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Abstract 

Semiassociative relation algebras are among the three varieties of algebras in­

troduced by Maddux (R. Maddux, S ome varieties containing relation algebras, 

Trans. of Amer. Math . Soc., 272 , 501-526, 1982.) and are obtained by replacing 

t he associative law (among the condit ions of a relation algebra) by a weaker law 

known as t he semiassociative law. 

This t hesis mainly investigates t he classes of groupoids and mult igroupoids 

whose complex algebras are semiassociative relation algebras and vice versa. \/1/e 

managed to prove that the complex algebra of a groupoid is a semiassociative 

relation algebra if and only if the grou poid is an inverse property loop (IP loop). 

We also proved that t he complex algebra of a mul t igroupoid is a semiassociative 

algebra if and only if t he multigroupoid is a polyloop. T hese results generated 

enough interest in finding t he library of small IP loops and hence we obtained 

t he numbers of non-isomorphic IP loops having order up to 13. Since t hese were 

obtained by exhaustive enumeration , t hey are available fo r inspection. 

Vve have also included in t his t hesis t he classification of IP loops into some 

important subclasses; we established that t he smallest non-abelian IP loop with 

the square property is of order 12 and there are 3 of order 12 and only 2 of order 

13; t he smallest non-associative non-Steiner IP loop t hat is both flexib le and 

alternative is of order 12 and t here are only 2 of order 12 but none of order 13. 

Vie also confirmed that t he smallest non~associative Steiner loop is of order 10 

and that t he smallest non-Steiner non-associative C-loop is of order 12. 'vVe also 

listed the non-associative IP loops having Lagrange property and the smallest 

Hamilton ian non-associative IP loops. It is surpri ing to note that there are only 

25 non-associative abelian IP loops among more than 12 ,000 small IP loops. 

It is well known that t he IP loops of exponent 2 are exactly t he Steiner loops . 

In th is thesis we also managed to count t he IP loops of exponent 3 and exponent 

5; there are only 66 non-associative IP loops of exponent 3 (64 are of order 13) 

and only 10 of exponent 5 (all of order 13) . 
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Chapter 1 

Introduction 

1.1 Preliminary Comments 

In the current ANIS subj ect classification the theory of relation algcbrn.s is in­

cluded as part of algebraic logic but historically it is the other way around . 

Indeed , first order predicate calculus originated from the calculus of relations . 

According to Maddux [41], " Th e most important figures in the creation of cal­

culus of relations in the nineteenth century were Augustus De Morgan, Charles 

Sanders P eirce, and F. W. K. Ernst Schroder. . . . Th e calculus of relations is 

indeed th e result of P eirce's efforts to create algebra out of logic, but these efforts 

took place decades before th e emergence of first order logic in the 1920 's and are 

ins lead based on the pioneering work of Boole (7). Peirce's efforts to get a "good 

general algebra of logic" led him not only to the algebra of relations but also to .find 

convenient ways to explicate and work with his algebra, ways which led directly to 

fi rs t order logic." 

T he earliest results in the fi eld of relation algebras arc due to DeMorgan but 

most of the work in the second half of the 19th century was carried out by Peirce 

and Schroder. The abstract notion of relation algebras and their initial facts were 

given by Tarski [66]. In 1951 Jonsson and Tarski [33] introduced t he concept of 

Boolean Algebra with Operators (BAO) and relation algebras were looked on as 

a kind of BAO. 

This thesis concerns one of t he 'weaker ' notions of the relation algebras known 

as semiassociative relation algebras. There are a number of ways of looking at 

these algebras but we consider them as Boolean algebras with operators. 

1 ' 
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1.1.1 Nonassociative Relation Algebras 

A Boolean algebra with operators (BAO) is an algebra (A, I\, V, ,, 0, 1, (fi) iEI) 

such that (A, I\, V, ., 0, 1) is a Boolean algebra and each operator Ji = Ji(x 1 , ... , xk) 

distributes over join in each coordinate and has O as an absorbing element (that 

is, Ji( - .. , 0, . . . ) = 0). Tarski 's relation algebras provide one example of a variety 

of BAOs. 

In [39] ivladdux introduced three varieties generalising relation algebras by 

weakening the associativity condition. Namely, a nonassociative relation algebra 

(NA) is a BAO (A, I\, V, • , 0, 1, ;, V, 1'), whose operators; (binary), V (unary) and 

1' (nullary) satisfy in addi t ion: 

• (x; y) I\ Z = 0 iff (xv; z) I\ y = 0 iff (z ; yv) I\ X = 0 

• x; l '= l ';x=x 

Chin and Tarski [16] has already proved that t he following conditions are derivable 

from the above two conditions. 

• X ~ = X 

T he last three of t he above four conditions make (A ,;, V, 1 ') into an involutive 

unital groupoid. 

If a l A satisfi es moreover 

(( 1' l\ x); 1); 1 = (1' l\x) ; l 

it is a weakly associative re lation algebra (WA). 

If a I A satisfies moreover 

( X · 1) · 1 = X · l , , , 

it is a semiassociative relation algebra (SA). 

If a NA satisfi es moreover 

( X ; y) : Z = X ; (y ; Z) 

it is a relation algebra (RA). 

Incidentally, but perhaps interestingly, at least some of t he nonassociative alge­

bras have a rather natural realisation in the "real world" as algebras of binary 

relations ,Yith weak composition (see, Definition 2) instead of t he usual compo­

sit ion of relations. As far as we know, all nonassociative algebras considered in 

t his connection a.re semiassociative. See, e.g., [22] for more . 
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1.1.2 Complex Algebras 

3 

For any relational structure W = (W, (Ri)iEI ), its complex algebra Cm(W) is the 

algebra (P (W), n, U, -, 0, W, (Ji)iEI), where each Ji is a k-ary fun ction associated 

with the k + 1-ary relation R , in t he following way: for subsets X 1 , . . . , Xk of W 

we put Ji(X1, . .. ,Xk) = {w E W: (3x1 E X1 , ... ,xk E Xk)(w ,x1, ... ,xk) E R}. 

Notice that functions Ji above are operators , so all complex algebras are BAOs. 

1.1.3 Loops With Inverse Property 

Although loops are usually defined as groupoids wit h unique solut ion property 

(i.e., quasigroups) and possessing a uni t element , we will adopt a more universal­

algebraic view and define a loop to be an algebra (L, ·, \, /, e) satisfying the fo l­

lowing identities: 

l. x(x\y) = y 

2. x\(xy) = y 

3. (x/y)y = X 

4. (xy)/y = X 

5. xe = x = ex 

In each loop an element x has left and right inverses , respectively, e/x and x\e. 

If t hese coincide, we write x- 1 for both. A loop has the inverse property, if it 

satisfies 

(6) x\e = e/x 

(7) (y\e)(yx) = x 

( 8) ( xy) ( e / y) = x 

Thus , loops with the inverse property (JP loops) form a subvariety of loops. In 

fact , it is easy to show that IP loops are term equivalent to the variety of algebras 

( L , •, - 1
, e) satisfying the fo llowing identities 

(i) xe = x = ex 

(iii ) x - 1 (xy) = y 
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(iv) (xy)y - 1 = x 

upon defining x- 1 = x\e (or e/x) one way, and x\y = x- 1y , x/y = xy- 1 the other. 

This will be our offi cial definition of IP loops from now on . It is well known t hat 

Moufang loops (probably the most investigated variety of loops) defined by t he 

identity 

(zx)(yz) = (z(xy))z 

have the inverse property and thus form a subvariety of IP loops . For more on 

loops, see the old but still good [11]. 

1. 1 .4 Poly loops 

v\'e defin e another notion of mult igroupoids which not only genernlises IP loops, 

it also extends the concept of polygroup. The motivation of polyloops comes 

fr om t he fact t hat t here are well known multigroupoids t hat satisfy all other 

conditions of polygroups except the associative law. One of t hese examples is the 

weak composition table of RCC-10 given in [23]. 

1.2 Summary of Results and Outcomes 

In this section we outline t he main results and outcomes t hat were obtained in 

t he thesis with precise references to t heir place of occurrence later. 

1.2.1 Complex Algebras of IP Loops 

Any grou poid ( G, ·) can be viewed as a relational structure (G = ( G, T) where T 

is a ternary relat ion defined by setting T(a, b, c) iff a= b · c. Although t his agrees 

with the formal defi nition of complex algebras, in t he context of groupoids it is 

customary to work instead with a relation T' , defined by T' ( a, b, c) iff a• b = c iff 

T(c. a, b). This agrees with the trad it ional definiti c:m of complex multiplication as 

X o Y = {xy : x EX, y E Y}. If G has a uni t element ewe may view Gas the 

structure G = (G, T, {e} ). Similarly, if G has t he unique solut ion property we 

ma view Gas G = (G .T, R , L , {e}), where L and R are binary relat ions such 

t hat x Ry ( x Ly) iff y is the right (left) inverse of x. 

One natural example of such a complex algebra occurs when G is a group. In 

fact, Jonsson and Tarski showed (see [33], [34]) t he following: 
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Theorem 1. The complex algebra of a groupoid ( G, ·) is a relation algebra if and 

only if (G, ·) is a group. 

This result outlines the exact contribution of the complex algebras of groupoid 

structure in the class of relat ion algebras . The class of subalgebras of t his type 

is known as Group Relation Algebras or GRAs. In the presence of Theorem 1 

it was a natural question to ask that " What are the groupoid structures whose 

complex algebras are semiassociative algebras and vice versa?" The answer to this 

question leads us to t he findings recorded in Chapter 4. The main result that we 

managed to prove in Chapter 4 is given in the following: 

Theorem 4 The complex algebra of a groupoid ( L , ·) is a semiassociative rela­

tion algebra if and only if (L , ·) is an IP loop. 

Remark 1. Later on we f ound that this theorem has already been done by Maddux 

(38/. But we have done it independently and can be considered as a second proof. 

It is worth mentioning however that if L is not an IP loop t hen the complex 

algebra of L is not even a nonassociative relation algebra. In other words the 

complex algebras of groupoids is not a source for NA and WA that are not SA. 

By analogy with group relation algebras (GRAs) we defin ed loop semiassociative 

relation algebras (LS As) . 

1.2.2 Complex Algebras of Poly loops 

A multigroupoid is a non-empty set M together with a mapping · of M x M into 

t he power set of M. That is for each ordered pair (a, b) of elements of A1, a· b 

is a non-empty subset of M. A multigroupoid can be t hought of as a relational 

structure Ml = (M, T) where T is c=i, ternc=i,ry rcla.tion defined by : (x, y , z) E T if 

and only if x E y · z. This defines a binary operation f on P (M) by: 

f(X , Y ) = {a EM Ix EX, y E Y and (a, x, y) ET} . 

An example of such a complex algebra was seen in t he case of M being a 

polygroup (see [18]). In that case Comer proved t hat the complex algebra of 

J\1 is a complete atomic integral relatiory, algebra and vice versa. Apart from 

defining c=i,nother notion of multigroupoid by t he name of ' Polyloop ' a,nd providing 

a variety of examples, Chapter 3 investigates t he contribut ion of complex algebras 

of multigroupoids to the class of semiassociative relation algebras. The summary 

of our findings in this regard is recorded in the followin g: 

Theorem 3 



6 CHAPTER 1. INTRODUCTION 

(1) Cm(M) is a complete atomic integral SA fo_r every polyloop M. 

(2) For every complete atomic integral SA A the system 

At(A) = (At A, *,- 1
, e), 

where AtA is t he set of atoms of A, is a polyloop. 

(3) If M is a poly loop and A is a complete atomic Integral SA , then 

M ~ At(Cm (M) 

and 
A~ Cm[At(A)]. 

Apart from this result we managed to utilize a computer , using constraint 

programming, in order to produce polyloops and their double quotients, of a 

general as well as a particular interest. 

In Chapter 4, we also establish a sufficient condition on some nice examples 

of polyloops that forces those polyloops to be polygroups . 

1.2.3 Small IP Loops 

Count ing and listing different subclasses of loops has a long history. But it is sur­

prising to note t hat although IP loops were defined in the 1940's t here is no data 

available on small IP loops. Chapter 5 reports the numbers of non-isomorphic IP 

loops having order up to 13 . Since these were obtained by exhaustive enumera­

tion , they are available for inspection. We have also included the classificat ion 

of IP loops into important subclasses. We will discuss this later on. For a quick 

view see Table 5.4 , t hat gives the number of isomorphism classes of IP loops of 

each order up to 13 and tells how many of those are commutative. 



Chapter 2 

Definitions, notation and basic 

facts 

2.1 Introduction 

In this chapter we give definitions, notation and basic facts which are used 

throughout the thesis. This is partly for fixing terminology, partly to provide 

an easy reference to results we need to quote from the literature and partly for 

setting up notation. As a general rule we fo llow the notation and terminology 

used by Bruck 's survey [11]. 

Other references will be to McKay and Myrvold [44], and Comer [18]. 

The reader should be able to bypass much of this chapter at a first reading, 

using it as a reference for results and terminology quoted in later chapters. 

2.2 Normal Subloops , Quotient loops and ot h­

ers 

A Lat in square of order n is an x n array L = (lij) such that each row and 

each column contains a permutation of In = {l , 2, ... , n}. A quas igroup G is 

a set together with a binary operation o such that t he equations g o x = h and 

yo g = h have unique solutions for each g, h E G. A quasigroup G is a loop if it 

contains an element e such that go e = e o g = g for all g E G. 

A subloop H of a loop G is said to be normal if for all x, y E G, we have 

xH = Hx, (H x)y = H (xy) and y(xH) = (yx) H. This means that any subloop 

contained in the centre of G ( the set of those elements z E G such that zx = xz 

7 
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for all x E C) is normal in C . Also the intersec tion of any non-empty set of normal 

subloops of G is normal in C. For any normal subloop H of G and y E xH we 

have y = xh for some h E H and hence yH = (xh)H = x(hH) = xH. This 

means that for ally E xH we get xH = yH and consequently the left cosets of H 

in C partition C . Using this fact it is easy to see that, in finite loops, the order 

of a normal subloop divides the order of the loop . Consider the following loop : 

* 1 2 3 4 5 6 7 8 9 X x- 1 

e = 1 1 2 3 4 5 6 7 8 9 1 1 

2 2 3 1 6 7 8 9 4 5 2 3 

3 3 1 2 8 9 4 5 6 7 3 2 

4 4 8 6 5 1 9 3 7 2 4 5 

5 5 9 7 1 4 3 8 2 6 5 4 

6 6 4 8 9 2 7 1 5 3 6 7 

7 7 5 9 2 8 1 6 3 4 7 6 

8 8 6 4 7 3 5 2 9 1 8 9 

9 9 7 5 3 6 2 4 1 8 9 8 

It has 4 subloops {l , 2, 3} , {1 ,4, 5}, {1 , 6, 7} and {1 ,8, 9}. Although all of 

them have orders dividing the order of the loop only { 1, 2, 3} is normal . This 

means it is not necessary that a subloop dividing the order of a loop be normal 

( already for groups this is not necessary). 

For a normal su bloop H of a loop C, let G / H be the set of all left cosets of 

Hin C. Define * on G / H by, 

(xH) * (yH) = (xy)H 

for xH , yH E G/ H. It is routine to show that G/ His a loop under*· This loop 

is called the quotient loop of G modulo H. 

On this basis we can define 0: C ~ G/ H by 0(x) = xH and see that it is a 

homomorphism of G onto G / H. Conversely if a is a homomorphism fr om a loop 

C to a loop M then the set K of all g E C such that a(g) = eM , is a normal 

subloop of G and is called the kernel of a . 

A loop G is said to have a right coset expansion modulo its subloop 

H provided the right cosets of H partition C. The condit ion for a right coset 

expansion is: 

If y E H x then H x = Hy or H (hx) = H x for all h E H and x , y EC. A 

loop C is said to have the weak Lagrange property if the order of each of 

its subloops divides the order of C and C is said to have the strong Lagrange 
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property if each subloop of G has the weak Lagrange property. A loop may 

have the weak Lagrange property but not the strong Lagrange property. Four of 

the six nonisomorphic loops of order 5 have subloops of order 2 and hence fa il to 

satisfy the weak Lagrange property. Let K be one of these loops. As noted in 

[52], page 13 , consider a loop G of order 10 that has K as its subloop . Then G has 

the weak but not the strong Lagrange Property. The following lemma explains 

it further. 

Lemm a 1. ({11}, Lemma V.2.1) Let H be a normal subloop of the subloop K of 

the loop G. If H and I</ H have the strong or the weak Lagrange property then 

so has K. 

Let IL be any class of loops such that : 

(1) Every subloop of a member of IL is in IL. 

(2) E\·ery loop which is a homomorphic image of a member of IL is in IL . 

By a nilpotency function f for IL we mean a function f : IL ---t IL with the 

follow ing properties: 

(a) If G is in IL, J(G ) is a uniquely defined sublooµ of G. 

(b) If Gisin IL and if His a subloop of G then H n J (G) ~ J( H ). 

(c) If Gisin IL and if 0 is a homomorphism of G onto a loop l\J t hen 0(J(G)) ~ 

J(0(G)) . 

( d) If G is in IL, J\ is a normal subloop of G and if A is the intersection of all 

normal su bloops K of G such that · N K / J( is a su bloop of f ( G / K ) then 

NA / A is a subloop of J (G/A). 

If IL is the whole class of loops and J( G) is the centre of G t hen t his nil potency 

is ca lled cent ral nilpotency. 

For each element a of G consider the mappings L(a) and R (a) on G defined 

b)' .r L (a) = ax and xR (a) = xa which are clearly permutations of G. The 

subgroup of the permutation group of G generated by all L(a) and R (a) is ca lled 

the mult ip licat ion group of G (let us denote it by .AJ(G)) and the subgroup 

I (G) of l\J(G) consisting of elements a, such that ea = e is ca lled t he inner 

mapping group of G. It is obvious that l\f(G) is transitive in G and t he subsets 

A = { L(a) \ a E G} and B = { R (a) \ a E G} are the left and right trans\·ersals of 
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I ( G) in M ( G) respectively. Also that A and B are I ( C)-connected transversals 

means the commutator subgroup [A, B J ~ I (G) and that the core of M(G) in 

I (G) is t rivial (core of a subset Sof a group G is the largest normal subgroup of 

G contained in S; it is denoted by Lc(S)) . The relation between mul tiplication 

groups of loops and connected transversals is given by the following theorem: 

Theorem 2. ((49), Theorem 4- 1). A group G is isomorphic to the multiplication 

group of a loop if and only if there exists a subgroup H satisfying Lc(H ) = 1 and 

H -connected transversals A and B such that G is generated by A U B. 

2.3 Important subclasses of Loops 

Since the number of non-isomorphic loops of a given order is very large, most of 

t he work in loop theory has been done in subvarieties of loops. Most of these 

vFtrictics Ftrc rl. efin c<l by weFtkcning the associFtt ive lFtw which sti ll m Ftkcs them 

more general than groups. A loop G with identity element e is said to have t he 

flexible property if for all x, y E C we have x(yx) = (xy)x; it is said to have 

the right alternative property if x(yy) = (xy)y and the left alternative 

property if y(yx) = (yy)x . An alternative loop is a loop which is both left 

and right a lternative. 

