle fibres , cardiac muscle cells are significantly smaller (average adult 

myocyte is 100-150 x 15-25 µm), interconnected through terminal intercalated discs and contain 

two nuclei at most (Figure 1.3A). However, several physiological features are very similar to 

those in skeletal muscle fibres. Firstly, the contractile units are similar and occupy ~50-60% of 

the cytoplasm, which gives cardiac muscle cells a striated appearance under a light microscope 

(Figure 1.lB). Secondly, the sarcolemma invaginates into the cell as T-tubules and is flanked in 

regions by the SR, which also encases each myofibril (Figure 1.3B). However, the T-tubule in 

cardiac muscle cells runs level with the Z disc and only interacts sparingly on one side of the T­

tubule (Figure 1.3B). Hence the flanking region between the T-tubule and SR is known as a 

diad (Figure 1.3B), as opposed to a triad that are typical of skeletal myofibres (Figure 1.2B). 

Notably, the SR in cardiac muscle cells does not form TC and does not substantially expand at 

regions flanking T-tubule to form the TC observed in skeletal muscle fibres . 
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Intercalated Nucleus Sarcolemma 
Disc 

B 

Zdisc 

Sarcomere 

Figure 1. 3 Structural components of a mammalian cardiac muscle cell. 

Mitochondria 

Sarcoplasmic Reticulum 

Transverse tubule 

A) The drawing shows a section of a cardiac muscle cell (cardiomyocyte), illustrating the parallel bundles of 

myofibrils and mitochondria~ that compose the bulk of the muscle fibre . Also, note the intercalated disks that 

connect the cells. B) A section of the fibre at higher magnification reveals ~ach myofibril is composed of 

contracting units, individually known as sarcomere, that are mostly made up of partially overlapping thick and thin 

filaments. Each myofibril is sparsely surrounded by tubular networks of the sarcoplasmic reticulum and the 

transverse tubule that interact at the diad, which runs in line at the sarcomere border, called the Z disc. Note that it 

is the contrast between the region consisting of thick filament (A-band) and the region consisting of the non­

overlappeq thin filament (I-band) that provides a striated appearance of cardiomyocytes. An Image slightly adapted 

from Marieb and Hoehn (2010) 

1.1.3 Smooth muscle 

Smooth muscle fibres form smooth muscle tissue that line the walls of hollow organs 

such as arteries, veins and the gastrointestinal tract (Figure 1.lC), allowing involuntary 

contracti'on such as peristalsis in the gastrointestinal tract. As this study does not involve 

components that are specific to smooth muscle physiology or cellular contraction, it will not be 

discussed further. 
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1.2 Excitation-Contraction (EC) Coupling 

The process that encompasses the series of events between the arrival of an action 

potential at the triad junction and muscle contraction is known as excitation-contraction (EC) 

coupling. This term is more narrowly applied to events linking membrane depolarisation to Ca2+ 

re lease from the SR. The action potential is initiated by membrane depolarisation from the 

resting membrane potential of ~-90 mV to a threshold of ~-54 mV. The resultant activation of 

vo ltage-gated Na+ channels, allows propagation along the sarcolemma and down the T-tubule. 

The action potential is directional by virtue of 1 ), fast inactivation of Na+ channels and 2), 

repolarisation of the membrane, which is primarily accomplished by an overall outward K+ flux 

through voltage-activated K + channels that were activated by the initial depolarisation (Kandel 

et al., 2000). 

Located at the diad/triad are two types of Ca2+ channels: a voltage-gated Ca2+ channel, 

known as the dihydropyridine receptor (DHPR), embedded in the T-tubule membrane; and a 

ligand-gated Ca2+ channel, the ryanodine receptor (RyR), embedded in the membrane of the SR 

(Block, 1988, Protasi et al., 1996). Upon depolarisation, the DHPR undergoes a conformational 

change due to a shift in intramembrane basic residues, which is more commonly referred to as 

charge movement (Schneider & Chandler, 1973 , Rios & Brum, 1987). This leads to a 

mechanically (skeletal) - or chemically (cardiac) -induced activation of the RyR. Calcium ions 

are then released from the SR through the activated RyR, increasing the [Ca2+]cyta from 100 nM 

to 1-10 µM and inducing myofibril shortening (Szent-Gyorgyi, 197 5). 

The molecular mechanism of myofibril shortening is known as cross bridge cycling 

(Figure 1.4). The term "cross bridge" refers to the interaction between myosin heads and actin. 

Under resting conditions, the myosin binding site on the actin filament is occluded by a 

complex with two other proteins, tropomyosin and troponin. As the [Ca2+]cyta increases to the 

low µM range, Ca2+ binds to troponin, which weakens the troponin-actin interaction and results 

in tropomyos in no longer occluding the myosin binding site as it rotates around the actin 

filament (Figure 1.4A) (Narita et al., 2001). Having access to its binding site and upon 

hydrolysis of ATP, myosin associates with actin and physically pulls the actin filaments 

longitudinally along the myosin filaments as the head rotates, levering a distance of ~ 7 nm 

(Figure 1.4A) . This results in the release of the hydrolysis products (orthophosphate, Pi, and 

adenosine 5' diphosphate, ADP) and the site is quickly replaced by ATP, which rapidly 

dissociates actin and myos in (Figure 1.4B). The duration of each cycle is estimated to be < 5 

ms and the distance of the cross bridge throw is ~ 10 nm. The continuation of this cycle leads to 

fibre shortening and ultimately muscle contraction (Figure 1.4C) (as reviewed by Gordon et al. 

(2000)). 
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A Rotation oftropomyosln to open myosln head binding site on actin filament 

Myosin 
head 

B A cross bridge cycle 

/ 

ii 

High Ca2+ 

Actin filament 

iv ii 

C Muscle fibre shortening 

Relaxed muscle sarcomere 

A-band 

Figure 1. 4 Mechanisms of myofibril shortening. 

/-

AlP 

Myosin 
head 

-------- iii 

ii Contracted muscle sarcomere 

M line /\_,J 
A-band I-band 

A) Ca2
+ induced rotation of tropomyosin from occluding the myosin head binding site on actin filament. i) Under 

resting conditions, the myosin head binding site· on actin is occluded by tropomyosin, held in place by troponin. ii) 

Micromolar levels of Ca2
+ bind to the troponin complex, resulting in a rotation of tropomyosin and consequently 

liberating the myosin binding site, which then permits B) the cross bridge cycling. i) With the myosin binding site 

free, this allows the actin to bind to the myosin head. The affinity of this interaction is strongly enhanced by the ATP 

hydrolysis components (ADP + Pi) attached to the myosin head. This leads onto ii) the myosin head rotating and 

pulling the myosin filament towards the M-line. ADP and Pi are released during the process, which leaves the site 

available for ATP. iii) Binding of ATP leads to di ssociation of the actin filament. iv) Rapid ATP hydrolysis returns 

the orientation of the myosin head and allows high affinity binding at the actin binding site, returning to the position 

of i). C) The micrographs and corresponding illustrations of a skeletal muscle fibre sarcomere in the relaxed (i) and 

contracting positions (ii). Scale bar (pink) for each micrograph is - 1 µm. Note, the actin filaments are pulled 

longitudinally into the M-Iine, resulting in shortening of the I-band, but not the A-band. Image adapted from Marieb 

and Hoehn (2010). 
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The contraction is arrested when the [Ca2+]cy1o returns to resting levels . Cytosolic Ca2+ is 

mainly taken up into the SR via a sarco/endo-plasmic reticulum Ca2+ A TPase (SERCA). The 

mechanistic differences between skeletal and cardiac EC coupling will be discussed further in 

the two following subsections (1.2.1 and 1.2.2). 

1.2.1 Skeletal EC coupling 

The skeletal action potential is initiated by neuronal presynaptic release of a transmitter, 

acetylcholine (ACh), that specifically activates nicotinic ACh receptors on the end-plate of the 

muscle fibre, permitting an overall inward current due to the mass influx of extracellular Na+. 

The resulting depolarisation may activate voltage-gated Na+ channels in the sarcolemma, 

surrounding the end-plate, which further contributes to the inward current and depolarisation . 

Upon reaching the membrane potential threshold (-54 mV; Hodgkin and Horowicz (1960)) 

required for a regenerative cycle of inward Na+ flux, the resulting action potential propagates bi­

directionally along the sarcolemma and into the fibre via the T-tubule (Kandel et al., 2000). 

The depolarisation-activated DHPR physically activates the RyR and this permits mass 

Ca2+ release from the SR during skeletal EC coupling. Repolarisation of the membrane halts 

DHPR activation of RyRl , which largely contributes to return of [Ca2+] to resting levels . The 

mechanical activation of RyR is the focus of this project and so will be discussed in more detail 

in sections 1.3-1.4. 

1.2.2 Cardiac EC coupling 

As mentioned in section 1.1.2, pacemaker cells rhythmically initiate an action potential 

that is transmitted from cell to cell through intercalated discs that connect neighbouring cells . 

In cardiac EC coupling, the interaction between the DHPR and the RyR is chemical. 

Upon depolarisation of the T-tubule membrane, the DHPR undergoes a conformational change 

that allows influx of extracellular Ca2+. Although this influx of Ca2+ is not sufficient to increase 

cytoplasmic Ca2+ to the 1-10 µM that is required to weaken the interaction between the troponin 

and the actin filament, the Ca2+ influx is sufficient to activate the RyR in a process known as 

Ca2+-induced Ca2+ release . The large SR luminal Ca2+ influx into the cytoplasm initiates the 

cardiac muscle fibre contraction (as reviewed by Dulhunty et al. (2002)). 

Unlike skeletal EC coupling, the increase in cytoplasmic Ca2+ is substantially 

supplemented by extracellular Ca2+. Thus, cellular relaxation requires cytoplasmic Ca2+ removal 

into both the SR luminal and extracellular environment at a ratio of ~7:3 in larger mammals, 

such as humans and rabbits. This Ca2+ removal primarily involves respective activity of 

SERCA2 and a Na+/Ca2+ exchanger (NCX) (as reviewed by Bers (2002)). 

Hereafter, the mechanisms described ref er to mechanisms and predominant proteins found in 

skeletal muscle, unless otherwise indicated. 
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1.3 Dihydropyridine receptor (DHPR) 

Dihydropyridine receptors are L-type voltage-gated Ca2
+ channels that are 

distinguishable from other voltage-gated Ca2
+ channels by virtue of l) requiring a strong 

depolarisation for activation and 2) sensitivity to blockage by dihydropyridines, which is a 

feature · that provided the channel nomenclature. The skeletal DHPR is a heteropentamer 

composed of the five subunits: a 1, a 2, ~, 6, and y (Curtis, 1984, Takahashi et al. , 1987), with the 

predicted assembly of a DHPR in the T-tubule membrane shown in Figure 1.SA. 

During the late 1980' s, t.he DHPR was recognised as the source of the intramembrane 

charge movement that triggers SR Ca2
+ release in the process of EC coupling. The first studies 

demonstrated that a channel localised in the T-tubule membrane, was responsible for 

intramembrane charge movements and triggered SR Ca2
+ release shared the same 

pharmacological response to dihydropyridines and structural identity as the DHPR (Lamb & 

Walsh, 1987, Rios & Brum, 1987, Tanabe et al. , 1987). This theory was strongly reinforced by 

a study published in the succeeding year that identified the DHPR a 1s subunit as the likely 

product mutated in a mouse dysgenic model that lacked muscle contraction (Beam et al. , 1986), 

particularly since electrically evoked contraction in these skeletal dysgenic myotubes could be 

restored by exogenous expression of the DHPR a 1s subunit (Tanabe et al. , 1988). 

Based on single particle analysis of electron microscopic images, the current 3-

dimensional reconstruction of the skeletal DHPR displays a main body of 17xl lx8 nm (Figure 

1.SB) (Szpyt et al. , 2012). Although this coincides with the predicted quaternary structure of the 

a1 and ~ subunits, the physiological relevance of this model is questionable, especially since 

RyRl was not present. This is particularly pertinent given as other -studies have shown that the 

presence of Ry RI influences the positioning of the skeletal a 1 cytoplasmic loops (Paolini et al. , 

2004a, Polster et al., 2012). 

Freeze fracture replicas reveal that four clustered DHPRs form a tetrad that interacts 

with every second RyRl in an orthogonal manner (Figure 1.6A) (Block, 1988, Paolini et al. , 

20Q4b, Pi Biase & Franzini-Armstrong, 2005). The orthogonal manner refers to DHPR 

alignment with every second RyRl in two orthogonal directions. This arrangement appears to 

be specific to skeletal muscle. When compared to the DHPR arrangement in cardiac myocytes, 

although DHPR are clustered in junctional regions, they do not form tetrads and are not 

disposed in any detectable ordered arrangement in regions of the sarcolemma that junction the 

SR membrane, as shown in Figure 1.6B (Franzini-Armstrong et al., 1998). 
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A) Suggested topology of the skeletal DHPR in the membrane. The line lengths were approximately scaled to the 
mouse sequence length, ,vith exception of the a2 subunit termini and a 1s C- terminus due to extensive length. This 
was modelled to the mouse sequences because the role of each subunit has been mostly examined using KO mouse 
myotubes. 1 ote, only a 15, o and y subunits are embedded in the membrane with transmembrane segments (blue with 
yellow pore-forming transmembrane). The ~1 and a2 subunits are exclusive to the cytoplasm and extracellular 
so lution, respective ly. Similar to vo ltage-gated sodium channels, a 1 contain 4 transmembrane domains, each 
consisting of six transmembrane segments (S 1-6) with S4 containing the positively charged residues that enable 
vo ltage sensitivity and S5 -6 forming the pore of the channel. The ~1 subunit consists of 5 domains: terminus ( 1), 
Src Homology 3 (SH3 ; 2), Hook region (3), Guanylate Kinase (GK; 4) and C terminus (5). B) 3-dimensional 
reconstruction of dihydropyridine receptor main body, determined using single particle analysis of electron 
microscopic images of DHPR attached by yellow· fluorescence protein (YFP; demonstrated in yellow). Tertiary 
structure is of the a 1 subunit (green : based on known vo ltage gated a- structure), the ~1 subunit SH3 domain (light 
blue) and ~1 subunit GK domain (purple). The possible location of the a 15 subunit II-III loop is represented by blue 
shading. The scale bar is - 10 nm. Image slightly adapted from Szpyt et al. (2012). 
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Figure 1. 6 Arrangement ofDHPR in skeletal and cardiac fibres. 

A and B) DHPR clustering in freeze fracture EM images of the surface membrane of a mouse skeletal myotube (A), 

and a chick ventricular myocyte (B). Individual DHPR can be seen as the primary membrane embedded particle. 

Note that although both surfaces are densely occupied by DHPR, only the skeletal membrane displays a regular 

tetrad arrangement, as highlighted by arrows directly (A) or within the region indicated (B). Scale bar (black) is 

~0.1 µm. Image from Franzini-Armstrong et al. (1998). C) A scaled superimposition of the DHPR tetrads above the 

juxtaposed RyRl (3-dimensional reconstruction) in skeletal muscle. Note, each tetrad is predicted to interact with 

every second RyRl with orthogonal arrangement. Image from Paolini et al. (2004b). 

A physical interaction between the DHPR and RyRl during resting and contracting 

states is highly likely. During contraction, this is especially likely given that skeletal EC 

coupling_ does not depend on extracellular Ca2
+ (Armstrong et al. , 1972, Miledi et al. , 1984) and 

no other chemical transmitter has been discovered as of yet. Furthermore, chelation of 

cytoplasmic Ca2
+ in skinned toad skeletal muscle fibres does not halt SR Ca2

+ release following 

T-tubule depolarisation (Lamb & Stephenson, 1990). In conditions that replicate the resting 

state, modulation of RyRl activity alters the conformation of the DHPR in tetrads (Paolini et 

al., 2004a). Moreover, addition of pharmaceutical agents that alter RyRl gating indirectly alter 
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DHPR Ca2
+ current (Balog & Gallant, 1999, Bannister & Beam, 2009) and vice versa (Lee et 

al. , 2004, Robin & Allard, 2012). 

DHPR location is not restricted to the triad. Immunohistochemistry has also identified 
DHPR in discrete foci in the sarcolemma (Jorgensen et al., 1989, Pietri-Rouxel et al., 2010). 
The functional role of DHPR that are both sarcolemmal-localised and RyRl-uncoupled is 
unclear. However, recent research suggests that sarcolemmal DHPR may facilitate gene 
expression in skeletal muscle fibres (Pietri-Rouxel et al., 2010). This function may extend to 
cardiac myocytes as well, but this has not been experimentally established yet. 

The Ca2
+ current and charge movement properties of functional DHPRs have been well 

defined. Charge movement is measured as the non-linear component of the capacitive current, 
that reflects intramembrane movement of the basic residues within the a.1s transmembrane 
segment, following membrane depolarisation (Hille, 2001). The charge movement density can 
be used to quantify the relative density of functional DHPR proteins in the plasmalemma ( e.g. 
Beurg et al. (1997), Beurg et al. (1999a), Beurg et al. (1999b), Cheng et al. (2005)). This is a 
logical connection, particularly since charge movement is deficient in a.15-null myotubes and is 
restored with a.1s expression (Adams et al., 1990). Furthermore, the level of skeletal fibre 
contraction closely reflects the level of charge movement in response to membrane 
depolarisation (Dulhunty & Gage, 1983). However, it is notable that the level of charge 
movement does not necessarily reflect the levels of DHPR expressed in the plasmalemma. This 
is particularly indicated by the fact that the presence of skeletal ~1 and RyR isoforms appears to 
modulate the ratio of charge movement to DHPR membrane expression, which will be 
discussed further in sections 1.3.4.3.3 and 1.3.5.5. 

Currently, the DHPR appears to have three primary functions in skeletal muscle fibres. 
Firstly, the DHPR located in the triadic regions of the T-tubule is essential for physical 
activation of RyRl during EC coupling, a process termed "orthograde" coupling. Secondly, 
several studies suggest that during resting conditions, the DHPR maintains the closed 
conformation of RyR, preventing " leak" (Lee et al. , 2004, Eltit et al. , 2011 , Robin & Allard, 
2012). The term " leak" refers to excess Ca2

+ release above healthy levels through RyRl in its 
open conformation when the fibre is in the resting state. Indeed, an uncoupling of DHPR and 
RyRl , attributed to mutations associated with malignant hyperthermia, has been suggested to 
enhance RyRl leak and consequently lead to abnormally high [Ca2

+] cy1o and low SR luminal 
[Ca2+] ([Ca2+]iurnen) (Yang et al., 2007, Eltit et al. , 2012). The authors suggest that the increased 
[Ca2

+] cyto may contribute to the pathology of malignant hyperthermia promoting hypersensitivity 
of RyRl to volatile halogenated anaesthetics, which is a trigger of a malignant hyperthermia 
episode. Finally, the DHPR is thought to also be involved in maintaining gene expression, in a 
signalling process known as excitation-transcription coupling. However, the direct role that the 
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DHPR has in this process is unclear and perhaps includes more than one pathway. Pietri-Rouxel 

and colleagues (2010) suggest that the small sub-population of DHPRs in the sarcolemma is 

responsible for preventing cellular atrophy (Pietri-Rouxel et al. , 2010). Interestingly, other 

studies demonstrate that the DHPR modulates the transcription pathways that govern skeletal 

muscle fibre type (Araya et al. , 2003, Jorquera et al. , 2013), although whether this is restricted 

to a specifically located subpopulation of DHPRs is unknown. 

A recurring observation in the literature is that effective DHPR tetrad formation and 

charge movement is necessary for functional EC coupling, but this does not necessarily infer 

functional EC coupling. EC coupling function is typically assessed as membrane depolarisation­

induced force production and/or SR Ca2
+ release (Ca2

+ transients), presumably via RyRl. The 

latter is measured using Ca2
+ sensitive fluorescent dyes in the cytoplasm. The role of individual 

DHPR subunits in EC coupling will be explored in sections 1.3 .1 - 1.3 .4, particularly focusing 

on the potential roles in tetrad formation, charge movement and direct interaction with the 

RyRl. 

1.3.1 The structure and function of the a 1s subunit 

The skeletal u 1 subunit (Cav 1.1; 175 kDa) contains the Ca2
+ channel pore and the 

binding site for dihydropyridines (Takahashi et al. , 1987). The a,1 subunit is composed of four 

trans-membrane domains that surround the pore of the DHPR ion channel, with loops linking 

the four domains exposed to the cytoplasm (Tanabe et al. , 1987)(Figure 1.5). Each domain 

contains six trans-membrane segments (S l-S6), with S4 forming the voltage sensor of the 

channel (Figure 1.5A) and S5 and S6 composing the pore forming region. The voltage sensing 

properties depend on the regularly spaced basic residues that reside- in S4, which translocate in 

the membrane in response to membrane depolarisation, effectively moving the whole S4 

segment and constituting the DHPR charge movement (Tanabe et al., 1987). 

Although there are ten different genes encoding the a,1 subunits that form the basis of all 

voltage-gated Ca2
+ channels in mammals, u1s is the predominant form in skeletal muscle (as 

reviewed by Ertel et al. (2000)). Two studies report the presence of the predominant cardiac 

isoform (u1c; Cavl.2) in certain types of skeletal muscle (Pereon etal. , 1998, Froemming eta!. , 

2000). _However, absence of detectabl~ muscle contraction in the u1s-null (dysgenic) mouse 

model suggests that any u1c does not_ functionally contribute to skeletal EC coupling (Tanabe et 

al. , 1988) . Notably, u 1c is thought to be responsible for the small voltage-induced DHPR current 

observed in dysgenic myotubes. This is particularly since the voltage-induced DHPR current in 

dyspedic myotubes displays kinetic- and pharmacological-properties that are more similar to 

those observed in dysgenic myotubes that express u 1c rather than u 1s (Adams & Beam, 1989, 

Tanabe et al., 1990b, Adams & Beam, 1991). 
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Functionally, the a1s forms the core of the protein, the ion channel and its gating 
properties, targeting the other subunits to the triad and enabling EC coupling. However, each of 
these functions is influenced to various degrees by interactions with one or more of the 
additional subunits, which wi II be discussed in sections 1.3 .2-1.3 .4, particularly focusing on the 
potential roles in tetrad formation , charge movement and direct interaction with the RyRl. 

1.3.1.1 The function of a1s subunit in EC coupling 
The presence of a1s is essential for skeletal EC coupling. Indeed, restoration of EC 

coupling in dysgenic models appears to be restricted to transfection with the skeletal isoform, 
a 1s subunit. It is exclusively the II-III loop region in a1s, not a 1c, that enables tetrad formation 
and depolarisation-induced SR Ca2

+ transients. This has primarily been observed in chimera 
studies through the ability of exogenously expressed chimera constructs, with a1s loops and 
termini in an a1c background, to restore tetrad formation and EC coupling (Tanabe et al., 1990a, 
Carbonneau et al., 2005). Notably, tetrad formation does not appear to confer functional EC 
coupling, as a chimera with the house fly (Musca domestica) a1 isoform (a1M) II-III loop in an 
a1s background restored tetrad formation, but not EC coupling, in myotubes from a cultured 
dysgenic cell line GLT (Takekura et al., 2004). The a1s sequence that supports both tetrad 
formation and EC coupling is in the II-III loop residues L 720-764/5, and this is generally 
referred to as the "critical" region (Nakai et al., 1998b, Wilkens et al. , 2001 , Takekura et al., 
2004). Critical residues have been further narrowed down to the a1s specific residues of A739, 
F741, P742 and D744 which differ in the a1c isoform (Kugler et al., 2004). 

Another region of the a1s II-III loop that was implicated in EC coupling is the "A 
domain" between a 1s residues 671-690, which is upstream of the critical region. In vitro studies 
have shown that a peptide corresponding to the A domain increases RyRl activity by interacting 
with the second of three SPRY (SPRY2; so named due to identification in Dityostelium 
discoidueum splA kinase and mammalian RyR) domains on RyRl . The first of these in vitro 
studies was undertaken by El-Hayek and colleagues (1995), who found a peptide corresponding 
to 671-690 increased RyRl activity and SR Ca2

+ release in native SR preparations (El-Hayek et 
al., 1995). Curiously, the increase was reduced by addition of a peptide corresponding largely to 
the critical domain, known as the "C domain" peptide (E724-P760). This group further isolated 
the functional region of the A domain to residues 681-690 (El-Hayek & Ikemoto, 1998). More 
recent in vitro studies demonstrate that the II-III loop is able to bind to the second of three 
SPRY domains (SPRY2 domain; rabbit S1085-V1208) on RyRl and increase single channel 
activity. In agreement with El-Hayek and colleagues' studies, these studies also demonstrate 
that the A domain peptide and the C domain peptide bind with micromolar affinity to SPRY2 
domain (Cui et al. , 2009, Tae et al., 2009, Tae et al., 2011). 
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Despite the importance of the A domain for in vitro interaction with RyRl , several in 

vivo studies show that this region has no functional relevance in EC coupling. This was 

particularly evident given that expression of an a 1s construct with the scrambled 681-690 

residues fully restored EC coupling in dysgenic myotubes (Proenza et al. , 2000) and complete 

deletion of 671-690 of a 1s did not alter EC coupling restoration (Ahem et al. , 2001a, Flucher et 

al., 2002). Furthermore, attaching fluorescent probes to physically obstruct the A domain did 

not alter EC coupling (Lorenzon et al. , 2004, Papadopoulos et al., 2004, Lorenzon & Beam, 

2007, Bannister et al. , 2009). Notably, deletion of the critical region 720-765 abolished 

restoration of voltage-induced SR Ca2
+ transients and DHPR Ca2

+ current in dysgenic myotubes 

(Ahern et al. , 2001a). Therefore, it is likely that the a 1s II-III loop is essential for EC coupling 

through the critical region, but not the A domain. 

Although the a 1s region responsible for directly participating in EC coupling likely 

resides within the II-III loop critical region, several studies suggest that the critical residues are 

not the only potential a 1s sites for direct contribution to EC coupling. Expression of the a 1s II-III 

loop critical residues in a urn (low voltage activated a1 subunit) background does not restore 

Ca2
+ transients in dysgenic myotubes (Wilkens & Beam, 2003), whereas expression in a a1c 

background does (Tanabe et al., 1990a). Consequently, Wilkens and Beam (2003) suggest that a 

region additional to the II-III loop residues and conserved between a1cla1s sequences likely 

contributes to EC coupling. Indeed, lysine mutation of E736 in a 1c/a 1s II-III was found to 

greatly reduce restoration of Ca2
+ transients (Carbonneau et al., 2005) and, although deletion of 

the critical residues in a 1s abolishes restoration of Ca2
+ transients in dysgenic myotubes, 

additional deletion of II-III loop residues 671-690 partially restored Ca2
+ transients (Ahem et 

al., 2001a). Overall, multiple a 1s regions likely contribute to EC coupling. 

Another a 1s region thought to directly facilitate EC coupling is the ill-IV loop. This 

loop has been shown to bind to a RyRl fragment (922-1112) in vitro (Leong & MacLennan, 

1998). Tested in vivo, Bannister and colleagues (2008) found expression of a1A ill-IV loop in 

a 1s background greatly reduces restoration of maximal SR Ca2
+ transients in dysgenic myotubes, 

which suggests that this region is important for EC coupling (Bannister et al. , 2008). However, 

the authors attribute the disruption of Ca2
+ to the similarly reduced intramembrane charge 

movements, rather than direct association with RyRl (Bannister et al. , 2008). 

1.3.2 The function and structure of they subunit 

The skeletal y subunit has a molecular weight of 30 kDa and consists primarily of 

hydrophobic domains that contribute to four putative membrane spanning domains with the N­

and C-termini exposed to the cytoplasmic solution, as shown in Figure l.SA (Takahashi et al. , 

1987). Humans have eighty genes with y1 as the predominant isoform expressed in the skeletal 
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muscle tissue (Burgess et al., 2001), interacting exclusively with the a 1 subunit of the DHPR 
(Arikkath et al. , 2003). 

The functional influence of y on DHPR gating and EC coupling has mostly been 
examined in in vivo knockout studies. Freise and colleagues (2000) found that y-null myotubes 
from neonatal mice display increased DHPR Ca2

+ current and prolonged voltage-dependent 
inactivation at higher voltages without altered single channel conductance, suggesting that the y 
enhances the voltage sensitivity of DHPR inactivation (Freise et al., 2000). However, myotubes 
derived from adult muscle, do not display the same degree of increased voltage-induced DHPR 
Ca2

+ current and a voltage sensitivity of DHPR activation was not evident. Additionally, the 
voltage-induced SR Ca2

+ release and muscle contraction did not significantly differ from control 
myofibres (Ursu et al., 2001 ). A similar y-null study using myotubes from mouse embryos also 
demonstrated diminished DHPR inactivation, but no alteration in EC coupling function as 
described by Freise et al. (2000) and Ursu et al. (2001), respectively (Ahern et al. , 20016). 
Overall, the y subunit does not appear to be directly involved in skeletal EC coupling, but does 
alter embryonic DHPR inactivation. 

1.3.3 The structure and function of the a2<> subunit 
The skeletal a2 subunit is a 143 kDa glycoprotein that is linked through a disulfide bond 

to the 81 subunit, which is 24-27 kDa (Takahashi et al., 1987). Both subunits are derived from 
the same gene and are post-translationally cleaved. There are four a 28 genes, of which a 28-1 is 
the predominant isoform in skeletal muscle. Of five splice a2 variants, a2A is the predominant 
isoform in adult skeletal muscle (Angelotti & Hofmann, 1996, Nabhani et al. , 2005). 

Similar to the y subunit, the a281 complex is deemed non-essential for EC coupling, 
rather it has a role in determining the functional properties of the a 1 subunit. Knockdown of a281 

in cultured myotubes from the mouse GLT cell line, increased the rate of DHPR activation 
without altering voltage sensitivity or maximal voltage-induced DHPR Ca2

+ current, indicating 
that the a281 complex has a significant role in modulating the activation kinetics of the DHPR 
Ca2

+ current (Obermair et al., 2005). Importantly, EC coupling was not altered (Obermair et al., 
2005), which is consistent with the findings from another study where the a281 complex was 
completely knocked out in mice (Gach et al. , 2008). However, the voltage-induced SR Ca2

+ 

transients abnormally decreased over time when a continuous train of action potentials was 
applied to the a281-null myotubes, but tetrad formation was not altered (Gach et al., 2008). 
Thus, Gach and colleagues (2008) suggest that a281 is physiologically important for sustaining 
functional EC coupling following prolonged depolarisation or a high frequency of stimuli. 
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1.3.4 The structure and function of the p subunit 

The p subunit is a 54-68 kDa cytosolic protein that is well known for trafficking high 

voltage activated a 1 subunits to the plasma membrane. Historically, the first P subunit gene to be 

cloned and partially sequenced was taken from skeletal muscle (Ruth et al., 1989). This gene 

and the expressed protein were given the nomenclature CACNBJ and P1, respectively. In rapid 

progression, three other p subunit (P2, P3 and P4) genes (CACNB2, CACNB3 and CACNB4, 

respectively) were cloned from cardiac muscle and brain tissue, and identified on the basis of 

partial amino acid sequence complementation with p1 (Hullin et al., 1992, Perez-Reyes et al., 

1992, Castellano et al., 1993a, Castellano et al., 1993b). Each p subunit has isoform variants 

that are attributed to either splicing variations of p1, p2 and P4 or truncation of P3 (Buraei & 

Yang, 2010). 

1.3.4.1 Tissue distribution of p subunit 

Brain and heart tissue contain a range of p isoforms, as shown in Table 1.1. In contrast, 

skeletal muscle tissue almost exclusively expresses one p isoform, which is Pia• Notably, some 

studies have determined p isoform expression in tissues by measuring only mRNA levels, as 

also indicated in Table 1.1. 

1.3.4.2 Constituents of p subunit and splicing variants 

Structurally, the P subunit is divided into 5 domains (Figure 1.5A), of which only domains 2 

and 4 share a high sequence homology (68-92%) between the different isoforms (De Waard et 

al., 1994, Hanlon et al., 1999, Opatowsky et al., 2003). Domain 2 retains a Src Homology-3 

(SH3)-like sequence and domain 4 retains a Guanylate Kinase like (GK) motif as determined by 

homology modelling and X-ray crystallographic studies (Hanlon et al., 1999, Chen et al. , 2004, 

Opatowsky et al., 2004b, Van Petegem et al., 2004). Althm1gh the p subunit GK domain lacks 

the ATP binding site necessary for kinase function (Kistner et al., 1995, Hanlon et al., 1999), it 

has an important role in trafficking the a 1 subunit of the DHPR ( discussed in section 1.3 .4.3 .1 ). 

Domains 1 and 5 are highly divergent between the p isoforms and are located at the N- and C­

termini, r.espectively (De Waard et al., 1994). The other non-homologous region, domain 3, is 

classified as the "linker" or "hook" region and is located between the main body of the SH3 (De 

Waard ,et al., 1994). 

Both, P1 and P2 have splicing variants of the hook region and splicing variants in the C­

and N-terminal region, respectively. Similar to p2, p4 variants primarily involve alternate 

splicing of exons encoding the N-terminus (review Buraei and Yang (2010)). 

Although the crystal structure of Pia is currently unknown, bimolecular fluorescence 

complementation assays and fluorescence resonance energy transfer (FRET) both demonstrate 

that the N- and C- termini are closely positioned, perhaps even as close as :'.S 5 nm (Leuranguer 
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et al., 2006, Sheridan et al., 2012). Additionally, as both techniques did not detect evidence of 
interaction between termini from adjacent B,a subunits in the tetrad, the N-and C- termini are 
thought to be positioned away from the tetrad centre. 

Table 1. 1 Tissue di stribution of~ isoforms. 

B isoform 

B2a 

B2b 

B2c 

B2ct 
B2e 
B3 

Tissue distribution 

Brain, skeletal muscle, 
retina, heart, T cells and 
spleen (mRNA) 

Skeletal muscle and heart 

Brain 

Brain 

Heart 

Heart, brain, retina and 
osteoblasts 

Heart, brain (mRNA) and 
aorta (mRNA) 

Heart, brain (mRNA) and 
aorta (mRNA) 

Heart 

Heart 

Heart 

Brain, retina, heart, spleen, 
aorta (mRNA), trachea 
(mRNA), lung (mRNA) 
and skeletal muscle 
(mRNA) 

Heart (mRNA) 

Brain and retina 

Brain 

Brain 

Brain 

References 

Powers et al. (1992), Tanaka et al. (1995), 
Volsen et al. (1997), Stokes et al. (2004), Ball et 
al. (2011) 

Ruth et al. (1989), Powers et al. (1992), Witcher 
et al. (1995), Pichler et al. (1997), Chu et al. 
(2004), Foell et al. (2004) 

Powers et al. (1992), Witcher et al. (1995), Scott 
et al. (1996), Vance et al. (1998), Foell et al. 
(2004) 

Powers et al. (1992) 

Cohen et al. (2005) 

Perez-Reyes et al. (1992), Tanaka et al. (1995), 
Witcher et al. (1995), Ludwig et al. (1997), 
Pichler et al. (1997), Volsen et al. (1997), Foell 
et al. (2004), Shao et al. (2009), Ball et al. 
(2011) 

Bullin et al. (1992), Herzig et al. (2007) 

Bullin et al. (1992), Herzig et al. (2007) 

Herzig et al. (2007) · 

Herzig et al. (2007) 

Herzig et al. (2007) 

Bullin et al. (1992), Castellano et al. (1993b), 
Tanaka et al. (1995), Witcher et al. (1995), 
Haase et al. (1996), Scott et al. (1996), Ludwig 
et al. (1997), Pichler et al. ( 1997), Vol sen et al. 
(1997), Bullin et al. (2003), Chu et al. (2004), 
Foell et al. (2004), Stokes et al. (2004), Vendel 
et al. (2006), Ball et al. (2011) 

Hull in et al. (2003) 

Castellano et al. (1993a), Tanaka et al. (1995), 
Witcher et al. (1995), Ludwig et al. (1997), 
Pichler et al. (1997), Volsen et al. (1997), Vance 
et al. (1998), Foell et al. (2004), Ball et al. 
(2011) 

Helton et al. (2002), Vendel et al. (2006) 

Helton et al. (2002), Vendel et al. (2006) 

Xu et al. (2011) 
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1.3.4.3 Function of P1a subunit in skeletal muscle 

The importance of the ~la subunit in skeletal muscle contraction was first demonstrated 

in 1996 by Gregg and colleagues, essentially by establishing that complete ~1 subunit knockout 

in mice resulted in death at birth due to asphyxia (Gregg et al. , 1996). Curiously, this was in 

contrast to the heterozygous mutant mice that were phenotypically indistinguishable from WT 

mice. The skeletal myotubes extracted from 18-day-old ~1-null murine foetuses did not contract 

in response to electrical stimulation. Although action potential generation and caffeine (RyRl 

agonist; section 1.4.4) induced SR Ca2
+ release was similar to control (normalised with muscle 

mass), depolarisation-induced SR Ca2
+ transients were abolished. Additionally, the voltage­

induced DHPR Ca2
+ peak was shifted 10 m V to more positive potentials and peak amplitude 

was reduced 10-fold, which suggests that both voltage-dependent DHPR activation and Ca2
+ 

current were reduced. Indeed, the DHPR Ca2
+ current density was decreased 16-fold compared 

to control myotubes, which was attributed to severe reduction (seen in 50% of myotubes) or 

complete lack of detectable a.1s (seen in 50% of myotubes), as determined by 

immunofluorescence (Gregg et al. , 1996, Strube et al. , 1998). Further examination 

demonstrated that the charge movement was 2.8-fold lower in ~1-null myotubes (Strube et al. , 

1996). The functional role of the ~la subunit has also been investigated using a ~1a-null zebrafish 

model, known as relaxed (Schredelseker et al. , 2005, Schredelseker et al. , 2009, Dayal et al. , 

2010, Dayal et al. , 2013). Similar to the ~1-null murine myotubes, electrical field stimulation­

induced contraction and SR Ca2
+ transients were absent in relaxed myotubes, although action 

potential generation and caffeine-induced SR Ca2
+ release were normal (Ono et al. , 2001 , 

Schredelseker et al., 2005, Zhou et al. , 2006). The levels of a.1s targeted to the triad were 

reduced by ~50% as determined by immunofluorescence and by the fraction of particles 

attributed to DHPR embedded in plasmalemmal membrane in freeze fracture replicas. In 

disproportion to the 50% reduction in the DHPR, charge movement was reduced by 7.4-fold 

and tetrad formations were not visible in freeze fracture replicas (Schredelseker et al. , 2005). As 

a result of subsequent research (Neuhuber et al. , 1998a, Neuhuber et al., 1998b, Beurg et al. , 

1999a, Garcia et al. , 2002, Ahern et al., 2003 , Sheridan et al. , 2003, Sheridan et al. , 2004, 

Cheng et al., 2005, Garcia et al. , 2005, Schredelseker et al. , 2009, Rebbeck et al. , 2011, Dayal 

et al. , 2013), the decreased DHPR channel current, fewer plasmalemmaI a.1s and abolished EC 

coupling were attributed to five different roles ~la subunits. These include: 1) enhancing 

membrane expression of the a.15 subunit, 2) modulation of depolarisation-induced DHPR Ca2
+ 

current, 3) modulation of depolarisation-induced DHPR charge movep:1ent, 4) tetrad formation 

at the triad and, 5) regulation of Ca2
+ release from the SR during EC coupling, possibly through 

direct interaction with RyR l . 
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1.3.4.3 .1 01a subunit's role in enhancing a1s subunit membrane expression 
Both the P,-null mouse and zebrafish models display significantly reduced membrane 

expression of a 1s subunit, suggesting the Pia subunit has an important role in this process (above 
in section 1.3 .4.3). Notably, this regulatory role is not restricted to skeletal isoforms, as 
regulation of the membrane expression of high-voltage-activated a 1 subunits is a common 
feature of all p isoforms. However, the particular mechanisms involved are effectively unknown 
due to the complexity of the system (reviews Buraei and Yang (2010), Simms and Zamponi 
(2012)). Some suggested mechanisms include: P-a1 binding rearranges the intracellular a 1 

domains such that the export signal dominates the retention signals, which then permits 
trafficking from the ER to the plasma membrane (Fang & Colecraft, 2011); or, p prevents a 1 

ubiquitination and/or proteasomal degradation (Altier et al. , 2011 , Waithe et al., 2011). In 
support of the first mechanism, exogenous expression of the Pi a subunit is necessary for 
trafficking exogenously expressed a 1s subunit from the ER to the plasma membrane in a 
transformed human kidney cell line, tsA20l(Neuhuber et al., 1998b). However, the relative 
reduction in a 1s membrane expression equates to reduced whole cell a 1s levels in myotubes 
from relaxed zebrafish (Schredelseker et al. , 2005), suggesting that there is no additional ER or 
SR retention of the a 1s subunit without Pia subunit expression. Although these results do not 
directly support the second mechanism, they do suggest alternative possibilities. 

The a 1s-Pi a interaction is sufficiently stable such that the rate of fluorescence recovery 

of GFP-labelled a 1s and Pia subunits locating to the triad in dysgenic myotubes following photo­
bleaching is the same, suggesting the same turnover rate at the plasmalemma (Campiglio et al., 
2013). Nevertheless, the necessity of a stable interaction is questionable. Reduction in 
interaction stability due to a 1s mutation, destroys Pi a subunit, but not a 1s subunit, targeting to the 
triad in myotubes (Neuhuber et al., 1998a). Therefore, a 1s trafficking to the plasmalemma does 
not require a stable a 1s-P,a interaction, but P,a targeting to the triad does. 

Localisation of the P,a and a 1s subunits to the triad requires the a-interaction domain 
(AID) located on the I-II loop on the a 1s subunit (Neuhuber et al. , 1998a, Bichet et al., 2000) 
and both the SH3 domain and the GK domain of the P,a subunit (Maltez et al., 2005, Sheridan et 
al. , 2012). Notably, association with the I-II loop with nanomolar affinity in vitro is a constant 
feature of P isoforms (Pragnell et al., 1994, De Waard et al., 1995, Witcher et al., 1995, 
Opatowsky et al., 2003). The p interacting domain (BID) on the p GK domain was first thought 
to be the binding site for AID (De Waard et al. , 1994), particularly as truncated forms of p, b, 
encompassing the BID, were sufficient to restore a 1 current in Xenopus oocytes and mutations 
in the BID disrupted this restoration (De Waard et al., 1994). However, resolution of crystal 
structure of the p3 and P2a core (containing SH3 and GK domains) with the AID region bound 
reveals that BID is not invo lved in the interaction (Chen et al., 2004, Van Petegem et al., 2004). 
Instead, thi s region was found to be crucial for SH3 and GK structural integrity and 
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intermolecular interaction between the domains (Chen et al., 2009). As an alternative binding 

site, Van Petegram (2004) and Chen (2004) both suggested an AID binding site composed of a 

hydrophobic cleft, named the a binding pocket, on the GK domain. Markedly, the a binding 

pocket sequence is conserved in p isoforms, with mutant studies revealing P2a M245 is a hotspot 

for Pi-AID interaction (Van Petegem et al. , 2008). 

1.3.4.3.2 ~la subunit' s role in modulation of DHPR activity 

A common feature of p isoforms is the ability to modulate the voltage sensitivity of 

high-voltage-activated ai subunits, specifically altering both voltage-dependent activation and 

inactivation (reviews Buraei and Yang (2010), Buraei and Yang (2013)). The shift in maximal 

voltage-induced DHPR Ca2
+ current to more positive potentials in Pia-null murine myotubes 

reflects the lack of Pia mediated increase in DHPR activation (Gregg et al., 1996). Beurg et al. 

