
On the Use of Antipodal Optimal Dimensionality
Sampling Scheme on the Sphere for Recovering
Intra-voxel Fibre Structure in Diffusion MRI

Alice P. Bates, Zubair Khalid and Rodney A. Kennedy

Research School of Engineering, The Australian National University, Canberra, ACT
2601, Australia

{alice.bates, zubair.khalid, rodney.kennedy}@anu.edu.au

Abstract. In diffusion magnetic resonance imaging (dMRI), the diffu-
sion signal can be reconstructed from measurements collected on single
or multiple spheres in q-space using a spherical harmonic expansion.
The number of measurements that can be acquired is severely limited
and should be as small as possible. Previous sampling schemes have fo-
cused on using antipodal symmetry to reduce the number of samples
and uniform sampling to achieve rotationally invariant reconstruction
accuracy, but do not allow for an accurate or computationally efficient
spherical harmonic transform (SHT). The recently proposed antipodal
optimal dimensionality sampling scheme on the sphere requires the min-
imum number of samples, equal to the number of degrees of freedom
for the representation of the antipodal symmetric band-limited diffusion
signal in the spherical harmonic domain. In addition, it allows for the
accurate and efficient computation of the SHT. In this work, we evaluate
the use of this recently proposed scheme for the reconstruction of the
diffusion signal and subsequent intra-voxel fibre structure estimation in
dMRI. We show, through numerical experiments, that the use of this
sampling scheme allows accurate and computationally efficient recon-
struction of the diffusion signal, and improved estimation of intra-voxel
fibre structure, in comparison to the antipodal electrostatic repulsion and
spherical code sampling schemes with the same number of samples. We
also demonstrate that it achieves rotationally invariant reconstruction
accuracy to the same extent as the other two sampling schemes.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) uses the intra-voxel diffusion char-
acteristics of water molecules to determine the structure and connectivity of
white matter in the brain. Diffusion signal measurements are collected on a
single sphere or multiple spheres in q-space (known as q-shells) [8, 10]. The
reconstruction of the diffusion signal on a sphere from these measurements is
carried out by expanding the signal in terms of spherical harmonics [11, 14]. By
choosing a sufficiently large band-limit in the spherical harmonic degree, L, the
diffusion signal can be represented in terms of a finite number of coefficients
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in the spectral domain, enabled by spherical harmonic transform (SHT) [16].
Various techniques proposed in the literature for estimating the intra-voxel fibre
structure in dMRI use the diffusion signal spherical harmonic coefficients, such
as Q-ball imaging in constant solid angle (QBICSA) [1, 12].

In order to facilitate accurate and fast estimation of fibre structure, a sam-
pling scheme must support accurate and efficient computation of the SHT. It is
also important that the scheme require as few measurements as possible in order
to reduce scan times [2, 19]. Furthermore as fibre populations may assume any
orientation within a voxel, the accuracy of the reconstruction of the diffusion sig-
nal should not change significantly if the diffusion signal (or sampling scheme) is
rotated [8, 7]. As dMRI is an inherently noisy imaging technique, reconstruction
should also be robust to noise [9].

Novel Sampling Scheme Many sampling schemes used in dMRI focus on
uniform sampling on the sphere to achieve rotationally invariant reconstruction
accuracy and antipodally symmetric sampling grids to reduce the number of
samples, but do not consider accurate and efficient computation of the SHT
[7, 8, 15]. Recently, the antipodal optimal dimensionality sampling scheme on
the sphere [3] has been proposed for the reconstruction of antipodal symmetric
signals. This scheme enables a SHT which is more computationally efficient
than the other sampling schemes that use the least squares (LS) method of SHT
computation, as we show later in the paper. It also requires the minimum number
of samples, given by the degrees of freedom required to represent the antipodal
symmetric signal in the spectral domain, for accurate computation of SHT of
the signal.