Let G be a loop with identity element e. Then G is said to be a left inverse 

property loop if for all x E C there exists x' E C such that x' x = e and for all 

y E C we have x' ( xy) = y . Similarly G is said to be a right inverse property 

loop if for a ll x E C there exists x" E C such that xx" = e and for a ll y E C 

we have (yx )x" = y. Here G is said to have the inverse property ( or IP) if 

it has both left and right inverse properties. In that case for x E C we have 

x' = x'e = x'( xx") = x" and we denote x' , x" by x- 1
. G is said to have anti­

automorphic inverse property if it satisfies the identity (xy) - 1 = y- 1x - 1 . 

Such loops are called anti-automorphic inverse property loops or AAIP 

loops. It is easy to see that IP loops satisfy the anti-automorphic inverse 

property. G is said to have automorphic inverse property if it sat isfi es the 

identity (xyt 1 = x- 1y- 1 . Such loops are called automorphic inverse property 

loops . 

If Il..., is the class of a ll IP loops t hen t he nil potency fun ction f ( G) may be the 

Mou fang Nucleus of G ( the set of all a in G such that for all x , y in G we have 

a((xy)a) = (ax)(ya)). 

A RIF loop is an IP loop G such that (x-1 )ex= (xcx) - 1 fo r all x E C and all 
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CY E I (G). 

A loop G is said to be Steiner loop if for all x, y E G , we have x2 = e and 

x(xy) = y. It is easy to see that Steiner loops are exactly the IP loops of exponent 

2 and are a subclass of RIF loops. RIF loops also include t he most commonly 

known variety of loops which is defined by the followin g; 

A loop G is said to be a Moufang loop if it satisfies the following propert ies: 

for all x, y , z E G, 

(x(yz))x = (xy)(zx), 

((xy)z)y = x(y(zy)) 

and 

((yz)y)x = y(z(yx)). 

By Lemma VII.3.1 of Bruck [11] these equations are equivalent and it follows 

from Lemma VII .3.2 of [11] that every Moufang loop is RIF . It is also easy to see 

that the direct product of a non-associative Moufang loop and a non-associative 

Steiner loop is a RIF loop but is neither Moufang nor Steiner. 

A loop G is said to be a power-associative loop if every subloop generated 

by a single element of G is a subgroup and is called diassociative if t he subloop 

generated by any two elements of G is a subgroup of G. G is said to be Hamil­

tonian if every subloop of G is normal. It is obvious that diassoci~tive loops are 

IP loops and are both fl exible and alternative. Also by Moufang's Theorem (page 

11 7 of [11]) every Moufang loop is diassociative. 

A loop G is said to be a C-loop if for all x, y , z E G we have 

x(y(yz)) = ((xy)y)z. 

It is obvious that Steiner loops are C-loops; Phillips and Vojtechovsky [53] proved 

that C-loops are both alternative and IP loops. G is said to be an A-loop if each 

a E I ( G) is an aut omorphism and it is shown in Bruck and Paige [12] t hat every 

IP loop that is also an A-loop is diassociative. 

2.4 Boolean Algebras With Operators and Re­

lated Terminology 

A first-order language [, is defined as a set consisting of a collection R of 

relation symbols and a collection F of fun ction symbols and , fo r each member 

of R t here exists a positive integer and a non-negative integer associated to each 
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member of F called the arity of the symbol. The subset of R containing symbols 

having arity n is denoted by R n and t he subset of F containing symbols of arity 

n is denoted by F n. T he language £ is called a language of algebras if R = 0 

and is called a language of relational structures if F = 0. 

A relation Sis said to be an n-ary relation on a nonempty set A if S <::;: An. 

If n = 1, S is called unary , for n = 2, Sis called binary and if n = 3 t hen S is 

said to be ternary . 

Let £ be a first-order language (as defined above) and A be a nonempty set 

then the ordered pair A = (A, L) is called the first order structure of type 

£. Here L consists of a family R of relations indexed by R and a family F of 

functions indexed by F and A is called the universe of A. If R = 0 then A is 

called an algebra and if F = 0 then A is called a relational stru cture . If £ 

is fini te, if R = { S 1 , S2 , . .. , Sn} and F = {J1 , h , ... , J m} then A is denoted by 

(A, Ji , h , · · · , Jm, S1 , S2 , , , , , Sn) , 

For any rela tional structure A= (A, (ri)iEI ), its complex algebra Cm(A) is 

t he algebra. (P (A) , n, U, - , 0, A , (h)iEI), where ea.ch Ji is a k-ary function associ­

ated with t he k + 1-ary relation ri, in t he fo llowing way : for subsets X 1, ... , X k of 

A we pu t Ji( X1 , ... , X k) = {a EA: (:lx1 E X1 , .. :,xk E X k)(a,x 1 , ... ,xk) E ri} . 

Let A1 = (A1. L1) and A2 = (A2, L2) be structures of type £. A bounded 

morphism a, : A 1 ---+ A2 is a mapping a, : A 1 ---+ A 2 such that for each 

relation al m ember r of L , if r 1 , r 2 a.re the relat ions indexed by r in L 1 , L2, t hen 

(co,c1, ... ,Cn.) E r1 

implies 

(a(eo), a(c1), ... , a(en)) E r2 

and for each member r 1 E L2 if 

(a(c), d1 , . . . , dn ) E r1 

t hen t here exists r2 E L1 and b1 , ... , bn E A1 such t hat a(b1) = c1 for 1 :S l :S n 

and 

( c, bi , .. . , bn) E r2 . 

A Boolean algebra with operators (BAO ) is an algebra (A,/\ , V, -, _ 0, 1, (Ji)iEI ) 

such t hat (A,/\ . V, -, _ 0, 1) is a Boolean a lgebra and each operator Ji= Ji(x 1, ... , xk) 

distributes over join in each coordinate and has O as an absorbing element (that 

is. Ji ( .... 0 .... ) = 0). 
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Notice t hat functions Ji in t he defini t ion of complex algebra are operators, so 

all complex algebras are BAOs. 

A nonempty class V of algebraic structures of type .C is said to be a varie ty 

if it is t he class of all algebras t hat satisfy a given set of ident it ies . Equivalently 

by a resul t of Birkhoff a variety is a class t hat is closed under subalgebras, homo­

morphic images and direct products. A subclass W of V which is also a variety 

is called a subvariety of V . 

An algebra A = (A,/\, V, ,, 0, 1, o, V, e) is said to be a relation algebra if 

/\, V and o are binary operations on A , , and V are unary operations on A, and 

0, 1 and e are constants satisfying the fo llowing propert ies ( fo r x, y, z E A) : 

(RAO) (A,/\, V, ,, 0, 1) is a Boolean algebra; 

( RA 1) ( X O y) 0 z = X O ( y O z); 

(RA2) x o e = x = e ox; 

(RA3) (x O y) I\ z = 0 iff (xv Oz) I\ y = 0 iff (z O yv) /\ X = 0; 

and (y V z) o x = (y ox) V ( z o x); 

T his defini t ion of relation algebras is due to Tarski [66] . In [39] Maddux 

noticed that most of t he propert ies of relation algebras do not d_epend on t he 

associativity of o. On this basis Maddux int roduced three new varieties of algebras 

which extend t he variety RA of relation algebras . In t hese varieties (RAl) is either 

omitted or replaced by one of t he fo llowing two laws; 

(SA) x o (1 o 1) = (x o 1) o 1. 

(WA) (l ' /\ x) o (1 o 1) = (( l ' /\ x) o 1) o 1. 

T he largest of t hese varieties is called Nonassociative Relation Algebras (NA) 

which is obtained by omitting (RAl ) . T he other two varieties are called \i\Teakly 

Associative Relation Algebras (WA; when (RAl ) is replaced by ("WA)) and Semi­

associative Relation Algebras (SA; when (RAl ) is replaced by (SA)). It is imme­

diate to see t hat RA<;;:: SA <;;:: WA<;;:: NA. 
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Chapter 3 

Polyloops and SA relation 

Algebras 

3.1 Introduction 

In this chapter we introduce yet another notion of multigroupoid which has not 

been seen in the literature before . This generalises the concepts of both IP loop as 

well as polygroup and therefore, correctly speaking, it should be called polyloop 

with inverse property or polyIPloop. The only reason for adopting "polyloop" is 

that it is shorter. The motivation of this notion of multigroupoid comes from the 

fact that there are well known multigroupoids that satisfy all other conditions of 

polygroups except the associative law. The most interesting of these examples is 

t he weak composition table of RCC-10 given in [23]. 

A good account of polygroups is given in [18] which is also the source of most 

ideas proven in this chapter. 

In Section 1, we give a formal definition of polyloops and give important ex­

a111ples from different areas of interest while in Section 2 we establish a strong 

connection between SA relation algebras and polyloops. In Section 3 we give a 

sufficient condition which converts some nice examples of polyloops into poly­

groups . 

3.2 Definition and Examples of Polyloops 

Definition 1. A polyloop is a system M = (M, *,- 1 , e) (where e E M , - 1 is 

a unary operation on M and * is a multi-operation (namely x * y <:;;; Jvf is a 

non-empty set for every x, y E M), which satisfies the following axioms fur all 

15 
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x, y ,zE M : 

(Pi ) x E (x * y) * y - 1 and x E y - 1 * (y * x); 

(P4 ) x E y * z implies y Ex* z- 1 and z E y- 1 * x. 

We give a set of nice examples of the polyloops that are not loops or poly­

groups ; they also demonstrate how polyloops occur naturally in a variety of re­

search areas . 

Example 1. Polyloop of order 5. 

* II 1 2 3 4 5 

1 1 2 3 4 5 

2 2 {1 , 4} {1 , 2}
1 

{1 }' {1 , 2}' 

3 3 {1, 2}
1 

{ 4, 5}' 2 2 

4 4 {1 }' 2 {1 , 2} 2 

5 5 {1 , 2}
1 

2 2 {1 , 2} 

Example 2 . Polyloop of order 6. 

* II 1 2 3 4 ' 5 6 

1 1 2 3 4 5 6 

2 2 {1 , 5} {5 , 6} {4, 5, 6} {1 }' {1 , 2}' 

3 3 {5 , 6} {1,4} 3 2 2 

4 4 {4 , 5, 6} 3 {1 , 2} 2 2 

5 5 { 1 }' 2 2 {1 , 2} 2 

6 6 {1 , 2}' 2 2 2 {1 , 2} 

Example 3 . Polyloop of order 7. 
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* II 1 2 3 4 5 6 7 

1 1 2 3 4 5 6 7 

2 2 {1 ,4, 6} {6 , 7} {1 , 3}' {1 , 2, 3}' {1 }' {1 , 2}' 

3 3 {6 , 7} {1 , 4,5} 3 3 2 2 

4 4 {1 ,3}' 3 {1 , 2} 2 2 2 

5 5 {1 , 2,3}' 3 2 {1 , 2} 2 2 

6 6 {1 }' 2 2 2 {1 ,2} 2 

7 7 {1 , 2}' 2 2 2 2 {1 , 2} 

Example 4. Polyloop of order 8. 

* 11
1 2 3 4 5 6 7 8 

1 1 2 3 4 ,5 6 7 8 

2 2 {1 , 5, 7} {4, 7,8} {1 , 2}' {1 , 3}' {1 , 2, 3}' {1 }' {1 , 2}' 

3 3 {4, 7,8} {2, 7, 8}' {2 ,3} 3 3 2 2 

4 4 {1 , 2}' {2 ,3} {1 , 2} 2 2 2 2 

5 5 {1 , 3}' 3 2 {1 , 2} 2 2 2 

6 6 {1 , 2,3}' 3 2 2 {1 , 2} 2 2 

7 7 {1 }' 2 2 2 2 {1 ,2} 2 

8 8 {1 , 2}' 2 2 2 2 2 {1 , 2} 

Before going to the next example, the fo llowing defini t ion should be noted. 

Definition 2. / 57/ Composition ( o) of two relations R and S is defined as the 

relation Ro S = { (a, b) I =le: (a, c) ER and (c, b) ES}. Let A be a set of atomic 

relations. A \tVeak composit ion (D) of two relations S and T is defined as the 

strongest relation R E 2A which contains So T, or formally , S□T = {Ri E A I 

Ri n S o T ::/- 0} . if a weak composition is represented by a table then such a table 

is called \ i\Teak composition table. 

Example 5. 

The Region Connection Calculus (RCC): This calculus was introd uced 

by Randell et al. [19] to formalise int uitive reasoning about space. In RCC the 

base set is the set of abstract regions in an abstract space and the base relation 

is a connection C ( for regions x and y, C ( x, y) means x is connected to y); other 

relations are defin ed by t he following : 
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P(x, y) x is a part of y Vz, C(x, z) implies C(y , z) 

PP(x,y) x is a proper part of y P(x , y) but -,P(y , x) 

O( x, y) x overlaps y :3z such that P( x,z) and P (y,z) 

PO (x, y) x properly overlaps y O(x, y) but -iP( x, y) and -,P (y, x) 

EC(x, y) x is externally connected with y C(x , y) but -,Q( x, y) 

TPP(x , y) x is a tangential proper part of y P P (x, y) and :3z[EC(z, x) and EC( z, y )] 

NTPP(x , y) x is a non-tangential proper part of y P P( x, y) and -,::Jz[EC(z, x) and EC(z, y) ] 

DC(x, y) x is disconnected from y -,C(x, y) 

EQ(x, y) x is identical to y P( x, y) and P(y , x) 

Converses of c1,]] these relations are defined in the usual sense . Figure 3.1 

explains these relations if x, y and z are considered as discs in the Euclidean 

plane. 

RCC axioms : 

G) 
Q 
DC(I, y) 

8 
8 
P0 (1·. _11 ) 

EC(.r, y) TPP(1·, y) 

.1' y 

EQ(:r . .11 ) 1VTPP(.r . ?!) 

Figure 3.1: Figure 1. 

A model for the RCC consists of: 

(i) a base set U = RUN, where R, N are disjoint; 

(ii) a binary relation C on R ; 

(iii ) two binary operations+ : R x R ➔ Rand · : R x R ➔ R UN; 
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(iv) a special u E R and a unary operation - : R0 -+ R0 where Ro = R\ { u}. 

Here R can be interpreted as the set 0£ all non-empty regions; N as consisting 

of just the empty region O; u as t he universal region and Ro as the set of all 

non-empty proper regions. The binary operations + and · would then be t he 

union and intersection of the regions while the unary operation - would be t he 

complement of regions. 

There are 8 axioms for the RCC: 

RCC 1. Vx E R , C(x , x) 

RCC 2. Vx, y E R , C(x , y) ⇒ C(y, x) 

RCC 3. Vx E R , C(x, u) 

RCC 4. Vx E R ,y E Ro , 

(a) C(x, - y) {=? ,NT P P(x, y ) 

(b) O(x, - y) {=? ,P(x, y) 

RCC 5. Vx, y, z E R , C(x , y + z) {=? C(~, y) or C(x, z) 

RCC 6. Vx, y, z E R , C(x, y· z) {=? :3w E R such that (P(w , y) and P(w , z) and 

C(x,w)) 

RCC 7. Vx, y E R, x·y E R{=? O(x ,y) 

RCC 8. If P (x, y) and P(y , x), then x = y. 

It is easy to see that P is a partial order. If we denote t he relations of RCC-8 

by integers as in Table 3.1 then the weak composition table for RCC-8 is given 

by : 

nota tion Relations notation Relations 

1 EQ 5 TPP 

2 DC 6 NTPP 

3 EC 7 TPPV 

4 PO 8 NTPPV 

Table 3.1: Alternate notation for RCC-8 relations 
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Ow 1 2 3 4 5 6 7 8 

1 1 2 3 4 5 6 7 8 

2 2 * {1 , 7, 8}' {1 , 7, 8}' {1 , 7, 8}' {1 , 7, 8}' 2 2 

3 3 {1 ,5, 6}' {6 , 8}' {1, 7, 8}' {3,4,5,6} {4,5,6} {2, 3} 2 

4 4 {1 , 5, 6}' {1 ,5,6}' * {4, 5,6} {4, 5,6} {1 ,5, 6}' {1 ,5,6}' 

5 5 2 {2,3} {1, 7, 8}' {5 , 6} 6 {7, 8}' {1 ,5,6}' 

6 6 2 2 {1, 7, 8}' 6 6 {1 , 7, 8}' * 
7 7 {1 , 5, 6}' {3 ,4, 7,8} {4, 7,8} {1 , 4,5 , 7} {4, 5,6} {7,8} 8 

8 8 {1 , 5,6}' {4, 7,8} {4, 7,8} {4, 7,8} {2, 3}' 8 8 

Here * denotes the universal relation and , denotes complement. 

Let S be the incomparability relation which means S(x, y) is defined as 

, P(x, y) and , P(y , x). This extends RCC - 8 if we replace EC by 

ECD = -(PP O ppv LJ ppv OPP), 

ECN=ECn-ECD, 

and PO by 

PON= s n (PPV o PP) n (PP o PPV), 

POD = S n ( P Pv o PP) n -(PP o P Pv). 

Here o denotes the composition of relations. Then 

• ECD( x, y) <=;, EQ(x, -y) , 

• ECN(x , y) <=;, EC(x, y) and x + y ::/= u, 

• PON( x, y) <=;, S(x , y) with x· y i= 0 and x + y i= u, 

• POD (x, y) <=;, S(x , y) with x · y i= 0 and x + y = u. 

This gives us 10 base relations and the resulting system is called RCClO. 

Again , if we denote the relations by numbers as listed in Table 3.2 then the weak 

composition table of RCClO is given here: 

o,,. I 2 3 4 5 6 7 8 9 

l I 2 3 4 5 6 7 8 9 

2 2 (3 , 6}' 8 {2, 4, 6, 7 , 8} 8 {2, 4, 6, 7 , 8} (2, 4 ,6, 7 ,8} {I, 9, 10}' 2 

3 3 10 l 9 {7,8} 6 5 5 4 

4 4 {2,4,6,9, 10} 7 {3, 5 , 8, 10}' {7,8} {2,4,6, 7,8} {1,2,9,10}' {5,6, 7,8} {2,4} 

5 5 10 {9, 10} {9, 10} {2,3,4}' {5 ,6,9, 10} 5 5 {l,2,7,8}' 

6 6 {2, 4, 6, 9, 10} 6 {2,4,6,9, 10} {5,6,7,8} . (5, 6, 7, 8} (5, 6, 7, 8} (2,4,6,9 , 10} 

7 7 2 3 {2,4 } { I , 2, 9 , 10}' {2,4,6,7,8} {7 ,8} 8 {I, 2, 4 , 6 , 7 , 9} 

8 8 2 2 4 { I , 9, 10}' {2,4,6,7,8} 8 8 {2, 4 , 6, 7,8} 

9 9 (2 , 4, 6, 9, 10} 5 {I , 2 , 7, 8}' 5 {5 , 6, 9, 10} {1,5,6, 7 ,9} {5,6, 7,8} (9, 10} 

10 10 { 1, 7, 8}' 5 (5, 6 , 9 , 10} 5 (5, 6, 9, 10} (5, 6, 9, 10} {2, 3, 4 }' 10 

10 

10 
2 
2 
2 

( l. 7 , 8}' 

{2 , 4, 6, 9 , 10 } 

{2,4,6,8, 10} 

(3, 5 }' 
10 
10 
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notation Relations notation Relations 

1 EQ 6 PON 

2 DC 7 TPP 

3 ECD 8 NTPP 

4 ECN 9 TPPV 

5 POD 10 NTPPV 

Table 3.2: Alternate notation for RCClO relations 

This table shows that the multiplication is not associat ive; fo r example 

T his means t he complex algebra of t his multigroupoid is non-associative. However 

it has been verified by computer t hat this algebra is semiassociative. 

