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Abstract

Semiassociative relation algebras are among the three varieties of algebras in-
troduced by Maddux (R. Maddux, Some varieties containing relation algebras,
Trans. of Amer. Math. Soc., 272, 501-526, 1982.) and are obtained by replacing
the associative law (among the conditions of a relation algebra) by a weaker law
known as the semiassociative law.

This thesis mainly investigates the classes of groupoids and multigroupoids
whose complex algebras are semiassociative relation algebras and vice versa. We
managed to prove that the complex algebra of a groupoid is a semiassociative
relation algebra if and only if the groupoid is an inverse property loop (IP loop).
We also proved that the complex algebra of a multigroupoid is a semiassociative
algebra if and only if the multigroupoid is a polyloop. These results generated
cnough interest in finding the library of small IP loops and hence we obtained
the numbers of non-isomorphic IP loops having order up to 13. Since these were
obtained by exhaustive enumeration, they are available for inspection.

We have also included in this thesis the classification of IP loops into some
important subclasses; we established that the smallest non-abelian IP loop with
the square property is of order 12 and there are 3 of order 12 and only 2 of order
13: the smallest non-associative non-Steiner IP loop that is both flexible and
alternative is of order 12 and there are only 2 of order 12 but none of order 13.
We also confirmed that the smallest non-associative Steiner loop is of order 10
and that the smallest non-Steiner non-associative C-loop is of order 12. We also
listed the non-associative IP loops having Lagrange property and the smallest
Hamiltonian non-associative IP loops. It is surprising to note that there are only
25 non-associative abelian IP loops among more than 12,000 small IP loops.

It is well known that the IP loops of exponent 2 are exactly the Steiner loops.
In this thesis we also managed to count the IP loops of exponent 3 and exponent
5; there are only 66 non-associative IP loops of exponent 3 (64 are of order 13)
and only 10 of exponent 5 (all of order 13).
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Chapter 1

Introduction

1.1 Preliminary Comments

In the current AMS subject classification the theory of relation algebras is in-
cluded as part of algebraic logic but historically it is the other way around.
Indeed, first order predicate calculus originated from the calculus of relations.
According to Maddux [41],“The most important figures in the creation of cal-
culus of relations in the nineteenth century were Augustus De Morgan, Charles
Sanders Peirce, and F. W. K. Ernst Schroder. ... The calculus of relations is
indeed the result of Peirce’s efforts to create algebra out of logic, but these efforts
took place decades before the emergence of first order logic in the 1920’s and are
instead based on the pioneering work of Boole [7]. Peirce’s efforts to get a “good
general algebra of logic” led him not only to the algebra of relations but also to find
convenient ways to explicate and work with his algebra, ways which led directly to

first order logic.”

The carliest results in the field of relation algebras arc due to DeMorgan but
most of the work in the second half of the 19th century was carried out by Peirce
and Schroder. The abstract notion of relation algebras and their initial facts were
given by Tarski [66]. In 1951 Jénsson and Tarski [33] introduced the concept of
Boolean Algebra with Operators (BAO) and relation algebras were looked on as
a kind of BAO.

This thesis concerns one of the ‘weaker’ notions of the relation algebras known
as semiassociative relation algebras. There are a number of ways of looking at

these algebras but we consider them as Boolean algebras with operators.
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1.1.1 Nonassociative Relation Algebras

A Boolean algebra with operators (BAO) is an algebra (A, AV, =, 0,1, (fi)ier)
such that (4, A, V,—,0,1) is a Boolean algebra and each operator f; = fi(z1, ..., Tk)
distributes over join in each coordinate and has 0 as an absorbing element (that
is, f(...,0,...) =0). Tarski’s relation algebras provide one example of a variety
of BAOs.

In [39] Maddux introduced three varieties generalising relation algebras by
weakening the associativity condition. Namely, a nonassociative relation algebra
(NA) is a BAO (4,A,V, 7,0, 1,5, 7, 1’), whose operators ; (binary), (unary) and
1’ (nullary) satisfy in addition:

o (z;y)Az=0iff (z7;2)Ay=0iff (z;4) Az =0
e r;I'=12=12

Chin and Tarski [16] has already proved that the following conditions are derivable

from the above two conditions.

o (z1y) =y
The last three of the above four conditions make (A,;, 7, 1") into an nvolutive
unital groupotd.

If a NA satisfies moreover
(UPAz);1);1=(DAz);1

it is a weakly associative relation algebra (WA).
If a NA satisfies moreover
(mrlizl =@zl

it is a semiassociative relation algebra (SA).

If a NA satisfies moreover
(z;9);2=x;(y;2)

it is a relation algebra (RA).

Incidentally, but perhaps interestingly, at least some of the nonassociative alge-
bras have a rather natural realisation in the “real world” as algebras of binary
relations with weak composition (see, Definition 2) instead of the usual compo-
sition of relations. As far as we know, all nonassociative algebras considered in

this connection are semiassociative. See, e.g., [22] for more.
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1.1.2 Complex Algebras

For any relational structure W = (W, (R;)ier), its complex algebra Cm(W) is the
algebra (P(W),N, U, —, 0, W, (fi)icr), where each f; is a k-ary function associated
with the k + l-ary relation R;, in the following way: for subsets Xy,...,Xgof W
we put fi(X1,..., Xg) ={weW: 3z, € Xy,...,2x € X)) (w, z1, ..., 2k) € Ri}.
Notice that functions f; above are operators, so all complex algebras are BAO:s.

1.1.3 Loops With Inverse Property

Although loops are usually defined as groupoids with unique solution property
(i.e., quasigroups) and possessing a unit element, we will adopt a more universal-
algebraic view and define a loop to be an algebra (L,-,\,/,e) satisfying the fol-

lowing identities:

L oz(z\y) =y
2. z\(zy) =y
3. (x/y)y ==z
4. (zy)/y ==

H, re =1 =ex

In each loop an element z has left and right inverses, respectively, e/z and \e.
If these coincide, we write z~! for both. A loop has the inverse property, if it

satisfics
(6) z\e=re/z
(7) W\e)(yz) =
(8) (zy)(e/y) ==

Thus, loops with the inverse property (IP loops) form a subvariety of loops. In
fact, it is easy to show that IP loops are term equivalent to the variety of algebras

(L,-, ', e) satisfying the following identities

(iif) «7'(zy) =y
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(iv) (zy)y ' ==z
upon defining 7! = z\e (or e/x) one way, and z\y = Yy, x/y = zy~! the other.
This will be our official definition of IP loops from now on. It is well known that
Moufang loops (probably the most investigated variety of loops) defined by the
identity

(22)(yz) = (2(zy))2

have the inverse property and thus form a subvariety of IP loops. For more on
loops, see the old but still good [11].

1.1.4 Polyloops

We define another notion of multigroupoids which not only generalises IP loops,
it also extends the concept of polygroup. The motivation of polyloops comes
from the fact that there are well known multigroupoids that satisfy all other
conditions of polygroups except the associative law. One of these examples is the

weak composition table of RCC-10 given in [23].

1.2 Summary of Results and Outcomes

In this section we outline the main results and outcomes that were obtained in

the thesis with precise references to their place of occurrence later.

1.2.1 Complex Algebras of IP Loops

Any groupoid (G, ) can be viewed as a relational structure G = (G, T') where T
is a ternary relation defined by setting 7'(a,b, ¢) iff a = b-c. Although this agrees
with the formal definition of complex algebras, in the context of groupoids it is
customary to work instead with a relation 7", defined by T"(a, b, c) iff a - b = c iff
T(c.a,b). This agrees with the traditional definition of complez multiplication as
XoV ={azy:z € X,y € Y}. If G has a unit element e we may view G as the
structure G = (G, T,{e}). Similarly, if G has the unique solution property we
may view G as G = (G, T, R, L, {e}), where L and R are binary relations such
that xRy (zLy) iff y is the right (left) inverse of z.

One natural example of such a complex algebra occurs when G is a group. In

fact, Jonsson and Tarski showed (see [33], [34]) the following:
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Theorem 1. The complez algebra of a groupoid (G, ) is a relation algebra if and

only if (G,") is a group.

This result outlines the exact contribution of the complex algebras of groupoid
structure in the class of relation algebras. The class of subalgebras of this type
is known as Group Relation Algebras or GRAs. In the presence of Theorem 1
it was a natural question to ask that “What are the groupoid structures whose
complez algebras are semiassociative algebras and vice versa?’ The answer to this
question leads us to the findings recorded in Chapter 4. The main result that we
managed to prove in Chapter 4 is given in the following:

Theorem 4 The complex algebra of a groupoid (L, ) is a semiassociative rela-

tion algebra if and only if (L,-) is an IP loop.

Remark 1. Later on we found that this theorem has already been done by Madduzx

[38]. But we have done it independently and can be considered as a second proof.

It is worth mentioning however that if L is not an IP loop then the complex
algebra of L is not even a nonassociative relation algebra. In other words the
complex algebras of groupoids is not a source for NA and WA that are not SA.
By analogy with group relation algebras (GRAs) we defined loop semiassociative

relation algebras (LSAs).

1.2.2 Complex Algebras of Polyloops

A multigroupoid is a non-empty set M together with a mapping - of M x M into
the power set of M. That is for each ordered pair (a,b) of elements of M, a - b
is a non-empty subset of M. A multigroupoid can be thought of as a relational
structure M = (M, T) where T is a ternary relation defined by: (2,y,2) € T if
and only if 2 € y - z. This defines a binary operation f on P(M) by:

f(X,Y)={aeM|zeX,yeY and (a,z,y) € T}.

An example of such a complex algebra was seen in the case of M being a
polygroup (see [18]). In that case Comer proved that the complex algebra of
M is a complete atomic integral relation algebra and vice versa. Apart from
defining another notion of multigroupoid by the name of ‘Polyloop’ and providing
a variety of examples, Chapter 3 investigates the contribution of complex algebras
of multigroupoids to the class of semiassociative relation algebras. The summary

of our findings in this regard is recorded in the following:
Theorem 3
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(1) Cm(M) is a complete atomic integral S A for every polyloop M.
(2) For every complete atomic integral SA A the system
At(A) = (Ata, %, e),

where Aty is the set of atoms of A, is a polyloop.

(3) If M is a polyloop and A is a complete atomic Integral SA, then

M = At(Cm(M)

and
A = Cm[At(A)].

Apart from this result we managed to utilize a computer, using constraint
programming, in order to produce polyloops and their double quotients, of a
general as well as a particular interest.

In Chapter 4, we also establish a sufficient condition on some nice examples

of polyloops that forces those polyloops to be polygroups.

1.2.3 Small IP Loops

Counting and listing different subclasses of loops has a long history. But it is sur-
prising to note that although IP loops were defined in the 1940’s there is no data
available on small IP loops. Chapter 5 reports the numbers of non-isomorphic IP
loops having order up to 13. Since these were obtained by exhaustive enumera-
tion, they are available for inspection. We have also included the classification
of IP loops into important subclasses. We will discuss this later on. For a quick
view see Table 5.4, that gives the number of isomorphism classes of IP loops of

each order up to 13 and tells how many of those are commutative.



Chapter 2

Definitions, notation and basic

facts

2.1 Introduction

In this chapter we give definitions, notation and basic facts which are used
throughout the thesis. This is partly for fixing terminology, partly to provide
an easy reference to results we need to quote from the literature and partly for
setting up notation. As a general rule we follow the notation and terminology
used by Bruck’s survey [11]. » ‘

Other references will be to McKay and Myrvold [44], and Comer [18].

The reader should be able to bypass much of this chapter at a first reading,

using it as a reference for results and terminology quoted in later chapters.

2.2 Normal Subloops, Quotient loops and oth-

ers

A Latin square of order n is a n x n array L = (l;;) such that each row and
each column contains a permutation of I,, = {1,2,...,n}. A quasigroup G is
a set together with a binary operation o such that the equations goz = h and
y o g = h have unique solutions for each g, h € G. A quasigroup G is a loop if it
contains an element e such that goe =cog =g forall g € G.

A subloop H of a loop G is said to be normal if for all z,y € G, we have
tH = Hz, (Hz)y = H(zy) and y(zH) = (yz)H. This means that any subloop

contained in the centre of G (the set of those elements z € G such that zz = vz

7



8 CHAPTER 2. DEFINITIONS, NOTATION AND BASIC FACTS

for all z € @) is normal in G. Also the intersection of any non-empty set of normal
subloops of G is normal in G. For any normal subloop H of G and y € vH we
have y = zh for some h € H and hence yH = (¢h)H = x(h#) = zH. This
means that for all y € zH we get H = yH and consequently the left cosets of H
in G partition G. Using this fact it is easy to see that, in finite loops, the order
of a normal subloop divides the order of the loop. Consider the following loop:

«/1 23456789 z |zt
e=1|1 23456789 11
202 31678945 2|3
3/131 2894567 32
44 86 519372 415
5/5 97143826 514
6l6 48927153 6|7
717592816 34 716
8|8 6 4735291 8|9
99 7536 241 8 98

It has 4 subloops {1,2,3}, {1,4,5}, {1,6,7} and {1,8,9}. Although all of
them have orders dividing the order of the loop only {1,2,3} is normal. This
means it is not necessary that a subloop dividing the order of a loop be normal
(already for groups this is not necessary). "

For a normal subloop H of a loop G, let G/H be the set of all left cosets of
H in G. Define x on G/H by,

(zH) * (yH) = (zy)H

for tH,yH € G/H. It is routine to show that G/H is a loop under . This loop
is called the quotient loop of G modulo H.

On this basis we can define § : G — G/H by 0(z) = 2H and see that it is a
homomorphism of G onto G/H. Conversely if « is a homomorphism from a loop
G to a loop M then the set K of all g € G such that a(g) = ey, is a normal
subloop of G and is called the kernel of a.

A loop G is said to have a right coset expansion modulo its subloop
H provided the right cosets of H partition G. The condition for a right coset
expansion is:

[fy € Hx then Hr = Hy or H(hz) = Hz for allh € H and z,y € G. A
loop G is said to have the weak Lagrange property if the order of each of

its subloops divides the order of G and G is said to have the strong Lagrange
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property if each subloop of G has the weak Lagrange property. A loop may
have the weak Lagrange property but not the strong Lagrange property. Four of
the six nonisomorphic loops of order 5 have subloops of order 2 and hence fail to
satisfy the weak Lagrange property. Let K be one of these loops. As noted in
[52], page 13, consider a loop G of order 10 that has K as its subloop. Then G has
the weak but not the strong Lagrange Property. The following lemma explains

it further.

Lemma 1. ([11], Lemma V.2.1) Let H be a normal subloop of the subloop K of
the loop G. If H and K/H have the strong or the weak Lagrange property then

so has K.
Let L be any class of loops such that:
(1) Every subloop of a member of L is in L.
(2) Every loop which is a homomorphic image of a member of L is in L.

By a nilpotency function f for L we mean a function f : L — L with the

following properties:
(a) If G isin L, f(G) is a uniquely defined subloop of G.
(b) If G is in L and if H is a subloop of G then H N f(G) C f(H).

(¢) If Gis in L and if # is a homomorphism of G onto a loop M then 6(f(G)) €
f(8(G)).

(d) If G is in L, N is a normal subloop of G and if A is the intersection of all
normal subloops K of G such that NK/K is a subloop of f(G/K) then
NA/A is a subloop of f(G/A).

If L is the whole class of loops and f(G) is the centre of G then this nilpotency
is called central nilpotency.

For each element a of G consider the mappings L(a) and R(a) on G defined
by vL(a) = ax and zR(a) = za which are clearly permutations of G. The
subgroup of the permutation group of G generated by all L(a) and R(a) is called
the multiplication group of G (let us denote it by M(G)) and the subgroup
I(G) of M(G) consisting of elements a such that ea = e is called the inner
mapping group of G. It is obvious that M (G) is transitive in G and the subsets
A={L(a) | a€ G} and B = {R(a) | a € G} are the left and right transversals of



10 CHAPTER 2. DEFINITIONS, NOTATION AND BASIC FACTS

[(G) in M(G) respectively. Also that A and B are I(G)-connected transversals
means the commutator subgroup [A, B] C I(G) and that the core of M(G) in
[(G) is trivial (core of a subset S of a group G is the largest normal subgroup of
G contained in S; it is denoted by Lg(S)). The relation between multiplication

groups of loops and connected transversals is given by the following theorem:

Theorem 2. ([49], Theorem 4.1). A group G is isomorphic to the multiplication
group of a loop if and only if there exists a subgroup H satisfying Lg(H) =1 and
H-connected transversals A and B such that G is generated by AU B.

2.3 Important subclasses of Loops

Since the number of non-isomorphic loops of a given order is very large, most of
the work in loop theory has been done in subvarieties of loops. Most of these
varictics are defined by weakening the associative law which still makes them
more general than groups. A loop G with identity element e is said to have the
flexible property if for all z,y € G we have z(yz) = (zy)z; it is said to have
the right alternative property if z(yy) = (zy)y and the left alternative
property if y(yz) = (yy)z. An alternative loop is a loop which is both left
and right alternative.