(1997) and Ahern et al. (2003) have commented that modulation of inactivation could not be 

monitored in myotubes due to the characteristically slow inactivation rate that exceeded 

experimental parameters. Exogenous expression of both Pi a and a 1s constructs in a mammalian 

fibroblast-like cell line, COS-7, increases Ca2
+ current by ~ 2-fold relative to the expression of 

ais alone (Garcia et al., 2002). The benefit of this model is that ais membrane expression and 

charge movement do not appear to be influenced by Pia subunit expression, suggesting that Pia 

specifically increases Ca2
+ current. In contrast to myotube studies, Pia expression did not alter 

activation or inactivation of the a 1s Ca2
+ current (Garcia et al. , 2002). However, this may be 

attributed to a lack of RyRl , which appears to be essential for the complete restoration of DHPR 

peak current and voltage-dependent activation in RyRl-null (dyspedic) myotubes (Ahem et al., 

2003). 

X-ray crystallography and circular dichroism studies demonstrate that binding with the 

a binding pocket promotes a helical formation of the AID region (Chen et al., 2004, Opatowsky 

et al. , 2004a, Van Petegem et al. , 2004, Almagor et al. , 2012). This is suggested to extend to the 

helical propensity of the region between the S6 segment of the first ai transmembrane domain 

(indicated as "I" in Figure l.SA) and AID (Arias et al., 2005), particularly as mutations that 

reduce propensity for a helical formation reduce the functional effects of the p subunit on a 1 

voltage-inactivation chara~teristics (Arias et al. , 2005, Findeisen & Minor, 2009, Almagor et 

al. , 2012). As ai S6 is thought to influence both activation and inactivation, the general 

consens'-!s is that the domain I S6 region is altered upon binding with p subunit, consequently 

altering activation and inactivation gating characteristics. 

1.3.4.J.3 ~la subunit's role in modulating ~harge movement in a 15 

In relaxed zebrafish, the reduction of charge movement exceeds the 50% reduction in 

the plasmalemmal ais subunit present that was observed in both freeze fracture electron 

microscopy and immunocytochemistry (Schredelseker et al., 2009). This signifies that the Pia 
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subunit likely increases charge movement directly, as opposed to by virtue of increasing a.1 

membrane expression (Schredelseker et al. , 2009). Using chimera studies with Pi a domains in a 
p3 background, Dayal and colleagues (2013) demonstrated that co-operative presence of SH3 
and C-terminal Pi a domains is necessary for functional charge movement and EC coupling. The 
p3 isoform is ideal for chimera studies to analyse restoration of charge movement as exogenous 
expression of p3 in relaxed zebrafish larvae only slightly restores charge movement, though a.1s 
membrane expression and tetrad formation are fully restored (Dayal et al., 2013 ). Specifically, 
expression of a Pi a construct containing a single praline mutation at the C-terminal PXXP motif 
(P467) significantly reduced charge movement to similar levels as myotubes expressing p3. The 
authors suggest this is of interest as the PXXP motif has a putative binding site in the SH3 
domain; they propose that the C-terminal-SH3 interaction may be important for modulation of 
a.1s charge movement (Dayal et al., 2013). 

1.3.4.3.4 ~la subunit's role in DHPR tetrad formation 
The role of the Pi a subunit in tetrad formation has mostly been investigated in relaxed 

zebrafish. For all the p isoforms investigated, exogenous expression in relaxed zebrafish has 
restored a.1s membrane expression, given slight overexpression, as measured with 
immunocytochemistry. However, only expression of Pia and P3 in relaxed zebrafish can impart 
normal tetrad formation with particles mostly in orthogonal arrays. Expression of rat P2a and a 
housefly PM prevented restoration of ~60% of tetrad structures, with either no or 50% less 
orthogonal arrangement, respectively (Schredelseker et al. , 2009, Dayal et al., 2013 ). 

1.3.4.3 .5 ~la subunit's role in Ca2
+ transients during EC coupling 

As of yet, it is difficult to define the direct role that Pia subunits have in EC coupling. 
There is in vitro evidence that Pi a directly interacts with the RyRl and mutation of these regions 
in myotubes produces a range of effects on EC coupling. Simultaneously, the quantifiable 
contribution to EC coupling from DHPR tetrad formation, a.1s membrane expression and charge 
movement is unknown. 

Regions of Pi a that are involved in EC coupling have been mostly assessed by 
expressing chimeras and truncations of p in mouse and zebrafish Pi a-null models. Expression of 
the skeletal and cardiac~ subunit isoforms, ~la and ~2a respectively, in ~1a-null mouse myotubes 
revealed that expression of the ~ ta subunit alone could completely restore SR Ca2

+ transients 

(Beurg et al. , 1999b). Similarly, expression of rabbit ~t a or zebrafish ~t a subunit isoforms fully 
restored motility in relaxed zebrafish (Schredelseker et al. , 2009), whereas zebrafish P2a subunit 
expression only restored mobility by 26%. This result suggested that a non-conserved region 
between ~ la and ~2a is a likely contributing factor to ~ la subunit's role in EC coupling. The 
ability of the non-conserved domains (linker and N-and C-termini) to recover DHPR Ca2

+ 

current and charge movement, and EC coupling in Pi a-null mice myotubes has been examined 
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by exogenous expression of constructs with these regions either removed or exchanged with the 

corresponding P2a sequence (Beurg et al. , 1999a). Although removal or chimeric replacement of 

the N-terminus and "linker" region did not greatly influence restoration of EC coupling, Pia C­

terminus did influence the restoration (Beurg et al. , 1999a, Sheridan et al. , 2004). In agreement, 

truncations of the 29, 35 and 60 residue tail on the C-terminal produced a 5-fold reduction in 

restoration of voltage-induced SR Ca2
+ transients in Pia-null myotubes compared to P, a-null 

myotubes expressing the complete Pia subunit (Sheridan et al. , 2003). This is in contrast to the 

finding that truncation of 7 or 21 residues in the C-tail did not prevent full restoration of EC 

coupling (Sheridan et al. , 2003). Deletion of the 35 residue C-tail did not prevent full restoration 

of charge movement density, or a 1s membrane expression, though EC coupling was reduced P,a­

null myotubes (Beurg et al., 1999a). This indicates that the reduction of EC coupling could not 

be attributed to an alteration P1a's roles in DHPR charge movement and membrane expression. 

Notably, deletions of 2: 29 final C-terminal residues also resulted in a 50% reduction in DHPR 

Ca2
+ current. Though this is more likely attributed to reduced RyRl activity rather than DHPR 

Ca2
+ current altering EC coupling (section 1.3 .5 .5). In identification of the C-terminal residues 

responsible for EC coupling, Sheridan and colleagues (2004) found that expression of a mutant 

Pia construct (L478A, V485A and V492A; hydrophobic heptad repeat mutant) decreased the 

maximal SR Ca2
+ transients by 80% relative to WT Pi a (Sheridan et al. , 2004). This implies that 

one, or all, of these hydrophobic residues on the Pia subunit are important for functional EC 

coupling. In contrast, expression of heptad repeat mutant in relaxed zebrafish almost fully 

restored EC coupling (Dayal et al. , 2010). This is despite similar Pia subunit isoform selectivity 

for restoration of EC coupling in Pia-null myotubes, as mentioned above. Moreover, truncation 

of the C-terminus and the last 10 residues of GK of the Pia subunit in zebrafish myotubes 

resulted in paralysis (Zhou et al., 2006), which agrees with the findings from Pia C-terminus 

truncation studies in mouse myotubes (Sheridan et al. , 2003f 

In addition to chimera and truncation studies, further suggestion of Pi a subunits direct 

role in EC coupling is given by the fact that pressure injection of Pia subunit into mouse muscle 

fibres significantly increased voltage-induced SR Ca2
+ transients (Garcia et al. , 2005). Notably, 

pressure injection of a truncated form (missing 40 residues of the C-terminal tail) did not alter 

SR Ca2
+ transients (Garcia et al. , 2005). In accord with chimera and truncation studies, the 

DHPR Ca2
+ currents were also increctsed though charge movements were not altered (Garcia et 

al., 2005). Together, these results suggest that the C-terminus of the Pia subunit plays a crucial 

role in EC coupling that is at least more than the Pi a subunit ' s contribution to DHPR charge 

movements and membrane expression. 

The question arises as to whether the Pia subunit facilitates EC coupling by virtue of a 

direct interaction with RyRl or by an indirect interaction via positioning the a 1s subunit so that 

it can interact with RyRl. In vitro experiments suggest the former may be possible. The Pi a 
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subunit has been shown to associate with RyRl fragments in affinity chromatography, with the 

residues within a polybasic K3495KKRR __ R3502 motif centrally located in RyRl identified as 

being important, because RyRl fragments had little affinity for the Pia subunit in vitro when this 

region was removed or neutralised (Cheng et al. , 2005). The authors also demonstrated that 

express10n of RyRl with the polybasic region either removed or mutated in RyRl-null 

(dyspedic) myotubes significantly decreased maximal SR Ca2
+ transients by 50% when 

compared with myotubes expressing WT RyRl (Cheng et al., 2005). This was attributed to a 

hindered interaction between the Pi a subunit and the RyRl. In agreement with Cheng (2005) and 

Beurgs ' (1999a) studies, we have found a 35 residue peptide corresponding to the Pia subunit C­

tail that can bind to full-length RyRl using pull down assays (Rebbeck et al., 2011). 

Functionally, this peptide and the full-length Pia subunit increase RyRl activity with an AC50 of 

450-600 pM (Rebbeck et al. , 2011). Thus, this provides further evidence that the Pia subunit C­

terrninus increases EC coupling by virtue of directly activating of RyRl. 

Conversely, other work has led to the conclusion that Pia is unlikely to interact with 

RyRl during EC coupling. Firstly, two studies demonstrated that fluorescently labelled Pi a does 

not locate to the membrane without a 1s expression (Neuhuber et al. , 1998a, Leuranguer et al. , 

2006). Arguably, this could also suggest that the a1s subunit is necessary for physical Pia-RyRl 

interaction in vivo. Secondly, the use of size-interfering streptavidin tags attached to the C­

terrninus did not hinder EC coupling (Lorenzon & Beam, 2007). A counter argument is that the 

RyRl binding site on Pi a may be sufficiently upstream that streptavidin attachment does not 

interfere with the interaction between Pi a and RyRl. Furthermore, the mouse Pi a C-terrninus has 

two putative glycine hinges at places 12-13 and 20-21 residues upstream of the extreme C-tail 

that could provide a large degree of flexibility with streptavidin bound to the extreme C­

terrninus. This is assuming that the Pia C-terminal residues involved in the RyRl-Pi a interaction 

are > 21 residues upstream of the C-tail , as suggested by truncation studies discussed above 

(Sheridan et al. , 2003 ). 

1.3.5 Dihydropyridine receptor regulatory proteins during EC coupling 
Functional EC coupling appears to be reliant on DHPR association with several 

proteins, including stromal interaction molecule 1 (STIMl), SH3 and cysteine rich domain 3 

(STAC3), junctophilin (JP) and JP-45. Additionally, RyRl is known to modulate DHPR activity 

during EC coupling, but the degree of importance of this "retrograde" function for EC coupling 

is difficult to define. 

1.3.5.1 ST/Ml 

STIMl is located in the SR/ER membrane and is typically associated with the process 

of store operated Ca2
+ entry. In brief, this is a common process in mammalian cells that 

sequentially involves detection of low SR/ER Ca2+, recruitment of ORAI and facilitation of 
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extracellular Ca2
+ influx into the cytoplasm via ORAil (as reviewed by Muik et al. (2012)). 

However, a recent study has shown that STIMl negatively regulates SR Ca2
+ transients during 

skeletal EC coupling. In mouse myotubes, over expression or knockdown of STIMl results in a 

reduction or increase, respectively, in the amplitude of SR Ca2
+ transients without altering 

caffeine-induced SR Ca2
+ release, suggesting that SR Ca2

+ load and RyRl function was not 

compromised. Co-immunoprecipitation demonstrates that STIMl can precipitate the DHPR a.1s 

subunit, but not RyRl , suggesting that STIMl alters EC coupling by virtue of interaction with 

DHPR Cl.Js (Lee et al. , 2013). Similar to a previous study that identified a direct interaction 

between STIMl and the DHPR Cl.J c subunit, the interaction appeared to be independent STIMl ' s 

functions in store operated Ca2
+ entry, including: the ability to interact with GRAil and the 

properties of the SR Ca2
+ sensor for store operated Ca2

+ entry (Wang et al. , 2010, Lee et al., 

2013). 

1.3.5.2 STAC3 

Similar to STIMl , another protein recently shown to influence EC coupling via 

interaction with DHPR a. 1s subunit is STAC3 . However, unlike STIMl , STAC3 has been shown 

to also co-immunoprecipitate RyRl (Horstick et al. , 2013 , Lee et al. , 2013). In both mouse and 

zebrafish STAC3-null models, depolarisation-induced muscle contraction and SR Ca2
+ 

transients are abolished (Horstick et al., 2013 , Nelson et al., 2013). Studies published a few 

months prior to these studies demonstrate that ST AC3-null mouse and zebrafish models lack 

proper myoblast differentiation, which was suggested to have contributed to the lack of muscle 

contraction (Bower et al. , 2012, Reinholt et al., 2013). However, Nelson et al. (2013) suggested 

that the aberrant myogenesis in the mouse STAC3-null model m1:1y be a by-product of EC 

coupling disruption. This was suggested because similar phenotypic attributes were also 

observed in null models of other proteins crucial for EC coupling, such as DHPR a. 1s subunit, 

DHPR ~la subunit and RyRl (Powell et al. , 1984, Takeshima et al. , 1994, Gregg et al., 1996, 

Chen et al., 2011). More importantly, 4-chloro-m-cresol induced activation of RyRl resulted in 

normal muscle contraction (normalised to muscle weight) and myocyte SR Ca2
+ release (Nelson 

et al,, 201:3 ). This suggests that the muscle was still functional, and that ST AC3 may be directly 

involved in the interaction between DHPR and RyRl during EC coupling (Nelson et al. , 2013). 

Curiously, STAC3 contains a few well-known protein-binding motifs that make it a feasible 

binding P.artner to RyRl and/or DHPR. Thus; perhaps ST AC3 should be taken into account in 

future models of EC coupling. 

1.3.5.3 Junctophilin 

Junctophilin (JP) isoforms 1 and 2 are localised to the junctional membranes and are 

involved in anchoring the SR to the sarcoleriuna or T-tubule in skeletal m4scle (Nishi et al., 

2000}. With the hydrophobic C-terminus embedded in the SR membrane, the large cytoplasmic 
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domain is likely attached to the T-tubule by virtue of a MORN motif (Takeshima et al., 2000). 

JPl co-immunoprecipitates with both DHPR and RyRl , suggesting that JP also bridges the 

junctional membranes by forming a complex with DHPR and RyRl (Golini et al., 2011). In 

cultured myotubes from the C2Cl2 cell line, JP knockdown contributed to reduced DHPR 

charge movements and DHPR Ca2+ currents, although voltage-induced SR Ca2+ transients were 

not altered (Golini et al., 2011). The authors suggest that EC coupling may not be altered due to 

the compensatory action of perhaps Ca2+-induced Ca2+ release. Interestingly, a very recent study 

demonstrated that depolarisation-induced contractions in skeletal muscle fibres can be abolished 

upon Ca2+ dependent cleavage of JPl, which is attributed to uncoupling of DHPR and RyRl 

(Murphy et al., 2013). Therefore, JPl is likely to be necessary for EC coupling in adult fibres, 

not cultured myotubes, by facilitating coupling between DHPR and RyRl. 

1.3.5.4 JP-45 

JP-45 was identified as a 45 kDa protein in a biochemical screen of the junctional SR 

proteins (Zorzato et al. , 2000) and is currently thought to indirectly regulate EC coupling. 

Embedded in the SR membrane with one predicted transmembrane segment, the N-terminus 

(125 residues in mouse JP-45) and C-terminus (183 residues) face the cytoplasm and SR lumen, 

respectively (Anderson et al. , 2003). Co-immunoprecipitation shows that JP-45 interacts with 

the a1s subunit and with calsequestrin (CSQ) (Anderson et al., 2003), the main SR Ca2+ binding 

protein and a SR luminal RyRl regulator (section 1.4.3.7; Beard et al. (2002)). In terms of 

interactions with DHPR, Anderson and colleagues (2006) describe the interaction between JP-

45 N-terminus (residues 1-80) with the a 1s subunit I-II loop and C-terminus, as well as the Pia 
subunit. Interestingly, the presence of Pia subunit was found to drastically reduce the ability of 

JP-45 N-terminus to pull down or precipitate a 1s I-II loop during pull down and co­

immunoprecipitation assays (Anderson et al., 2006). Therefore, the authors suggested that Pia 
and JP-45 compete for the same AID site on the I-II loop. Interestingly, overexpression or 

knockdown of JP-45 in C2C12 myotubes reduces DHPR charge movement, although a 15 

expression levels were reduced only in JP-45 KO myotubes (Anderson et al., 2006). The 

proposed model suggests that JP-45 competes with the interaction between Pia subunit and a1s 

subunit at the triad and hence overexpression reduces the Pia subunit modulation of DHPR 

charge movement. The model also proposes that knockout of JP-45 contributes to reduced 

DHPR membrane expression because there is no JP-45 to locate the DHPR to the triad via 

interaction between JP-45 and a 1s C-terminus (Anderson et al. , 2006). Interestingly, another 

study has shown that 4-chloro-m-cresol induced fibre contraction was identical in JP-45 

knockout and WT mouse muscle fibres, which suggests that RyRl activity and SR Ca2+ store 

load was not affected in the JP-45 knockout muscle fibres (Delbono et al. , 2007). Thus, the 

slightly reduced contraction force observed in JP-45 null muscle fibres is likely attributed to 

reduced DHPR charge movement (Delbono et al. , 2007). 
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1.3.5.5 RyRJ 

As alluded to earlier, several studies have demonstrated that the DHPR physically 

induces RyRl activation. However, the interaction is bidirectional, in that the physical coupling 

alters DHPR gating properties in an interaction termed "retrograde" coupling (Nakai et al., 

1996, Nakai et al., 1998a, Avila & Dirksen, 2000, Ahem et al. , 2001a, Avila et al. , 2001). This 

was first demonstrated in RyRl-null (dyspedic) myotubes that displayed a 30-fold reduction in 

depolarisation-induced DHPR Ca2
+ current density (Nakai et al., 1996) and a lack of tetrad 

formation in freeze fracture replicas, although, notably, the number of DHPR particles in freeze 

fracture replicas was unchanged (Protasi et al., 2002). Avila and Dirksen (2000, 2001) 

demonstrated that myotubes derived from dyspedic mice display a ~40% reduction in maximal 

charge movement and a 5-fold reduction in DHPR Ca2
+ current to charge movement ratio 

relative to cultured myotubes from phenotypically normal littermates (Avila & Dirksen, 2000). 

The exogenous expression of WT RyRl or RyRl mutant (deficient in depolarisation-induced 

SR Ca2
+ transients) in dyspedic myotubes, restores the depolarisation-induced DHPR Ca2

+ 

current to charge movement ratio. As a consequence, the authors suggest that it is the presence 

of RyRl rather than RyRl function that governs restoration of DHPR Ca2
+ current. Given that 

Avila and Dirksen found charge movement was restored by expression of WT RyRl , but not 

RyRl mutant, the authors suggested that RyRl activity likely influences a signalling pathway 

that promotes expression of DHPR (Avila et al., 2001). However, this is questionable as Protasi 

and colleagues (1998) note that skeletal DHPRs cluster to the same level in the plasmalemmal 

regions that overlay the SR membrane in freeze fracture replicas of 1B5 dyspedic myotubes, 

regardless of whether RyRl is exogenously expressed. Thus, membrane expression does not 

appear to always be influenced by RyRl presence. It is important to note that DHPR tetrad 

formation was only observed in freeze fracture replicas when RyRl was exogenously expressed 

(Protasi et al., 1998). 

That EC coupling is dependent on DHPR charge movement and tetrad formation, but 

independent of DHPR Ca2
+ current, has been demonstrated by several studies. Firstly, 

depolarisation-induced Ca2
+ transients in frog muscle fibres are independent of extracellular 

Ca2
+ (Armstrong et al. , 1972, Miledi et al., 1984). This also apparent in zebrafish, as zebrafish 

a 1s isofC?rms do not conduct detectible Ca2
+ current (Schredelseker et al., 2009, Schredelseker et 

al. , 2010). Secondly, expression of_ a 1s mutants, Rl 74W and EIIIK, in dysgenic myotubes 

abolishes· the DHPR Ca2
+ current, but not charge movements or depolarisation-induced SR Ca2

+ 

transients (Dirksen & Beam, 1999, Eltit et al. , 2012). Thirdly, although the absence of the 

DHPR y subunit significantly increases DHPR-Ca2
+ current, the strength of EC coupling is not 

affected (Ahem et al., 2001b, Ursu et al. , 2001). 
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1.4 Ryanodine receptor 

The RyR ion channel contributes to Ca2
+ signalling in striated muscle and is essential 

for EC coupling. Named due to its specific and high affinity interaction with the plant alkaloid 

ryanodine, this channel is composed of four monomers (homotetramer; >2000kDa). Each 

monomer consists of ~5000 amino acid with a large (~80%) portion composing a cytoplasmic 

region . The C-terminal region contains the transmembrane component that forms the channel 

pore when the four monomers associate in the SR membrane (Takeshima et al., 1989). 

Historically, RyRl was identified as the primary SR Ca2
+ release channel in skeletal EC 

coupling during the mid- to late-1980s. Thin section electron microscopy of amphibian skeletal 

muscle revealed large "feet" (singular "foot") erupting from the SR membrane, almost 

completely extending the ~ 12 nm distance between the SR and T-tubule membranes (Franzini­

Armstrong, 1972, Franzini-Armstrong, 1973). Studies in 1985-6 found that Ca2
+ release from 

junctional SR preparations was influenced by ryanodine (Fleischer et al., 1985, Meissner, 1986) 

and therefore the Ca2
+ release channel was termed the ryanodine receptor. This was closely 

followed by a study that demonstrated that purified RyR, reconstituted into planar phospholipid 

bilayer, responded to ryanodine, ruthenium red, ATP and [Ca2+] (section 1.4.4) in a similar 

manner as the primary Ca2
+ release channel in junctional SR preparations (Imagawa et al. , 

1987). In the following years, the RyRl was firmly identified as the "foot" structure that 

stretched the triad junction (Lai et al., 1988) and the primary structure was predicted from the 

cloned and sequenced RyRl cDNA (Takeshirna et al. , 1989). 

Currently, three RyR genes (RYRJ-3) have been identified in mammals. These isoforms 

share ~65% homology. The greatest sequence variance is in three regions, known as the 

"divergent regions" that encompass RyRl residues 4254-4631 (Dl), 1342-1403 (D2) and 1872-

1923 (D3). 

Originally, each isoform was first identified in specific tissues, skeletal muscle (RyRl), 

cardiac muscle (RyR2) and brain (RyR3) (Takeshima et al. , 1989, Nakai et al. , 1990, Otsu et 

al. , 1990, Zorzato et al., 1990, Hakamata et al., 1992). However it soon became clear that each 

isoform is expressed in a range of tissues (review Lanner et al. (2010)). Never-the-less, RyRl 

and RyR2 are still the primary isoforms expressed in skeletal and cardiac muscle, respectively. 

Although RyR3 is endogenously expressed in cultured myotubes from neonatal mice, it does 

not compensate for RyRl in its role in EC coupling in myotubes from dyspedic mice 

(Yamazawa et al., 1997). RyR3 is generally expressed in adult mammalian diaphragm 

(Jeyakumar et al. , 1998) and, in smaller amounts, soleus muscle (Conti et al. , 1996, Bertocchini 

et al. , 1997). 

The use of planar bilayer techniques was important for RyRl identification, and for 

characterising RyRl ion conductance and selectivity. The technique involves incorporation of 
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the isolated RyRl or native SR preparations into a planar phospholipid bilayer that transects two 

aqueous compartments. The ionic current through single channels is then monitored under 

voltage clamp conditions. In the exciting era of RyRl discovery, Smith and colleagues (1988) 

used this technique to demonstrate that RyRl is permeable to a range of organic monovalent 

cations and inorganic divalent and monovalent cations. Monovalent conductance follows the 

sequence Cs+> Na+ > K+ > L/ >> choline+ 2: Tris+. Notably, inorganic monovalent cation 

conductance is typically greater than inorganic divalent cations, for example conductance with 

250:50 mM gradient across bilayer for K+ is~ 1 nS and for Ca2+ is ~ 170 pS (Smith et al. , 1988). 

However, RyRl in lipid bilayers display a slight selectivity preference for divalent over 

monovalent cations, for example the estimated ratio for K+ to Ca2+ ions is ~ 1 :6, as determined 

by a 50:50 mM gradient of K+ (cis) to Ca2+ (trans) (Smith et al. , 1988). The Ca2+ conductance 

and selectivity is very similar between RyR from adult rabbit skeletal and canine cardiac SR 

preparations, suggesting similar selectivity and conductance between RyRl and RyR2 isoforms 

(as reviewed by Williams (1992)). 

It is of interest to note that Ca2+ signalling via RyRl is not exclusively associated with 

EC coupling in skeletal muscle. Voltage-induced Ca2+ release via RyRl is also observed in 

neurons at the nerve terminal (De Crescenzo et al. , 2012). The authors hypothesise that the 

resulting small burst of Ca2+ into the nerve terminal 'microdomain ' suppresses exocytosis in 

hypothalamic magnocellular neurons, which inhibits their function in secreting neuropeptides. 

RyRl has been associated with Ca2+ signalling in a variety of other neurons (Sawada et al. , 

2008, Kakizawa et al. , 2012, Kakizawa et al. , 2013 , Ohashi et al. , 2014). Indeed, Ca2+ signalling 

via RyRl also is important in a range of non-excitable tissues, for example it plays a role 
-

modifying the speed of immune system response to antigenic stimulation (Vukcevic et al. , 

2013). 

1.4.1 RyRl structure 

The crystal structure of RyRl has yet to be resolved. However, modelling based on 

single particle analysis of cryo-EM images has provided a low resolution ( ~ 10 A) map of the 

RyRl domains (Figure 1.7) (Ludtke et al. , 2005, Samso et al. , 2005 , Serysheva et al. , 2005, 

Samso et al., 2009). The overall dimensions of the cytoplasmic and transmembrane region are 

275 x 275 x 100 A and 115 x 115 x 60 A, respectively (Samso et al. , 2005). The RyRl structure 

has prominent regions that are classed as the "clamps", "handle", "central rim" and "column", 

each of which contain numerically assigned globular domains. The RyRl map has been further 

resolved using a combination of modelling based on structural similarities to other channels 

whose crystal structures have been resolved (e.g. KCsA), X-ray crystallographic images of 

isolated RyRl regions, single particle analysis of site specific immunofluorescently labelled 

RyRl in cryo-EM images and, relative locations of intra- and inter-molecular interactions 
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measured by FRET (Fruen et al. 2005 , Cornea et al. , 2009, Cornea et al. , 2010, Peralvarez­

Marin et al. , 2011 Fessenden & Mahalingam, 2013 , Girgenrath et al. , 2013 , Kimlicka et al., 
2013 Ra.machandran et al. , 2013 , Zhu et al. , 2013). 
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Figure 1. 8 Models of the RyRl pore-forming region. 

A) A model of the RyRl pore-forming region with six transmembrane segments (M), as proposed by 

Zissimopoulos and Lai (2007). The transmembrane segments named in accord with a 10 transmembrane 

segment model proposed by Zorzato et al. (1990). B) A model of the six transmernbrane segments (S), as 

proposed by Ramachandran et al. (2013). This model is based on collation of transmembrane and secondary 

structure prediction results, in addition to experimental results byDu et al. (2002), Du et al. (2004). Im.age 

slightly adapted from (Ramachandran et al., 2013). 

putative transmembrane segment model proposed by Zorzato et al. (1990) that was adjusted to 

incorporate experimental evidence from later years (Du et al., 2002, Du et al., 2004, Ludtke et 

al., 2005). This model proposed that RyRl transects the SR membrane with transmembrane 

segments correspond to MS, M6, M7, M8 and MIO of the Zorzato et al. (1990) model. 

Recently, a slightly altered version of this model was presented by Ramachandran et al. (2013). 

The new model (Figure 1.8B ) adjusts the sequences of the six transmembrane segments and is 

based on the overlay of transmembrane prediction and secondary structure prediction, and 

incorporates with experimental data provided by Du et al., (2002, 2004). 
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1.4.2 Cytoplasmic regions of RyRl involved in EC coupling 
The cytoplasmic regions of RyRl that facilitate conversion of the EC coupling signal to 

RyRI activation have mostly been identified using RyR chimera models, as restoration of 

skeletal EC coupling in dysp edic myotubes is isoform specific, requiring exogenous expression 

of RyRl (Nakai et al. , 1997, Fessenden et al. , 2000, Protasi et al. , 2000). It is noteworthy that 

identify ing the regions of importance is complicated by findings that restoration of tetrad 

formation in dyspedic myotubes is also isoform specific for RyRI (Protasi et al. , 2000, Protasi 

et al. , 2002). As a result, care has been required when identifying whether a region is important 

fo r EC coupling by virtue of directly facilitating EC coupling or promoting DHPR tetrad 

formation. 

Full restoration of depolarisation-induced SR Ca2
+ transients and tetrad formation m 

dysp edic myotubes requires expression of cytoplasmic RyRl 1635-3720 residues in a RyR2 

background (Nakai et al., 1998a, Protasi et al. , 2002). By examining the responsibility of each 

half of this region, these studies found RyRl 1635-2556 region controlled full restoration of 

depolarisation-induced SR Ca2
+ transients, whereas RyRl 2659-3720 residues controlled full 

restoration of tetrad formation. Notably, both regions also partially restored tetrad formation and 

depolarisation-induced SR Ca2
+ transients (Nakai et al. , 1998a, Protasi et al. , 2002). Thus, in a 

RyR2 background, RyRl residues 1635-2556 directly support EC coupling, whereas RyRl 

residues 2659-3720 more support EC coupling via facilitating tetrad formation. 

In contrast to the RyR2 background studies, exogenous expression of RyRl residues 

1635-3720 in a RyR3 background only partially restores EC coupling and tetrad formation in 

IB5 myotubes (Perez et al. , 2003 , Sheridan et al., 2006). The partial restoration was attributed to 

the likelihood of a D2 sequence that is conserved between RyRl and RyR2, but not RyR3 , 

because Yamazawa and colleagues (1997) had demonstrated that expression of RyR2 D2 

residues in a RyRl background fully restored EC coupling (Yamazawa et al. , 1997). This is 

despite only 35% sequence similarity between the D2 regions of RyRl and RyR2, but the RyR3 

D2 region has greater sequence deviation with a substantial section of this region being absent. 

Certainly, expression of RyR3 D2 residues 1271-1349 in a RyRl background does not restore 

any SR Ca2
+ transients in 1 BS myotubes (Perez et al. , 2003 ). It is noteworthy that the 

RyRl /RyR2 D2 region is insufficient alone for EC coupling restoration in a RyR3 background, 

particularly since expression of the RyRl D2 residues 1272-1455 does not restore EC coupling 

(Perez et al. , 2003 ). Overal I, Sheridan and colleagues (2006) found that expression of both 

RyRl regions 1285-1 448 and 1682-3769 in RyR3 background is necessary for near complete 

restoration of depolari sation-induced SR Ca2
+ transients and tetrad fonnation (Sheridan et al. , 

2006). 
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As previously mentioned, the DHPR a.1s II-III loop critical region and Pia C-terminus 

are important for EC coupling, which is likely through physical coupling with RyRl being 

required for initiation of Ca2
+ transients. However, the direct binding sites on RyRl are still 

effectively unknown. In terms of the a.1s II-III loop critical region, in vitro assays demonstrate 

that the peptides corresponding to this region (724-765) may be binding to the RyRl SPRY2 

domain (1085-1208) or upstream at residues 1827-2168 (Proenza et al., 2002, Cui et al. , 2009, 

Tae et al., 2009, Tae et al., 2011). However, when investigated in vivo, expression of RyRl 

residues 1837-2154 in the RyR2 background did not restore voltage-induced SR Ca2
+ transients 

in myotubes from dyspedic neonatal mice. Indeed, expression of the corresponding RyR2 

residues 163 7-2118 in a RyRl background did not alter EC coupling restoration, suggesting that 

this region is not important in EC coupling (Proenza et al., 2002). However, RyRl residues 

1837-2154 partially restored EC coupling in RyR1/RyR2 chimeras expressed in 1B5 myotubes, 

indicating a partial role (Protasi et al., 2002). Structurally, the SPRY2 domain, but not in terms 

of the II-III loop binding site, may provide a site for direct contact between DHPR and RyRl as 

it is located in a group of RyRl globular domains that are juxtaposed to the DHPR in tetrad 

formation as according to Peralvarez-Marin et al. (2011). 

As previously discussed, deletion or neutralisation of a RyRl polybasic K3495-R3502 

motif significantly reduces DHPR P,a-RyRl fragment binding and depolarisation-induced SR 

Ca2
+ transients (section 1.3.4.3.5) (Cheng et al. , 2005). This is very interesting, as nine residues 

upstream of the polybasic motif is the first of two alternatively spliced regions (ASI: "-" lacks 

rabbit RyRl residues A348 l-Q3485) that have been shown to influence EC coupling (Kimura et 

al. , 2009). The ASI(-) isoform is over-expressed in human patients with myotonic dystrophy 

type 1 (MD 1 ), whereas ASI( +) is the predominant isoform in healthy adult skeletal muscle 

(Kimura et al., 2005). This region is suspected to be involved in inter-domain inhibition and 

removal of the ASI residues relieves this inhibition. This was concluded from the effect of 

peptides corresponding to the region that included and surrounded the ASI domain on RyRl 

activity. Interestingly, part of this surrounding region includes the first five basic residues in the 

polybasic motif, which if neutralised abolishes the effect of the peptide (Kimura et al. , 2007, 

Kimura et al., 2009). In addition, expression of RyRl ASI(-) in dyspedic myotubes increases the 

maximal voltage-induced Ca2
+ release by 60% relative to RyRl ASI(+), without alteration of 

SR Ca2
+ store level (Kimura et al. , 2009). Although, the polybasic region is important for 

interaction between the Pia subunit and RyRl, the research thus far has not determined whether 

these residues form the P,a binding site, or simply influences the ability of P,a to bind to a 

separate site. 

Another region thought to be potentially involved in EC coupling through direct 

interaction with RyRl was the a 1s ill-IV loop (section 1.3.1.1). In vitro binding studies 

demonstrate that the RyRl residues 922-1112, not the corresponding RyR2 residues, bind to the 
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a, s III-IV loop (Leong & MacLennan, 1998). However, RyRl /2 chimera studies show that EC 
coupling does not depend on this region being isoform specific (Nakai et al. , 1998a, Protasi et 
al. , 2002), suggesting that III-IV binding does not influence EC coupling through direct 

interaction with RyRl. 

1.4.3 RyRl regulation 

RyRl is regulated by a myriad of proteins in order to maintain tight control of cellular 
Ca2+ homeostasis and EC coupling. In addition, small molecules and post-translational 
modifications influence RyRl gating and dynamic interactions with regulatory proteins. The 
principal small molecules involved in EC coupling are Ca2+, Mg2+ and ATP. Post translational 
modifications include S-oxidation, S-glutathionylation and S-nitrosylation. Another chemical 
modification that alters RyRl activity is phosphorylation. 

Aside from the DHPR (section 1.3), other established cytosolic RyRl regulatory 
proteins include FK506 binding proteins (FKBPs), calmodulin (CaM) and Sl00Al. Structurally, 
the DHPR is aligned with globular domains 4 and 6 of RyRl (Paolini et al., 2004b) and a 
combination of Cryo-EM and FRET studies has localised the FKBP binding site to a region on 
globular domain 9 that boarders domains 3 and 5 on the "handle" domain (Samso et al., 2006, 
Cornea et al., 2010). Neighbouring this region, CaM binding has been localised to a cleft 
between domains 3 and 8 with slight adjustment between nano- and micro-molar [Ca2+]cyto 
(Wagenknecht et al., 1997, Samso & Wagenknecht, 2002, Cornea et al. , 2009). 

In the classical model, RyRl forms a quaternary complex through luminal interaction 
with SR membrane attached triadin and junctin proteins, which scaffold calsequestrin (CSQ) to 
the RyRl (Guo & Campbell, 1995, Jones et al. , 1995, Caswell et al., 1999, Shin et al. , 2000, 
Glover et al. , 2001). These proteins are known to influence EC coupling by modulating RyRl 
activity directly and/or by determining the amount of Ca2+ stored within the SR. 

1.4.3.1 Cytoplasmic Ca2
+ 

Cytoplasmic Ca2+ is both a RyRl agonist and antagonist. Analysis of RyRl channel 
activity in planar bilayer experiments and [3H]ryanodine binding demonstrate that [Ca2+]cyto has 
a biphasic effect on RyRl activity. That is, increasing [Ca2+]cyto from 100 nM to as much as 200 
µM increases channel activity from zero in a non-linear fashion , higher [Ca2+]cyto decreases 
channel activity (Meissner, 1986, Ma et al. , 1988, Laver, 2001). 

It is notable that the ability of RyRl to respond to [Ca2+] has been found to strongly 
influence EC coupling. O 'Brien and colleagues (2002) expressed a RyRl (E4032A) mutant, 
known to greatly reduce Ca2+-dependent RyRl activation, in dyspedic myotubes and found that 

maximal SR Ca2+ transients were reduced by ~80% relative to expression of WT RyRl. 
Markedly, the Ca2+ transients were identical between WT RyRl and RyRl E4032A mutant 
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when normalised to relative maximal Ca2+ release. As a result, although RyRl sens1t1v1ty to 

cytoplasmic Ca2+ influences EC coupling, the authors suggested that Ca2+ activation of RyRl 

was not necessary for initiation of Ca2+ release during EC coupling (O'Brien et al. , 2002). 

The general consensus is that the cytosolic domain of RyRl contains multiple Ca2+ 

binding sites. This likely includes at least two high affinity Ca2+ binding sites that enable RyRl 

activation and one low affinity binding sites that enable RyRl inactivation once occupied by 

Ca2+ (Balog et al. , 2001 , Laver et al. , 2004, Laver et al. , 2007). The two high affinity Ca2+ 

binding sites are distinguishable through separate competitive antagonism by Mg+ (section 

1.4.3.2) (Laver et al., 1997a, Laver et al. , 2004) and neomycin, an aminoglycoside antibiotic 

that inhibits RyRl activity (Laver et al. , 2007). Notably, the cytoplasmic RyR2 domain contains 

a high affinity Ca2+ binding site that once occupied inhibits RyR2 activity (Laver, 2007), which 

may also be present on RyRl , but this has not been experimentally demonstrated. Currently, the 

exact residues for Ca2+ binding are unknown. However, the activation sites have been localised 

to the pore-forming region, as a protein comprising the 13 77 amino acid region of the RyRl C­

tail, that composes the pore-forming region, displays typical Ca2+-dependent activation in lipid 

bilayers (Bhat et al. , 1997). Markedly, this RyRl region did not display evidence of Ca2+­

dependent inactivation, which suggests that the inactivation site(s) is not localised to the pore­

forming region (Bhat et al. , 1997). 

1.4.3.2 Cytoplasmic Mg2
+ 

Cytoplasmic Mg2+ is a key endogenous inhibitor of RyR activity and prevents RyRl 

opening under healthy fibre resting conditions (Lamb & Stephenson, 1991 , Lamb & 

Stephenson, 1994). This is particularly evident as Lamb and Stephenson (1991) found that 

lowering the free cytoplasmic [Mg27 ([Mg2+]cy1o) from 1 to 0.05 mM resulted in a large SR Ca2+ 

release in skinned rat skeletal muscle fibres. This finding has contributed to the formulation of 

the currently accepted model known as the Mg2+ de-repression hypothesis that was proposed in 

1992 by Lamb and Stephenson. This model states that the interaction between DHPR and RyRl 

during EC coupling reduces the sensitivity of [Mg2l cyto inhibition of RyRl by more than 10-

fold (Lamb & Stephenson, 1992). This reduced inhibition, enables RyRl activation by 

physiological [ATP], which is enhanced when the [Ca2lcyto reaches 1 µMin a positive feedback 

loop created by Ca2+ binding to the A sites on neighbouring RyRl (Laver, 2006). Currently, the 

reduced Mg2+ binding affinity of RyRl during EC coupling by DHPR is theoretical, as no 

experimental data has demonstrated this to be the case. 

1.4.3.3 ATP 

Cytoplasmic ATP is an endogenous agonist of RyRl (Meissner, 1984, Smith et al. , 

1986). There are two mechanisms by which ATP increases RyRl activity, as primarily 

demonstrated in planar lipid bilayer experiments. Firstly, ATP can immediately and reversibly 
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activate RyRl by binding to a specific adenosine nucleotide binding site located on the 

cytoplasmic domain of RyRl (Smith et al. , 1986, Laver et al., 2001). Secondly, ATP can 

progressively (within 5- to 8-min) and irreversibly activate RyRl activity by providing a 

substrate for phosphorylation via an endogenous calcium calmodulin kinase II (CaMKII) (Wang 

& Best, 1992, Herrmann et al. , 1993 , Hain et al., 1994, Sonnleitner et al. , 1997, Dulhunty et al. , 

2001). Popova and colleagues (2012) recently localised the ATP binding site on RyRl to a 

binding pocket that is close to the clamp region and consisting of primarily N-terminal 

sequences (Popova et al. , 2012). 

1.4.3.4 Chemical modification 

Cysteine residues contain thiol groups that are sensitive to redox modification. Each 

RyRl monomer has ~ l 00 cysteines, of which ~21 are susceptible to S-oxidation when 

stimulated by physiologically high versus low partial 0 2 pressure (pO2) (Sun et al. , 2013). In 
C2C 12 myotubes, the increase in S-oxidation of RyRl has been shown to significantly increase 

the maximal depolarisation-induced SR Ca2
+ transients and contraction (Sun et al., 2011 ). 

Although not definitively proven, S-glutathionylation and S-nitrosylation may also 

impact EC coupling. This is particularly given as S-glutathionylation has been shown to reduce 

the inhibitory effect of Mg2
+ and S-nitrosylation has been shown to enhance Ca2

+ dependent 

activation of junctional SR Ca2
+ release kinetics (Aracena et al. , 2003). Follow on studies by 

Aracena and colleagues demonstrated that S-gluthionylation and S-nitrosylation alter binding 

kinetics of two endogenous RyRl antagonists, FKBP12 and CaM, and suggest that this could be 

the pathway that these oxidative modifications alter RyRl activity. Specifically, S-nitrosylation 

decreased FKBP12 binding affinity, whereas both S-nitrosylation and S-glutathionylation 

decreased CaM binding (Aracena et al. , 2005). 