This example is recorded from [23]. 

Example 6. 

Serial Partition: Let Ube a non-empty set. Let M be a partition of U x U 

such that each x E M is a serial relation on U ( a relation x is saici to be serial 

if for each a E U, t here exists b E U such that ( a, b) E x) then M is known as 

serial partition. Suppose that the identi ty relation (denoted by e) on U is also 

a member of M and that the inverse of each x E Af ( denoted by x- 1 ) is also a 

member of M. Define ow (known as weak composition in the li terature) on Jvl as 

follows: 

x ow y = {z EM I z n (x o y) =f. 0). 

Here o denotes the composition of relations. Using the fact that xoy E xowy , 

it is easy to prove that Ml= (M, ow,- 1 , e) is a polyloop. It is worth mentioning 

that the weak composition on t he members of a serial partition is not necessarily 

nonassociative and it is not necessarily associative either. For example the weak 

composition table of RCClO is non-associative and hence gives an example of a 

polyloop which is not a polygroup. On t he other hand the weak composition 

table of RCC-8 is associative and hence provides an example of a polyloop that 

is also a polygroup. 

Example 7. 
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Chromatic Polyloops: Let C be a non-empty set of colours and e be an 

involu tion on C Let Ca be the set of edges (x, y) of a directed graph (V, E) that 

are coloured by 'a'; hence Ca is a binary relation on V. A colour scheme is a 

system V = (V, Ca)aEC that satisfies the following conditions: 

(1) {Ca/ a EC} partitions {( x,y) EV x V / x =/- y}; 

(2) For each a EC the set Ce(a) is the converse relation (Ca)- 1
; 

( 3) For each vertex x and the colour a, there exists a vertex y such that ( x, y) 

is coloured a; 

( 4) For all a, b, c E C, there exists c E C such that Cc n ( Ca o Cb) =/- 0 ⇒ Cc ~ 

(Ca O Cb)-

The purpose of the involution e is to guarantee the colour assigned to edge 

(y , x) depends only on the colour of (x, y) (in the case of directed graphs) and 

therefore t he colours a and e(a) can be thought of as 'paired' . Clearly taking 

a = e( a) these schemes can be used to colour undirected graphs. 

Now let V = (V, Ca )aEIC be a colour scheme with involution e on C and let I 

be a symbol that is not in C Let us define a system 

Av= (Cu {I} , *,- 1
, I) 

such that 

a * b = { C E (C I Cc n Ca O Cb} LJ { f / b = a - 1
} 

for a,b EC, X* I = x = I* x for x E CU{I} , and for all a E C , a- 1 = e(a) while 

1- 1 = I. 

It is easy to verify that Av is a polyloop. '0/e call a polyloop chromatic if it 

is isomorphic to a system Av derived from some colour scheme V. 

If we con ider the regions in RCC-8 to be the vertices and the 8 relations to be 

t he colours , then the ordered pair ( x, y) can be t hought of coloured DC ( means 

(1· . y) E Coe) if the regions x and y are not connected (topologically if xny = 0), 

so RCC-8 can be thought of as a chromatic polyloop. 

Example 8. 

Directed Graphs: Let ( G, D) be a directed graph with the property that 

for any two vertices a =I- b E G either a is connected to b or b is connected to a. 

Define * on G as: 
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a * b = a if a Db but ~ ( bDa), a * b = b if bDa but ~ ( a Db) and a * b = { a, b} 

if aDb and bDa. 

Consider c+ = GU { e} where e ¢: G and define o on c+ as a o e = a= e o a. 

a ob = a* b if a =/= b, a ob = {g E G I aDg} U { e} if a = b. 

If we define the inverse to be the identity map i on c+, t hen the system 

(G = (G+, o, i , e) is a commutative polyloop . This example is due to Jipsen , 

Kramer and Maddux [32]. 

Define c1, sequence of structures ( Un , Rn.) where Un = { a i, j I i E Z , 1 S:: j s; n} 

and 

for 1 s; j s; n. Then (Un, Rn) gives us an infinite class of such polyloops. 

Example 9. 

Computer generated Polyloops: Constraint programming can also be 

used to generate polyloops. We list here a few , selecting one of each order ranging 

from 3 to 8; all elements in t hese polyloops are self-inversed. 

* 1 2 3 4 5 6 7 8 

e = 1 1 2 3 4 5 6 7 
-

8 

2 2 {1 , 5, 7} {4, 7,8} {1 , 2}' {1 , 3}' {1 , 2, 3}' {1 }' {1 , 2}' 

3 3 {4, 7, 8} {2 , 7, 8}' {2,3} 3 3 2 2 

4 4 {1 , 2}' {2,3} {1 , 2} 2 2 2 2 

5 5 {1 , 3}' 3 2 {1 , 2} 2 2 2 

6 6 {1 , 2,3}' 3 2 2 {1 , 2} 2 2 

7 7 {1 }' 2 2 2 2 {1 , 2} 2 

8 8 {1, 2}' 2 2 2 2 2 {1,2} 

* 1 2 3 4 5 6 7 

e = 1 1 2 3 '4 5 6 7 

2 2 {1 , 4, 6} {6, 7} {1 , 3}' {1 , 2, 3}' { 1 }' {1 , 2}' 

3 3 {6 , 7} {1,4, 5} 3 3 2 2 

4 4 {1 , 3}' 3 {1,2} 2 2 2 

5 5 {1 , 2, 3}' 3 2 {1 , 2} 2 2 

6 6 {1 }' 2 2 2 {1 , 2} 2 

7 7 {1 ,2}' 2 2 2 2 {1 , 2} 
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* 1 2 3 4 5 6 

e = 1 1 2 3 4 5 6 

2 2 {1 , 5} {5 , 6} {4 , 5, 6} {1 }' {1 , 2}' 

3 3 {5 , 6} {1 , 4} 3 2 2 

4 4 {4, 5, 6} 3 {1 , 2} 2 2 

5 5 {1 }' 2 2 {1 , 2} 2 

6 6 {1 , 2}' 2 2 2 {1 , 2} 

* 1 2 3 4 5 

e = 1 1 2 3 4 5 

2 2 {1 , 4} {1 , 2}' { 1 }' {1 , 2}' 

3 3 {1 , 2}' { 4, 5}' 2 2 

4 4 { 1 }' 2 {1 , 2} 2 

5 5 {1 , 2}' 2 2 {1 , 2} 

* 1 2 3 4 

e = 1 1 2 3 4 

2 2 {1 , 3} {1 }' {1 , 2}' 

3 3 { 1 }' {1 , 2} 2 

4 4 { 1, 2}' 2 {1 , 2} 

* 1 2 3 

e =l 1 2 3 

2 2 {2}' 2 

3 3 2 1 

The last t hree-element polyloop has been given and st udied by Maddux [42, P age 

429] 

Example 10. 

Double Quotients of P oly loops : This is a way of getting more polyloops 

fr om given polyloops. The foll owing notion is due to S. D. Comer [18] . 

Definition 3. Let R be an equivalence relation on a polyloop MI = (A I , *,- 1
, e). 

Then 

(1) R is a fu ll conjugation on MI if (x, y) E R implies (x- 1 , y- 1 ) E R and 

z E x * y and z R z' implies there exist x' R x, y' R y such that z' E x' * y'. 

(2) A fu ll conjugation R is called a special conjugation if x R e implies x = e. 
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We can prove the following: 

Proposition 1. Let R be an equivalence relation on a polyloop M = (M, *,- 1 , e). 

If Risa full conjugation on M then the system IR= ({[x]R Ix EM}, *,- 1
, [e]R), 

where * and - l are the induced operations on R-classes, is a polyloop. 

Proof. Let R be a full conjugation on M. We show that ( { [x]R I x E 

M} , *,- 1
, [e]R) is a polyloop. It is clear from the definition of full conjugation 

that [x]R 1 = [x- 1 ]R E IR for all [x]R E IR and 

[x] R * [Y]R = {[z]R I z E [x]R * [Y]R}. 

(Pi ) Since x E (x * y) * y- 1
, we have [x]R E ([x] R * [Y]R) * [y]R1

. Similarly we 

can show that [x]R E [y]R1 * ([Y]R * [x]R)-

(P3) Since e Ex* x- 1
, we have [e] R E [x]R * [x]R1 (also [e]R E [x]R1 * [x]R)­

(P2) First we need to show that [e]R E [x]R * [Y]R if and only if [Y]R = [x]rt 

Suppose that [e]R E [x]R * [Y]R which means there exist u E [x]R and v E [Y]R such 

that e E u * v and hence v = u- 1
. This means by defi nition that [Y]R = [x]R 1 . 

The converse follows from P3 . Now let a E [x]R * [e]R- This means there exist 

b E [x]R and c E [e]R such that a E b * c. This implies that c E b- 1 * a and hence 

[e] R E [x]R1 * [a]R and therefore a E [x]R- This proves that [x]R * [e]R = [x] R­

Similarly we can show that [e]R * [x]R = [x]R-

(P4) Let [x]R E [Y]R * [z]R- This implies there exist a E [Y]R and b E [z] H 

such that x E a* b which means a E x * b- 1 and b E a- 1 * x. Now by using the 

definition we conclude that [Y]R E [x]R * [z] R1 and [z] R E [y]R1 * [x] R- D 

The systems in the above proposition are called double quotients of M. Ob­

viously the collection of singleton subsets of NI gives a trivial double quotient for 

M. Similarly the partition { { e }, { e }'} also gives a double quotient. If we consider 

the smallest nonassociative IP loop M of order 7 then 

IR= {{1} , {2, 3} , {4 , 5} , {6 , 7}} 

provides the double quotient of M. 

It is easy to verify that all the polyloops from Example 9 have only double 

quotients that are either trivial or they are of the form { {e}, {e}'}. 

The double quotients of a given finite loop can be generated on a computer 

by using constraint programming. For example the number of double quotients 

of RCC-8 turns out to be 25 including 

{{1} , {2,3 , 4} , {5,8}, {6 , 7}}. 
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Similarly the number of double quotients of RCC-10 turns out to be 42 in­

cluding 

{{1} , {2 , 4,5},{3} , {6} , {7,8 , 9, 10}} . 

It is worth mentioning that the polyloops generate¢ by the computer in the above 

example have no non-trivial double quotients . 

3.3 Connections with SA relation algebras 

How a multigroupoid (M, ·) can be viewed as a relational structure is given here: 

Consider the ordered pair M = (M , R) where R is a ternary relation on M 

defin ed by: R (a, b, c) if and only if a Eb· c. Although this agrees with the formal 

definition of complex algebras, in the context of multigroupoids it is customary 

to work instead with a relation T' , defined by R'(a, b, c) if and only if c E a· b 

if and only if R( c, a , b). This agrees with the traditional definition of complex 

mult ip licat ion of multigroupoids as X o Y = U{ x • y: x E X , y E Y} . If 

M has a unit element e, M can be viewed differently as the structure M = 

(J\-1 , R , { e}). Similarly, if M has a unary operation - 1 then we may view M as 

M = (M , R , S , { e}), where S is a binary relation on M such that xSy (and ySx) 

iff x- 1 = y. 

An example of such a complex algebra was seen in the case of M being a 

polygroup (see [18]). In that case Comer proved that the complex algebra of 

NI is a complete atomic integral relation algebra. For the exact reference see 

Theorem 3.1 of [18]. 

An algebra A is said to be integral if for all x, y E A , x o y = 0 implies x = 0 

or y = 0. The following lemma gives an alternate condition for integral SA. 

Lemma 2. Let A be an SA. Th en A is integral if and only if e is an atom of A. 

Remark 2 . Here too we proved this lemma without the knowledge of its existence 

previously but later on we found that this has been proved by Maddux on page 

366 {42, Theorem 353/ and was published in 1990 {4 OJ. The version for relation 

algebras is Th co1·cm 4.17 proved by B. Jonsson and A. tarski {34/. 

Proof. Suppose that e is an atom of A and that there are x =/=- 0 and y =/=- 0 but 

x o y = 0. This means (x o y ) A 1 = 0, or (xv o 1) A y = 0 and hence xv o 1 ::=; y - . 

Now (x o e) Ax=/=- 0 and hence (xv ox) A e =/=- 0. But since e is an atom, we have 
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xv OX ~ e . Again y = e O y ::; (xv Ox) 0 y ::; (xv O 1) 0 1 = xv O 1 or y ::; xv O 1. 

Consequently we have 

a contradiction since y =f. 0. Hence A is integral. 

Conversely suppose that A is integral bu t e is not an atom. T his means 

there exist 0 =f. x and 0 =f. y such that x V y = e and x I\ y = 0. Since y ::; e, 

x o y ::; x o e = x and similarly x o y ::; y which implies x o y ::; x n y = 0, a 

contradict ion. Hence e is an atom. □ 

T he complex algebra of a polygroup M = (M, *, - 1
, e) is the system Cm = 

(P(A1),n,u,-,0,M,*,- 1 , {e}) where (P (M),n,u,-,0,M) is the Boolean al­

gebra of all subsets of A1 and * and - 1 denote the extensions of the polyloop 

operat ions to subsets. 

The complex algebra construction gives a one-one correspondence ( up to iso­

morphism) between polyloops and complete atomic integral SA's. 

Theorem 3. ( 1) Cm(M) is a complete atomic integral SA for every poly loop 

M. 

(2) For every atomic integral SA A the system 

At(A) = (AtA, *,- 1
, e), 

where AtA is the set of atoms of A, is a polyloop. 

(3) If M is a poly loop and A is a complete atomic integral SA, then 

M ~ At(Cm (M)) 

and 

A~ Cm(At(A)). 

R em ark 3. Though we did this theorem independently but later on we found that 

Th eorem 3(1) is a special case of {32, Theorem 2.2/, Theorem 3(2) follows from 

f 32, Th eorem 2. 2/ and the first equation in Theorem 3(3) is a special case off 32, 

Th eorem 3.3/ while the second equation in Th eorem 3(3) is a special case of /32, 

Theorem 3. 13(20)/. 

Proof. (1) Let (fl! , *,- 1 , e) be a poly loop. We show that (P (flf). n, U. -. 0. fl!. o. V' { e}) 

is a semiassocitive algebra where o is defined as 

XO Y = LJ{ X * y I X E X , Y E Y} 
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and 

X v= {x- 1 Ix EX}. 

Since (P(M) , n, U,C, 0, M) is Boolean algebra, we only need to prove the fo l­

lowing: 

(i) For all X , Y, Z E P (M), we have 

X n (Yo Z) = 0 iff Y n (X o zv) = 0 iff Zn (Yv o X) = 0. 

(ii ) For all X E P (M) , we have 

(X o IV!) o M = X o M. 

(i) Let X n (Y o Z) -/- 0 so t here exists x E X such that x E Y o Z. This 

means t here exist y E Y and z E Z such that x E y * z. Since U is a polyloop , 

we have y E X * z- 1 and z E y- 1 * X. This implies that y n (X O zv) i- 0 and 

Zn (Yv o X) -/- 0. 

(ii) Clearly 

X o M = (X o A1) o {e } <:;;; (X o M) o M. 

vVe only have to show that 

(X o M) o M <:;;; X o M. 

For each t E (X o M) o !vf and x E X, we have t E x * (x- 1 * t) E X o M which 

proves what we required. 

Also for non-empty sets X and Y , we have X o Y non-empty; proving P(M) 

to be integral. 

(2) Suppose that A = (A, t,, V, ~, 0, 1, o, V' e) is a complete atomic integral 

semiassociative relation algebra. We show that (AtA, o, V' e) is a polyloop. This 

means we only have to show that for all x and y E At,4. 

(Pi ) XE (xoy) oyv and XE yv o (yox). 

(Pi) Let us suppose that X tf- (x O y) 0 yv. This means X (\ [(x O y) 0 yv] = 0 

which implies (by RA3) that (x o y) I\ (x o y) = 0, a contradiction. 
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(A) Since A is integral, e is an atom of A (by lemma above) and hence lies 

in AtA. 

(P3 ) Suppose not . Then x~ is strict ly above some y E AtA which implies t hat 

y~ li es strictly below x , a contradiction. 

This completes t he proof of (2). 

( 3) A map from a to {a} gives t he firs t isomorphism and the mapping from 

x EA to {a E AtA I a ::; x} gives the second. □ 

It is not hard to realise that a double quotient of a given polyloop MI is a 

suba.lgebra of Cm(MI) . This means that t he complex algebras of the loops given 

in Example 9 are all "minimal" semiassociative relation algebras . 

3.4 A Link Between Polygroups and Polyloops 

In this section we record a sufficient condi t ion on polyloops (given in Example 2 

and 3) t hat make t hem polygroups . Vve call a. partition M of a set U dense if for 

x.y.z and t E l\ I , (xoy) n (zot) = 0 implies for all s E Jvf either (xoy) ns = 0 

or (z o t) n s = 0. 

Proposition 2. If 1W is a dense serial partition (as de.fined in Example 2) of a 

set U x U then MI = (M, ow,- 1
, e) is a polygroup . 

Proof. Associativity is t he only t hing to be verified. This a.mounts to proving 

the fo llowing: 

For all a. b. c. d. f E !If if c ::; a ow b a.nd f ::; c ow d then there exists g E !If 

such that g ::; bow d and f ::; a ow g. By ( P4), we have f ::; cow d iff c ::; f ow d- 1 

and f ::; a ow g iff g ::; a- 1 ow f. 

Therefore suppose t hat c ::; a ow b and c ::; f ow d- 1
. By definition of ow. 

,,·e have (a ob) n c =I- 0 and (f o d- 1 ) n c =I- 0. Now by the density of !If . 

we get (a ob) n (f o d- 1) =I- 0 and t herefore b n ((a- 1 o J) o d- 1) =I- 0. Thus 

(a- 1 o J) n (bod) =I- 0. This means there exits g E ]If such that (a- 1 o J) n g /:- 0 

and (bod) ng =I- 0. 
Thus g ::; a- 1 ow f and g::; bow d and by (P4 ), \Ye get f::; a ow g. 