Let G be a loop with identity element e. Then G is said to be a left inverse
property loop if for all z € G there exists 2’ € G such that 2’z = e and for all
y € G we have 2/(zy) = y. Similarly G is said to be a right inverse property
loop if for all € G there exists 2” € G such that z2” = e and for all y € G
we have (yz)z” = y. Here G is said to have the inverse property (or IP) if
it has both left and right inverse properties. In that case for x € G we have

1

v = z'e = 2'(z2") = 2" and we denote z’,z” by ', G is said to have anti-

automorphic inverse property if it satisfies the identity (zy)™!' = y~ 'z~ "
Such loops are called anti-automorphic inverse property loops or AAIP
loops. It is easy to see that IP loops satisfy the anti-automorphic inverse
property. G is said to have automorphic inverse property if it satisfies the
identity (zy)~! = 27 'y~!. Such loops are called automorphic inverse property
loops.

If I is the class of all IP loops then the nilpotency function f(G) may be the
Moufang Nucleus of G (the set of all a in G such that for all z,y in G we have
a((zy)a) = (az)(ya)).

A RIF loop is an IP loop G such that (z7!)a = (za)™! for all z € G and all
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ae I(G).

A loop G is said to be Steiner loop if for all z,y € G, we have 22 = ¢ and
z(zy) = y. It is easy to see that Steiner loops are exactly the IP loops of exponent
9 and are a subclass of RIF loops. RIF loops also include the most commonly
known variety of loops which is defined by the following;

A loop G is said to be a Moufang loop if it satisfies the following properties:
for all z,vy,z € G,

(z(y2))z = (zy)(2z),

((zy)2)y = z(y(=y))
and

((y2)y)z = y(2(yz)).

By Lemma VIL.3.1 of Bruck [11] these equations are equivalent and it follows
from Lemma VII.3.2 of [11] that every Moufang loop is RIF. It is also easy to see
that the direct product of a non-associative Moufang loop and a non-associative
Steiner loop is a RIF loop but is neither Moufang nor Steiner.

A loop G is said to be a power-associative loop if every subloop generated
by a single element of G is a subgroup and is called diassociative if the subloop
generated by any two elements of G is a subgroup of G. G is said to be Hamil-
tonian if every subloop of G is normal. It is obvious that diassociative loops are
IP loops and are both flexible and alternative. Also by Moufang’s Theorem (page
117 of [11]) every Moufang loop is diassociative.

A loop G is said to be a C-loop if for all z,y, 2 € G we have

z(y(yz)) = ((zy)y)=.

It is obvious that Steiner loops are C-loops; Phillips and Vojtéchovsky [53] proved
that C-loops are both alternative and IP loops. G is said to be an A-loop if each
« € I(G) is an automorphism and it is shown in Bruck and Paige [12] that every

IP loop that is also an A-loop is diassociative.

2.4 Boolean Algebras With Operators and Re-
lated Terminology

A first-order language £ is defined as a set consisting of a collection R of
relation symbols and a collection F of function symbols and, for each member

of R there exists a positive integer and a non-negative integer associated to each
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member of F called the arity of the symbol. The subset of R containing symbols
having arity n is denoted by R, and the subset of F containing symbols of arity
n is denoted by F,. The language L is called a language of algebras ifR=10
and is called a language of relational structures if 7 = 0.

A relation S is said to be an n-ary relation on a nonempty set A if S C A™.
If n = 1. S is called unary, for n = 2, S is called binary and if n = 3 then S is
said to be ternary.

Let £ be a first-order language (as defined above) and A be a nonempty set
then the ordered pair A = (A, L) is called the first order structure of type
L. Here L consists of a family R of relations indexed by R and a family F' of
functions indexed by F and A is called the universe of A. If R = 0 then A is
called an algebra and if F = 0 then A is called a relational structure. L
is finite, if R = {S1,S2,...,Sn} and F = {f1, f2,..., fm} then A ls denoted by
(A, Fiy oy 5 03 s 1508 on 5 550)

For any relational structure A = (A, (7;)iez). its complex algebra Cm(A) is
the algebra (P(A),N,U, —, 0, A, (f:)icr), where each f; is a k-ary function associ-
ated with the k + l-ary relation 7, in the following way: for subsets Xi, ..., Xy of
Aweput fi(X1,....Xx) ={a€ A: 3z € Xy1,..., 2 € Xi)(a, 21, ... ,Tg) ETi ).

Let A, = (A;, L;) and Ay = (A, L) be structures of type L. A bounded
morphism o : A} — A, is a mapping a @ A} — A, such that for each

relational member r of L, if r;, 7o are the relations indexed by 7 in L;, Ly, then

implies

then there exists 7, € Ly and by, ..., b, € A; such that a(b) =¢ for 1 <1 <n

and

N o (e S 1)
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Notice that functions f; in the definition of complex algebra are operators, so
all complex algebras are BAOs.

A nonempty class V of algebraic structures of type £ is said to be a variety
if it is the class of all algebras that satisfy a given set of identities. Equivalently
by a result of Birkhoff a variety is a class that is closed under subalgebras, homo-
morphic images and direct products. A subclass W of V which is also a variety
is called a subvariety of V.

An algebra A = (A,A,V,—,0,1,0,7 e) is said to be a relation algebra if
A,V and o are binary operations on A, = and ~ are unary operations on A, and

0,1 and e are constants satisfying the following properties (for z,y,z € A):
(RA0) (A, A,V,—,0,1) is a Boolean algebra;
(RA1) (zoy)oz==zo0(yoz);
(RA2) zoe=2=eouz;
(RA3) (zoy)Az=0iff (z7o2)Ay=0iff (zoy ) Az =0;
and (yVz)oz=(yox)V (zox);

This definition of relation algebras is due to Tarski [66]. In [39] Maddux
noticed that most of the properties of relation algebras do not depend on the
associativity of o. On this basis Maddux introduced three new varieties of algebras
which extend the variety RA of relation algebras. In these varieties (RA1) is either

omitted or replaced by one of the following two laws;
(SA) zo(lol)=(zol)ol
(WA) (I'Az)o(lol)=(('Az)ol)ol,

The largest of these varieties is called Nonassociative Relation Algebras (N A)
which is obtained by omitting (RA1). The other two varieties are called Weakly
Associative Relation Algebras (W A; when (RA1) is replaced by (WA)) and Semi-
associative Relation Algebras (SA; when (RA1) is replaced by (SA)). It is imme-
diate to see that RA C SAC WA C NA.
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Chapter 3

Polyloops and SA relation
Algebras

3.1 Introduction

In this chapter we introduce yet another notion of multigroupoid which has not
been seen in the literature before. This generalises the concepts of both IP loop as
well as polygroup and therefore, correctly speaking, it should be called polyloop
with inverse property or polylPloop. The only reason for adopting “polyloop” is
that it is shorter. The motivation of this notion of multigroupoid comes from the
fact that there are well known multigroupoids that satisfy all other conditions of
polygroups except the associative law. The most interesting of these examples is
the weak composition table of RCC-10 given in [23].

A good account of polygroups is given in [18] which is also the source of most
ideas proven in this chapter. ,

In Section 1, we give a formal definition of polyloops and give important ex-
amples from different areas of interest while in Section 2 we establish a strong
connection between SA relation algebras and polyloops. In Section 3 we give a
sufficient condition which converts some nice examples of polyloops into poly-

groups.

3.2 Definition and Examples of Polyloops

Definition 1. A polyloop is a system M = (M, *,7' e) (where e € M, ~' is
a unary operation on M and x is a multi-operation (namely z xy € M is a

non-empty set for every x,y € M), which satisfies the following axioms for all

15
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x,y,z € M:

(P) z€(zxy)*xy ! and x €y 1 x (y*z);
(P,) vxe={z} =exx,

(Ps) ecrxxtandeca xux;

1 1

(Py) T€y*zimpliesy€xx2z"" andz €y .

We give a set of nice examples of the polyloops that are not loops or poly-
groups; they also demonstrate how polyloops occur naturally in a variety of re-

search areas.

Example 1. Polyloop of order 5.

« |1 2 3 4 5
11 2 3 4 5
212 {1,4} {1,2} {1} {12}
3013 {1,2) {4,5) 2 2
414 {13 2 {1,2} 2
505 {1,2}) 2 2 {1,2}

Example 2. Polyloop of order 6.

(1 2 3 4 £ 6
i 2 3 4 5 6
2112 {1,5} {56} {4,5,6} {1} {12}
3013 {56} {1,4} 3 2 2
414 {4,56} 3 {1,2} 2 2
505 {1} 2 2 {1,2} 2
616 {1,2} 2 2 2 {1,2}

Example 3. Polyloop of order 7.
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«)1 2 3 4 5 6 7

1)1 2 3 4 5 6 7

ol 2 {1,4,6} {67y {1,3) {1,2,3} {1} {12}

3013 {6,7} {1,4,5} 3 3 2 2

414 {1,3) 3 f.2% 2 2 2

B8 {23 3 2 {1,2} 2 2

616 {1} 2 2 2 {1,2} 2

717 {1,2}) 2 2 2 2 {1,2}

Example 4. Polyloop of order 8.

|1 2 3 4 5 6 7 8
11 2 3 4 5 6 7 8
oll2 {157 {478 {12} {1,3} {123} {1} {12}
313 {4,7,8 {2,7,8} {2,3} 3 3 2 2
414 {1,2} {2,3} {1,2} 2 2 2 2
505 {1,3) 3 2 {1,2} 2 2 2
66 {1,2,3} 3 2 2 {1,2} 2 2
707 {1y 2 2 2 2 {1,2} 2
g8 {12} 2 2 2 2 2 {1,2}

Before going to the next example, the following definition should be noted.

Definition 2. [57] Composition (o) of two relations R and S is defined as the
relation Ro S = {(a,b) | 3c: (a,c) € R and (c,b) € S}. Let A be a set of atomic
relations. A Weak composition () of two relations S and T is defined as the
strongest relation R € 2* which contains S o T, or formally, SOT = {R; € A |
R;NSoT # 0}. if a weak composition is represented by a table then such a table
is called Weak composition table.

Example 5.

The Region Connection Calculus (RCC): This calculus was introduced
by Randell et al. [19] to formalise intuitive reasoning about space. In RCC the
base set is the set of abstract regions in an abstract space and the base relation
is a connection C (for regions z and y, C(z,y) means z is connected to y); other

relations are defined by the following:
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P(z,y) x is a part of y Vz, C(z,z) implies C(y, 2)

PP(z,y) x is a proper part of y P(z,y) but ~P(y,z)

O(z,y) x overlaps y 3z such that P(z,z2) and P(y, z)

POz, v) x properly overlaps y O(z,y) but =P(z,y) and =P(y, x)

EC(z,y) | z is externally connected with y C(z,y) but ~O(z,y)

TPP(z,y) |z is a tangential proper part of y PP(z,y) and 32[EC(z,z) and EC(z,y)]
NTPP(z,y) | z is a non-tangential proper part of y | PP(z,y) and —-3z[EC(z,z) and EC(z,y)]

DC(z,y) | x is disconnected from y =Ci = T)

EQ(z,y) | x is identical to y P(z,y) and P(y, )

Converses of all these relations are defined in the usual sense.

Figure 3.1

explains these relations if z, y and z are considered as discs in the Euclidean

plane.

O
(W

DC{x,y) EC(x,y)
(2
PO(x,y) EQ(x. u)

Figure 3.1: Figure 1.

RCC axioms:
A model for the RCC consists of:

(i) a base set U = RU N, where R, N are disjoint;

(i1) a binary relation C' on R;

TPPixr, y)

NTPP{x. y)

(iii) two binary operations +: R x R = Rand -: R x R — RUN;
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(iv) a special u € R and a unary operation — : Ry — Ro where Ry = R\{u}.

Here R can be interpreted as the set of all non-empty regions; N as consisting
of just the empty region 0; u as the universal region and Rg as the set of all
non-empty proper regions. The binary operations + and - would then be the
union and intersection of the regions while the unary operation — would be the
complement of regions.

There are 8 axioms for the RCC:

RCC 1. Vz € R, C(z,z)
RCC 2. Vz,y € R, C(z,y) = C(y,z)
RCC 3. Vz € R, C(z,u)
RCC 4. Vx € R,y € Ry,

(a) C(z,—y) <= —-NTPP(z,y)
(b) O(:Ev —y) — _'P(f,y)

RCC 5. Vz,y,z € R, C(z,y + z) <= C(z,y) or C(z,2)

RCC 6. Va,y, z € R, C(z,y-z) <= Jw € R such that (P(w,y) and P(w, 2) and
C(z,w))

RCC 7. Vz,y € R, z-y € R < O(x,y)

RCC 8. If P(z,y) and P(y,z), then z = y.

It is easy to see that P is a partial order. If we denote the relations of RCC-8
by integers as in Table 3.1 then the weak composition table for RCC-8 is given
by:

notation | Relations | notation | Relations
1 EQ 5 rr
2 DC 6 NTPP
3 EC 7 PR
4 PO 8 NTPP”

Table 3.1: Alternate notation for RCC-8 relations
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ow|1] 2 3 4 5 6 8
1[1] 2 3 4 5 6 8
202] =« {1,7,8Y | {1,7,8}| {1,7,8}) [{1,7.8}| 2 2
303 {1,56V| {68} |{1,7,8)|{3,4,5,6}|{4.5,6}| {2.3} 2
4l4]{1,56)| {1,506} x {4,5,6} | {4,5,6} | {1,5,6}" | {1,5,6}
515 2 2,3} [{1,7.8)| {56} 6 (7,8) | {1,5,6}
6|6 2 2 {1,7,8) 6 6 | {1,7,8}| =«
7171{1,5,6) | {3,4,7,8} | {4,7,8} | {1,4,5,7} | {4,5,6} | {78} 8
8|8|{1,56)| {478} |{4,7.8} | {478 | {2,3) 8 8

Here * denotes the universal relation and / denotes complement.

Let S be the incomparability relation which means S(z,y) is defined as
~P(z,y) and —P(y, z). This extends RCC — 8 if we replace EC by

and PO by

ECD = —(PPo PP"UPP o PP),

PON = SN (PP o PP)N (PP o PPY),
POD = SN (PP o PP)N—(PPoPP).

ECN =ECN—-ECD,

Here o denotes the composition of relations. Then

e ECD(z,y) & EQ(z,—v),

o ECN(z,y) < EC(z,y) and z +y # u,

o POD(z,y) < S(z,y) withz-y #0 and z+y = u.

PON(z,y) <= S(z,y) with z-y # 0 and = + y # u,

This gives us 10 base relations and the resulting system is called RCC10.

Again, if we denote the relations by numbers as listed in Table 3.2 then the weak

composition table of RCC10 is given here:

ow | 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10

2 2 {3,6}’ 8 {2.4,6, 7.8} 8 {2,4,6,7,8) | {2,4,6,7,8} | {1,9,10}’ 2 2

3 3 10 1 9 {7,8} 6 5 5 4 2

4 4 | {2,4,6,9,10} 7 {3,5,8,10}' {7,8} {2,4,6,7,8} | {1,2,9,10} | {5,6,7,8} {2,4} 2

5 5 10 {9, 10} {9, 10} {2,3,4)’ {5,6,9,10} 5 b {1,2,7 8}° {1,7,8}

6 6 | {2,4,6,9,10} 6 {2,4,6,9,10} {5,6,7,8} * {5,6,7,8)} {5,6,7,8} | {2,4,6,9,10} | {2,4,6,9,10}
7 7 2 3 {2,4} {1,2,9,10}' | {2,4,6,7,8} {7,8} 8 {1,2,4,6,7,9} | {2,4,6,8,10}
8 8 2 2 4 {1,9,10}’ {2,4,6,7.8) 8 8 {2,4,6,7,8} {3.5}

9 9 | {2,4,6,9,10} 5 {1,2,7,8} 5 {5,6,9,10} | {1,5,6,7,9} | {5,6,7,8} {9,10} 10

10 | 10 {1,7,8} 5 {6:6,9,10} B {5,6,9,10} {5,6,9,10} (2,34} 10 10




3.2. DEFINITION AND EXAMPLES OF POLYLOOPS

notation | Relations | notation | Relations
1 EQ 6 PON
2 DC 7 TPP
3 ECD 8 NTPP
4 ECN 9 e 2 2
5 PoD 10 NTPP”

21

Table 3.2: Alternate notation for RCC10 relations

This table shows that the multiplication is not associative; for example
(10 04, 5) 04y 9 # 10 0y (504 9).

This means the complex algebra of this multigroupoid is non-associative. However
it has been verified by computer that this algebra is semiassociative.

This example is recorded from [23].
Example 6.

Serial Partition: Let U be a non-empty set. Let M be a partition of U x U
such that each z € M is a serial relation on U (a relation z is said to be serial
if for each a € U, there exists b € U such that (a,b) € ) then M is known as
serial partition. Suppose that the identity relation (denoted by e) on U is also
a member of M and that the inverse of each x € M (denoted by z7') is also a
member of M. Define o,, (known as weak composition in the literature) on M as

follows:
rop,y={z€M|zN(zoy)#0).

Here o denotes the composition of relations. Using the fact that zoy € zo, Yy,
it is easy to prove that M = (M, o,,” !, e) is a polyloop. It is worth mentioning
that the weak composition on the members of a serial partition is not necessarily
nonassociative and it is not necessarily associative either. For example the weak
composition table of RCC10 is non-associative and hence gives an example of a
polyloop which is not a polygroup. On the other hand the weak composition
table of RCC-8 is associative and hence provides an example of a polyloop that

is also a polygroup.