Another chemical modification that regulates RyR activity is phosphorylation of certain 

serines. Phosphorylation of mouse RyRl S2844 by protein kinase A (PKA) is involved in the 

enhancement of muscle contraction by neuro-endocrine stimulation via activation of muscle P­

adrenergic receptors. That is, preventing PKA phosphorylation of S2844 through alanine 

mutation (S2844A) leads to ablation of P-adrenergic-mediated increase in voltage-induced SR 

Ca2
+ transients and muscle force (Andersson et al., 2012). Markedly, phosphorylation did not 

appear to contribute to FKBP12 di ssociation from RyRl as P-adrenergic receptor stimulation of 

the WT fibres did not alter the immunofluorescently labelled FKBPl 2 retained by RyRl 

(Andersson et al., 2012). This is intriguing as PKA phosphorylation of RyRl has previously 

been shown to promote FKBP12 dissociation from RyRl (Reiken et al. , 2003). Indeed, this has 

been associated with the pathology of skeletal muscle weakness in a heart failure model (Reiken 

et al., 2003, Ward et al. , 2003 , Rullman et al. , 2013). Andersson and colleagues (2012) suggest 

that thi s di screpancy may be due to the duration of pathological stress, as Andersson 
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investigated an acute model relative the chronic models ( e.g. skeletal muscle weakness in a 

heart failure model) examined in other studies. 

1.4.3.5 FKBPs 

The FKBPs are binding proteins for a potent immunosuppressant drug, FK-506 

(Siekierka et al., 1989), and are classed by molecular mass (kDa). There are eight isoforms of 

the FKBP in mammals, of which skeletal muscle exclusively express isoform FKBP12 (Collins, 

1991, Jayaraman et al., 1992), whereas cardiac muscle expresses isoforms FKBP12 and 12.6 

(Timerman et al. , 1996, Jeyakumar et al. , 2001). FKBP12 has been shown to modulate RyRl 

activity independent of its cis-trans peptidyl-prolyl isomerase activity that is characteristic of 

several FKBPs (Timerman et al. , 1995). FK-506-mediated dissociation of FKBP12 from RyRl 

has been shown to increase single RyRl channel activity (Ahem et al., 1994) and promote SR 

Ca2
+ leak (Timerman et al., 1993). Similarly, rapamycin-mediated dissociation ofFKBP12 from 

RyRl in planar bilayers promotes sub-maximal conductance (sub-state) openings (Ahem et al., 

1997). Thus the current model is that FKBPs are important for setting RyRl gating properties 

by stabilising the closed conformation and promoting channel opening to maximal conductance 

(Timerman et al. , 1993, Ahem et al. , 1994, Brillantes et al. , 1994, Timerman et al. , 1995, Ahem 

et al. , 1997). 

The function of FKBP12 on single channel RyRl activity does not translate well to its 

influence on skeletal EC coupling. Myotubes from FKBP12-null mice displayed increased 

maximal voltage-induced DHPR Ca2
+ current without alteration in DHPR expression level, but 

reduced SR Ca2
+ transients relative to myotubes taken from healthy mice (Tang et al. , 2004). 

Furthermore, maximal caffeine-induced SR Ca2
+ release and resting [Ca27 cyto did not differ 

between FKBP12-null myotubes and WT myotubes, suggesting similar SR Ca2
+ loads and no 

additional RyRl leak (Tang et al., 2004). These observations ·are very similar to an earlier study 

that examined the influence of expressing RyRl V2461, mutation that abolishes RyR1-FKBP12 

binding, relative to WT RyRl in myotubes from dyspedic mice, with the exception that DHPR 

Ca2
+ current was not altered (Avila et al. , 2003). Overall, Tang and colleagues (2004) suggest 

that disparity between in vivo and in vitro studies could be due to the muscle environment that 

could either prevent FKPB dissociated RyRl leak or counteract RyRl leak in resting conditions. 

1.4.3.6 CaM and Sl00Al 

Calmodulin and S 1 00A 1 have several similar features. Both are small proteins ( ~ 17 and 

~22 kDa, respectively) that contain classic Ca2
+ binding motifs, EF -hands, which have Ca2

+ 

occupancy at contracting [Ca27 but not at resting [Ca27. Additionally, both proteins undergo 

conformational changes in the Ca2
+ bound form compared to the Ca2

+ unbound form (Apo), 

which is critical for exposure of a putative binding site in the form of a hydrophobic pocket 

(Maier & Bers, 2002, Wright et al. , 2005). Functionally, CaM has been shown to activate single 
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RyRl channel activity when [Ca2+] is ~ 200 nM and inhibit when the [Ca2+] is increased to 

micromolar and above [Ca2
+] (Tripathy et al., 1995). In resting [Ca2

+]cyto conditions, Sl00Al 

has also been shown to increase caffeine-induced SR Ca2
+ release in skinned muscle fibres and 

single channel RyRl activity (Treves et al., 1997, Most et al., 2003). Interestingly, although the 

apo and Ca2
+ bound states of Sl00Al have both been shown to pull-down RyRl, only the apo 

state appears to directly alter RyRl activity (Treves et al. , 1997). Markedly, myotubes from 

Sl00Al-null mice display reduced maximal voltage-induced SR Ca2
+ transients relative to 

myotubes from WT mice without alteration of resting [Ca2
+]cyto levels (Prosser et al., 2008). 

This fits well into a model where CaM and Sl00Al compete for the same binding site on RyRl , 

as suggested by competition between CaM and Sl00Al for binding to SR vesicles (Prosser et 

al., 2008, Wright et al. , 2008). Binding to the same site is supported by studies that 

demonstrated that CaM and S 1 00A 1 binding to RyRl and the functional effect of these proteins 

on RyRl activity is abolished by mutation of a single RyRl residue (L3625D) (Yamaguchi et 

al. , 2001 , Yamaguchi et al., 2011). In myotubes, the consequence of Sl00Al binding to RyRl 

is that it reduces the antagonistic effect of CaM on RyRl activity at excitatory [Ca2
+] cyto levels. 

However, the consequence of expressing RyRl L3625D mutant is a reduction in overall voltage 

-induced SR Ca2
+ release. The authors suggested that this may have been due to a lack of 

agonistic Sl00Al and CaM action on RyRl at lower [Ca2
+]cyto (Yamaguchi et al., 2011). 

Although RyRl L3625D mice are phenotypically normal, the study does provide evidence that 

CaM and SlO0Al play a role in fine tuning SR Ca2
+ release during EC coupling (Yamaguchi et 

al.,2011). 

1.4.3. 7 Calsequestrin 

Calsequestrin (CSQ) is a low-medium affinity, high capacity Ca2
+ binding protein 

localised to the SR lumen . The predominant skeletal CSQ isoform (CSQl) is the most abundant 

Ca2
+ binding protein in the sarcoplasmic reticulum (Damiani et al., 1990). Inherently, CSQ 1 

lowers the levels of free Ca2
+ in the SR lumen ([Ca2

+]Iurnen), which is thought to facilitate SR 

Ca2
+ uptake, particularly since lower [Ca2

+],umen has been shown to enhance SERCA activity 

(lnesi & de Meis, 1989, Tripathy & Meissner, 1996). Notably, planar bilayer results reveal that 

CSQl has additional functions in increasing isolated RyRl activity by direct binding or 

indirectly decreasing native RyRl activity through binding to junctin in a Ca2
+ dependent 

manner (Szegedi et al. , 1999, Beard et al. , 2002, Wei et al., 2009). The physiological role of 

direct binding is not clear, as junctin is normally present. 

The importance of CSQ 1 in EC coupling has so far been primarily investigated in 

skeletal myofibres and myotubes from CSQ I-null mice. In conjunction with visible structural 

deformities at the triad, the SR Ca2
+ load is lower in CSQ I-null myofibres relative to WT 

myofibres (Paolini et al., 2007, Canato et al., 2010, Royer et al. , 2010). Interestingly, the 
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voltage-induced maximal SR Ca2
+ transient is 84% greater in CSQl-null myotubes, although the 

skeletal muscle contraction force is only slightly greater in tissue taken from CSQ 1-null mice 

(Paolini et al. , 2007, Dainese et al. , 2009). The increased maximal Ca2
+ transients and muscle 

contraction has been attributed to the inability of SR re-uptake due to defective SERCA activity 

and loss of CSQ 1-mediated inhibition of RyRl (Protasi et al. , 2011 ). 

1.4.3.8 Triadin 

There are four triadin isoforms expressed in skeletal muscle, including triadin skeletal 

(Trisk) 32, 49, 51 and 95 (Knudson et al. , 1993, Marty et al. , 2000, Vassilopoulos et al. , 2005). 

However, the only Trisk 95 is localised to junctional SR and involved in EC coupling (Knudson 

et al. , 1993, Rezgui et al., 2005, Vassilopoulos et al. , 2005). With a small 47 residue 

cytoplasmic domain and a single SR membrane spanning region, Trisk 95 is largely (638 of 706 

residues) exposed to the SR lumen (Knudson et al. , 1993, Marty et al. , 1995). Functionally, 

peptides corresponding to cytoplasmic residues 18-46 and luminal residues 200-232 can directly 

decrease and increase RyRl activity, respectively (Groh et al. , 1999, Wium et al. , 2012). This is 

in agreement with other planar lipid bilayer experiments that find isolated RyRl activity 

decreases upon exposure of full-length triadin to the cytoplasmic side of RyRl and increases 

upon exposure to the luminal surface (Ohkura et al. , 1998, Wei et al. , 2009). 

The role of triadin in EC coupling is unclear. Myotubes from triadin-null mice display 

reduced maximal depolarisation-induced SR Ca2
+ transients (Shen et al. , 2007) . However, this 

change was insignificant when the SR Ca2
+ release was normalised with the reduced caffeine­

induced SR Ca2
+ release, which was attributed to the 15% reduction in SR Ca2

+ load in triadin­

null myotubes (Shen et al. , 2007). In addition, the resting [Ca2
+Jcyto was ~63% greater in triadin­

null myotubes. Shen and colleagues (2007) found that the increased resting [Ca2
+] cyto and 

reduced SR Ca2
+ load was not attributed to alteration of RyRl sensitivity to Ca2

+, Mg2
+ and 

caffeine. Instead, the studies suggested that the aberrant resting Ca2
+ homeostasis in triadin-null 

myotubes may be attributed to a reduction in FKBP12-RyRl binding and abnormal triadic 

arrangement due to reduced CSQ anchorage to junctional SR (Shen et al. , 2007, Eltit et al. , 

2010, Boncompagni et al. , 2012). In other myotube studies, the lack of sufficient triadin-RyRl 

association, via knockdown of triadin or mutation of the luminal triadin binding site on RyRl 

(D4878A/D4907 A/E4908A), also displays a decrease in voltage-induced SR Ca2
+ transients 

(Goonasekera et al., 2007, Wang et ai. , 2009). Curiously, both studies demonstrate that SR Ca2
+ 

load was not altered. Combined, the studies demonstrate that triadin likely modulates 

depolarisation-induced SR Ca2
+ release, and that a lack of triadin in long-term in vivo systems 

contributes to alteration in resting Ca2
+ homeostasis and suggests that compensatory 

mechanisms may reduce the modulatory effect oftriadin on EC coupling. 
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1.4.3.9 Junctin 

Very similar to trisk95 , junctin is a SR membrane protein with a small cytoplasmic 

domain (22 residues), a single transmembrane domain and a larger luminal domain that interacts 

with both CSQl and RyRI (Jones et al. , 1995, Glover et al. , 2001). Furthermore, luminal 

exposure of isolated RyRI to junctin in lipid bilayer experiments also increases channel activity 

(Wei et al. , 2009). However, Wei and colleagues found subsequent addition of CSQl decreased 

RyRl activity with junctin, but not with triadin, present. Additionally, this was restricted to 

luminal Ca2
+ concentrations that reflected physiological resting levels rather than contracting 

levels. Thus, the authors concluded thatjunctin facilitated CSQl inhibition of RyRl at rest (Wei 

et al. , 2009). 

Knockdown of junctin in C2C12 myotubes reduces depolarisation-induced SR Ca2
+ 

transients and this has been attributed to the similarly reduced SR Ca2
+ load (Wang et al., 2009). 

Indeed, myotubes from junctin-null mice display no alteration of depolarisation-induced SR 

Ca2
+ transients or SR Ca2

+ load (Boncompagni et al., 2012). Varying results between studies 

could be due to intrinsic differences between models, particularly as Wang and colleagues found 

a decrease in CSQ protein level, while Boncompagni and colleagues found no alteration in CSQ 

levels. Interestingly, Boncompagni and colleagues found the [Ca2
+]cyto level was slightly 

increased in myotubes from junctin-null mice. Never-the-less, the myotube studies both suggest 

that junctin is not directly involved in EC coupling, but rather important for maintaining SR 

Ca2
+ content (Wang et al., 2009, Boncompagni et al., 2012). 

1.5 Summary 

Contraction of cardiac myocytes and skeletal muscle fibres requires depolarisation­

induced mass SR Ca2
+ release into the cytoplasm that enables interaction and sliding of the 

microfilaments. The series of events involved in this process is known as EC coupling. The 

translation of an action potential to SR Ca2
+ release involves interplay between a myriad of 

proteins, particularly the DHPR and RyR, situated on juxtaposed regions of T-tubule and SR 

membranes, respectively (Figure 1.9). Skeletal EC coupling relies on physical RyRl activation 

by depolarisation-activated DHPR. However, the components involved in this interaction are 

unclear. Deletion and chimera studies highlight the a1s II-III loop critical region and the ~I a C­

terminus of the DHPR as lik~ly candidates involved in the interaction. Similar studies highlight 

RyRl regions as important for EC coupling, including: RyRl and RyR2 D2 region, ASI region, 

polybasic K3495-R3502 region and, RyRl 1635-2556 region. 

40 
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Figure 1. 9 The potential interplay between proteins involved in EC coupling. • : 
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At the junctions between T-tubule and SR, EC coupling involves an interplay of proteins that are primarily located around two Ca2
+ channels: DHPR (purple) and RyRl (green) located in the T-tubule 

membrane and SR membrane, respectively. The red arrows demonstrate the theoretical influence of the proteins or interactions on skeletal EC coupling, as discussed in this chapter, Chapter One. The 

DHPR a 1s (light purple) and -~1a (dark pink) subunits are both crucial for EC coupling, but whether this is through direct interaction and/or indirectly faci litating interaction of the alternate subunit, 

and/or other proteins, with RyRl is not clear (sections 1.3.I.1 , 1.3.4 and 1.4.2). STIMl (orange) is thought to reduce EC coupling through interaction with a 1s (1.3 .5 .1). Equally, JP-45 (red) is thought 

to minimise EC coupling by disrupting the a 15-~ 1• interaction, though also facilitating EC coupling by virtue of targeting the a 15 subunit to the triad (1.3.5.4). Similarly, JPl (light blue) is thought to 

assist in maintaining close junctions between DHPR and RyRl through physical interactions with the SR membrane, T-tubu le membrane, RyRl and DHPR (1.3.5.3). STAC3 (dark teal) is crucial for 

the interaction between DHPR and RyRI during EC coupling (1.3.5.2). Although CSQl (light orange) can directly interact with RyR I to increase activity, CSQl 's interaction through junctin (dark 

blue) provides an overall negative effect on EC coupling (l.4.3.7). Even though cytoplasmic interaction of triadin (dark purple) with RyRl provides a negative effect on RyRl activity, luminal 

interaction is thought to promote EC coupling (1.4.3.8). FKBP12 (yellow) is thought to increase EC coupling through interaction with RyRl (1.4.3.5). CaM (light green) decreases EC coupling through 

inhibition ofRyRl activity, although SJ00AI (light pink) competes for the same binding site on RyRl and consequently increases EC coupling (1.4.3.6). 
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Never-the-less, whether these residues play a direct role by forming a binding site or act 

indirectly through intra- or inter-molecular interactions is effectively unknown for most of these 

regions. Notably, an array of associated proteins appears to be involved, including: triadin, 

CaM, Sl00Al , CSQl , JP-45, STAC3 and STIMl. However, the exact involvement of most of 

these proteins remains to be discovered. 

1.6 Project Aims 

The C-terminus of the DHPR Pia subunit is important for functional EC coupling in 

skeletal myotubes . Although this may be through altering the interaction between a.1s and RyRl , 

two studies suggest that the Pia C-terminus facilitates EC coupling through direct activation of 

RyRl. Firstly, deletion and mutation of a RyRl polybasic motif K3495-R3502 restricts binding 

between the RyRl fragment and Pia subunit in vitro, as well as reducing restoration of voltage­

induced SR Ca2
+ transients when expressed in dyspedic myotubes relative to exogenous 

expression of WT RyRl. Secondly, in vitro studies have demonstrated that a peptide 

corresponding to the 35-residue Pia C-terminus tail binds to RyRl and increases native RyRl 

activity in a similar fashion as the full-length Pia subunit. This is important given as truncation 

of this region greatly reduces EC coupling in mouse myotubes. However, the direct RyRl and 

Pia binding sites involved in this interaction had not been demonstrated. Additionally, the role of 

the Pia heptad hydrophobic repeat, that is important for EC coupling, and the RyRl polybasic 

region in this direct interaction was undefined. The overall aim of this project was to 

characterise the interaction between RyRl and the Pia subunit in terms of which regions are 

involved in the interaction. This has been segregated into two major objectives. Firstly, Sub 

Aim 1, to identify the residues on the Pia C-terminus that are responsible for binding to RyRl 

and increasing RyRl activity. Secondly, Sub Aim 2, to characterise the importance of the RyRl 

polybasic motif in terms of RyRl activity and determine whether the functional effect of the Pia 
subunit is conserved between RyRl and RyR2. 

1.7 This Thesis 

The following chapter in this thesis provides description of the methods and materials 

used (Chapter Two). Chapter Three provides details of the quality control measures undertaken 

establish the identity and orientation of RyRl in planar lipid bilayer experiments . Chapter Four 

examines the involvement of certain hydrophobic residues in the P,a C-terminus in modulation 

of RyRl activity, addressing sub aim 1. Chapter Five investigates the roles of the various RyRl 

regions in the interaction between P,a and RyRl , addressing sub aim 2. The implications of the 

results presented in Chapters Four and Five will be discussed in detail in the final chapter 

(Chapter Six). 
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CHAPTER Two - MATERIALS AND METHODS 

This chapter provides general details of the material and methods for experimental 

protocols that recur throughout the result chapters. This includes the techniques used to obtain 

proteins/peptides and assess RyR activity. The source of native RyRl was isolated junctional 

SR vesicular preparations from rabbit skeletal muscle. Activity of RyRl from SR vesicle 

preparations was assessed using planar lipid bilayer experiments, whereby RyRl is 

reconstituted into a bilayer that separates two chambers and single channel gating is measured in 

real time as Cs+ transverse the bilayer under voltage clamped conditions. All peptides used in 

the work presented in this thesis were synthesised, then purified using reverse phase high 

performance liquid chromatography (RP-HPLC) and identified using mass spectrometry. Full­

length mouse ~l a subunit was expressed in E. coli and purified using immobilised metal affinity 

chromatography (IMAC) and preparative gel electrophoresis. 

2.1 Materials 

2.1.1 Reagents and chemicals 

All reagents used were of analytic grade quality, with exception of acetonitrile used for 

high performance liquid chromatography. Sucrose was purchased from MERCK Pty. Ltd. 

(Kilsyth, Australia). High capacity streptavidin-agarose resin and Super Signal West Pico 

Chemiluminescent Substrates were purchased from Thermo Scientific (Rockford, USA). 

Sodium dodecyl sulfate (SDS), 40% acrylamide-bis (37.5: 1), ammonium persulfate (APS), 

TEMED, precision StrepTactin-HPR conjugate and Precision Plus Protein Dual Color standard 

was obtained from BIO-RAD Laboratories Inc. (Hercules, USA). Ethanol and methanol were 

obtained from Merck Group (Darmstadt, Germany). Glycerol and Acetonitrile Super gradient 

HiPerSolv Chromanorm were purchased from VWR BDH Prolabo (Murarrie, QLD, Australia). 

Immobilon-P transfer membrane (PVDF, 0.45 µm from pore size) was from Merck Millipore 

(Billerica, MA, USA). The mouse RyR antibody (34C) and DHPR ~1a antibody (VD2(1)B12) 

were from Developmental Studies Hybridoma Bank (Iowa, USA). Peptide calibration Mix 4 

(Proteomix) was obtained from LaserBioLabs (Italy). All stock solutions of phospholipids 

(phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine) were purchased from 

Avanti Polar lipids (Alabaster, USA). All other chemicals were obtained from Sigma-Aldrich 

(St. Louis, USA). New Zealand white rabbits were housed at the Research School of Biology 

Animal House (Australian National University, Canberra, Australia). Sheep were housed at the 

Spring Valley Animal house, Australian National University (Canberra, Australia). 

Unless otherwise mentioned, all solutions and chemicals were dissolved or diluted in 

deionised water, obtained from a Milli-Q Plus Ultra-Pure Water System (Millipore, MA, USA). 

The pH .of solutions was measured using a TPS digital pH meter (Bacto Laboratories; Lane 
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Cove, Australia) . The [Ca2+] of solutions was determined usmg a Radiometre Analytical 

ISE25Ca Ca2
+ electrode (Villeurbanne Cedex; France), where appropriate. Where indicated, 

peptide concentrations were determined using either: NanoDrop ND-100 spectrophotometer 

(BioLab: Scoresby, Australia), Pierce™ bicinchoninic acid (BCA) Protein Assay Kit from 

Thermo Fisher Scientific (Scoresby, Australia), Pierce™ 660nm Protein Assay Kit from 

Thermo Fisher Scientific (Scoresby, Australia), or DC Protein Assay from BIO-RAD 

Laboratories Inc (Hercules, USA) . The EL800 - Universal microplate reader (BIO-TEK 

Instruments, INC: Vermont, United States) was used to measure sample fluorescence from the 

protein assay kits. 

2.1.2 Peptides synthesised 

Most peptides were synthesised by the JCSMR Biomolecular Resource Facility using a 

CEM Liberty Microwave Peptide Synthesiser. Two other peptides, Bia V 490-A508 and Bia 
V490-A508 scrambled, were obtained from Prof. Martin F. Schneider. These peptides were 

synthesised at the Biopolymer/Genomic Core Facility at the University of Maryland School of 

Medicine, and were purified by the facility to ~ 96% by high performance liquid 

chromatography and mass spectrometry. The synthesised peptides corresponded to regions of 

the mouse (Mus musculus) DHPR Bia subunit (U.S. National Center for Biotechnology 

Information (NCBI) reference sequence NP_112450.1) and zebrafish (Dania rerio) DHPR Bia 
subunit (GenBank AAY29573 .l). The N-terminal regions of Bia V490-M524 and Bia V490-

M508 LLW/A peptides were biotinylated and four residues corresponding to S486-Q489 were 

added to the N-terminii of the biotinylated peptides as a linker between the sequence and the 

biotin. Sequences for the peptides are shown in Table 2.1. 

2.1.3 Plasmid constructs 

The Bia cDNA (GenBank accession number NM_03 l l 73) in a poly histidine tagged 

ubiquitin expression vector (pHUE vector: BamHI at the 5' end and Hind/II at the 3 ') was 

obtained from Dr. Yamuna A. Karunasekara (Muscle Research Group, John Curtin School of 

Medical Research, Canberra, Australia). The benefit of this plasmid construct is that the Bia 
cDNA is inserted in-frame and upstream of the poly-histidine and ubiquitin sequence. Attached 

to the Bi a N-terminus, the histidine tag can be used for purification and then cleaved using a 

deubiquitylating enzyme, or domain, such as the catalytic core of Usp2-45 (Usp2-cc) - as was 

used in the experimental protocol for Bia purification (section 2.5 .2) . The Usp2-cc cDNA in a 

Novagen pET-15b vector (plasmid GenBank accession number AY751540.l) was obtained 

from Prof. Philip G. Board (Molecular Genetics Group, John Curtin School of Medical 

Research, Canberra, Australia) (Catanzariti et al. , 2004). It is noteworthy that the pHUE vector 

was constructed using Novagen pET-15b as a backbone construct (Catanzariti et al. , 2004). As a 

result, both vectors have a T7 promoter and a coding region for ampicillin resistance. 
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Table 2. 1 Corresponding sequence of peptides to the DHPR Pia subunit. 

Peptide name Species Region ,mutation Sequence 

Pia V 490-M524 Mouse V490-M524 None VQVLTSLRRNLSFWGGLEASPRGGDA VAQPQEHAM 

Biotinylated Pia Mouse S486-M524 None Biotin-SNLQ-

V490-M524 VQVLTSLRRNLSFWGGLEASPRGGDA VAQPQEHAM 

P1aA474-A508 Mouse A474-A508 None ATAALAASPAPVSNLQVQVLTSARRNASFAGGLEA 

P1aA474-A508 Mouse A474-A508 L478A/V485AN492A ATAAAAASPAPASNLQVQALTSARRNASFAGGLEA 

LVV/A 

Pi a V490-M524 Mouse V490-M524 L496A/L500A/W503A VQVLTSARRNASFAGGLEASPRGGDAVAQPQEHAM 

LLW/A 

Biotinylated Pia Mouse S486-M524 L496A/L500A/W503A Biotin-SNLQ-

LL W / A peptide VQVLTSARRNASFAGGLEASPRGGDA V AQPQEHAM 

Pia V490-M524 Mouse V490-M524 L496A VQVL TSARRNLSFWGGLEASPRGGDA V AQPQEHAM 

• L496A 

Pia V490-M524 Mouse V490-M524 L500A VQVL TSLRRNASFWGGLEASPRGGDA V AQPQEHAM 

L500A 

Pi a V490-M524 Mouse V490-M524 W503 VQVLTSLRRNLSFAGGLEASPRGGDA VAQPQEHAM 

W503A 

Pi a V490-A508 Mouse V490-A508 None VQVL TSLRRNLSFWGGLEA 

Pia V490-A508 Mouse V490-A508 Scrambled RVFRGELSQLNLGLTASVW 

scrambled 

Pi a V490-L520 zf Zebrafish V490-L520 None VQVLTSLRRNMELLDGSPA VMQGQQEDEHAL 
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2.2 Methods 

2.2.1 Purification of peptides 

Each peptide was purified using reverse phase high performance liquid chromatography 

(RP-HPLC) and identified using matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) mass spectroscopy as described in Karunasekara et al. (2012). 

2.2.1.1 Reverse phase high performance liquid chromatography 
As shown in Figure 2.1 , RP-HPLC was set up with a flow of combined buffer A (0.1 % 

trifluoroacetic acid (TFA)) and buffer B (0.1% TFA in degassed acetonitrile) into a Jupiter 10 

µm C4 300 A column 250 x 10 mm (Phenomenex: Torrance, CA, USA) and out to a Waters 

2487 dual "A absorbance detector (Waters Corporation: Milford, MA, USA). Both buffers were 

individually pumped into the mixing chamber via Waters 515 HPLC pumps (Waters 

Corporation: Milford, MA, USA). From the mixing chamber, the combined solution flowed 

through tubes to the column. The ratio of buffers pumped into the mixing chamber, the flow rate 

and the wavelengths detected were remotely controlled by Empower software (Waters 

Corporation: Milford, MA, USA). This software also collated the absorbance measured every 6 

s for dual wavelengths. 

Buffers 

Eluate 

Cables connecting 
pump to computer 

Figure 2. 1 Setup fo r peptide purification using RF-HPLP. 

C4 HPLC column 

Empower 

Cable connecting dual ), 
absorbance detector to 
computer 

Buffer A and buffer B are combined and pumped through an inj ection coil, a Jupiter 300 C4 column and dual 
absorbance detector before being co ll ected as eluate. Peptides in solution can be loaded on the column by manual 
injection into the loading co il that fl ows onto the co lumn under a con stant flow of buffers from the pumps. Notably 
the pumps and UV absorbance detector are remotely controlled by Empower software, which al so collates the 
absorbance measurements fro m dual ), absorbance detector. 
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Three to ten mg of synthesised peptide was added to a 5 ml solution of 10% buffer B I 

90% buffer A and gently votexed until visibly dissolved. The mixture was manually injected 

into a 5 ml equivalent coil via a manual sample injector (Rhenodyne: Cotati, CA, USA) that 

preceded the column. A combination of 10% buffer B 190% buffer A was run through injection 

coil and into the column - allowing loading the peptide onto the column via hydrophobic 

interaction with immobilized 4-alkyl (C4) ligands attached to the column. The peptide of 

interest was eluted using an increasing linear gradient of buffer B at a gradient rate of 0.5-0.8% 

per min and flow rate of 3 ml/s, as specified in Table 2.2. Eluates corresponding to individual 

peaks on the UV absorbance spectrum were manually collected in separate tubes. 

Table 2. 2 Reverse phase high performance liquid chromatography (RP-HPLC) elution gradient for peptides. 

Linear 
gradient of 
buffer B 

25-45% 

10-40% 

20-50% 

Gradient rate (%/min) Peptide 

Pia V 490-M524 

Biotinylated Pia V 490-M524 

0.5 
P1aA474-A508 

P1aA474-A508 LVV/A 

Biotinylated P1aLLW/A 
peptide 

Pia V490-M524 LLW/A 

0.8 
Pia V490-M524 L496A 

Pia V490-M524 L500A 

Pia V490-M524 W503A 

0.5 Pia V490-L520 zf 

*This value may vary slightly between experiments 

2.2.1.2 Freeze drying the RF-HPLC eluate 

Elution peak gradient 
(% buffer B)* 

28.9-29.4 

36.8-38 

39.6-41 

35-36.4 

32-33.7 

22.7-23.7 

33.1-34.1 

34-34.8 

35.4-35.9 

29.2-30.2 

~he RF-HPLC eluates e0rresponding to individual peaks were frozen in dry ice and 

lyophilised using a Dura-Dry. microprocessor control freeze dryer (FTS systems, SP Industries: 

Warmipster, PA, USA) over 3-5 days to ensure maximal buffer evaporation. 

2.2.1.3 · Peptide identification 

· An Opti-TOF™ 384 well insert (123x8 mm) plate was prepared by spotting 0.5 µl of a­

cyano-hydroxy-cinnamic acid ( a matrix) solution (8 mg/ml in 70% ·acetonitrile and 0.1 % TF A) 

and then left for solvent evaporation. Then, 0.5 µl of RP-HPLC eluate (corresponding to the UV 

absorbance-identified peak that provided the largest lyophilised mass) was spotted above the 

dried a matrix and again the plate was left until the solvent had visibly evaporated. An 

additiona·l spot was occupied by 0.5 µl of Peptide Calibration Mix 4 dissolved in a matrix 
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solution . Notably, the cocktail masses ranged from 500 to 3500 Da, containing bradykinin [1-5] 

(572. 7 Da), angiotensin II (1046.2 Da), neurotensin (1672.9 Da), adrenocorticotropic hormone 
[18-39] (2465.7 Da) and bovine Insulin chain B (3495.9 Da). The plate was then loaded into an 
AB MDS Sciex 4800 MALDI TOF-TOF Mass Analyzer (AB SCIEX: Framingham, MA, USA), 
which was remotely controlled with 4000 Series Explorer software. The reflector positive mode 
and linear low mass mode were internally calibrated with a minimum 3-point calibration using 

the calibration spot. Data acquisition was generated from the average of 50 shots in 10 non­
overlapping sites within the spot. The sample MS spectra were acquired in the range of 500 -

4500 mass (m/z). The intensity of the peptide signal provided an indication of approximate 

purity, particularly since most of the potential contaminants were theoretically similar 
synthesised peptides. The proteins were deemed sufficiently pure when the peptide of interest 
was the "base" or "mother" peak (largest peak) and the half peak was the second or third highest 

peak. The half peak refers to a peptide signal that was half the expected mass, which is the result 

of two protons being attached to the peptide during ionisation. 

2.2.2 Isolation of skeletal SR vesicles 

The experimental process of SR vesicle preparation was undertaken by Mrs. Suzy Pace 
and Mrs. Joan Stivala (Muscle Research Group, John Curtin School of Medical Research, 

Australian National University, Canberra, Australia). All buffers used in preparation include a 
cocktail of protease inhibitiors (1 mM benzamidine, lmg/L of Leupeptin, 0.05 mM 4-(2-

aminoethyl) benzensulfonyl fluoride hydrochloride, 1 mM Pepstatin, anti-calpain I and anti­
calpain II). 

SR vesicles were prepared from back and leg muscles (fast twitch skeletal muscle) from 
New Zealand white rabbits in accord to Saito et al. (1984), with adjustments described in Ahem 

et al. , (1994, 1997). Skeletal muscle was immediately rinsed in phosphate buffered saline 
(PBS), containing: 137 mM NaCl; 7 mM Na2HPO4; 2.5 mM NaH2PO4.H20; and, 2 mM 

ethylene glycol tetraacetic acid, pH 7.4. Sequentially, excess fat was removed, the muscle was 

diced, and aliquots of 50 g were snap-frozen in liquid nitrogen and stored at -70 °C. To prepare 

SR vesicles, 100 g of frozen skeletal muscle was homogenised four times in 15 s bursts at high 

speed using a Waring blender (Waring Products Division; Connecticut, USA) in homogenising 

buffer, containing: 20 mM imidazole and 300 mM sucrose, pH adjusted to 7.4 with 6 M HCI. 

The homogenate was centrifuged at 11 000 x g for 20 min at 4 °C using a Sorvall SLA-1500 
rotor in a Sorvall RC-SB high-speed centrifuge (Dupont; Norwalk, USA). Supernatant was 

removed and the pellets were sequentially suspended in 170 ml of homogenising buffer, re­

homogenised and centrifuged as before. The resulting supernatant was filtered through four 
layers of cotton gauze and centrifuged at 110 000 x g using a Ti-45 rotor in a Beckman L8-70 
centrifuge (Beckman Instruments; G ladesville, Australia) for 1-2 h. The pellet obtained was 

resuspended in homogenising buffer to a total volume of 42 ml and homogenised in a Dounce 
48 



teflon homogenizer (Edwards Instrument Company, Narellan, Australia). Eight ml of 

homogenised sample was added to the top of a discontinuous sucrose density gradient, 

containing in order from the bottom: 4 ml of 45%, 7 ml of 38%, 7 ml of 34%, 7 ml of 32% and 

4 ml of 27 % sucrose (w/w) in SR diluting buffer consisting of: 20 mM imidazole, pH adjusted 

to 7.4 with 6 M HCI. The sucrose gradient was centrifuged at 70 000 x gin a Beckman SW-28 

rotor for 16 hat 4°C. The fractions found at the 34/38% (band 3) and the 38/45% interface were 

collected, diluted with equal volume of 20 mM imidazole and centrifuged at 125 000 x g in a 

Beckman SW-28 rotor for 1 hat 4 °C. Following resuspension in 1 ml homogenising buffer, 15 

µI aliquots were snap frozen in liquid nitrogen and stored at -70 °C. This preparation consists of 

skeletal SR vesicles that contain "native" RyRl and associated proteins (section 1.4.3 for 

description of RyRl interaction and regulation). Associated proteins at least included junctin, 

triadin, FKBP12.0 and calsequestrin. The presence of these proteins was routinely checked 

using SDS-PAGE (section 2.2.4) and then western blot (section 2.2.6). It is notable that no Pia 

subunit levels were detected during western blotting, indicating that the skeletal SR vesicle 

preparation did not contain Pia subunit. 

2.2.3 Expression and purification of recombinant proteins 

Procuring isolated Pia subunit was achieved by first employing an E. coli based 

expression system to produce Pia subunit (N-terminally fused to poly-histidine tagged 

ubiquitin). The Pia subunit was partially isolated by immobilised metal affinity chromatography 

(IMAC) of the His tag to the nickel-nitrilotriacetic acid (Ni-NTA) resin. The tag was then 

cleaved using the catalytic core of a deubiquitin enzyme, Usp2 (USp2-cc). As the Usp2-cc was 

also fused to a poly-histidine (His) tag, this protein was obtained and partially purified using a 

similar method of E. coli expression. and IMAC as described in Catanzariti et al. (2004). 

Notably, expression was undertaken in BL21 DES because this E. coli strain expresses T7 RNA 

polymerase and the experimental protocol · for Usp2-cc expression has been previously 

established using this strain (Catanzariti et al. , 2004). 

Although the protocols are similar for protein expression and purification between 

Usp2-cc and Pia subunit, the _protocol for Pia subunit purifica~ion extends to His-tag cleavage 

and an ~dditional purification step using SDS-PAGE in a BIO-RAD Prep cell system. 

2.2.3.1 · Expression and purification of Usp2-cc 

2.2.3.1.1 E. coli expression system 

·Firstly, 25 µl of competent BL21 DES were transformed with ~50 ng ofUsp2-cc pET-

15b using heat shock. This involved: incubation at 4 °C for 30 min, addition of 125 µl of 

lysogeny broth (alternatively known as "Luria broth"; LB: 25 g/L of LB-medium), incubation at 

42 °C for 3 0 s, incubation at 4 °C for 2 min, addition of 125 µI of LB and final incubation at 3 7 

°C for 1 h. Then 100 µl of the cell sample was used to inoculate the surface of a LB/Amp agar 
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(125 µg/ml ampicillin and 1.5% Bacto-agar in LB) plate, which were incubated at 37 °C for 8 h. 
One cell colony was inoculated into 30 ml of LB/Amp solution (125 µg/ml ampicillin in LB) 
and incubated 12-16 h at 37 °C with rotation. Twenty ml of this starter culture was divided 

between four flasks of 400 ml of LB/Amp solution, which was incubated at 37 °C for ~3 h until 

culture A6oonm reached ~0. 7, as measured using Cary 100 Cone UV-Vis spectrophotometer 
(Varian, inc.: Palo Alto, CA, USA). Protein expression was then induced through addition of 

0.1 mM isopropyl ~-D-1-thiogalactopyranoside (IPTG) and incubated for a further 3 h. The 
cells were then spun down at 4225.1 x g using a Sorval SLA 3000 Super lite rotor in a Sorvall 
RC-5B high speed centrifuge (Dupont: Norwalk, USA) for 20 min at 4 °C. The resulting 

supernatant was removed and the cell pellets were combined and stored at -20 °C for up to 1 

week. 

2.2.3 .1.2 Partial purification using IMAC 

The cell pellets were resuspended in 30 ml of resuspension buffer (20 mM imidazole, 

10% glycerol, 50 mM Na3PO4 and 300 mM NaCl, pH 8) and lysed by sonication using a 
Branson Ultrasonics Sonifier 250 (Danbury, CT) five times in 30 s bursts. After centrifugation 

at 26 891.8 x g for 30 min at 4 °C using a Sorval SS-34 rotor in a Sorval RC-5B centrifuge 
(Dupont: Norwalk, USA), the cell lysate was incubated for 1 h at 4 °C with 2 ml of nickel­
nitrilotriacetic acid (Ni-NTA) resin, which was produced in-house in accordance with Hochuli 

et al. (1987). The His-tagged proteins were retained with the resin following centrifugation at 
297.8 x g using a Himac CT6E (Hitachi Koki, Co., Ltd: Tokyo, Japan) for 5 min at 4 °C and 
non His-tagged proteins were removed in the supernatant. The proteins were washed three times 

using a process of adding 50 ml of resuspension buffer, centrifugation at 297.8 x g using a 
Himac CT6E for 5 min at 4 °C and removal of the supernatant. The resin was then transferred 

into a chromatography column using an additional 20 ml of resuspension buffer that was then 
flown through the column. The His-Usp2-cc was then eluted using 10 ml each of 50, 100 and 

250 mM imidazole elution buffer (50, 100 or 250 mM imidazole respectively, 20 mM ~­

mercaptoethanol , 30% glycerol, 50 mM Na3PO4 and 300 mM NaCl, pH 8). 

2.2.3 .1.3 Dialysis - removal of imidazole 

The partially purified Usp2-cc solution was concentrated to 8 ml using an Amicon 
Ultra-15 l0K concentrator (Merck Millipore: Billerica, MA, USA) and dialysed with 3 L of 

dialysis buffer (20 mM ~-mercaptoethanol, 30% glycerol, 50 mM Na3PO4 and 300 mM NaCl, 
pH 8), so as to remove high concentrations of imidazole. The dialysed solution was 

subsequently concentrated to ~ 3 ml and stored at -70 °C. Partial purity was visualised by 

Coomassie blue staining of dialysed sample on a 5-17% gradient denaturing gel (sections 2.2.4 
and 2.2 .5). Protein concentration was detennined using the NanoDrop ND-100 

spectrophotometer (BioLab: Scoresby, Australia). 
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2.2.3.2 Expression and purification of Pia subunit proteins 

The procedure of Pia subunit expression and purification was very similar to that used in 

preparation ofUsp2-cc and was undertaken in accordance with (Rebbeck et al. , 2011). 

2.2.3 .2.1 E. coli expression system 

The His-Ub-P1a subunit was expressed in BL21(DE5) cells using the same process 

described for expression of Usp2-cc, with the exceptions that the starter culture was 40 ml, six 

flasks of 400 ml of LB/Amp were inoculated and protein expression in BL21(DE5) was induced 

for 2 hat 37 °C following addition of 0.1 mM IPTG. 

2.2.3.2.2 Purification using IMAC 

The cell pellets were resuspended in 40 ml of resuspension buffer consisting of 8 M 

urea, 5 mM imidazole, 12 mM P-mercaptoethanol, 10% glycerol, 50 mM N3PO4 and 300 mM 

NaCl, pH 8. The cells were then sonicated using a Branson Ultrasonics Sonifier 250 five times 

in 30 s bursts. The soluble protein was isolated using centrifugation at 26 891.8 x gin a Sorvall 

SS-34 rotor using a Sorvall RC-SB centrifuge (Dupont: Norwalk, USA) for 30 min at 4 °C. The 

resulting cell lysate was added to 3 ml ofNi-NTA resin and incubated for 1 hat 4 °C. Following 

incubation, the resin was spun down at 297.8 x g using a Himac CT6E (Hitachi Koki, Co., Ltd : 

Tokyo, Japan) for 5 min and the supernatant was removed. Then the resin was washed, which 

involved subsequent addition of 50 ml of resuspension buffer, centrifugation at 297.8 x g using 

a Himac CT6E for 5 min and removal of the supernatant for three washes. The resin was then 

transferred to a chromatography column and the His-Ub-P1a protein was eluted in fifteen 1 ml 

aliquots following addition of elution buffer (8 M urea, 500 mM imidazole, 12 mM P­

mercaptoethanol, 10% glycerol, 50 mM Na3PO4 and 300 mM NaCl: pH 8). The protein content 

in each fraction was determined by Coomassie staining the resolved proteins in a 5-17% 

gradient denatured gel (sections 2.2.4 and 2.2.5). The fractions that contained a band reflecting 

His-Ub-P1a were collated. 

2.2.3.2.3 Cleavage of His-Ub fusion tag 

T_he combined fractions were diluted with phosphate buffer (50 mM Na3PO4 and 300 

mM NaCl, pH 8), to reduce the urea concentration to 2.6 M, which enables enzymatic activity 

of the l}sp2-cc that was added (1: 150 v/v: ~ 0.25 mg) in combination with 1 mM dithiothreitol. 

This mixture was incubated for 16 h. at 3 7 °C to enable full cleavage of the His-Ub tag from Pia 

subunit and then concentrated to ~ 2 ml using an Am icon Ultra-15 1 OK concentrator (Merck 

Millipore: Billerica, MA, USA) with 1191 x g in a Himac CT6E (Hitachi Koki, Co., Ltd: 

Tokyo, Japan). 