□ 
Example: Let ]\J = { e, R , S. T} be a serial partition of U x U where U = 

{0. 1. 2. 3} and R. S. Ta.re defined by: 

• R = {(0. 4), (4. 0). (1. 3). (3 . 1). (1. 2) . (2, l )}, 

• S = {(0.1). (1. 0), (2. 3). (3. 2). (3, 4), (-t 3)}. 
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• T= {(0 , 3),(3, 0),(4, 1), (1,4) ,(2,4),(4,2)}. 

Then the weak composition table of the elements of M is given by: 

Ow e R s T 

e e R s T 

R R {e, S} {T, R} {S, T} 

s s {T,R} {e, T} {R , S} 

T T {S,T} {R ,S } {e, R} 

Table 3.3: Weak Composition Table for fvf 

Table 3.3 shows that weak composition is different from composit ion. It is 

easy to check that the weak composition in this case is associative, and also that 

composit ion and weak composition of the elements of M satisfy the necessary 

conditions of Proposition 2 and hence Table 3.3 provides a polygroup. 

Remark 4 . Table 3.3 already appears on page 443 in /42} where it is the relation 

algebra called 3965 . Table 3. 3 not only provides a polygroup, but a group repre­

sentable relation algebra ( a G RA). In fa ct, this poly group is embeddable in the 

complex algebra of the cyclic group of order 7. 



Chapter 4 

Complex algebras of loops 

4 .1 Introduction 

In this chapter we aim to investigate the class of groupoids whose complex al­

gebras are semiassociative relation algebras and vice versa. Due to weak asso­

ciativity of the multiplication of semiassociative algebras we always thought that 

such groupoids must carry some loop like structure. This investigation proved 

to be analogous to the one carried out by. Jonsson and Tarski (see [33], [34]) for 

relation algebras. 

In Section 2 we prove important lemmas which are crucial for our main result 

that provides a strong connection between IP loops and semiassociative algebras. 

In Section 3 we present our partial findings which were ohta,ined during our sea,rch 

for Lyndon algebras that appear as subalgebras of complex algebras of selected 

IP loops. This generates much interest for future investigations in this area. 

4 .2 Complex Algebras of IP Loops 

An IP loop ( G, *) together with the unique inverse function - 1 and identi ty ele­

ment e can be easily seen as a relational structure (G = ( G, T, R , { e}) , where T is 

a ternary relation on G defined by: (x, y , z) ET if and only if x = y * z which in 

turn defines a bina ·y function on P ( G) by: 

f(X,Y) = {a E GI :lx E X,y E Y I (x,y,a) ET}, 

and Risa binary relation on G defined by (x , y) E Riff x- 1 = y which defines 

an involution on P( G) by: 

x - 1 = {a E GI :lb E GI (a , b) ER}. 

31 
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One natural example of such a complex algebra is seen when G is a group. 

Then , Cm( C) turns out to be a relation algebra. We will prove an analogue of 

this for semiassociative relation algebras, establishing a link between these and a 

certain quite well-known subvariety of loops. We b,egin with the following lemma: 

Lemma 3. If 1U = (U, •, - 1 , e) is an IP loop , then Cm(1U) is a SA. 

Proof. That { e} is an identity element in Cm(1U) is obvious. We then only 

need to show that complex multiplication X o Y = { xy I x E X, y E Y} and 

converse X v = { x - 1 I x E X} satisfy the following for all X, Y , Z E P ( U). 

X n (Yo Z) = 0 iff Y n (X o z v) = 0 iff Zn (Yv o X) = 0 (a) 

(X o U) o U = X o U (b) 

For (a), let X n (Yo Z) =I 0, so there exists x E X with x E Yo Z. Thus, 

there are y E Y and z E Z such that x = yz. By inverse properties, we have 

y = xz - 1 and z = y- 1x. This implies that Yn(XoZV) =I 0 and Zn(YvoX) =I 0. 

By symmetry of the situation this establishes (a). Notice that the coincidence of 

left and right inverses is essential. 

For (b), firstly, it is elem that X o U = (X o U) o {e} <;: (X o U) o U. We only 

have to show that (X o U) o U <;;: X o U. By the unique solution property, for 

x E X and y , z E U there exists a E U such that (xy)z = xa. Thus, (xy)z E X o U 

as required . Notice that a= x- 1((xy)z), which in .general is not equal to yz. □ 

The next lemma links the non-associative algebras ( a much weaker class than 

that of semiassocitive algebras) with IP loops. 

Lemma 4. If Cm(1U) is the complex algebra of a groupoid 1U = (U, ·) and 

Cm(1U) is a NA, then there is an e E U and a unary operation - 1 on U such that 

(U, ·, - 1
, e) is an IP loop. 

Proof. Let E <;;: U be the identity element of Cm(1U). First , we show that 

E is a singleton. Suppose x 1 , x2 E E. Since for all u E U, we must have 

{ u} o E = { n} = E o { u}, we get that 

Replacing u by x 1 in the second equation and by x2 in the first we get x 1 = x2 , 

so E is a singleton. Putting E = { e} we obtain eu = u = ue for all u E U. 

Secondly, we show that for all x E U there exists a unique y E Y such that 

xy = e = yx. To do this , observe that { X r is singleton for all X E u. The proof 
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of t hat is fo lklore in relation algebras and carries over without change , but since it 

nicely demonstrates some arithmetic of complex algebras (and BAOs in general), 

we repeat it here. Suppose { x t contains Y1 and Y2- Then {xt 2 {Y1 , Y2} = 

{yi} U {y2} and therefore {x t v = {x } 2 {Y1 ,Y2t = {y1t U {Y2t- Now, as 

0v = 0, none of {y1t, {y2}v can be empty, so we must have {x} = {y1t = {Y2t­

Thus , { x t = {yi} = {y2}, as needed . Hence, we obtain that for all singletons 

{ x}, there is another singleton { x } V such that 

{x} o {x t = E = {x t o {x}. 

This immediately shows that for all x E U there exists a unique inverse y , namely 

the unique element of { X r. Thus, WC can define a, unary inverse fun ction - l on 

U. 

Finally, we show that for all x, y E U we have x = ( xy )y- 1 = y- 1 (yx). 

Suppose t hat x =/- (xy)y - 1
. This means { x} n ( { xy } o {y t) = 0 which implies 

that {xy} n ({x } o {y} ) = 0, a contradiction. Hence x = (xy)y- 1
, and the other 

equality is similar. This completes the proof. □ 

Combining the two lemmas we have: 

Theorem 4. The complex algebra of a groupoid (L, ·) is a semiassociative relation 

algebra if and only if (L , ·) is an IP loop. 

By analogy with group relation algebras (GRAs) we may define loop semi­

associative relation algebras (LS As) to be the class of ( isomorphic copies of) 

subalgebras of products of complex algeb~as of IP loops. 

4.3 Lyndon Algebras and IP Loops 

For n 2: 2, the Lyndon algebra An is a finite relat ion algebra with n + 2 

self- inversed atoms e, a0 , ... , a11 t hat satisfy the fo llowing condition; 

where i , j, k ~ n. Case n = 2 is special so we t reat it separately. Notice that 

for n = 2 the definition we gave above still works, but it does not produce a 

relation algebra because multiplication ceases to be associative. This led many 

authors to alter the definiti on of mult iplication for n = 2 into ai o ai = e and 
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a i o aj = V k#i,j ak if i -/= j. We do not do that here. Our reason is that t he algebra 

A2 (under our definition) t urns out to be a subalgebra of the complex algebra of 

the smallest nonassociative IP loop. 

The algebra A2 coincides with t he semiassociative relation a lgebra called 

C4 ( {1 , 3}) in Theorem 2.5(4)(a) of [32], which states t hat A2 is an SA, but not 

an RA. 

Lyndon [36] proved that A(G) , t he algebra of a given geometry G, together 

with an identity element t hat is not a point in G is a Lyndon algebra. Monk 

[47] used these Lyndon algebras to prove that the 'representable relation algebras 

(RRA 's) are not finitely axiomatizable. Clearly if t he above equivalence holds 

for LSA's , it would give an easy proof of nonfini te axiomatizabili ty of LSA's. 

Although this could not be achieved, we managed to prove t hat t here are members 

of LSAs that are clearly Lyndon algebras whose mult iplication table coincides 

with the one suggested above in the definition of Lyndon Algebra. 

It was not difficu lt to find such algebras having up to 7 atoms but despite 

considerable efforts we could not find one with 8 atoms. As th is is t he first 

nonrepresentable Lyndon algebra it may suggest t hat the equivalence does indeed 

hold. 

We give here the details of Lyndon algebras among LSAs having exactly 6 and 

7 atoms ; they are t he subalgebras of t he complex algebras of IP loops of order 16 

and 25 respectively. The atoms of these Lyndon algebras are 

{{1} , {2 , 3,4} , {5 ,6 , 7} , {8 , 9, 10} , {11 , 12,13}, {14 , 15 , 16}} 

and 

{{1} , {2,3 , 4, 5} , {6 , 7,8 , 9} , {10, 11 , 12, 13} , {14 , 15 , 16 , 17} , {18 , 19 , 20 , 21} , {22 , 23 , 24 , 25}} 

respect ively. To verify t hat these atoms form Lyndon algebras , we have included 

the composition tables of two non-isomorphic IP loops each of order 16 and 25; 

for the reader's interest we mention that one of each order was obtained manu­

ally and one using the firs t-order theorem prover PROVER9 and its associated 

propositional satisfi ability solver Macc4 [43]. 
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* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X X-l 

e = l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 

2 2 3 4 1 8 11 14 13 15 7 16 9 5 10 12 6 2 4 

3 3 4 1 2 15 9 12 16 6 11 10 7 14 13 5 8 3 3 

4 4 1 2 3 13 16 10 5 12 14 6 15 8 7 9 11 4 2 

5 5 8 12 16 6 7 1 15 11 4 2 14 10 9 3 13 5 7 

6 6 14 9 13 7 1 5 12 3 16 15 8 4 2 11 10 6 6 

7 7 11 15 10 1 5 6 2 14 13 9 3 16 12 8 4 7 5 

8 8 16 13 5 11 14 2 9 10 1 4 6 15 3 7 12 8 10 

9 9 12 6 15 16 3 13 10 1 8 14 2 7 11 4 5 9 9 

10 10 7 14 11 4 12 15 1 , 8 9 5 16 3 6 13 2 10 8 

11 11 10 16 7 14 2 8 3 5 15 12 13 1 4 6 9 11 13 

12 12 15 5 9 3 10 16 14 4 6 13 1 11 8 2 7 12 12 

13 13 6 8 14 9 15 4 7 16 2 1 11 12 5 10 3 13 11 

14 14 13 10 6 2 8 11 4 7 12 3 5 9 15 16 1 14 16 

15 15 9 7 12 10 13 3 11 2 5 8 4 6 16 1 14 15 15 

16 16 5 11 8 12 4 9 6 13 3 7 10 2 1 14 15 16 14 

* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 X X-l 

e = l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 1 

2 2 3 4 1 8 11 14 15 12 7 10 16 5 9 13 6 2 4 

3 3 4 1 2 15 9 12 13 6 16 14 7 8 11 5 10 3 3 

4 4 1 2 3 13 16 10 5 14 11 6 9 15 7 8 12 4 2 

5 5 8 12 16 6 7 1 11 15 4 2 14 9 10 3 13 5 7 

6 6 14 9 13 7 1 5 16 3 12 15 10 4 2 11 8 6 6 

7 7 11 15 10 1 5 6 2 13 14 8 3 16 12 9 4 7 5 

8 8 13 14 5 16 12 2 9 10 1 3 15 7 6 4 11 8 10 

9 9 16 6 12 11 3 15 10 1 8 5 4 14 13 7 2 9 9 

10 10 7 11 15 4 14 13 1 8 9 16 6 2 3 12 5 10 8 

11 11 15 10 14 2 9 4 16 5 15 12 13 1 8 6 3 11 13 

12 12 9 5 14 3 8 16 6 2 15 13 1 11 4 10 7 12 12 

13 13 6 16 8 10 15 4 14 7 3 1 11 12 5 2 9 13 11 

14 14 12 8 6 2 10 11 7 4 13 9 5 3 15 16 1 14 16 

15 15 10 7 11 9 13 3 12 5 2 4 8 6 16 1 14 15 15 

16 16 5 13 9 12 4 8 3 11 6 7 2 10 1 14 15 16 14 



36 

2 3 4 5 6 

e = l 2 3 4 5 6 

2 2 3 4 5 I 10 

3 3 4 5 2 15 

4 4 5 2 3 20 

5 5 l 2 3 4 25 

6 6 10 15 20 25 7 

7 7 14 11 2 ,1 21 8 

8 8 18 23 12 17 9 

9 9 22 19 16 13 

IO IO 20 16 25 6 24 

11 l l 17 2 1 7 24 18 

12 12 23 8 18 14 16 

13 I 3 9 22 15 19 5 

14 14 12 25 21 7 23 

15 15 24 13 6 20 11 

16 16 19 9 10 23 4 

17 17 8 18 22 11 19 

18 18 25 12 17 8 22 

19 I 9 I 3 24 9 16 3 

20 20 15 6 23 IO 14 

2 1 21 7 14 11 22 12 

22 22 2 I 17 13 9 2 

23 23 16 20 8 12 13 

24 24 l l 7 19 15 17 

25 25 6 10 14 18 21 

2 3 4 5 6 

e = I 2 3 4 5 6 
2 2 3 4 5 10 

3 3 4 5 2 23 

4 4 5 2 3 20 

5 5 I 2 3 4 17 

6 6 10 15 20 25 7 

7 7 22 11 16 21 8 

8 8 18 23 12 17 9 

9 9 14 19 24 13 

10 10 25 20 15 6 14 

11 l l 21 16 7 22 19 

12 12 17 8 23 18 22 

13 13 9 24 19 14 5 

14 14 13 18 22 9 24 

15 15 19 IO 6 23 11 

I 6 16 24 7 11 20 4 

17 17 8 25 2 1 12 18 

18 18 12 22 14 8 25 

19 19 23 13 9 15 3 
20 20 16 6 10 24 12 

21 2 1 7 17 25 11 16 

22 22 11 14 18 7 2 

23 23 I 5 I 2 8 19 13 

24 24 20 9 13 16 21 

25 25 6 2 1 17 IO 15 
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Chapter 5 

Counting Loops with the Inverse 

Property 

5.1 Introduction 

A loop (L , *) is said to have the inverse property if each x E L has a two-sided 

inverse x - 1 such that for all y E L we hav:e 

x -
1 * (x * y) = y = (y * x) * x-

1
. 

These loops are known as IP loops ( for an account of t heir properties see Bruck 's 

survey [11]). Clearly every group is an IP loop, but the converse is not t he case. 

The smallest IP loop that is not a group is of order 7. Steiner loops are also IP 

loops, satisfying the extra condition x - 1 = x. IP loops form a very important 

class , not only in that they represent a strong generalisation of both groups 

and Steiner loops , but also in that the Moufang nucleus ( the set of a E L such 

t hat a[(xy)a] = (ax)(ya) for all x , y EL) of such loops behaves as a nilpotency 

function for this class. Moreover IP loops are exactly t hose groupoids whose 

complex algebras are semiassociat ive relation algebras [39]. 

T he present chapter reports t he numbers of non-isomorphic IP loops having 

order up to 13 . Since these were obtained by exhaustive enumeration, they are 

available for inspection . We have also included the classification of IP loops into 

several important subclasses . 

In Section 2 we give a detai led account on the history of counting Latin 

squares, quasigroups and loops which tells us how old and how sorry t his history 

has been . In Section 3 we give t he number of isotopy classes , main classes and 

t he isomorphism classes of quasigroups and loops ( up to order 10); Sections 2 and 

37 
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3 are reported from McKay et al [44]. In Section 4 we explain how we counted 

the number of isomorphism classes of IP loops of order up to 13 and then classify 

them into interesting subclasses. 

5.2 History of Counting Latin Squares, Quasi­

groups and Loops 

The history of counting Latin squares goes back to at least 1782 because the 

number of reduced squares of order 5 was known to Euler [24] and Cayley [15]. 

facMahon [3 7] used a different method to find reduced squares of order S, b11t 

obtained the wrong number. In 1890, Frolov [26] found the number of reduced 

squares of order 6 which was also done by Tarry [65]. About 30 years later J acob 

[29] tr ied the same class (order 6) but fail ed to produce the right value. Frolov 

a lso tried to fi nd t he reduced squares of order 7 but could not give t he correct 

number. In 1930, Schonhardt [62] found the correct numbers of main classes, 

isotopy classes and reduced squares up to order 6. Fisher and Yates [25] seemed 

to be unaware of the results by [62] but refers to the work of Tarry and confirmed 

his values. In 1939, Norton [50]) suggested that t here are 146 main classes and 

562 isotopy classes of lat in squares of order 7 but also acknowledged that his 

method might be incomplete. It was proven in 1948 by Sade [58] and in 1951 by 

Saxena [ 61] t hat the reduced squares of order 7 were more than Norton found 

in 1939 . In 1951, Sade [59] traced t he actual error by Norton; he found the one 

main cla.::;s t hat was missing in t he findings of Norton. This raised correctly the 

number of main classes of squares of order 7 to 147 and t he isotopy classes to 564; 

this was noted by Preece [54] in 1966. However , in 1968, Brown [9] published t he 

incorrect value 563 and t he error remains un-noticed as it is sti ll being quoted 

([17] and [21]) . 

Brown was also mistaken in counting the number of isotopy classes of order 8 

and it was noticed t hat Arlazaro et al. [3] gave t he incorrect number of t he main 

classes of squares of order 8. Hm-vever, the correct number of reduced squares of 

order 8 was already published by \ i\Tells [68] in 1967. and t he number of isotopy 

and main classes was correctly found by Kolesova, Lan and Thiel in 1990 [35]. 

The number of reduced squares of order 9 was calculated by Bammel and 

Rothstein [6], order 10 by McKay and Rogoyski [45] and for order 11 by McKay 

and Wanless [46]. 1IcKay claims t hat In each case the same numbers have been 

computed independently at least twice, so they are likely to be correct. In view of 
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the sorry history of the subjec t, we attempted to do as much of our computation 

in dup licate as possible. The number of isotopy or main classes of latin squares 

of order greater t han 8 was published for the first time by ::½cKay et al [44]; t hey 

gave these numbers for squares of order up to 10. 

Although the correct number of non-isomorphic loops of order up to 6 was first 

published by Schonhardt [62] in 1930, it seems that this publication was not seen 

by Albert [1] or Sade [60] who published weaker results so late . In 1974, Denes 

and Keedwell [21] also gave the count of loops of order up to 6, thinking that t hey 

counted the number of "quasigroups" . The loops of order 7 were counted in 1985 

by Brant and Mullen [8]. In 2001 , "QSCGZ" [55] published t he number of loops 

of order 8 in an electronic forum and the same value was found independent ly 

by G uerin ([28]). The number of quasigroups and loops of order up to 10 was 

published in 2007 by McKay et al [44]. 

The entire section on the history of counting Latin squares, quasigroups and 

loops is taken fr om [44]. 

