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Plasmon-enhanced internal photoemission in metal-semiconductor Schottky junctions has recently

been proposed as an alternative photocurrent mechanism for solar cells. Here, we identify and

discuss the requirements for efficient operation of such cells and analyze their performance limits

under standard solar illumination. We show that the maximum efficiency limit is <8% even if

perfect optical absorption can be achieved using plasmonic nanostructures. This limit results from

the fundamental electronic properties of metallic absorbers. Modifying the electron density of

states of the absorber could increase the efficiency to >20%. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4746425]

Global efforts to reduce the cost of photovoltaic (PV)

electricity are driving interest in alternative solar cell geome-

tries and light absorption mechanisms. Plasmonic nanostruc-

tures have been used to increase absorption in thin-film solar

cells through efficient scattering and trapping of incident

light in the semiconductor absorber.1 An alternative use of

plasmonic enhancement for PV has been proposed, whereby

photons are absorbed directly in the metal, generating “hot”

energetic electrons (or holes), that can then be extracted

from the metal via internal photoemission (IPE) across a

metal-semiconductor Schottky junction2–5 (see Fig. 1). This

photocurrent mechanism is used in infra-red photodetectors,

but efficiencies are typically low, in part due to weak absorp-

tion of light in the metal.6 However, recent progress on plas-

monic absorption enhancement has seen a renewed interest

in IPE, and its application in photovoltaics.2–5

Several experimental demonstrations of plasmon-

enhanced IPE have been reported, but quantum efficiencies

remain relatively low. Incident photon-to-current conversion

efficiencies (IPCEs) (or external quantum efficiencies

(EQEs)) up to 8.4% were reported for Au nanoparticles on

TiO2 in a cell that included a liquid hole transport layer,2

while solid-state versions typically have IPCE <2:5%.3,7 No

experimental power conversion efficiencies have been

reported for standard solar illumination; however, theoretical

efficiencies of �4% were calculated for one specific cell

geometry combining plasmonic absorption and IPE.4

Given the recent interest in IPE for PV applications, it is

important to identify the efficiency limits of this process for

energy conversion. Here, we discuss the key optical and

electronic processes in such cells and their influence on

IPCE and overall cell efficiency. We show that even with

perfect optical absorption and efficient emission of hot elec-

trons into the semiconductor, the maximum possible power

conversion efficiency is <8%, using realistic materials. This

limit is a direct consequence of the metallic absorber, in

which the high density of unoccupied energy levels above

the Fermi level results in a broad distribution of hot electron

energies, many of which have insufficient energy to be emit-

ted into the semiconductor. While the results are discourag-

ing for the future of plasmon enhanced IPE solar cells, they

highlight specific areas for further research that may lead to

increased efficiency limits beyond those presented here.

Figure 1(a) shows the basic cell geometry consisting of

a metal nanoparticle absorber on a semiconductor surface.

The metal-semiconductor interface forms a Schottky junc-

tion characterized by a barrier of height UB (Fig. 1(c)). The

junction is shown here for an n-type semiconductor, but our

discussion also applies to p-type semiconductors, in which

case holes would be emitted across the junction. In theory,

the barrier height depends only on the work functions of the

metal and the semiconductor, but in practice the details of

the interface layers play a strong role. This gives IPE devices

significant flexibility in the choice of semiconductor, since

the photocurrent response depends more the junction proper-

ties than on the semiconductor bandgap. The different energy

levels on either side of the junction allow hot electrons with

sufficient kinetic energy to be emitted from the metal into

the conduction band of the semiconductor, while providing a

barrier to conduction band electrons crossing the interface in

the opposite direction. When exposed to light, this

FIG. 1. (a) Geometry of a plasmon-enhanced internal photoemission solar

cell. (b) Excitation of electrons in the metal from occupied energy levels in

the conduction band (shaded gray) to unoccupied levels above the Fermi

energy EF. Left axis: parabolic density of states (DOS) in the conduction

band. Right axis: distribution of hot electron energies given by the EDJDOS.

(c) Energy diagram of the Schottky junction at the metal-semiconductor

interface (shown for an n-type semiconductor). Hot electrons with energy

>UB can be emitted over the barrier into the semiconductor; those without

enough energy are reflected back into the metal.a)Electronic mail: thomas.white@anu.edu.au.
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asymmetry produces a voltage across the cell that can drive

a photocurrent through an external circuit.