2.2.3.2.4 Purification using preparative gel electrophoresis 

Purification of the Pia subunit was achieved using the Prep-Cell system, which involves 

the process of preparative electrophoresis through a cylindrical gel and fractionation of the 
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resulting eluates. At 4 °C, the BIO-RAD Prep-Cell system (BIO-RAD Laboratories, Inc.: 

Hercules, CA, USA) was set up following manufacture recommendations, as shown in Figure 

2.2 . Within a 28 mm gel tube cast, the model 491 Prep-Cell was setup with a 10 cm 7% 

acrylamide Tris-glycine resolving gel (0.375 mM tris[hydroxymethyl]aminomethane (TRIS), 

7% acrylamide/bis 37.5:1 mixture, 1 mM ammonium persulfate (APS) and 1.7 mM 

tetramethylethylenediamine (TE:MED)) and 2 cm of 6% acrylamide Tris-glycine stacking gel 

(0.375 mM TRIS, 6% acrylamide/bis 37.5 : 1 mixture, 2 mM APS and 6.8 mM TE:MED) that 

surrounded a cooling core. A Variable Speed Pump (BIO-RAD Laboratories, Inc) maintained 

circulation of the electrophoresis solution (25 mM TRIS, 191 mM glycine, 3.52 mM SDS) 

through the cooling core to minimise temperature gradients across the gel. The top and bottom 

of the gel was immersed in electrophoresis solution to enable electrophoresis driven by a 

constant voltage that was controlled with a BIO-RAD PowerPac Universal Power Supply. 

Retained by a dialysis membrane at the base of the gel, the preparative gel eluates of proteins > 

6 kDa were continuously pumped (1 ml/min) through the middle of the cooling core and to a 

BioFrac Fraction Collector using a Model EP-1 Econo Pump. 

-
Resolving gel 

Large frit 

Dialysis membrane 

Figure 2. 2 A diagram illustrating the systematics of preparative gel electrophoresis and fraction collection using 
the BIO-RAD Prep-Cel l system. 

The system is used to resolve proteins via SDS-PAGE, then fractionate the eluates pumped from the base of the gel 
through the cooling core using a Model EP-1 Econo Pump (green) and BioFrac Fraction Co llector (orange), as 
represented by green tubing. The dialysis membrane that is situated between frits at the base of the gel, retains 
proteins > 6 kDa fro m diffusi ng with the electrophoresis buffer. To maintain equal temperature across the gel, the 
gel is cast around a cooling core unit that has electrophoresis buffer continuously circulating through the core using 
a Variable Speed pump, as reflected by purple tubing. The protein migration is dri ven by constant 40 V, which is 
deli vered using a PowerPac Universal Power Supply. 

The concentrated ~l a sample was prepared for gel electrophoresis by addition of 1 ml of 

denaturing sample loading dye ( 100 mM TRIS-HCI, 4% sodium dodecyl sulfate, 25 µM EDT A, 

20% Glycerol , 0.294 M ~-mercaptoethanol and 0.04% bromethyl blue stain, pH 6.8) and heated 
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for 10 min at 60 °Cina Julabo U3 water bath (JULABO USA, Inc.: Allentown, PA, USA). The 

concentrated sample was then loaded above the stacking gel and the cell was run constantly at 

40 V. The eluded sample was discarded until the dye front reached the bottom of the gel after -

5 h, then the eluate was connected for fraction collection with 4 ml per tube. Fractions that 

contained exclusively Pia subunit, as determined by Coomassie blue staining of resolved 

samples on a 5-17% gradient SDS gel (sections 2.2.4 and 2.2.5), were collated. 

2.2.3.2.5 Acetone precipitation 

The collated fractions were diluted 1 :4 with acetone and incubated at -20 °C for 16 h. 

Then, the precipitated protein was spun down at 2117.8 x g using a Himac CT6E (Hitachi Koki, 

Co., Ltd: Tokyo, Japan) for 30 min at 4 °C. The acetone was decanted and replaced with fresh 

acetone, then spun down at 2117.8 x g using a Himac CT6E for 30 min at 4°C. This step was 

repeated once more. Then the precipitate was dried under vacuum for 5-15 min. 

2.2.3.2.6 Refolding and dialysis 

The protein collected in section 2.2.3.2.5 was re-dissolved in ~6 ml of denaturing 

buffer consisting of 6 mM guanidine HCl, 50 mM Na3PO4 and 300 mM NaCl, pH 8. To 

promote refolding by slowly removing guanidine HCl, the sample was dialysed with 4 L of 

phosphate buffer (50 mM Na3PO4 and 300 mM NaCl, pH 8) over 16 hat 4 °C. The dialysed 

solution was subsequently concentrated using an Amicon Ultra-15 1 OK concentrator (Merck 

Millipore: Billerica, MA, USA) to ~2 ml and stored at -70 °C. Purity was visualised by 

Coomassie blue stain of dialysed sample on a 5-17% gradient gel and Pia subunit was identified 

using western blotting (sections 2.2.4-2.2.6). Protein concentration was determined using the 

NanoDrop ND-100 spectrophotometer (BioLab: Scoresby, Australia) and Pierce BCA kit. 

2.2.4 Laemmli SDS-P AGE for protein identification 

Laemmli mini polyacrylamide gel electrophoresis (PAGE) of denatured protein samples 

was performed using the BIO-RAD Mini-Protean Tetra cell system (BIO-RAD Laboratories, 

Inc.: Hercules, CA, USA). Depending on the size of the proteins, the resolving gel consisted of 

a range of 7.5%, 10% and 5-17% acrylamide/bis (37.5 :1 solution) in 375 mM TRIS-HCl (pH 

8.8), 0.1 % SDS, 0.05% APS and 0.2% TEMED. The 7 cm resolving gel was set 1 cm below the 

stacking gel composed of 4% acrylamide/bis 37.5 : 1 mixture in 1.25 TRIS-HCl (pH 6.8), 0.1 % 

SDS, 0.1.% APS and 0.2% TEMED: Denatured loading samples were prepared by addition of 

the denaturing sample loading dye (50 mM TRIS-HCl, 2% SDS, 12.5 mM EDTA, 10% 

glycerol, 0.02% bromophenyl blue and 0.147 M P-mercaptoethanol) and incubated for 10 min at 

60 °Cina Julabo U3 water bath (JULABO USA, Inc.: Allentown, PA, USA). Samples were run 

into the stacking gel under constant voltage of 100 V that was delivered by a BIO-RAD 

PowerPac 300 (BIO-RAD Laboratories, Inc.: Hercules, CA, USA). Then, the voltage was 

increased to 175 V until the dye front had reached 1 cm from the bottom of the gel. The gel was 

53 



then used in one of two experimental procedures for protein visualisation: Coomassie blue 

staining (section 2.2.5) or western blotting (section 2.2.6). 

2.2.5 Coomassie Brilliant Blue stain 
The Coomassie Brilliant Blue R-250 dye is utilised for its affinity to basic residues, 

permitting visualisation of a large range of proteins (Tai et al., 1985). Immediately following 

electrophoresis, the gel was bathed in 100 ml of Coomassie Brilliant Blue R-250 stain solution, 

consisting of 0.1 % (w/v) Coomassie Brilliant Blue R-250, 10% acetic acid and 40% of ethanol, 

for 1 h at ~ 21 °C. Then the gel was transferred to a de-stain solution, of 10% acetic acid and 

40% ethanol, until the background was clear. 

2.2.6 Western blotting 

The protocols for protein transfer and immuno-detection were similar to those described 

in Kimura et al. (2005). 

2.2.6.1 Protein transfer 

Following SDS PAGE, proteins were transferred from a gel (section 2.2.4) to 

Immobilon-P polyvinylidene difluoride (PVDF) membrane using a BIO-RAD Mini PROTEAN 

Tetra Cell with Mini Trans-Blot module (BIO-RAD Laboratories, Inc.: Hercules, CA, USA). 

Each PVDF membrane was prepared by sequentially soaking in methanol for 20 s, floating on 

Milli-Q water for 5 min and soaking in transfer buffer, composed of 37 mM TRIS, 140 mM 

glycine and 20% methanol, for 15 min. The proteins were then transferred onto the prepared 

membrane in transfer buffer at I 00 V for 1.5 h, then 150 V for 1 h using a BIO-RAD Power Pac 

200 (BIO-RAD Laboratories, Inc.: Hercules, CA. USA). Notably, any variation in the 

composition of transfer buffer and transfer protocol will be specified in individual results 

chapters. 

2.2. 6.2 Immuno-detection 

Following protein transfer, the membrane was blocked to minimise non-specific protein 

binding by immersing the membrane in blocking buffer (5% [w/v] low-fat milk dissolved in 

PBS) for 1 h at room temperature as according to Kimura et al. (2005). Then, the membrane 

was washed by immersion in 10 ml of PBS for 5 min with slow rotation using a Navigator 

rotation wheel (BioComp Instruments, Inc.: Fredericton, NB, Canada). 

Identification of RyR: The membrane was immersed in 1 :5 000 dilution of mouse RyR 

antibody concentrate (34C) in TPBS (0.05% Tween in PBS) for 16 h with slow rotation at 4 °C. 

Then the membrane was then washed six times with 10 ml of TPBS for 5 min with slow 

rotation . The mouse primary RyR antibody was probed using a 1 :6 000 dilution of horseradish 

peroxidase (HRP) conjugate of goat anti-mouse antibody in TPBS for 2 hat ~21 °C with slow 
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rotation. Then, the wash procedure was repeated with the exception of the last wash being in 

PBS rather than TPBS . 

Identification of Pia subunit: the membrane was exposed to 1 :200 dilution of mouse . 

DHPR Pia antibody concentrate (VD2(1)B12) for 16 h with slow rotation at 4 °C. This was 

followed with the same wash, incubation with secondary antibody and re-wash protocol as 

described for identification ofRyR (above). 

Identification of biotinylated Pia peptides: the membrane was exposed to 1 :6 000 

dilution of BIO-RAD Precision Protein StrepTactin-HRP conjugate for 2 h with slow rotation at 

~21 °C. The membrane was then washed five times with 10 ml of TPBS for 5 min each with 

slow rotation. This was followed by another 5 min wash in 10 ml of PBS. 

2.2.6.3 Visualisation (enhanced chemoluminescence, ECL) 

The membranes were lightly covered with SuperSignal West Pico Chemiluminescent 

Substrate (ECL solution) over 2 min. In a darkroom, the membrane was exposed to Super RX 

Fuji medical X-ray film (Fujifilm Corporation: Tokyo, Japan) within a Kodak Biomax cassette 

(Eastman Kodak Company: Rochester, NY, USA) for 5 s to 5 min. Then the film was developed 

by sequentially submerging in Kodak Readymatic dental Developer (Carestream Health; 

Rochester, USA) for 1 min, shaken, submerging in Kodak Readymatic dental Fixer for 1 min, 

shaken, and finally washed in water for 1 min. 

2.2.6.4 Protein band density quantification 

The film was scanned and band density (intensity/area) was obtained using BIO-RAD 

Quantity One 1-D Analysis software (BIO-RAD Laboratories Inc.: Hercules, CA, USA). The 

background was removed by subtracting the density of a section directly underneath the protein 

band from the density of the protein band. 

2.2. 7 Protein quantification 

2.2 . .7-1 1:Jicinchoninic acid (BCA) Protein Assay 

The Pierce BCA Protein Assay kit was used m accordance with the enhanced 

microplflte protocol recommended by the manufacture (Thermo Scientific: Rockford, IL, USA) 

to determine the final concentration of purified Pia protein and peptide samples. This assay 

relies on colour development from the copper/BCA interaction with either certain amino acid 

(tryptophan and tyrosine) side chains or the peptide bond (Wiechelman et al., 1988). All BCA 

assay incubations were at 60 °C, promoting optimal association of BCA with the peptide bond, 

which .enabled quantification of peptides that lacked tryptophan residues . The absorbance was 

measured at 562 nm using an EL800 - Universal microplate reader (BIO-TEK Instruments, 

INC: Vermont, United States) and the protein concentrations were determined by reference to 

an absorbance response curve for 0.125 - 2 mg/ml bovine serum albumin. 
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2.2. 7.2 Pierce 660nm Protein assay 

The Pierce 660nm Protein Assay was used in accordance with the microplate procedure 

recommended by the manufacture (Thermo Scientific: Rockford, IL, USA) to determine the 

concentration of proteins in HEK293 derived microsomal vesicle preparations. The sample 

concentration was determined by reference to the bovine serum albumin standard curve. 

2.2. 7.3 Detergent compatible (DC) Protein Assay 

The BIO-RAD DC Protein Assay was used in accordance with the microplate assay 

protocol recommended by the manufacture (BIO-RAD Laboratories Inc.: Hercules, CA, USA) 

to determine the protein concentration of the SR vesicle preparations from rabbit skeletal 

muscle. 

2.2.8 [DNA] quantification using Nano-drop 1000 
The Nano-drop spectrophotometer (ND 1000: Thermo Fisher Scientific, Wilmington, 

DE, USA) was used in conjunction with NDlOOO v3.8.1 software for [DNA] determination in 

accordance with the manufacturer's recommendations (Thermo Fisher Scientific, Wilmington, 

DE, USA) . Upon loading 2 µl of DNA sample the spectrophotometer measured the samples 

absorbance at 230 nm and 260 and 280 nm with a 1 mm pathlength. The software calculated the 

concentration using a modified form of the Beer-Lambert equation (Equation 2.1) from the 260 

nm reading and purity was assessed from the 260/280 nm and 260/230 nm reading. 

C =A I (b* e) [Equation 2.1] 

Where C is the nucleic acid concentration in ng·µr 1
, A is the absorbance at 260 nm, e is 

the wavelength dependent extinction coefficient in µl ·ng-1 ·cm-1 and b is the path length in cm. 

2.2.9 Planar lipid bilayers 

The planar lipid bilayer experiments were undertaken as described in Karunasekara et 

al. (2012). 

2.2.9.J Overview of lipid bilayer apparatus and setup 

The planar lipid bilayer equipment was setup as described in Laver et al. (1995). The 

planar lipid bilayer is a two chamber setup consisting of a Delrin cup (Caillac Plastics; Seaford, 

Australia) that fits snugly into a two compartment Teflon mould (Figure 2.3A) with each 

chamber containing specific solutions. The Delrin cup has a 150-200 µm aperture, across which 

a lipid bilayer film was painted. The aperture was visualised at 40 x magnification using a light 

microscope (Olympus; Tokyo, Japan) and illuminated by two 5 mm round High-Brightness 

white light emitting diodes (Cree Inc.: Durham, NC, USA). Silver chloride coated silver 

electrodes, within in each chamber, provide an electrical connection between the solutions and 
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an Axopatch 200B Capacitor Feedback Patch Clamp amplifier (Axon Instruments, USA) 

through a CV 203BV head stage (Axon instruments, USA) (Figure 2.3A). 

A 

B 

Figure 2. 3 The planar bilayer apparatus and setup 

AgCI coated electrodes 

CsCI bridge on electrode 

Light 

Delrin cup (cis chamber) 

trans chamber 

Light microscope 

Faraday light 

Ramp generator and 
Stirrer 

Patch clamp.amplifier 

A) A photograph taken of chamber setup. The 1 cm Delrin cup fits in a two chamber Teflon base. Electrodes encased 

in agar bridges are submerged in cis and trans solutions. Through the amplifier headstage, one electrode is held at 

ground and the other is voltage clamped. B) A photograph taken of the overall setup of the apparatus. The chambers 

and head stage are within a Faraday cage to reduce electrical noise. 

This setup enables current between the chambers to be monitored under voltage clamp 

conditi~ns. Each electrode is immersed in a salt agar bridge that reduces the junction potential 

between the solution and the electrode (Williams, 1995). 

SR vesicles were added to the stock solution in the Delrin cup. This compartment, 

known .as the cis chamber, was voltage clamped at +40 or -40 m V. The opposing chamber, 

known as the trans chamber, was grounded. The potentials were expressed in accordance with 

standard physiological convention of V cis - V trans· The current was filtered at 1 kHz with a 

lowpass 8-pole Bessel filter integrated in the Axopatch 200B ~nd displayed using the in-house 

analog/digital conversion program BLM2, and recorded at a bandwidth of 5 kHz. Both 
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chambers and headstage were surrounded by a grounded Faraday cage with a closable front that 

reduced electrical noise (Figure 2.3B). 

2.2.9.2 Agar bridges and silver chloride coated silver electrodes 
Electrodes were made from silver wire that was cut to the required length. The coating 

on the wire was lightly sanded and the electrode was immersed in 12.5% sodium hypochlorite 

for 1 h. Once the electrode was coated with black silver chloride, it was wiped and inserted into 

gold plugs that connected to the CV 203BV head stage. 

Agar bridges were made from a mixture of 2% (w/v) agar powder and 250 mM CsCl 

that was injected into 20-30 cm lengths of 1.47 mm laboratory tubing (Dow Coming 

Corporation; MI, USA). Once set, the tubing was cut into 15 - 20 mm segments and stored in 
250 mM CsCl at 4 °C. Electrodes were inserted into the agar bridges until 5 mm from the end of 

the tube. 

2.2.9.3 Lipid bilayer formation and SR vesicle incorporation 
The artificial lipid was composed of phosphatidyl-ethanolamine, -serine and -choline 

(stored in chloroform at -20 °C) (Borchman et al., 1982), combined in a 5:3:2 (v/v) ratio. Once 

mixed, the chloroform was evaporated by dispersing a small stream of nitrogen gas over the top 

of the mixture. The lipids were then re-dissolved in n-decane at a concentration of 45-50 mg/ml. 

The lipid mixture was typically prepared daily so as to avoid potential channel contamination 

from previous experiments that used a different SR vesicle preparation. 

Lipid bilayers were created by spreading the lipid over the aperture in the Delrin cup 

using a fire polished glass rod. The lipid spread into a film, which was initially thick due to a 

large amount of n-decane between each mono layer of the bilayer (Laver et al. , 2001 ). 

Sometimes gentle pressure was required to induce the n-decane to seep out of the bilayer, 

resulting in the optimally thin bilayer desired for SR vesicle incorporation. The thickness of the 

bilayer was monitored by observing the changes in the bilayer capacitive current amplitude after 

applying a one second 10 V/s triangular ramp via a ramp generator (JCSMR workshop, ANU, 

Canberra, Australia). A thinning bilayer could be seen as an increase in bilayer capacitive 

current amplitude. This is explained by the equations below: 

The lipid bilayer has _the ability to separate ions between solutions, and as such has 

capacitive properties (Blaustein, 2004). The capacitance of the lipid bilayer is described in the 

equation below: 

C = E *(A / d) [Equation 2.2] 
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Where C is the capacitance, E is the dielectric constant of the n-decane between 

the lipid monolayers, A is the area of the lipid bilayer, and d is the distance between the lipid 

monolayers. 

As a capacitor, the lipid bilayer stores an amount of charge, which 1s directly 

proportional to the voltage across the bilayer, as described in the equation below: 

Q=C*V [Equation 2.3] 

Where Q is the charge stored on the lipid bilayer, C is the capacitance and V is 

the voltage. 

Given that the capacitance of a lipid bilayer is constant when the area and distance 

between the lipid monolayers remains constant (Equation 2.2), if the voltage across the bilayer 

is altered the capacitive current changes according to the equation: 

(dQ/dt) =le= C * (dV/dt) [Equation 2.4] 

Where dQ/dt is the change in charge over time, le is the capacitive current, C is 

the capacitance and dV/dt is the change in voltage over time. 

Combination of equation 2.2 and 2.4 provides the equation: 

le= E *(A / d) * (dV/dt) [Equation 2.5] 

Thus, if the thickness of the lipid bilayer (represented as d in equation 2.2, 2.4 and 2.5) 

is decreased when a triangular ramp is applied, then the height of the capacitive current is 

increased. 

SR vesicles were added to the cis chamber to a final concentration of 9 .4 - 20 µg/ml. 

SR vesicles were encouraged to incorporate into the bilayer. by 1) an osmotic gradient created 

by a 5:1 ratio of cesium ions (Cs+) in the cis t_o trans chambers (Laver et al. , 1995), 2) stirring 

the cis chamber, and 3) a high [Ca2+] of 1 mM in the cis chamber (Miller & Racker, 1976). 

Typically, SR vesicles added to the cis chamber incorporated into the bilayer with the cytosolic 

side of the SR channel exposed to the cis chamber, while the SR luminal side of the channel was 

exposed to the trans chamber. Correct orientation of SR vesicles is routinely observed by the 

Muscle. Research Group Laboratory (John Curtin School of Medical Research, Australian 

National_ University, Canberra, Australia) and has been reported in 2: 99% of cases in many 

different laboratories (e.g. Miller and Racker (1976), Ashley and Williams (1990), Sitsapesan 

and Williams (1994)). In the present study, an observable increase in channel activity upon cis 

addition of ATP (an endogenous agonist of ·the RyR that activates the channel only via its 

cytosolic domain; section 1.4.3.3) and cis addition of BATPA (a Ca2+ chelator that was used to 

reduce free Ca2+ from 1 mM to 10 µM, section 1.4.3 .1) was used to indicate correct orientation. 

Conf"rrrnation that the SR channel recorded was a RyR channel was further supported by 
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channel inactivation upon addition of ruthenium red, an exogenous RyR antagonist (Ma, 1993). 

Channel experiments were typically carried out at 21 ± 2°C. 

2.2.9.4 Lipid bilayer experimental solutions 

Each solution used was adjusted to a pH of 7.4 with 4 M CsOH using a digital pH meter 

(TPS pty. Ltd, Brisbane, Australia). All solutions were made using MilliQ water, including Pia 
peptide stock solutions. All solutions used in the lipid bilayer experiments were stored at -20 °C, 

with exception of the cis and trans solutions and ruthenium red, which were stored at 4 °C. 

The chamber solutions consisted of: cis: 20 mM CsCl, 230 mM CsCH30 3S, 10 mM N­

Tris[hydroxymethyl]methyl-2-aminoethansulfonic acid (TES) and 1 mM CaCh; and trans: 20 

mM CsCl, 30 mM CsCH30 3S, 10 mM TES and 1 mM CaCh. 

For multiple reasons, Cs+ was used as the current carrier as opposed to Ca2+. Firstly, the 

conductance of 100-200 mM Ca2+ through open RyRl is much lower than that of 100-200 mM 

Cs+, leading to a 5-fold reduction in signal ( channel open current) to noise ratio (Sitsapesan and 

Williams, 1994). Secondly, high [Cs+] has a negligible regulatory effect on RyR (Laver et al. , 

2001), unlike high [Ca2+] that is a known modulator of channel activity (section 1.4.3.1). 

Thirdly, Cs+ effectively blocks SR K+ channels, as Cs+ through SR K+ channels has a low­

conductance but dominantly competes with any other permeant-cation that enters the K+ 

channel (Cukierman et al. , 1985). Methanesulfonate, CH30 3S-, was used as the major anion due 

to low permeability through SR er channels (Laver et al. , 1995). BAPTA was used to chelate 

Ca2+ and to adjust [Ca2+]. The amount of BAPTA required to adjust the [Ca2+] to a desirable 

concentration was calculated using the in-house program Bound And Determined, and the 

purity of BAPTA was accessed using a Ca2+ electrode. 

2.2.9.5 Channel recording 

As soon as a channel(s) incorporated into the lipid bilayer, recording commenced using 

the acquisition program BLM2. Then 200 mM CsCH30 3S was added to the trans chamber, to 

achieve symmetrical so lutions with respect to [Cs+], [Cl-] and [CH30 3S] . Following the addition 

of solutions or compounds, solutions in the desired chamber were stirred for 10 - 15 s. The 

control condition was achieved by reducing the [Ca2+]cis to 10 µM with the addition of 1 mM 

BAPTA and then addition of 2 mM ATP (additionally containing the pH buffer, 0.1 mM TES, 

pH 7.4) to the cis chamber. Control activ ity was recorded for a minimum of 10 min under each 

condition: alternating between +40 and -40 mV every 30 s. Zero, 10 or 100 nM of Pia 
peptide/subunit were achieved by adding appropriate amounts of peptide stock solution to the 

cis chamber. Channel activity was recorded for a minimum of 10 min: with the bilayer potential 

alternated between +40 and -40 mV every 30 s. Only one or two concentrations of peptide were 

used in each experiment to examine possible time dependent effects of the peptide on channel 

activity. To further confirm that the channel was RyR, 40 µM of ruthenium red was added to the 
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cis chamber and channel activity recorded for 4 mm. To ensure that the solution of the 

peptide/subunit was dissolved/dialysed in did not affect channel gating properties, additional 

lipid bilayer experiments were undertaken with deionised water or dialysis buffer (section 

2.2.3.2.6) added to the cis chamber, in place of the peptide/subunit solution. The channel 

activity was monitored for 10-20 min following addition. The volumes of control solution added 

were the same as the volumes of experimental peptide. 

2.2.9.6 Data analysis 

Single and multiple channel parameters were obtained from the in-house program, 

Channel 2 (developed by P.W. Gage and M. Smith, John Curtin School of Medical Research, 

Canberra, Australia). The channel parameters (see below) were measured from 90 s of channel 

activity at each potential, before and after the addition of the ~la subunit/peptide. Prior to 

analysis, each experiment record was further filtered at 500 Hz using a Gaussian filter. 

Mean open channel time (T0 ) , mean closed channel time (Tc) , total time recorded (Ttime), 

total time channel open (Topen), total time channel closed (Tc1osed), number of channel openings 

(n), mean current (I') and maximal current Umax) were measured. RyRl activity was quantified 

by calculating either: the probability that the channel would be open at any one time, i.e. open 

probability (P0 ), or the average current as a function of the maximum current, known as the 

fractional mean current (I'F)- Equations shown below: 

Open probability (P 0 ) = 

Fractional mean current (I'F) = I' I Imax 

--

[Equation 2.6] 

[Equation 2. 7] 

Where Tope11 is the total channel open time, Trime is the total time of analysed record, I' is 

mean current that is an average of all data points obtained during a recording period, and Imax is 

maximum current amplitude of the analysed record. 

I'F is approximately equal to P 0 and it has been shown that P 0 and I 'F values obtained 

from a single channel record that contained a predominately active channel are very similar 

(section 3..3 .2; Beard et al. (2008)). PO most accurately quantifies RyRl channel activity when 

only one channel is active in a bilayer. In contrast, I 'F is the most accurate measure of RyRl 

activity. when more than one channel . is active. These features will be discussed further in 

section 3.3.2. Since I'F is approximately equal to P 0 , all channel activity (measured as l'p or P 0 ) 

is expressed as P 0 in this thesis. To measure P 0 , an open channel threshold discriminator was 

placed .at 15-20% of the Imax and the closed threshold was placed above baseline noise, as 

described by Goonasekera et al. . (2007). As all analyses of channel properties required a 

constant baseline, any significant baseline variation from zero was corrected using the in-house 

program Baseline (developed by Dr. D.R. Laver). 
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Beside P 0 , five additional parameters were measured from single channel records: T0 , 

Tc, open frequency (F0 ) , mean open time constant ('r0 ) and mean closed timeconstant (-cc)- The 

first three are defined by the following equations: 

Open frequency (Fo; s- 1
) = n I T1ime 

Mean open time ( T0 ; ms) = Topen I n 

Mean closed time (Tc; ms)= Tc1osedl n 

[Equation 2.8] 

[Equation 2.9] 

[Equation 2.1 OJ 

Where Topen is the total channel open time, Tc1osed is the total channel closed time, n is 

the total number of channel openings, and Ttime is the total time analysed. 

The mean time constants were calculated as described in Laver and van Helden (2011), 

which involves use of a log-bin method that was formulated by Sigworth and Sine (1987). The 

open and closed time time histograms for each channel record were constructed with the square 

root of the event frequency (probability) per bin versus equally spaced bins on the logarithmic 

scale for open or closed durations (seven bins per decade) . In accord with Sigworth and Sine 

(1987), the time constants were equated from the frequency peaks. A manual fit to the dwell­

time histogram was used to determine the area under each frequency peak, which equated to the 

fraction of single channel open or closure events falling into each time constant. 

All single channel parameters were measured from 3 0 - 90 s of channel activity at each 

potential during the control period and after the addition of the Pia subunit/peptide. Notably, 

channel activity (J'F or P0 ) was measured from 80-90 s of channel record . 

In addition, the maximal conductance of a channel was calculated from the voltage 

across the bilayer and the maximal current through the channel, using the equation below: 

G=I I V [Equation 2.11] 

Where G is the maximal conductance, I is the maximal current and V is the voltage 

across the lipid bilayer. Please note that the maximal conductance is contingent on the ion 

charge equilibrium across the lipid bilayer. 

2.3 Statistics 

Average data was presented as mean ± standard error of the mean (SEM). Correlation 

between P0 and J'F values was determined using a Pearson correlation test. Significance 

between control and the test condition was determined using either a paired or unpaired two­

tailed Student' s t-test or analysis of variance (ANOVA) when appropriate. The number of 

observations (n) for each data set is given in corresponding figure legends or tables . To reduce 

the effects of variability in control parameters in planar bilayer experiments, all (Po, To, Tc, Fo) 
values were expressed as their logarithmic (log10) value. The effect of P, a peptide/subunit 
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addition was evaluated by subtraction of the control values (Log10P ac, Log10T0c, Log 10Tcc) from 

the post Pia addition values (Log10PaB, Log10T0B, Log10TcB) for each channel, e.g. Log10P0B -

LogIOPac- The variance between Log10P0c and Log10P08 was assessed using a paired, two-tailed 

Student's t-test and variance between the effect of Pia subunit/peptide in different conditions 

(i.e. voltage, concentration and peptide) was assessed using a Fisher's least significant 

difference test of ANOV A. A p value < 0.05 was considered to be significant. 

63 



CHAPTER THREE - GENERAL PROPERTIES OF RYRl IN 
LIPID BILAYERS 

3.1 Introduction 

Electrophysiological techniques, such as the patch clamp technique, are commonly used 

to investigate ion channel gating properties. Given that RyRl is embedded in an intracellular 

membrane that is not accessible for cellular patch clamping technique, reconstitution of RyRl in 

a planar biomolecular lipid membrane (lipid bilayer) is an alternative method for employing 

electrophysiological techniques to assess RyRl activity over time. This setup enables ionic 

currents across RyR to be monitored over time while the composition of solutions surrounding 

the cytoplasmic and luminal domains of the RyRl in the cis and trans chamber, respectively, 

are controlled. The gating characteristics of RyRl and their response to a range of modulators 

are well established and consequently provide markers indicative of channel identity and 

orientation within the lipid bilayer. Commonly used markers include response of RyRl to 

endogenous modulators, such as ATP, Ca2+ and Mg2+, and exogenous inhibitors, such as 

ruthenium red and ryanodine (e.g. Ahem et al. (1994), Laver et al. (1995), Ahem et al. (1997), 

Capello et al. (1997), Laver et al. (2000)). Additionally, single channel conductance for a range 

of ions has been well established, as described in section 1.4. Indeed, the ions used as the 

current carrier in this technique include ca2+, Ba2+, Cs+, K+ and Na+ (e.g. Smith et al. (1986), 

Lai et al. (1992), Seok et al. (1992), Laver et al. (1995), Capello et al. (1997)). Notably, Cs+ 

was chosen as the current carrier for reasons mentioned in section 2.2.9.4. 

3.1.1 Aim 

The objective in this chapter was to establish the identity and orientation of single 

channels from skeletal SR vesicles in lipid bilayer experiments. To achieve this, the single 

channel gating characteristics and response of single channels to cis [Ca2+], ATP and ruthenium 

red were compared with the well-established response and gating characteristics of RyRl. 

3.2 Methods 

The skeletal SR vesicles were prepared as described in section 2.2.2. These skeletal SR 

vesicles were incorporated into lipid bilayers and the experiments were carried out as described 

in section 2.2.9. Following channel incorporation the initial cis and trans chamber solutions 

were identical , consisting of 20 mM CsCl, 230 mM CsCH3O3S, 10 mM TES and 1 mM CaCh, 

pH 7.4 . 
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3.3 Results 

3.3.1 General observations 

SR vesicles typically incorporated into the artificial lipid bilayer within 5 min following 

their addition to the cis chamber. If channel incorporation did not occur within 30 min of 

painting the lipid bilayer, the chambers were washed, the solutions were replaced and a new 

bilayer painted. Addition of CsCH30 3S to equilibrate the [Cs+] between the chambers was found 

to halt further incorporation. This was confirmed multiple times when lipid bilayers were 

painted whilst the [Cs+] was symmetrical. In these cases, the lipid bilayer was monitored for up 

to 25 minutes and no SR channel incorporation was observed. 

During this study, more than one channel frequently incorporated into the bilayer. 

Multiple channels could be seen as additional step increments in current above the maximal 

open current for a single channel opening (Figure 3.1). A notable feature of native RyRl was 

that most openings of periods ~ 6 ms were full single channel openings rather than a fraction 

(sub-state) of the full channel opening. Similarly, Capello et al. (1997) reported that the 

frequency of substate openings relative to full openings was < 1 % during recordings of native 

RyRl activity. 

A Single channel 

P0 = 0.069 P0 = 0.080 
C 

........................ ~ ····· ···················· ······················ ·· O 

~~c ................ .. .... ......................... c·•············· .. ······· .. • ....... 0 

B Two charinels 

l'f= 0.075 l'f= 0.078 

....................................................................................... 0 2 

........... 0 1 

............ .......................................................... .. ... .... .. ....... . 0 2 

10 pA 

Figure 3. 1 Single and multiple RyRl openings within a bilayer. 

A and B) Three second recordings from a typical single channel (A) and a multiple channel (B) recording, voltage 

clamped at +40 m V (left panel) and -40 m V (right panel). Channel openings are upward (left panel) or downward (right 

panel) inflections from zero current (c, continuous) to maximum conductance (o, broken line). B) Conductance 

additional to the maximal conductance (o1) is due to conductance from a second channel. Maximal conductance of a 

second channel is indicated as o2. 
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The time frame for a complete channel recording was limited by the integrity of the 

lipid bilayer. Typically, 45-60 min after incorporation, the lipid bilayer would become unstable. 

This was visible as either jagged inflections in the current due to non-specific leak from bilayer 

breakdown that was easily distinguishable from channel openings, or bilayer thickening. 

Thickening of the bilayer was observed as a decrease in capacitance across the membrane 

(section 2.2.9.3), which was typically accompanied by a visible reduction in the amplitude of 

channel maximal openings. Recording of channel activity was halted when reduction in 

membrane capacitance was observed. 

On rare occasions, a channel record would inactivate within seconds of shifting the 

voltage from -40 mV to +40 mV. This phenomenon of voltage-dependent inactivation at +40 

mV has previously been reported by Laver and Lamb (1998). Due to concern that 90 s 

measurement of the activity of these channels would provide an inaccurate measurement of true 

channel modulation by peptides/subunits, channel records that displayed obvious voltage­

dependent inactivation were not analysed. 

3.3.2 Characteristics of RyRl 

In this study, the maximal current of a single RyRl was very similar when channels 

were recorded at +40 and -40 mV (with 10 µM cis [Ca2+] and 2 mM cis [ATP]; Figure 3.2A, 

r2= 0.957). On average, the maximal conductance of RyRl at +40 mV was 262.5 ± 9.24 pS and 

262.9 ± 7.76 pS at -40 mV (n = 44), calculated using Equation 2.11. The similar maximal 

current at these opposing voltages indicates a linear relationship through zero between channel 

current (I) and voltage (JI) (Figure 3.2B), which has been reported using a more extensive range 

of voltages when the [Cs+] was equal between chambers (Laver et al. , 1995). 

RyRl activity was measured as either the probability that a channel may open ( open 

probability: Pa) or as fractional mean current (J'F; current expressed as a fraction of maximal 

current). The single channel J'F and Pa strongly correlated for both +40 (r2 
= 0.92, n = 53 , p < 

0.0001) and -40 mV (r2 
= 0.86, n = 42, p < 0.0001), as shown in Figure 3.3. Consequently, 

there is a high likelihood that the Pa or J'F measurements of activity in the same segment of 

channel activity should not vary significantly. In general, the Pa is the most accurate measure of 

RyRl activity when only one channel incorporates in the bilayer, particularly since Pa is 

independent of sub-state activity with maximal openings at 2 2 pA, unlike J'F. The 

consequences of this is somewhat apparent in Figure 3.3, with a slight trend for Pa > J'F at 

higher channel activity values. Unfortunately, Pa cannot be unambiguously used to measure 

activity when bi layers contain more than one channel as it becomes a measure of nP a where n is 

the number of channels. To avoid multiple assumptions that would be required to deconvolute 

individual Pa, J'F was used to measure RyRl activity when multiple channels are open. 
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Figure 3. 2 Single channel maximal current amplitude for +40 mV and -40 mV. 

A) The average single RyRl current amplitude when voltage clamped at either +40 or -40 mV. The cis solution 

contains 10 µM [Ca2+] and 2 mM ATP. n = 44 channel records, ns - "no significant" difference, determined by 

Student's t-test, p > 0.05 . B) The linear tit" (continuous line) is based on the scatter of single current amplitude (open 

circles) at each vo ltage analysed. 

A consistent attribute of RyRl activity is the channel activity heterogeneity between 

channels, as shown in Figure 3.3. This has been previously observed for rabbit skeletal SR 

vesicles_ in lipid bilayers (Ma, i995 , Copello et al. , 1997, Laver et al. , 2001). Copello and 

colleagues (1997) noted that although most channels displayed the typical biphasic response to 

cis [Ca2+], the peak of open probability at 10-200 µM varied greatly between channels. Both, 

Ma (1995) and Laver et al. (2001) demonstrate a large distribution in the maximal PO values 

following cis addition of ATP. 
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Figure 3. 3 Linear relationship of single channel I'F and P0 in lipid bilayers at +40 and -40 m V 

The J'F versus P0 values at +40 mV (solid pink diamond) and -40 mV (solid blue circle) from 70-90 s traces of 
RyR I under conditions: equilibrated [Cs+] (250:250 mM), cis 10 µM [Ca2+], trans I mM [Ca2+] and cis 2 mM 
ATP. n = 42-53 channels records. The linear regressions of the scatter plots has co-efficient of determination (r2) 
values of 0.92 and 0.86 for +40 and -40 mV, respectively (perfect fit with data gives an r2 = 1.00). The linear 
regression if J'F = PO is shown as a di scontinuous green line. The J'F and PO values significantly correlate for each 
channel record, determined by a Pearson Correlation test, p < 0.0001 . 

The heterogeneity between channels could be due to many factors. As previously 

discussed, the chemical modification state of Ry RI and the levels of FKBP12.0 and CaM bound 

to RyRl influences RyRl activity (sections 1.4.3.4-6). Indeed, the response of native RyRl 

activity in lipid bilayers to Mg2
+ varies within rabbit skeletal SR vesicle preparations in 

accordance with the phosphorylation state of individual RyRl (Hain et al. , 1994). Overall, Hain 

et al. (1994) suggested that only 40% of RyRl in the SR vesicle preparation were 

phosphorylated . Given that phosphorylation modulates RyRl activity (section 1.4.3.4), this 

could account, at least partially, for the heterogeneity of channel activity observed in this thesis. 
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3.3.3 Regulation of RyRl activity during lipid bilayer experiments 

Correct orientation and identification of RyRl within a bilayer was established by 

monitoring RyRl activity responses to the addition of cytoplasmic RyRl regulators, which 

include cytoplasmic [Ca2+], ATP and ruthenium red (section 2.4.4). Notably, activity from er 
and K+ channels incorporated with the SR vesicles was effectively blocked by using 

methanesulfonate (CH30 3S-) as the primary anion and Cs+ ions as the primary cation, 

respectively (section 2.4.4). In addition, the lack of K+ ions and the high [Cs+] inhibits the 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) (Kargacin et al. , 2005), which is 

also present in SR vesicles. 

3.3.3.1 Cytoplasmic [Ca2+] 

Cytoplasmic [Ca2+] has a biphasic effect on RyRl activity (section 1.4.2), whereby 

increasing the [Ca2+]cyto from 100 nM up to 200 µM increases channel activity from zero in a 

non-linear fashion and higher [Ca2+] decreases channel activity (Laver et al. , 1995) (section 

1.4.2). In all lipid bilayer experiments, the cis [Ca27 was reduced from 1 rnM to 10 µM by the 

addition of a Ca2+ chelator, BAPTA (section 2.4.4) . This reduction of cis [Ca27 significantly 

increased the average channel activity within 1-2 minutes in both +40 and -40 m V records by 

1.6- and 2.2-fold, respectively (Figure 3.4, A-C). Laver et al. (1995) found a similar increase 

( ~ 2.5-fold) in native RyRl activity with average P0 values of~ 0.2 and~ 0.5 at 1 mM and 10 

µM cis [Ca2+], respectively. Importantly, the increase in P0 is inconsistent with RyRl activity if 

the channel orientation was reversed in the bilayer. Several studies show that channel activity 

either does not change or slightly decreases following reduction of trans [Ca27 from 1 mM to 

10-100 µM (e.g. Tripathy and Meissner (1996), Laver et al. (2004);-Beard et al. (2008)) . Thus, 

the response of SR channels in lipid bilayers to [Ca2+]cyto highly suggests that the channels 

investigated in this study were RyRl that were correctly orien.tated in the bilayer. 

A very small portion (< 5%) of RyR in bovine diaphragm muscle is RyR3 , which are 

capable of incorporating into lipid bilayers (J eyakumar et al. , 1998). Despite a report that rabbit 

skeletal muscle does not contain amounts of RyR3 detectable by immuno-blotting, the 

possibility that RyR3 may have incorporated into a bilayer during the experiments undertaken 

for this project could not be excluded. Ahhough RyR3 display similar conductance properties to 

RyRl in lipid bilayers, activity of RyR3 does not appreciably vary between cis 10 µM and 1 

rnM Ca2+· (Jeyakumar et al. , 1998). Consequently, the response of channels used in this study to 

cis [Ca27 would highly suggest that these channels are not RyR3. 

The average P0 values found by Laver et al. (1995) are greater ( ~ 10-fold) than the 

values found in this study. This deviation is unlikely to be due to the chamber solutions used. 

The solutions used by Laver et al. (1995) were similar to those used in this study, with 
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Figure 3. 4 Regulatory effect of cis [Ca2l , ATP and ruthenium red on single channel activity in planar lipid bilayers. 

A and B) Three second records of single channel activity at +40 m V or -40 m V. Channel openings are upward (A) or 
downward (B) current inflections from zero current (c, continuous line) to maximal conductance (o, discontinuous 
line). Representative channel traces ·as cis Ca2+ was reduced from I mM (top traces) to IO µM (second trace) by the 
addition of I mM BAPT A. Channel activity was further increased by the addition of 2 mM ATP to the cis chamber 
(third traces) and finally completely abolished by addition of cis 40 µM ruthenium red (bottom traces). C) A timel ine 
of channel activity fo llowi ng sequenti al cis [Ca27 reduction from I mM (blue triangle) to IO µM (purple diamond) 
and cis addit ion of2 mM ATP (pink circle) and 40 µM ruthenium red (green square) . The channel activity over 10 s 
was taken fro m ~30 s intervals of activity at +40 and -40 mV. For each condition, there is a mean (continuous line)± 
SEM ( discontinuous line) of the respective scatter plot. D) Average open probabi lity (P0 ) of channels at +40 m V and 
-40 mV calculated from ~ 30 s traces of RyRl activity. n = 13-27 channel traces. Error bars indicate +SEM. 
* Significantly different from prior condition. No significant (ns) difference between +40 and -40 nM data. 
Significance determined using an unpaired Student ' s t-test, p < 0.05. 
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exception that Laver et al. (1995) used disproportionate levels of CsCl (250 mM cis I 50 mM 

trans). Another study noted that this solution difference does not change the concentration 

dependent effect of cis [Ca2+] and [Mg2+] on RyRl activity (Laver et al., 1997b ), suggesting that 

the solution difference does not change channel P 0 • An alternative hypothesis for the PO variance 

is channel heterogeneity (3 .3 .1) between the SR vesicle preparations used in this study and 

those used by Laver et al. (1995). 