Example 7.



22 CHAPTER 3. POLYLOOPS AND SA RELATION ALGEBRAS

Chromatic Polyloops: Let C be a non-empty set of colours and e be an
involution on C. Let C, be the set of edges (z,y) of a directed graph (V, E) that
are coloured by ‘a’; hence C, is a binary relation on V. A colour scheme is a

system V = (V, C,)acc that satisfies the following conditions:

(1) {C. | a € C} partitions {(z,y) € V xV |z # y}
(2) For each a € C the set Ce(y) is the converse relation "

(3) For each vertex z and the colour a, there exists a vertex y such that (z,y)

1s coloured a;

(4) For all a,b, ¢ € C, there exists ¢ € C such that C, N (Cy 0 Cp) # 0= C,C
(Ca ¢} Cb)

The purpose of the involution e is to guarantee the colour assigned to edge
(y,z) depends only on the colour of (z,y) (in the case of directed graphs) and
therefore the colours a and e(a) can be thought of as ‘paired’. Clearly taking
a = e(a) these schemes can be used to colour undirected graphs.

Now let V = (V. C,)qec be a colour scheme with involution e on C and let /

be a symbol that is not in C. Let us define a system
Ay = (CU{I}, %71, I)

such that
axb={ceC|C.NCaoC}U{l|b=0a"}

fora,be C,zx] =z =1I+xforx € CU{I}, and for all a € C,a™! = e(a) while
=1,

It is easy to verify that Ay is a polyloop. We call a polyloop chromatic if it
is isomorphic to a system Ay derived from some colour scheme V.

If we consider the regions in RCC-8 to be the vertices and the 8 relations to be
the colours, then the ordered pair (z,y) can be thought of coloured DC (means
(x.y) € Cpe) if the regions z and y are not connected (topologically if Ny = 0),

so RCC-8 can be thought of as a chromatic polyloop.
Example 8.

Directed Graphs: Let (G, D) be a directed graph with the property that
for any two vertices a # b € G either a is connected to b or b is connected to a.

Define % on G as:
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ab=aif aDb but ~ (bDa), a*b = b if bDa but ~ (aDb) and a x b = {a, b}
if aDb and bDa.

Consider Gt = GU {e} where e ¢ G and define o on G* asaoce=a=¢€oa.

aob=axbifa#b aob={g€ G|aDg}U{e}ifa="0

If we define the inverse to be the identity map ¢ on G, then the system
G = (G*,0,i,e) is a commutative polyloop. This example is due to Jipsen,
Kramer and Maddux [32].

Define a sequence of structures (U, R,) where U, = {a;; |1 € Z,1 < j < n}

and

Rn = {{aij, ary) | k<ior (i =k and j > 0} U {(ai1, aiv15)} U {(@ss, @iz}
for 1 < j <n. Then (U,, R,) gives us an infinite class of such polyloops.
Example 9.

Computer generated Polyloops: Constraint programming can also be
used to generate polyloops. We list here a few, selecting one of each order ranging

from 3 to 8; all elements in these polyloops are self-inversed.

* 1 2 3 4 6 7
e=11|1 2 3 4 5 6 7 8
2 |2 {1,5,7} | {4,7,8} | {1,2} | {1,3} [ {1,2,3} | {1} | {1, 2}
3 |3|{4,7,8 |{2,7,8)| {2,3} | 3 3 9 2
4 4| {1,2) | {2,3} |{1,2}| 2 2 2 2
5 5] {1,3) 3 2 | {1,2} 2 7 2
6 |6]{1,23}) 3 2 2 {1,2} 2 2
7 |7 {1} 2 2 2 2 {1,2}| 2
8 8] {1,2) 2 2 2 2 2 | {1,2}
1 2 4 5 7

e=1|1 2 4 5 ¥

2 |2|{1,4,6} | {67} |{1,3}|{1.2,3}"| {1} |{1,2}

3 13| {67} [{1,45}] 3 3 2 2

4 4] {1,3) 3 {1,2} 2 2

5 |5({1,2,3)| 3 2 {1,2} 2

6 |6 {1} 2 2 2 {1,2}| 2

77| {12 2 2 2 2 | {1,2}
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* 1 4 )
e=1|1 2 3 4 5 6
2 2| {1,5} |{5,6}|{4,5,6} {1} | {1,2}
3 3| {5,6} |{1,4} 3 2 2
4 41{4,5,6} 3 {1,2} 2
) 5 {1} 2 2 {1,2}
6 6| {1,2} 2 2 2 {1,2}
* 1 4
e=1|1 2 3 4 5
2 2| {1,4} | {1,2} | {1} {1,2}
3 31{1,2} | {4,5} 2 2
4 4| {1} 2 {1,2} 2
o 51 {1,2} 2 2 {1,2}
x 1 3 4
e=1|1 3 4
2 2| {1,3} | {1} |{1,2}
3 31 {1} |{1,2} 2
4 |4]{1,2} 2 {1,2}
< [1] 2 |3
e=111{ 2 |3
2 21 {2}/ |2
3 3|1 2 |1

The last three-element polyloop has been given and studied by Maddux [42. Page
429]

Example 10.

Double Quotients of Polyloops: This is a way of getting more polyloops

from given polyloops. The following notion is due to S. D. Comer [18].

Definition 3. Let R be an equivalence relation on a polyloop M = (M, x 71 e).
Then

(1) R is a full conjugation on M if (z,y) € R implies (z7',y~!) € R and
2 € xxy and 2Rz implies there exist o' Rx,y' Ry such that 2’ € 2’ x y/'.

(2) A full conjugation R is called a special conjugation if xRe implies v = e.
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We can prove the following:

Proposition 1. Let R be an equivalence relation on a polyloop Ml = (M, x,7! [e).
If R is a full conjugation on M then the system R = ({[z]g | € M}, *~"[e]r),

where * and ~' are the induced operations on R-classes, is a polyloop.

Proof. Let R be a full conjugation on M. We show that ({[z]r | = €
M}, %7 [e]r) is a polyloop. It is clear from the definition of full conjugation
that [z]5' = [z7'|gr € R for all [z]r € R and

[2]r * [ylr = {[z]r | z € [2]n * [y]r}.

(Py) Since x € (7 *y) xy ', we have [z]g € ([z]r * [y]r) * [y]p'. Similarly we
can show that [z]g € [y]5" * ([y]r * [z]R)-

(Py) Since e € z * ™1, we have [e]g € [z]r * [2]; (also [e]r € (2] * [z]R).

(P,) First we need to show that [e]r € [z]r * [y]r if and only if [y|r = (2|5
Suppose that [¢]g € [z]r * [y]r which means there exist u € [z]g and v € [y]r such
that e € u * v and hence v = u~!. This means by definition that [y]r = [z]%".
The converse follows from P;. Now let a € [z]g * [e]g. This means there exist
b € [z]g and ¢ € [e]g such that a € bxc. This implies that ¢ € b~! % a and hence
[e]r € [z]7' * [a]r and therefore a € [z]g. This proves that [z]r * [e]r = [z]r.
Similarly we can show that [e|g * [z]r = [z]r.

(P;) Let [z]r € [y]r * [2]r- This implies there exist a € lylr and b € [z]r
such that = € a # b which means a € z *b~! and b € a! x z. Now by using the
definition we conclude that [y]r € [z]r * [2]5' and [2]r € [y]z' * [z]r. O

The systems in the above proposition are called double quotients of M. Ob-
viously the collection of singleton subsets of M gives a trivial double quotient for
M. Similarly the partition {{e}, {e}'} also gives a double quotient. If we consider

the smallest nonassociative IP loop M of order 7 then

R = {{1},{2,3},{4,5},{6,7}}

provides the double quotient of M.

It is easy to verify that all the polyloops from Example 9 have only double
quotients that are either trivial or they are of the form {{e}, {e}'}.

The double quotients of a given finite loop can be generated on a computer
by using constraint programming. For example the number of double quotients
of RCC-8 turns out to be 25 including

{{1},{2.3,4},{5,8}.{6,7}}.
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Similarly the number of double quotients of RCC-10 turns out to be 42 in-
cluding

{{1},{2,4,5},{3},{6},{7.8,9,10}}.

It is worth mentioning that the polyloops generated by the computer in the above

example have no non-trivial double quotients.

3.3 Connections with SA relation algebras

How a multigroupoid (M, -) can be viewed as a relational structure is given here:

Consider the ordered pair M = (M, R) where R is a ternary relation on M
defined by: R(a, b, c) if and only if a € b-c. Although this agrees with the formal
definition of complex algebras, in the context of multigroupoids it is customary
to work instead with a relation 7", defined by R'(a,b,c) if and only if c € a - b
if and only if R(c,a,b). This agrees with the traditional definition of complex
multiplication of multigroupoids as X oY = U{z -y:z € X,y € Y} If
M has a unit element e, M can be viewed differently as the structure M =
(M, R,{e}). Similarly, if M has a unary operation ~1 then we may view M as
M = (M, R, S, {e}), where S is a binary relation on M such that zSy (and ySz)
iff z71 = y.

An example of such a complex algebra was seen in the case of M being a
polygroup (see [18]). In that case Comer proved that the complex algebra of
M is a complete atomic integral relation algebra. For the exact reference see
Theorem 3.1 of [18].

An algebra A is said to be integral if for all z,y € A, zoy =0 implies z =0

or y = 0. The following lemma gives an alternate condition for integral SA.
Lemma 2. Let A be an SA. Then A is integral if and only if e is an atom of A.

Remark 2. Here too we proved this lemma without the knowledge of its existence
previously but later on we found that this has been proved by Madduz on page
366 [42, Theorem 353] and was published in 1990 [40]. The version for relation
algebras is Theorem 4.17 proved by B. Jonsson and A. tarski [34)].

Proof. Suppose that e is an atom of A and that there are x # 0 and y # 0 but
zoy =0. This means (roy) Al=0,0r (z'01)Ay=0 and hence z701 < y~.
Now (zoe) Az # 0 and hence (z” o z) A e # 0. But since e is an atom, we have
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zox >e Againy=eoy < (z'ox)oy < (z'ol)ol=2"0lory <z ol
Consequently we have

y<wzol<y
a contradiction since y # 0. Hence A is integral.

Conversely suppose that A is integral but e is not an atom. This means
there exist 0 # z and 0 # y such that tVy = e and x Ay = 0. Since y < e,
zoy < xoe = z and similarly z oy < y which implies zoy <z Ny = 0, a
contradiction. Hence e is an atom. ' U

The complex algebra of a polygroup M = (M, *,7! e) is the system Cm =
(P(M),N,U, —,0, M, *~! {e}) where (P(M),N,U,—,0, M) is the Boolean al-
gebra of all subsets of M and * and ~1 denote the extensions of the polyloop
operations to subsets.

The complex algebra construction gives a one-one correspondence (up to iso-

morphism) between polyloops and complete atomic integral SA’s.

Theorem 3. (1) Cm(M) is a complete atomic integral SA for every polyloop
M.

(2) For every atomic integral SA A the system
At(A) = (Ata,x,7 e),
where Aty is the set of atoms of A, is a polyloop.
(3) If M is a polyloop and A is a complete atomic integral SA, then
M = At(Cm(M))

and
A = Cm(At(A)).

Remark 3. Though we did this theorem independently but later on we found that
Theorem 3(1) is a special case of [32, Theorem 2.2], Theorem 3(2) follows from
[32, Theorem 2.2] and the first equation in Theorem 3(3) is a special case of [32,
Theorem 3.3] while the second equation in Theorem 3(8) is a special case of [32,
Theorem 8.13(20)].

Proof. (1) Let (M, *,7!, ) be a polyloop. We show that (P(M),N, U, —. 0, M.0." {e})

is a semiassocitive algebra where o is defined as

XoY=U{:E*yyxEX,y€Y}
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and

X ={z'|ze X}

Since (P(M),N,U,°,0, M) is Boolean algebra, we only need to prove the fol-

lowing:

(i) For all X,Y,Z € P(M), we have
XN(YoZ) =0if Y N(Xo0Z)=0iff ZN (Y 0 X)=0.

i (ii) For all X € P(M), we have

(XoM)oM=X’oM.

(i) Let X N (Y o Z) # 0 so there exists ¢ € X such that € Y o Z. This
means there exist y € Y and z € Z such that © € y * z. Since U is a polyloop,
we have y € % z~' and z € y~! x x. This implies that ¥ N (X o Z7) # { and
ZN (Y o X)#0.

(i1) Clearly

XoM=(XoM)o{e} C(XoM)oM.

We only have to show that
| (XoM)oM C X oM.

For each t € (X o M)o M and x € X, we have t € z * (z7! xt) € X o M which
proves what we required.

Also for non-empty sets X and Y, we have X oY non-empty; proving P(M)
| to be integral.

(2) Suppose that A = (A4,A,V,~,0,1,0,7 e) is a complete atomic integral
semiassociative relation algebra. We show that (AtA, 0,7, e) is a polyloop. This

means we only have to show that for all z and y € Ata
(P) € (zoy)oy andz €y o(yox).

(Pp) e € Ata.

(P3) x” € Ata.

(Py) Let us suppose that z ¢ (xoy) oy . This means 2 A [(zoy)oy] =0
which implies (by RA3) that (z oy) A (zoy) =0, a contradiction.
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(P,) Since A is integral, e is an atom of A (by lemma above) and hence lies
in Aty.

(Ps) Suppose not. Then z” is strictly above some y € Aty which implies that
y~ lies strictly below z, a contradiction.

This completes the proof of (2).

(3) A map from a to {a} gives the first isomorphism and the mapping from
r € A to {a € Aty | a < z} gives the second. O

It is not hard to realise that a double quotient of a given polyloop M is a
subalgebra of Cm(M). This means that the complex algebras of the loops given

in Example 9 are all “minimal” semiassociative relation algebras.

3.4 A Link Between Polygroups and Polyloops

In this section we record a sufficient condition on polyloops (given in Example 2
and 3) that make them polygroups. We call a partition M of a set U dense if for
z.y.zand t € M, (zoy)N(zot) =0 implies for all s € M either (zoy)Ns = 0
or (zot)Ns=140.

Proposition 2. If M is a dense serial partition (as defined in Ezample 2) of a
set U x U then M = (M, 0,,7 %, ¢e) is a polygroup.

Proof. Associativity is the only thing to be verified. This amounts to proving
the following:

For all a.b,c,d. f € M ifc < aoy,band f < co,d then there exists g € M
such that g < bo,d and f < ao,g. By (Ps), we have f <co,diff c < fo, d!
and f <ao,giff g<alo,f.

Therefore suppose that ¢ < a o, b and ¢ < f o, d”'. By definition of oy,
we have (aob)Nc # 0 and (fod')Nc # 0. Now by the density of M,
we get (aob)N(fod') # 0 and therefore bN ((a™' o f) od™') # 0. Thus
(ato f)N(bod) # 0. This means there exits g € M such that (@lofiNg#0
and (bod)Ng # 0.

Thus g <alo, f and g < bo, d and by (Py), we get f < aoyg.

| O

Example: Let M = {e, R,S,T} be a serial partition of U x U where U =

{0.1,2,3} and R, S.T are defined by:

e R={(04),(4.0),(1,3),(3.1).(1,2), (2. 1)},

o S={(0,1),(1,0).(2.3),(3,2).(3,4), (43)},
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o T =1{(0,3),(3,0),(4,1),(1,4),(2,4), (4,2)}.

Then the weak composition table of the elements of M is given by:

o, | € R S T
e | e R S T
R |R| {e S} |{T,R}| {5 T}
S| S|{T,R}| {e,T} | {R S}
T |T|{ST}|{R,S}| {e R}

Table 3.3: Weak Composition Table for M

Table 3.3 shows that weak composition is different from composition. It is
easy to check that the weak composition in this case is associative, and also that
composition and weak composition of the elements of M satisfy the necessary

conditions of Proposition 2 and hence Table 3.3 provides a polygroup.

Remark 4. Table 3.3 already appears on page 443 in [{2] where it is the relation
algebra called 39¢s. Table 3.3 not only provides a polygroup, but a group repre-
sentable relation algebra (a GRA). In fact, this polygroup is embeddable in the

complez algebra of the cyclic group of order 7.



Chapter 4

Complex algebras of loops

4.1 Introduction

In this chapter we aim to investigate the class of groupoids whose complex al-
gebras are semiassociative relation algebras and vice versa. Due to weak asso-
ciativity of the multiplication of semiassociative algebras we always thought that
such groupoids must carry some loop like structure. This investigation proved
to be analogous to the one carried out by Jénsson and Tarski (see [33], [34]) for
relation algebras.

In Section 2 we prove important lemmas which are crucial for our main result
that provides a strong connection between IP loops and semiassociative algebras.
In Section 3 we present our partial findings which were obtained during our search
for Lyndon algebras that appear as subalgebras of complex algebras of selected

IP loops. This generates much interest for future investigations in this area.