Photocurrent generation involves (i) absorption of pho-

tons in the metal, and generation of hot electrons; (ii) ballis-

tic transport of the hot electrons through the metal to the

interface; (iii) emission of the electron across the junction;

and (iv) collection of the electrons at a contact. Electrons

then pass through the external load and are returned to the

metal either via a (solid or liquid) hole-conducting layer2,3,5

or directly.7 Here, we assume that all electrons emitted at

step (iii) are collected in step (iv). This is reasonable since

electrons are majority carriers in the semiconductor, so bulk

recombination losses will be low. Hence, we will not discuss

step (iv) further. Instead, we focus on the key features of

steps (i)-(iii) that determine the efficiency of IPE solar cells.

The current density response of the cell can be approxi-

mated by the equation8

jcell ¼ jsc � A�T2e�UB=kTðeV=kT � 1Þ; (1)

where jsc is the short circuit photocurrent density, and the

second term on the right is the reverse current due to thermi-

onic emission over the Schottky barrier. This second term is

the standard Schottky diode equation, where the term A� is

the modified Richardson constant, k is the Boltzmann con-

stant, T is the temperature, and V is the voltage across the

cell. The total short circuit current density can be written as

jsc ¼ q

ð
uðkÞgabsðkÞgiðkÞdk; (2)

where q is the charge on an electron, uðkÞ is the incident

photon flux, gabsðkÞ is the optical absorption in the metal,

and gi is the electron emission efficiency, which includes

both transport through the metal and emission over the

Schottky barrier.

In the absence of plasmonic effects, photons incident on

a metal surface may be absorbed directly, exciting electrons

from occupied energy levels below the Fermi energy into

unoccupied energy levels in the conduction band (Fig. 1(b)).

Planar metal surfaces typically have a high reflectance so

direct optical absorption tends to be low. Structuring the

metal layer to support surface plasmon resonances can

increase the optical absorption, and thus the generated photo-

current.3,5,7 Once excited on a metal surface, plasmons lose

energy via radiative damping (re-emission of light, or scat-

tering) and non-radiative damping (generation of electron-

hole pairs).9 Efficient plasmonic absorption occurs when

non-radiative damping dominates, as is the case for small

plasmonic nanoparticles (a few tens of nm in size) or appro-

priately designed surfaces. These structures can exhibit

strong broadband, polarization insensitive, absorption,10 and

would thus be well-suited for IPE devices. Here, we treat the

metal as an ideal optical absorber across the solar spectrum

(gabs ¼ 1), and thus the calculated efficiencies should be

treated as absolute upper limits.

Immediately after a photon has been absorbed, the

excited electron will have an energy Ee above the Fermi dis-

tribution of the surrounding electrons, as illustrated in Fig.

1(b). This hot electron may have enough energy to cross the

Schottky barrier, but this must occur before the excess

energy is lost to nearby electrons or atoms. An electron in

the conduction band of the metal may be excited from an ini-

tial energy Ei in the range EF � �hx < Ei < EF, to an energy

EF þ Ee, where 0 < Ee < �hx; �hx is the photon energy, and

Ee is the excess kinetic energy above the Fermi level.11 The

distribution of final electron energies depends on the proba-

bility of each electron transition occurring. It is common in

the literature to assign an equal probability to all permitted

transitions, resulting in a uniform electron energy distribu-

tion4,11 in the range 0 < Ee < �hx. While this is valid for

intraband transitions in many noble metals when �hx� kT,

here we take a more general approach based on electron den-

sity of states (DOS) that allows us to identify potential strat-

egies to improve the efficiency of IPE.

The distribution of hot electron energies is described by

the electron distribution joint density of states (EDJDOS),12–14

illustrated schematically in Fig. 1(b). Rigorous EDJDOS

calculations are required for high energy photons that may

interact with multiple energy bands well below EF, and

include electron bandstructure and momentum conservation

rules. Here, we are interested in solar spectrum wavelengths,

and thus photon energies of �hx < 3 eV, so we instead apply

a simplified expression for the EDJDOS (D) given by the

product of the electron DOS at the initial and final electron

energies,13,14

DðE; �hxÞ ¼ qðE� �hxÞqðEÞ; (3)

where E is the energy of the excited electron, �hx is the pho-

ton energy, E� �hx is the initial electron energy, and qðEÞ is

the electron DOS. This non-direct approximation assumes

that conservation of electron momentum is unimportant and

has been shown to agree well with experimental photoemis-

sion measurements for a range of noble metals.13 In these

metals, the conduction band density of states is well approxi-

mated by the free electron gas model, where q / E1=2 with

the energy measured from the bottom of the conduction

band.