3.3.3.2 ATP 

ATP is a strong activator of RyRl (section 1.4.2). Addition of 2 mM ATP increased 

channel activity at both +40 and -40 mV by 2- to 3-fold on average within 1-2 min of addition 

(Figure 3.4). This increase in RyRl activity agrees with a previously reported ~2.2-fold 

increase in channel activity upon cis addition of 2 mM ATP to RyRl in lipid bilayers (Dulhunty 

et al., 2001). 

Channel activity typically remained increased for up to 30 mm (Figure 3.4, n=3 

channels), although activity varied over time, which agrees with previous reports of native 

RyRl activity in lipid bilayers (Copello et al., 1997, Laver et al., 1997a). Activation upon 

addition of 2 mM ATP was consistent for all skeletal SR channels analysed and verified the 

identity of channels as RyRs. 

3.3.3.3 Ruthenium red 

Ruthenium red greatly reduces or abolishes channel activity (Ma, 1993). Concentrations 

of 15 to 80 µM have been used by this laboratory (Laver et al., 1995, Ahem et al., 1997) and the 

typical response is highly diminished channel activity. The response of channel activity to cis 

addition of ruthenium red was either greatly reduced or abolished within 1-3 minutes of its 

addition in all channels recorded with ruthenium red, (Figure 3.4A-B) at both +40 and -40 mV. 

This suggests that the SR channels recorded were RyRl channels. Unfortunately, some channel 

experiments were halted prior to ruthenium red addition, due to lipid bilayer instability and/or 

breakage. In these cases, the level of maximal channel conductance, response to cis [Ca2+] and 2 

mM ATP were used as markers to confirm RyRl identity. 

3.4 Conclusion 

Native RyRl activity was assessed in this study by fusion of skeletal SR vesicles in 

planar lipid bilayers. The channel records that were analysed displayed the single channel gating 
. . 

characteristics and responses to known RyRl modulators that were typical of RyRl, suggesting 

that th~ channels were indeed native RyRl that were correctly orientated in the bilayer. The 

single channel experiments in which RyRs did not respond typically to changes in cis [Ca2+] or 

ATP were discontinued. Furthermore, any channels that did not respond typically to the addition 

of 40 µM ruthenium red at the end of the experimentwere not analysed. 
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CHAPTER FOUR - HYDROPHOBIC BET Al A SUBUNIT C­
TERMINAL RESIDUES THAT MODULATE RYRl ACTIVITY 

4.1 Introduction 

The DHPR Pia subunit is essential for skeletal EC coupling (Gregg et al. , 1996, Strube 

et al. , 1996, Strube et al. , 1998), which is thought to be due to a combination of Pia's role in 

DHPR tetrad formation, a 1s membrane expression and a 1s charge movements (sections 

1.3.4.3.1 , 1.3.4.3 .3 and 1.3.4.3.4). However, there are several lines of evidence which suggest 

that the Pi a subunit also facilitates EC coupling by directly increasing RyRl activity during 

excitation (section 1.3 .4.3 .5). In particular, a peptide (Pia V 490-M524) corresponding to the Pia 

C-terminal (35 C-tail) residues, that are important for restoration of voltage-induced SR Ca2
+ 

transients in Pi a-null myotubes (Beurg et al., 1999a, Sheridan et al. , 2003), can bind and 

increase RyRl activity in in vitro studies (Rebbeck et al., 2011). Interestingly, the Pia V490-

M524 peptide contains one of three hydrophobic residues that compose the hydrophobic heptad 

repeat (abbreviated to heptad repeat in this chapter) that strongly influences EC coupling in 

mouse myotubes (Sheridan et al., 2004). However, it could be argued that this region is not 

important, particularly given as the Pia V 490-M524 peptide modulates RyRl activity with the 

same concentration dependence as the full length Pia subunit (Rebbeck et al., 2011 ). 

Additionally, mutation of these residues in a zebrafish model does not alter EC coupling, 

suggesting that these residues are not important in the zebrafish system (Dayal et al. , 2010). 

These points bring into question 1) the role of the heptad repeat region of the C-terminus in 

terms of modulating RyRl activity and 2) whether the zebrafish Pi a C-terminus is able to 

increase RyRl activity. Indeed, it is likely that the zebrafish C-tail also increases RyRl activity 

given that the mammalian Pi a subunit isoforms are able to fully replace zebrafish Pi a subunit 

function in zebrafish muscle contraction (Dayal et al. , 2010). 

Interestingly, mouse and zebrafish Pi a isoforms restore EC coupling in mouse and 

zebrafish Pi a-null myotubes, respectively (Beurg et al. , 1997, Schredelseker et al. , 2009), and 

have similar C-terminal sequences (Figure 4.1) . Indeed, a large variation in this sequence in 

P2a, P3 and P4 subunits is correlated with the inability of these p subunits to restore skeletal EC 

coupling when expressed in the mouse and zebrafish Pia-null models (Beurg et al. , 1999a, Beurg 

et al. , 1999b, Sheridan et al. , 2003 , Sheridan et al. , 2004, Schredelseker et al. , 2009, Dayal et 

al. , 2013), as discussed in section 1.3.4.3. Whether these variations in sequence and EC 

coupling are due to a direct interaction with RyRl , a, 15 or intramolecular p1 interactions is not 

definitively known. However, this correlation highlights the residues that may be important for 

such an interaction by virtue of conservation between Pi a isoforms and disparity with P2a, P3 and 

p4 subunit sequences. These facts underpinned the experiments described in this chapter to 
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explore whether the Pi a C-terminal regions that are important for EC coupling are also important 

for functional interaction with RyRl in lipid bilayer experiments. 

A 
P1a 
P1a 
P1. 
P2. 
!33 
!34 

P1a 
P1a 
P1a 
P2. 
1}3 
!34 

P1a 
P1a 
P1a 
P2. 
!33 
!34 

P1a 
P1a 
P1a 
P2. 
!33 
!34 

B 

(mouse) K455ATHPPSSTPPNPLL ----------TMATAALAASP-----------------­
-----K455ATHPPSSTPPNPLL ----------TMATAALAASP-----------------­(rabbit) 

(zebrafish) K455ATHPPSSNPPNPLLNR----------TMATAALAASP---------------------
(rat) K408ATHPPSSNLPNPLLSR----------TLATSTLPLSPTLASNSQGSQGDQRTDRS ------
(rat) R358ATHHPAPGPG--MLG----P------PSAI PGLQNQQLLGE------------RG ------
(rat) R366ATHTSSSTPMTPLLGRNVGSTALSPYPTAI SGLQSQRMRHSN-----------HS 

------ : *** . . . : *. . * . * . 
(mouse) APVSNLQVQ-------VLT~-----------------_.fil.s ~ GLEASPRGGDA 

-----APVSNLQVQ-------VLTs;uRRN-----------------~1::SF-WGGLETSQRGGGA (rabbit) 
(zebrafish) 
(rat) 

EPVSNLQVQ-------VLT~------------------~ rira)GSPAVMQG--­
---APRSASQAEEEPCLEPVKK~SSATHQNHRSGTGRGLS~ ~ SETQESRDSAY 

------EEHSPLERD------SLMPsrt'E---------------ASES~GSSQRSSRH--(rat) 
(rat) ______ TENSPI ERR------sLMT# NYHNE----------RARK~SSSQHSRDHYP 

* * 
(mouse) V---------------------AQPQEHAM524 

-----
(rabbit) v---------------------PQQQEHAM524 ----
( zebrafish) ------------ - ---------QQEDEHAL520 ---
(rat) ______ VEPKEDYSHEHVDRYVPHREHNHREESHSSNGHRHREPRHRTRDMGRDQDHNECSKQR 

(rat) ______ ----------------------LEEDYADAYQDLYQPHRQHTSGLPSANGHDPQDRLL 

(rat) L---------------------VEEDYPDSYQDTYKPHRNRGS-PGGCSHDSRHRL486 
------

(mouse) 
(rabbit) 
(zebrafish) 
(rat) SRHKSKDRYCDKEGEVI SKRRSEAGEWNRDVYIRQ604 

------
(rat) AQDSEHDH- - -NORN- - - - -WQRNRPWPKDSY484 

------
(rat) 

131a (zebrafish) 1310 (rabbit) l320(rat) l3J(rat) 13irat) 

1310 (mouse) 83% 97% 28% 34% 47% 

1310 (zebrafish) 84% 27% 37% 45% 

Figure 4. 1 DHPR P C-terminal sequence alignment and similarity. 

A) C-terminal sequence al ignment of p sequences corresponding to mouse P,a (residues 455-524; NCBI reference 

sequence NP_ 112450.J), rabbit P, a (455-524; NCBI reference sequence NP_001 075748.l ), zebrafish P,. (455-

520; GenBank AAY29573 .l), rat Pza (408-604; GenBank AAK14821.1 ), rat P3 (3 58-484; GenBank 

AAA18486. l ) and rat P4 (366-486; NCBI NP _001099203 .1). The aligned residues are either identical (red, *), 

similar (green, :), weakly similar (blue, .) or di ssimilar (black). The corresponding hydrophobic surface residues 

(red discontinuous box) vary between p isoforms. B) Similarity of these sequences to mouse and zebrafish P,. C­

terminal sequences. The similari ty w as calculated as the combined percentages for sequence identity and 

similarity (inclusive of strong and weak). Alignment and similarity was determined using a CL UST AL W multiple 

alignment (Com bet et al., 2000). 

The nuclear magnetic resonance (NMR) determined secondary structure of the Pia 

V 490-M524 peptide shown in Figure 4.2 reveals a hydrophobic surface region in the nascent a.­

helical region between residues L493-~ 504, • which provides a putative RyRl binding site 

(Karunasekara et al. , 2012). This a-helical region is situated in a Pi a C-terminal region that has 

previously been shown to be important for EC coupling by truncation studies of a P1alP2a 

chimera (1-287 P2al325-524 Pi a) expressed in mouse Pia-null myotubes. Interestingly, truncation 

of residues downstream of W503 did not alter restoration of EC coupling by the chimera, but 
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truncation of residues downstream of V 495 reduced EC coupling restoration by ~ 70% 

(Sheridan et al. , 2003 ). 

Figure 4. 2 The model structure of~, . V 490-M524 peptide. 

The peptide backbone is represented by purple ribbon. The proximal region adopts an a-helix with a hydrophobic 
surface, as reflected by chemical stick structure of the amino acid side chains. The constructed model is based from 
NMR analysis (Karunasekara et al. , 2012). 

It is noteworthy that Karunasekara et al. (2012) found the a-helical propensity of the 

L493-G504 region in Pia V 490-M524 peptides was minimally disrupted when the hydrophobic 

surface residues were substituted with alanines (L496A, L500A and W503A). This was 

regardless of whether these residues were substituted individually or together, indicating that the 

hydrophobic surface residues are not important for the structural integrity of the Pia V 490-M524 

peptide. 

Sequence comparison between p isoforms also supports the potential importance of the 

hydrophobic surface residues, given that they are similar in Pia isoforms that support EC 

coupling and dissimilar in isoforms that do not support EC coupling. The hydrophobic surface 

residues are identical in mouse and rabbit Pia sequences and very similar with the comparable 

residues (L496, MSOO and L503) in the zebrafish Pia sequence. Furthermore, secondary 

structure prediction studies suggest that the zebrafish Pia sequence adopts a similar a-helical 

region that also encourages the hydrophobic surface residues to align on one side (Karunasekara 

et al. , 2012). It is interesting to note that there are no comparable hydrophobic residues within 

the P2a P3 and P4 sequences (Figure 4.lA, red box surrounds residues aligned with mouse Pia 
hydrophobic surface residues) . 

4.1.1 Aim 

The overall objective in this chapter was to determine the Pi a C-terminal residues 

responsible for functional modulation of RyRl activity. This aim was addressed in four parts. 

Firstly, via an investigation of the role of the heptad repeat residues and the hydrophobic surface 

residues on RyRl activity in lipid bilayer experiments using peptides corresponding to the C­

terrninal regions, as shown in Figure 4.3. Secondly, the influence of the hydrophobic surface 
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for physical interaction between Pia V 490-M524 peptide and RyRl was investigated using a 

biotin-streptavidin based affinity chromatography assay. 

A474TAALAASPAPVSNLQVQVLTSLRRNLSFWGGLEASPRGGDAVAQPQEHAM524 

V490-M524 region 

A474-A508 region 

V490-A508 region 
Figure 4. 3 Sequences of the peptides corresponding to sections of the extreme 51 residues C-terminal region of 

mouse ~1• subunit. 

The heptad repeat residues (blue) and the hydrophobic surface residues (red) are encased by the A474-A508 

region. In contrast, the V490-M524 region and V490-A508 region are inclusive of only the hydrophobic surface 

residues and one hydrophobic heptad repeat residue 

The third objective addressed in this chapter was the question of whether the zebrafish 

C-tail region can interact with rabbit RyRl in lipid bilayers. The effect of the zebrafish C-tail 

region was compared with Pia V490-M524 peptide that has been shown to increase RyRl 

activity by 2- to 3-fold in lipid bilayer experiments (Rebbeck et al., 2011). 

Finally, the role of the hydrophobic surface residues in the full-length Pia subunit on 

modulating RyRl activity was investigated. The response of Pia subunit mutant was compared 

with the effect of the truncated form of the Pia subunit (missing C-terminal residues A456-

M524) and the rabbit P2a subunit on RyRl activity in lipid bilayers. 

4.2 Materials and methods 

4.2.1 Materials 

4.2.1.1 Plasmid constructs 

The Pia subunit was obtained as described in section 2.1.3. The Pia LLW/A cDNA and 

Trunc ~la (Ml-K455) cDNA in the pHUE vector (BamHI at the 5' end and Hindlll at the 3' ) 

were obtained from Dr Y amuna A. Karunasekara (Muscle Research Group, John Curtin School 

of Medical Research, Canberra, Australia). Both constructs were modified from the mouse Pia 

subunit construct. The Pia LLW/A cDNA was made using site directed mutagenesis that was 

adapted from Kupzig et al. (2006). The process of creating a Trunc Pia cDNA construct 

invol ed specifically amplifying the coding sequence for Pia (1M-K455) in accord with the 

Phusion High Fidelity PCR kit (New England BioLabs Inc, Ipswitch, MA, USA) and cloning 

the amplified product into the pHUE vector (BainHJ at the 5' end and Hindlll at the 3 ' ). 

The rabbit ~2a subunit cDNA sequence (NCBI Reference Sequence: NM_001082396.l) 

was synthesised by DNA2.0 Inc. (Menlo Park, CA, USA) and cloned into a pHUE vector (SacII 

at the 5' end and EcoRI at the 3 ' end) by Dr. Y amuna A. Karunasekara. 
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To ensure the sequences completely aligned with the reference sequences, all P subunit 

cDNA constructs were sequenced by the ACRF Biomolecular Resource Facility at John Curtin 

School of Medical Research, Australian National University on an ABI 3730 Sequencer 

(Applied Biosystems, USA). 

4.2.1.2 Synthesised peptides 

All synthesised peptides were obtained as described in section 2.1.2. 

4.2.2 Methods 

4.2.2.1 Peptide synthesis, purification and identification 

The Pia peptides synthesised in this chapter were synthesised and purified as described 

in section 2.2.1. 

4.2.2.2 Expression and purification of P1a,P1aLLW/A andP2asubunit 

Both Pia LLW/A subunit and Pia subunit were expressed and purified by Ms. Jean 

Cappello (Molecular Genetics Group, John Curtin School of Medical Research, Australian 

National University, Canberra, Australia). Pia subunit, Pia LLW/A subunit and P2a subunit were 

purified using the same procedure as described in section 2.2.3, with the exception that Pia 
LL W / A was dialysed in buffer containing with 10% glycerol, which was added as a pre-emptive 

measure to reduce potential protein stability issues. 

4.2.2.3 Preparation of SR vesicles 

Skeletal SR vesicles were obtained as described in section 2.2.2. 

4.2.2.4 Planar bilayer recordings of RyRJ 

Bilayer experiments were carried out and analysed as described in section 2.2.9. Prior to 

addition of peptide/subunit the cis and trans chambers consisted of: cis solution (20 mM CsCl, 

230 mM CsCH30 3S, 10 mM TES, 2 mM ATP and 10 µM free Ca2+) and trans solution (20 mM 

CsCl, 230 mM CsCH30 3S, 10 mM TES, 2 mM ATP and 1 mM CaCI. 

4.2.2.5 Affinity chromatography between p10 peptides and RyRJ 

Affinity chromatography assays were undertaken as described in Karunasekara et al. 

(2012). Notably, this method ·was used only for results described in this chapter and was not 

addressed in the general methods in Chapter Two. 

4.2.2.5.1 Pre-incubation of skeletal SR vesicles with streptavidin agarose 

Streptavidin-agarose was washed by sequentially sedimenting 100 µI of resin at 500 x g 

for 5 mins (SIGMA 1-14 Microfuge: Osterode am Harz, Germany), removing supernatant and 

resuspending in 1 ml of binding buffer (150 mM NaCl , 20 mM 3-[N-morpholino]propane-
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sulfolic acid, 1 mM BAPTA and~ 1 mM CaCh was added in amounts determined using a Ca2
+ 

electrode to obtain 10 µM free Ca2+, pH adjusted to 7.4 using 6 M HCl) This wash step was 

repeated three times. 

Prior to use in the assay, native RyRl within SR vesicles were pre-incubated with 

streptavidin agarose to eliminate any non-specific binding of RyRl to streptavidin agarose in 

the assay. This involved addition of 650 µl of 0.24 mg/ml skeletal SR vesicle containing 

solution in binding buffer to the resin in the final resuspension step of the wash process. The 

mixture was incubated with rotation for 16 h at 4 °C. The resin was spun down at 500 x g for 5 

min at 4 °C and the supernatant was retained as pre-cleared SR vesicles for use in the 

subsequent affinity chromatography assay. 

4.2.2.5.2 Affinity chromatography 

One hundred µI of washed resin (section 4.2.2.5.1) was resuspended in 300 µl of either 

1 mg/ml biotinylated ~I a V 490-M524 peptide solution, 1 mg/ml biotinylated ~Ia V 490-M524 

peptide solution or deionised water. The agarose-peptide mix was incubated with rotation for 3 

h at room temperature. The resin was washed by centrifugation (SIGMA 1-14 Microfuge) at 

500 x g for 5 min, the supernatant was removed and the pellet was resuspended in 1 ml of 

binding buffer. This wash step was repeated four times so as to fully remove any unbound 

peptide. The resin was sedimented by centrifugation at 500 x g for 5 min, and the supernatant 

was replaced with 200 µl of pre-cleared skeletal SR vesicles. The mixture was incubated with 

rotation at 4 °C for 48-72 h. Unbound protein was removed by five repeats of the wash step. 

The washed pellet (streptavidin agarose complex) was added to sample buffer (20 mM TRIS­

HCl, 40% glycerol, 8% sodium dodecyl sulfate (SDS), 0.05 M EDTA, 0.588 M 

mercaptoethanol, and 0.08% bromophenyl blue , pH 6.8), and incubated at 60 °C for 10 min. 

The supernatant was run on an 8.5% acrylamide/bis SDS-PAGE (section 2.2.4). The proteins 

were transferred to a PVDF membrane in a transfer buffer (3 7 mM TRIS, 140 mM glycine and 

27% methanol) at 100 V for 5 h and 150 V at 1 h. The membrane was cut in half to allow 

separate detection of RyRl with anti-RyR antibody (34C) and biotinylated peptide with 

Precision Protein™ StrepTactin-HRP conjugate proteins, as described in section 2.2.6.2. The 

protein bands were visualised using ECL (section 2.2.6.3) and density was quantified using the 

Quantity One 1-D Analysis Software (BIO-RAD, Hercules, CA, USA). 
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4.3 Results 

4.3.1 Characterising the effect of the Pia C-terminal residues A474-A508 on 
native RyRl activity 

To assess the effect of the heptad repeat motif on the modulation of RyRl activity by 

the Pra C-terminus, a peptide corresponding to C-terminal residues A474-A508 (Pra A474-A508 

peptide, encasing both the heptad repeat and a-helical region) was tested in lipid bilayer 

experiments. The cytoplasmic side of RyRl was exposed to the peptide by its addition to the cis 

chamber in the presence of 10 µM Ca2
+ (cis) , 2 mM ATP (cis) and 1 mM Ca2

+ (trans). These 

conditions were chosen as they enable determination of channel identity and orientation in the 

bilayer, as described in Chapter Three. Furthermore, an earlier report indicated that Pra V 490-

M524 peptide is only functionally effective in cis Ca2
+ concentrations that reflect cytoplasmic 

levels in a muscle fibre undergoing EC coupling. Hence, this includes cis 1 and 10 µM [Ca2+], 

but not 100 nM [Ca2+] (Rebbeck et al., 2011). It is worth noting that with cis 1 or 10 µM, the 

functional effects of Pia V 490-M524 peptide and P,a subunit on native RyRl in lipid bilayer 

experiments are the same in the presence and absence of 2 mM ATP (Rebbeck et al. , 2011 ). 

Channel activity was recorded for 15 to 20 min following addition of either 10 or 100 

nM peptide. These experiments were repeated with equivalent volumes of deionised water 

rather than peptide solution, so as to test the functional influence of the solution that the peptide 

was dissolved in. The peptide concentrations were chosen on the basis of 1) 10 nM is the 

minimal concentration for maximal effect of Pia subunit and Pia V 490-M524 peptide on RyRl 

activity in lipid bilayer experiments (Rebbeck et al., 2011) and, 2) 100 nM was used to assess 

any changes in concentration dependence between 10 nM and 100 nM. Depending on bilayer 

stability over time, channel activity was recorded with either one addition of peptide or 

sequential addition of peptide ( e.g. addition of 10 nM peptide that was increased to 100 nM 

after 15-20 min). Notably, the functional effect of Pra subunit or V490-M524 peptide was 

identical between 10 and 100 nM Wra] when tested with individual, rather than sequential, 

addition of subunit/peptide to a channel experiment (Rebbeck et al. , 2011). This reflects the 

observed outcome with sequential addition (shown here). 

The records of single channel activity at +40 m V (Figure 4.4A) and -40 m V (Figure 

4.4B) show typical channel gating before (control) and after addition of 100 nM Pr a A474-A508 

peptide. These records clearly demonstrate that 100 nM Pra A474-A508 peptide increased 

channel activity at both +40 and -40 m V by similar amounts . 
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Figure 4. 4 Similar modulatory action of ~l a V490-M524 and P1a A474-A508 peptide on RyRl activity in lipid 

bilayers. 

A and B) Three second records of single channel activity at +40 m V (left) or -40 m V (right) that are representative 

channel traces before (top traces: control, cis 10 µM [Ca27 and 2 mM ATP) and after cis addition 100 nM P ia A474-

A508 peptide (bottom traces). o ·pen probability (P0 ) is shown in the right top comer. Channel openings are upward 

(A) or do'wnward (B) current inflections from · zero current (c, continuous line) to maximal conductance (o, 

discontinuous line). C) A timeline of channel -activity following sequential cis addition of 2 mM ATP (pink circle), 

10 nM Pia A474-A508 (green diamonds), 100 nM ~ la A474-A508 (b lue triangles) and 40 µM ruthenium red (light 

green square). The channel activity over 10 s was taken from -30 s intervals of activity at +40 and -40 mV. For 

each condition, there is a mean (contin~ous line) ± SEM (discontinuous line) of (he scatter plot. *Significantly 

different from prior condition, determined by Student's t-test, p < 0.05. D) Average relative P 0 (log10 rel P0 ) is the 

average of the differences between the logarithm of P0 value measured after (log1oP0p) and before (control: log1oP0 c) 

peptide addition for each channel recording. Error bars indicate +SEM. P0 was measured from - 90 s traces ofRyRl 

activity, n = 5-7 channel traces. Control P0 values in Table 4.1. The mean ± SEM log10 rel P0 values for deionised 

water additions are shown as continuous pink line and discontinuous pink line, respectively *Significantly different 

from control activity set at zero, determined by paired Student's t-test, p < 0.05 . #Significantly different from IO nM 

Pia V 490-M524 peptide, determined by ANOV A, p < 0.05. 
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Table 4. 1 Mean control parameters for channels used in analysis of P, . Y490-M524 and P, . A474-A508 peptides. 

Open probability (P0 ) , mean open time (T0 ) , mean closed time (Tc) and open frequency (F0 ) mean ± SEM and number 
(n) of observations for the data presented in Figure 4.4, Figure 4.5, Figure 4. 7, Figure 4.8, Figure 4.10, Figure 4.11 , 
Figure 4. I 5 and Figure 4.16. 

Channel Control for cis [peptide] Voltage Mean 
±SEM parameter Pia peptide (nM) (mV) parameter n 

+40 0.027 0.008 6 
10 

-40 0.070 0.035 5 
V490-M524 

+40 0.109 0.014 5 
100 

-40 0.101 0.031 7 
Pa 

+40 0.075 0.030 6 
10 

-40 0.063 0.027 7 
A474-A508 

+40 0.151 0.047 6 
100 

-40 0.088 0.059 6 

+40 0.920 0.089 3 
10 

-40 2.730 1.506 4 
V490-M524 

+40 2.735 0.642 3 
100 

-40 1.772 0.316 5 
T0 (ms) 

+40 2.582 0.485 5 
10 

-40 4.034 1.262 5 
A474-A508 

+40 2.155 0.728 4 
100 

-40 3.420 1.362 5 

+40 96.23 37.30 4 
10 

-40 119.1 97.15 6 
V490-M524 

+40 34.91 9.587 5 
100 

-40 52.87 22.88 5 
Tc (ms) 

+40 39.66 9.854 5 
10 

-40 97.79 45.70 5 
A474-A508 

+40 25.99 10.35 5 
100 

-40 58.31 31.51 4 

+40 7.960 3.643 3 
10 

-40 36.99 6.989 5 
V490-M524 

+40 38.04 15.59 3 
100 

F
0 

(s- 1
) 

-40 33.11 11.81 5 

+40 29.78 7.162 5 
10 

-40 30.36 13.42 5 
A474-A508 

+40 54.15 15.46 5 
100 

-40 I I .22 6.244 3 
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To examine potential time dependent effects and gauge the stability of the interaction 

between ~I a peptides/subunits with RyRl over time, channel activity was monitored for 15-20 

min. A timeline of channel activity before and after addition of 10, and then 100 nM, ~I a A474-

A508 shows that activity fluctuates between the 30-60 s time points that were analysed. 

However, following peptide addition the channel activity was consistently above control 

activity. The average 2-fold increase in P0 typically occurred within the first two minutes after 

peptide addition, which is also visible in the timeline (Figure 4.4C). The enhanced channel 

activity did not significantly vary after increasing the peptide concentration to 100 nM (p = 

0.12). Notably, these observations are similar to the timelines of RyRl activity following 

independent cis addition of 10 and 100 nM ~l a V490-M524 (Rebbeck et al., 2011), with the 

exception that channel activity following addition of 100 nM ~la V 490-M524 did not visibly 

vary to the extent that it does following addition of 100 nM ~l a A474-A508 (Figure 4.4C). 

Addition of water, in volumes equivalent to the peptide solution volumes added, did not alter 

RyRl activity at +40 mV (p = 0.96) and -40 mV (p = 0.24) (Figure 4.4D). 

Due to heterogeneity of channel activity between channel experiments (Section 3 .3 .2; 

Table 4.1), the effect of ~I a peptides on RyRl activity (P0 ) was assessed by calculating relative 

P 0 , as the difference between logarithmic channel activity before (Log10 P 0c) and after addition 

of peptide (Log10 P08). Averaged, addition of 10 nM Pia A474-A508 peptide increased relative 

P0 by 2.0- and 1.9-fold at +40 mV (p = 0.003) and -40 mV (p = 0.001), respectively, relative to 

control (Figure 4.4D). This was similar to the effect of 100 nM Pia A474-A508 peptide 

addition, which increased relative P0 by 2.4-fold (p < 0.001) at both +40 and -40 mV (Figure 

4.4D). Thus, the increase in relative P 0 induced by addition of P1a }\474-A508 peptide was the 

same with concentrations of 10 nM, 100 nM and voltage, which is similar to the action of ~I a 

V490-M524 (Figure 4.4D) (Rebbeck et al., 2011). However, despite the 2-fold increase in 

relative P0 , the action of 10 nM Pia A474-A508_ peptide was marginally lower (p = 0.01) at -40 

m V relative to the action of 10 nM Pia V 490-M524 peptide. 

The effect of Pia peptides on RyRl gating was assessed by measuring single channel 

mean operi times (T0 ) , mean closed times (Tc) and open frequency (F0 ). The values for these 

parameters varied between channel records, which has been reported by other studies using 

skeletal SR vesicles ( e.g. Laver et al. · (1995), Copello et al. (1997), Laver et al. (2001 )) . 

Consequently, the effects of the Pia peptide/subunit on single channel gating parameters were 

measured relative to control for each channel record, as with P 0 • Addition of Pia A474-A508 did 

not significantly (p = 0.69-0 .92) alter the average relative T0 of single channels (Figure 4.SA). 

Whereas, average relative Tc values were decreased (p = 0.001-0.015) by 2.2- to 2.5-fold 

(Figure 4.SB) and average relative F0 values were increased (p = 0.002-0.023) by 2- to 2.1-fold 

(Figure 4.SC) with both 10 and 100 nM peptide additions and at +40 and -40 m V. 
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Figure 4. 5 The effect of Pi a V490-M524 and Pia A474-A508 peptides on single channel gating parameters in lipid 
bialyers . 

The average mean open time (log 10 rel Ta; A), mean closed time (log 10 rel Tc; B) and open frequency (log 10 rel Fa; C) 
was calculated in the same way as the log 10 rel Pa (Figure 4.4) from ~90 s of single channel activity at either +40 m V 
(left) or -40 m V (right). Error bars indicate + or - SEM. Contro l values shown in Table 4.1, n = 3-6 channel traces. 
*Significantly different from control activity set at zero, determined using a paired Student's t-test, p < 0.05 . 
#Significant difference between Pia V490-M524 and Pia A474-A508 peptide, determined by ANOVA, p < 0.05 . 

Collectively, these single channel parameter changes suggest that P,a A474-A508 peptide alters 

relative P0 by decreasing closed times between channel openings and, increasing the frequency 

of single channel openings, but not the average channel open duration. In contrast, 10 and 100 

nM P,a V490-M524 peptide (Figure 4.5; Rebbeck et al. (2011)) and P,a subunit increased 

relative T0 in conjunction with decreasing relative Tc and increasing relative F0 (section 4.3.7; 

Rebbeck et al. (2011)). Indeed, the effect of 10 nM P,a V490-M524 on single channel mean 

open time at -40 mV was signficantly greater (p = 0.027) than 10 nM Pia A474-A508. This may 
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account for the reduced action of 10 nM Pia A474-A508 on relative P0 in comparison to the 

action of 10 nM Pia V 490-M524 peptide. 

The single channel mean open and closed times were further dissected by measuring the 

distribution of open and closed dwell-times to yield open ('r0 ) and closed (-re) time constants. 

Earlier reports have shown that the time constants and the fraction of events falling into each 

constant can also vary between channel records of the same condition (e.g. Laver et al. (1995), 

Copello et al. (1997)). To reduce the potential variability, the dwell-time distributions were 

calculated from channel records with similar control activity (typically P0 values between 0.04-

0.15). From these channels, the open and closed times were collected into logged bins and the 

square root of the frequency of events was plotted against the logarithmic values of the open and 

closed times. The square root of the frequency of open events primarily fell into three different 

dwell-time components (time constants): ~ 1 ms (101) , ~ 10 ms (102) and ~ 100 ms (103). The 

closed events also fell into similar three time constants: ~ 1 ms ( -rc1), ~ 10 ms (-rci) and ~ 100 ms 

(-rd). The average fraction of events (probability) was plotted as a function of the average time 

constant before (control) or after addition of 10 or 100 nM peptide. Neither the time constants 

nor the probability of events in each time constant varied significantly (p = 0.12-0.99) between 

+40 and -40 m V values, the combined +40 and -40 m V values for each condition were 

presented. 

Addition of either 10 or 100 nM Pia A474-A508 significantly shifted a fraction of 

events from the 1 01 to the 1 02 by 13.0 ± 5.4% (p = 0.049) or 18.6 ± 7.2% (p = 0.011) (Figure 

4.6A) respectively, relative to control. There was no significant change in the values of the time 

constants. Combined, these changes in distribution between time constants would result in an 

increase in relative T0 , as seen for Pi a V 490-M524 peptide (Figure 4.SB). However, though 

there is a change in the probability of events falling into 1 01 and 1 02 with the Pi a A474-A508 

peptide, the relative T0 was not altered, as mentioned above. Note that addition of Pi a V 490-

M524 peptide, not Pia A474-A508 peptide, significantly increased the 1 01 value, indicating an 

increase in the duration of the briefest channel openings. This likely explains the significant 

change in relative To by P1 a V490-M524 peptide, not Pia A474-A508 peptide. 

~oth, 10 and 100 nM Pi a A474-A508 significantly shifted a fraction of closed time 

events from the -rc3 value to the 'tci value by 24.0 ± 7.3% (p = 0.023) and 29.4 ± 8.5% (p = 

0.005), respectively, relative to control (Figure 4.6B). Moreover, addition of 1 0 or 100 nM Pia 

A474-A508 peptide also significantly decreased the -rc3 value from control of~ 160 ms to~ 102 

ms (p < 0.001) or ~111 ms (p = 0.009), respectively (Figure 4.6B). Combined, the increased 

fraction of brief closure events and reduced average duration of long closure events (-rc3) is 

responsible for the reduced relative Tc following addition of Pi a A474-A508 peptide (Figure 

4.5). The action of Pia A474-A508 peptide on the distribution of closed time constants was 

similar to the effect of Pi a V 490-M524 peptide, but for one minor difference. That is, addition of 
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Figure 4. 6 The effect of Pia V490-M524 and Pia A474-A508 peptides on the open and closed dwell-times and on 
the probability of events occurring within each open and closed dwell-time constant components . 

The open (10 , A) and closed (1c, B) time constants and the probability of events in each time constant component 
were calcu lated from ~ 90s of single channel activity, n = 6-9 channel traces . The individual open time constants 
(10 1, 102 and 103 ) and individual closed time constants (1c 1, 1c2 and 1c3) are indicated on the graphs in A and B, 
respectively. Error bars indicate ±SEM. *Significant difference between the probability of events in each time 
constant in control with 10 or 100 nM Pia A474-A508. #Significant difference between the probability of events 
in each time constant in control with 10 or 100 nM Pia V490-M524 peptide. •significant difference between 
dwell time constant with 10 and 100 nM Pia A474-A508. ~Significant difference between dwell time constant in 
control with IO or 100 nM Pia V 490-M524. *#~+ Significance determined by ANOV A, p < 0.05. 
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10 and 100 nM Pia V490-M524 peptide also decreased the duration of the 'tc2 events (p = 0.036 

and 0.0002, respectively) (Figure 4.6B). It is noteworthy that this difference was insufficient to 

contribute to the average relative Tc value, as the overall average effect of Pia A474-A508 and 

Pia V 490-M524 on relative Tc did not differ ( described above; Figure 4.SB). 

Typically, the dwell-time data reflects the mean open and closed times (Laver, 2001 ). 

However, this appears to apply more to the closed dwell-time distributions than open dwell-time 

distribution in the effect of Pia A474-A508 (Figure 4.6). The discrepancy between the Pia A474-

A508 peptides effects on relative T0 and open dwell-time distribution may be due to the large 

fraction of events falling into the briefest time constant (control probability of ~0.9 for -r01 = 

~ 1.5 ms; Figure 4.6A), which are within the realm of data inaccuracy caused by data filtering 

of 1000 Hz and 500 Hz for data recording and analysis, respectively. The result of this filtering 

is that channel openings are truncated if they are less than 2 ms and consequently the open times 

are artificially reduced. 

Overall, the results suggest that the Pia A474-A508 peptide has similar effects on RyRl 

gating properties to the P,a V 490-M524 peptide. This similarity is marginally reduced by the 

lack of action of Pia A474-A508 peptide on single channel mean open times. Regardless, these 

results highlight that an overlapping region (V 490-A508) between the tested peptides likely 

contains residues responsible for the modulatory action of the C-terminal residues on RyRl 

activity in lipid bilayers. As a consequence, two of the three heptad repeat residues (namely 

L478 and V485) are unlikely to contribute to the interaction between P,a and RyRl. 

4.3.2 The heptad repeat residues (L478, V 485 and V 492) do not impact the 
modulatory effect of A474-A508 on RyRl activity 

The role of the heptad repeat residues (Figure 4.3, blue residues) in modulating RyRl 

activity was assessed by substituting the residues with alanines (L478A, V 485A, V 492A) in the 

Pia A474-A508 peptide. The effect of this heptad repeat mutant peptide (Pia A474-A508 

LVV/A) on RyRl activity was assessed using the same experimental design used to assess the 

modulatory effect of P,a A474-A508 peptide. As shown in Figure 4.7, A and B, addition of 100 
. . 

nM Pia A474-A508 L VV/A peptide to the cis chamber increased single cham1el activity. Similar 

to Pia A_474-A508 (Figure 4.4C), 10 nM Pia A474-A508 LVV/A peptide increased channel 

activity and this was not altered by_ increasing Pia A474-A508 LVV/A peptide to 100 nM. 

Despite fluctuations in intrinsic channel activity over time, addition of 10 nM Pia A474-A508 

L VV/A peptide increased activity (Figure 4.7C), which did not vary _following further addition 

of Pia A474-A508 L VV/A peptide to 100 nM. On average, both 10 and 100 nM Pia A474-A508 

LVV/A increased relative P0 at +40 and -40 mV 2-fold (p = 0.001-0.02), similar to the effect of 

Pia A474-A508 peptide (Figure 4.7D). This strongly suggests that the heptad repeat residues 

have no impact on the overall action of Pia A474-A508 peptide on RyRI activity. 
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Figure 4. 7 Si milar modulatory action of Pia A474-A508 and Pia A474-A508 LYV/A peptides on RyR l acti vity in 
lipid bilayers. 

A and B) Three second records of single channel activity at +40 m V (left) or -40 m V (ri ght) that are representative 
channel traces before (top traces : contro l, cis 10 µM [Ca2J and 2 mM ATP) and after cis addition of 100 nM Pi a 
A474-A508 LVV/A peptide (bottom traces). Channel openings are upward (A) or downward (B) current inflections 
from zero current (c, continuous line) to maxi mal conductance (o, disconti nuous line) . Open probability (P0 ) is shown 
in the right top co rner. C) A timeline of channel activity fo llowing sequential cis addition of2 mM ATP (pink circle), 
10 nM Pia A474-A508 LVV/A (green diamonds), 100 nM Pia A474-A508 LYY/A (blue triangles) and 40 µM 
ruthenium red (light green square) . ·The channel activity over 10 s was taken fro m ~ 30 s intervals of activ ity at +40 
and -40 mV. For each condition, there is a mean (conti nuous line)± SEM (discontinuous line) of the scatter plot. * 
Significantly different from prior condition, p < 0.05. D) Average relative P0 (log 10 rel P0 ) was calculated in the same 
way as in Figure 4.4. Error bars indicate +SEM. P0 was measured from ~ 90 s traces of RyRI activity, n = 3-11 
channel traces. Contro l P0 values in Tables 4. I and 4.2. The mean ± SEM log10 rel P0 values for peptide buffer 
(water) additions are shown as continuous pink line and discontinuous pink line, respectively. The data for A474-
A508 peptide is a re-plot of the data shown in Fig. 4.4D. *Significantly different from control activity set at zero, 
determined using a paired Student's t-test, p < 0.05. No significant (ns) difference, determined by ANO YA, p > 0.05. 
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Table 4. 2 Mean control parameters for channels used in analysis of Pia A474A508 LVV/A peptide. 

Open probability (P0 ) , mean open time (T0 ) , mean closed time (Tc) and open frequency (F0 ) mean ± SEM and number 

(n) of observations for the data presented in Figure 4.7 and Figure 4.8. 

Channel [peptide] Voltage Mean 
±SEM 

parameter (nM) (mV) parameter 
n 

+40 0.032 0.008 7 
10 

-40 0.018 0.010 11 
Pa 

+40 0.072 0.017 3 
100 

-40 0.076 0.029 6 

+40 1.757 0.415 3 
10 

-40 3.320 1.374 5 
T0 (ms) 

+40 1.494 0.232 3 
100 

-40 1.315 0.194 4 

+40 102.6 78.29 5 
10 

-40 169.1 70.91 5 
Tc (ms) 

+40 75.46 35.34 3 
100 

-40 67.99 48.79 4 

+40 42.71 30.02 3 
10 

F0 (s-1
) 

-40 22.30 6.212 5 

+40 34.74 23.09 4 
100 

-40 46.33 21.89 4 

Analysis of the single channel gating parameters demonstrate that the Pia A474-A508 

L VV/A reduced relative Tc and increased relative F0 to similar levels as Pia A474-A508 at +40 

and -40 mV (Figure 4.8). Additionally, neither 10 nor 100 nM Pia A474-A508 LVV/A peptide 

significantly (p = 0.499 and 0.871 , respectively) altered the average relative T0 (Figure 4.8A) at 

+40 mV. In contrast, at -40 mV, 10 and 100 nM Pia A474-A508 LVV/A peptide significantly 

increased average relative T0 by 43% (p = 0.024) and 37% (p = 0.010), respectively (Figure 

4.8A). This increase is similar to the _85% (10 nM, p = 0.040) and 65% (100 nM, p < 0.001) 

increases in relative T0 observed by _addition of Pia V 490-M524 peptide, rather than the lack of a 

significant (p = 0.768 and 0.690, respective to 10 and 100 nM) alteration that was observed by 

the wild type Pia A474-A508 peptide (Figures, 4.SA and 4.8A). 

The open and closed dwell-time distributions did not significantly differ between +40 

and -40 mV for each condition (p = 0.474-0.912), and were combined for the same conditions. 

The 10 a_nd 100 nM Pia A474-A508 L VV/A peptide shifted a fractio~ of events from the -r01 to 

the 'ro2 by 16.1 ± 3.5% (p = 0.001) .and 17.4 ± ' 6.5% (p = 0.016), respectively (Figure 4.9A). 

This increase in the fraction of single channel openings falling into the longer open time 

constant ( 'ro2) likely explains the increase in average relative T0 at -40 m V following addition of 

P1a A4 7 4-A.508 L VV / A peptide, but does not explain the lack of effect on relative T0 at +40 m V 
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Figure 4. 8 The similar modulatory effect of Pia A474-A508 and Pia A474-A508 LVV/A peptides on single channel 
gating parameters in lipid bilayers. 

The average mean open time (log 10 rel T0 ; A), mean closed time (log 10 rel Tc; B) and open frequency (log10 rel F0 ; C) 
were calculated in the same way as the log 10 rel P0 (Figure 4.4) from -90 s of single channel activity at either +40 
mV (left) or -40 mV (right). Error bars indicate + or - SEM. Control values are given in Table 4.1 and 4.2, n = 3-5 
channel traces. The data for A474-A508 peptide is a re-plot of the data shown in Fig. 4.5. *Significantly di fferent 
from contro l activity set at zero, determined using a paired Student' s t-test. No significant (ns) di fference, determined 
by ANOV A, p < 0.05. 