4.2 Complex Algebras of IP Loops

=1

An IP loop (G, *) together with the unique inverse function =" and identity ele-

ment ¢ can be easily seen as a relational structure G = (G, T, R, {e}), where T' is
a ternary relation on G defined by: (x,y,z) € T if and only if 2 = y * z which in
turn defines a binary function on P(G) by:

f(X,)Y)={a€cG|IzeX,yecY|(z,y,a) €T},

and R is a binary relation on G defined by (x,y) € Riff 27! = y which defines
an involution on P(G) by:

X'={acG|3eG]|(ab)€ R}

31
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One natural example of such a complex algebra is seen when G is a group.
Then, Cm(G) turns out to be a relation algebra. We will prove an analogue of
this for semiassociative relation algebras, establishing a link between these and a

certain quite well-known subvariety of loops. We begin with the following lemma:
Lemma 3. If U= (U,-, 7}, ¢e) is an IP loop, then Cm(U) is a SA.

Proof. That {e} is an identity element in Cm(U) is obvious. We then only
need to show that complex multiplication X oY = {zy | z € X,y € Y} and
converse X~ = {z~! | x € X} satisfy the following for all X,Y,Z € P(U).

XN(YoZ)=0 iff YN(Xo0Z)=0 iff ZN(Y oX)=0  (a)

(XoU)oU=XoU (b)
For (a), let X N (Y o Z) # 0, so there exists z € X with z € Y o Z. Thus,

there are y € Y and z € Z such that z = yz. By inverse properties, we have
y = 2z~' and z = y~'z. This implies that Y N (X 0Z") # @ and ZN(Y 0 X) # 0.
By symmetry of the situation this establishes (a). Notice that the coincidence of
left and right inverses is essential.

For (b), firstly, it is clear that X oU = (X oU) o {e} C (X o U)o U. We only
have to show that (X o U)o U C X o U. By the unique solution property, for
z € X and y, z € U there exists a € U such that (zy)z = za. Thus, (zy)z € XoU
as required. Notice that a = z7!((zy)z), which in’general is not equal to yz. U

The next lemma links the non-associative algebras (a much weaker class than

that of semiassocitive algebras) with IP loops.

Lemma 4. If Cm(U) is the complex algebra of a groupoid U = (U,-) and
Cm(U) is a NA, then there is an e € U and a unary operation Y on U such that
(U,-, Y, e) is an IP loop.

Proof. Let E C U be the identity element of Cm(U). First, we show that
E is a singleton. Suppose z,,zo € E. Since for all v € U, we must have
{u} o E = {u} = E o {u}, we get that

ur, = u=1xu and uUTy =u= Tou

Replacing v by x; in the second equation and by z; in the first we get z1 = 2o,

so E is a singleton. Putting F = {e} we obtain eu = u = ue for all u € U.
Secondly, we show that for all z € U there exists a unique y € Y such that

vy = e = yr. To do this, observe that {z}" is singleton for all z € U. The proof
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of that is folklore in relation algebras and carries over without change, but since it
nicely demonstrates some arithmetic of complex algebras (and BAOs in general),
we repeat it here. Suppose {z}” contains y; and yo. Then {z}” D {y1,y2} =
{11} U {52} and therefore {z}* = {z} 2 {y1,92}" = {x1} U {y2}". Now, as
0" = 0, none of {y1}", {y2}" can be empty, so we must have {z} = {y1}” = {y2}".
Thus, {z}” = {y1} = {y2}, as needed. Hence, we obtain that for all singletons

{x}, there is another singleton {z}” such that

{z}o{a} = E={z} o{z}.

This immediately shows that for all z € U there exists a unique inverse y, namely
the unique element of {z}". Thus, we can define a unary inverse function ~1on
U.

Finally, we show that for all z,y € U we have x = (zy)y~' = y~'(y).
Suppose that @ # (zy)y~!. This means {z} N ({zy} o {y}") = 0 which implies
that {zy} N ({z} o {y}) = 0, a contradiction. Hence = = (zy)y~', and the other
equality is similar. This completes the proof. L]

Combining the two lemmas we have:

Theorem 4. The complez algebra of a groupoid (L, -) is a semiassociative relation

algebra if and only if (L,-) is an IP loop.

By analogy with group relation algebras (GRAs) we may define loop semi-
associative relation algebras (LSAs) to be the class of (isomorphic copies of)

subalgebras of products of complex algebras of IP loops.

4.3 Lyndon Algebras and IP Loops

For n > 2, the Lyndon algebra A, is a finite relation algebra with n + 2

self-inversed atoms e, ao, ..., a, that satisfy the following condition;
e q;oa; =eVa,ifn >3
® a;0a; = kaei,jak if ¢ # 7,

where 7, j, k < n. Case n = 2 is special so we treat it separately. Notice that
for n = 2 the definition we gave above still works, but it does not produce a
relation algebra because multiplication ceases to be associative. This led many

authors to alter the definition of multiplication for n = 2 into a; o a; = e and
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a;0a; = 4 akif i # j. We do not do that here. Our reason is that the algebra
A, (under our definition) turns out to be a subalgebra of the complex algebra of

the smallest nonassociative IP loop.

The algebra A, coincides with the semiassociative relation algebra called
C4({1,3}) in Theorem 2.5(4)(a) of [32], which states that A is an SA, but not
an RA.

Lyndon [36] proved that A(G), the algebra of a given geometry G, together
with an identity element that is not a point in G is a Lyndon algebra. Monk
[47] used these Lyndon algebras to prove that the representable relation algebras
(RRA’s) are not finitely axiomatizable. Clearly if the above equivalence holds
for LSA’s, it would give an easy proof of nonfinite axiomatizability of LSA’s.
Although this could not be achieved, we managed to prove that there are members
of LSAs that are clearly Lyndon algebras whose multiplication table coincides

with the one suggested above in the definition of Lyndon Algebra.

It was not difficult to find such algebras having up to 7 atoms but despite
considerable efforts we could not find one with 8 atoms. As this is the first
nonrepresentable Lyndon algebra it may suggest that the equivalence does indeed
hold.

We give here the details of Lyndon algebras among LSAs having exactly 6 and
7 atoms; they are the subalgebras of the complex algebras of IP loops of order 16

and 25 respectively. The atoms of these Lyndon algebras are

{{1},{2,3,4},{5,6,7}, {8,9,10}, {11, 12,13}, {14,15,16}}

and

{{1},{2,3.4,5},{6,7,8,9}, {10, 11,12,13}, {14,15,16,17},{18,19, 20, 21}, {22, 23,24, 25} }

respectively. To verify that these atoms form Lyndon algebras, we have included
the composition tables of two non-isomorphic IP loops each of order 16 and 25;
for the reader’s interest we mention that one of each order was obtained manu-
ally and one using the first-order theorem prover PROVERS and its associated

propositional satisfiability solver Mace4 [43].
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x| 1 2 3 4 10 11 12 13 14 15 16
e=1 11 2 & 4 10 11 12 13 14 15 16
212 3 4 1 11 14 13 15 7 16 9 5 10 12 6
313 4 1 2 15 9 12 16 6 11 10 7 14 13 5 8
414 1 2 3 13 16 10 5 12 14 b & * o @
515 8 12 16 6 7 15 11 4 14 10 9 3 13
66 14 9 13 7 1 12 3 16 15 8 4 2 11 10
77 11 15 10 1 5 14 13 9 3 16 12 8 4
88 16 13 5 11 14 0 1 4 6 15 3 7 12
919 12 6 15 16 3 13 10 1 8 14 2 11 4 5
10010 7 14 11 4 12 15 1 .8 9 &5 16 b 13 2
1111 10 16 7 14 2 8 3 5 15 12 13 4 )
12112 15 5 9 3 10 16 14 4 6 13 1 11 8 7
13113 6 14 9 15 4 7 16 2 1 11 12 5 10 3
14114 13 10 6 8 11 4 7 12 3 5 9 15 16 1
1515 9 7 12 10 13 1 2 5 8 4 6 16 1 14
16 | 16 11 8 12 4 6 13 3 7 10 2 1 14 15
x| 1 2 3 4 7 9 10 11 12 13 14 15 16
e=1|11 2 3 4 1 9 10 11 12 13 14 15 16
212 3 4 1 11 14 15 12 7 10 16 9 13 ©
313 4 1 2 15 9 12 13 6 16 14 7 11 10
414 1 2 3 13 16 10 5 14 11 6 9 15 7 12
5(5 8 1216 6 7 1 11 156 4 2 14 9 10 13
6|6 14 9 13 7 1 5 16 3 12 15 10 4 2 11 8
TRTE DL A5 Ao I 6 6 13 14 8 3 16 12 9 4
8!8 13 14 5 16 12 2 10 3 15 7 6 4 11
919 16 6 12 11 3 15 10 1 5 4 14 13 7 2
10010 7 11 15 14 13 1 8 16 6 2 3 12 5
11111 15 10 14 4 16 5 15 12 13 1 8 6 3
12112 9 5 14 6 6 2 15 13 1 11 4 10 7
13113 16 8 10 15 4 14 7 3 1 11 12 5 2 9
14114 12 8 6 2 10 11 7 4 13 9 5 3 15 16 1
1518 10 ¥ 1I 98 13 8 12 & 2 4 @ 16 1 14
1616 5 13 9 12 4 8 3 11 6 7 10 1 14 15
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* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 T
e=1 1 2 3 4 5 6 7 8 9 10 B 12 13 14 15 16 17 18 19 20 21 22 23 24 1
| 2 2 3 4 5 1 10 14 18 22 20 17 23 9 12 24 19 8 25 13 15 7 21 16 11 2
3 3 4 5 i 2 15 11 23 19 16 21 8 22 25 13 9 18 12 24 6 14 17 20 7 3
4 4 5 1 2 3 20 24 12 16 25 7 18 15 21 6 10 22 17 9 23 11 13 8 19 4
5 5 1 2 3 4 25 21 17 13 6 24 14 19 7 20 23 11 8 16 10 22 9 12 15 5
6 6 10 15 20 25 i 8 9 s 24 18 16 5 23 11 4 19 22 3 14 12 2 13 13 6
7 T 14 11 24 21 8 9 1 6 19 25 4 Ll 10 22 18 5 2 23 13 15 12 3 20 7
8 8 18 23 12 17 9 1 6 /A 14 3 22 20 2 21 25 13 16 10 24 5 15 19 4 8
9 9 22 19 16 13 1 6 7 8 2 15 21 23 20 3 12 24 11 17 4 25 18 14 10 9
10 10 20 16 25 6 24 19 14 2 11 12 13 1 22 4 21 i 15 5 8 23 3 9 18 10
11 1s1 17 21 i 24 18 25 3 15 12 13 1 10 5 23 6 20 4 14 22 9 8 2 16 2l
12 12 23 8 18 14 16 4 22 21 13 L 10 11 19 9 24 2 6 25 1 3 20 15 5 12
13 13 9 22 15 19 5 17 20 23 1 10: il 12 8 18 3 25 24 7 2 16 14 21 6 13
14 14 12 25 21 i 23 10 2 20 22 5 19 8 15 16 17 il 3 6 11 24 4 18 9 14
15 15 24 13 6 20 11 22 21 3 4 23 9 18 16 17 i 14 T 2 25 10 19 5 12 15
16 16 19 9 10 23 4 18 25 12 21 6 24 3 17 1 14 15 13 22 5 8 7 11 2 16
17 17 8 18 22 El 19 5 13 24 7 20 2 25 1 14 15 16 23 12 9 4 10 6 21 17
18 18 25 12 17 8 22 2 16 11 15 4 6 24 3 7 13 23 19 20 21 1 5 10 14 18
19 19 13 24 9 16 3 23 10 17 5 14 25 i 6 2 22 12 20 21 1 18 11 4 8 19
20 | 20 15 6 23 10 14 13 24 4 8 22 17 2 pat 25 5 9 21 1 18 19 16 7 3 20
21 21 i 14 11 22 12 15 5 25 23 9 3 16 24 10 8 4 1 18 19 20 6 17 13 21
22 | 22 21 17 13 9 2 12 15 18 3 8 20 14 4 19 7 10 5 11 16 6 23 24 25 22
23 | 23 16 20 8 12 13 3 19 14 9 2 15 21 18 5 11 6 10 4 7 17 24 25 1 23
24 24 11 7 19 15 17 20 4 10 18 16 5 6 9 12 2 21 14 8 3 13 25 1 22 24
25 | 25 6 10 14 18 21 16 11 5 17 19 7 4 13 8 20 3 9 15 12 2 1 22 23 25
* 1 2 3 4 5 6 g 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 T | T
e=1 1 2 3 4 5 6 7 8 9 10 1L 12 13 14 15 16 i 18 19 20 21 22 23 24 1 1
2 2 3 4 5 1 10 14 18 22 17 21 25 9 11 19 24 6 12 23 16 7 13 15 20 2 5
3 3 4 5 1 2 23 11 15 19 20 24 8 16 18 12 9 25 22 13 6 17 14 10 7 3| 4
4 4 5 1 2 3 20 24 12 16 23 i 15 19 22 8 13 21 14 9 10 25 18 6 11 4 3
5 5 1 2 3 4 17 21 25 13 6 14 18 22 7 23 20 10 8 15 24 11 9 19 16 5| 2
6 6 10 15 20 25 7 9 1 24 19 16 5 2 18 22 13 23 3 12 14 21 17 4 6|9
4 ife 22 11 16 21 8 9 b 6 18 15 4 23 10 25 19 5 2 24 17 13 12 3 14 718
8 8 18 23 12 17 9 1 6 7 14 3 22 21 24 11 4 20 10 16 25 5 2 13 1.9 8|7
9 9 14 19 24 13 1 6 ¥ 8 2 25 20 17 21 3 12 23 15 11 4 22 16 18 10 916
10 10 25 20 15 6 14 18 24 2 11 12 13 1 5 22 21 i 17 4 23 8 19 9 3 10 13
11 11 21 16 7 22 19 25 3 15 12 13 1 10 23 20 8 2 5 14 9 24 6 4 17 11 12
12 12 17 8 23 18 22 4 16 20 13 1 10 11 19 9 3 24 25 6 15 2 5 14 21 12 11
13 13 9 24 19 14 5 17 21 23 1 10 11 12 6 4 25 18 7 22 3 16 15 20 8 13 10
14 14 13 18 22 9 24 19 2 10 21 23 5 8 15 16 17 1 6 25 it 4 20 7 12 14 LT
15 15 19 10 6 23 11 3 20 25 22 4 7 18 16 17 & 14 24 12 5 9 8 21 2 15 16
16 16 24 7 11 20 4 12 22 21 3 6 19 25 17 1 14 15 13 2 8 23 10 5 18 16 15
17 17 8 25 21 12 18 23 13 5 9 20 24 2 1 14 15 16 3 7 22 10 4 1.1 6 17 14
18 18 12 22 14 8 25 2 10 17 15 5 23 7 13 24 6 3 19 20 21 1 11 16 9 18 21
19 19 23 13 9 15 3 22 14 11 4 16 6 24 25 7 2 12 20 21 1 18 17 8 5 19 20
20 | 20 16 6 10 24 12 15 23 4 25 9 17 3 8 5 11 22 21 1 18 19 7 2 13 20 19
21 21 7 17 25 11 16 13 5 24 8 22 2 14 4 10 23 9 1 18 19 20 3 12 15 21 18
22 | 22 461 14 18 7 2 16 19 12 5 8 21 15 20 6 10 4 9 17 13 3 23 24 25 22 | 25
23 | 23 15 12 8 19 13 20 17 3 7 18 14 4 9 21 5 11 16 10 2 6 24 25 1 23 24
24 | 24 20 9 13 16 21 10 4 14 19 17 3 6 12 2 18 8 11 5 7 15 25 1 22 24 23
25 25 6 21 17 10 15 5 11 18 16 2 9 20 3 13 7 19 4 8 14 12 1 22 23 25 | 22




Chapter 5

Counting Loops with the Inverse

Property

5.1 Introduction

A loop (L, *) is said to have the inverse property if each € L has a two-sided

inverse ! such that for all y € L we have

e s (zxy)=y=(y*xz)*a "

These loops are known as IP loops (for an account of their properties see Bruck’s
survey [11]). Clearly every group is an IP loop, but the converse is not the case.
The smallest IP loop that is not a group is of order 7. Steiner loops are also IP

' = 2. IP loops form a very important

loops, satisfying the extra condition ™
class, not only in that they represent a strong generalisation of both groups
and Steiner loops, but also in that the Moufang nucleus (the set of a € L such
that a[(zy)a] = (ax)(ya) for all z,y € L) of such loops behaves as a nilpotency
function for this class. Moreover IP loops are exactly those groupoids whose
complex algebras are semiassociative relation algebras [39].

The present chapter reports the numbers of non-isomorphic IP loops having
order up to 13. Since these were obtained by exhaustive enumeration, they are
available for inspection. We have also included the classification of IP loops into
several important subclasses.

In Section 2 we give a detailed account on the history of counting Latin
squares, quasigroups and loops which tells us how old and how sorry this history
has been. In Section 3 we give the number of isotopy classes, main classes and

the isomorphism classes of quasigroups and loops (up to order 10); Sections 2 and
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3 are reported from McKay et al [44]. In Section 4 we explain how we counted
the number of isomorphism classes of IP loops of order up to 13 and then classify

them into interesting subclasses.

