Modeling the charge decay mechanism in nitrogen-rich silicon nitride films

Yongling Ren, Klaus J. Weber, and Natalita M. Nursam

Citation: Appl. Phys. Lett. 98, 122909 (2011); doi: 10.1063/1.3571291

View online: http://dx.doi.org/10.1063/1.3571291

View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v98/i12

Related Articles

The role of contact size on the formation of Schottky barriers and ohmic contacts at nanoscale metal-semiconductor interfaces
J. Appl. Phys. 111, 064302 (2012)

Study of ohmic contacts to n-type Ge: Snowplow and laser activation

A comparative study of the electrical properties of Pd/ZnO Schottky contacts fabricated using electron beam deposition and resistive/thermal evaporation techniques
J. Appl. Phys. 110, 094504 (2011)

Schottky and charge memory effects in InN nanodomains

A simple in situ method to detect graphene formation at SiC surfaces
Appl. Phys. Lett. 98, 213106 (2011)

Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/

Journal Information: http://apl.aip.org/about/about_the_journal

Top downloads: http://apl.aip.org/features/most_downloaded

Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

Complete Dry Vacuum Pump Station for only $4995 — HiCube™ Eco

800-248-8254 | www.pfeiffer-vacuum.com
Silicon nitride (SiN_x) is widely used in the production of commercial silicon solar cells due to its desirable optical and electronic properties. It is well known that electrostatic charge can substantially reduce the recombination of excess carriers at semiconductor surfaces, by reducing the concentration of one type of carrier. Plasma-enhanced chemical vapor deposition (PECVD) SiN_x films contain a significant density of positive charge (typically several 10^{12} cm^{-2}), which is beneficial for the passivation of the n-type emitter of conventional solar cells on p type substrates. However, they do not provide good passivation for the rear of such cells, due to the formation of an inversion layer which introduces additional losses and a virtual shunt. Negatively charged SiN_x films could offer the possibility of excellent passivation of p-type surfaces, and indeed, improved passivation resulting from negatively charged SiN_x films has already been demonstrated. Therefore, the ability to store negative charge in SiN_x for long periods of time could be of interest for solar cell applications, particularly for the passivation of rear surfaces.

The so-called K center, consisting of a Si atom back bonded to three nitrogen atoms (\textit{Si}\equiv N_3) is the amphoteric defect considered chiefly responsible for trapped negative charge in near stoichiometric SiN_x films. The charge stability depends on the defect properties (energy level distribution) and the properties of any interfacial barrier [such as a tunnel oxide (TO)] and in particular the band alignment of the barrier layer and the nitride film. Though some work has been devoted to the effect of film deposition conditions and postgrowth processing on the K center density, little work has been done on the influence of deposition conditions and film properties on charge stability. The aim of this paper is to investigate the impact of film postdeposition anneals and the presence of an interfacial oxide on the rate of charge decay, in order to elucidate the dominant decay processes and be able to predict charge stability under different conditions. Our previous work has found that nitrogen-rich (N-rich) SiN_x films have better negative charge storage ability and stability. Thus, we concentrate here on N-rich films.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{charging_curve.png}
\caption{Charging curve for SiN_x film, showing the effect of different annealing conditions on charge stability.}
\end{figure}

Szczechalski, p-type, \(\sim 10 \) \(\Omega \) cm (100) Si wafers were used as the substrates for capacitance-voltage (C-V) measurements. After a standard RCA clean, a 20 nm SiO_2 layer was thermally grown at 900 °C on selected samples. A \(\sim 90 \) nm SiN_x layer was then deposited by PECVD (Oxford PlasmaLab 80) at a frequency of 13.56 MHz. The deposition parameters were a temperature of 400 °C, pressure of 1 Torr, rf power of 24.7 W and (SiH_4 + 5%N_2):NH_3 gas ratio of 3.7. A \(\sim 40 \) nm PECVD SiO_2 was subsequently deposited as a barrier layer to reduce the charge losses to the atmosphere, resulting in silicon-oxide-nitride-oxide (ONO) and silicon-nitride-oxide (NO) structures. After deposition, selected samples were rapid thermal annealed (RTA) at 800 °C for 30 s. The refractive index \(n \), film thickness and optical bandgap were measured with a variable angle spectrophotometer. The refractive index at 633 nm was 1.85 following deposition, and from this the N/Si ratio was estimated to be 1.43 using the empirical expression of Bustarret, in good agreement with the value obtained from Rutherford backscattering spectrometry (RBS) measurements on the same film. The RTA treatment was found not to result in significant changes to the refractive index or stoichiometry. However, the optical band gap, increased from 4.58 to 5.21 eV after annealing. C-V measurements in the dark were used to obtain information about negative charge trapped in the films. Prior to C-V measurements, all insulator layers were removed from the rear of the samples, and \(\sim 80 \) nm Aluminum dots with an area of \(\sim 0.0048 \) cm^2 were evaporated on the front. In/Ga contacts were formed on the rear of the samples. Details of charge injection by C-V bias can be found in Ref. 11.

Figure 1(a) shows a typical charging curve \((V_{th} \text{ versus } V_{app}) \) of a sample used for C-V measurements. The negative initial flat band voltage \(V_0 \) (\(\sim 5.3 \) V) indicates the presence of positive charge in the as deposited film, which is caused by fixed charge at the TO-nitride interface. Previous reports showed that the amphoteric charge centers (K centers) in SiN_x film are located close to the TO-
which decreases rapidly with increasing oxide thickness and is expected to be negligible for the structures studied here, which feature a thick TO. However, channel (1) involves either thermionic emission or Fowler–Nordheim (FN) tunneling for sufficiently thick oxides, and hence the transport probability becomes independent of oxide thickness. Channel (1) is, therefore, the dominant charge decay mechanism.