(Figure 4.8A). Interestingly; the influence of ~I a A474-A508 LVV/A peptide on open dwell­

time di stributions was very similar to the effects of ~I a A474-A508 peptide (Figure 4.9A), with 

a similar redistribution of a fraction of the open events from the i-0 1 to the i-02, as mentioned in 

section 4.3 .1. The discrepancies between the influence of the peptides on open dwell-time 

distributions and relative T0 may again be due to data filtering, as mentioned previously (section 

4.3.1 ). 
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Figure 4. 9 The similar modulatory effect of P,a A474-A508 and P,a A474-A508 L VV/A peptides on the open and 

closed dwell-times and ·on the probability of _events occurring within each open and closed dwell-time constant 

components: 

The open (:r0 , A) and closed (,0, B) time constants and the probability of events in each time constant component 

were calcu,lated from ~90 s of single channel activity. n = 6-9 channel traces. The individual open time constants 

(,0 1, , 02 and , 03 ) and individual closed time constants ('rc-1 , t 02 and t 03) are indicated on the graphs in A and B, 

respectively. Error bars indicate ±SEM. The data for A474-A508 peptide is a re-plot of the data shown in Fig. 4.6. 

*Significant difference between the probability of events in each time constant in control with 10 or 100 nM p, . 
A474-A508. #Significant difference between the probability of events in each time constant in control with 10 and 

100 nM P,a A474-A508 LVV/A. •significant difference between dwell time -constant with 10 and 100 nM P,a 
A474-A508. *#+ Significance determined by ANOV A, p < 0.05. 
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Addition of 10 or 100 nM Pia A474-A508 LVV/A peptide resulted in a redistribution of 

a fraction of closed events from the TcJ to the Te i by 21.0 ± 1.8% (p = 0.002) and 26.0 ± 2.7% (p 

= 0.003 ), respectively (Figure 4.9B). This nicely agreed with the decrease in average relative Tc 

and is similar to the effect of Pia A4 74-A508 on closed dwell-time distribution (Figure 4.9B), 

with minor exception that Pia A474-A508 LVV/A peptide did not significantly reduce the 

duration of -rc3 values, unlike Pia A474-A508 (section 4.3.1) . Note that this difference was 

insufficient to alter the effects of these peptides on relative Tc (Figure 4.8B). 

In general, the results suggest that the heptad repeat residues do not influence the 

modulatory effect of Pia C-terminal residues on RyRl gating in lipid bilayers. However, the 

slight increase in relative T 0 by Pia A474-A508 LVV/A peptide, not P1a A474-A508 peptide, 

suggests that perhaps the heptad residues partially account for the differences between the 

effects of Pia A474-A508 peptide and Pia V 490-M524 peptide on relative T0 . 

4.3.3 The overlapping region, V 490-A508, is sufficient to replicate the effect of 
A474-A508 on RyRl activity 

Given the similar modulatory effects of Pia A474-A508 and Pia V490-M524 on RyRl 

activity and that the heptad repeat residues do not contribute to this modulatory effect, it was of 

interest to investigate the influence of the overlapping region of the C-terminal peptides on 

RyRl activity. To examine the functional effect of Pia V 490-A508 peptide, the protocol used for 

examining the Pia A4 74-A508 peptide was used. In addition, as a control for non-specific 

binding, the effect of a scrambled form of V 490-A508 (Pia V 490-A508 scm) on RyRl was also 

examined. As shown in Figure 4.10, A and B, 100 nM Pia V490-A508 peptide increased RyRl 

activity at +40 and -40 mV (Figure 4.10A), whereas Pia V490-A508 scm did not alter RyRl 

activity at either potential (Figure 4.10B). The increase in channel activity typically occurred 

within the first minute of adding Pia V 490-A508 peptide and increasing P,a V 490-A508 

concentration from 10 nM to 100 nM did not alter RyRl activity (p =0 .975), as shown in Figure 

4.lOC. Similar to the effect of P,a A474-A508 peptide, the RyRl activity following addition of 

Pia V490-A508 fluctuated above control levels (Figure 4.l0C). Both, 10 and 100 nM Pia V490-

A508 increased channel activity by 2-fold at +40 m V and -40 m V, to levels greater than activity 

before peptide addition (control; p :S 0.001), or after addition of Pia V490-A508 scm (p :S 0.001) 

(Figure 4.10D) . Importantly, the Pia V490-A508 scm peptide did not significantly (p = 0.184-

0.745) alter RyRl activity, suggesting that the effect of Pia V490-A508 was sequence specific. 

The effect of Pia V 490-A508 peptide on RyRl activity more closely resembled the effect of Pia 
A474-A508 peptide rather than Pia V490-M524 peptide. This was particularly evident at -40 

m V, whereby the modulatory effect of 10 nM Pia V 490-M524 peptide was significantly greater 

(p = 0.016 and 0.004) than 10 nM Pia V490-A508 peptide and 10 nM Pia A474-A508 peptide 

(Figure 4.lOD). 
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Figur.e 4. 10 ?'he similar the effect of Pia A474-A508 and V490-A508 peptides on RyRl activity in lipid bilayers. 

A and B) Three second records of single channel activity at +40 (top) or -40 mV (bottom) that display 

representative channel activity before (upper traces: control) and after cis addition of I 00 nM Pia V 490-A508 (lower 

traces) peptide (A) and Pia V490-A508 scrambled peptide (B). Open probability (P0 ) is shown in the right top 

corner. C) A timeline of channel activity following sequential cis addition of 2 mM ATP (pink circle), 10 nM Pia 
V490-A508 .(green diamonds), 100 nM Pia V490-A508 (blue triangles) and 40 µM ruthenium red (light green 

square). The channel activity over JO s was taken from ~30 s intervals of activity at +40 and -40 mV. For each 

condition, there is a mean ( continuous line) ± SEM ( discontinuous line) of the scatter plot. *Significantly different 

from prior condition, determined by unpaired Student's t-test, p > 0.05 . D) Average relative P0 (log 10 rel P0 ) was 

calculated in the same way as above (Figure 4.4). ,Error liars indicate + or - SEM. P0 was measured from - 90 s 

traces ofRyRl activity, n = 3-8 channel traces. Control P 0 values in Tables 4. land 4.3 . The mean ± SEM log10 rel 

P0 values for peptide buffer (water) additions are shown as continuous pink line and discontinuous pink line, 

respectively. The data for A474-A508 and V490-M524 peptides are a re-plot of the data shown in Figure. 4.4D. 

*Significantly different from control activity set at zero, determined using a paired Student's t-test, p < 0.05. 

#Significantly·different from Pia V490-M524 peptide. •significantly different Pia V490-A508 scm from Pia V490-

A508. #+Significance determined by ANOV A, o < 0.05. 
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Table 4. 3 Mean control parameters fo r channels used in analysis of Pia V490-A508 and Pia V490-A508 scm 
peptides. 

Open probabi li ty (P0 ) , mean open time (T0 ) , mean closed time (Tc) and open freq uency (F0 ) mean ± SEM and number 
(n) of observations fo r data presented in F igure 4.10 and Figure 4.11 . 

Channel Control for cis [peptide) 
Voltage (mV) Mean 

±SEM parameter 13 ta peptide (nM) parameter 
n 

+40 0.056 0.021 8 
10 

-40 0.103 0.038 6 
V490-A508 

+40 0.053 0.025 6 
100 

-40 0.061 0.022 4 
Pa 

+40 0.077 0.033 8 
10 

V490-A508 scm -40 0.130 0.076 7 
(scrambled) +40 0.019 0.003 4 

100 
-40 0.162 0.113 3 

+40 2.475 0.623 8 
10 

-40 2.443 0.405 4 
V490-A508 

+40 1.944 0.382 5 
100 

-40 2.443 0.405 4 
Ta (ms) 

+40 1.933 0.353 7 
10 

V 490-A508 scm -40 3.024 1.495 7 
(scrambled) +40 1.450 0.308 3 

100 
-40 1.043 0.099 3 

+40 65 .01 13 .12 8 
10 

-40 58.44 23.38 4 
V490-A508 

+40 68.12 14.27 6 
100 

-40 70.92 27.96 3 
Tc (ms) 

+40 49.62 12.96 7 
10 

V 490-A508 scm -40 78.13 17.69 7 
(scrambled) +40 168.9 84.92 4 

100 
-40 105 .9 34.49 3 

+40 21.08 5.844 8 
10 

-40 25.29 8.365 4 
V490-A508 

+40 16.67 2.950 6 
100 

Fa (s-1
) 

-40 19.58 8.648 3 

+40 31.75 10.29 7 
10 

V490-A508 scm -40 15.03 2.476 7 
(scrambled) +40 12.09 1.531 3 

100 
-40 11 .51 3.604 3 
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The effects of Pia V 490-A508 peptide on gating parameters were also very similar to 

those observed by Pia A474-A508 peptide. On average, addition of both 10 and 100 nM Pia 

V 490-A508 peptide significantly decreased relative Tc and increased relative F0 , whereas 

relative T0 was not significantly altered (Figure 4.11B). At 10 nM, the Pia V 490-A508 peptide 

did not decrease relative Tc values at -40 m V to the same level as 10 nM Pia V 490-M524 

(Figure 4.11B), which likely contributed to the significant differences between the effects of 

these peptides on relative PO at -40 m V, as discussed above. 
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Figure 4. 11 The similar modulatory effect of Pia V490-A508 and Pia A474-A508 peptides on single channel gating 

parameters in lipid bilayers. 

The average mean open time (log10 rel T0 ; A), mean closed time (log10 rel T0 ; B) and open frequency (log10 rel F0 ; C) 

was calculated in the same way as the log10 rel PO (Figure 4.4) from -90 s of single channel activity at either +40 m V 

(left) or -40 m V (right). Error bars ind icate + or - SEM. Control values shown in Table 4.1 and Table 4.3 n = 3-8 

channel traces. The data for A474-A508 and V490-M524 peptides are a re-plot of the data shown in Figure. 4.5. 

*Significantly different from control activity set at zero, determined using a paired Student t-test, p < 0.05 . # 

Significantly different from Pia V 490-M524 peptide, determined by ANOV A, p < 0.05 . 
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Figure 4. 12 The modulatory effect of ~Ia V 490-A508 peptides on the open and closed dwell-times and on 
the probability of events occurring within each open and closed dwell-time constant components. 

The open (10 , A) and closed (Tc, B) time constants and the probability of events in each time constant 
component were calculated from -90 s of single channel activity. n = 8-12 channel traces. The individual 
open time constants (10 1, 1 02 and 1 03 ) and individual closed time constants (Tei , Tcz and Tc3) are indicated on 
the graphs in A and B, respectively. Error bars indicate ±SEM. *Significant difference between the 
probability of events in each time constant in control with 10 and 100 nM ~I a A474-A508, determined by 
ANOV A, p < 0.05 
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The dwell-time distributions for +40 and -40 m V were not significantly different (p = 

0.267-0.930) and as a result, the data was combined. As shown in Figure 4.12A, 10 and 100 nM 

Pia V490-A508 peptide shifted a fraction of events from the T0 i to the -r02 by 7.0 ± 3.6% (p 

=0.013) and 6.3 ± 2.4% (p =0.026), respectively. The increase in the fraction of channel 

openings falling into the -r0 2 group did not appear to be sufficient to alter the relative T0 values 

for this peptide (Figure 4.11B). Again this could also be attributed to the data filtering, as 

discussed in section 4.3 .1. 

In terms of the closed time constant distributions, 10 and 100 nM Pia V490-A508 

peptide shifted a fraction of closed events from the -rc3 to the Tei by 13 .2 ± 2.3% (p =0.012) and 

11.2 ± 5.3% (p =0.036), respectively (Figure 4.12B). This indicates that addition of Pia V 490-

A508 peptide increases the frequency of briefer channel closures, which likely accounts for the 

decrease in relative Tc following addition of this peptide. 

For the most part, the Pia V 490-A508 peptide modulates RyRl gating parameters in a 

similar fashion as Pia A474-A508 and Pia V490-M524 peptides, although the effect is more akin 

with the actions of Pia A474-A508 peptide. Overall , the results suggest that the Pia residues 

responsible for the interaction with RyRl reside within the V 490-A508 region. 

4.3.4 The overlapping region, Pia V 490-A508, potentiates voltage-induced 
calcium release in adult skeletal myofibres 

Microinjection of the full-length Pia subunit in adult mouse skeletal myofibres has been 

shown to increase the amplitude of field stimulation-induced Ca2
+ transients, which is lost if a 

truncated Pia subunit (missing 40 C-tail residues) is injected in place of the Pia subunit (Garcia et 

al. , 2005). Given these findings and that Pia A474-A508 and V490-M524 peptides similarly 

increase RyRl activity (section 4.3.1), the laboratory led by Prof. Martin Schneider 

(Department of Biochemistry and Molecular Biology, University of Maryland School of 

Medicine, Maryland, USA) examined the action of the overlapping peptide (P ia V490-A508) on 

voltage-induced SR Ca2
+ transients and membrane Ca2

+ current in adult mouse skeletal 

myofibres following intracellular dialysis with the peptide. Note that the results in this section 
. . 

are presented with permission from Prof. Martin Schneider. All experiments were undertaken 

and figures were constructed by MF Schneider' s laboratory: Prof. Martin Schneider, Dr. Erick 

Hernandez-Ochoa and Dr. Rotimi Olojo. 

Skeletal muscle fibres were from jl.exor digitorum brevis muscles of six- to seven­

week-old mice in accord with (Liu et al. , 1997, Olojo et al., 2011). The fibres were dialysed via 

pipette with the fluo-4 and either Pia V 490-A508 peptide, Pia scrambled (V 490-A508 sequence 

scrambled) peptide or no peptide ( control). Following the 20 minute dialysis, these fibres were 

subjected to simultaneous high-speed fluo-4 confocal measurements and voltage-clamp 
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experiments to measure the voltage-induced Ca2
+ release flux and DHPR Ca2

+ current (Prosser 

et al. , 2009, Olojo et al. , 2011). 

The effect of dialysing fibres with 25 nM Pi a V 490-A508 peptide or 25 nM Pia 

scrambled peptide on voltage-induced SR Ca2
+ release was assessed from high-speed fluo-4 

confocal measurements by plotting the peak Ca2
+ rate as a function of voltage. MF Schneider' s 

laboratory found that intracellular dialysis with 25 nM Pi a V 490-A508 peptide enhanced the 

amplitude of the peak Ca2
+ release at 20 mV, as shown in Figure 4.13A. With the data fit by a 

Boltzmann equation, the maximum release rate (Rmax) was significantly increased 49% (p < 

0.05) in fibres dialysed with 25 nM Pi a V 490-A508 peptide relative to the control fibre Rmax 

value (Figure 4.13Ci). The accompanied Boltzmann-derived parameters, V1131r (potential when 

R = half Rmax) and k (inverse measure of R-V slope), were not altered by fibre dialysis with 25 

nM Pi a V 490-A508 peptide (Figure 4.13Ci). This indicates that the voltage-dependence of SR 

Ca2
+ release initiation was not affected. It is important to note that dialysis with Pia scrambled 

peptide did not significantly (p > 0.05) alter Rmax in fibres. Furthermore, neither V half nor k 

values were altered (p > 0.05) in fibres dialysed with Pia scrambled peptide (Figure 4.13Ci). 

Upon examining the influence of the Pia V490-A508 peptides on voltage-induced 

membrane Ca2
+ currents through DHPR, the P,a V 490-A508, not its scrambled form, potentiated 

maximal voltage-induced DHPR Ca2
+ currents, when DHPR current was plotted as a function of 

voltage (Figure 4.13B). The least squares fits of data to a modified Boltzmann-Ohm equation 

(as described in Olojo et al. (2011)), indicated that the maximum conductance (G111mJ was 

enhanced by 24% (p < 0.05) when compared to fibres that were dialysed with Pi a scrambled 

peptide. This enhancement was found to be voltage independent as the other Boltzmann 

parameters, Via!f and k, remained unaltered following dialysis with P, a V 490-A508 peptide 

(Figure 4.13Cii) compared to control fibres. 

Overall, the Pi a V 490-A508 peptide, not its scrambled form, increased voltage-induced 

RyRl Ca2
+ release and DHPR Ca2

+ current in in adult skeletal myofibres. Importantly, the effect 

of Pi a V 490-A508 peptide on skeletal EC coupling replicates the effects observed by 

microinjecting full-length Pi a subunit into adult skeletal myofibres, as found by Garcia et al. 

(2005). 
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Figure 4. 13 Intracellular dialysis of~ 1a V490-A508 peptide, not its scrambled fo rm, increases voltage-induced SR Caz+ release and membrane Caz+ current through DHPR. 

Flexor digitorum brevis fi bres were dialysed with either ~l a 490-508 peptide, ~la scrambled (V490-508 sequence scrambled) or no peptide (control). A) Average fi bre peak Caz+ release (R) data 

plotted as a fu nction of vo ltage. The data was fit (continuous line) with a Boltzmann fu nction. Error bars indicate ±SEM. * Significantly different from Caz+ release in fi bres di alysed with ~l a 

scrambled peptide, determined by Student' s t-test, p < 0.05. B) Average data of membrane Caz+ current in fi bres as a function of vo ltage. The continuous line between data points represents the 

least squares fit of the data with a modified Boltzmann-Ohm equation (Olojo et al., 2011 ). C) The parameters fro m fitt ing the i), R-Y data to a single Boltzmann fu nction, and ii), I-V data to a 

modified Boltzmann-Ohm fu nction. i) The mean ± SEM fo r the Boltzmann parameters, including: maximum release rate (Rmax), the potential when R=0. 5 Rmax (Yhair) and slope factor (k). ii ) the 

mean ± SEM fo r the modified Boltzmann-Ohm parameters, including: maximum conductance (GmaJ, Yhalf, k and reversal potential (Y,ev)- * Significant difference from the contro l parameter, 

determined by Student' s t-test, p < 0.05. All experiments undertaken by Drs. E.O. Hernandez-Ochoa and R.O. Olojo (MF Schneider' s Laboratory, Department of Biochemistry and Molecular 

Biology, University of Maryland School of Medicine, Maryland, US) and the fi gures were kindly provided by Prof. M. F . Schneid er. 
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4.3.5 The hydrophobic surface residues (L496, LS00 and W503) are important 
for the physical interaction between the ~Ia C-terminal residues and RyRl 

An obvious binding site within the overlapping region, Bia V 490-A508, is the 

hydrophobic surface (composed of residues L496, L500 and W503) located along one side of a 

nascent a-helix that most of this region likely adopts. To investigate whether these residues 

influence the physical interaction between RyRl and Bia V 490-M524 peptide, the hydrophobic 

surface residues were substituted with alanines (L496A, L500A and W503A) and the ability of 

this peptide (B ia V490-M524 LLW/A) to associate with RyRl in SR vesicles was tested using 

biotin-streptavidin affinity chromatography assays. This assay involved binding the biotinylated 

peptide (either Bia V490-M524, Bia V490-M524 LLW/A or deionised water) to agarose using 

streptavidin covered resin. Then skeletal SR vesicles were incubated with the peptide-bound 

resin and the level of RyRl in SR vesicles bound to resin by interaction with the peptide was 

assessed using analytical gel electrophoresis and immuno-blotting. 

The bands at ~560 kDa and ~4 kDa were indicative of RyRl and biotinylated peptide, 

respectively (Figure 4.14A, lanes 1-3). The ability of Bia V490-M524 peptide to retain RyRl 

from skeletal SR vesicles and the inability of streptavidin to retain RyRl agrees with Rebbeck et 

al. (2011) (Figure 4.14A, lanes 4-5). Although level of peptides being retained by streptavidin 

agarose is similar, the ability of the Bia V490-M524 LLW/A peptide to retain RyRl is obviously 

lower than that retained by Bia V 490-M524 peptide (Figure 4.14A, lanes 6-7). On average, the 

level of RyRl retained by Bia V 490-M524 LL W/ A peptide was significantly reduced to 15 .2 ± 

7.1 % (p = 0.026) relative to Bia V 490-M524 peptide (Figure 4.14B). These results suggest that 

the hydrophobic surface residues are important for the physical interaction between RyRl and 

Bia V490-M524. However, given that some RyRl associated with Bia V490-M524 LLW/A 

peptide, other residues in the Bia V 490-M524 may contribute to physical interaction with RyRl. 

It is noteworthy that this small amount of RyRl associated with Bia V490-M524 LLW/A 

peptide is unlikely to be non-specific, particularly since Rebbeck et al. (2011) demonstrated that 

a scrambled form of Bi a V490-M524 peptide did not retain any detectable levels of RyRl using 

this assay. 
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Figure 4. 14 Binding of P1aV490-M524 and Pia V490-M524 LLW/A peptides to native RyRl. 

A) Western blot displaying banding indicative of RyRI ( ~560 kDa) and biotinylated peptide ( ~4 kDa), as 

detected using 34C and StrepTactin, respectively. Association between RyRl with either wild type Pia V490-

M524 peptide (lane 5) or hydrophobic surface mutant Pia V 490-M524 LL W/ A (lane 6) by virtue of streptavidin 

agarose "pull down" of biotinylated peptides. Non-specific binding of Streptavidin agarose was controlled by 

loading SR vesicle samples retained to streptavidin agarose in lane 4. As positive controls for immuno-blotting: 

SR ves_icles, biotin-P 1.V490-M524 and Pi a V490-M524 LLW/A were loaded in lanes I, 2 and 3, respectively. B) 

Averages ofRyRI band density relative to peptide band density, n = 4. Error bars indicate + SEM. *Significantly 

different_ from P1aV490-M524, determined by Student's t-test, p < 0.05 
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4.3.6 The hydrophobic surface residues are important for ~Ia C-terminal 
modulation of RyRl activity 

The affinity chromatography results (Figure 4.14) indicate that the hydrophobic surface 

residues are important for physical interaction between the Pia V 490-M524 peptide and RyRl. 

However, a small fraction (~15%) ofRyRl was bound to the Pia V490-M524 LLW/A peptide, 

which may be sufficient for a functional interaction. This may be the case if the peptide is 2: 6.6 

nM, because the functional action of Pia V 490-M524 peptide on RyRl is significant to levels as 

low as 1 nM in lipid bilayer experiments (Rebbeck et al., 2011 ). 

To investigate the influence of the hydrophobic surface residues, together and 

individually, on the functional interaction between Pia and RyRl, the effect of Pia V490-M524 

LLW/A and individual mutants (Pia V490-M524 L496A, P1a V490-M524 L500A and Pia V490-

M524 W503A) on RyRl gating characteristics was tested in lipid bilayer experiments. Each 

peptide was added to the cis chamber and channel activity was recorded for 15-20 min using the 

same conditions used for Pi a A474-A508 peptide (section 4.3.1). As illustrated in Figure 15, A 

and B, cis addition of 100 nM ~l a V490-M524 LLW/A peptide did not appear to alter channel 

activity. Furthermore, despite intrinsic channel variability, the average channel activity does not 

significantly differ (p = 0.743 and 0.701 , respective to 10 and 100 nM) over time (Figure lSC). 

Neither 10 nor 100 nM Pia V490-M524 LLW/A peptide significantly altered RyRl relative P0 at 

+40 mV (p = 0.862 and 0.168, respectively) or -40 mV (p = 0.201 and 0.699, respectively) 

(Figure 15D). In addition, relative P0 in the presence of P,a V490-M524 LLW/A peptide was 

significantly lower (p :S 0.004) than that with Pia V 490-M524 peptide. 

Consistent with the lack of effect on relative P 0 , the channel gating parameters were not 

altered (p = 0.063-0.979) by addition of P,a V490-M524 LLW/A peptide (Figure 4.16) at +40 

or -40 mV. Together, all results with P,a V490-M524 LLW/A indicate that the hydrophobic 

surface residues are essential for the functional interaction between P,a V 490-M524 peptide and 

RyRl in lipid bilayers. Intriguingly, the effects of the individual mutant peptides on RyRl 

activity and gating parameters depend on the membrane potential. At +40 m V, neither 10 nor 

100 nM of the individual mutants altered (p = 0.205-0.978) relative P0 or gating parameters, 

which paralleled the effect of P,a V490-M524 LLW/A peptide (Figure, 4.15D and 4.16). 

Indeed, the only difference at +40 mV was the effect of 10 nM P, a V490-M524 W503A on 

relative Tc, which was significantly (p = 0.048) greater than Pia V490-M524 LLW/A peptide, 

but notably not significantly (p = 0.567) different from control and significantly lower than P,a 
V490-M524 peptide (p = 0.013) (Figure 4.16A). At -40 mV, both 10 and 100 nM of the 

individual mutants increased relative P0 values significantly (p = 0.002-0.022) by 1.8-2.3-fold, 

which was also significantly (p = 0.005-0.044) greater than relative P0 in the presence of P,a 
V 490-M524 LL W/ A peptide (Figure 4.15D) . Consistently, the individual mutants also 

significantly (p = 0.006-0 .029) increased relative T0 by 1.3- to 1.9- fold (Figure 4.16A). 

100 



A +40mV B -40 mV 

Control-· ··-··--·····-···· ·- ···-·· ····-· .J.Jti:~ o .oea 

~ . c 

Control ..,..,.,,..,,,,,,,'l'l'llll!l!Mlrnt- P0 = 0.081 ~~~,,,~c 
.... ____ ......... ___ .......................... Q 

100 nM ~1a V490-M524 LLW/A P0 = 0.051 100 nM ~1a V490-M524 LLW/A P0 = 0.093 

~ ~~"~,~ 
I 

....... -...................................................................................... .. 
C 

0.20 
2mMATP 

• 

----110pA 
1 s 

1 0nM P1a 490-524 
LLW/A 

1 00nM P1a 490-524 
LLW/A A 

A 

! 40µM 
! Ruthenium 
i Red 

•: ♦• ♦ i A . 

• • i ........ ... i * 
0 

0.. 0.10 - -; = ~-: .-= =} -• =. =·=; =F = ; -=. = :=; =; = = ;,,_ 
•• i ♦ ♦♦ ♦ ♦. A A A A 

0.00 
5 

D 
0.6 

*:t: 
0..0 0.4 

o.> 0.2 
a... 

0 ..-
0.0 0) 

0 

-0.2 

10 15 20 

+40mV 

10 100 

Peptide (nM) 

25 30 

Time (min) 

0.6 

0.4 

0.2 

0.0 

-0.2 

35 

- P1a V490-M524 - P1a V490-M524 W503A 

P1a V490-M524 L496A P1a V490-M524 LLW/A 

40 45 50 

-40 mV 

# 
______ 1:.:L;i 

10 100 

Peptide (nM) 

P1a V490-M524 L500A 
water 

Figure 4. 15 The effect of Pia 490-524 hydrophobic surface mutants on RyRl activity in lipid bilayers. 

A. and B) .Three second records of single channel activity at +40 mV (A) or -40 mV (B) that display representative 

channel activity before (top traces: control) and after (bottom traces) cis addition of JOO nM Pia V490-M524 LLW/A 

peptide. Open probability (P0 ) is shown in the right top corner. C) A timeline of channel activity following 

sequenJial cis addition of 2 mM ATP (pink circle), 10 nM Pia V490-M524 LLW/A (green diamonds), 100 nM Pia 
V490-M524 LLW/A (blue triangles) and 40 µM ruthenium red (light green square). The channel activity over 10 s 

was take.n from - 30 s intervals of activity at +40 and -40 mV. For each condition, there is a mean (continuous line) ± 

SEM (discontinuous line) of the scatter plot. *Significantly different from prior condition, determined by unpaired 

Student's t-test, p < 0.05. D) Average relative P0 (logl0 rel P0 ) was calculated in the same way as in Figure 4.4. P0 

was measured from - 90 s traces ofRyRl activity, n = 5-13 channel traces. Error bars indicate + or - SEM. Control 

PO values in Tables 4. I and 4.4a. The mean ± SEM logl 0 rel P0 values for peptide buffer (water) additions are shown 

as continuous pink line and discontinuous pink line, respectively. The data for V490-M524 peptides is a re-plot of 

the data shown in Fig. 4.4D. *Significantly different from control activity set at zero, determined using a paired 

Student' s t-test, p < 0.05 . #Significantly different from Pia V490-M524. t significantly different from Pia V490-M524 

LLW/A peptide. #tSignificance determined by ANOVA, p < 0.05 . Note that some of the channel experiments were 

undertaken by Dr. Yamuna A. Karunasekara (Muscle Research Group, John Curtin School of Medical Research, 

Australian National University, Canberra, Australia). 
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Table 4. 4a Mean control parameters fo r channels used in analys is of Pia V490-M524 LLW/A, Pia Y490-M524 
L496A, Pia Y490-M524 L500A and Pia V490-M524 W503A peptides. 

Open probability (P0 ) and mean open time (T0 ) mean ± SEM and number (n) of observations for the data presented in 
Figure 4. 15 and Figure 4. 16 

Channel Control for cis [peptide] Voltage Mean 
±SEM parameter 131a peptide (nM) (mV) parameter n 

+40 0.057 0.012 10 
10 

V490-M524 -40 0.139 0.040 10 
LLW/A +40 0.054 0.017 7 

100 
-40 0.141 0.068 7 

+40 0.141 0.025 12 
10 

V490-M524 -40 0.116 0.032 12 
L496A +40 0.218 0.110 8 

100 
-40 0.127 0.024 8 

Po 
+40 0.060 0.016 13 

10 
V490-M524 -40 0.124 0.026 10 
500A +40 0.050 0.015 9 

100 
-40 0.109 0.026 6 

+40 0.055 0.018 10 
10 

V490-M524 -40 0.157 0.071 5 
503A +40 0.042 0.020 6 

100 
-40 0.193 0.068 6 

+40 2.846 0.338 8 
10 

V490-M524 -40 3.487 0.958 11 
LLW/A +40 2.317 0.435 7 

100 
-40 3.301 1.413 7 

+40 4.407 0.642 10 
10 

V490-M524 -40 2.286 0.497 12 
L496A +40 3.271 0.523 7 

100 
-40 1.960 0.308 8 

T0 (ms) 
+40 2.844 0.428 12 

10 
V490-M524 -40 2.424 0.316 9 
500A +40 2.625 0.663 8 

100 
-40 2.107 0.378 6 

+40 2.502 0.396 11 
10 

V490-M524 -40 3.415 1.710 6 
503A +40 1.820 0.378 5 

100 
-40 3.675 1.660 6 
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Table 4.4b. Mean control parameters for channels used in analysis of P,a V490-M524 LLW/A, P,a V490-M524 

L496A, Pia V490-M524 L500A and Pia V490-M524 W503A peptides. 

Control mean closed time (Tc) and open frequency (F0 ) mean ± SEM and number (n) of observations for the data 

presented in Figure 4.16. 

Channel Control for cis [peptide] Voltage Mean ±SEM 
parameter J31a peptide (nM) (mV) parameter 

n 

+40 141.4 75.26 10 
10 

V490-M524 -40 41.26 15.75 10 

LLW/A +40 179.3 106.3 7 
100 

-40 51.27 21.79 7 

+40 104.6 33 .66 10 
10 

V490-M524 -40 32.80 11 .28 12 

L496A +40 90.67 43.49 8 
100 

-40 13.87 3.312 7 
Tc(ms) 

+40 115.1 48.30 11 
10 

V490-M524 -40 11.70 2.650 9 

500A +40 57.49 18.87 7 
100 

-40 20.61 3.665 6 

+40 90.27 25.44 10 
10 

V490-M524 -40 31.07 13.42 6 

503A +40 85.46 28.88 5 
100 

-40 31.72 14.49 6 

+40 17.37 3.470 8 
10 

V490-M524 -40 54.91 10.96 9 

LLW/A +40 25.34 7.807 5 
100 

-40 68.26 22.94 4 

+40 34.41 14.30 8 
10 

V490-M524 -40 50.54 7.827 11 

L496A +40 17.18 11.36 6 
100 

F0 (f1
) · 

-40 66.91 17.49 4 

+40 29 .84 8.549 12 
10 

V490-M524 -40 66.37 11.72 8 

500A +40 25.92 9.401 9 
100 

-40 46.83 12.48 6 

+40 27.81 9.859 9 
10 

V490-M524 -40 43.84 23.18 3 

503A +40 20.32 11.78 4 
100 . 

-40 52.30 21.83 4 
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Figure 4. 16 The effect of Pia V490-M524 hydrophobic surface repeat peptides on single channel gating parameters 
in lipid bilayers. 

The average mean open time (log 10 rel T0 ; A), mean closed time (log 10 rel Tc; B) and open frequency (log 10 rel F0 ; C) 
was calculated in the same way as the log 10 rel P0 (Figure 4.4) from -90 s of single channel activity at either +40 mV 
(left) or -40 m V (right). Error bars indicate + or - SEM. Contro l values shown in Table 4.1 and Table 4.4, n = 3-12 
channel traces. The data for V 490-M524 peptides is a re-plot of the data shown in Fig. 4.5. *Significantly different 
from control activity set at zero, determined using a paired Student's t-test, p < 0.05. #Significantly different from Pia 
V490-M524 peptide. -1:Significantly different from Pi a V490-M524 LLW/A. #-1:Significance determi ned by ANOYA, 
p < 0.05. 

104 



Additionally, the individual mutants also significantly (p = 0.001-0 .039) decreased the relative 

Tc (Figure 4.16B). Although relative Tc was reduced in all cases, the effects of 10 nM individual 

mutants on relative Tc values were significantly lower than the action of 10 nM Pia V 490-M524 

peptide (p = 0.003-0.024) (Figure 4.16B). In terms of the effect on F0 , all individual Pia V490-

M524 mutants significantly (p = 0.003-0.042) increased the relative F0 , with the exception of 10 

nM P1a V 490-M524 W503A, (Figure 4.16C). 

It is interesting to note that the actions of the individual mutants on channel gating 

properties were very similar, regardless of peptide concentration or which residue was mutated. 

Overall, the results indicate that collectively, the hydrophobic surface residues are essential for 

RyRl activation by Pia V 490-M524 peptide. Individually, these residues are essential at +40 

m V, but only slightly alter activation by the Pia V 490-M524 peptide on single channel gating 

properties at -40 m V. 

4.3.7 The zebrafish Pia C-terminal residues modulate RyRl activity 

To examine the influence of the zebrafish C-terminal region on RyRl activity, the effect of a 

peptide CPia V 490-L520 zf; containing the zebrafish Pia region V 490-L520 that is equivalent to 

the mouse Pia V 490-M524 region), was tested on RyRl in lipid bilayers. The experiments were 

carried out by adding 10 and 100 nM to the cis chamber and recording channel activity at both 

+40 and -40 m V. As shown in single channel traces, addition of 100 nM Pia V 490-L520 zf 

peptide increases RyRl activity at both voltages (Figure 4.17, A and B). This increase in 

activity was typically observed within the first minute of addition, as shown in Figure 4.17C. 

Although the activity following addition was quite variable as usual, the average activity in the 

time period following addition of Pia V 490-L520 zf peptide was higher (p < 0.001) than control 

(Figure 4.17C). Note that increasing the concentration of Pia V 490-L520 zf peptide from 10 to 

100 nM did not alter (p = 0.393) channel activity further over time (Figure 4.17C). As the 

effect of Pia V 490-L520 zf did not significantly (p = 0.228-0.968) differ between +40 and -40 

mV (e.g. Log10 rel P0 of 10 nM Pia V490-L520 zf was 0.21±0.02 and 0.23±0.06, respectively), 

these values were combined. Both 10 and 100 nM Pia V490-L520 zf peptide increased (p :S 

0.002) channel activity by 1.6- and 1.8-fold, respectively (Figure 4.17D). However, there was a 

significant 39% (p = 0.001) reduction in the activation produced by 10 nM Pia V490-L520 zf 

peptide when compared with the effect of 10 nM Pia V490-M524 peptide (Figure 4.17D). 

Therefore, the efficacy of the Pia V 490-L520 zf peptide as a mammalian RyRl modulator is 

slightly lower than Pia V 490-M524 peptide. As with Pia V 490-M524 peptide, the Pia V 490-L520 

zf peptide significantly increased relative T0 , decreased relative Tc and increased relative F0 

(Figure 4.18). Therefore the Pia V 490-L520 zf peptide increases the average duration and 

frequency of channel openings and decreases duration between channel openings. Notably, the 

effect of 10 nM Pia V490-L520 zf peptide was slightly lower (p = 0.003-0.015) than the effect 
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Figure 4. 17 The si milar modulatory effect of mouse and zebrafish Pia C-tail peptides on RyRl activity in lipid 
bilayers. 

A and B) Three second records of single channel activity at +40 m V (A) or -40 m V (B) that display representative 
channel activity before (top traces: control) and after (bottom traces) cis addition of 100 nM Pia V490-L520 zf 
peptide. Open probability (P0 ) is shown in the right top comer. C) A timeline of channel activity following 
sequential cis addition of2 mM ATP (pink circle), IO nM Pia V490-L520 zfpeptide (green diamonds), 100 nM Pia 
V490-L520 zfpeptide (b lue triangles) and 40 µM ruthenium red (light green square). The channel activity over 10 
s was taken from ~30 s interval s of activity at +40 and -40 mV. For each condition, there is a mean (continuous 
line) ± SEM (discontinuous line) of the scatter plot. *Significantly different from prior condition, determined by 
unpaired Student's t-test, p < 0.05. D) Average relative P0 (log10 rel P0 ) was calculated in the same way as in Figure 
4.4. P0 was measured from ~ 90 s traces of RyRl activity, n = 6-12 channel traces . Error bars indicate + SEM. 
Contro l P0 values in Tables 4.1 and 4.5. The mean ± SEM log 10 rel P0 values for peptide buffer (water) additions 
are shown as continuous pink line and discontinuous pink line, respectively *Significantly different from control 
activity set at zero, determined using a paired Student' s t-test, p < 0.05. #Significantly different from Pia subuni t, 
determined by ANOV A, p < 0.05. 
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Table 4. 5 Mean control parameters for channels used in analysis of P1a V490-L520 zfpeptide. 

Open probabi lity (P0 ), mean open time (T0 ) , mean closed time (Tc) and open frequency (F0 ) mean ± SEM and number 

(n) of observations for data presented in Fig 4.17 and Fig 4.18 

Channel parameter [peptide] (nM) Mean parameter ±SEM n 

10 0.079 0.021 10 
Pa 

100 0.084 0.023 9 

10 4.181 1.518 7 
T0 (ms) 

100 4.181 1.518 7 

10 49.71 15.88 8 
Tc (ms) 

100 51.53 18.22 7 

F0 (s-1
) 

10 37.23 13.45 8 

100 25.45 8.031 6 
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Figure 4. 18 The effect of mouse and zebrafish P1a C-tail peptides on single channel gating parameters in lipid 

bilayers: 

The average mean open time (log 10 rel T0 ; A), mean closed time (log 10 rel Tc; B) and open frequency (log 10 rel F0 ; C) 

was calculated in the same way as the log 10 rel P0 (Figure 4.4) from ~90 s of single channel activity. Error bars 

indica~e + or - SEM. Control values in Table 4.5, n = 3-12 channel traces. *Significantly different from control 

activity set at zero, determined using a paired Student's t-test, p < 0.05 . #Significantly different from Pia V 490-M524 

peptide, determined by ANOV A, p < 0.05. 
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of 10 nM P ia V 490-M524 peptide (Figure 4.18), but still the mcrease was never-the-less 

significant (p = 0.022-0 .042). 

Delving deeper into the effect of these peptides on single channel kinetics, p l a V 490-

L520 zf peptide altered dwell-time distributions in a similar fashion as Pi a V 490-M524 peptide. 

The 10 and 100 nM Pi a V 490-L520 zf peptide shifted a fraction of events from the Loi to the Lo2 

by 12.6 ± 5.6% (p = 0.013) and 13.4 ± 6.1 % (p = 0.009), respectively (Figure 4.19A). However, 

the P ia V490-L520 zfpeptide did not significantly (p = 0.280 and 0.100) increase the duration of 

the Loi values, whereas P ia V 490-M524 peptide did. This difference may contribute the reduced 

efficiency of P ia V 490-L520 zf in increasing relative T0 when compared to Pi a V 490-M524 

peptide (Figure 4.18A). In terms of closed time distributions, 100 nM Pi a V 490-L520 zf peptide 

significantly shifted a fraction of events from the Le3 to the LeJ by 11 .0 ± 6.0% (p = 0.020) 

(Figure 4.19B). Although 10 nM P ia V490-L520 zf peptide increased a fraction of events (p = 

0.027) of the Lei, the fraction of events falling into the Le3 was not altered (p = 0.344) relative to 

control. This likely explains the reduced effect of 10 nM Pi a V 490-L520 zf on relative Tc in 

respect to the effect of 10 nM Pi a V 490-M524 peptide, as mentioned above. Neither 10 nor 100 

nM P ia V 490-L520 zf peptide altered the duration of closed time constants. 

Collectively, these results indicate that the efficiency of 10 nM Pi a V 490-L520 zf 

peptide in changing RyRl gating parameters to increase relative P0 is lower than that of the 100 

nM Pi a V490-M524 peptide. This difference is likely due to the fraction of channel openings 

falling into a longer open time constant, which was unaffected by 10 nM Pi a V 490-L520 zf 

peptide. Additionally, the overall changes in RyRl activity in response to Pi a V 490-M524 tends 

to be greater than Pi a V490-L520 zf. This may be due to Pi a V490-M524, not P ia V490-L520 zf, 

peptide increasing the duration of the brief open time constants ( LoJ) (Figure 4.19). 
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Figure 4. 19 The similar modulatory effects of mouse and zebrafish Pia C-tail peptides on the open and closed 

dwell-times and on the probabi lity of events occurring within each open and closed dwell-time constant 

components. 

The open (1:0 , A) and closed (1:0, B) time constants and the probability of events in each time constant component 

were calculated from ~90 s of single channel activity. n = 5-23 channel records. The individual open time 

constants (1:0 1, 1:02 and 1:03 ) and individual closed time constants (1:01, 1:02 and 1:03 ) are indicated on the graphs in A 

and B, respectively. Error bars indicate ±SEM. *Significant difference between the probability of events in each 

time constant in control with 10 and 100 nM Pia V490-M524 peptide. ts ignificant difference between the 

probability of events in each time constant in control with 10 nM Pia V490-L520 zf peptide. # Significant 

difference between the probability of events in each time constant in control with 100 nM Pia V490-L520 zf 

peptide. tSignificant difference between the dwell time constant under control conditions with of 10 or 100 nM 

Pia V490-M524. *t#tSignificance determined by ANOV A, p < 0.05 . 
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4.3.8 The hydrophobic surface residues are important for Pia subunit modulation 
of RyRl activity 

Given the importance of the hydrophobic surface residues for the interaction between 

Pi a V 490-M524 and RyRl , it was of interest to examine whether this is also the case for the 

functional interaction between the full-length Pia and RyRl in lipid bilayers (Rebbeck et al., 

2011). The hydrophobic surface residues in the Pia subunit were mutated to alanines (L496A, 

L500A and W503A), and the effect of this Pia mutant (Pia LLW/A) was tested on RyRl activity. 

The hydrophobic surface region has been generally examined in Pia-null myotubes transfected 

with various p constructs which showed that C-terminal truncated forms of Pia and the cardiac P 

(P2a) isoform could not restore EC coupling (Sheridan et al. , 2003). Therefore, it was of interest 

to compare the effect of Pia LLW/A with the effect of P2a and truncated Pia (1M-K455; missing 

A456-M524) on RyRl activity. The effects of these p constructs were assessed using the 

standard lipid bilayer protocol. Furthermore, the effect, if any, of the dialysis buffer, that Pia 

LLW/A was prepared in, was also tested on RyRl activity. It is notable that this phosphate 

buffer in particular contained glycerol (10% ), which has been previously shown to increase the 

activity of a-RyR (amphibian equivalent of RyRl) (Murayama et al., 1998). However, the 

glycerol concentrations examined by Murayama et al. (1998) were much greater (2: 1 M) than 

the concentration (3 and 30 mM) tested in these experiments. 