5.2 History of Counting Latin Squares, Quasi-

groups and Loops

The history of counting Latin squares goes back to at least 1782 because the
number of reduced squares of order 5 was known to Euler [24] and Cayley [15].
MacMahon [37] used a different method to find reduced squares of order 3, but
obtained the wrong number. In 1890, Frolov [26] found the number of reduced
squares of order 6 which was also done by Tarry [65]. About 30 years later Jacob
29] tried the same class (order 6) but failed to produce the right value. Frolov
also tried to find the reduced squares of order 7 but could not give the correct
number. In 1930, Schonhardt [62] found the correct numbers of main classes,
isotopy classes and reduced squares up to order 6. Fisher and Yates [25] seemed
to be unaware of the results by [62] but refers to the work of Tarry and confirmed
his values. In 1939, Norton [50]) suggested that there are 146 main classes and
562 isotopy classes of latin squares of order 7 but also acknowledged that his
method might be incomplete. It was proven in 1948 by Sade [58] and in 1951 by
Saxena [61] that the reduced squares of order 7 were more than Norton found
in 1939. In 1951, Sade [59] traced the actual error by Norton; he found the one
main class that was missing in the findings of Norton. This raised correctly the
number of main classes of squares of order 7 to 147 and the isotopy classes to 564;
this was noted by Preece [54] in 1966. However, in 1968, Brown [9] published the
incorrect value 563 and the error remains un-noticed as it is still being quoted
([17] and [21]).

Brown was also mistaken in counting the number of isotopy classes of order 8
and it was noticed that Arlazarov et al. [3] gave the incorrect number of the main
classes of squares of order 8. However, the correct number of reduced squares of
order 8 was already published by Wells [68] in 1967, and the number of isotopy
and main classes was correctly found by Kolesova, Lan and Thiel in 1990 [35].

The number of reduced squares of order 9 was calculated by Bammel and
Rothstein [6], order 10 by McKay and Rogoyski [45] and for order 11 by McKay
and Wanless [46]. McKay claims that In each case the same numbers have been

computed independently at least twice, so they are likely to be correct. In view of
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the sorry history of the subject, we attempted to do as much of our computation
in duplicate as possible. The number of isotopy or main classes of latin squares
of order greater than 8 was published for the first time by McKay et al [44]; they
gave these numbers for squares of order up to 10.

Although the correct number of non-isomorphic loops of order up to 6 was first
published by Schonhardt [62] in 1930, it seems that this publication was not seen
by Albert [1] or Sade [60] who published weaker results so late. In 1974, Dénes
and Keedwell [21] also gave the count of loops of order up to 6, thinking that they
counted the number of “quasigroups”. The loops of order 7 were counted in 1985
by Brant and Mullen [8]. In 2001, “QSCGZ” [55] published the number of loops
of order 8 in an electronic forum and the same value was found independently
by Guérin ([28]). The number of quasigroups and loops of order up to 10 was
published in 2007 by McKay et al [44].

The entire section on the history of counting Latin squares, quasigroups and

loops is taken from [44].

5.3 Small Latin Squares, Quasigroups and Loops

The total number R,, of reduced Latin squares of order n are given in the following

table while the total number of squares (reduced or not) is L, = n!(n — 1)!R,.

reduced squares

<
=

USSR RS (TR U

o6
9408
16942080
535281401856
377597570964258316
7580721483160132811489280
11 | 5363937773277371298119673540771840

Ol | DUk | WIN|

et
-

Table 5.1: Reduced Latin squares of order n

The number of main classes, types and isotopy classes of Latin squares of

order up to 10 are given in the table 5.2.
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n main classes types isotopy classes
1 1 1 1

2 1 1 1

3 1 1 1

4 2 2 2

5 2 2 2

6 12 17 22

7 147 324 564

8 283657 842227 1676267

9 19270853541 57810418543 115618721533
10 | 34817397894749939 | 104452188344901572 | 208904371354363006

Table 5.2: Isotopy classes, types and main classes of Latin squares of order n

The number of isomorphism classes of quasigroups and loops of order up to

10 are given in the table 5.3.

n quasigroups loops

1 1 1

2 1 1

3 5 1

4 35 2

o 1411 6

6 1130531 109

7 12198455835 23746

8 2697818331680661 106228849

9 15224734061438247321497 9365022303540
10 | 2750892211809150446995735533513 | 20890436195945769617

Table 5.3: Isomorphism classes of quasigroups of order n

5.4 IP loops of Small Order

As noted, the smallest IP loop which is not a group is of order 7. Here it is:

Example 11.
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x|1 2 3 45 67 z |zt
=11 2 34 5 6 7 1
212 31675 4 213
313127645 32
4l4 765123 415
505 6 7 143 2 514
6|6 4 53271 6|7
717 5 4 2 316 716

Associativity fails in that (2%2) ¥4 =34 =7 while 2% (2+4) = 2%6 = 5. This
structure has proper subalgebras {1,2,3}, {1,4,5} and {1,6,7}. Note that the
order of these subloops does not divide the order of the loop, marking a significant
difference between IP loops and groups. This structure also shows that IP loops
of prime order are not abelian, in general; unlike groups.

Note also that the only element which is its own inverse is the identity e.
This is a general feature of IP loops of odd order, as may be shown by a simple

counting argument:
Observation 1. IP loops of odd order have no subloops of even order.

Proof. Let (L,*) be an IP loop and let (S, *) be a subloop of (L, *) of even
order. Clearly, S consists of e and some subset of elements of L along with their
inverses. For this subset to be of even cardinality, some element in it other than
e must be self-inverse and thus of order 2. Let a € L be such an element which
means L(a) is a permutation of order 2. Moreover, L(a) has no fixed points,
because if L(a) = = then a* x = z, so a = e, contradicting the assumption that
a is of order 2. Hence L(a) partitions L into pairs, so the cardinality of L must
be even. U

This is not true in non IP loops because four of the six non-isomorphic loops

of order 5 (all non-associative) contain self-inverse elements.

5.4.1 How We Counted IP Loops

The IP loops of small orders were counted by using a finite domain constraint
solver to generate representatives of all isomorphism classes. The solver FINDER
(63] has previously been used to generate results concerning the spectra of quasi-
group identities [27]. It works by expressing each equation or other defining
condition as the set of its ground instances on the domain of N elements, compil-

ing these into constraints relating the cells x * y of the “multiplication table” of
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the algebra, and then conducting a backtracking search for solutions to the con-
straint satisfaction problem using standard techniques such as forward checking
and nogood learning [20]. To break symmetries (reduce the size of isomorphism
classes of solutions generated) we added clauses stipulating that e is always the
element number 1, that ™! is always either z or £+ 1, and that any self-inverse
elements are given lower numbers than the rest. That still leaves a great many
isomorphic copies among the solutions, so it is necessary to remove them in a
postprocessing step by rejecting any algebra that is not the canonical represen-
tative (here defined simply as the first in the obvious lexicographic order) of its
isomorphism class.

The results for orders up to 11 are not hard to generate. As a check on
the correctness of the method, the same results were obtained independently
using the first order theorem prover PROVERY and its associated propositional
satisfiability solver Maced4 [43]. FINDER with its default settings was unable to
solve completely the order 12 problem, so it was necessary to restrict its use of
learned nogoods, after which it completed the search in a few days on a desktop
computer. For the order 13 problem, further symmetry-breaking clauses were
added, forcing solutions to be those early in the lexicographic order. Even so, the
runtime to obtain the solutions of order 13 was over a week.! Nearly all of this
time was taken up by the postprocessor reasoning about isomorphism, indicating
that if any larger orders are to be addressed, improvements in the efficiency of the
constraint solver are largely irrelevant: more sophisticated symmetry breaking is
essential.

Table 5.4 gives the number of isomorphism classes of IP loops of each order up
to 13, distinguishing between those which are groups and those which are not. In
the cases of order 12 and order 13, the required searches are too hard for MACE
and PROVERQY, so we have only the results by FINDER in those cases.

The full list of these small IP loops, in a simple matrix format as for the order
7 example above, is available online at http://users.rsise.anu.edu.au/jks/IPloops.

By looking at the definition of IP loop it appears that these loops are a sort of
‘weak’ associative loop. But now that we have the number of loops (table 5.3) as
well as the number of IP loops (table 5.4) we can see how strong the ‘weakness’ of
the associative law is. We are amazed to see that out of 23746 isomorphism classes

of loops of order 7 there are only two classes that are IP loops. The probability of

1Gince these results were obtained, the software for eliminating isomorphic copies has been
improved to the point that the IP loops of order 13 can be enumerated in a few hours. Order

14, however, remains out of reach.
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size | groups | non-groups | total
1 1 0 1
2 1 0 1
3 1 0 1
4 2 0 2
d 1 0 1
6 2 0 2
7 1 1 2
8 o 3 8
9 2 5 7
10 2 45 47
11 1 48 49
12 Y 2679 | 2684
13 1 10341 | 10342

Table 5.4: Number of IP loops of given order

a loop having inverse property drops really down when we see that out of almost
2.1 x 10%° isomorphism classes of loops of order 10 only 47 posess the inverse
property. Does this inverse property of a loop put it closer to being group? In
some sense not, because we found that out of 10342 isomorphism classes of IP

loops of order 13 only one happens to be a group.

5.4.2 Subclasses of IP Loops

Sce Section 2.3 for the definitions of concepts referred to below.
Smallest Steiner loop:

The data of IP loops (of order up to 13) was first of all tested for finding
Steiner loops. Although it is known, our search confirmed that the smallest non-
associative Steiner loop is of order 10 and this is the only Steiner loop of order
10. Also this is the only Steiner loop among IP loops of order up to 13. Its table

IS given in :

Example 12.
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*x1 2 3 4 5 6 7 9 10
e=111 2 3 4 5 6 7 9 10
202 1 4 3 6 5 8 7 10 9
sird 4 I 2 T 9 § 10 6 &
414 3 2 1 10 8 9 6 7 o
s © F 106 F Z 8 O & 4
6|6 5 9 8 2 1 10 4 3 7
77 8 5 9 3 101 2 4 6
88 7 10 6 9 4 2 1 5 3
919 10 6 7 8 3 4 5 1 2
(10 9 8 5 4 7 6 3 2 1

We observed that Steiner loops exist only among IP loops of order n = 2
(mod 6) or n =4 (mod 6) as can be verified by an easy counting argument.

Non-associative abelian IP loops: Next was to find the IP loops that
are abelian but non-associative. Though it was not hard to find them, we must
admit that the outcome was very much unexpected. The smallest non-associative
abelian IP loop is also of order 10 but there are exactly 5 such IP loops (one of

them is of course a Steiner loop). We give only one of them as Example 13.

Example 13.
x|1 2 3 4 5 6 7 10 T |z}
e=111 2 3 4 5 6 7 8 10 11
212 1 4 3 6 5 9 10 7 8 212
313 4 1 2 7 8 5 6 10 9 g5
4l4 3 2 1 9 10 8 7 5 6 44
55 6§ 7 0 2 L 1§ 3 B 4 56
: dle B @ i b @ 8 9 4 § 65
| 717 9 5 8 10 3 4 1 6 2 708
8|8 10 6 7 9 1 4 2 5 8|7
9l9 7 10 5 4 6 2 3 1 910
0/10 8 9 6 4 7 2 5 1 3 109

Table 5.5 gives the number of abelian IP loops of each order up to 13, distin-
guishing between those which are groups and those which are not.

IP loops with Square Property: We know that a group G is abelian if
and only if (z *y)2 = 2% x y? for all ,y € G. This also holds in Steiner loops
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size | groups | non-groups | total
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Table 5.5: Numbers of Abelian IP loops of given order

which are a subclass of IP loops. However this is not true in IP loops in general.
The smallest counter example is the Example 13. The violation comes from the
fact that (3 % 7)% # 32 % 72. Interestingly in IP loops, the converse of this fact
is not true in general either. The smallest example of a non-abelian IP loop in
which (z % y)? = 2% % y? holds for all z and y is of order 12 and there are exactly
3 such of order 12. We also found out that there are exactly 2 such loops among
IP loops of order 13. This means that in the given data of IP loops (of order up
to 13) there are exactly 5 non-abelian IP loops with this property. We list here

two out of these 5: one each of order 12 and 13:

Example 14.
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«|1 2 3 4 5 6 7 8 9 10 11 12 x| 2!
e=1|1 2 3 4 5 6 7 8 9 10 11 12 R
212 1 4 3 7 8 5 6 11 12 10 2|2
33 4 2 1 9 1011 12 7 8 5 6 314
44 3 1 2 11 12 9 10 5 6 8 413
505 7 11 9 6 1 8 2 12 4 10 3 516
6/6 8 12 10 1 5 2 7 4 11 3 9 6|5
717 5 9 11 8 2 6 1 10 3 12 4 718
sl8 6 1012 2 7 1 5 3 9 4 11 8|7
9l9 11 5 7 12 3 10 4 8 1 6 2 910
10/1012 6 8 3 11 4 9 1 7 2 5 109
11111 ¢ 7 5 10 4 12 3 6 2 8 1 1112
12112 10 8 6 4 9 3 11 2 5 1 7 12 | 11
Example 15.
«|1 2 3 4 5 10 11 12 13 x| 2!
e=1]1 2 3 4 5 10 11 12 13 1)1
2l2 4 1 5 3 9 10 11 12 13 7 6 2|3
313 1 5 2 4 1312 6 7 8 9 10 11 3|2
4l4 5 2 3 1 9 8 12 13 11 10 4|5
55 3 4 1 2 11 10 7 6 13 12 8 5|4
6/6 13 8 11 9 12 1 5 3 4 10 2 6|7
717 12 9 10 8 1 13 5 11 4 6 716
8|8 6 10 7 12 2 11 1 9.3 13 5 819
99 11 6 13 10 3 8 5 12 9|8
10|10 12 13 7 11 9 2 6 1 4 3 10| 11
1111 B B 10 5 i 7 B 4 111 10
12/12 10 7 8 11 3 6 13 4 5 2 9 1 1213
13113 11 6 9 10 7 3 4 12 2 5 1 8 13| 12

Abelian Non-associative IP loop of order p? : We also know that a group
G of order p* (where p is prime) is abelian. This is not true in IP loops in general
because none of the five non-associative IP loops of order 9 is abelian. However
both IP loops of order 9 that are abelian happen to be groups. This lead us to
ask whether all abelian IP loops of order p? are groups. This was also proven

wrong in Example 16.
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Example 16.

Consider the following non-associative abelian [P loop of order 11.

«/1 2 3 4 5 6 7 8 9 10 11 2]zl
e=1|1 2 3 4 5 6 7 8 9 10 11 11
202 4 1 6 3 8 5 10 7 11 9 213
3/3 1 5 2 7 4 9°6 11 8 10 32
4l4 6 2 9 1 11 3 5 10 7 8 45
5/!5 3 7 1 8 2 1011 4 9 6 514
6|6 8 4 11 2 10 1 9 3 5 7 6|7
717 5 9 3 10 1 11 2 8 6 4 7|6
8|8 10 6 1 9 2 7 1 4 3 8|9
9/9 7 11 10 4 3 8 1 6 2 5 98
10010 11 8 7 9 5 6 4 2 3 1 10 | 11
11011 9 10 8 6 7 4 3 5 1 2 1110

If we take the direct product of this loop with itself or with Ci; (cyclic group
of order 11) then we get a non-associative abelian IP loop of order 11 x 11 which

1s not a group.

Flexible and Alternative IP loops: It is well known that the Steiner
loops are both Flexible and Alternative. Apart from the Steiner loop of order
10 we found out that the smallest non-associative IP loop that is both flexible
and alternative is of order 12 and there are exactly two of order 12. But as
we found none of order 13, we conclude that there are exactly two non-Steiner
non-associative IP loops of order less than or equal to 13 that are flexible and

alternative. We provide the multiplication table for both of them here:

Example 17.
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«/1 2 3 4 5 8 10 11 12 x|z
e=1]1 2 3 4 5 7 8 9 10 11 12 3l
212 1 4 3 6 7 11 12 9 10 212
| 313 4 1 2 9 11 1012 5 7 6 8 33
| 414 3 2 1 111012 9 8 6 5 7 4|4
| 515 6 9 12 5 I8 T 8 F 4 55
6|6 5 12 10 2 9 11 7 4 8 3 66
717 8 1011 12 9 1 2 6 3 4 5 7|7
88 7 11 9 1012 2 1 4 5 3 6 8|8
919 12 5 8 3 7 6 4 1 11 10 2 9|9
10/10 11 7 6 8 4 3 5 12 1 2 9 10 | 10
11(11 10 8 7 4 3 5 6 2 iz 1 1112
12012 9 6 5 7 8 4 3 10 2 1 11 12|11
Example 18.
«/1 2 3 4 5 6 10 11 12 z |z
e=1]1 2 3 4 5 6 9 10 11 12 11
| 212 1 4 3 6 5 11 12 9 10 212
33 4 1 2 9 11 10 12 5 7 6 8 3|3
44 3 2 1 121011 9 8 6 7 5 414
5!5 6 9 11 1 2 12 10 3 8 4 7 55
6/6 5 12 10 2 9 11 7 4 8 3 6|6
717 8 1012 11 9 1 2 6 3 5 4 7%
gls 7 11 9 1012 2 1 4 5 3 6 88
9l9 12 5 8 3 7 6 4 1 11 10 2 9|9
10/1011 7 6 8 4 3 5 12 1 2 9 10 | 10
11(11 10 8 5 7 3 4 6 2 9 12 1 1112
1212 9 6 7 4 8 5 3 10 2 1 11 12 | 11
C-loops:

It is again known that Steiner loops are also C-loops. When we searched our
data of IP loops (of order up to 13) for C-loops, we found that the smallest non-
Steiner non-associative C-loop is of order 12 and this is the only such loop in our

entire data. Here it is:

Example 19.
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«|1 2 3 4 5 6 7 8 9 10 11 12 2|z
o=l 2 5 4 5 6 7 & 9 10 4 @ i
212 1 5 7 3 8 4 6 11 12 9 10 212
313 6 1 9 10 2 12 11 4 5 8 7 33
44 8 10 1 11 12 9 2 7 3 5 6 44
5 5 7 Z D L 10 3 8 6 4 516
6/6 3 9 12 1 11 2 10 8 7 4 5 6|5
717 5 12 2 9 1011 1 6 4 3 8 7|8
8|8 4 11 10 2 9 1 12 5 6 7 3 8|7
99 11 6 3 8 7 5 4 12 1 10 2 910
10010 12 4 8 7 3 6 5 1 11 2 9 10 |9
11011 9 8 5 6 4 3 7 10 2 12 1 1112
12012 10 7 6 4 5 8 3 2 9 1 11 12 11

Non-associative IP loop with Lagrange Property: In the data of IP
loops that we have, the smallest non-associative IP loop that has the strong (and
hence also the weak) Lagrange property is of order 8; its multiplication table is

given here:

Example 20.

x11 2 3 45 6 7 8 T |x
e—=1]1 2 3456 7 8 11
212 1563487 2|2
3!3 6178245 303
4|4 581276 3 414
55 4287136 516
616 372185 4 615
717 8 6 345 21 708
8ls 745631 2 8|7

It has only two proper non-trivial subloops {1,2,7,8} and {1,2} and the
order of each of them divides the order of the loop. This means that the loop
has the weak Lagrange property. But also since each of its subloops has the weak
Lagrange property the loop itself has the strong Lagrange property.