5.3 Small Latin Squares, Quasigroups and Loops 

The total number Rn of reduced Latin squares of order n are given in the foll owing 

table while the total number of squares (reduced or not) is Ln = n!(n - l )!Rn. 

n reduced squares 

1 .1 

2 1 

3 1 

4 4 

5 56 

6 9408 

7 16942080 

8 535281401856 

9 377597570964258816 

10 7580721483160132811489280 

11 5363937773277371298119673540771840 

Table 5.1: Reduced Latin squares of order n 

The number of main classes, types and isotopy classes of Latin squares of 

order up to 10 are given in the table 5.2. 
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n main classes types isotopy classes 

1 1 1 1 

2 1 1 1 

3 1 1 1 

4 2 2 2 

5 2 2 2 

6 12 17 22 

7 147 324 564 

8 283657 842227 1676267 

9 19270853541 57810418543 115618721533 

10 34817397894749939 104452188344901572 208904371354363006 

Table 5.2: Isotopy classes , types and main classes of Latin squares of order n 

The number of isomorphism classes of quasigroups and loops of order up to 

10 are given in the table 5.3. 

n quas1groups loops 

1 1 1 

2 1 1 

3 5 1 

4 35 2 

5 1411 6 

6 1130531 109 

7 12198455835 23746 

8 2697818331680661 106228849 

9 15224734061438247321497 9365022303540 

10 2750892211809150446995735533513 20890436195945769617 

Table 5.3 : Isomorphism classes of quasigroups of order n 

5 .4 IP loops of Small Order 

As noted , the smallest IP loop which is not a group is of order 7. Here it is: 

Example 11. 
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* 1 2 3 4 5 6 7 X x- 1 

e = 1 1 2 3 4 5 6 7 1 1 

2 2 3 1 6 7 5 4 2 3 

3 3 1 2 7 6 4 5 3 2 

4 4 7 6 5 1 2 3 4 5 

5 5 6 7 1 4 3 2 5 4 

6 6 4 5 3 2 7 1 6 7 

7 7 5 4 2 3 1 6 7 6 

Associativity fails in t hat (2 * 2) * 4 = 3 * 4 = 7 while 2 * (2 * 4) = 2 * 6 = 5 . This 

structure has proper subalgebras {1 , 2,3} , {1 , 4 , 5} and {1 , 6, 7}. Note that the 

orclcr of t hese subloops does not divide the order of the loop, m ctrking a significant 

difference between IP loops and groups. This structure also shows that IP loops 

of prime order are not abelian , in general; unlike groups. 

Note a lso t hat the only element which is its own inverse is the identi ty e. 

This is a general feature of IP loops of odd order , as may be shown by a simple 

count ing argument : 

Observation 1. IP loops of odd order have no subloops of even order. 

Proof. Let (L , *) be an IP loop and let (S, ±) be a subloop of (L , *) of even 

order. Clearly, S consists of e and some subset of elements of L along wit h their 

inverses. For t his subset to be of even cardina li ty, some element in it other than 

e must be self-inverse and t hus of order 2. Let a E L b e such an element which 

means L(a) is a p ermutation of order 2. Moreover, L(a) has no fixed points, 

because if xL(a ) = x t hen a* x = x, so a= e, contradicting the assumption that 

a is of order 2. Hence L(a ) partitions L into pairs , so the cardina li ty of L must 

be even. D 

This is not true in non IP loops because four of t he six non-isomorphic loops 

of order 5 (all non-associative) contain self-inverse elements. 

5.4.1 How We Counted IP Loops 

The IP loops of small orders were counted by using a fi ni te domain constraint 

solver to generate representat ives of all isomorphism classes. The solver FINDER 

[63] has previously been used to generate resu lts concern ing the spectra of quasi­

group identities [27]. It works by expressing each equation or other defining 

condi t ion as t he set of its ground instances on the domain of N elements. compil­

ing t hese into constraints relat ing t he cells x * y of t he "multiplication table" of 
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the algebra, and then conducting a backtracking search for solutions to the con­

straint satisfaction problem using standard techniques such as forward checking 

and nogood learning [20]. To break symmetries (reduce the size of isomorphism 

classes of solu tions generated ) we added clauses stipulating that e is always the 

element number 1, that x- 1 is always either x or x ± l, and that any self-inverse 

elements are given lower numbers than the rest . That still leaves a great many 

isomorphic copies among the solutions, so it is necessary to remove them in a 

postprocessing step by rejecting any algebra that is not the canonical represen­

tat ive (here defin ed simply as t he first in the obvious lexicographic order) of its 

isomorphism class . 

The results for orders up to 11 are not hard to generate. As a check on 

the correctness of t he method , the same results were obtained independently 

using t he first order theorem prover PROVER9 and its associated propositional 

satishab ility solver Mace4 [43]. FINDER with its default settings was unable to 

solve completely the order 12 problem , so it was 'necessary to restrict its use of 

learned nogoods , after which it completed the search in a few days on a desktop 

computer. For the order 13 problem, further symmetry-breaking clauses were 

added , forcing solutions to be those early in the lexicographic order. Even so, the 

runtime to obtain the solutions of order 13 was over a week. 1 Nearly all of t his 

time was taken up by the postprocessor reasoning about isomorphism , indicating 

that if any larger orders are to be addressed, improvements in the efficiency of the 

constraint solver are largely irrelevant: more sophisticated symmetry breaking is 

essential. 

Table 5.4 gives the number of isomorphism classes of IP loops of each order up 

to 13, distinguishing between those which are groups and those which are not. In 

the cases of order 12 and order 13 , the required searches are too hard for MACE 

and PROVER9 , so we have only the results by FINDER in those cases . 

The full list of these small IP loops, in a simple matrix format as for the order 

7 example above, is available online at http://users .rsise.anu .edu .au/ jks/ IPloops. 

By looking R.t the definition of IP loop it R.ppeR.rs thR.t t hese loops R.re R. sort of 

'weak ' associative loop. But now that we have the number of loops ( table 5.3) as 

well as t he number of IP loops ( table 5.4) we can see how strong the 'weakness ' of 

t he associat ive law is. We are amazed to see that out of 23746 isomorphism classes 

of loops of order 7 t here are only two classes that are IP loops. The probabili ty of 

1Since t hese resul ts were obtained , the software for eliminating isomorphic copies has been 

improved to the point t hat the IP loops of order 13 can be enumerated in a few hours . Order 

14, however , remains out of reach. 
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size groups non-groups total 

1 1 0 1 

2 1 0 1 

3 1 0 1 

4 2 0 2 

5 1 0 1 

6 2 0 2 

7 1 1 2 

8 5 3 8 

9 2 5 7 

10 2 45 47 

11 1 48 49 

12 5 2679 2684 

13 1 10341 10342 

Table 5.4: Number of IP loops of given order 

a loop having inverse property drops really down when we see that out of almost 

2.1 x 1020 isomorphism classes of loops of order 10 only 47 posess the inverse 

property. Does this inverse property of a loop put it closer to being group? In 

some sense not , because we found that out of 10342 isomorphism classes of IP 

loops of order 13 only one happens to be a group. 

5.4.2 Subclasses of IP Loops 

See Section 2.3 for the definitions of concepts referred to below. 

Smallest Steiner loop: 

The data of IP loops (of order up to 13) was first of all tested for finding 

Steiner loops. Although it is known , our search confirmed that t he smallest non­

associative Steiner loop is of order 10 and this is the only Steiner loop of order 

10. Also this is the only Steiner loop among IP loops of order up to 13. Its table 
. . . 
is given m : 

Example 12. 



44 CHAPTER 5. COUNTING LOOPS WITH THE INVERSE PROPERTY 

* 1 2 3 4 5 6 7 8 9 10 

e = 1 1 2 3 4 5 6 7 8 9 10 

2 2 1 4 3 6 5 8 7 10 9 

3 3 4 1 2 7 9 5 10 6 8 

4 4 3 2 1 10 8 9 6 7 5 

5 5 6 7 10 1 2 3 9 8 4 

6 6 5 9 8 2 1 10 4 3 7 

7 7 8 5 9 3 10 1 2 4 6 

8 8 7 10 6 9 4 2 1 5 3 

9 9 10 6 7 8 3 4 5 1 2 

10 10 9 8 5 4 7 6 3 2 1 

We observed t hat Steiner loops exist only among IP loops of order n = 2 

(mod 6) or n = 4 (mod 6) as can be verified by an easy counting argument. 

Non-associative abelian IP loops: Next was to find the IP loops that 

are ·c1,beli an but non-associative. T hough it was not hard to find them , we must 

admit that the outcome was very much unexpected. The smallest non-associative 

abelian IP loop is also of order 10 but there are exactly 5 such IP loops ( one of 

them is of course a Steiner loop). We give only one of them as Example 13 . 

Example 13. 

* 1 2 3 4 5 6 7 8 9 10 X x- 1 

e = 1 1 2 3 4 5 6 7 8 9 10 1 1 

2 2 1 4 3 6 5 9 10 7 8 2 2 

3 3 4 1 2 7 8 5 6 10 9 3 3 

4 4 3 2 1 9 10 8 7 5 6 4 4 

5 5 6 7 9 2 1 10 3 8 4 5 6 

6 6 5 8 10 1 2 3 9 4 7 6 5 

7 '7 9 5 8 10 3 4 1 6 2 7 8 
I 

8 8 10 6 7 3 9 1 4 2 5 8 7 

9 9 7 10 5 8 4 6 2 3 1 9 10 

10 10 8 9 6 4 7 2 5 1 3 10 9 

Table 5.5 gives the number of abelian IP loops of each order up to 13 , distin-

guishing between those which are groups and those which are not. 

IP loops with Square Property: We know that a group G is abelian if 

and only if (x * y) 2 = x 2 * y2 for all x, y E G. This also holds in Steiner loops 
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size groups non-groups total 

1 1 0 1 

2 1 0 1 

3 1 0 1 

4 2 0 2 

5 1 0 1 

6 1 0 1 

7 1 0 1 

8 3 0 3 

9 2 0 2 

10 1 5 6 

11 1 1 2 

12 2 12 14 

13 1 7 8 

Table 5.5 : Numbers of Abelian IP loops of given order 

which are a subclass of IP loops. However this is not true in IP loops in general. 

The smallest counter example is the Example 13. The violation comes from the 

fact that (3 * 7) 2 =J. 32 * 72
. Interestingly in IP loops, the converse of this fact 

is not true in general either. The smallest example of a non-abelian IP loop in 

which ( x * y) 2 = x2 * y2 holds for all x and y is of order 12 and there are exactly 

3 such of order 12 . We also found out that there are exactly 2 such loops among 

IP loops of order 13. This means that in t he given data of IP loops ( of order up 

to 13) there are exactly 5 non-abelian IP loops with this property. We list here 

two out of t hese 5; one each of order 12 and 13: 

Example 14. 
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* 1 2 3 4 5 6 7 8 9 10 11 12 X x - 1 

(' = 1 1 2 3 4 5 6 7 8 9 10 11 12 1 1 

2 2 1 4 3 7 8 5 6 11 12 9 10 2 2 

3 3 4 2 1 9 10 11 12 7 8 5 6 3 4 

4 4 3 1 2 11 12 9 10 5 6 7 8 4 3 

5 5 7 11 9 6 1 8 2 12 4 10 3 5 6 

6 6 8 12 10 1 5 2 7 4 11 3 9 6 5 

7 7 5 9 11 8 2 6 1 10 3 12 4 7 8 

8 8 6 10 12 2 7 1 5 3 9 4 11 8 7 

9 9 11 5 7 12 3 10 4 8 1 6 2 9 10 

10 10 12 6 8 3 11 4 9 1 7 2 5 10 9 

11 11 9 7 5 10 4 12 3 6 2 8 1 11 12 

12 12 10 8 6 4 9 3 11 2 5 1 7 12 11 

Example 15. 

* 1 2 3 4 5 6 7 8 9 10 11 12 13 X x - 1 

e = 1 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 

2 2 4 1 5 3 8 9 10 11 12 13 7 6 2 3 

3 3 1 5 2 4 13 12 6 7 8 9 10 11 3 2 

4 4 5 2 3 1 9 8 12 13 7 6 11 10 4 5 

5 5 3 4 1 2 11 10 7 6 13 12 8 9 5 4 

6 6 13 8 11 9 12 1 5 3 4 10 2 7 6 7 

7 7 12 9 10 8 1 13 3 5 11 4 6 2 7 6 

8 8 6 10 7 12 4 2 11 1 9 ' 3 13 5 8 9 

9 9 7 11 6 13 2 4 1 10 3 8 5 12 9 8 

10 10 8 12 13 7 5 11 9 2 6 1 4 3 10 11 

11 11 9 13 12 6 10 .s 2 8 1 7 3 4 11 10 

12 12 10 7 8 11 3 6 13 4 5 2 9 1 12 13 

13 13 11 6 9 10 7 3 4 12 2 5 1 8 13 12 

Abelian Non-associative IP loop of order p2 
: 'vVe also know that a group 

G of order p2 ( where p is prime) is abelian. This is not true in IP loops in general 

because none of the five non-associative IP loops of order 9 is abelian. However 

both IP loops of order 9 that are abelian happen to be groups. This lead us to 

ask whether all abelian IP loops of order p2 are groups. This was also proven 

wrong in Example 16. 



5.4. IP LOOPS OF SMALL ORDER 47 

Example 16. 

Consider t he fo llowing non-associative abelian IP loop of order 11. 

* 1 2 3 4 5 6 7 8 9 10 11 X x-1 

e = 1 1 2 3 4 5 6 7 8 9 10 11 1 1 

2 2 4 1 6 3 8 5 10 7 11 9 2 3 

3 3 1 5 2 7 4 9 6 11 8 10 3 2 

4 4 6 2 9 1 11 3 5 10 7 8 4 5 

5 5 3 7 1 8 2 10 11 4 9 6 5 4 

6 6 8 4 11 2 10 1 9 3 5 7 6 7 

7 7 5 9 3 10 1 11 2 8 6 4 7 6 

8 8 10 6 5 11 9 2 7 1 4 3 8 9 

9 9 7 11 10 4 3 8 1 6 2 5 9 8 

10 10 11 8 7 9 5 6 4 2 3 1 10 11 

11 11 9 10 8 6 7 4 3 5 1 2 11 10 

If we t ake the direct product of this loop wit h itself or with C11 ( cyclic group 

of order 11) then we get a non-associative abelian IP loop of order 11 x 11 which 

is not a group . 

Flexible and Alternative IP loops : It is well known t hat the Steiner 

loops are both Flexible and Alternative. Apart from the Steiner loop of order 

10 we found ou t that the smallest non-associat ive IP loop t hat is both flexible 

and alternative is of order 12 and there are exactly two of order 12. But as 

we fo und none of order 13, we conclude t hat t here are exactly two non-Steiner 

non-associative IP loops of order less t han or equal to 13 t hat are fl exible and 

alternative . We provide t he multiplication table fo r both of t hem here: 

Example 17 . 
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* 1 2 3 4 5 6 7 8 9 10 11 12 X x - 1 

e = l 1 2 3 4 5 6 7 8 9 10 11 12 1 1 

2 2 1 4 3 6 5 8 7 11 12 9 10 2 2 

3 3 4 1 2 9 11 10 12 5 7 6 8 3 3 

4 4 3 2 1 11 10 12 9 8 6 5 7 4 4 

5 5 6 9 12 1 2 11 10 3 8 7 4 5 5 

6 6 5 12 10 2 1 9 11 7 4 8 3 6 6 

7 7 8 10 11 12 9 1 2 6 3 4 5 7 7 

8 8 7 11 9 10 12 2 1 4 5 3 6 8 8 

9 9 12 5 8 3 7 6 4 1 11 10 2 9 9 

10 10 11 7 6 8 4 3 5 12 1 2 9 10 10 

11 11 10 8 7 4 3 5 6 2 9 12 1 11 12 

12 12 9 6 5 7 8 4 3 10 2 1 11 12 11 

Example 18. 

* 1 2 3 4 5 6 7 8 9 10 11 12 X x - 1 

e = l 1 2 3 4 5 6 7 8 9 10 11 12 1 1 

2 2 1 4 3 6 5 8 7 11 12 9 10 2 2 

3 3 4 1 2 9 11 10 12 5 7 6 8 3 3 

4 4 3 2 1 12 10 11 9 8 6 7 5 4 4 

5 5 6 9 11 1 2 12 10 3 8 4 7 5 5 

6 6 5 12 10 2 1 9 11 7 4 8 3 6 6 

7 7 8 10 12 11 9 1 2 6 3 5 4 7 7 

8 8 7 11 9 10 12 2 1 4 5 3 6 8 8 

9 9 12 5 8 3 7 6 4 1 11 10 2 9 9 

10 10 11 7 6 8 4 3 5 12 1 2 9 10 10 

11 11 10 8 5 7 3 4 6 2 9 12 1 11 12 

12 12 9 6 7 4 8 5 3 10 2 1 11 12 11 

C- loops: 

It is again known that Steiner loops are also C-loops. When we searched our 

dc1ta of IP loops (of order up to 13) for C-loops, we found that t he smallest non-

Steiner non-associative C-loop is of order 12 and this is t he only such loop in our 

entire data. Here it is: 

Example 19. 
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* 1 2 3 4 5 6 7 8 9 10 11 12 X x - 1 

e = 1 1 2 3 4 5 6 7 8 9 10 11 12 1 1 

2 2 1 5 7 3 8 4 6 11 12 9 10 2 2 

3 3 6 1 9 10 2 12 11 4 5 8 7 3 3 

4 4 8 10 1 11 12 9 2 7 3 5 6 4 4 

5 5 7 2 11 12 1 10 9 3 8 6 4 5 6 

6 6 3 9 12 1 11 2 10 8 7 4 5 6 5 

7 7 5 12 2 9 10 11 1 6 4 3 8 7 8 

8 8 4 11 10 2 9 1 12 5 6 7 3 8 7 

9 9 11 6 3 8 7 5 4 12 1 10 2 9 10 

10 10 12 4 8 7 3 6 5 1 11 2 9 10 9 

11 11 9 8 5 6 4 3 7 10 2 12 1 11 12 

12 12 10 7 6 4 5 8 3 2 9 1 11 12 11 

Non-associative IP loop with Lagrange Property: In the data of IP 

loops that we have, t he smallest non-assoaiative IP loop t hat has the strong ( and 

hence also t he weak) Lagrange property is of order 8; its multiplication table is 

given here: 

Example 20. 

* 1 2 3 4 5 6 7 8 X x-1 

e = 1 1 2 3 4 5 6 7 8 1 1 

2 2 1 5 6 3 4 8 7 2 2 

3 3 6 1 7 8 2 4 5 3 3 

4 4 5 8 1 2 7 6 3 4 4 

5 5 4 2 8 7 1 3 6 5 6 

6 6 3 7 2 1 8 5 4 6 5 

7 7 8 6 3 4 5 2 1 7 8 

sjs 7 4 5 6 3 1 2 8 7 

It has only two proper non-trivial subloops {1 , 2, 7,8} and {1 , 2} and the 

order of each of them divides the order of the loop. This means that the loop 

has the weak Lagrange property. But also· since each of its sabloops has the weak 

Lagrange property the loop itself has t he strong Lagrange property. 