Addition of 100 nM Pia LLW/A subunit did not appear to alter channel activity at +40 

or -40 rn V (Figure 4.20, A and B) and over the 20 min of channel activity recorded following 

addition of the 10 nM, and then 100 nM, Pi a LL W/ A subunit (Figure 4.20C). The average 

RyRl activity with the p subunits did not significantly (p = 0.131-0.994) vary between +40 mV 

and -40 m V and the data was combined as with experiments described above. The average data 

in Figure 4.20D shows that addition of 10 and 100 nM P,a LLW/A subunit does not alter (p = 

0.928 and 0.626, respectively) channel activity. Importantly, the noticeable 2.6- and 2.9-fold 

increase in RyRl that was driven by 10 and 100 nM Pi a subunit was not seen after the 

hydrophobic surface mutation. This feature was shared with Trunc Pi a and P2a subunit. The 

effect of p I a LL W / A is unlikely to be influenced by glycerol present in the dialysis buffer, as the 

buffer alone was unable to increase RyRl activity (p = 0.900). 

The effects of the p proteins on relative Pa were appropriately reflected by the effects of 

these proteins on single channel gating parameters. Only the full-length Pi a subunit significantly 

(p S 0.005) increased relative Ta and relative Fa, as well as decreasing the relative Tc (Figure 

4.21) . All of these changes were ~ 2-fold, as was also seen with the effect of the P1a V490-

M524 peptide and a previous report of Pi a subunit in the same conditions (Rebbeck et al. , 2011). 

Note that the gating parameters with Pia LLW/A were not significantly (p = 0.120-0.591) 

different from control, and importantly, were significantly (p S 0.001) different from the effect 

of the Pia subunit (Figure 4.21) . 
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Figure 4. 20 The lack of modulatory effect of Pia LLW/A, Pza, and Trunc Pia subunits on RyRl activity in lipid 

bilayers. · 

A and B) Three second records of single channel activity at +40 m V (A) or -40 m V (B) that display representative 

channel.activity before (top records: control) and after (bottom records) cis addition of 100 nM Pia LLW/A subunit. 

Open probability (P0 ) is shown in the right top comer. C) A timeline of channel activity following sequential cis 

addition 9f2 mM ATP (pink circle), 10 nM Pia LLW/A (green diamonds), 100 nM Pia LLW/A (blue triangles) and 

40 µM ruthenium red (light green square). The channel activity over IO s was taken from ~30 s intervals of activity 

at +40 and -40 mV. For each condition, there is a mean (continuous line) ± SEM (discontinuous line) of the scatter 

plot. *Significantly different from prior condition, determined by unpaired Student' s t-test, p < 0.05 . D) Average 

relative P0 (log 10 rel P0 ) was calculated in the same way as in Figure 4.4 . Error bars indicate + SEM. P0 was 

measured from ~90 s records of RyRl activity, n = 7-16 channel records. Control P0 values in Tables 4.6. The 

mean ·± SEM log 10 rel P0 values for subunit dialysis buffer additions are shown as continuous pink line and 

discontinuous pink line, respectively *Significantly different from control activity set at zero, determined using a 

paired Student's t-test, p < 0.05. #Significantly different from Pia subunit, determined by ANOV A, p < 0.05. Note 

that experiments using Pza subunit were undertaken by Courtney Segovis (Muscle Research Group, John Curtin 

School of Medical Research, Australian National University, Canberra, Australia). 
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Table 4. 6 Mean contro l parameters for channels used in analysis of P1., Pia LLW/A, Pza and Trunc Pia subunits. 

Open probability (P0 ) , mean open time (T0 ) , mean closed time (Tc) and open frequency (F0 ) mean± SEM and number 
(n) of observations fo r data presented in Figure 4.19 and Figure 4.20 

Channel Control for cis ~la [peptide] (nM) Mean 
±SEM parameter subunit parameter 

n 

10 0.048 0.014 15 
~l a subunit 

100 0.032 0.007 12 

10 0.100 0.037 16 
~ la LLW/A subunit 

100 0.059 0.020 15 
Po 

10 0.126 0.039 14 
~ 2a subunit 

100 0.125 0.039 10 

10 0.117 0.050 8 
Trunc ~l a 

100 0.104 0.055 7 

10 1.955 0.273 13 
~l a subunit 

100 1.677 0.301 10 

10 2.583 0.444 16 
~l a LLW/A subunit 

100 2.354 0.475 14 
T0 (ms) 

10 2.021 0.261 7 
~ 2a subunit 

100 2.418 0.665 6 

10 2.585 0.636 6 
Trunc ~l a 

100 4.293 1.751 6 

10 97.76 31.15 13 
~l a subunit 

100 105.15 40.23 9 

10 55.58 13.88 16 
~l a LLW/A subunit 

100 70.08 15.86 14 
Tc (ms) 

10 26.46 14.09 7 
~ 2a subunit 

100 42.19 19.94 7 

10 61.38 25.41 5 
Trunc ~la 

100 76.13 23.78 5 

10 24.30 5.631 13 
~l a subunit 

100 24.22 6.287 6 

10 43.64 10.74 16 
~l a LLW/A subunit 

Fo (s- 1
) 

100 38.21 10.66 15 

10 68 .60 18.77 12 
~ 2a subunit 

100 78 .82 26.47 7 

10 28.21 9.935 5 
Trunc ~l a 

100 21.65 9.630 5 
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Figure 4. 21 The lack of modulatory effect of P,a LLW/A, Pza, Trunc P,a subunits on single channel gating parameters 

in lipid bilayers. 

The average mean open time (log 10 rel T0 ; A), mean closed time (log 10 rel Tc; B) and open frequency (log10 rel F0 ; C) 

was calculated in the same way as the log 10 rel P0 (Figure 4.4) from -90 s of single channel activity. Error bars 

indicate + or - SEM. Control values in Table 4.6, n = 5-16 channel records. *Significantly different from control 

activity set at zero, determined using a paired Student' s t-test, p < 0.05 . #Significantly different from P,. subunit. No 

significant (ns) difference is indicated.# and ns determined by ANOV A, p < 0.0:5. 

Overall , the results indicate that mutation of the hydrophobic surface residues in Pia 

subunit is sufficient to completely abolish the modulatory effect of Pia on RyRl activity. This is 

impressive, given that the effect of mutating three residues on relative P0 is comparable to the 

consequence of removing the majority of the C-terminal residues and a subunit that shares only 

28% C-terminal sequence similarity (Figure 4.lB) with the Pia subunit. 
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4.4 Discussion 

In this chapter the influence of heptad repeat and hydrophobic surface residues of the 

Bia subunit/peptides on RyRl gating properties in lipid bilayers was explored. The importance 

of these residues was examined firstly using peptides corresponding to the regions Bia A474-

A508 and V 490-M524 and then with mutation of the hydrophobic surface residues in the full­

length protein. The actions of these constructs on RyRl gating properties were compared to the 

Bia V490-M524 peptide and WT Bia subunit. The Bia V490-M524 peptide was a good base for 

comparison, given that it reproduces the action of the Bia subunit on RyRl in lipid bilayers 

(shown in this chapter and Rebbeck et al. (2011)). It is important to note, that the functional 

influence of these residues on RyRl is unlikely to be attributed to non-specific binding since a 

scrambled version of Bia V 490-M524 sequence does not physically or functionally associate 

with RyRl (Rebbeck et al. , 2011). Furthermore, a scrambled form of the Bia V490-A508 

sequence does not alter RyRl activity or gating properties (Figure, 4.10 and 4.11). 

4.4.1 Comparison between ~Ia C-terminal regions: V490-M524 and A474-A508 
The action of Bia A474-A508 and Bia V490-M524 peptides on RyRl activity were 

similar (Figure 4.4D). However, the results show that the influence of Bi a A474-A508 was not 

as stable over time and did not increase the overall duration of channel openings to the level 

observed by Bia V 490-M524 peptide (Figure, 4.4C and 4.5A). This suggests that the stability of 

the interaction between Bia A474-A508 and RyRl may be slightly lower than the interaction 

between Bia V 490-M524 and RyRl. A difference in the stability of the interaction could have 

been established by assessing the ability of these peptides to retain RyRl in affinity 

chromatography assays. Unfortunately, the biotinylated form of Bia A474-A508 is hydrophobic 

and visible peptide aggregation during the assay meant that accurate assessment was not 

feasible. 

There are two factors that could account for the observed difference in function between 

Bia A474-A508 and Bia V490-M524 peptides. These are 1) a lack of the extreme 16 C-tail 

residues and/or 2) addition of Bia A474-V490 residues. Given that the Bia V490-A508 peptide 

displayed the same modulatory effects as Bia A474-A508 on RyRl gating parameters, it is likely 

that the addition of Bi a A474-V490 residues is not a factor. However, the mean open times at -

40 mV increased following addition of Bia A474-A508 LVV/A, not Bi a A474-A508, suggesting 

that the presence of the heptad repeat residues within the Bia A474-V490 region may contribute 

to the lack of Bia A474-A508 effect on average mean open times at -40 mV (Figure 4.8A). 

Granted, thi s does not account for the lack of action on the duration of channel openings when 

channels were exposed to the Bia A474-A508 peptide. Consequently, it is plausible that the 

extreme 16 C-tail residues contribute to the C-terminal interaction with RyRl in lipid bilayers. 
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Despite the marginal differences between the actions of the Pia A474-A508 and Pia 

V 490-M524 peptides, the results indicated that the overlapping region between these peptides 

would be sufficient to replicate the important functional effects of Pia on RyRl. This was 

evidently the case with the action of Pia V490-A508 mirroring the action of Pia A474-A508 

peptide on RyRl activity (Figure, 4.10D and 4.11). 

4.4.1.1 Physiological implications 

It is of interest that MF Schneider's laboratory demonstrated that pressure injection of 

Pia V 490-A508 peptide enhances voltage-induced SR Ca2
+ release in adult mouse myofibres by 

~50% (Figure 4.13; Hernandez-Ochoa et al. (2014)), particularly since this is the level that has 

previously been shown to be induced by pressure injection of the full-length Pia subunit (Garcia 

et al., 2005). Thus, it is nicely consistent that the region (V 490-A508) that is important for 

enhancing EC coupling in skeletal myofibres is also important for increasing RyRl activity. 

This suggests that through the V 490-A508 region, the Pia subunit modulates EC coupling by 

increasing RyRl activity via direct interaction rather than through interaction with DHPR or 

other associated proteins. 

It is worth taking into consideration as to how the exogenous Pia V 490-A508 peptide 

enhances voltage-induced SR Ca2
+ release in adult mouse myofibres when presumably healthy 

levels of endogenous Pia subunit would be also present in the myofibres. Given that the Pia 

V 490-A508 peptide has the same effect as exogenous Pia subunit, the action is unlikely to be 

through displacing endogenous Pia subunit, but rather by binding to an unoccupied Pia-binding 

site on RyRl. This quite possible, particularly as only every second RyRl is coupled to DHPR 

(Block, 1988, Paolini et al., 2004b). 

As mentioned above, the extreme 16 Pia C-tail residues may slightly enhance the 

interaction between Pia C-terminal residues and RyRl in lipid bilayer experiments. However, it 

is unlikely that these C-tail residues influence skeletal EC coupling because truncation of 21 Pia 

C-ter_minal residues did not alter restoration of EC coupling by exogenous expression of Pia in 

Pia-null myotubes (Sheridan et al., 2003 ). Furthermore, microinjection with Pia V 490-A508 

region is sufficient to replicate the full-effect of full-length Pia on SR Ca2
+ release in fibres 

(Figure 4.13; Garcia et al. (2005)) and consequently the 16 C-tail residues are not necessary for 

the effe~t of Pia subunit in SR Ca2
+ release. 

4.4.2 · The irrelevance of heptad repeat residues in modulating RyRl activity 

Given that the Pia V 490-M524_ region, containing only one of the three heptad repeat 

residues, is sufficient to communicate the functional effect of the Pia subunit on RyRl in lipid 

bilayers, it is unlikely that all heptad repeat residues influence the interaction between Pia and 

RyRl. Furthermore, the results demonstrate that the three heptad repeat residues together do not 

enhance this interaction. This is underlined by the finding that mutation of all three residues did 
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not reduce the action of ~I a A474-A508 peptide on RyRl activity (Figure 4.7). Intriguingly, this 

mutant partially restored the increase in single channel mean open times (Figure 4.8) that was 

seen with ~I a V490-M524 peptide, but not ~I a A474-A508 peptide. Since the overall action of 

~I a A474-A508 L VY/A peptide on RyRl activity did not significantly differ from the action of 

~Ia A474-A508 peptide, further exploration if this restoration was not justified. 

4.4.2.1 Physiological implications 

The expression of the ~I a subunit with the heptad repeat residue mutated to alanines 

drastically altered restoration of skeletal EC coupling mouse ~,a-null myotubes (Sheridan et al. , 

2004), but not zebrafish ~la myotubes (Dayal et al. , 2010). The results from the present study 

are similar to the zebrafish study and suggest that the heptad repeat residues do not influence 

skeletal EC coupling in mouse myotubes by facilitating the interaction between ~l a C-terminal 

residues and RyRl. 

4.4.3 Importance of hydrophobic surface residue in modulating RyRl activity 

All of the results presented in this chapter support the importance of the hydrophobic 

surface residues for the interaction between ~la and RyRl, particularly given that mutation of all 

three residues abolishes the action of ~la V 490-M524 peptide and ~l a subunit on RyRl activity. 

In addition, the action of ~I a on RyRl activity is largely mirrored by peptides that contain the 

identical sequence (such as ~la A474-A508, ~la A474-A508 LVV/A and ~I a V490-A508) or a 

similar aligned sequence (such as ~la V 490-L520 zf). Furthermore, the ~2a subunit and Trunc 

~I a, that do not contain a comparable hydrophobic surface region, do not modulate RyRl 

activity (Figure 4.19). 

4.4.3.1 The action of the hydrophobic surface residues 

The present results indicate that the hydrophobic surface residues are responsible for the 

modulatory action of ~I a subunit on RyRl activity. In addition, results from affinity 

chromatography demonstrate that these residues are largely responsible for the physical 

interaction between ~l a V 490-M524 peptide and RyRl. There was residual binding when the 

residues were neutralised, which is likely specific, given that a scrambled form of the ~l a V 490-

M524 peptide did not associate at all with RyRl from skeletal SR vesicles (Rebbeck et al. , 

2011). Together, the bilayer and affinity chromatography results indicate that these residues are 

responsible for the functional interaction between ~I a and RyRl and mostly responsible for the 

physical interaction between ~I a and RyRl. Given that NMR analysis has shown that this 

mutation does not alter the propensity of residues within L493-G504 region to adopt an a­

helical structure, it is likely that the hydrophobic surface residues are important in the direct 

interaction with RyRl rather than maintaining structural integrity of ~I a C-terminus. 
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The residual RyRl retained by the Pia V490-M524 LLW/A peptide in affinity 

chromatography assay suggests that other residues within V490-M524 facilitate the physical 

interaction between J3 1a and RyRl. The facilitating residue( s) may be situated within the extreme 

16 residue C-tail, which would explain the reduced stability of peptides lacking this region. An 

alternative possibility is that the alanine mutation does not completely abolish the hydrophobic 

surface. 

4.4.3.2 The role of the individual proteins 

The role of the individual hydrophobic surface residues is complicated by the voltage­

dependence of their actions. Individual mutation of the hydrophobic surface residues abolished 

the action P,a V490-M524 peptide at +40 mV, but not at -40 mV. The reason for this voltage­

dependent effect is not clear. There have been multiple reports of peptides inducing voltage­

dependent effects on RyR gating. This effect has typically been accredited to a positive net 

charge in the peptide and the peptide binding to a region near the pore that is influenced by the 

membrane field ( e.g. Dulhunty et al. (2004 ), Gibbs et al. (2006), Diaz-Sylvester and Capello 

(2009)). This is unlikely to be the case with the peptides used in this study since Pia V 490-M524 

and the individual mutant peptides do not have a net charge. An alternative possibility is that the 

conformation of the Pia binding site on RyR 1 is altered by the change in voltage in such a way 

that at +40 m V, two hydrophobic surface residues are insufficient for functional interaction, 

whereas at -40 m V, two residues are sufficient. Although RyRl is not generally known to be 

modulated by membrane potential, a few studies have reported a voltage-dependent inhibition 

of RyR channels at positive bilayer potentials (Percival et al. , 1994, Laver et al., 1995, Laver & 

Lamb, 1998, Abdellatif et al. , 2007). Of particular interest, Laver and Lamb (1998) and 

Abdellatif et al. (2007) reported a voltage-dependent inhibition of high activity channels when 

the voltage was shifted from -40 mV to +40 mV. Indeed, average control P0 values in this study 

showed a trend, though infrequently significant, to be higher at -40 m V than at +40 m V within 

individual channels. Given that the range of membrane potentials used in this study has been 

demonstrated to alter gating characteristics (Laver & Lamb, 1998, Abdellatif et al. , 2007), it is 

feasible 'that the RyRl conformation may differ between voltages. However, a link between 

RyRl conformation in lipid bilayers and membrane potential has not, to the author ' s 

knowledge, been experimentally demonstrated. 

4.4.3.3 Physiological implications 

. There is emerging evidence that four hydrophobic C-terminal residues of Pia (namely 

L488, L493 , L496 and L500) are important for DHPR tetrad formation and depolarisation­

induced Ca2
+ release in Pia-null mouse myotubes expressing a truncated form of the Pia subunit 

(14 amino acid C-tail truncation; Pi a-14) (Perez et al. , 2013). Perez and colleagues (2013) 

presented findings that although expression of Pi a-14 fully restores tetrad formation and 
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depolarisation-induced SR Ca2
+ release in P, a-null myotubes, mutation of several hydrophobic 

residues (L488A, L493A, L496A and L500A) abolishes restoration of tetrad formation and 

greatly reduced restoration of Ca2
+ release. Thus, two of the three hydrophobic surface residues 

have been shown to potentially facilitate mouse EC coupling. Given that the affinity 

chromatography results presented in this chapter demonstrate that the hydrophobic surface 

residues have a large role in physical interaction with RyRl, it is possible that tetrad formation 

and consequently EC coupling may be facilitated through direct interaction between RyRl and 

P, a subunit. Arguably, without individual mutation of these hydrophobic residues in P,a 

constructs introduced into in P, a-null myotubes, it is difficult to ascertain whether the 

hydrophobic surface residues actually facilitate tetrad formation and EC coupling. As yet, the 

possibility that only residues L488 and L493 facilitate EC coupling due to facilitating tetrad 

formation alone cannot be excluded. 

4.4.4 Comparison between the effectiveness of zebrafish and mouse Pia C-tail 
residues in RyRl modulation 

The results indicate that the Pia V 490-L520 zf peptide modulates RyRl activity in a 

similar fashion as P, a V 490-M524, although with a marginally reduced effect at 10 nM peptide 

(Figure 4.17). Additionally, the response of RyRl activity to 100 nM Pia V 490-L520 zf peptide 

was more variable than the response to 100 nM Pi a V 490-M524 peptide, suggesting that the 

interaction may be less stable. A reduction in interaction stability may have also contributed to 

the observation that the P,a V 490-M524 peptide, not Pia V 490-L520 zf peptide, increased the 

duration of the medium open time constant (Figure 4.19). 

The small reduction in P,a V490-L520 zf peptide's effect on RyRl is unlikely to be 

attributed to a difference in P,a V 490-L520 zf peptide structure, as the structure of the zebrafish 

P, a V 490-L520 region is predicted to adopt the same surface alignment of hydrophobic residues 

along one side of an a-helical region (Karunasekara et al. , 2012). Consequently, the difference 

in peptide actions is likely attributed to one or more of the sequence differences between the 

peptides, which include two of the three comparable hydrophobic surface residues. This 

discrepancy is minor given that the residues, zebrafish M500 and L503 versus mouse L500 and 

W503 , can both engage in hydrophobic interactions. However, this difference may be sufficient 

to reduce the stability of the interaction between 10 nM peptide with RyRl. Other notable 

sequence variations include: absence of G5 l 3-V516 that is present in the mouse Pia V 490-M524 

region, and replacement of S501 and G504 in the mouse Pi a with aspartate and glutamate 

residues, respectively, in the zebrafish Pi a• Without knowledge of the Pi a binding site in RyRl , it 

is difficult to picture which sequence variation may contribute to the reduction in stability. The 

influence of each of these regions on interaction with RyRl could be examined in future by 

testing the individual substitution of these residues/regions in the mouse P Ia V 490-M524 

peptide. 
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4.4.4.1 Physiological implications 

A previous report demonstrated that the role of Pi a subunit in zebrafish skeletal EC 

coupling is species independent, particularly as exogenous expression of rabbit Pi a restores EC 

coupling in Pia-null myotubes to the same extent as expression of zebrafish Pi a (Schredelseker et 

al. , 2009). However, the reported importance of the heptad repeat motif largely differs between 

mouse and zebrafish skeletal EC coupling (Sheridan et al. , 2004, Dayal et al. , 2013). Given that 

the results in this study demonstrate that the heptad repeat residues do not influence the direct 

interaction between mammalian forms of Pi a subunit and RyRl and that the Pi a V 490-L520 zf 

peptide modulates RyRl , it is likely that the zebrafish Pia C-terminal residues participate in EC 

coupling by virtue of RyRl interaction. 

4.5 Conclusion 

The results presented and discussed in this chapter clearly demonstrate that the 

hydrophobic surface residues, not the heptad repeat residues, are important for physical and 

functional interaction between Pi a and RyRl in in vitro studies. The physiological implications 

are that this hydrophobic region may facilitate mammalian and zebrafish EC coupling through 

directly increasing RyRl activity. 
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CHAPTER FIVE - REGIONS OF THE RYR RESPONSIBLE FOR 
THE BETAlA SUBUNIT INTERACTION 

5.1 Introduction 

Studies showing that the skeletal DHPR and RyRl isoforrns are critical for skeletal-type 

EC coupling (Tanabe et al., 1990b, Nakai et al. , 1997, Beurg et al., 1999b, Fessenden et al., 

2000, Protasi et al. , 2000), suggest that these proteins contain isoforrn specific regions which 

enable their unique interaction in skeletal muscle. Certainly, several studies have attempted to 

identify the DHPR binding site(s) on RyRl by investigating the ability of RyRI regions in 

RyR2 or RyR3 backgrounds to restore skeletal EC coupling in dyspedic myotubes (as discussed 

in detail in section 1.4.2). It is possible that one/some of these RyRl regions that are not 

conserved with RyR2 or RyR3 may be responsible for binding the skeletal p1a isoform. 

However, it is difficult to test for a potential lack of interaction between RyR2/3 and p la in 

dyspedic myotubes as RyRl is also required for tetrad formation (Protasi et al. , 2000, Protasi et 

al. , 2002), which is vital for the transfer of the EC coupling signal from DHPR to RyRl. Using 

the lipid bilayer technique, the potential for interaction between p la and RyR2 can be measured 

without the complication from loss of DHPR tetrad formation. 

In considering the physical interaction between Pia subunit and RyRl , the binding site 

has been suggested to be in a RyRl region between residues 3201 and 3661 , based on results of 

pull down assays (Cheng et al., 2005). Within this region, Cheng and colleagues (2005) found a 

polybasic K3495-R3502 motif that, when mostly deleted (~K3495-R3499) or mutated to 

glutamine residues (KtoQ), greatly reduced association between the RyRl fragment and Pia 
subunit. Expression of either mutation in full-length RyRl significantly reduced restoration of 

Ca2
+ transients in dyspedic mouse myotubes (Cheng et al. , 2005). The authors concluded that 

the polybasic region influences the docking of Pia subunit to RyRl and transmission of EC 

coupling signal from DHPR Pia subunit to RyRl. However, whether this region is important for 

the functional interaction between RyRl and P,a subunit was unknown and can only be 

specifically examined in the isolated bilayer system. 

5.1.1 Aim 

There were two objectives explored in this chapter: to I) examine the effect of P,a 
subunit on RyR2 activity and 2) examine whether the KtoQ mutant in full-length RyRI effects 

the modulatory action of Pia subunit on RyRl. Investigating whether the P,a interaction is 

conserved between RyRl and RyR2 may provide clues to the RyRl regions that contribute to 

interaction with Pia subunit. The response of these RyRs to P,a subunit was assessed using lipid 

bilayer experiments. 
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5.2 Materials and Methods 

5.2.1 Materials 

5.2.1.1 Reagents and chemicals 

Gibco F15 MEM powder was purchased from Life Technologies (Carlsbad, CA, USA). 

Complete protease inhibitor cocktail was obtained from Roche Diagnostics (Mannheim, 

Germany). The other reagents and chemicals were purchased as specified in section 2.1 .1. 

5.2.1.2 Plasmid constructs 

The ~l a subunit was obtained as discussed in section 2.1.3. The rabbit wild type (WT) 

RyRl (NCBI reference sequence NM_001101718.1) and RyRl KtoQ mutant cDNA in pCineo 

vector (M/,ul at the 5' and Xbal at the 3' ) were obtained from Prof. Robert T. Dirksen and Dr. 

Linda Groom (Department of Pharmacology and Physiology, University of Rochester Medical 

Center, Rochester, NY, USA). The pCineo vector was chosen on the basis that successful 

expression of WT RyRl in a human embryonic kidney cell line (HEK293)-based system has 

been established using this vector (Kimura et al. , 2005, Goonasekera et al. , 2007, Kimura et al. , 

2007). 

5.2.2 Methods 

5.2.3 Expression and purification of Pia subunit 

The WT ~I a subunit was expressed and purified using the protocols described in section 

2.2.3. 

5.2.4 Preparation of skeletal SR vesicles 

The skeletal SR vesicles were prepared by Mrs. · Suzy Pace and Mrs. Joan Stivala 

(Muscle Research Group, John Curtin School of Medical Research, Australian National 

University, Canberra, Australia) as described in section 2.2.2. 

5.2.5 Preparation of cardiac SR vesicles 

This method was used only for results described in this chapter and was not addressed 

in the · general methods in Chapter Two. The experimental procedure for cardiac SR vesicle 

preparation was undertaken by Mrs : Suzy Pace and Mrs. Joan Stivala (Muscle Research Group, 

John Curtin School of Medical Research, Australian National University, Canberra, Australia) 

in accordance with Laver et al. (1995). Cardiac SR vesicles were collected from sheep hearts 

that underwent homogenisation and isolation through a series of centrifugation steps that were 

developed by Chamberlain and Fleischer (1988). 

Immediately following euthanasia of a sheep (IV delivery of 3.25mg/ml of sodium 

pentobarbitone per 2 kg of body weight), the heart was excised and trimmed of fat, blood 
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vessels and atrial tissue. The remammg heart ventricle was then sequentially diced and 

homogenised using a Waring blender (Waring Products Division; Connecticut, USA) in 10 s 

bursts three times in 500 ml of homogenising buffer consisting of: 290 mM sucrose, 10 mM 

irnidazole, 0.05 rnM DTT and 3 rnM NaN3, pH adjusted to 6.9 with 6 M HCI. The homogenate 

was centrifuged at 12 295.8 x g using a Sorvall SLA-1500 rotor in a Sorvall RC-5B high-speed 

centrifuge (Dupont; Norwalk, USA) for 20 min at 4 °C. The supernatant was filtered through 

four levels of cotton gauze to remove excess fat. The filtrate was then centrifuged at 104 350.1 x 

g using a Ti-45 rotor in a Beckman L8-70 centrifuge (Beckman Instruments; Gladesville, 

Australia) for 2 h at 4 °C. The resulting supernatant was discarded and the insoluble membrane 

that formed the pellet was resuspended in a solution of 649 mM KCl in homogenising buffer 

(pH adjusted to 6.7 with 6 M HCI) using a Potter homogeniser. The homogenised solution was 

incubated on ice for 30 min and then centrifuged at 6 084.1 x g using Sorval SLA 3000 Super 

lite rotor in a Sorvall RC-5B high speed centrifuge (Dupont: Norwalk, USA) for 10 min at 4 °C. 

The resulting supernatant was then further centrifuged at 256 630.8 x g using a Ti-70 rotor in a 

Beckman L8-70 centrifuge for 90 min at 4 °C. The subsequent supernatant was discarded and 

the pellet was resuspended in 15 ml of solution with 649 mM KCl in homogenising buffer (pH 

6.7) and · then homogenised using a Potter homogeniser. The SR vesicle preparation was 

separated into 20 µI aliquots and frozen at -70 °C. The final protein concentration was 

determined using DC Protein Assay kit (section 2.2.7 .3). 

5.2.6 Expression of recombinant WT RyRl and RyRl KtoQ mutant and isolation 
of micro vesicles 

The two RyRl constructs were expressed using calcium precipitation-induced 

transfection of HEK293 cells, and the HEK293 membrane vesicles were isolated using a series 

centrifugation steps as described in Kimura et al. (2005). Studies have shown that HEK293 cells 

endogenously express functional RyRl and RyR2 (Querfurth et al., 1998, Luo et al., 2005). 

However, the leve l of protein expression drastically reduces following multiple passage (P) 

numbers above P25 (Luo et al., 2005). To avoid mixture of our recombinant RyRl samples with 

endogenous WT RyRl , HEK293 cells with passage numbers above P30 were typically 

transfected with the RyRl constructs. Markedly, only adherent HEK293 cells that displayed 

morphology typical of healthy HEK293 cells, as viewed under the 20 x objective of a light 

microscope, were transfected. In addition, HEK293 cells were mock-transfected using deionised 

water in place of cDNA as a negative control. 

5.2.6.1 Expression of recombinant WT RyRJ and RyRJ KtoQ mutant 

HEK293 cells were cultured on 175 cm2 nucleon delta treated flask (Thermo Scientific: 

Rockford, USA) in minimum essential medium (MEM) F15 media (consisting of 26.2 mM 

NaHCO3, 9.61 g/L of F15 MEM powder) in Heracell 240i CO2 Incubator (Thermo Scientific: 
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Rockford, USA) at 37 °C with constant 5% CO2• The media was refreshed when the adherent 

cells had grown to 50-60% confluency. 

The calcium precipitate transfectant mixture was prepared by slowly adding 1.3125 ml 

of DNA solution (80 µg DNA and 285.7 mM CaCh) to 1.6875 ml of phosphate buffer solution 

(1.24 mM NaH2PO4, 250 mM NaCl, 45 mM 4-(2-hydroxyethyl)-l-piperazineethanesulfonic 

acid and 0.13 mM Na2HPO4, pH adjusted to 7.2 with 4 M NaOH) that was simultaneously being 

aerated by pipetteman aspiration. This was incubated at ~21 °C for 45 min and then dripped 

over the cells 3 h following media refreshment. The transfected cells were incubated for 24 h at 

37 °C and then the media was refreshed. Following further 24 h incubation, the cells were 

removed from the plate using a cell scraper. The cells were spun down at 155 x g using an 

Universal 16 centrifuge (Andreas Hettich GmbH & Co.: Tuttlingen, Germany) for 5 min and 

supernatant was removed. Then the cells were resuspended in 2 ml of resuspension buffer (0.5 

mM EDTA in PBS) and further spun down at 1 387 x g for 20 min. The cell pellet was stored at 

-70 °C. 

5.2.6.2 Isolation of micro vesicles 

The frozen cells were resuspended in 1.5 ml of homogenising buffer (300 mM sucrose, 

5 mM imidazole and 1 x Complete protease inhibitor cocktail, pH 7.4). Using an IKA ®TIO 

Basic Homogenizer (IKA ®Works: Selangor, Malaysia), the cell mixture was homogenised twice 

in 5 s bursts. The cell membrane components were spun down at 11 600 x g using an Eppendorf 

centrifuge 5415 (Hamburg, Germany) for 20 min at 4 °C. The cell pellet was resuspended in 1.2 

ml of sucrose-imidazole buffer and re-homogenised using the IKA ®TIO Basic Homogenizer 

three times in 5 s bursts. Then, the insoluble cellular components were spun down at 91 943 x g 

using a Beckman TLA120.2 rotor in a Beckman Optima MAX ultracentrifuge (Beckman 

Instruments; Gladesville, Australia) for 2 h at 4 °C. The pellet was resuspended in 300 µls of 

homogenising buffer, and homogenised for 5 min using a Potter homogeniser. The preparation 

was further homogenised by sonication using a Branson Ultrasonics Sonifier 250 (Danbury, CT) 

twice in 2 s bursts. The preparation was separated into 15 µI aliquots and stored at -70 °C. All 

preparations were tested for RyRl using western blot after SDS-PAGE, as described in sections 

2.2.6 ~nd 2.2.4, respectively. Notably, mock-transfected HEK.293 cells did not contain RyR, at 

least not to amounts that were visib.le by immuno-detection. 

5.2. 7 . Planar bilayer recordings of RyR 

The planar bilayer experiments were carried out as described in section 2.2.9. Following 

channel incorporation, the initial cis and trans chamber solutions were identical, consisting of 

20 mM CsCI, 230 mM CsCH3O3S, 10 mM TES and 1 mM CaCb, pH 7.4. The typical full­

length experiment proceeded with cis addition of 1 mM BAPTA (quantity determined by Ca2
+ 

electrode) to reduce ~ 1 mM [Ca2+] to 10 µM. Then, 2 mM ATP was added to the cis chamber 
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and control channel activity was recorded for at least 10 min, alternating between +40 and -40 

mV every 30 s. 

5.3 Results 

5.3.1 Pia subunit modulates RyR2 activity 

In order to identify potential sites for Pia interaction, it was of interest to investigate 

whether the modulatory effect of P,a is conserved between RyRl and RyR2 in lipid bilayers. 

The effect of Pia subunit on native RyR2 was assessed using the same experimental design used 

to assess the effects of peptides on RyRl activity ( described in section 4.3 .1 ), with exception 

that pig cardiac SR vesicles were incorporated into the lipid bilayer. It was also important to 

confirm channel identity (as RyR2) and orientation in the lipid bilayer. This was achieved by 

observing gating, conductance and response to cytoplasmic RyRl regulators, such as ATP, 

[Ca2+] and ruthenium red. 

5.3.1.1 Characteristics of RyR2 in lipid bilayers 

The gating characteristics of RyR2 were similar to those of RyRl , which were 

extensively described in Chapter Three. The average single RyR2 channels displayed maximal 

conductance of 261.2 ± 33.2 pS (n = 4) and 284.8 ± 8.2 pS (n = 3) at +40 and -40 mV, 

respectively, calculated using Equation 2.11. This is similar to the Cs+ conductance of RyRl , 

and agrees with previous observations by Williams (1992). Another similar feature was that 

most openings were to the maximal amplitude for single channel openings rather than sub-state 

openings (see "control" in Figure 5.lA). 

5.3.J.2 Response of RyR2 to cytosolic modulators 

Following incorporation of cardiac SR vesicles into lipid bilayers, channel activity was 

recorded for 2 min prior to and after reduction of cis free [Ca2+] from 1 mM to 10 µM. The 

decrease in free cis [Ca2+] from 1 mM to 10 µM did not typically alter channel activity at +40 or 

-40 mV, which averaged to Log10 rel P0 of 0.06 ± 0.06 (n = 15, p = 0.33). This lack of response 

agrees with earlier reports that show average RyR2 activity does not differ with cis [Ca2+] 0.01 

and 1 mM, both of which are on the plateau of the curve relating RyR2 P0 to cytoplasmic [Ca2+] 

over a range of 100 nM to IM [Ca2+]cis (Laver et al., 1995, Laver, 2007). 

To further confirm the channel identity and orientation in the bilayer, channel activity 

was assessed following cis addition of 2 mM ATP. This addition increased RyR2 activity by 

2 .1-fold (Log10 rel P0 of 0.32 ± 0.06, n = 10, p < 0.001). A similar increase in channel activity 

has been reported in other studies that characterised the action of ATP on RyR2 activity and 

used 2 mM ATP and activating cis [Ca2+] to confinn identity of RyR2 ( e.g. Rousseau et al. 

(1986), Williams and Ashley° (1989), Laver et al. (1995), Laver et al. (1997b)). 
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Addition of 40 µM ruthenium red near the end of a channel recording typically reduced 

or abolished RyR2 activity (Figure 5.lC). This agrees with the response of RyR2 to ruthenium 

red reported in other studies that have tested a range of concentrations between 10-30 µM (e.g. 

Rousseau et al. (1986), Sitsapesan and Williams (1990), Laver et al. (1995), Dulhunty et al. 

(2005)) . 

The combined response of channels from cardiac SR vesicle preparations to RyR 

modulators confirmed the identity of the channels as RyR2. Any channels that did not respond 

in the appropriate manner to changes in cis [Ca2+] and ATP were discontinued. Additionally, 

any channel that did not respond to addition of ruthenium red was not analysed. 

5.3.J.3 P1a subunit increases RyR2 activity 

The actions of Pia subunit on RyR2 were assessed by examining the effect cis addition 

of 10 and 100 nM Pia on RyR2 gating properties using the same experimental design that was 

used to assess the functional effect of the Pia subunit on RyRl activity (section 4.3.7). Addition 

of 10 nM Pia subunit increased RyR2 activity at both +40 and -40 mV, an effect that was 

enhanced following addition of 100 nM Pia subunit (Figure 5.1, A and B). Despite the intrinsic 

activity fluctuations over time, the average channel activity was increased significantly by 2-

fold (p :'S 0.001) following addition of 10 nM Pia subunit. The modulatory effect of the Pia 

subunit was marginally enhanced by 1.4-fold (p = 0.011) after increasing its concentration to 

100 nM (Figure 5.lC). The effect of Pia on RyR activity did not significantly differ (p = 0.387-

0.939) between +40 and -40 mV (e.g. for RyR2, Log10 rel P0 of 10 nM Pia was 0.30±0.05 and 

0.32±0.08, respectively), therefore these values were combined. On average, addition of 10 and 

100 nM Pia subunit to RyR2 increased relative P0 1.8- and 2.6-fold (p :'S 0.001), respectively. 

Markedly, the action of 10 nM Pia subunit on relative RyR2 P0 was significantly lower (p :'S 

0.001) than the action of 100 nM Pia on both RyRl and RyR2, and significantly lower than the 

effect of 10 nM Pia on RyRl (Figure 5.lD). This reduced efficacy at 10 nM indicates that the 

effective concentration of Pia for the activation of RyR2 by Pia is higher than that between Pia 

and RyRl. 

The action of Pia on single channel gating parameters mostly reflected the average 

relativ,e P0 results (Figure, 5.lD and 5.2). On Average, 10 and 100 nM Pia subunit increased 

relative T0 values by 1.6- to 1.9-fold, decreased relative Tc values by 1.7- to l .9-fold and 

increased relative F 0 values by 1.6- to 2.1-fold, respectively (Figure 5.2). There appears to be a 

genera,! trend for the action of 100 nM Pia on single RyR2 channel gating parameters to be 

higher than the action of 10 nM (Figure 5.2). Overall, the results clearly show that Pia increases 

the average duration and frequency of RyRl and RyR2 single channel openings, and decreases 

the average duration between channel openings. 
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Figure 5. 1 The effect of Pia subuni t on RyR l and RyR2 activity in lipid bilayers. 

A and B) Three second records of single channel activity at +40 mV (A) or -40 mV (B) that di sp lay representative 
native RyR2 activity before (top records: control) and after cis addition of 10 nM Pia subunit (middle record) and 
100 nM Pia subunit (bottom record). Open probability (P0 ) is shown in the right top corner. C) A timeline of RyR2 
activ ity following sequential cis add ition of2 mM ATP (pink circle), 10 nM Pia (green diamonds), 100 nM Pia (blue 
triangles) and 40 µM ruthenium red (light green square). The channel activity over 10 s was taken from ~30 s 
intervals of activity at +40 and -40 ·mv. For each condition, there is a mean (continuous line) ± SEM (discontinuous 
line) of the scatter plot. *S ignificantly different from prior condition, determined using a paired Student's t-test, p < 
0.05 . D) Average relative P0 (log 10 rel P0 ) was calculated in the same way as Figure 4.4. P0 was measured from ~ 90 
s records ofRyRl activity, n = 8-15 channel records. Error bars indicate + SEM. Control P0 values in Tables 4.6 and 
5.1. The mean ± SEM log10 rel PO values for dialysis buffer additions are shown as continuous pink line and 
discontinuous pink line, respectively. The data for ' RyRI ' is a re-plot of the 'P1a' data shown in Fig. 4.20D. 
*Significantly different from contro l activity set at zero, determined using a paired Student's t-test, p < 0.05. 
#Significantly different from 10 nM Pia on RyRI. 0Significantly different from 100 nM Pia on RyR2 activity . 
#◊Significance determined by ANOV A, p < 0.05. 
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Table 5. 1 Mean control parameters for channels used in analysis of Pia subunit on RyR2. 

Open probability (P0 ), mean open time (T0 ) , mean closed time (Tc) and open frequency (F0 ) mean± SEM and number 

(n) of observations for data presented in Figure 5.1 and Figure 5.2 

Channel parameter [subunit] (nM) Mean Parameter ±SEM n 

10 0.119 0.029 13 
Pa 

100 0.079 0.027 8 

10 6.423 1.465 9 
Ta (ms) 

100 6.448 2.074 9 

10 63.662 20.61 13 
Tc (ms) 

100 67.701 13.93 11 

Fa (f1
) 

10 24.865 6.157 11 

100 17.857 3.632 7 
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Figure s: 2 The similar mo?ulatory effect of Pia subunit on RyRl and RyR2 single channel gating parameters in 

lipid bill!yers. 

The average mean open time (log10 rel T0 ; A), mean closed time (log10 rel Tc; B) and open frequency (log 10 rel F 0 ; 

C) was calculated in the same way as the log 10 rel P0 (Figure 4.4) from - 90 s of single channel activity, n = 6-13 

channel records. Error bars indicate+ or SEM. The data for 'RyRl' is a re-plot of the 'Pi a' data shown in Fig. 4.21. 

*Significantly different from control activity set at zero, determined using a paired Student' s t-test, p < 0.05 . 
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Not all dwell-time distributions were equivalent in control RyRl and RyR2, in the 

absence of Bia subunit. In particular, the fraction of RyR2 events at the L02 were greater (p < 

0.001), events in the Lo i were lower (p < 0.001) and events in the Lei were greater (p =0.047) 

relative to the fractions of events falling into respective RyRl dwell-time constant components 

(Figure 5.3). Both, 10 and 100 nM Bi a subunit decreased the fraction of RyR2 open events 

falling in the Lo i by 18.7 ± 1.8% (p =0.003) and 16.3 ± 2.0% (p =0.012), respectively, relative to 

control. However, only 100 nM Bi a subunit significantly (p =0.012) increased the fraction of 

RyR2 open events falling in the L03 value, which likely contributes to the reduced action of 10 

nM Bi a subunit on RyR2 relative P0 in respect to 100 nM. In contrast to the open dwell-time 

distributions, there is no significant difference between the effect of 10 and 100 nM Bi a subunit 

on RyR2 closed dwell-time distributions relative to control. Both, 10 and 100 nM Bia subunit 

shifted a fraction of RyR2 closed events from the Le2 to Lei values by 14.9 ± 3.1% (p = 0.002) 

and 13 .8 ± 4.7% (p = 0.024), respectively, relative to control. It is noteworthy that the effect of 

Bi a on the dwell time distributions is different between RyRl and RyR2. In particular, a fraction 

of RyRl open events shifted from Lo i to L02 values and a fraction of RyRl closed events shifted 

from Le3 to LeJ values, which differ from the RyR2 time constants that had their fractions shifted 

in response to Bia subunit, as mentioned above. However, the overall effect of this difference 

between the action of Bi a on RyRl and RyR2 may be small given that the overall effect of 100 

nM Bi a subunit on RyRl and RyR2 relative P0 was similar. 