Hamiltonian IP loop: The smallest non-associative IP loop that is also

Hamiltonian is of order 9 and its table is given here:
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Example 21.
«/1 23456789 z |z
e=1|1 228 £ 56 7 8 9 ilm
22 31678945 213
3/131 2894567 3|2
414 86 71539 2 4|5
5|59 716342 8 5|4
616 48529173 6|7
717 59 2418 3 6 716
8|8 6 4937251 819
9|9 7538261 4 98

It has only one proper non-trivial subloop {1,2,3} and it is also normal.
Hamiltonian loops form an important subclass of loops with the strong Lagrange
property. Example 20 is an IP loop that has the strong Lagrange property but
is not Hamiltonian for the reason that {1,2} is not normal.

Spectrum of IP loops of exponent 3: IP loops of exponent 3 satisfy the
following equivalent property:

Txr =gz}

for all . As we know that even order IP loop must have at least one self inverse
element (other than the identity element), none of the even order IP loops fall
into this spectrum and hence the same is true for Steiner loops. The smallest
example of a non-associative IP loop that comes in this spectrum is that of order
7. When we searched our data for this particular spectrum we observed that only
those IP loops come into this spectrum that have order either n = 1 (mod 6)
or n = 3 (mod 6) which can again be verified by counting arguments. Table 5.6
gives the number of IP loops of each order up to 13 in the spectrum of exponent
3, distinguishing between those which are groups and those which are not.
Spectrum of IP loops of exponent 5: IP loops of exponent 5 satisfy the

following equivalent property:

for all = and consequently z2 * x = = x 22 (call it 2%) and x x 23 = 2® vz = 271,
Again for the obvious reason none of the even order IP loops (including Steiner
loops of course) fall into this spectrum. The smallest example of a non-associative

IP loop that comes in this spectrum is that of order 13 and there are exactly 10
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size | groups | non-groups | total
1 1 0 1
2 0 0 0
5 | 0 1
4 0 0 0
5 0 0 0
6 0 0 0
7 0 1 1
8 0 0 0
9 1 1 2
10 0 0 0
11 0 0 0
12 0 0 0
13 0 64 64

Table 5.6: Numbers of IP loops of exponent 3 of given order

such of order 13. A simple counting argument shows that only those IP loops
come into this spectrum that have order either n = 1 (mod 12) or n = 5 (mod

12). One of the smallest 10 is given here:

Example 22.
«|1 2 3 4 5 6 7 8 9 10 11 12 13 z ]zt

ce—111 2 3 4 5 6 7 8 9 10 11 12 13 11
9l2 4 1 5 3 10 11 12 13 9 6 7 8 213
313 1 5 2 4 11 12 13 10 6 7 8 9 32
4l4 5 2 3 1 1213 10 11 7 8 9 6 4|5
5l5 3 4 1 2 13 10 11 12 8 9 6 7 54
6l6 13 1011 12 8 1 9 7 2 3 4 5 6|7
717 1011 12 13 1 9 6 8 3 4 5 2 716
/g 11 12 1310 9 6 7 1 4 5 2 3 819
9/l9 12 131011 7 8 1 6 5 2 3 4 98
wlio 6 7 8 9 5 2 3 4 12 1 13 11 10| 11
11111 7 8 9 6 2 3 4 5 1 13 10 12 11110
12/12 8 9 6 7 3 4 5 2 13 10 11 1 i
13113 9 6 7 8 4 5 2 3 11 12 1 10 13|12
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Diassociative and A-loops among IP loops data: Since each proper
subloop of any loop in our data is again an IP loop and has order less than or
equal to 6, we conclude that all proper subloops of the IP loops in our data are
groups and so are two-element generated ones. This means all IP loops in the
data are diassociative. It is not easy to check the subclass of A-loops in the given
data but since all of them are diassociative and none of them is a non-associative
Moufang loop (the smallest non-associative Moufang loop is of order 16), we
conclude that none of the IP loops in our data are A-loops (since diassociative
A-loops are Moufang).

RIF IP loops: It is again not easy to test if the given IP loop is RIF or not,
but we tested the smallest IP loop of order 7 (L7) and this turned out to be not
RIF because the permutation o = (234) € I(L7) but (271« # ((2)a) ™"



Chapter 6

Further Study of Inverse
Property Loops

This chapter consists of three sections. In Section 1 we study a subclass of IP
loops called C-loops and In Section 2, we study a generalization of IP loops called
WIPLs. Section 3 gives re-counting of NAFILS , counting of some interesting
subclasses of NAFILS and counting of AAIP loops. We had given definitions of
some important subclasses of loops in Section 2.3. First we give definitions of
some other classes that will be used in this chapter.

Let G be a loop. G is said to be LC-loop if it satisfies the identity zz -yz =
(z - xy)z. G is said to be RC-loop if it satisfies the identity yz - 2z = y(zr - T)
and it is said to be C-loop if it is both LC-loop and RC-loop. A direct definition
of C-loop has also been given in Section 2.3. G is said to be CIP loop (crossed

inverse property loop) if it satisfies any of the following equivalent identities.
;1‘.y-9;":yorrc'y:1:":yorfc’\-(ya:):yor:rky-:v:y.

where 2% denotes left inverse of = and z” denotes right inverse of z. G will be
said to satisfy the weak inverse property or WIP if whenever three elements
.y, z of G satisfy the relation zy -z = 1, they also satisfy the relation z-yz = 1.
Such loops are called WIP loops or WIPLs. The study of WIPLs was initiated
by J. M. Osborn [51] as a class of loops which contains both IP loops and CIP
loops. He proved that WIP loop is a loop which satisfies onc of the following
equivalent identities

z(yz)? =y or (zy)*z =y

A NAFIL is a nonassociative finite invertible loop G [14].

53
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Remark 5. Since NAFILs are invertible loops so inverses will be unique i.e. left

inverse and right inverse of an element will be equal.

The following notion of loop theory should be also noted. Let L be a loop we
then define left nucleus Ny, middle nucleus N, and right nucleus N, of L as the

sets

Ny = {z € L;z(yz) = (zy)z for every y,z € L}
N, = {z € L;y(zz) = (yz)z for every y,z € L}
N, = {z € L;y(zz) = (y2)z for every y,z € L}

The nucleus N of L is the defined as N = N\NN,NN,. N is subgroup of L and,
in particular, for C-loops we have N = Ny = N, = N,.

L is called left nuclear square if for all z € L, z* € Ny, middle nuclear square if
2% € N,, and right nuclear square if 2?2 € N,. L'is said to be nuclear square if
z? € N.

Let L be a loop and = € G. Then L, and R, are both permutations of L defined

as follows:

yLe = zy
yRe = yz
These are called the left and right translation maps respectively.
Also note that Vz,y € L, Ly, = LxLyL,;Il.
Also to avoid excessive parenthesization, we will use the usual juxtaposition con-

ventions , e.g., ab-c¢ = (a-b) - c.

Remark 6. We have used the GAP package LOOPS [48] for checking the various
properties of the Cayley tables of loops. In particular we have used it in Examples
28 and 24.

6.1 A Study of IP Loops

This section has two subsections. In Subsection 1 we discuss C-loops which is a

subclass of IP loops. In Subsection 2 we discuss some results about IP loops.

6.1.1 Characterizations of C-loops

Here we discuss two characterizations of C-loops. C-loops can characterized one

way as:
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Theorem 5. C-loops are exactly alternative loops with all squares in the nucleus.
We can characterize C-loops in the following way as well:
Theorem 6. C-loops are exactly IP loops with all squares in the nucleus.

We do not claim these characterizations to be new but the second character-

ization seems to be at least not explicitly known. Consider the following lemma:

Lemma 5. [53, Corollary 2.4]. Let L be a C-loop. Then (i) L is both left alter-
native and right alternative,

(ii) L has the inverse property,

(111) L is a nuclear square loop, i.e., 22 belongs to the nucleus of L for every
ze L.

From Lemma 5 the direct parts of Theorem 5 and Theorem 6 follow obviously.
The converse of Lemma 5 follows from parts (i) and (iii) by [56, Proposition 1]
for RC-loop and can easily be proved for LC-loop. Thus Theorem 5 follows. In
the following we prove that the converse of Lemma 5 and hence the converse of

Theorem 6 also follows from parts (ii) and (iii).

Lemma 6. Let L be an IP Loop. If L is a left (resp. right) nuclear square loop
then L is a LC-loop (resp. RC-loop).

Proof. Suppose L is left nuclear square loop then by definition
(zz)(yz) = [(z2)y)z, for every z,y,2 € L. (1)
Now consider

(zz)(y2) = [(zz)ylz = [(z2)(z" - zy)]e
= [(x:r)(a:’lyl)]z where y; = zy
[( - y1)z, by using (1)

Hence L is a LC-loop. The proof of part (ii) is similar. O

Corollary 7. Let L be an IP Loop. Then the following are equivalent:
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(i) L is a nuclear square loop,

(ii) L is a C-loop.

Hence Theorem 6 also follows. The converse of Lemma 5 does not follow from
parts (i) and (ii) as every non-associative Moufang loop is an alternative IP loop
but obviously does not have to be a C-loop.

Theorem 8. Let L = (S, *) be a finite IP loop. Then the cardinality of S is even
iff L has an element of order 2-that is an element a such that a # e but al=-ce
[2, theorem 1].

Corollary 9. Let L be an IP loop. Then L has even order iff L has a subgroup
of order 2.

Finally from Theorem 8, [53, Proposition 3.1] and [53, Corollary 4.2], we have

Corollary 10. Every nonassociative C-loop has even exponent.

6.1.2 Some Results on IP Loops

Recall that an IP loop satisfies R;' = R,-1 and L;' = Ly for all z € L see
[10]. Next we define (y) D, = (z) L;' = y\z and (z) J = (z) D1 = gt == g

Theorem 11. An IP loop L is right alternative < Dy2 = Dy J D,

for all z,y € L and D,, J € MIt(L).
Proof. Suppose that an IP loop is right alternative then

yD.JD, = (yDs)JD
= (L) JD
= (aLga)d :(y_la:) JD,
- ) D=7y D
= (a:)L—}1 = (2) Lz-1y-1
= (@) Ly =(y 2)z

= y~'z? - L is right alternative
= 2?L,1 = z:ZL !
= yDlz

== D=0

Conversely suppose that D,;2 = Dy J D, then
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(y) D2 = (y) DaJ Dy
= Sl =i(ul I
= 2L = (zLy-1) Dy
= ylz?= (y‘la:) J
= ylz? = (3;_1517)_1 D,
= ya={z""y) Ds
= y 2% = (2) L;_lly
= y 2% = (2) Lig-14-1
= g o = (1) Lp=ig
L giiler)= (07 0)
= L is right alternative

Hence the result follows.

Theorem 12. Ify € N (L), then the following identities hold in IP loops.

(1) (&) Lyom = 2"
(2) Lx”Ly,zm == Ly,szI"

(3) DInLy,I"l = Ly'Iszn
where Ly gm, Lyn, Dgn € MIt(L) and z,y,z € L.
Proof. (1)

LHS = (z") Lyem = (z") LyLem L,
= (ya™) LxmL(Imy)*l = (z™ (yz")) L(Imu>"
= ((z™y)z") L( ) since y € N (L)
= (@™y) " (@™y) ")
= z" L is [Ploop
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(2) Since

(2) LygnLyzm = (2"2) Lyzm

= 12"z by part(1)

= (2)Lgn

—  (2Lyun) Lo by part(1)
= (2) Lyam Lo
| = LgnLygm = LygmLyn

(3) Since

(2) DgnLyam = (&"L7Y) Lygm

= (@"Le-1)Lyam = (27'2") Lyem
= 2z 'z by part(1)

= z"L,1 =z"L;’

— (2) Dy

= (2Lyum) Dyn by part(1)

= (2) LygmDgn

= DynLygm = Lyzm Dyn

Hence the result follows. O

The following proposition generalizes a result of C-loops to IP loops.

Proposition 3. For any natural number n there is a non-associative non-commutative

IP loop with nucleus of size n.

Proof. By [53, corollary 3.5] for n > 2 there is a non-associative non-
commutative C-loop and hence an IP loop with nucleus of size n. Now it remains
to show that there is a non-associative non-commutative IP loop with nucleus of

size 1. This is shown in the following example. O

Example 23. A non-associative non-commutative IP loop with nucleus of size

e
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N O Ut W N = O

~I & % = Lo O = O O
N B W oYy O - O |+
O~ W O U NN
n =1 b = & O g Wt
— Ol O 3 O W N |
B W O © N = g O ot
O NN Ot R W OO
W O B NN = O Ot (N

While studying a large number of IP lobps we were about to make a conjecture
that the inner mapping group of an (non Moufang) IP loop is always even but
finally we found one of order 12 whose inner mapping group is of order 27. Since

such IP loops are very rare, we display this IP loop below:

Example 24. A non-associative non-commutative IP loop of order 12.

o 1 2 3 4 5 7 9 10 11
o(o0 1 2 3 4 5 7 8 9 10 11
111 0 4 6 2 7 5 10 11 8 9
2 /2 5 0 8 9 1 11 10 3 4 7 6
313 7 9 0 10 11 8 1 6 2 4 5
4 14 6 1 10 110 9 8 2 7 5 3
515 2 8 1 0 101 9 7 6 3 4
6 |6 4 1 1 8 9 10 0 5 3 2 7
717 3 109 1 8 0 1 4 5 6 2
g g 10 2 7 € 4 @ 1We 9 1
9 l9 11 3 7 6 2 5 4 0 10 1 8
|10 8 7 4 5 3 2 6 1 11 O
1|11 9 6 5 3 4 T 2 g 0 10

6.2 A Study of WIPLs

This section has also two subsections. In Subsection 1 we discuss some sufficient

conditions for WIPLs. In Subsection 2 we give some constructions of WIPLs.



60 CHAPTER 6. FURTHER STUDY OF INVERSE PROPERTY LOOPS

6.2.1 Some Sufficient Conditions for WIPLs

LC-loops, RC-loops, C-loops, ARIF loops are subclasses of WIPLs. WIPLs do
not have invertible (two-sided) inverses necessarily. Throughout this section we
consider only invertible WIPLs. We prove here some sufficient conditions for
a WIPL to be one of these loops. We define L, : a — za, R, : a — ax,
Foegp—=25"' and P. = R0l Yo el

Theorem 13. Let L be a WIPL. Then (JP,)" = I for any n € 2%, where Z™

denotes the set of positive integers.

Proof. Let y € L. Since P, = R, o L, then for (JP,)" = I where n € 2z,

Consider n = 2 then

WP = (W)IPJIP =a((z(y'e)2) =2(y7'2)”
Y

Thus (JP,)? = I. Now if any n € 2Z*, then n = 2m for some m € Vi
so (JP)' = (JP)™ = (JP))™ =)™ =1
0

Corollary 14. (JP,)" = I for alln € Z* if the loop is a WIPL of exponent 2.

Proof. Let L be a WIPL of exponent 2, and consider

(¥)(JP:) = y 'ReolLs
= a(y'x)
= z(y 'x)7! since L is of exponent 2
= y ! by WIP
Y

Thus JP, = I aund hence (JP,)* = I for all n € Z* if the loop is WIPL of

exponent 2. 0
Next we prove necessary and sufficient conditions for WIPL to be left alter-

native, and right alternative.