The widely used antipodal electrostatic repulsion sampling scheme (ESR) [15]
can be used with the minimum number of samples, however it does not allow
accurate reconstruction of the diffusion signal with this number of points, as we
later demonstrate in the paper. The sampling scheme [7] generalises the ESR
scheme to multiple q-shells and reduces to the ESR scheme for a single q-shell.
The ESR scheme is also extended to 3D q-space sampling in [17] and a gener-
alised metric is defined. For single-shell q-space sampling, the energy measure
used in ESR is suitable [17]. The scheme [8] is another scheme with a uniformly
and antipodally symmetric distributing of samples on the sphere, it generalises
the spherical code (SC) formulation (minimum angular distance between sam-
ples) to multiple shells and can be formed for any number of samples.

We note that the sampling scheme [6] uses spherical design to enable the
accurate computation of the SHT, and has a uniform and antipodally symmetric
arrangement of samples, however it requires more than the minimum number
of samples. The equiangular sampling scheme proposed in [10] has an accurate
and efficient SHT but requires approximately four times the minimum number
of samples.

Contributions In this work, we evaluate the antipodal optimal dimensionality
sampling scheme for estimating the intra-voxel fibre structure in dMRI. We
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address whether the sampling scheme: A) enables the accurate reconstruction of
the diffusion signal on the sphere and consequently improves estimation of fibre
structure within each voxel, B) has a reconstruction accuracy that does not vary
significantly with rotation and C) is computationally efficient.

In order to answer these questions, we evaluate the antipodal optimal di-
mensionality sampling scheme against other single q-shell sampling schemes that
can be used with the minimum number of samples; we analyse the reconstruc-
tion of the diffusion signal and the intra-voxel fibre structure estimation using
QBICSA from measurements of the diffusion signal taken over the antipodal op-
timal dimensionality, ESR and SC sampling schemes. We demonstrate that the
acquisition of measurements over the antipodal optimal dimensionality sampling
scheme allows accurate and computationally efficient reconstruction of the dif-
fusion signal, and better estimation of intra-voxel structure in dMRI.

2 Materials and Methods

2.1 Diffusion Signal on Sphere

Let the diffusion weighted signal at a fixed q-space radius (or fixed diffusion
weighting, b) be denoted by S(θ, φ; b), where the angles co-latitude θ ∈ [0, π] and
longitude φ ∈ [0, 2π) parameterise a point u(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)′

on the sphere S2.
The spherical harmonic functions (or spherical harmonics for short), denoted

by Y m` (θ, φ) and defined for integer degree ` ≥ 0 and integer order |m| ≤ `, form
a complete basis for the space of signals defined on the sphere. Since S(θ, φ; b)
is antipodal symmetric, with S(θ, φ; b) = S(π − θ, φ + π; b) and Y m` (θ, φ) =
Y m` (π − θ, π + φ) for even ` and Y m` (θ, φ) = −Y m` (π − θ, π + φ) for odd `, the
expansion of S(θ, φ; b) in the spherical harmonic basis only includes even degree
spherical harmonics, that is,

S(θ, φ; b) =

L−1∑
`=0
` even

∑̀
m=−`

(S)m` (b)Y m` (θ, φ), L odd, (1)

where L represents the band-limit that depends on the b-value [10, 19], and
(S)m` (b) denotes the spherical harmonic coefficient of degree ` and order m,
which is calculated using the SHT, given by

(S)m` (b) ,
∫
S2
S(θ, φ; b)Y m` (θ, φ) sin θ dθ dφ. (2)

The spherical harmonic coefficients (S)m` (b) form the spectral domain represen-
tation of S(θ, φ; b). In practise, (2) has to be calculated numerically; there exist
sampling schemes, such as [3], that enable algorithms for accurately calculating
the SHT (see [18] for a comprehensive review). For other schemes, such as [8] and
[15], (S)m` (b) can also be calculated using LS where (1) is written as a system of
linear equations.
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The reconstruction of the signal S(θ, φ; b) from its spherical harmonic coeffi-
cients, as given in (1), is referred to as the inverse SHT. The diffusion signal is
assumed to be band-limited at degree L such that (S)m` (b) = 0 for ` ≥ L; if this
assumption does not hold, there is a truncation error.