Overall, the results indicate Bi a subunit increases both RyRl and RyR2 activity with a 

slight concentration-dependent effect between 10 and 100 nM Bia in RyR2, but not RyRl , 

activity. Analysis of the single channel dwell-time distributions suggests that the reduced 

efficacy is likely attributed to the fact that 10 nM Bia did not increase the fraction of RyR2 

openings falling into the longer time constants. 
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5.3.2 The polybasic residues K3495-R3502 are important for Pia subunit 
modulation of RyRl activity 

To assess the effect of the polybasic K3495-R3502 motif on the interaction between Bia 
and RyRl , a construct of RyRl with the polybasic residues mutated to glutamines (KtoQ) was 

exogenously expressed in a mammalian cell line (HEK293) and incorporated into lipid bilayers. 

Markedly, the RyRl KtoQ construct, that was kindly provided by Prof. Robert Dirksen 

(Department of Pharmacology and Physiology, University of Rochester, New York, USA), was 

also tested in dyspedic myotubes for its ability to restore voltage-induced SR Ca2
+ transients and 

DHPR Ca2
+ current, which involved essentially repeating the myotube experiments undertaken 

by (Cheng et al. , 2005). 

It was necessary to confirm the channel identity and orientation within the bilayer, 

which was achieved using the same experimental approach that was used to establish the 

identity of native RyRl. This involved assessing single channel gating characteristics and 

activity response to cytoplasmic regulators: [Ca2+], ATP and ruthenium red. Notably, the action 

of B,a subunit on RyRl KtoQ mutant was compared with the action of Bia on wild type (WT) 

RyRl that was also exogenously expressed in HEK293 cells. 

5.3.2.1 Polybasic RyRl residues facilitate voltage-induced Ca2
+ transients m 

transfected dyspedic myotubes 

Cheng and colleagues (2005) demonstrated that expression of full-length RyRl KtoQ 

mutant in dyspedic myotubes restored only ~50% of the maximal voltage-induced SR Ca2
+ 

transients relative to expression of WT RyRl. RT Dirksen's laboratory tested whether 

expression of their full-length RyRl KtoQ construct (used in this study) in dyspedic myotubes 

also impaired restoration of Ca2
+ transients that were assessed via Indo-1 AM confocal 

measurements (R. T. Dirksen, personal communication). These measurements were obtained 

simultaneously with voltage-clamp measurements of voltage-induced DHPR Ca2
+ current. 

Similar to Cheng and colleagues (2005), RT Dirksen ' s laboratory found that the 

maximal voltage-induced SR Ca2
+ release was 47% lower (p < 0.05) in RyRl KtoQ expressing 

dysp edic myotubes relative to WT RyRl expressing dyspedic myotube (Figure 5.4A). In 
addition, the maximal Ca2

+ release rate was significantly reduced (p < 0.05) (Figure 5.4B), but 

the midpoint potential (Vial[) remained the same in RyRl KtoQ expressing dyspedic myotubes 

(Figure 4.SCi). These findings indicate that RyRl KtoQ mutant reduces restoration of voltage­

induced SR Ca2
+ release, but not voltage activation of DHPR. 
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Boltzmann function . Error bars indicate ± SEM. B) The average mean ± SEM of the maximum Caz+ release rate. C) Averages of membrane Ca2+ current in fibres as a function of voltage. The 
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and Physiology, University of Rochester, New York, USA) 
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As shown in Figure 5.4C, the density voltage-induced DHPR Ca2
+ current was largely 

restored in RyRl KtoQ expressing dyspedic myotubes to levels seen in WT RyRl expressing 

myotubes. The maximal voltage-induced DHPR Ca2
+ conductance (Gmax) was largely restored, 

with a slight 24% reduction (p < 0.05). Curiously, Cheng and colleagues (2005) found that Gmax 

was fully restored in both KtoQ expressing dyspedic myotubes and WT RyRl expressing 

dysp edic myotubes. Regardless, the marginal reduction in Gmax is unlikely to have contributed to 

the substantially reduced voltage-induced SR Ca2
+ release in KtoQ expressing dyspedic 

myotubes (mentioned above; Figure 5.4A). This is particularly since the curve relating maximal 

Ca2
+ release to voltage (I-V curve) is sigmoidal (Figure 5.4A), a classic feature of skeletal-type 

EC coupling. This is opposed to a bell-shaped curve that classically relates SR Ca2
+ release to 

Ca2
+ influx through the DHPR, following the I-V for the Ca2

+ influx that is typical of cardiac­

type EC coupling (Beuckelrnann & Wier, 1988, Garcia et al. , 1994). In other words, if the 

maximal SR Ca2
+ release was dependent on the DHPR Ca2

+ current, than the iJF/F would have 

decreased at higher voltages ( > 20 mV) in a proportional manner as the DHPR Ca2
+ current 

does at these higher voltages (Figure 5.4C). As can be seen in Figure 5.4, A and C, this is not 

the case. 

Overall, RT Dirksen ' s laboratory found that expression of RyRl KtoQ mutant in 

dyspedic myotubes only partially restored maximal voltage-induced SR Ca2
+ release, in contrast 

to WT RyRl , which is similar to the findings by Cheng and colleagues (2005). 

5.3.2.2 Characteristics of WT RyRJ and RyRJ KtoQ mutant in lipid bilayers 
In this study, the conductance at +40 and -40 m V for WT RyRl was 311.9 ± 25 .2 pS (n 

= 4) and 236.5 ± 12.5 pS (n = 3), respectively, which was similar to the ~220 pS described by 

Goonasekera et al. (2007) for WT RyRl exogenously expressed in HEK293 . The RyRl KtoQ 

mutants displayed similar conductance levels with 222.3 ± 18.5 pS and 247.3 ± 33.1 pS at -40 

and +40 mV, respectively. 

Two notable features of the recombinant RyRl , that differed from the previously 

characterised native RyR gating properties, ( section 3 .3 .1 and 5 .3 .1.1) were that 1) most channel 

openings were to a sub-state of the maximal open amplitude and 2) the average control P0 

values were ~ 2-fold greater (Figure 5.5, A and B). Sub-state activity is a characteristic feature 

of iso lated RyRl that lack the native associated proteins, as noted by Imagawa et al. (J 987) 

when RyRl was first purified and incorporated into lipid bilayers . This could be attributed to a 

lack of FKBP12.0-RyRl association, as dissociation of FKBP12.0 has been shown to increase 

the incidence of sub-state activity in lipid bilayer experiments (Ahem et al. , 1997) (section 

1.4.3 .5). Although FKBP 12.0 dissociation has also been shown to increase RyRl activity, 

Ahem and colleagues (1997) found that this was not the case with cis free 10 µM Ca2
+. Thus, as 

experiments here were perfo~ed with 10 µM free Ca2
+ in the cis solution, it is unlikely that a 
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lack of associated FKBP12.0 also contributes to the increase in average control Pa values. Given 

that native RyR have an array of endogenous modulators (section 1.4.3), it is not possible to 

attribute these features to a particular factor, without further extensive investigations. 

5.3.2.3 Response of WT RyRJ and KtoQ mutant to cytoplasmic regulators 

WT RyRl and RyRl KtoQ mutant activity was modulated by [Ca2+], ATP and 

ruthenium red in a similar fashion as native RyRl. Indeed, the modulatory effect of these 

regulators was similar (p = 0.356-0.894) between +40 and -40 mV, and consequently the data 

was combined. 

The decrease in cis free [Ca2+] from 1 mM to 10 µM increased WT RyRl and RyRl 

KtoQ relative Pa by 1.7- and 1.6-fold (Log10 rel Pa of 0.22 ± 0.06 [p = 0.013] and 0.20 ± 0.09 [p 

= 0.048], respectively, n = 7). This change in channel activity is similar to that in recombinant 

WT RyRl activity in lipid bilayer and [3H]ryanodine binding experiments (Goonasekera et al. , 

2007). Furthermore, this is also similar to the increase in native RyRl activity upon reducing cis 

[Ca2+] from 1 mM to 10 µM (section 3.3.3.1 ; Laver et al. (1995)). These results suggest that the 

WT RyRl is a functional RyRl that is correctly orientated within the lipid bilayer. 

Addition of 2 mM ATP to the cis chamber solution increased both WT RyRl and RyRl 

KtoQ mutant activity by 2.2- and 2.5-fold (Log10 rel Pa of 0.34 ± 0.12 [p = 0.032] and 0.40 ± 

0.14 [p = 0.037] , respectively, n = 7). This agrees with the response of native RyRl to cis 

addition of ATP (section 3.3.3.2). 

Addition of 40 µM ruthenium red near the end of a full experiment typically abolished 

or greatly reduced WT RyRl activity and RyRl KtoQ mutant activity, which agreed with the 

action of ruthenium red on native RyRl activity (above). When experiments ended prematurely 

due to bilayer breakdown, ruthenium red was not tested. In these cases, RyRl identity and 

orientation was assessed from the channel conductance and response of Pa to cytoplasmic [Ca2+] 

and ATP. 

In summary, WT RyRl responded to RyR regulators in the same fashion as native 

RyRl , which indicates that WT RyRl experiments analysed in this study were fully functional 

RyRl and correctly orientated within the lipid bilayer. Given that RyRl KtoQ mutants 

displayed the same modulatory response to these RyR modulators, it is likely that the KtoQ 

mutation does not alter RyRl function in the absence of Pia subunit. 
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Table 5. 2 Mean control parameters for channels used in analysis of Pia on Wt RyRl and RyR I KtoQ. 

Open probability (Pa), mean open time (Ta), mean closed time (Tc) and open frequency (Fa) mean± SEM and number 

(n) of observations for data presented in Figure 5.5 and Figure 5.6. 

Channel parameter 
Control for cis Pia [subunit] Mean 

±SEM 
subunit (nM) Parameter 

n 

10 0.265 0.041 14 
WTRyRl 

100 0.255 0.057 9 
Pa 

10 0.197 0.067 11 
RyRl KtoQ 

100 0.249 0.114 6 

10 7.524 1.787 10 
WTRyRl 

Ta (ms) 100 11.74 6.050 7 

10 16.65 11.79 9 
RyRl KtoQ 

100 2.935 0.541 6 

10 38.43 14.96 11 
WTRyRl 

Tc (ms) 100 56.37 25.60 6 

10 117.8 38.03 9 
RyRl KtoQ 

100 78.37 48.84 6 

10 33.51 9.295 6 
WTRyRl 

Fa (f 1) 
100 19.20 9.107 4 

10 50.99 25.39 9 
RyRl KtoQ 

100 72.77 35.31 6 

5.3.2.4 The RyRl polybasic K3495-R3502 motif residues are important for P1a 
subunit modulation of RyRl activity 

Since the WT RyRl displayed the same regulatory and conductance properties as native RyRl, 

it was predicted that the action of 10 and 100 nM ~la subunit on WT RyRl would be similar to 

that on native RyRl. Therefore, these concentrations were tested. Addition of 100 nM ~la 

subunit to the cis chamber solution typically increased WT RyRl activity at both voltages 

(~igure_ 5.5, A and B) within the first 2 minutes of peptide addition. Despite intrinsic variability 

channel activity over time, the channel activity typically remained activated over the 15-20 min 

time ~ourse following addition of the peptide. This response was not mirrored by RyRl KtoQ 

mutants, which was unaffected by addition of 100 nM ~la subunit (Figure 5.5B). Over the time 

course of each experiment, addition of 10 nM ~la subunit increased WT RyRl, not RyRl KtoQ, 

activity (Figure 5.5, C and D), and this action was not enhanced by addition of 100 nM ~la 

subunit to WT RyRl or RyRl KtoQ (Figure 5.5C and D). 

The effect of ~l a subunit on WT or RyRl KtoQ did not differ (p = 0.677-0.991) between 

+40 and -40 m V and as a result these values were combined as usual. On average, 10 and 100 

nM ~la subunit significantly increased WT RyRl relative Pa by 1.8- and 1.9-fold (p ~ 0.006), 
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respectively (Figure 5.5D). Whereas, RyRl KtoQ relative P0 was not altered (p = 0.80 and 

0.2 1, respective to 10 and 100 nM) after addition of Bia subunit (Figure 5.5D). Thus, the 

modulatory effect of Bi a subunit was lost when the polybasic residues within the K4395-R3502 

region were neutralised. 
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Figure 5. 6 The effect of 0ia subunit on WT RyRl and RyRl KtoQ single channel gating parameters in 
lipid bilayers. 

The average mean open time (log10 rel T0 ; A), mean closed time (log10 rel Tc; B) and open frequency 
(log10 rel F0 ; C) was calculated in the same way as the log 10 rel P0 (Figure 4.4) from ~90 s of single 
channel activity, n = 3-12 channel traces. Error bars indicate + or SEM. *Significantly different from 
control activity set at zero, determined using a paired Student's t-test, p < 0.05. # Significantly different 
fro m the same [0 1a] on WT RyRI , determined by ANOY A, p < 0.05 

The response of average single channel gating characteristics reflected the action of the Bia 
subunit on relative P0 values. Addition of 10 and 100 nM Bia subunit increased single WT RyRl 

channel relative T0 and relative F0 values and decreased relative Tc, whereas RyRl KtoQ 

channel parameters did not differ from control (Figure 5.6). This indicates that the action of Bia 
subunit in increasing the duration and frequency of channel openings and decreasing the 

duration between channel openings is lost upon neutralisation of the polybasic residues. 

Overall , the action of Bia subunit on WT RyRl gating is abolished when the polybasic 

residues are neutrali sed. Consequently, this indicates that the polybasic residues support the 

functional effect of the Bia subunit on RyRl activity. 
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5.4 Discussion 

The focus of the experiments presented in this chapter was to establish whether the 

functional action of Pia subunit was conserved between RyRl and RyR2, and to examine the 

role of the RyRl polybasic motif in the functional interaction between P,a subunit and RyRl . 

The effect of the P,a subunit on recombinant RyRl constructs and native RyR2 was examined in 

lipid bilayers. 

5.4.1 The action of Pia subunit is conserved between RyRl and RyR2 

The results demonstrate that the functional effect of 100 nM Pia subunit was conserved 

between RyRl and RyR2 (Figure 5.1), however, the modulatory effect of 10 nM Pia was lower 

in RyR2 activity than RyRl (Figure 5.1). This difference in effect on RyR isoforms is likely 

due to the binding affinity of 10 nM Pia subunit for RyR2 being lower than its affinity for RyRl. 

This is opposed to a difference in ability to maximally modulate RyR activity, although this was 

not specifically tested by increasing P,a to concentrations higher than 100 nM. However, 100 

nM P,a imposes the same functional effect on RyRl and RyR2 gating properties (Figure 5.1) 

and the dwell-time distributions indicated that 10 nM Pia does not increase the fraction of events 

in the longer open time constant group in RyR2, whereas 100 nM P,a does (Figure 5.3). 

The implications of these results are that the Pia binding site is likely conserved between 

RyRl and RyR2, but with difference in either the binding site or the surrounding region that 

contributes to a minor reduction in P,a affinity for RyR.2 relative to RyRl. It is difficult to 

extrapolate as to which sequences could account for the affinity difference of P,a, particularly 

since there is 13.2% complete sequence disparity between RyRl and RyR2 isoforrns, as 

determined using CLUSTALW multiple alignment (Combet et al. , 2000) of rabbit RyRl 

(Swiss-Prot: P11716.1) and RyR2 (Swiss-Prot: P30957 .3). Markedly, there is emerging 

evidence that the first of two alternatively spliced regions (ASI(-) lacks residues 3481-3485; 

section 1.4.2) in RyRl is modulated by 10 nM Pia in the same manner as RyR2 (Ms . H. 

Willemse, personal communication). Specifically, the modulatory effect of 10 nM Pia subunit is 

lower on ASI (-) than ASI (+). This is noteworthy since rabbit (and predicted pig) RyR2 

sequence lacks four of the five ASI residues when aligned with rabbit RyRl . It is also 

noteworthy that the ASI region is nine residues upstream of the RyRl polybasic motif that has 

been shown to influence EC coupfing and P,a modulation of RyRl (section 5.3.2; Cheng et al. 

(2005)) . Thus, it may be that the altered effect between 10 and 100 nM of Pia subunit on RyR2 

is attributed to the lack of ASI region. 

5.4.1.1 Physiological relevance and implications 

At first glance, conservation of the modulatory effect of Pia subunit on RyRl and RyR2 

does not reflect the in vivo situation, particularly as several studies have shown that RyR2 is 
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unable to replace RyRl in skeletal EC coupling (Nakai et al. , 1997, Protasi et al., 2002). 

However, as DHPR tetrads are not formed in RyR2 expressing dyspedic myotubes (Protasi et 

al., 2002), it is likely that with Pi a anchored to ai s it would not be in a position to interact with 

RyR2. 

5.4.2 Action of the Pia subunit on WT RyRl 

It is notable that the effect of the Pia subunit on WT recombinant RyRl was ~ 30% 

lower than its effect on native RyRl isolated from muscle (Figures 4.19D, 5.lD and 5.5). Given 

that WT RyRl gating properties and channel response to RyR modulators were similar to those 

observed by native RyRl (sections 3.3.3 and 5.3.1.2), it is unlikely that the difference in Pia 

modulation would be attributed to a difference in RyRl structural integrity. Instead, the 

difference in Pi a modulation could be due to native RyRl associated proteins, such that one or 

more associated proteins facilitate the interaction between Pia and RyRl. However, it is more 

likely that the 2-fold larger control P0 contributed to the discrepancy in effect on WT RyRl and 

native RyRl , which likely reduced the level of possible activation before reaching the maximal 

P0 intrinsic to each channel. Evidence for this being the case is that Pi a subunit increases 

recombinant WT RyRl activity by 3- to 4-fold (p < 0.05, n = 5 channels), when ATP is not 

present and the control P O is ~0.1 (H. Willemse, personal correspondence). Certainly, this level 

of control activity is more similar to control activity exhibited by native RyRl, than WT RyRl , 

used in this study. Therefore, it is likely that the Pia-driven modulation of RyRl activity is 

independent of RyRl associated proteins and consequently the interaction between Pia subunit 

and RyRl is through a direct interaction between the two proteins. 

5.4.3 The importance of the RyRl polybasic motif for interaction with Pia 
subunit 

The role of the RyRl polybasic motif for the interaction with Pia subunit was assessed 

by recording the response ofrecombinant RyRl KtoQ activity following addition of Pi a subunit. 

The response of RyRl KtoQ to cytoplasmic modulators was similar to WT RyRl (section 

5 .3 .2.2), indicating that the channels were fully functional. This also indicated that 

neutralisation of the polybasic motif in RyRl K3495-R3502 abolished the action of Pi a subunit 

on WT RyRl activity and gating parameters, rather than being a by-product of altered RyRl 

integrity. Given that Cheng and colleagues (2005) demonstrated that the polybasic region is 

important for pull down of Pi a subunit by a RyRl fragment, the results suggest that the action of 

Pi a subunit on RyRl KtoQ can be attributed to a lack of binding. The importance of the 

polybasic region is likely through maintaining RyRl conformation for Pi a access to the binding 

site, rather than forming the direct binding site, particularly because it is unlikely that of the 

polybasic motif would interact directly with the Pi a hydrophobic surface residues. 
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Given that the effect of Pia on RyRl and RyR2 activity is similar, it is important to note 

that the polybasic motif is also largely conserved between RyR isoforms (RyRl K3495KKRR _ 

_ R3502; RyR2 K3452MKRK __ R3459). This further supports the importance of the polybasic 

region for the Pia-RyR interaction, which will be discussed further in Section 6.3. 

It is of interest that the RyRl polybasic motif has been implicated in the process of ASI­

mediated inter-domain inhibition of RyRl activity (section 1.4.2) (Kimura et al. , 2007, Kimura 

et al. , 2009). Indeed, Kimura and colleagues (2009) found that the propensity of the polybasic 

motif region to form an a-helix within a peptide corresponding to RyRl T3471-G3500, was not 

altered by substituting three of the six basic residues with alanines. Hence, neutralisation of the 

polybasic motif is more likely to disrupt an inter-domain interaction rather than intrinsic 

structure of the ASI-polybasic region. It is important to note that both recombinant RyR 1, WT 

RyRl and RyRl KtoQ, respond similarly to cytoplasmic [Ca2+] and ATP (section 5.3.2.2). Also, 

since control activity was quite similar (Table 5.2), there were no signs that RyRl activity was 

different between WT RyRl and RyRl KtoQ constructs without Pi a subunit. Thus, the results 

here differ from the previously suggested involvement of the polybasic motif residues in the 

intrinsic gating properties of RyRl by Kimura and colleagues (2005 , 2007 and 2009). However, 

it should be noted that the results in this study do not necessarily disagree with Kimura and 

colleagues' findings, particularly since Kimura and colleagues (2005, 2007 and 2009) used 

conditions with cytoplasmic free Ca2
+ of 100 µM, whereas 0.01 and 1 mM [Ca2

+] cyto were tested 

here. Nevertheless, the disruption of RyRl polybasic motif mediated inter-domain interactions 

may alter Pia access to the binding site on RyRl. 

Overall, the RyRl polybasic motif appears be essential for the functional interaction 

between RyRl and Pia subunit. However, the role of these residues for interaction between Pia 

and RyRl is not clear, but may become more apparent with future understanding of the RyRl 

structure. 

5.4.3.1 Physiological implications 

Given that the RyRl polybasic motif is essential for the functional interaction between 

RyRl and Pia subunit, it can be inferred that the influence of the polybasic motif on EC 

coupling would directly equate to the role of Pia subunit in directly transmitting the EC coupling 

signal _from DHPR to RyRl. Since Cheng and colleagues (2005) and the RT Dirksen 's 

laboratory (as shown in Figure 5.4) found neutralisation of the polybasic motif reduced 

restoration of voltage-induced maximal Ca2
+ transients by ~50% in dyspedic myotubes, this 

suggests that Pia subunit contribute to 50% of the EC coupling signal transmission. 
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5.5 Conclusion 

The results presented in this chapter indicate the P,a binding site is conserved between 

RyRl and RyR2 and that this region is greatly influenced by the polybasic motif in the RyRs. A 

physiological implication is that the isoform specificity for RyRl , not RyR2, of skeletal EC 

coupling is unlikely to be attributed to a specific interaction between Pia subunit and RyRl. 

Furthermore, the influence of the RyRl polybasic residues on skeletal EC coupling is likely due 

to enabling the direct activation of RyRl activity by Pia subunit. In addition, the results, in 

combination with the literature, support the theory that the interaction between DHPR and 

RyRl is multifaceted with more than P,a subunit directly transmitting the EC coupling signal 

from DHPR to RyRl during EC coupling. 
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CHAPTER SIX - GENERAL DISCUSSION 

6.1 Introduction 

EC coupling in skeletal muscle fibres requires a physical interaction between DHPR 

and RyRl, although many of the physical components of this interaction are unknown . Both the 

a 1s subunit and P,a subunit of the DHPR are essential for EC coupling, but whether these 

subunits are directly involved in transmitting the EC coupling signal to RyRl is somewhat 

contentious. Though the region of a 1s that is important for skeletal EC coupling has been 

localised to a "critical" region in the 11-111 loop (Nakai et al. , 1998b, Wilkens et al., 2001 , 

Takekura et al. , 2004), the corresponding binding site on RyRl has yet to be discovered. 

Consequently, whether the 11-111 loop is directly involved in the interaction or whether this 

region supports Pia subunit or another associated DHPR protein for the purposes of direct 

interaction with RyRl is disputed. In contrast, regions of Pia subunit (V 490-M524) and RyRl 

(polybasic K3495-R3502 motif) that are important for P1/ RyR1 binding in in vitro studies have 

also been found to strongly influence EC coupling (Beurg et al. , 1999a, Cheng et al. , 2005, 

Rebbeck et al., 2011). Furthermore, a peptide corresponding to the Pia subunit 35 residue 

extreme C-terminus can enhance RyRl activity in lipid bilayers in a similar fashion as the full 

length P,a subunit (Rebbeck et al. , 2011). Together, these findings highlight the Pia subunit C­

terminus as a potential candidate for directly activating RyRl during EC coupling. However, the 

degree to which Pia subunit contributes to the DHPR-RyRl interaction is uncertain, particularly 

as the Pia subunit has additional roles in a 1s membrane expression and DHPR tetrad formation 

that are both essential for EC coupling (sections 1.3 .4.3 .1 and 1.3 .4.3 .3). Thus, distinguishing 

between the contributions of the Pia to EC coupling has been very difficult in in vivo models. It 

is noteworthy that a heptad repeat inotif in the Pia C-terminus has been shown to strongly 

influence skeletal EC coupling (Sheridan et al. , 2004 ). It is questionable whether the Pia heptad 

repeat motif and the RyRl polybasic motif are involved in the modulatory effect of Pia subunit 

on RyRl. Thus, the focus of this study was to distinguish between the influence of residues and 

re$ions of Pia subunit and RyRl that may be important for the modulatory effect of Pia subunit 

on RyRl activity. In investigating the Pia C-terminal residues that are involved in physically 

bindin_g to RyRl and modulating channel activity, the novel findings are as follows: 

1. . Heptad repeat residues do not impact the activating effect of Bia C-terminal residues on 

RyRl activity. Alanine substitution of Pia heptad repeat residues (L4 78, V 485 and 

V492) did not alter the overall activating effect of the Pia A474-A508 peptide on RyRl 

activity. This suggests that these residues may not influence EC coupling through 

facilitating the functional interaction between Pia C-terminal residues and RyRl , but by 

another mechanism that is not conserved between mammalian and zebrafish EC 

coupling. 
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2. The Bi a V490-A508 region is sufficient to replicate the modulatory action of Bia subunit 

on native RyRl activity. A peptide corresponding to this region activated RyRl to 

similar levels observed by the full-length P,a subunit. Hence, the functional effect of the 

subunit is governed by residues within the V 490-A508 region. It is notable that this 

agrees with in vivo studies that show cytoplasmic addition of P,a V 490-A508 peptide 

into adult myofibres enhances maximal Ca2
+ transients to the same level exhibited by 

addition of full length P,a subunit (presented in section 4.3 .4; Garcia et al. (2005), 

Hernandez-Ochoa et al. (2014)). Combined, these observations imply that the P,a 
subunit is involved in EC coupling through interaction with residues within the P,a 
V 490-A508 region . 

3. Hydrophobic surface residues are important for direct physical interaction of the Bia C­

terminal residues with RyRl. Alanine substitution of all P,a hydrophobic surface 

residues (L496, L500 and W503) strongly diminished the level of RyRl pulled down by 

Pia V490-M524 peptide. 

4. Hydrophobic surface residues are essential for functional interaction between Bi a and 

RyRl. Despite residual binding in affinity chromatography, alanine substitution of all 

Pia hydrophobic surface residues abolished the activation of native RyRl by the Pia 
subunit. Curiously, individual alanine substitutions only abolished activation by the P,a 
V 490-M524 peptide at positive, not negative, potentials. Given that the individual and 

combined alanine substitutions do not alter secondary structure, the role of these 

residues is likely through their binding to RyRl, not to maintaining structure. The 

implication of the results is that all three hydrophobic surface residues cooperatively 

form a hydrophobic binding pocket for binding for RyRl. 

5. Activation of RyR by the Bia C-terminal residues is largely conserved between the 

zebrafish and mouse Bi a sequence. The Pia V490-M524 peptide and a peptide of the 

equivalent zebrafish Pia (V490-L520) sequence both activated native RyRl to a similar 

degree, although the effect on native RyRl activity was slightly lower with 10 nM Pia 
V490-L520 zf peptide relative to 10 nM P,a V490-M524 peptide. The physiological 

implications of this finding is that involvement of the Pia C-terminus in EC coupling 

through directly binding to RyRl and increasing its activity may be conserved between 

zebrafish and mice. 

In investigating the RyRl regions that are involved in physically binding to P,a subunit 

and modulating channel activity, the novel findings are as follows: 

1. The modulatory effect of Bi a subunit is conserved between RyRl and RyR2. but with 

potentially higher affinity for RyRl than RyR2. It then follows that the Pia binding site 

is likely to be conserved between RyRl and RyR2. Given that RyR2 cannot replace 
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RyRI for skeletal EC coupling in myotubes, it follows that the improper alignment of 

DHPR to RyRs when RyR2 is expressed in dyspedic myotubes limits the functional 

effect of the Pia on RyR2 activity. 

2. The RyRl polybasic motif is important for the modulatory effect of ~1 a subunit on 

RyRl activity. Glutamine mutation of the RyRl polybasic motif in full-length RyRI 

abolished activation of recombinant RyRl by the Pia subunit. Neutralisation of the 

polybasic residues with this substitution has been previously shown to largely reduce 

restoration of skeletal EC coupling in dyspedic myotubes and this has been confirmed in 

RT Dirksen's laboratory with the construct used here (section 5.3.2.1). Consequently, it 

appears that these residues are important for the full activation of RyRl by the Pia 

subunit during EC coupling. This result supports the model that the DHPR transmits the 

EC coupling signal through multiple pathways, because neutralisation of the residues 

does not completely abolish skeletal EC coupling. 

6.2 Possible mechanism of interaction between RyRl and Pia 

The Pia subunit/peptides likely increase RyRl activity through ligand binding. There are 

two results that primarily justify this statement. Firstly, the Pia peptides/subunits increase 

channel activity within the first 2 min after their addition, which is typical of ligand binding 

rather than promotion of a post-translational modification. Secondly, the recombinant RyRl and 

native RyRl can be similarly activated by Pia subunit, so that it is unlikely that the action is due 

to allosteric modification of the RyRl interaction with, or directly displacing, an endogenous 

RyR inhibitor. 

It should be noted that an effective method to test whether regulation involves ligand 

binding rather than post-translational modification is to examine whether the effect is reversible 

follow~g ligand wash out. Washout reversal has been previously tested by replacing the cis 

chamber solution by perfusion after addition of 10 nM Pia V490-M524 peptide with 10 ml of 

control solution. Although the solution exchange was effectively diluting the peptide 

concentration to < 10 pM and these concentrations have been shown to not alter RyRl activity, 

the increase in channel activity was only reversed to control levels in 50% of channels analysed 

(Rebbeck et al. , 2011 ). However, this is likely to be due to the time required to reverse the high 

affinity. binding, rather than an irreversible chemical modification or irreversible dissociation of 

a RyR inhibitor. These possibilities were not pursued further in the present study. 

· The activation of native RyRl by Pia V 490-M524 is influenced by cytoplasmic [Ca2+], 

Mg2
~ and ATP, though this is not straightforward. In the presence of inhibitory levels (2: 1 mM) 

of cytosolic Ca2
+ and Mg2+, RyRl activation by the peptide is abolished. Furthermore, the 

presence of ATP is necessary for the activation when cis Ca2
+ is 100 nM (Rebbeck et al. , 2011 ). 

There are two implications of these results. Firstly, Pia subunit is unable to reverse RyRl 
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inhibition by [Ca2+] and [Mg2+]. This discounts the possibility that the ~I a subunit may initiate 

EC coupling by relieving Mg2+-mediated RyRl inhibition as suggested by the Mg2+ de­

repression hypothesis (section 1.4.3 .2). Secondly, the channel must be partially activated, by 

either removal of [Mg2+] inhibition or by ATP-mediated RyRl activation or [Ca2+]-mediated 

RyRl activation, for activation of RyRl by ~la (Rebbeck et al. , 2011 ). 

Overall, the results indicate that ~I a binds to the cytoplasmic face of RyRl and that this 

interaction induces a conformation change in RyRl that regulates channel gating. Notably, 

either the physical or functional interaction of ~Ia with RyRl relies on RyRl being partially 

activated. 

6.3 Possible Pia subunit binding sites on RyRl and RyR2 

Given that the RyRl binding site on Pia has been localised to the hydrophobic surface 

residues on ~la, it is logical that the Pia binding partner on RyR2 will also be a hydrophobic site. 

The results from this study and other studies highlight several regions of RyRl that are 

important for its interaction with the P1a subunit. The results in section 5 .3 .1 demonstrate that 

RyR activation by the P1a subunit is largely conserved between native RyRl and RyR2. It is 

likely that the minor variation between the effect on RyRl and RyR2 is due to the lack of four­

fifths of the ASI region, as discussed in section 5 .4.1. Therefore, the binding site is likely 

conserved between RyRl and RyR2, and the RyR conformational change resulting from 

cytosolic binding to the open channel would likely also be the same in the two isoforms. This is 

somewhat supported by the similarity of the RyR polybasic motif in the isoforms, particularly 

because the polybasic motif is important for RyRl activation by Pia, as shown in this study 

(section 5.3 .2). 

Another factor to take into consideration when contemplating the P1a binding site is that 

Cheng and colleagues (2005) identified the Pia binding site in an RyRl fragment containing 

residues 3201 and 3661. This RyRl fragment contains a CaM binding site (within RyRl region 

3614-3643 (Rodney et al. , 2001)), which has been localised to a cleft between RyRl globular 

domains 3 and 8 (Wagenknecht et al., 1997, Moore et al. , 1999, Samso & Wagenknecht, 2002, 

Cornea et al. , 2009), as shown in Figure 6.1. Hence, it is likely that the Pia binding site is also 

localised, or close, to these globular RyRl domains. 

In summary, the results presented in this thesis suggest that the Pia binding site on RyRl 

is a hydrophobic pocket that is conserved in RyRl and RyR2, and is likely influenced by the 

RyRl polybasic motif and ASI region. In addition , the Pia binding site is localised to the 3201-

3661 residues, which places it approximately at the cleft between globular domains 3 and 8, as 

shown in Figure 6.1. 
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Figure 6. I The possible location of Pia binding site on RyRI , as based on CaM binding site. 

Suggested localisation of the Ca2+-calmodulin (CaM) binding site (Cornea et al. , 2009) on a 9.6A reconstruction of 

the RyRl from single particle analysis of cryo-EM images (Ludtke et al. , 2005) that was slightly adapted by 

Serysheva et al. (2008) to include highlighted globular domains of one monomer and RyR I regions circled. The 

CaM binding site resides within the sequence ofa RyRl fragment that binds with Pia subunit (Rodney et al., 2001 , 

Cheng et al. , 2005). Thus the Pia binding site may also be localised to this general site of the cleft between domains 

3 and 8. 

6.4 Limitations 

The most obvious limitation of this study is that the lipid bilayer conditions do not 

reflect the entirety of physiological conditions. However, most of the experiments were carried 

out using native preparations of SR vesicles that included SR membrane embedded proteins and 

other proteins tightly associated with RyRl. Furthermore, the cis [Ca2+] replicated [Ca2
+]cyto of a 

muscle fibre during contraction. On the other hand, the setup does not include many 

physiological factors that are known to modulate RyRl activity. This includes Mg2+, factors that 

maintain chemical modification levels (reducing and oxidising agents, ROS, kinases and 

phosphatases), DHPR and proteins associated with DHPR. The possibility that these factors 

could influence the functional interaction between RyRl and Pia during EC coupling cannot be 

excluded. 

A potential limitation of using peptides is that they may engage in interactions that 

would not normally occur in physiological conditions, i.e. peptides may provide a binding site 

that is · not accessible under physiological conditions. However, control measures were 

undertaken to minimise the possibility of a false positive result, which included the use of 

scrambled peptides, which did not alter RyRl activity (this study; Rebbeck et al. (2011)). 

Furt~ermore, there is evidence that the Pia C-terminal peptides enhance RyRl activity and 

voltage-induced SR Ca2
+ transients in adult myofibres to the same level as the full length Pia 

subunit (this study; Garcia et al. (2005), Rebbeck et al. (2011), Hernandez-Ochoa et al. (2014)). 
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6.5 Proposed role of Pia subunit and RyRl interaction in skeletal EC 

coupling 

There are several studies that support the hypothesis that the Pia C-terminus directly 

increases RyRl activity during EC coupling through its binding to RyRl , as discussed 

extensively in section 1.3 .4.3 .5. Indeed, the results in this thesis support this hypothesis and 

provide novel insight into the residues/regions responsible for the interaction. The results also 

highlight the concept that the Pia subunit C-terminal interaction is not the only pathway 

supporting EC coupling, which agrees with several other studies (Beurg et al., 1999a, Cheng et 

al., 2005). The evidence provided by the other studies demonstrates that nearly abolishing Pia 
binding to RyRl does not nearly abolish EC coupling, as maximal SR Ca2

+ transients are 

restored to 50% of the WT RyRl level when the RyRl KtoQ mutant is expressed in dyspedic 

myotubes (Cheng et al., 2005). Given that neutralisation of the polybasic motif in full-length 

RyRl abolishes the functional interaction between Pia subunit and RyRl (this study), the failure 

of the mutant to abolish EC coupling suggests that the direct interaction between RyRl and the 

Pia subunit may contribute to only 50% of the maximal Ca2
+ transient during EC coupling. 

Several studies and the results presented here support the prospect of Pia subunit 

directly enhancing RyRl activity during EC coupling (discussed above), but structural studies in 

the current literature do not clearly indicate whether the Pia subunit is localised in a position 

where it can interact with the cleft between globular domains 3 and 8 that is likely to contain the 

Pia C-terminal binding site (discussed above in section 6.3). Indeed, there is little knowledge of 

the structure of the N- and C- termini, although known that the extreme tails are sufficiently 

close (<5 nm) for biomolecular fluorescence complementation (Sheridan et al., 2012). In 

addition, the termini are suspected to be mostly intrinsically disordered, and in P2a and P3 are 

subject to rapid proteolysis in contrast to the highly structured SH3 and GK domains 

(Opatowsky et al., 2003). However, there is no current evidence to negate the possibility of in 

vivo interaction between Pia subunit and RyRl globular domains 3 and 8. The current 

understandings are that the DHPR tetrad is likely localised above globular domains 4 and 6 

(Paolini et al., 2004b) and that the Pia N-and C-termini are mostly intrinsically disordered and 

situated away from the middle of the tetrad (Opatowsky et al., 2003, Sheridan et al., 2012). A 

model produced by Sheridan and colleagues (2012) has the N- and C-termini directed towards 

the clamp region of each RyRl that neighbours the RyRl aligned with the DHPR tetrad, which 

is shown in Figure 6.2B. Interestingly, there is no experimental evidence that the P1a subunit 

cannot interact with neighbouring DHPR-uncoupled RyRl. Indeed these arguments raise the 

possibility that Pia may facilitate activation of the uncoupled RyRl during EC coupling. Given 

the uncertainties in the structure of the C-terminus in full length Pia and the regions of RyRl 
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that align with DHPR during muscle contraction, it is not currently possible to postulate whether 

the Pia residues are situated above RyRl that are coupled with DHPR or neighbouring RyRl. 

A 

B 

Figure 6. 2 The DHPR tetrad arrangement and possible Pia subunit positioning in relation to RyRl. 
. . 

A) A scaled superimposition of a DHPR tetrad (black) above a 3-dimensional reconstruction of RyRl globular 

domains 4 and 6 in skeletal muscle. Image slightly adapted from Paolini et al. (2004b). B) A possible model for the 

arrangement of Pia subunit in DHPR tetrads that juxtapose every second RyRl (indicated by black squares). The Pia 
positioning is based on biomolecular fluorescence complementation of the N- and C-termini and gold-streptavidin 

binding (Sheridan et al., 20 I 2). Each DHPR complex is represented as blue ovals, with the P Ia represented as dark 

grey ovals and pertruding grey lines that represent the N and C-terminii. The ends of each terminus are sufficiently 

close for complementation of the yellow fluorescent tag components (yellow rectangle in combined form) attached to 

each termini . An orange circle represents the binding of gold streptavidin bound to either terminus. The black squares 

reflect the RyRl that are coupled (bold) and un-coupled (thin line) from a DHPR tetrad. Image from Sheridan et al. 

(2012). Notably, Sheridan and colleagues (2012) based this model the DHPR-RyRl complex model proposed by 

Wolf et al. (2003), but have previously stated that their model takes into account the DHPR tetrad localisation to 

RyRI model produced by Paolini and colleagues (2004b) (Leuranguer et al., 2006). 
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The question arises as to which other junctional proteins transmit the EC coupling 

signal from DHPR to RyRl. As charge movement within a 1s subunit triggers RyRl activation, 

the signal transmitter is likely to be a component of the DHPR or a protein that is associated 

with both the DHPR and RyRl . Two prime candidates immediately come to mind. These are 

the a 15 II-III loop critical region and STAC3, particularly since the this region and protein are 

essential for skeletal EC coupling and STAC3 has been found to associate with both DHPR and 

RyRl (sections 1.3.1.1 and 1.3.5.2)(Nakai et al., 1998b, Wilkens et al., 2001 , Takekura et al. , 

2004, Horstick et al. , 2013 , Nelson et al. , 2013). 

In general , the Bi a subunit appears to directly enhance EC coupling by virtue of 

increasing RyRl activity through a hydrophobic interaction, but Bi a subunit is unlikely to be the 

sole EC coupling conduit between the DHPR and RyRl. Another possible link is between the 

a 1s II-III and the recently identified STAC3. 

6.6 Future work 

As discussed, the experiments used in this study are not entirely physiological, but do 

highlight residues that may be important for a direct interaction between Bi a subunit and RyRl 

during EC coupling. Therefore, it would be of interest to examine the importance of the 

hydrophobic surface residues an in vivo system, by assessing restoration of voltage-induced 

Ca2
+ release in Bi a-null myotubes that are transfected with full-length Bi a LLW/A mutant. 

In addition, it would be of interest to dissect the role of a 1s and DHPR associated 

proteins on the interaction between Bi a subunit and RyRl. This could be achieved by 

investigating the influence of Bi a subunit on RyRl with other Bi a-associated proteins present, 

such as ai s and JP-45 . 

Further experimentation needs to be undertaken to identify the Bia binding residues on 

RyRl. One technique that would be useful is FRET analysis with the acceptor-donor 

fluorophore pairs attached to Bia C-terminus and regions of the RyRl. This has been 

successfully employed to identify the binding location of FKBP12.6 on RyRl (Girgenrath et al., 

2013), and may be applicable for identifying the Bia binding region on RyRl. An alternative 

approach would be to undertake pull-down assays using smaller fragments of a Bia binding 

RyRl fragment (3201 -3661 ) that was identified by Cheng and colleagues (2005). A different 

approach would be to use a proteolys is digest and identify the regions that bound the Bia 

subunit/peptide using mass spectrometry. 
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6. 7 Conclusion 

The results presented in this thesis highlight that the Pia C-terminus modulates RyRl 

activity through the hydrophobic surface, not the heptad repeat, residues. Thus, the Pia subunit 

likely binds to a hydrophobic pocket that is conserved between RyRl and RyR2 sequences and 

that this region is likely influenced by the polybasic motif. 

Overall, the importance of the work is that by identifying the regions that are important 

in Pia binding to RyRl, we further substantiate the potential role of Pia in EC coupling through a 

specific interaction with RyRl. Furthermore, this work provides the basis for future experiments 

which will confirm the role these residues have in EC coupling using in vivo systems. 
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