Theorem 15. L be a WIPL, then L is left alternative if and only if Ly =
R.JL,2JP;.
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Proof. Let L be a WIPL satisfying L, = R;JL,2J P, then consider
L = R Lz )0,
JR;'J = RyJLpJP, since L, = JR,'J
R;'J = L;'L,JP, since L' = JR,J
L,R;'P, = Lp(JP)?
L R;'R,L, = LI by Theorem 13
Lol = Lgp
Conversely, consider that L satisfies left alternativity, that is z(zy) = T2y V
z,y € L which implies that L,L, = L,;2 ¥ = €L. Thus we have that
Laliy = Ly
L,L.P;! = LaP!
L.R;' = L, (JP.)*P; ! by Theorem 13
R;! = L;'LpJP.J
L, = RyJL,2JP, by left and right cancellation of J
O

Theorem 16. Let L be WIPL, then L is right alternative if and only iof Ry =
PR ad L.

Proof. Let L satisfies R, = PpJRg2J L, then we have

JR,J = JP,JR,;JL,J by multiplication of J on both sides
PIL;1 = P JP,JR: R;l by multiplication of P, on both sides
Ralle = Ha

Conversely, let L be right alternative. Then

b

P R.R,
Ly IR
L;'R,
R,

Here we are proving a necessary

LC-loop.

= Rp
S

= P 'R,

= IP; 'R,
= P.JRa2JL;

O
and sufficient condition for WIPL to be a
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Theorem 17. L be WIPL, then L is a LC-loop if and only if it satisfies that

J LTy = Dl d Bl
Proof. Let L be an LC-loop then by LC property we have that

BH cYe = (T EY)Z
(y)R.Ly,2 = (y)LzLzR, implies that
Lhlse = lalzli
Roligsl, = Lyl R, 13
JLp2T, = L,R;'L,JR,JJL,L, putting L;' = JR,J
Jlbeily, = dplotiol,

Conversely suppose that L. satisfies that JL,2T, = L, T,JP.L, Then

JLaT, = L,T,JP.L,
JR,L2R;Y = T,JP,
R.L,. = L,L,R,
(y)R:Ly» = (y)LoLoR.Vye€L

[l

Theorem 18. 4 loop L (WIPL) is a C-loop if and only if Ry = PrJR.2J Ly and

JL,2T, = L,T,JP,L, [30, Theorem 4.2].

6.2.2 Construction of Non-associative WIPLs Loops Via

Extension of Loops

Here we give some constructions of the infinite families of non-associative WIPLs

by extension of loops. Our method is essentially that by which C-loops have been
constructed in [53]. Indeed Every C-loop is a WIPL and the family of C-loops
constructed in [53] is a family WIPLs too. Yet our constructions are needed due

to the following reasons.

1. The construction of [53] is only for order 4n > 12 while our constructions

consider other orders also.

9. The construction of [53] is on the basis of Klien group while we consider

other groups also.

3. Our WIPLs are not necessarily C-loops.
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Remark 7. We will use once again the adaptation of the same construction
discovered in [53] for the construction of AAIP loops in Subsection 6.3.5.

For this purpose we take a multiplicative group G with neutral element 1, and
an additive abelian group A with neutral element 0. Any map p: G x G — A
satisfying (1, g) = u(g,1) = 0 for every g € G is called a factor set. So let
p: G x G — Ais a factor set. Define multiplication on G' x A by

(9,a)(h,b) = (gh,a+ b+ p(g, h)) (A)

The groupoid we get as a result is clearly a loop with neutral element (1, 0).
We denote this by (G, A, ). Additional requirements on p can enforce additional
properties of (G, A, u).

Lemma 7. Let 1 : G x G — A be a factor set. Then (G, A, ) is a WIPL ff

p(h, Y + (g, g7 hY) = u(h, g) + plhg, g ) (D)

for every g, h € G.

Proof. The loop (G, A, 1) is a WIPL iff (g, a)[(h,b)(g,a)] ™" = (h, b)~! hold for
every g,h € G and every a,b € A. Straight forward calculation with (A) shows
that this happens iff (D) holds. O

We call a factor set u satisfies (A) and (D) a W-factor set. We now use a

particular W-factor set to construct the above-mentioned families of WIPLs.

Proposition 4. Let n > 2 be an integer and let A be an abelian group of order
n, and o« € A be an element of order bigger than 2. Let G = {1,z,2%} be the
cyclic group of order 3 with neutral element 1. Define u: G x G — A by

u(h, g

0, otherwise.

- { oif (h,g) = (z,2),

Then (G, A, p1) is a non-alternative (hence non-associative) commutative WIPL
with N = {(1,a) : a € A}.
Proof. The map p is clearly a factor set depicted as follows:

|

2

8 8 —|&
o o ols
o o ols

1
0
0
0
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To show that (G, A, u) is a WIPL, we verify (D). Since u is a factor set,
there is nothing to prove when g = 1. Assume that ¢ = z then (D) becomes
w(h, b)) 4z, 2h ) = p(h, 2)+p(ha, 2R, I h = 1, then p(1,1)+pu(z, %) =
w(1,z) + pu(z, z?) and both sides of this equation are equal to 0. If h = z, then
p(z, 2?) + p(z, z) = p(z, ) + p(x?, ) and both sides of this equation are equal
to . Assume h = z2, then p(2?, z) + p(z, 1) = p(z? z) + p(1, zz) and both sides
of this equation are equal to 0. Next assume that g = z?, then (D) becomes
p(h, Y 4 p(z? k™) = p(h,2?) + p(ha? zh™'). If h = 1, then both sides of
this equation are equal to 0. Assume h = z, then both sides of this equation
are equal to 0, Assume h = 22, then u(z? z) + p(2?,2?) = p(2? 2?) + p(z, 2?)
and both sides of this equation are equal to 0. since a # 0, we have that,
(z,a)(z,a) - (z2,a) # (2,a) - (z,a)(z? a). Thus (G, A, p) is non-alternative and
hence non-associative. Also neither (z,a) € N nor (z%,a) € N for all a € A.
Also we have that (1,a)((h,b)(g,¢)) = ((1,a)(h,b))(g,c) for all h,g € G and
a,b,c € A. Which implies that (1,a) belongs to the nucleus. Thus {(1,a);
a € A} is the nucleus of the loop (G, A, u). O

Corollary 19. For each natural number n there exists a nonassoctative nomn-

alternative commutative WIPL having nucleus of order n.

Proof. It remains to show that there exist non-alternative commutative WIPL

having nucleus of order 1. This requirement is fulfilled by the following example.
OJ

Example 25. A commutative, non-alternative WIPL of order 10 having trivial

nucleus.

© 00 1 O U W N = O

© 00~ O U W= OO
g O © 00 B TN WO e
0 O U O = O W NN
U O © 00O~ N W|w
W ~1 N O O = 00 O U |
O W 00N Rk O O Ik g
— Ul O W RO I 00 OO
W W O 00N o Ot © |
O N = Ol W N RO O 00|00
O O B O W Ll 00 1 WO
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Example 26. The smallest group A satisfying the assumption of Proposition 4 1s
the cyclic group {0,1} of order 2. The construction of Proposition 4 with o =1

then yields the following non-alternative commutative WIPL of order 6.

[ S N SCREN - S SO o W et
TN W O |
— O A Ol W N
O = Ul R N W W
N O Ot |
W O — B ot

Tl s W N = O

4 3 2

Proposition 5. Let n > 3 be an integer and let A be an abelian group of order
n, and o € A be an element of order bigger than 2. Let G = {1,u,v,w} denotes
the Klein group with neutral element 1. Define u: G x G — A by

0, otherwise.

wz,y) = { @if (2,9) = (u,v), (v,w), (w,w),

Then (G, A, 1) is a non-alternative, non-commutative WIPL with nucleus
N = {(1,a); a € A}.

Proof. The map u is clearly a factor set depicted as follows:

pwll v v w
110 0 0 O
ul|l0 0 a O
v |0 0 0 «
wl|l0 « 0 0

To show that (G, A, ) is a WIPL, we {/erify (D). Since 4 is a factor set, there
is nothing to prove when g = 1. Assume that g = u then (D) becomes p(h,h™t)+
p(u,uh™Y) = p(h, u) -+ p(hu, uh™). If A =1, then both sides of this equation are
equal to 0, Assume h = v, then p(v,v) + p(u, w) = p(v,u) + p(w,w) and both
sides of this equation are equal to 0. Assume h = w, then p(w, w) + p(u,v) =
p1(w, u) + p(v,v) and both sides of this equation are equal to «. Next assume
that g = v, then (D) becomes p(h,h™') + u(v,vh™Y) = p(h,v) + plhv,vh™h).
If h = 1. then both sides of this equation are equal to 0. Assume h = u,
u(u,w) + p(v,w) = plu,v) + p(w,w) and both sides of this equation are equal
to a, Assume h = v, then p(v,v) + p(v, 1) = p(v,v) + pu(l, 1) both sides of this
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equation are equal to 0. Assume h = w, then p(w, w)+p(v, u) = p(w, v)+p(u, w)
and both sides of this equation are equal to 0. Next assume that g = w, then
(D) becomes u(h, k™) + p(w,wh™) = p(h,w) + p(hw,wh™'). If h =1, then
both sides of this equation are equal to 0. Assume h = u, then this equation is
equal to u(u, u) + p(w,v) = p(u,w) + (v, v) and both sides of this equation are
equal to 0. Assume h = v, then u(v,v) + p(w,u) = p(v,w) + p(u, u) and both
sides of this equation are equal to a. Assume h = w, then p(w,w) + p(w,1) =
(w, w) + p(1,1) and both sides of this equation are equal to 0. Since « = 0
and we have that, (u,a)(u,a) - (v,a) # (u,a) - (u,a)(v,a) also we have that,
(w,a)(u,a) - (u,a) # (w,a) - (u,a)(u,a). Thus (G, A,p) is non-alternative and
hence non-associative. Also (u,a), (v,a), (w,a) ¢ N for all a € A. Also we have
that (1,a)((k,b)(g,¢)) = ((1,a)(h,b))(g,c) for all h,g € G and a,b,c € A. Which
implies that (1,a) belongs to the nucleus. Thus {(1,a); a € A} is the nucleus of
the loop (G, A, ). O

Corollary 20. For each n > 1 there ezists a non-alternative non-commutative

WIPL having nucleus of order n.

Proof. 1t remains to show that there exist a non-alternative non-commutative
WIPL having nuclei of order 1 and 2. The first requirement follows by Example

93 while the second requirement follows by the following example.

Example 27. A non-alternative non-commutative WIPL having nucleus of order

2.
0J

01 2 3 4 5 6
00 1 2 3 4 5 6
1/1 2 0 5 6 4 3
212 01 6 5 3 4
3/!3 6 5 4 0 12
414 5 6 0 3 2 1
5/5 3 4 2 1 6 0
616 4 3 1 2 0 5

Example 28. The smallest group A satisfying the assumption of Proposition &
is the cyclic group {0,1,2} of order 3. The construction of Proposition 5 with

o = 1 then yields the following non-alternative commutative WIPL of order 12.
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o 1 2 3 4 5 6 7 8 9 10 11
oo 1 2 3 4 5 6 7 8 9 10 11
1|1 2 0 4 5 3 7 8 6 10 11 9
2 2 T I 8§ & 4 & & ¢ L ¢ M0
3 /3 4 5 0 1 2 1 9 106 7 8
414 5 3 1 2 0 9 10 1 7 8 6
5 (5 5 24 2 ©» 1L 10 It 9 & & 7
6 |6 7 & 9 100 11 0 1 2 5 3 4
77 8 6 10 11 9 1 2 0 3 4 5
8§ |8 6 7 11 9 10 2 0o 1 4 5 3
9 {9 10 11 8 6 7 3 4 5 0 1 2
10{100 112 9 6 7 8 4 5 3 1 2 O
w9 W07 8 6 8 3 4 2 @ 1

GAP gives these extra informations about the above Cayley table of WIPL. It
is (1) power associative (2) not a Moufang loop (3) neither automorphic nor

anti-automorphic (4) neither a left nor right bol loop.

Proposition 6. Let n > 3 be an integer and let A be an abelian group of order
n, and o € A be an element of order bigger than 2. Let G = {1,u,v,w} denotes
the Klein group with respect to multiplication with neutral element 1. Define
u:GxG—Aby

{ a, if (z,y) = (w,v), (v,u), (u,w), (w, u), (v, w), (w,v),

Z, - .
pz,y) 0, otherwise.

Then (G, A, u) is a non-alternative, commutative WIPL with nucleus N =

{(1,a); a € A}.

Proof. The map p is clearly a factor set and can be depicted as follows:

pll v v w
110 0 0 O
uw|0 0 a «
v {0 a 0 «
w|0 a a 0

To show that (G, A, p) is a WIPL, we verify (D). Since p is a factor set,
there is nothing to prove when g = 1. Assume that g = u then (D) becomes
w(h, R~ +p(u,uh ™) = pw(h, u)+p(hu,uh™t). If h = 1, then p(h, R +p(u,u) =
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(1, 1) + p(u, u) both sides of this equation are equal to 0, Assume h = u then
p(u,u) + p(u, 1) = p(u,u) + p(1,1) both sides of this equation are equal to 0.
Assume h = v, then p(v,v) + p(u,w) = p(v,u) + p(w, w) and both sides of this
equation are equal to o. Assume h = w, then p(w, w)+p(u,v) = p(w, u)+p(v,v)
and both sides of this equation are equal to . Next assume that g = v, then
(D) becomes p(h, A1) + p(v,vh™t) = p(h,v) + p(hv,vh™t). If A = 1, then
1(1, 1)+ p(v,v) = p(1,v) + p(v,v) and both sides of this equation are equal to 0.
Assume h = wu, then p(u,u) + p(v,w) = p(u,v) + p(w, w) and both sides of this
equation are equal to a, Assume h = v, then pu(v,v) + p(v,1) = p(v,v) + (1, 1)
both sides of this equation are equal to 0. Assume h = w, then p(w, w)+u(v,u) =
p(w,v) + p(u,u) and both sides of this equation are equal to a. Next assume
that g = w, then (D) becomes p(h, A7) + p(w, wh™) = p(h, w) + p(hw, wh™1).
If h =1, then u(1,1) + p(w,w) = p(1l,w) + u(w, w) both sides of this equation
are equal to 0. Assume h = u, then p(u,w)+ p(w,v) = p(u, w) +p(v, v) and both
sides of this equation are equal to a. Assume h = v, then (v, v) + p(w,u) =
(v, w) 4 p(u, v) then both sides of this equation are equal to a. Assume h = w,
then i(w,w) + p(w,1) = p(w,w) + u(1,1) then both sides of this equation are
equal to 0. Since a # 0, and we have that, (u, a)(u,a)- (v, a) # (u,a)- (u,a)(v,a).
Also we have that, (w,a)(u,a) - (u,a) # (w,a) - (v,a)(u,a). Thus (G, A, ) is
non-alternative and hence non-associative. Also (u,a), (v,a), (w,a) ¢ N for all
o € A. Also we have that (1,a)((h,b)(g,¢)) = ((1,a)(h,b))(g,c) for all h,g € G
and a.b,c € A. Which implies that (1,a) belongs to the nucleus. Thus {(1,a);
a € A} is the nucleus of the loop (G. A, p). O

Example 29. The smallest group A satisfying the assumption of Proposition 6
is the cyclic group {0,1,2} of order 3. The construction of Proposition 6 with
a = 1 then yields the following non-alternative commutative WIPL of order 12.
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0o 1 2 3 4 5 6 7 8 9 10 1
0olo 1 2 3 4 5 6 7 & 9 10 11
111 2 o 4 5 3 7 8 6 10 11 9
ol2 0o 1 5 3 4 8 6 7 11 9 10
313 4 5 0 1 2 11 9 10 8 6 7
i 1# 5 8 1T 2 @ 9 111 & * #
5|5 3 4 2 0 1 10 11 9 7 8 6
6l6 7 & 11 9 1000 1 2 5 3 4
717 8 ¢ 9 10 1 1 2 0 3 4 5
s l!s 6 7 10 1 9 2 0 1 4 5 3
9 |9 10 11 8 6 7 5 3 4 0 1 2
woli0 11 9 6 7 8 3 4 5 1 2 0
11111 9 107 8 6 4 5 3 2 0 1

GAP [48] gives these extra informations about the above Cayley table of
WIPL. It is (1) power associative (2) not automorphic inverse property loop (3)
neither LC-Loop nor RC-Loop.

Proposition 7. Let n > 2 be an integer and let A be an abelian group of order

n. and o € A be an element of order bigger than 2. Let G ={l.5,2% 2% 5"} be

5

the Cyclic group of order 5 with neutral element 1. Define p: G x G — A by

u(h.g) Z{ @ ¥ (o) = (@2 (2,2, (2 2),

0, otherwise.

Then (G, A, ) is a non-alternative commutative WIPL with nucleus N =
{(1,a); a € A}.