Diffusion-Weighted Data Synthesis We use the commonly used Gaussian
mixture model [2, 9] to obtain a diffusion weighted dataset. The diffusion weighted
signal model for a voxel is given by

S(θ, φ; b) = S0

M∑
k=1

fke
−bu(θ,φ)TDku(θ,φ), (3)

where S0 is the baseline image at b = 0, M is the number of fibres, the volume
fractions fk of each fibre population are normalized to ensure that

∑M
k=1 fk = 1

and Dk is the diffusion tensor for the kth fibre in the voxel. Each fibre’s tensor
is computed from a rotated version of a tensor, D = diag(λ1, λ2, λ3), with Dk =
RT
kDRk, where λ1 is the diffusivity along the main axis of a fibre while λ2 and

λ3 are the diffusivities in the plane perpendicular to it, and Rk is the rotation
matrix that rotates the kth fibre to the direction of the kth fibre population.

In the numerical experiments where the effect of noise is considered, we add
Rician noise to the diffusion weighted signal as [13]

S(θ, φ; b)n =
√

(S(θ, φ; b) + η1)2 + η22 , (4)

with η1, η2 ∼ N (0, σ2) and σ = S0/SNR. The signal-to-noise ratio (SNR) con-
trols the level of noise on the baseline image, assumed to be S0 = 1 [9].

2.2 Antipodal Optimal Dimensionality Sampling Scheme

The antipodal optimal dimensionality sampling scheme [3], which we denote
by SO(NO) where NO = L(L + 1)/2, has an iso-latitude sampling grid with
L iso-latitude rings placed in antipodal pairs at [0, . . . , π − θL−3, θL−3, π −
θL−1, θL−1], L odd and equiangular sampling along longitude with the points
placed so that the samples in ring θn are antipodal to those in ring θn−1 (Fig. 1
shows SO(28) which has L = 7 rings). The antipodal nature of SO(NO) means
that measurements only need to be taken over the rings θn for n = 0, 2, . . . , L−1;
the value of the diffusion signal over the remaining points can be determined us-
ing the antipodal symmetry of the diffusion signal.

The number of measurements required by this scheme is NO, which is the
minimum number of samples attainable by any sampling scheme as there are
NO degrees of freedom required to represent the antipodal band-limited signal
in the spectral domain (as can be seen from Eq.(1)). More details of SO(NO),
including the precise location of samples, can be found in [3]. The design of
SO(NO) enables a SHT (described in [3]) which is accurate and efficient, unlike
other schemes that focus on uniform sampling of the sphere which use LS.
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(a) (b)

Fig. 1: The antipodal optimal dimensionality sampling scheme for L = 7, SO(28) a)
north and b) south pole view. Points where measurements are taken are shown in blue
and points where antipodal symmetry is used to evaluate S(θ, φ; b) are shown in red.

3 Diffusion Signal Reconstruction

In this section, we analyse the reconstruction of the diffusion signal from its
samples taken over SO(NO). We obtain a diffusion weighted dataset using the
diffusion signal model (3), with λ1 = 1.7 × 10−3 mm2/s and λ2 = λ3 =
0.3 × 10−3 mm2/s which are values typically observed in the human brain [5] .

3.1 Evaluation of Band-limit of Diffusion Signal

It has been demonstrated that SO(NO) allows accurate computation of the SHT
of any band-limited antipodal symmetric signal on the sphere in [3]; we therefore
evaluate whether the assumption that the diffusion signal is band-limited holds.
In order to study the band-limit of the diffusion signal, we define the per-degree
energy spectrum P (b, `) of the diffusion signal (3) as

P (b, `) ,
∑̀
m=−`

|(S)m` (b)|2, (5)

which is plotted for 1000 ≤ b ≤ 8000 s/mm2 and 0 ≤ ` ≤ 45 in Fig. 2a, where it
can be observed that the energy spectrum P (b, `) decreases gradually with the
increase in spherical harmonic degree `.

The threshold lines on the surface plot in Fig. 2a for which P (b, `) drops
below 10−15 (black) and 10−6 (grey) can guide us in choosing the band-limit of
the diffusion signal. For example, L = 21 and L = 11 for b = 3000 s/mm2 as
indicated by black and grey line, respectively. For L = 21, we require NO = 231
samples, which may be too large as it is common for around 60 samples to be
taken at b = 3000 s/mm2 [9]. For L = 11, we need NO = 66 samples. Using a
smaller L (larger threshold) means less samples are required but will result in a
larger truncation error, as we demonstrate in the next section.

