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We study a plasmonic coupler involving backward �TM01� and forward �HE11� modes of dielectric
waveguides embedded into an infinite metallic background. The simultaneously achievable
contradirectional energy flows and codirectional phase velocities in different channels lead to a
spectral gap, despite the absence of periodic structures along the waveguide. We demonstrate that a
complete spectral gap can be achieved in a symmetric structure composed of four coupled
waveguides. © 2010 American Institute of Physics. �doi:10.1063/1.3458694�

Negative index metamaterials �NIMs� are artificial ma-
terials which have simultaneously negative permittivity and
negative permeability.1–4 In NIM waveguides, modes are
backward when more energy flows in the NIM than in other
channels. Coupling of a forward propagating mode in a con-
ventional dielectric waveguide with a backward mode in a
NIM waveguide has been investigated theoretically in both
linear and nonlinear regimes.4,5 The coupling of a forward
mode and a backward one results in the formation of spectral
gaps without periodic structures along the waveguide. This
feedback mechanism may play an important role in nanopho-
tonics, as it could significantly simplify complex geometries
that are required for subwavelength optical manipulation and
concentration. However, due to the fabrication complexity
and high losses of NIM, coupling involving NIM is currently
not experimentally feasible and therefore this mechanism has
not attracted significant attention.

There has been a surging interest in the field of plasmon-
ics, as it offers one of the most promising approaches for
subwavelength optical concentration and manipulation �for a
comprehensive review, see e.g., Refs. 6–9�. In some plas-
monic structures, backward modes exist in regimes when
more energy flows in the metal than in the dielectric.10–14

These structures are much simpler and more fabricable than
those involving NIM. In this letter, we propose a design of
plasmonic coupler involving the coupling between the
backward TM01 and the forward HE11 modes in dielectric
waveguides embedded into metal �see Fig. 1�a��. We find a
polarization dependent spectral gap in a structure of two
coupled waveguides and a complete polarization indepen-
dent gap in a C3v structure with four coupled waveguides.

It was recently reported15 that taking experimental data
of bulk metal16 in numerical calculations of plasmonic
modes may lead to losses which are much higher than real
losses observed in experiments. In our study, we use the
Drude model to simulate the optical properties of a metal as
follows: �m���=1−�p

2 /���+ i���, where �p is the plasma
frequency and �� is the collision frequency. At the same
time, we define two normalized quantities as follows: loss
�=�� /�p and size parameter �=R�p /c, where R is the ra-

dius of the dielectric core and c is speed of light in vacuum.
Figure 1�a� shows the two-waveguide structure we

study; two dielectric rods of the same radius �=1.21 �corre-
sponding R is about 25nm for silver� with �1=9 and �2=4
are embedded into infinite metal. First, by analyzing the dis-
persion of a single waveguide, we find that the backward
TM01 mode for �=9 intersects with the forward HE11 mode
for �=4 at � /�p=0.3856 �see Fig. 2�a��. This point corre-
sponds to ��400 nm for silver. For the TM01 mode, more
energy flows in the metal than in the dielectric, which is
similar to the backward SPP on metallic wires.10,17 It should
be emphasized that the directionality of TM01 and HE11
modes are radius dependent as follows: the TM01 mode
can become forward when the radius increases and the
HE11 mode can become backward when the radius
decreases.12 However, the HE11 mode has linear polarization
inside the dielectric �see Fig. 2�c��, which could be excited
directly with a normal incident wave,18 whereas the TM01
mode has radial polarization �see Fig. 2�d�� with much
higher losses in the coupling region �see Fig. 2�b��.

Prior to preforming a fully numerical study, we use tem-
poral coupled-mode theory19,20 �TCMT� to get a qualitative
understanding of dispersion relation in the lossless case.
The eigenmodes of a coupled system are expressed as a su-
perposition of individual waveguide modes as follows:
E=�mAm�z , t�Em�x ,y�ei��m0+�mm�t, where �m0=�m at k=k0

a�Electronic mail: wli124@physics.anu.edu.au.
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FIG. 1. �Color online� �a� Two dielectric waveduides with �1=9 and �2=4
separated by D embedded into infinite metal. Arrows indicate the energy
flow at different channels for the wave vector along z; �b� dispersion of two
coupled waveguides. Shaded region indicates the incomplete polarization
dependent spectral gap obtained using TCMT with vg=0.13c,
vg3=−0.039c, and 	=0.
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and �mm is the self-coupling coefficient. For the two coupled
waveguides, three modes can couple to one another as fol-
lows: two forward HE11 modes of preferred x and y polar-
izations, which could be approximately reconstructed by two
orthogonal eigenmodes of circular polarizations A1,2�z , t� and
one backward TM01 mode A3�z , t�. The coupled-mode equa-
tions in time domain are as follows:

i
�A1,2�z,t�

�t
+ ivg

�A1,2�z,t�
�z

+ �A3�z,t�ei2	t = 0,

i
�A3�z,t�

�t
+ ivg3

�A3�z,t�
�z

+ ��
m=1

2

Am�z,t�e−i2	t = 0,

where 	= �1 /2���33+�30−�11−�10�= �1 /2���33+�30−�22

−�20� is the antisymmetry parameter of two waveguides;
A1,2,3 are normalized envelopes; vgi�vg=vg1,g2
0,vg3�0�
are the group velocities at �0=��k0�; �12=�21=0 �mode 1
and 2 are orthogonal�; and the other mutual coupling coeffi-
cients are identical; �ij =� ji=��i=1,2 ; j=3�. In the coupling
region we ignore the dispersion of group velocities and as-
sume that vg,g3 and � are constants. By introducing the fol-
lowing variables: a1�z , t�=A1�z , t�e−i	t, a2�z , t�=A2�z , t�e−i	t,
and a3�z , t�=A3�z , t�ei	t, and applying the Fourier transform,
we obtain the propagation constants of three eigenmodes:

k1,2= ��� i�−8vg3vg�2−
2� /2vgvg3, k3= ��+	� /vg where
�=vg��−	�+vg3��+	� and 
=vg��−	�−vg3��+	�. When
−8vg3vg�2�
2, k1,2 is a conjugated pair, indicating the ex-
istence of a spectral gap, while k3 corresponds to the eigen-
mode â�k ,��= â1�k ,��+ â2�k ,��, where â1�k ,�� and
â2�k ,�� denote orthogonal circularly polarized modes. Thus,
k3 corresponds to a linearly polarized HE11 mode, which is
not coupled to the TM01 mode. This mode makes the gap
dependent on the polarization. Figure 1�b� shows the results
obtained using TCMT of 	=0 when values with vg,g3 are
taken from Fig. 2�a�.

Full numerical simulation results using COMSOL �see Fig.
3� qualitatively agree with TCMT. In the lossless case �=0,
the spectral gap is defined by a pair of complex conjugated

propagation constants �see Figs. 3�a� and 3�b��. The gap
width increases with decreasing the distance D �see
Fig. 3�f��, because the coupling coefficient becomes larger.
When we incorporate some losses ��=0.002�, all modes be-
come complex and the definition of width of the gap depends
on how far it is from the observing point to the source. How-
ever, the gap width of lossless metal ��=0� may still serve as
a guide and effective approximation as shown in Figs. 3�a�
and 3�b�. In addition to the modes of conjugated propagation
constants, there exists one more HE11 like decoupled mode.
The energy flow of this mode is mostly confined inside
�1=4 waveguide �see Fig. 3�c��. Thus, the gap of the two
coupled waveguides is incomplete and polarization
dependent.

To make modes of different preferred polarization direc-
tions degenerate and obtain a full gap, symmetric
structures could be used.21,22 One of the options is to utilize
four-waveguide C3v structure �see Fig. 4�a��. We use sub-
scripts n=1,2 to denote two HE11 modes of circular
polarizations and n=3,4 ,5 for three TM01 modes. Based on
the symmetry and energy conservation law in the lossless
case, the following relations are satisfied for mutual coupling
coefficients: �12=�21=0, �1m=�m1

� =�2m
� =�m2=�1e2/3��m−3�i

for m ,n=3,4 ,5 and m�n. Due to the C3v symmetry,
eigenmodes â�k ,��=�m=1

5 
mâm�k ,�� of preferred x polar-
ization �
1=
2� and those of preferred y polarization
�
1=−
2� should be degenerate.21,22 Thus using TCMT
we can find five eigenmodes of three frequencies:
k1,2= ��� i�−12vg3vg�2−
2� /2vgvg3 �corresponding to two
degenerate pairs of modes�, �=�3�k�+2�2, where �=vg��
−	+�2�+vg3��+	� ,
=vg��−	+�2�−vg3��+	� and �3�k�
is the dispersion of the individual TM01 mode. Again k1,2
can be a conjugated pair, indicating the existence of a gap.
�=�3�k�+2�2 corresponds to eigenmode �E3 mode�
â�k ,��=�m=3

5 âm�k ,��, which is a symmetric combination of
TM01 modes. The cut-off frequency of E3 mode is shifted by
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2�2 compared with individual TM01 mode. Numerical results
from COMSOL are shown in Fig. 4. This allows us to con-
clude that the spectral gap indicated by the yellow region of
four coupled waveguides becomes polarization independent
when the E3 mode is cutoff. For larger losses �metal in deep
ultraviolet regime� the spectral gap still exists but the effec-
tive width becomes smaller and eventually disappears as in-
creasing losses make the differences between gap and non-
gap region smaller. To enable coupling at longer-wavelength
regimes, where losses of metal are lower, one could use
dielectric waveguides with higher permittivities �GaAs, for
example�.

In summary, we have studied a coupler based on two
dielectric waveguides in metal involving the coupling of
backward and forward waves. By using the TCMT we have
predicted a spectral gap in such a system without a periodic
structure. This result has been verified by direct numerical
simulations. Moreover, we have demonstrated that a com-
plete polarization independent gap can be achieved by using
four coupled waveguides with C3v symmetry. Similar cou-

pling between surface plasmon polaritons �SPPs� can happen
in metallic-wire structures when the radius is small enough
to support backward SPPs.10 However, high losses of back-
ward SPPs on metallic wires prevent them from realistic re-
alizations. We anticipate that by incorporating materials with
gain and/or nonlineararities, the proposed structure can be
considered as a platform for the study of gap solitons, optical
bistability, high-Q cavities, and plasmonic nanolaser in vari-
ous systems without periodicity.
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