Proof. The map p is clearly a factor set. Its Cayley table is as follows:

.2 3 4

p |l z z¢ 0
110 0 0 0 O
r |0 0 « 0 O
2210 a a 0 O
200 0 0 0 O
210 0 0 0 O

To show that (G, A, ) is a WIPL, we verify (D). Since p is a factor set, there
is nothing to prove when g = 1. Assume that g = = then (D) becomes pu(h, h= 1)+
p(z,z*h™h) = plh,z) + p(hx, x*h7Y). If h =1, then p(h, h™Y) + plz, z*h™h) =
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pu(h, z) + p(hz, z*h~') and both sides of this equation equals to 0. h = x, then
ulz. 2V + p(z, 2%) = p(x, 2) + p(2? 2°) then both sides of this equation are equal
to 0,Assume h = 22, then p(z?,23) + p(z,2?) = p(x?, ) + p(x® 2*) and both
sides of this equation are equal to a. Assume h = 23, then p(z®,2%) + p(z, z) =
(3, 2) + p(z?, z) and both sides of this equation are equal to 0 Assume h = i
then p(z*, z)+p(z, 1) = u(z*, z)+p(1, 1)and both sides of this equation are equal
to 0 assume that g = 72, then (D) becomes p(h, k™) + p(z?, 2°h~1) = u(h, z?) +
j(ha? 2®h V). If h = 1, then p(1,1) 4 p(2?,2%) = (1, 22) + p(a?, 2*) and both
sides of this equation equals to 0. Assume h = z, then p(z,z*) + p(z?,2?) =
p(z, ©%)+p(2®, ) then both sides of this equation are equal to &, Assume h = 72,
then u(2?, %) + pu(2?, ) = p(a?,2?) +p(z*, z) and both sides of this equation are
equal to v. Assume h = 23, then p(z?®, 22)+ (22, 1) = p(z®, 22)+p(1, 1) and both
sides of this equation are equal to 0. Assume h = z*, then u(z*,z) + (2?2 =
p(xt, ?) + p(z, x*) and both sides of this equation are equal to 0. Assume that
g = 2%, then p(h, h7) + p(z® 2*h71) = p(h, 2®) + p(ha®, 2?h™t). If h =1, then
u(1,1) 4 p(z®, 2?) = p(1,2%) + p(2®, 2*) and both sides of this equation equals to
0 Assume h = z, then this equation equals to pu(z,z*) + p(z®,2) = w(z, ) +
w(z*, ) then both sides of this equation are equal to 0, Assume h = z2, then
(22, 28) + (e, 1) = p(a?,2%) +p(1, 1) and both sides of this equation are equal
t0 0. Assume h = 7%, then p(z®, 22) + p(a®,z%) = p(a®,2%) + p(z, z*) and both
sides of this equation are equal to 0. Assume h = z*, then p(zt, ) + p(d, 2%) =
u(z*, z%) 4 p(z?, 2*) and both sides of this equation are equal to 0, Assume that
g= 174, then (D) becomes p(h,h™") + p(zt, zh™t) = p(h, z*) + p(hzt, zh ). If
h = 1. then p(1,1) + p(zt ) = p(l,2%) + u(z*, ) both sides of this equation
equals to 0. Assume h = z, then u(z, zd) + p(z?, 1) = p(z, z )+/1(1 1) and both
sides of this equation are equal to 0, Assume h = 22, then p(z?, %) + p(zt, 2*) =
p(2?, 2*) +p(z, 2*) and both sides of this equation are equal to O Assume h = z°,
then pu(z3, 2?) + p(e?, ) = u(z?,2%) + p(z,z*) and both sides of this equation
are equal to 0. Assume h = z*, then u(z* ) + pw(zt, z?) = plx 4 ) + p(z8, z?)
and both sides of this equation are equal to 0. Since #£ 0, we have that, (2%, a)-
(2%, a)(z? a) # (z3,a)(2?,a) - (2*,a). Also (z2,a) - (z,a)(z% a) # (z,3a + a) =
(z2,a)(x.a) - (2, a). Thus (G, A, i) is non-alternative and hence non-associative
WIPL. Also neither (z,a), (%, a), (z3,a) € N foralla € A. Similarly (z%,a) ¢ A.
Also we have that (1,a)((h,b)(g,¢c)) = ((1,a)(h,b))(g.c) for all h,g € G and
a.b.c € A, Which implies that (1,a) belongs to the nucleus. Thus {(1.a):
a € A} is the nucleus of the loop (G, A, ). O
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Example 30. The smallest group A satisfying the assumption of Proposition 7
is the cyclic group {0,1,2} of order 3. The construction of Proposition 7 with

o = 1 then yields the following non-alternative commutative WIPL of order 10.

01 2 3 45 6 7389
Gl 1 2 8 4 5 6 7 8 8
TEE E 85 2 5 & 86 O ¢
212 3 4 5 7T 68 9 U L
313 2546 7 9 810
414 5 76 9 8 01 23
5/5 4 6 7 8 9 1 0 3 2
616 7 8 9 0.1 2 3 45
F 698 108 2 5 4
BBl O Ok 2 8 2 6 ¥
9/9 8 1. 0 3 2 5 4 7 6

GAP shows that the following properties do not hold in the above Cayley
table of WIPL.

(1) automorphic inverse property (2) anti-automorphic inverse property (3)
LC (4) RC (5) left Bol (6) right Bol (7) Moufang (8) power alternative (9) power
associative (10) left nuclear square (13) right nuclear square (14) left inverse and

(15) right inverse property.

6.3 Counting AAIP Loops and Some Subclasses
of NAFILs

Counting of algebraic structures is difficult as well as important. Difficult be-
cause it requires a suitable choice of softwares, some programming and logical
skills and fast computer systems. The use of suitable software can make your
task casy. Different softwares have different behavior for different tasks. Impor-
tant because the mathematicians can then draw several conclusions about the
structure from the counting. They can use the counting for making conjectures
and for counterexamples and for several other purposes.

This section has five subsections. In subsection 1 we discuss the counting of
general NAFILs of order n = 5,6,7 and also commutative NAFILs up to order
n — 9. In subsection 2 we discuss the counting of its subclass general NAFIL CIP

loops up to order n = 13 and the counting of its subclass general NAFIL AIP
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loops up to order n = 8 is in subsection 3. The counting of AAIP loops up to
order n = 9 has been done in subsection 4. In the subsection 5 of this section
we provide an infinite family of non-associative non-commutative AAIP loops via
extension of loop whose smallest member is a loop of order 12. Examples of the
smallest non-associative commutative and non-commutative loop of each class of

counted loops are also given wherever needed.

6.3.1 Re-enumeration of NAFILs

According to [14], Cowagas has started the counting of NAFILs in 1998 with the
help of a pascal program called ICONSTRUCT and was able only to find NAFILs
of order n = 5,6. But it took a lot of his time. Then with the cooperation of
Zhang and using other two other softwares SEM and SATO, they counted NAFILs
of order n = 7. They used a supercomputer of 48 pentium I1 400 processors for
the purpose. They finished with all the checkings in three days. We instead used
the finite domain enumerator FINDER [63] for enumeration. It casily enumerated
NAFILs of order n = 5,6,7 within a minute on ordinary desktop computer. By
doing so we also confirmed the previous counting to be correct. The counting 1s

listed in the following table.

Order | NAFILs |
5 1

6 33
7 QBBS‘J

The efficiency of FINDER is notable. FINDER has been used in counting
previously e.g. for counting IP loops in [2] and [64]. Our symmetry breaking is

the same as used in [2] except 27! =z & T =€ Because this is the special

property of IP loops of odd order.

The smallest non-commutative NAFIL is of order 5:
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W N RO
— s O W NN
N O = s W W
O = W N |

B N H O
= N = Ol ©

The smallest commutative NAFIL is of order 6:

Tl s W N — O

o s @8 B B Colich
N O AW O
B Ot O W N
— N O O s W W
LW O N UL | e
O W o~ & DN O Ot

As for order 8 and onward the number of NAFILs become too big to be
counted. Though a certain NAFIL of order 8 can be found. So we will have to
focus on the subclasses of NAFILs.

In [13] it has been proved that there exists at least one NAFIL of every finite
order n > 5 .

Next we enumerate commutative NAFILs up to order 9. FINDER determined

them within ten minutes. The following table shows their counting.

Order | Commutative NAFHF

5 0

6 7

i 16

8 2262 o
9 30581
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6.3.2 Enumerating NAFIL CIP Loops

CIP loops are special automorphic inverse property loops see R. Artzy [4]. R.
Artzy [5] proved that isotopes of CIP loops are not necessarily CIP. It is also
shown in that paper that isotopes of CIP loops are isomorphic. Holomorph of CIP
loops has been considered in [67]. Crossed inverse quasigroups have applications
in cryptography [31].Next we enumerate the number of non-isomorphic NAFIL
CIP loops having order up to 13. The counting is given in the following table.

Order | NAFIL CIP loops

Ol ||| Uk |W|lN| =
N olo|lolRr|lOolO| OO

i
(o

47

> 246
> 2314
13 > 9009

—_
—

—
[\]

The smallest non-commutative NAFIL CIP loop is of order 8:

—_ O W N R O OO
O~ N W Ol e O |

4
4
5
6
7
0
1
3
2

g O Ol R W N = O

g O Gl W N = OO
o NN B S S o ROV R e Rl B
R O 1 — O W NN
St ] O O N W W
LW NN O~ O~ R O ot

The smallest commutative NAFIL CIP loop is of order 10:
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—_ W O Ul NN~ R O oo
O = R O O W 0o Ot O |

4
4
d
6
9
1
0
7
3
2
8

© 00 1 O UL A WD+ O

O 0 1 O U A WD R OO
3 O © 00 B U WO
B =] 0T O 00 O O = W NN
O T 00 B ] O H O DWW
W O O N = O =1 00 & U]
O B = WO N Ut O 00|00
U O N — W 0o O 3 Ol

Commutative CIP loops coincide with IP loops. FINDER took one hour to
enumerate NAFIL CIP loops up to order 13 on a little bit speedy computer.
For order 14, there is a huge number of NAFIL CIP loops. So it requires huge
computer memory and a great amount of time. So FINDER is unable to count
that.

Since the counting of IP loops has been checked by Mace4 and since we have
used the same program and the same symmetry breaking (except the given one
above) provided us by John Slaney, so we do not have to use Maced again to

re-check the counting.

6.3.3 Enumerating NAFIL Automorphic Inverse Property
(ATIP) Loops

Next we enumerate AIP loops. We are able to enumerate them all up to order 8.

Since after this order the number of AIP loops becomes so huge which is difficult

and much time consuming for FINDER.

Order | NAFIL AIP loops |
5 1

6 13

7 91

8 11144 |
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The smallest commutative NAFIL AIP loop is of order 6:

O & 2 3= 4 §
o(o0 1 2 3 4 5
1{1 0 4 5 3 2
212 4 30 & 1
313 5 0 2 1 4
414 3 51 2 0
515 2 1 4 0 3

Remark 8. The smallest non-commutative non-associative NAFIL of order 5 s
AIP.

6.3.4 Enumerating Anti-automorphic Inverse Property(AAIP)
Loops
Next we enumerate AAIP loops. We are able to enumerate them all up to order

9. Since after this order the number of AAIP loops becomes so huge which is
difficult and much time consuming for FINDER.

Order | Non-group AAIP loops | Group AAIP loops
6 6 2
7 11 1 N
8 704 5

19 16473 2

The smallest non-commutative non-associative AAIP loop is of order €:

D O W O -
O W NN

Ul b W N+ O

g W NN = OO
o

A=

o = O Ol e W W
LW O = & N oD
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and the smallest commutative non-associative AAIP loop is also of order 6:

01 2 3 4 5
00 1 2 3 4 5
11 0 4 5 3 2
292 4 1 @ & 3
313 5 01 2 4
414 3 5 2 1 0
515 2 3 4 0 1

Symmetry breaking: We have used the same symmetry breaking which had
been used for enumeration of IP loops in [2] and [64] with only one change, that

is, eliminating ! = z ¢ © = e because this is the speciality of IP loops.

Thus our basic symmetry breakers are:

e<uw

i< (z4+2)

(zl=zAz<y)=y " =y

For odd values of IV :

7 < (xz+2)

F(1) < (e +4)

(z > 1A2c < N)= f(z) < (e+2z)

For even values of IV :

fl)=e

(—FLAG/\O<:E<N:2):>f(:U) < (e+2z+1)
(FLAG) = (e +5)"! = (e +5)
(FLAG Az > 1A (e+2) = (e+2)) = (f(2)71) # f(x)
(FLAGAl<z<yA(et+y) ' =(e+y) = f(z) < f(y)

where 0 < z < N and e denotes the min element.

One of the aim of this chapter is to report all the above enumerations. Since
these were obtained by exhaustive enumeration, they are available for inspection.

Anybody wants these enumerations can get them by an e-mail request to us.
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6.3.5 Construction of Non-commutative and Non-associative
AAIP Loops Via Extension of Loops

We now construct an infinite family of non-associative AAIP loops via extension
of loop whose smallest member is a loop of order 12. We adopt the same procedure
as done for the construction of non-associative and non-commutative C-loops in
[53]. Note that in [53] Klien group is used for the construction of C-loops but we
did not succeed with Klien group. However we got it by using Cy. For further

details about the mentioned construction please read Subsection 6.2.2.

Lemma 8. Let pn: G x G — A be a factor set. Then (G, A, i) is an AAIP loop
uff

(g, h) + 1e(gh, g™ = pu(h h™Y) + g, 971 — p(h ™", g7") for every g,h € G.
(B)

Proof. The loop (G, A, i) is a AAIP loop iff

((g,0)(h, b)) " = (h,0) M (g.0)™

holds for every g, h € G and every a,b € A. Here

(g,0)" = (g7 —a—p(g,97"))

Straight forward calculation with equation (A) shows that this happens iff equa-
tion (B) is satisfied. We call a factor set p satisfying equation (B) an A-factor set.
We now use a particular A-factor set to construct the above mentioned family of

anti-automorphic inverse property loops. U

Proposition 8. Let n > 2 be an integer. Let A be an abelian group of order n,
and o € A an element of order bigger than 2. Let G = Cy = {l,u,v,w} be the
cyclic group of order 4 with neutral element 1. Define p: G x G — A by

a,if(z,y) = (u,v), (w,v),
wla,y) = —a,if(z,y) = (v,0), (v,w),
=0, otherwise
then (G, A, u) is a non-flexible AAIP loop with nucleus N = {(1,a) 1 a € A}
Proof. The map p is clearly an anti-automorphic inverse property-factor set.

It can be depicted as follows
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1 VoW
110 0 0
w0 0 a 0
v |0 —a 0 -«
wl|0 0 a 0

The Cayley table of the G = Cy = {1, u, v, w} is

g e g |-
~ g e gl
e — g |
e e = gle

g@:r—l

To show that (G, A,p) is a AAIP loop, we verify (B). Since p is a factor
set, there is nothing to prove when g = 1. Assume that g = u then (B) becomes
p(u, h) + p(uh, h1w) = p(h, A1) + p(u,w) — p(h~! w). Then both sides of this
equation are equal to 0 when h = 1, u,w and equal to o when h = v. Assume
that ¢ = v then (B) becomes p(v,h) + p(vh, h~) = p(h,h7Y) + plv,v) —
p(h~', v). Then both sides of this equation are equal to 0 when h = 1,v and
equal to —a when h = u,w. Assume that g = w then (B) becomes p(w,h) +
p(wh, h=tu) = p(h, h™h) + plw, u) — p(h~Y, u). Then both sides of this equation
are equal to 0 when h = L u,w and equal to a when h = v. Since « # 0, and
we have that, (u,a)(v,a) - (v, a) = (1,3a + ) # (1,3a - o) = (u,a) - (v,a)(u,a)
and thus (G. A, p) is non-flexible and hence non-associative AAIP loop. From
definition of p it is clear that (G, A, u) is non-commutative. Also we have that
(u.a), (v.a) ¢ N for all a € A. Similarly (w,a) ¢ N for all a € A. Also we have
that (1,a)((h,b)(g,¢)) = ((1,a)(h,b))(g.c) for all h,g € G and a,b,c € A. Which
implies that (1,a) belongs to the nucleus. Thus {(1,a); a € A} is the nucleus of
the loop (G, A, p). d

Corollary 21. For any integer n there is a non-associative non-commutative

AAIP loop with nucleus of size n.

Proof. By Proposition 8 there is a non-associative non-commutative AAIP
loop with nucleus of size n > 2. Now it remains to show that there is a non-
associative non-commutative AAIP loop ‘with nucleus of size 1 and 2. This is

shown in the following examples 31 and 32. U
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Example 31. A non-associative non-commutative AAIP loop with nucleus of

size 1.

Ot W N~ O

S GO RSl e
B N oy © e
— Ol O B W N
O O— Ol O B W w
O N = W O |
W O b = N Ol

Example 32. A non-associative non-commutative AAIP loop with nucleus of

size 2.

- O Ol W NN = O

e (e T 2 QYT ' R o R i e e
Gl B N W O e
St O 1 O W o
S 1 O O NN W W
— W O NN Ut O e
D = W O O k= D

T O N WOl s OO
W O N — e O ot =1

Remark 9. There is no non-associative non-commutative AAIP loop of order 7

with nucleus of size 2.

Example 33. The smallest group A satisfying the assumption of Proposition 8 is
the 3-element cyclic group {0,1,2}. The construction of Proposition 8 with a =1

then gives rise to the following non-associative non-commutative AAIP loop of

order 12.
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