Figure 2(a) shows EDJDOS curves calculated using

Eq. (3) for a metal with the Fermi level 5.5 eV above the

bottom of the conduction band. This is a good approxima-

tion for Au and Ag, provided the photon energy is low

enough to avoid interband transitions from the d-band energy

levels which lie 2.4 eV and 4 eV below EF for Au and Ag,

respectively.16 The three curves in Fig. 2(a) show the EDJ-

DOS for incident photon energies of 1.3 eV ðk ¼ 954 nmÞ;
2 eVðk ¼ 620 nmÞ, and 3 eVðk ¼ 413 nmÞ. The curves are

normalized such that the area under each is equal, corre-

sponding to unity probability of an electron having energy

Ee > 0. Note that the assumption of uniform energy distribu-

tion4,11 would result in rectangular EDJDOS curves, which

would be a reasonable approximation for the example shown

here.

The shaded area under each curve in Fig. 2(a) shows

the proportion of hot electrons with sufficient energy to be

emitted over a Schottky barrier with UB ¼ 1:2 eV. This pro-

portion is small when �hx � UB, and increases with increas-

ing photon energy. The probability of a hot electron having

Ee > UB is given by
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PðEe > UB; �hxÞ ¼

ð�hx

UB

DðE; �hxÞdE

ð�hx

0

DðE; �hxÞdE

: (4)

Figure 2(b) shows this probability calculated for UB ¼ 1:2 eV

as a function of the incident photon energy. Note that

even when �hx > 2UB, only just over half (54%) of the

excited electrons will have enough energy to pass over the

barrier.

Hot electrons in the metal must travel ballistically to the

junction before they can be emitted into the semiconductor

and produce a photocurrent. The initial non-Fermi distribu-

tion of electrons illustrated in Fig. 2(a) has a lifetime of only

a few hundred fs (�350 fs and �500 fs for bulk Ag and Au,

respectively)17 before electron-electron collisions redistrib-

ute the energy to the surrounding electron gas. This thermal-

ization results in a hot Fermi distribution of electron

energies, which subsequently equilibrates with the atomic

lattice through electron-phonon interactions on timescales on

the order of 1 ps.17 For efficient extraction, hot electrons

must reach the junction before thermalization occurs. These

timescales can be reformulated as a mean free path, ‘e,

which can be relatively large for noble metals, with quoted

values of �50 nm for Ag, and �40 nm for Au at energies

close to the Fermi energy.18 Thus, provided the metal layer

is sufficiently thin, a large proportion of hot electrons will

reach the Schottky barrier before losing energy through scat-

tering processes.

When approaching the interface, an electron with Ee > UB

will only be emitted across the junction if the normal compo-

nent of its momentum is sufficiently large to overcome the

barrier. Thus, for a given electron energy, one can define an

emission cone of angles relative to the interface such that

electrons approaching from inside the cone will be emitted,

while those outside the cone will be reflected back into the

metal.11 Assuming an isotropic distribution of electron direc-

tions in the metal, a significant fraction may be reflected back

into the metal, even if their kinetic energy exceeds the barrier

height. This effect is included in the modified Fowler emis-

sion equation which is commonly used to fit experimental

photoemission curves.5,7 However, if the thickness of the

metal, t, is sufficiently small (t� ‘e), electrons may pass

through it multiple times and be reflected back to the inter-

face, thereby increasing the emission probability.11 This

effect has been observed experimentally in spherical metal

nanoparticles.19 In the limit ‘e=t!1, the emission probabil-

ity of an electron with energy Ee > UB approaches unity.11

We therefore assume here that all electrons with Ee > UB

will be emitted, consistent with a metallic absorber with char-

acteristic dimensions� le. This corresponds to setting gið�hxÞ
¼ PðEe > UB; �hxÞ in Eq. (4), in which case the curve in

Fig. 2(b) is the IPCE.

We have identified the steps required to generate a pho-

tocurrent via plasmon enhanced IPE and discussed some of

the factors that influence the IPCE. We now apply the results

to calculate the maximum power conversion efficiency and

discuss the consequences for PV applications. The numerical

results are based on TiO2, which is used in many IPE devices

and dye-sensitized solar cells.2,3,20,21 This choice does not

significantly affect the results since the only material param-

eter in the calculations is the effective Richardson constant,

A�, which has a relatively weak contribution to the overall

efficiency. The cell conversion efficiency is derived from the

maximum power point of the current-voltage (I-V) response.

Hence, we evaluate Eq. (2) for standard AM1.5G illumina-

tion using gabs ¼ 1, and gi given by Eq. (4), and substitute

this result into Eq. (1). The reverse current term in Eq. (1) is

evaluated with A� ¼ 6:71� 106 Am�2 K�2, for TiO2

(Ref. 22) and a temperature of 300 K. The barrier height, UB,

is taken as an independent variable that could be modified by

the choice of metal/semiconductor materials or by including

thin interface layers at the junction.