Hamiltonian IP loop: The smallest non-associative IP loop that is also 

Hamiltonian is of order 9 and its table is given here: 
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Example 21. 

* 1 2 3 4 5 6 7 8 9 

e = l 1 2 3 4 5 6 7 8 9 

2 2 3 1 6 7 8 9 4 5 

3 3 1 2 8 9 4 5 6 7 

4 4 8 6 7 1 5 3 9 2 

5 5 9 7 1 6 3 4 2 8 

6 6 4 8 5 2 9 1 7 3 

7 7 5 9 2 4 1 8 3 6 

8 8 6 4 9 3 7 2 5 1 

9 9 7 5 3 8 2 6 1 4 

1 1 

2 3 

3 2 
4 5 

5 4 

6 7 

7 6 

8 9 

9 8 

It has on ly one proper non-trivial subloop {1 , 2, 3} and it is also normal. 

Hamiltonian loops form an important subclass of loops with the strong Lagrange 

property. Example 20 is an IP loop that has the strong Lagrange property but 

is not Hamiltonian for the reason that { 1, 2} is not normal. 

Spectrum of IP loops of exponent 3: IP loops of exponent 3 satisfy the 

fo llowing equivalent property: 

X * X = X- l 

for all x. As we know that even order IP loop must have at least one self inverse 

element ( other than the identity element ), none of the even order IP loops fall 

into t his spectrum and hence the same is true for Steiner loops. The smallest 

example of a non-associative IP loop that comes in t his spectrum is that of order 

7. \iVhen we searched our data for this particular spectrum we observed that only 

those IP loops come into t his spectrum t hat have order eit her n = 1 (mod 6) 

or n = 3 (mod 6) which can again be verified by counting arguments. Table 5.6 

gives the number of IP loops of each order up to 13 in the spectrum of exponent 

3, distinguishing between t hose which are groups and those which are not. 

Spectrum of IP loops of exponent 5 : IP loops of exponent 5 satisfy the 

following equiva lent property: 

for all x and consequently x 2 * x = x * x2 (call it x 3
) and x * x 3 = x 3 * x = x- 1

. 

Again for the obvious reason none of the even order IP loops (including Steiner 

loops of course) fall into t his spectrum. The smallest example of a non-associative 

IP loop t hat comes in this spectrum is that of order 13 and there are exactly 10 
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size groups non-groups total 

1 1 0 1 

2 0 0 0 

3 1 0 1 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 1 1 

8 0 0 0 

9 1 1 2 

10 0 0 0 

11 0 0 0 

12 0 0 0 

13 0 64 64 

Table 5.6: Numbers of IP loops of exponent 3 of given order 

such of order 13. A simple counting argument shows that only those IP loops 

come into this spectrum that have order either n = 1 (mod 12) or n = 5 (mod 

12) . One of the smallest 10 is given here: 

Example 22. 

* 1 2 3 4 5 6 7 8 9 10 11 12 13 X x - 1 

e = 1 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 

2 2 4 1 5 3 10 11 12 13 9 6 7 8 2 3 

3 3 1 5 2 4 11 12 13 10 6 7 8 9 3 2 

4 4 5 2 3 1 12 13 10 11 7 8 9 6 4 5 

5 5 3 4 1 2 13 10 11 12 8 9 6 7 5 4 

6 6 13 10 11 12 8 1 9 7 2 3 4 5 6 7 

7 7 10 11 12 13 1 9 6 8 3 4 5 2 7 6 

8 8 11 12 13 10 9 6 7 1 4 5 2 3 8 9 

9 9 12 13 10 11 7 8 1 6 5 2 3 4 9 8 

10 10 6 7 8 9 5 2 3 4 12 1 13 11 10 11 

11 11 7 8 9 6 2 3 4 5 1 13 10 12 11 10 

12 12 8 9 6 7 3 4 5 2 13 10 11 1 12 13 

13 13 9 6 7 8 4 5 2 3 11 12 1 10 13 12 
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Diassociative and A-loops among IP loops data: Since ea.ch proper 

subloop of any loop in our data. is a.gain an IP loop and has order less t han or 

equal to 6, we conclude that a.II proper subloops of the IP loops in our data. a.re 

groups and so a.re two-element generated ones. This means all IP loops in the 

data. are diassociative. It is not easy to check the subclass of A-loops in t he given 

data but since all of them a.re dia.ssociative and none of them is a non-associative 

Moufang loop ( t he smallest non-associative Moufang loop is of order 16) , we 

conclude that none of the IP loops in our data are A-loops (since diassocia.tive 

A-loops are Mou fang). 

RIF IP loops: It is again not easy to test if the given IP loop is RIF or not , 

but we tested the smallest IP loop of order 7 (L 7 ) and this turned out to be not 

RIF because the permutation a= (234) E I (L7 ) but (2- 1)cr -::J ((2)o,t 1
. 



Chapter 6 

Further Study of Inverse 

Property Loops 

This chapter consists of three sections. In Section 1 we study a subclass of IP 

loops called C-loops and In Section 2, we study a generalization of IP loops called 

WIPLs. Section 3 gives re-counting of NAFILS , counting of some interesting 

subclasses of NAFILS and count ing of AAIP loops. We had given definitions of 

some important subclasses of loops in Section 2.3. First wc give definitions of 

some other classes that will be used in this chapter. 

Let G be a loop. G is said to be LC-loop if it satisfies t he identity xx· yz = 

(x • xy)z. G is said to be RC-loop if it satisfies the iclent ity yz ·xx= y(zx · x) 

and it is said to be C-loop if it is both LC-loop and RC-loop. A direct definition 

of C- loop has also been given in Section 2.3. G is said to be CIP loop ( crossed 

inverse property loop) if it satisfies any of the following equivalent identities. 

xy • xP = y or x • yxP = y or x>- · (yx) = y or x>-y · x = y. 

where x>- denotes left inverse of x and xP denotes right inverse of x. G will be 

said to satisfy the weak inverse property or WIP if whenever three elements 

x, y, z of G satisfy the relation xy · z = 1, they also satisfy t he relation x · yz = l. 

Such loops are called WIP loops or WIPLs. The study of vVIPLs was initiated 

by J. ?\I. Osborn [51] as a class of loops which contains both IP loops and CIP 

loops. He proved that WIP loop is R loop which srttisfies one of the following 

equi valent identities 

A NAFIL is a nonassociative finite invertible loop G [14]. 

53 
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Remark 5. Since NAF!Ls are invertible loops so inverses will be unique i.e. left 

inverse and right inverse of an element will be equal. 

The fo llowing notion of loop t heory should be also noted . Let L be a loop we 

t hen defin e left nucleus N>., middle nucleus Nµ, and right nucleus NP of L as t he 

sets 

N>. = {x E L ; x(yz) = (xy)z for every y , z E L} 

Nµ = {x E L ;y(xz) = (yx)z for e'1ery y ,z E L} 

NP= {x E L ;y( zx) = (yz)x for every y, z E L} 

The nucleus N of Lis t he defined as N = N>. n N,~ n NP. N is subgroup of L and, 

in par ticular, for C- loops we have N = N>. = Nµ = NP. 

L is called left nuclear square if fo r all x E L , x2 E N>. , middle nuclear square if 

x 2 E Nµ, and right nuclear square if x2 E NP. L 'is said to be nuclear square if 

x 2 EN. 

Let L be a loop and x E G. Then L x and R x are both permutations of L defined 

as fo llows: 

yLx = xy 

yRx = yx 

These are called t he left and right translation maps respectively. 

Also note t hat \Ix, y E L , L x,y = L xL yL;;. 

Also to a.void excessive pa.rent hesiza.t ion , we will use t he usual j uxtaposition con­

ventions , e.g., ab· c = (a· b) · c. 

Remark 6. W e have used th e GAP package LOOPS (48/ for checking the various 

properties of the Cayley tables of loops. In particular we have used it in Examples 

23 and 24. 

6.1 A Study of IP Loops 

This section has two subsections. In Subsection 1 we discuss C-loops which is a 

subclass of IP loops. In Subsection 2 we discuss some results about IP loops. 

6.1.1 Characterizations of C-loops 

Here we discuss two characterizations of C-loops. C-loops can characteri zed one 

way as : 
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Theorem 5. C-loops are exactly alternative loops with all squares in the nucleus. 

vVe can characterize C-loops in the fo llowing way as well: 

Theore m 6. C-loops are exactly IP loops with all squares in the nucleus. 

We do not claim these characterizations to be new but the second character­

ization seems to be at least not explicit ly known. Consider the fo llowing lemma: 

Lemma 5. {53, Corollary 2.4}. Let L be a C-loop. Then (i) L is both left alter­

native and right alternative, 

(ii) L has the inverse property, 

(iii) L is a nuclear square loop, i.e., x 2 belongs to the nucleus of L for every 

XE L. 

From Lemma 5 t he direct parts of Theorem 5 and Theorem 6 fo llow obviously. 

The converse of Lemma 5 fo llows from parts (i) and (iii ) by [56, Proposition 1] 

for RC-loop and can easily be proved foc LC-loop . Thus Theorem 5 fo llows. In 

the fo llowing we prove that t he converse of Lemma 5 and hence the converse of 

Theorem 6 also fo llows from parts (i i) and (iii ). 

Lemma 6. Let L be an IP Loop. If L is a left (resp. right) nuclear square loop 

then L is a LC-loop (resp. RC-loop). 

Proof. Suppose L is left nuclear square loop then by defini tion 

Now consider 

(xx)(yz) = [(xx)y]z, for every x, y, z E L . 

(xx)(yz) [(xx)y]z = [(xx)(x - 1 
· xy)]z 

[(xx)(x- 1yi)]z where Y1 = xy 

[(xx)x- 1 
· y1]z, by using (1) 

(xy1)z = [x(xy)]z 

⇒ (xx)(yz) .= [x(xy)]z . 

Hence L is a LC-loop . The proof of part (ii ) is similar . 

Corollary 7. Let L be an IP Loop. Then the following are equivalent: 

(1) 

□ 
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(i) L is a nuclear square loop , 

(ii ) L is a C-loop. 

Hence Theorem 6 also follows . The converse of Lemma 5 does not follow from 

parts (i) and (ii ) as every non-associative Moufang loop is an alternative IP loop 

but obviously does not have to be a C- loop. 

Theorem 8. Let L = (S, *) be a finite IP loop. Then the cardinality of S is even 

iff L has an elem ent of order 2-that is an elem ent a such that a -/=- e but a2 = e 

f 2, theorem 1 j. 

Corollary 9. Let L be an IP loop . Th en L has even order iff L has a subgroup 

of order 2. 

Firndly from Theorem 8, [53 , Proposition 3.1] and [53 , Corollary 4.2], we have 

Corollary 10. Every nonassociative C-loop has even exponent. 

6.1.2 Some Results on IP Loops 

Recall that an IP loop satisfies R; 1 = Rx- 1 and L; 1 = Lx-1 for all x E L see 

[10]. Next we ciefine (y ) Dx = (x) L/ = y\x and ('x ) J = (x ) D 1 = x-1 = x\ 1. 

Theorem 11. An IP loop L is right alternative ¢=? Dx2 = Dxl Dx 

for all x, y E L and Dx, J E Mlt (L). 

Proof. Suppose that an IP loop is right alternative then 

(yDx) J Dx 

(x L; 1
) lDx 

(x Ly- 1) JDx = (y - 1x ) JDx 

(y- 1xr 1 
Dx = (x- 1y) Dx 

(x) L;!1Y = (x) L (x - ly)-1 

(x) L(y-lx) = (y- 1x ) x 

y - 1x2 ·.·Lis right alternative 

- x 2 Ly- 1 = x 2 L; 1 

y Dx2 

=> Dxl Dx = Dx2 

Conversely suppose that Dx2 = Dxl Dx then 
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(y) Dx2 (y) Dxl Dx 

⇒ x2 L/. = (xL;
1
) J Dx 

⇒ x2 Ly-1 = (xLy-1) J Dx 

⇒ y- l x2 = (y - lx ) J Dx 

⇒ y-l x2 = (y- l xrl Dx 

⇒ y- 1x2 = (x-ly) Dx 

⇒ y- 1x2 = (x) L-~ 
X ly 

⇒ y- 1x2 = (x) L cx - ly)- 1 

⇒ y- 1x2 = (x ) L(y- lx) 

⇒ y- 1(xx ) = (y - 1x ) x 

⇒ L is right alternative 

Hence the result follows. 

Theorem 12. If y E N ( L), then the following identities hold in IP loops. 

(3) Dxn Ly,xm = Ly,xm Dxn 

where Ly,x"', Lxn, Dx" E Mlt(L) and x, y , z E L. 

Proof. (1 ) 

L.H.S (xn) Ly,xm = (xn) LyLxm L:~Y 

- (yxn) Lx"' L (r.myrl = (xm. (yxn)) L (r.m,,rl 

= ((xm. y ) xn) L (r."'yrl, since y EN (L) 

(xm.y)- 1 ((xm y) xn) 

_ xn ·. · L is IP loop 

R .H.S 

57 

□ 
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(2) Since 

(3) Since 

Hence the result fo llows. 

(xnz) Ly,xm 

xnz by part(l) 

(z ) Lxn 

(zLy,xm) Lxn by part(l) 

(z) Ly,xmLxn' 

( Xn L; 1
) Ly,xm 

(xn Lz- 1 )Ly,xm = ( z- 1 xn ) Ly,xm 

z- 1xn by part(l) 

(z) Dxn 

(zLy ,xm ) Dxn by part(l) 

(z) Ly ,xm Dxn 

The following proposition generalizes a result of C-loops to IP loops. 

□ 

Proposition 3. For any natural number n there is a non-associative non-commutative 

IP loop with nucleus of size n. 

Proof. By [53, corollary 3.5] for n 2 2 there is a non-associative non­

commutat ive C-loop and hence an IP loop with nucleus of size n . Now it remains 

to show that there is a non-associative non-commutative IP loop with nucleus of 

size 1. This is shown in the following example. □ 

Example 23. A non-associative non-commutative IP loop with nucleus of size 

1. 
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0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 4 6 2 7 3 5 

2 2 7 5 0 3 1 4 6 

3 3 5 0 4 6 2 7 1 

4 4 6 3 1 7 0 5 2 

5 5 3 7 2 0 6 1 4 

6 6 4 1 7 5 3 2 0 

7 7 2 6 5 1 4 0 3 

While studying a large number of IP loops we were about to make a conjecture 

that the inner mapping group of an (non Moufang) IP loop is always even but 

fina lly we found one of order 12 whose inner mapping group is of order 27. Since 

such IP loops are very rare, we display this IP loop below: 

Exam p le 24 . A non-associative non-commutative IP loop of order 12. 

0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 0 4 6 2 7 3 5 10 11 8 9 

2 2 5 0 8 9 1 11 10 3 4 7 6 

3 3 7 9 0 10 11 8 1 6 2 4 5 

4 4 6 1 10 11 0 9 8 2 7 5 3 

5 5 2 8 11 0 10 1 9 7 6 3 4 

6 6 4 11 1 8 9 10 0 5 3 2 7 

7 7 3 10 9 1 8 0 11 4 5 6 2 

8 8 10 5 2 7 6 4 3 11 0 9 1 

9 9 11 3 7 6 2 5 4 0 10 1 8 

10 10 8 7 4 5 3 2 6 9 1 11 0 

11 11 9 6 5 3 4 7 2 1 8 0 10 

6.2 A Study of WIPLs 

This section has also two subsections. In Subsection 1 we discuss some sufficient 

conditions for vVIPLs. In Subsection 2 we give some constructions of \iVIPLs . 
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6.2.1 Some Sufficient Conditions for WIPLs 

LC-loops, RC-loops, C-loops , ARIF loops are subclasses of \i\TIPLs. WIPLs do 

not have invertible ( two-sided) inverses necessarily. Throughout this section we 

consider only invert ible WIPLs. We prove here some sufficient conditions for 

a WIPL to be one of these loops. We define L x : a ~ xa, R x : a ~ ax , 

J : X ~ x- 1 and Px = R x o L x 'v X E L . 

Theorem 13. Let L be a WIPL. Then (J Pxt = I for any n E 22+, where 2+ 

denotes the set of positive integers. 

Proof. Let y E L. Since Px = R x o L x then for (J Pxt = I where n E 2z+. 

Consider n = 2 then 

(y)JPxlPx = x((x(y- 1x)t 1x) = x (y - 1x)- 1 

y 

Thus (JPx) 2 =I.Now if any n E 22+, then n = 2m for some m E 2+ 

□ 

Corollary 14. (J Pxt = I fo r all n E 2+ if the loop is a WIPL of exponent 2. 

Proof. Let L be a WIPL of exponent 2, and consider 

(y)( J Px) Y- l R x O L x 

x(y- 1x) 

x(y- 1xt 1 since Lis of exponent 2 

y- 1 by WIP 

y 

Thus J Px = I and hence (J Pxt = I for all n E 2+ if t he loop is WIPL of 

exponent 2. D 

Next we prove necessary and sufficient conditions for \VIP L to be left alter­

native, and right alternative. 

Theorem 15. L be a WIPL, then L is left alternative if and only if Lr 

R xlLx2 J Px-
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Proof. Let L be a \tVIPL satisfying Lx = Rxl Lx2 l Px then consider 

LxR-;; 1 Px 

LxR-;; 1 RxLx 

LxLx 

RxlLx2 lPx 

Rxl Lx2 J Px since Lx = J R-;; 1 J 

L-;; 1 Lx2 l Px since L-;; 1 = J Rxl 

Lx2 ( J Px) 2 

Lx2 I by Theorem 13 

Conversely, consider that L satisfies left altcnrntivity, thRt is x(xy) 

x , y E L which implies that LxLx = Lx2 V x EL. Thus we have that 

LxLx 

LxLxPx- l 

LxR-;; 1 

R-1 
X 

Lx2 

Lx2 Px- l 

Lx2 ( J Px) 2 px- l by Theorem 13 

L-;; 1 Lx2 J PxJ 

Rx J Lx2 J Px by left and right cancellation of J 

61 

□ 

Theorem 16. Let L be WIPL, th en L is right alternative if and only if Rx = 

Pxl Rx2 l Lx, 

Proof. Let L satisfi es Rx = Pxl Rx2 J Lx then we have 

J Pxl Rx2 J Lxl by multiplication of J on both sides 

PxlPxlRx2 R;; 1 by multiplication of Px on both sides 

Conversely, let L be right alternative. Then 

RxRx Rx2 

P; 1RxRx px-1 Rx2 

L- 11R 
X X P; 1 Rx2 

L- 1R 
X X 

,I px- 1 Rx2 

Rx PxlRx2 lLx 

□ 
Here we are proving a necessary and sufficient condition for \ VIPL to be a 

LC-loop. 
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Theorem 17. L be WIPL, then L is a LC-loop if and only if it satisfies that 

j L x2 Tz = L zTxl PxL z, 

Proof. Let L be an LC-loop then by LC property we have that 

R 2 L x2 

R 2 L x2 T 2 

J L x2 T 2 

J L x2 T 2 

(x · xy)z 

(y)LxLxRz implies that 

L xL xRz 

L xL xR zTz 

L zR ;/ L xl R xl J L xL z putting 1 --;; 1 = J R xl 

L zTx l PxL z 

Conversely suppose t hat L. sa t isfies t hat J L x2 T 2 = L 2 Txl PxL z Then 

J L x2T2 

j R zL x2 R ; 1 

R 2 L x2 

L zTx lPxL z 

TxlPx 

L xLxRz 

□ 

Theorem 18 . A loop L (WIPL) is a C-loop if and only if R x = PxlRx2 lLx and 

J L x2 T 2 = L 2 Txl PxL z (30, Theorem 4.2). 