The approximately linear relationship between b and L is indicated by dashed
lines in Fig. 2a. Fig. 2a shows P (b, `) for a synthetic diffusion signal obtained
from (3) with M = 2 fibres and a crossing angle of 25◦, however we observed
insignificant variation in P (b, `) for different M and fibre orientations.
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Fig. 2: (a) Per-degree energy spectrum P (b, `) (5), is plotted as log10 P (b, `) for 0 ≤
` < 45, ` odd and 1000 ≤ b ≤ 8000 s/mm2. Black and grey lines indicate where P (b, `)
drops below 10−15 and 10−6 respectively, and dashed lines show linear relationship
between b and L. (b) Mean reconstruction error Emean for 5 ≤ L ≤ 21 for SO(NO),
SE(NO) and SS(NO).

3.2 Reconstruction Accuracy

In order to evaluate whether SO(NO) allows for the accurate reconstruction of
S(θ, φ; b), we compare it with the ESR scheme [15] composed of NO samples,
denoted by SE(NO) and the SC scheme [8] composed of NO samples, denoted
by SS(NO)1. In order to compute the SHT of a signal from its samples taken
over SE(NO) and SS(NO), regularised LS is used with regularisation parameter
λ = 0.006 (used in [12, 20]) to improve the condition number of the matrix
involved the computation of the SHT. Due to space constraints, here and in the
rest of the paper we only show results for b = 3000 s/mm2, which is commonly
used to obtain S(θ, φ) measurements [9].

We conduct the following experiment to determine the reconstruction ac-
curacy. For a given b-value, synthetic measurements of the diffusion signal,
using (3), are first obtained over the sampling grid SO(NO) or SE(NO) or
SS(NO). The spherical harmonic coefficients (S)m` (b) are then calculated using
the SHT proposed in [3] or the regularised LS method [12]. Finally, the spher-
ical harmonic coefficients (S)m` (b) are used to reconstruct the diffusion signal
over a high resolution uniform grid (consisting of 2562 points which are the
vertices of a 4th-order icosahedron). We analyse the mean reconstruction er-
ror, Emean , mean

(
|SA(θ, φ; b) − Sr(θ, φ; b)|

)
, between the reconstructed and

analytical value of the diffusion signal calculated over the 2562 points.

1 The best known solutions of the SC problem [8] are available at
http://neilsloane.com/grass/dim3/ for up to 100 antipodal pairs, hence we
are only able to show results obtained using SC for L < 15 (NO = 91) in this paper.
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Fig. 3: Mean reconstruction error Emean varies insignificantly for different fibre ori-
entations, given by α ∈ [0, π] and β ∈ (0, 2π], for (a) SO(66), (b) SE(66) and (c)
SS(66).

The mean reconstruction error Emean for band-limits 5 ≤ L ≤ 21 is shown in
Fig. 2b, where it is evident that taking measurements over SO(NO), in compari-
son to SE(NO) and SS(NO), enables significantly more accurate reconstruction
of the diffusion signal. For example at L = 21 (NO = 231), the mean error Emean

is on the order of 10−9 and 10−4 for SO(NO) and SE(NO) respectively, while at
L = 11 (NO = 66), it is on the order of 10−4 for SO(NO), and 10−2 for SE(NO)
and SS(NO). Fig. 2b shows Emean for a synthetic diffusion signal obtained from
(3) with M = 2 fibres and a crossing angle of 25◦ as in Section 3.1, however we
again observed insignificant variation in Emean for different M and fibre orien-
tations. In summary, the use of the sampling scheme SO(NO) greatly reduces
the diffusion signal reconstruction error compared with SE(NO) and SS(NO).