Figure 2(c) shows the power conversion efficiency as a

function of UB, calculated for the EDJDOS in Fig. 2(a). As

expected, if the barrier height is small, the reverse (dark) cur-

rent is large and the efficiency is low. As UB increases, the

reverse current decreases and the efficiency increases to a

maximum 7.2% for UB ¼ 1:2 eV. Further increasing UB

reduces the forward current term (jsc) as fewer of the incident

photons have �hx > UB, and thus the efficiency drops again.

The shaded areas in Fig. 2(a) and the dotted line in Fig. 2(b)

correspond to the optimum barrier height. The dashed red

curve in Fig. 2(c) shows the efficiency obtained when the

electron energy distribution is assumed to be uniform in the

range 0 < Ee < �hx. In this case, the maximum efficiency of

6.2% also occurs for UB ¼ 1:2 eV.

The results in Figs. 2(a)–2(c) show that even with the

optimistic assumptions used here, it is unlikely that IPE solar

FIG. 2. (a) Distribution of hot electron energies (EDJDOS) in Ag for inci-

dent photons of energy �hx. Zero on the horizontal axis is EF. Shaded areas

indicate electrons with sufficient energy to cross a Schottky barrier of height

UB ¼ 1:2 eV. (b) Electron emission efficiency (gi) dependence on photon

energy for the same parameters in (a). (c) Maximum power conversion effi-

ciency as a function of UB under solar illumination, calculated for the EDJ-

DOS shown in (a) (solid) and for a uniform electron energy distribution

(dashed). (d)-(f) show the same data as (a)-(c), but calculated for a narrow

DOS distribution close to the Fermi level, and with UB ¼ 1:4 eV.
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cells based on metallic absorbers can achieve efficiencies

beyond a few percent. We can, however, identify opportuni-

ties to increase the present limits. It is clear from Figs. 2(a)

and 2(b) that the low efficiency is due to the electron DOS in

the metallic absorber, which results in a broad distribution of

hot electron energies (the EDJDOS). An ideal EDJDOS

curve would have a narrow peak at Ee ¼ �hx, corresponding

to incident photons only exciting electrons from close to the

Fermi level. Equation (3) shows two possible routes to

achieve this. The first is to modify the electron DOS above

the Fermi energy to suppress electron transitions to energies

Ee < �hx. This is effectively the situation in a semiconductor

absorber where the bandgap restricts the final energy of

excited electrons to the levels in the conduction band.

The second way to modify the EDJDOS is to change the

DOS of the occupied electron energy levels below the Fermi

energy so that electrons close to EF are excited preferentially

over lower energy electrons. Experimental evidence suggests

that this may already occur to some extent in noble metals.

In Ref. 13, a small peak in the photoemission spectrum of

Ag was attributed to a peak in the DOS 0.3 eV below EF.

Similarly, in Ref. 15, internal photoemission measurements

of Ge/metal Schottky junctions were modeled by assuming a

high DOS close to the Fermi level described by a parabolic

DOS distribution with an effective conduction band edge

just below EF. While this is perhaps a somewhat unrealistic

model, we use it here to illustrate how engineering the DOS

in the absorber could increase the cell performance dramati-

cally. Figures 2(d)–2(f) show the EDJDOS, electron emis-

sion efficiency, and power conversion efficiency calculated

for an effective conduction band edge 0.15 eV below the

Fermi level.15 The narrow DOS distribution means that

when �hx > UB, almost all of the hot electrons have suffi-

cient energy to cross the barrier. As a result, the emission

curve in Fig. 2(e) approximates a step-like function that goes

from 0 when �hx < UB to 1 for �hx > UB, and the maximum

efficiency is 22.6% for UB ¼ 1:4 eV (Fig. 2(f)). It may be

possible to engineer the DOS in the absorber to approximate

this idealized response using alloys,23 or quantum confine-

ment effects;24 however, this would require extensive mate-

rials development. Such devices would have much in

common with existing quantum dot24 or dye-sensitized20,21

solar cells.

In conclusion, we have shown that solar cells based on

plasmon-enhanced IPE face severe efficiency limits due to

the properties of metallic absorbers, with maximum theoreti-

cal efficiencies of �7% predicted even with perfect optical

absorption. The key to improving the efficiency lies in modi-

fying the DOS of the absorber, but this may be difficult to

achieve in practice. In the short term, plasmon-enhanced IPE

may offer more benefits for Schottky junction photodetectors

where increased optical absorption25 is important for

improved performance.
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