6.2.2 Construction of Non-associative WIPLs Loops V ia 

Ex t ension of Loops 

Here we give some constructions of the infinite fami lies of non-associat ive WIPLs 

by extension of loops . Our method is essentially that by which C-loops have been 

constructed in [53] . Indeed Every C-loop is a WIPL and the family of C-loops 

const ructed in [53] is a family WIPLs too. Yet our constructions an~ needed due 

to the following reasons. 

1. The construction of [53] is only for order 4n 2': 12 while our constructions 

consider other orders also. 

2. The construction of [53] is on the basis of Klien group while we consider 

other groups also. 

3. Our WIPLs are not necessari ly C-loops. 



6.2. A STUDY OF WIPLS 63 

Remark 7. We will use once again the adaptation of the same construction 

discovered in {53/ for the construction of AAIP loops in Subsection 6. 3. 5. 

For t his purpose we take a multiplicative group G with neutral element 1, and 

an additive abelian group A with neutral element 0. Any map µ : G x G--+ A 

satisfying µ( 1, g) = µ(g , l ) = 0 for every g E G is called a factor set. So let 

µ : G x G --+ A is a factor set. Define multiplication on G x A by 

(g, a)(h, b) = (gh, a+ b + µ(g, h)) (A) 

The groupoid we get as a result is clearly a loop with neutral element (1, 0). 

We denote t his by (G, A , 11,). Additional requirements on 11. can enforce additional 

properties of (G, A,µ). 

Lemma 7. Let µ: G x G--+ A be a factor set. Then (G, A,µ) is a WIPL iff 

(D) 

for every g, h E G. 

Proof. The loop (G, A,µ) is a WIPL iff (g, a)[(h, b)(g, a)J- 1 = (h, b) - 1 hold for 

every g, h E G and every a, b E A. Straight forward calculation with (A) shows 

t lmt this ha.ppens iff (D) holds. □ 

vVe call a factor set µ satisfies (A) and (D) a W-factor set. We now use a 

particular W-factor set to construct the above-mentioned families of WIPLs. 

Proposition 4. Let n 2: 2 be an integer and let A be an abelian group of order 

n, and u E A be an element of order bigger than 2. Let G = { 1, x, x2
} be the 

cyclic group of order 3 with neutral element 1. De.fine µ : G x G --+ A by 

( ) {
a,if(h,g)=(x,x), 

µ h g = 
' 0, otherwise. 

Then ( G, A,µ) is a non-alternative (hence non-associative) commutative \VIPL 

with N = { ( 1, a) : a E A}. 

Proof. The map 11, is clearly a factor set depicted as follows: 

µ l x x2 

1 0 0 0 

X O C\' 0 

x2 0 0 0 
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To show t hat (G, A, µ ) is a \,VIPL , we verify (D). Since µ is a factor set, 

t here is nothing to prove when g = l. Assume t hat g = x t hen (D) becomes 

11.(h, h- 1 )+11. (x, x 2h- 1
) = 11.(h, x)+p(hx, x2h- 1 ). If h = l , then ;1.(l, 1)+11.(x, x2 ) = 

µ(l, x) + µ(x, x2
) and both sides of this equation are equal to 0. If h = x, then 

µ( x,x2
) + µ(x ,x) = fl(x ,x) + µ (x 2 ,x) and both sides of this equation are equal 

to a . Assume h = x2
, t hen µ(x 2

, x) + µ(x, 1) = µ(x 2
, x) + µ(l, xx) and both sides 

of t his equation are equal to 0. Next assume that g = x2
, then (D) becomes 

11.(h,h- 1
) + 11.(x2 ,xh- 1

) = 11.(h ,x2
) + 11. (hx 2 ,xh-1

).. If h = l , t hen both sides of 

this equation are equal to 0. Assume h = x, t hen both sides of t his equation 

are equal to 0, Assume h = x2
, t hen µ( x 2 ,x) + µ (x 2 ,x2 ) = µ( x 2 ,x2 ) + µ( x,x2 ) 

and both sides of this equation are equal to 0. since a -=I= 0, we have that , 

(x,a)(x,a) · (x 2 ,a) -=I= (x,a) · (x,a)(x2 ,a). Thus (G,A, 11,) is non-alternative and 

hence non-associat ive. Also neither (x, a) E N nor (x2
, a) E N for all a E A. 

Also we have t hat (1, a)((h, b)(g, c)) = (( 1, a)(h, b))(g, c) fo r a ll h , g E G and 

a,b,c E A. Which implies t hat (1,a) belongs to t he nucleus. Thus {(1, a); 

a EA} is the nucleus of the loop (G, A , µ) . □ 

Corollary 19. For each natural number n there exists a nonassociative non­

alternative commutative WIPL having nucleus of order n. 

Proof. It remains to show that there exist non-alternative commutative \ ,VIPL 

having nucleus of order 1. This requirement is fulfilled by t he following example. 

□ 

Example 25 . A commutative, non-alternative WIP L of order 10 having trivial 

nucleus. 

0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 0 3 2 5 4 8 9 6 7 

2 2 3 0 1 6 7 4 5 9 8 

3 3 2 1 0 8 9 7 6 4 5 

4 4 5 6 8 1 0 9 2 7 3 

5 5 4 7 9 0 1 2 8 3 6 

6 6 8 4 7 9 2 3 0 5 1 

7 7 9 5 6 2 8 0 3 1 4 

8 8 6 9 4 7 3 5 1 2 0 

9 9 7 8 5 3 6 1 4 0 2 
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Example 26. The smallest group A satisfying the assumption of P roposition 4 is 

the cyclic group {0, 1} of order 2. The construction of Proposition 4 with a= 1 

then yields the following non-alternative commutative WIP L of order 6. 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 3 2 5 4 

2 2 3 0 4 0 1 

3 3 2 4 5 1 0 

4 4 5 0 1 2 3 

5 5 4 1 0 3 2 

Proposition 5. Let n 2:: 3 be an integer and let A be an abelian group of order 

n , and er E A be an element of order bigger than 2. Let G = {1 , u, v, w} denotes 

the Klein qrov,p with n ev,tral element 1. D e.fin e µ : G x G -+ A by 

( ) { 
ex, i f (x , y) = (u , v), (v, w) , (w, u), 

µ X y = 
' 0, otherwise. 

Th en ( G , A , µ) is a non-alternative, non-commutative WIPL with nucleus 

N = {(l ,a); a E A} . 

Proof. The map µ is clearly a factor set depicted as fo llows: 

µ l u V w 

1 0 0 0 0 

u 00 a0 

V O O O C\' 

w O a O 0 

To show that (G, A, 11,) is a WIPL, we verify (D). Since 11, is a factor set , there 

is nothing to prove when g = l. Assume that g = u t hen (D ) becomes µ(h , h- 1) + 

µ(u ,uh- 1
) = µ(h ,u) -'r- ~l (h:u ,uh- 1

) . If h = l , then both sides of this equation are 

equal to 0, Assume h = v, then µ(v, v) + µ(u , w) = µ(v , u) + µ(w , w) and both 

sides of this equat ion are equal to 0. Assume h = w, then µ(w , w) + µ(u , v) = 

11 (w, u) + Jl (v, v) and both sides of t his equation are equal to <Y . Next assume 

that g = v, then (D ) becomes µ(h , h- 1
) + µ(v,vh- 1

) = µ(h,v) + µ(hv ,vh - 1 ). 

If h = l , then both sides of this equation are equ al to 0. Assume h = u , 

µ(cl , u) + µ(v, w) = µ(u , v) + µ(w , w) and both sides of this equation are equal 

to a, Assume h = v, then µ(v, v) + µ(v , 1) = µ(v, v) + ~l ( l , 1) both sides of this 
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equation are equal to 0. Assume h = w, t hen µ(w , w) + µ( v, u) = ~l (w, v) + µ(u , 'U) 

and both sides of t his equation are equal to 0. Next assume t hat g = w, then 

(D ) becomes 11, (h , h- 1
) + 11,(w,wh- 1 ) = 11, (h,w) + 11, (hw,wh- 1 ). If h = 1, then 

both sides of this equation are equal to 0. Assume h = u , then this equation is 

equal to µ (u, u) + µ(w , v) = µ (u, w) + µ(v , v) and both sides of t his equation are 

equal to 0. Assume h = v, then µ(v, v) + µ(w , u) = µ (v, w) + µ(u , u) and both 

sides of this equation are equal to a:-. Assume h = w, t hen µ(w , w) + µ(w , 1) = 

11.( w, w) + ,,.( 1, 1) and both sides of t his equation a re equal to 0. Since rr # 0, 

and we have t hat, (u,a)(u,a) · (v,a) # (u,a) · (u,a)(v,a) also we have that , 

(w, a)(u, a) · (u, a) # (w, a) · (u, a)(u, a). Thus (G , A , µ) is non-alternative and 

hence non-associative. Also (u , a), (v, a), (w, a) ~ N for all a EA. Also we have 

that (1, a)((h , b)(g, c)) = ((1 , a)(h , b))(g, c) for all h, g E G and a, b, c EA. Which 

implies that (1, a) belongs to the nucleus. Thus {(1 , a); a EA} is the nucleus of 

the loop (G, A , µ ). □ 

Corollary 20. For each n 2: 1 there exists a non-alternative non-commutative 

WIPL having nucleus of order n. 

Proof. It remains to show t hat there exist a non-alternative non-commutative 

\iVIPL having nuclei of order 1 and 2. The first requirement follows by Example 

23 while the second requirement follows by the following example. 

Example 27. A non-alternative non-commutative WIPL having nucleus of order 

2. 

□ 

0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 

1 1 2 0 5 6 4 3 

2 2 0 1 6 5 3 4 

3 3 6 5 4 0 1 · 2 

4 4 5 6 0 3 2 1 

5 5 3 4 2 1 6 0 

6 6 4 3 1 2 0 5 

Example 28. The smallest group A satisfying the assumption of Proposition 5 

is the cyclic group {0 , 1, 2} of order 3. The construction of Proposition 5 with 

a:- = 1 then yields the following non-alternative commutative WIP L of order 12. 
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0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 0 4 5 3 7 8 6 10 11 9 

2 2 0 1 5 3 4 8 6 7 11 9 10 

3 3 4 5 0 1 2 11 9 10 6 7 8 

4 4 5 3 1 2 0 9 10 11 7 8 6 

5 5 3 4 2 0 1 10 11 9 8 6 7 

6 6 7 8 9 10 J1 0 1 2 5 3 4 

7 7 8 6 10 11 9 1 2 0 3 4 5 

8 8 6 7 11 9 10 2 0 1 4 5 3 

9 9 10 11 8 6 7 3 4 5 0 1 2 

10 10 11 9 6 7 8 4 5 3 1 2 0 

11 11 9 10 7 8 6 5 3 4 2 0 1 

GAP gives these extra informations about the above Cayley table of WIPL. It 

is ( 1) power associative (2) not a Moufang loop (3) neither automorphic nor 

anti-automorphic ( 4) neither a left nor right bol loop. 

Proposit ion 6 . Let n ~ 3 be an integer and let A be an abelian group of order 

n, and n EA be an element of order bigger than 2. Let G = {l , ll, v, w} denotes 

the Klein group with respect to multiplication with neutral element 1. De.fine 

µ: G X G ➔ A by 

) { a, if (x, y) ~ (u, v), (v, u) , (u, w), (w, u) , (v, w) , (w, v), 
µ(x,y = . 

0, otherwise. 

Then (G,A,µ) is a non-alternative, commutative WIPL with nucleus N = 

{(l,a); a EA}. 

Proof. The map µ is clearly a factor set and can be depicted as follows: 

µ 1 u V w 

1 0 0 0 0 

u 0 0 CY CY 

V 0 CY 0 CY 

w 0 CY CY 0 

To show that (G, A,µ) is a WIPL, we verify (D). Since µ is a factor set , 

there is nothing to prove when g = 1. Assume that g = u then (D) becomes 

µ ( h , h - 1 ) + µ ( u, llh - 1 ) = µ ( h , u) + µ ( h u , uh- 1
) . If h = 1, th en µ ( h. h - 1 

) + µ ( u, u) = 
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µ(l , u) + µ(u , u) both sides of this equation are equal to 0, Assume h = u then 

µ(u , u) + µ(u , 1) = µ(u, u) + µ(l , 1) both sides of this equation are equal to 0. 

Assume h = v, t hen p(v, v) + 11,(u, w) = 11, (v, u) + 11,(w, w) and both sides of this 

equation are equal to ex. Assume h = w, t hen µ(w, w)+µ(u, v) = µ(w, u)+µ(v , v) 

and both sides of this equation are equal to ex. Next assume t hat g = v, then 

(D) becomes µ(h,h- 1
) + µ(v,vh- 1 ) = µ(h ,v) + µ(hv,vh- 1 ) . If h = 1, then 

µ (l , 1) + µ(v, v) = µ (l , v) + µ(v, v) and both sides of t his equation are equal to 0. 

Assume h = u, t hen 11,(u , u) + /L (v , w) = /L(u, v) + /L(w , w) and both sides of t his 

equation are equal to ex , Assume h = v, then µ(v , v) + µ(v , 1) = µ(v , v) + µ( l , 1) 

both sides of this equation are equal to 0. Assume h = w, then µ(w, w)+ µ(v, 'LL)= 

µ(w , v) + µ(u, u) and both sides of this equation are equal to ex . Next assume 

that g = w, t hen (D ) becomes 11,(h, h- 1
) + 11,(w , wh- 1

) = p(h, w) + 11,(hw, wh- 1 
) . 

If h = 1. t hen µ( l , 1) + µ(w, w) = µ(l, w) + µ(w, w) both sides of this equation 

are equal to 0. Assume h = u, then µ(u,u )+ rL (w,v) = µ(u ,w) + µ(v,v) and both 

sides of t his equation are equal to ex. Assume h = v, then µ(v, v) + µ(w, u) = 

µ(v, w) + µ(u, u) then both sides of t his equation are equal to ex. Assume h = w, 

then JL(w, w) + 11 (w , 1) = /L (w, w) + 11,(l, 1) then both sides of t his equation are 

equal to 0. Since ex i=- 0, and we have that, (u, a)(u, a)· (v, a) i=- (u , a)· (u, a)(v, a). 

Also we have t hat , (w,a)(u,a) · (u,a) i=- (w ,a) · (u,a)(u ,a). Thus (G , A,µ) is 

non-alternat ive and hence non-associative . Also (u, a), (v , a) , (w , a) ~ N for all 

a E A. Also we have t hat (1, a)((h, b)(g , c)) = (( 1, a)(h, b))(g, c) for all h, g E G 

and a, b, c E A. vVhich implies that (1, a) belongs to t he nucleus. Thus {(l , a); 

a EA} is t he nucleus of the loop (G. A,µ). □ 

Example 29. The smallest group A satisfying the assumption of Proposition 6 

is the cyclic group {0, 1, 2} of order 3. The construction of Proposition 6 with 

ex = 1 then yields the following non-alternative commutative WIP L of order 12. 
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0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 0 4 5 3 7 8 6 10 11 9 

2 2 0 1 5 3 4 8 6 7 11 9 10 

3 3 4 5 0 1 2 11 9 10 8 6 7 

4 4 5 3 1 2 0 9 10 11 6 7 8 

5 5 3 4 2 0 1 10 11 9 7 8 6 

6 6 7 8 11 9 lO 0 1 2 5 3 4 

7 7 8 6 9 10 11 1 2 0 3 4 5 

8 8 6 7 10 11 9 2 0 1 4 5 3 

9 9 10 11 8 6 7 5 3 4 0 1 2 

10 10 11 9 6 7 8 3 4 5 1 2 0 

11 11 9 10 7 8 6 4 5 3 2 0 1 

GAP [48] gives these extra informations about the above Cayley table of 

vVIPL. It is ( 1) power associative (2) not automorphic inverse property loop (3) 

neither LC-Loop nor RC-Loop . 

Proposit ion 7 . Let n ~ 2 be an integer and let A be an abelian group of order 

n, and a, EA be an element of order bigger than 2. Let G = {1 , x , x2
, x3, x4

} be 

the Cyclic group of order 5 with neutral element 1. De.fine µ : G x G ~ A by 

( ) { a, , if(h,g)-(x2 ,x2),(x,x2) , (x2 ,x), 
µ h g = 

' 0, otherwise. 

Then ( G , A, f.l) is a non-alternative commutative WIP L with nucleus N 

{(1,a); a EA}. 