The thermal emission rate of electrons from negatively charged traps at an energy E below the conduction band (CB) edge of the nitride is given by

$$
\dot{n}_\text{th}(E) = D(E,t)A T^2 \exp\left(-\frac{E}{kT}\right),
$$

where $D(E,t)$ is the density of negatively charged traps of energy E at time t, A is a temperature independent constant, T is the temperature in kelvin, and k is Boltzmann’s constant. The total emission rate of electrons into the nitride CB at any point in time is then given by

$$
R_{\text{th}}(t) = \int_0^\infty D(E,t)\dot{n}_\text{th}(E)dE.
$$

Electrons in the nitride CB can then be transported into the silicon CB by either FN tunneling or thermionic emission. The FN tunneling probability is given by

$$
P_{\text{FN}} = K \exp\left[-\frac{4\sqrt{2m_i}}{3\hbar qE}\right],
$$

while the thermionic emission probability is given by

$$
P_{\text{TE}} = A^*T^2 \exp\left[-\frac{q(\phi_B - \sqrt{qE/4\pi\varepsilon_i})}{kT}\right],
$$

where q is the electronic charge, E is the electric field strength (V/cm), \hbar is the reduced Plank constant, ϕ_B is the barrier height at the nitride-TO interface, m^* is the average effective mass, and K and A^* are constants. The charge decay rate is then given by

$$
C = N(P_{\text{FN}} + P_{\text{TE}}),
$$

while the charge rate change of the charge density in the nitride CB is given by

$$
\frac{dN}{dt} = R_{\text{th}} - C,
$$

where N is the electron concentration in the silicon nitride CB.

In the modeling, the trap level distribution proposed in Ref. 17 (exponential decrease toward deeper trap levels) is adopted with some modifications: the traps are modeled to be distributed between levels E_1 and E_2 below the CB edge. All traps are assumed to be initially negatively charged following charge injection. So, the density of negatively charged traps with energy E below the nitride CB edge is given by

$$
D(E,0) = D_0 \exp(-\lambda E),
$$

where $E_1 < E < E_2$ and D_0 is a constant.

Figure 3(a) shows the modeling results for the unannealed NO structure. A reasonable fit to the experimental data is obtained with $\lambda = 0.31$ and $A = 0.01$. These values are quite similar to those determined in Ref. 17. In addition, for the unannealed films the best fit is obtained with $E_1 = 0.25$ eV and $E_2 = 1.3$ eV, while for the annealed films $E_1 = 0.39$ eV and $E_2 = 1.4$ eV. This indicates that the change in
the trap energy distribution following annealing is much smaller than the change in the optical band gap following annealing (~0.63 eV).

To model the charge decay in ONO samples, it is assumed that the trap energy distribution is not affected by the presence of TO, and either FN tunneling or thermionic emission is the dominant mechanism of electron transport across the oxide. Retrapping of electrons has been found in our simulations to not significantly influence the charge decay and is ignored, as was the case in previous reports.17,18

As shown in Fig. 3(b), the enhanced stability of the ONO sample cannot be modeled by assuming FN tunneling as the dominant transport mechanism, especially at low charge densities, regardless of choice of modeling parameters. However, reasonable agreement between modeled and experimental results is achieved by assuming thermionic emission as the dominant transport mechanism, as shown in Fig. 3(c). In the absence of the unknown $A^{*\ast}$ value in Eq. (5), it is only possible to estimate the barrier height difference between annealed and unannealed samples instead of the absolute value of the barrier height. From our results an increase in barrier height of ~0.22 eV is estimated after annealing. It must be pointed out that the charge decay rate in the ONO samples is dominated by the barrier height, not the trap properties. This is illustrated in Fig. 3(d) which shows the modeled decay rate using (1) the trap parameters determined above and (2) assuming all traps are extremely shallow, with E=0.01 eV below the CB edge. This important role of oxide barrier height is further confirmed by our results (not presented here) showing a significantly enhanced charge stability of an ONO sample with a thermally grown TO compared with that with PECVD deposited silicon oxide, which is believed to be caused by the slightly higher oxide barrier height of the thermally grown TO.21

The model parameters can be used to estimate the charge decay rate at lower temperatures, like the maximum operating temperatures experienced by solar cells. At 100 °C, the model predicts that the charge density will remain above 5 x 10^15 cm^-2 (which value is found to result in optimum surface passivation) for a period of 0.6 and >300 years for unannealed and annealed films, respectively.

In conclusion, we have demonstrated that high densities of negative charge can be stored at elevated temperatures in N-rich annealed PECVD silicon nitride films with ONO structures for long periods of time. For the structures investigated here, charge decay is dominated by thermionic emission of carriers over the TO barrier. As a result, the TO-nitride barrier height is the key parameter determining the charge stability. It is found that annealing of the films at 800 °C results in an increase in both the optical band gap and the barrier height, while the trap properties remain relatively unchanged. As a result of the increased barrier height, annealing leads to a significant increase in charge stability.

Financial support from Australian Research Council (Grant No. LP0883613) is gratefully acknowledged.