Proof. The map µ is clearly a factor set. Its Cayley table is as follows: 

µ 1 X x2 x3 x4 

1 0 0 0 0 0 

X 0 0 Cl' 0 0 

x2 0 Cl' Cl' 0 0 

x3 0 0 0 0 0 

x4 0 0 0 0 0 

To show that (G, A,µ) is a WIPL, we verify (D). Sinceµ is a factor set , there 

is nothing to prove when g = 1. Assume that g = x then (D ) becomes µ (h , h- 1
) + 

µ.(x ,x4h- 1 ) = µ(h , x) + µ(hx , x4h- 1
). If h = 1, then µ(h,h - 1

) + µ(x , x4 h- 1
) = 



70 CHAPTER 6. FURTHER STUDY OF INVERSE PROPERTY LOOPS 

µ( h, x) + {l ( hx, x4 h- 1
) and both sides of this equation equals to 0. h = x, then 

µ(x. :i:
4

) + µ(x, x3
) = µ(x, x) + µ(x2

, x3
) then both sides of this equation are equal 

to 0,Assume h = x2
, then 11,(x2 , x3

) + 11.(x,x 2 ) = JL(x2 ,x) + /L (x3 , x2 ) and both 

sides of this equation are equal to a . Assume h = x3 , then µ(x 3 ,x2 ) + µ(x ,x) = 

µ(x3, x) + µ(x4, x) and both sides of this equation are equal to 0 Assume h = x4, 

then µ( x4, x)+ µ(x, 1) = µ(x4, x)+µ(l, l) and both sides of this equation are equal 

to 0 assume that g = x2
, then (D) becomes µ(h, h-1) + µ(x2 , x3h- 1) = µ(h, x2 ) + 

11 (hx2 , x3 h- 1
). If h = l , then p(l , 1) + JL(x2 ,x3 ) = JL ( l ,x2 ) + /l (x2 ,x3 ) and both 

sides of this equation equals to 0. Assume h = x, then µ(x, x4 ) + µ(x 2 , x2) = 

µ(x, x2
) + µ(x3, x2

) then both sides of this equation are equal to a, Assume h = x2 , 

then µ(x2
, x3

) + {l (x 2
, x) = µ(x 2

, x2
) + p(x4, x) and both sides of this equation are 

equal ton. Assume h = x3
, then ,,.(x3

, x2 )+11,(x 2
, 1) = /I (x3 , x2 )+11.(l , 1) and both 

sides of this equation are equal to 0. Assume h = x4, then µ(x4, x) + µ(x 2 , x4 ) = 

µ.(x4, x2
) + µ(x, x4

) and both sides of this equation are equal to 0. Assume that 

g = x3
. then µ(h , h- 1

) + µ(x 3 , x2h- 1
) = µ(h,x3 ) + µ(hx3 ,x2h- 1). If h = l , then 

µ(1, 1) + µ( x3
, x2

) = p(l , x3
) + µ(x3 , x2

) and both sides of this equation equals to 

0. Assume h = x, then this equation equals to /L (x, x4 ) + JL(x3 , x) = /l(x , x3 ) + 

µ( x4, x) then both sides of this equation are equal to 0, Assume h = x2 , then 

p(x2
, x3

) + µ(x 3
, 1) = µ(x 2

, x3
) + µ( l , 1) and both sides of this equation are equal 

to 0. Assume h = x3, then µ(x 3 , x2
) + µ(x3,x4

) = µ(x 3 , x3 ) + µ(x ,x4 ) and both 

sides of this equation are equal to 0. Assume h = x4, then µ( x4, x) + µ(x3 , x3 ) = 

µ(x4, x3
) + µ(x 2

, x3
) and both sides of this equation are equal to 0, Assume that 

g = x4, then (D ) becomes µ(h, h- 1 ) + µ(x4, xh- 1
) = µ(h, x4

) + µ(hx4, xh- 1 ) . If 

h = l. t hen µ(1 , 1) + µ(x4, x) = µ(l , x4
) + µ(x4, x) both sides of this equation 

equals to 0. Assume h = x , then µ( x, x4) + {l( x4, 1) = µ(x, x4
) + µ(l , 1) and both 

sides of this equation are equal to 0, Assume h = x2
, then JL(x2

, x3 ) + 11,(x4, x4 ) = 

µ(x 2
, x4

) + {l (x, x4
) and both sides of this equation are equal to 0. Assume h = x3

, 

then µ( x3 . x2
) + µ( x3 ,x4

) = µ( x3 ,x3
) + µ(x,x 4

) and both sides of this equation 

are equal to 0. Assume h = x4, then µ(x4,x ) + µ(x4,x2
) = µ(x4, x4

) + µ(x3 ,x2
) 

and both sides of this equation are equal to 0. Since a -::j:. 0, we have that , (x3
, a)· 

(x2
, a)(x2

, a) -::j:. (x3 , a)(x2
, a) • (x2

, a). Also (x2
, a)· (x, a)(x3, a) -=I (x, 3a + a) = 

(x2 , a)(x. a). (x3 , a). Thus (C, A, {l ) is non-alternative and hence non-associative 

V\lIPL . Also neither (x, a), (x2 , a), (x3
, a) EN for all a EA. Similarly (x4, a) ft A. 

Also we have t hat ( l , a)((h,b)(g,c)) = (( l.a )(h,b))(g,c) for all h,g E G and 

a,b. c EA. \i\lhich implies that (1,a) belongs to the nucleus. Thus {(1.a); 

a E A} is t he nucleus of the loop (C. A,µ). □ 
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Example 30. Th e smallest group A satisfying the assumption of Proposition 7 

is the cyclic group {O , 1, 2} of order 3. Th e construction of Proposition 7 with 

O' = 1 then yields the following non-alternative commutative WIPL of order 10. 

0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 0 3 2 5 4 7 6 9 8 

2 2 3 4 5 7 6 8 9 0 1 

3 3 2 5 4 6 7 9 8 1 0 

4 4 5 7 6 9 8 0 1 2 3 

5 5 4 6 7 8 9 1 0 3 2 

6 6 7 8 9 0 . 1 2 3 4 5 

7 7 6 9 8 1 0 3 2 5 4 

8 8 9 0 1 2 3 4 5 6 7 

9 9 8 1 0 3 2 5 4 7 6 

GAP shows that the following properties do not hold in the above Cayley 

table of WIPL. 

(1) automorphic inverse property (2) anti-automorphic inverse property (3) 

LC ( 4) RC (5) left Bo! (6) right Bo! (7) Moufang (8) power alternative (9) power 

associative (10) left nuclear square (13) right nuclear square (14) left inverse and 

( 15 ) right inverse property. 

6.3 Counting AAIP Loops and Some Subclasses 

of NAFILs 

Counting of algebraic structures is difficult as well as important. Difficult be­

cause it requires a suitable choice of softwares , some programming and logical 

skills and fast computer systems. The u'se of suitable software can make your 

task easy. Different softwares have different behav ior for different tasks. Impor­

tant because the mathematicians can then draw several conclusions about t he 

structure from the counting. They can use the counting for making conjectures 

and for counterexamples and for several other purposes. 

This sect ion has five subsections. In subsection 1 we discuss the counting of 

general NAFILs of order n = 5, 6, 7 and also commutative AFILs up to order 

n = 9. In subsection 2 we discuss the counting of its subclass general N AFIL CIP 

loops up to order n = 13 and the counting of its subclass general N AFIL AIP 
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loops up to order n = 8 is in subsection 3. The counting of AAIP loops up to 

order n = 9 has been done in subsection 4. In the subsection 5 of this section 

we provide au i11finite family of non-associative non-commutative AAIP loops via 

extension of loop whose smallest member is a loop of order 12. Examples of the 

smallest non-associative commutative and non-commutative loop of each class of 

counted loops are also given wherever needed. 

6.3.1 R e-enumerat ion of NAFILs 

According to [14], Cowagas has started the counting of NAFILs in 1998 with the 

help of a pascal program called !CONSTRUCT and was able only to find NAFILs 

of order n = 5, 6. But it took a lot of his time. Then with the cooperation of 

Zhang and using other two other softwares SEM and SATO , they counted NAFILs 

of order n = 7. They used a supercomputer of 48 ,pentium I I 400 processors for 

the purpose. They finished with all the checkings in three days. We instead used 

the finite dorna.in enumerator FINDER [63] for enumeration. It easily enuu1cratcd 

NAFILs of order n = 5, 6, 7 within a minute on ordinary desktop computer. By 

doing so we also confirmed the previous counting to b e correct. The counting is 

listed in the following table. 

Order NAFILs 

5 1 

6 33 

7 2333 

The efficiency of FINDER is notable. FIN"DER has been used in count ing 

previously e.g. for counting IP loops in [2] and [64]. Our symmetry breaking is 

the same as used in [2] except x- 1 = x <=> x = e. Because this is the special 

property of IP loops of odd order. 

The smallest non-commutative NAFIL is of order 5: 
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0 1 2 3 4 

0 0 1 2 3 4 

1 1 0 3 4 2 

2 2 4 0 1 3 

3 3 2 4 0 1 

4 4 3 1 2 0 

The smallest commutative NAFIL is of order 6: 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 3 4 5 2 

2 2 3 0 5 1 4 

3 3 4 5 · 0 2 1 

4 4 5 1 2 0 3 

5 5 2 4 1 3 0 

As for order 8 and onward the number of NAFILs become too big to be 

counted. Though a certain NAFIL of order 8 can be found. So we will have to 

focus on the subclasses of NAFILs. 

In [13] it has been proved that there exists at least one NAFIL of every finite 

order n ~ 5 . 

Next we enumerate commutative AFILs up to order 9. FINDER determined 

them within ten minutes. The following table shows their counting. 

Order Commutative NAFILs 

5 0 

6 7 

7 16 

8 2262 

9 30581 
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6.3.2 Enumerating NAFIL CIP Loops 

CIP loops are special automorphic inverse property loops see R. Artzy [4]. R. 

Artzy [5] proved that isotopes of CIP loops are not necessarily CIP. It is also 

shown in that paper that isotopes of CIP loops are isomorphic. Holomorph of CIP 

loops has been considered in [67]. Crossed inverse quasigroups have applications 

in cryptography [3 1].Next we enumerate the number of non-isomorphic NAFIL 

CIP loops having order up to 13. The counting is given in the following table. 

Order N AFIL CIP loops 

1 0 

2 0 

3 0 

4 0 

5 1 

6 0 

7 0 

8 6 

9 2 

10 47 

11 2': 246 

12 2': 2314 

13 2': 9009 

The smallest non-commutative NAFIL CIP loop is of order 8: 

0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 3 2 5 4 7 6 

2 2 3 0 1 6 7 5 4 

3 3 2 1 0 7 6 4 5 

4 4 5 7 6 0 1 2 3 

5 5 4 6 7 1 0 3 2 

6 6 7 4 5 3 2 0 1 

7 7 6 5 4 2 3 1 0 

The smallest commutat ive N AFIL CIP loop is' of order 10: 
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0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 0 3 2 5 4 8 9 6 7 

2 2 3 1 0 6 8 9 5 7 4 

3 3 2 0 1 9 7 4 8 5 6 

4 4 5 6 9 1 0 7 3 2 8 

5 5 4 8 7 0 1 2 6 9 3 

6 6 8 9 4 7 2 5 0 3 1 

7 7 9 5 8 3 6 0 4 1 2 

8 8 6 7 5 2 9 3 1 4 0 

9 9 7 4 6 8 3 1 2 0 5 

Commutative CIP loops coincide with IP loops. FI DER took one hour to 

enumerate NAFIL CIP loops up to order 13 on a little bit speedy computer . 

For order 14, there is a huge number of NAFIL CIP loops. So it requires huge 

computer memory and a great amount of time. So FINDER is unable to count 

tha t. 

Since the counting of IP loops has been checked by Mace4 and since we have 

used the same program and the same symmetry breaking ( except the given one 

above) provided us by John Slaney. so we do not have to use Ma.ce4 a.gain t o 

re-check the counting. 

6.3.3 Enumerating NAFIL A ut omorphic Inverse Property 

(AIP) Loops 

Next we enumerate AIP loops. Vie are able to enumerate them all up to order 8. 

Since after t his order the 11urnl.J er of AIP loops becomes so huge which is di ffic ult 

and much time consuming for FINDER. 

Order T AFIL AIP loops 

5 1 

6 13 

7 I 21 

8 11144 
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The smallest commutative N AFIL AIP loop is of order 6: 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 4 5 3 2 

2 2 4 3 0 5 1 

3 3 5 0 2 1 4 

4 4 3 5 1 2 0 

5 5 2 1 4 0 3 

Remark 8. The smallest non-commutative non-associative NAFJL of order 5 is 

AIP. 

6.3.4 Enumerating Anti-automorphic Inverse Property(AAIP) 

Loops 

Next we enumerate AAIP loops. vVe are able to enumerate them all up to order 

9. Since after this order the number of AAIP loops becomes so huge which is 

difficult and much t ime consuming for FINDER. 

Order Non-group AAIP loops Group AAIP loops 

6 6 2 

7 11 1 

8 704 5 

9 16473 2 

The smallest non-commutative non-associative AAIP loop is of order 6: 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 3 4 5 2 

2 2 3 0 5 1 4 

3 3 5 4 0 2 1 

4 4 2 5 1 3 0 

5 5 4 1 2 0 3 
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and the smallest commutative non-associative AAIP loop is also of order 6: 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 4 5 3 2 

2 2 4 1 0 5 3 

3 3 5 0 1 2 4 

4 4 3 5 2 1 0 

5 5 2 3 4 0 1 

Symmetry breaking: We have used the same symmetry breaking which had 

been used for enumeration of IP loops in [2] and [64] with only one change, that 

is, eliminating x- 1 = x <¢=> x = e because this is the speciality of IP loops. 

Thus our basic symmetry breakers are: 

e:S;x 

x - 1 < (x + 2) 

(x - l =XI\ X < y) ⇒ y- l = y. 

For odd values of N : 

x- 1 < (x + 2) 

j(l) < (e + 4) 

(x > 1 /\ 2x < N) ⇒ f (x) < (e + 2x) 

For even values of N : 

f (1) = e 

(-FLAG I\ 0 < x < N = 2) ⇒ f( x) <: (e + 2x + 1) 

(FLAG) ⇒ (e + 5t1 = (e + 5) 

(FLAG I\ x > 1 /\ (e + xt1 = (e + x)) ⇒ (f(xt 1) =/- J(x) 

(FLAG I\ 1 < x < y I\ (e + Yt 1 = (e + y)) ⇒ f(x) < f(y) 

where O < x < N and e denotes the min element . 

One of t he aim of t his chapter is to report all the above enumerations. Since 

t hese were obtained by exhaustive enumeration , they are availab le for inspection . 

Anybody wants these enumerations can get them by an e-mail request to us. 
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6.3.5 Construction of Non-commutative and Non-associative 

AAIP Loops Via Extension of Loops 

V\Te now construct an infinite family of non-associative AAIP loops via extension 

of loop whose smallest member is a loop of order 12. We adopt the same procedure 

as done for the construction of non-associative and non-commutative C-loops in 

[53]. Note t hat in [53] Klien group is used for the construction of C-loops but we 

did not succeed with Klien group. However we got it by using C4 . For furth er 

details about t he mentioned construction please read Subsection 6.2.2. 

Lemma 8. Letµ : G x G ➔ A be a fa ctor set. Then (G, A,µ) is an AAIP loop 

if! 

µ(g , h) + p(gh , h- 1 .9 - 1
) = µ (h, h- 1

) + µ(g , g-1
) - µ(h - 1

, g- 1
) for every g, h E G. 

(B) 

Proof. T he loop ( G, A,µ) is a AAIP loop iff ' 

((g,a)(h,b))- 1 = (h , b) - 1 (.9,a)- 1 

holds fo r every g, h E G and every a, b E A. Here 

Straight forward calculation with equation (A) shows that t his happens iff equa­

t ion (B) is sat isfi ed . vVe call a factor set µ satisfying equation (B) an A-factor set. 

We now use a particular A-factor set to construct the above mentioned family of 

anti-automorphic inverse property loops. D 

Proposition 8. Let n > 2 be an integer. Let A be an abelian group of order n, 

and a E A an element of order bigger than 2. Let G = C4 = { 1, u, v, w} be the 

cyclic group of order 4 with neutral element 1. De.fine µ : G x G ➔ A by 

{ 

a, i f( x, y) = (u, v), (w, v), 

Jl (x, y) = -a, i f (x, y) = (v, u) , (v, w), · 

= 0, otherwise 

then (G,A, µ ) is a non-flexib le AAIP loop with nucleus N = {(La): a EA }. 

Proof. The map µ is clearly an anti-automorphic inverse property-factor set. 

It can be depicted as fo llows 
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1 u V w 

1 0 0 0 0 

u 0 0 Ct 0 

V 0 -a 0 - Ct 

w 0 0 Ct 0 

The Cayley t able of the G = C4 = {l , u , v, w} is 

l u V w 

1 1 U V W 

u u V w l 

V V w l u 

w w l u V 

To show that (G,A,µ) is a AAIP loop , we verify (B ). Since µ is a factor 

set , there is nothing to prove when g = l. Assume that g = u then (B ) becomes 

µ(u , h) + µ(uh , h- 1w) = µ(h , h- 1
) + µ(u, w) - µ(h - 1

, w). Then both sides of this 

equation are equal to O when h = l , u, w and equal to a when h = v. Assume 

that g = v then (B) becomes 11,(v , h) + p(vh , h- 1v) = 11,(h , h- 1
) + /l (v,v) -

µ(h - 1 , v) . Then both sides of this equation are equal to O when h = l ,v and 

equal to -a when h = u, w. Assume that g = w then (B ) becomes µ( w , h) + 

µ(wh , h- 1u ) = µ(h,h - 1) + µ (w,u) - µ (h- 1 ,u). Then both sides of this equation 

are equal to O when h = l , u , w and equal to a when h = v . Since a -/:- 0, and 

we have that , (u , a)(v, a)· (u , a)= (1 , 3a +a)-/:- (1, 3a - a)= (u, a) · (v, a)(u , a) 

and thus ( G. A,µ) is non-flexible and hence non-associative AAIP loop . From 

definition of ~l it is clear that (G, A,µ) is non-commutative . Also we have t hat 

(u. a), (v, a) ¢:_ N for all a EA. Similarly (w , a) ¢:_ N for all a E A. Also we have 

that (l ,a)((h,b)(g,c)) = (( l ,a)(h, b))(g,c) for all h,g E G and a.b , c E A. Which 

implies that (1, a) belongs to the nucleus. Thus {(1, a); a E A} is t he nucleus of 

thelo~p (G , A, µ). □ 

Corollary 21. For any integer n there is a non-associative non-commutative 

AAIP loop with nucleus of size n. 

Proof. By Proposition 8 there is a non-associative non-commutative AAIP 

loop with nucleus of size n > 2. Now it remains to show that there is a non­

associat ive non-commutative AAIP loop 'with nucleus of size 1 and 2. This is 

shown in t he following examples 31 and 32. D 
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Example 31. A non-associative non- commutative AAIP loop with nucleus of 

size 1. 

0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 0 3 4 5 '2 

2 2 5 4 0 3 1 

3 3 2 0 5 1 4 

4 4 3 5 1 2 0 

5 5 4 1 2 0 3 

Example 32. A non-associative non-commutative AAIP loop with nucleus of 

size 2. 

0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 3 2 6 7 4 5 

2 2 3 1 0 5 4 7 6 

3 3 2 0 1 7 6 5 4 

4 4 6 7 5 2 0 '3 1 

5 5 7 6 4 0 3 1 2 

6 6 4 5 7 3 1 2 0 

7 7 5 4 6 1 2 0 3 

Remark 9. There is no non-associative non-commutative AAIP loop of order 7 

with nucleus of size 2. 

Example 33. The smallest group A satisfying the assumption of Proposition 8 is 

the 3-element cyclic group {O , 1, 2} . Th e construction of Proposition 8 with ex= 1 

then gives rise to the follo wing non-associative non-commutative AAIP loop of 

order 12. 
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0 1 2 3 4 5 6 7 8 9 10 11 

0 0 1 2 3 4 5 6 7 8 9 10 11 

1 1 2 0 4 5 3 7 8 6 10 11 9 

2 2 0 1 5 3 4 8 6 7 11 9 10 

3 3 4 5 6 7 8 11 9 10 0 1 2 

4 4 5 3 7 8 6 9 10 11 1 2 0 

5 5 3 4 8 6 7 10 11 9 2 0 1 

6 6 7 8 10 11 9 0 1 2 4 5 3 

7 7 8 6 11 9 10 1 2 0 5 3 4 

8 8 6 7 9 10 11 2 0 1 3 4 5 

9 9 10 11 0 1 2 5 3 4 6 7 8 

10 10 11 9 1 2 0 3 4 5 7 8 6 

11 11 9 10 2 0 1 4 5 3 8 6 7 
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