Rotational Invariance SE(NO) and SS(NO) focus on uniform sampling of
the sphere to ensure rotationally invariant reconstruction accuracy [15, 8], that
is the accuracy of reconstruction does not significantly vary if the diffusion signal
(or sampling scheme is rotated) [7]. SO(NO) is not uniform by design, however, it
does not have dense sampling on any region of the sphere. For all three sampling
schemes SO(NO), SE(NO) and SS(NO), we analyse the rotational invariance
of the reconstruction accuracy; we change the orientation of a fibre centered
at z − axis by rotating the fibre by β ∈ [0, π] around y-axis and then by α ∈
[0, 2π] around x-axis, and compute the mean reconstruction error Emean for
different orientations/rotations. In Fig. 3(a), (b) and (c) it can be observed that
the mean error Emean does not change significantly for any of the schemes (the
reconstruction error remains on the order if 10−4 for SO(NO), and on the order
of 10−2 for SE(NO) and SS(NO) for all rotations), showing that all schemes
enable rotationally invariant reconstruction accuracy to the same extent.

3.3 Computation Time

We investigate the computational complexity of the SHT of SO(NO) [3] com-
pared to the LS method of SHT computation employed by SE(NO) and SS(NO)
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Fig. 4: The computation time τ in seconds for the SHT in [3] and for LS to
compute the spherical harmonic coefficients of the diffusion signal for 5 ≤ L ≤ 21.

by measuring the time it takes for both methods to calculate the spherical har-
monic coefficients of the diffusion signal for band-limits 5 ≤ L ≤ 21. It can be
seen in Fig. 4 that for L > 7, [3] allows for faster computation of the SHT and
that the time taken by the LS method increases much faster with L; this is due
to the computational complexity of the LS being O(L6) while the SHT proposed
in [3] has asymptotic complexity O(L4). [3]. Hence, SO(NO) allows for a SHT
which is significantly more efficient compared with the LS method of SHT used
by SE(NO) and SS(NO).

4 Application: Intra-voxel Fibre Structure Estimation
Using QBICSA

In this section, we show that the acquisition of diffusion signal measurements
over SO(NO) allows accurate estimation of the intra-voxel structure in dMRI.
In our analysis, we use QBICSA[1]2, one of the intra-voxel structure estimation
techniques that uses the spherical harmonic coefficients of the diffusion signal,
that has been compared in the 2012 High Angular Resolution Diffusion (HARDI)
Reconstruction Challenge [12]. We use the structured field testing data set3,
that consists of 1280 voxels, where each voxel is constructed using the diffusion
signal model given in (3) (see [9] for the values of parameters). To compare the
performance of SO(NO) with SE(NO) and SS(NO) we use the following two
metrics: success rate (SR) defined as the percentage of voxels in which the correct
number of fibre populations are detected and mean average angular error per
voxel, denoted by mean(θ̄), defined as the average error between the estimated
fibre directions and the true ones in each voxel, averaged over all voxels.

2 The orientation distribution function (ODF) peaks are extracted using finite differ-
ences over a 724 point grid mesh as in [12].

3 available at http://hardi.epfl.ch/static/events/2012 ISBI/



IX

5 10 15 20
58

60

62

64

66

68

band−limit, L

S
R

(a)

5 10 15 20
4

4.5

5

5.5

6

6.5

7

band−limit, L

(b)

10 20 30
0

10

20

30

40

50

60

70

SNR

S
R

L=13
L=11
L=9
L=13
L=11
L=9
L=13
L=11
L=9

(c)

10 20 30
0

5

10

15

20

25

30

35

40

45

SNR

L=13
L=11
L=9
L=13
L=11
L=9
L=13
L=11
L=9

(d)

Fig. 5: Fibre reconstruction metrics, a) SR and b) mean(θ̄), obtained by sampling over
SO(NO), SE(NO) and SS(NO) for 5 ≤ L ≤ 21 in the absence of noise. (c) SR and
(d) mean(θ̄) for L = 9, 11 and 13, and SNR= 10, 20 and 30, and sampling schemes
SO(NO), SE(NO) and SS(NO).

Noise Free We have plotted the performance metrics, SR and mean(θ̄), Fig. 5a
and b for noise free measurements obtained using SO(NO), SE(NO) and SS(NO).
It is evident that the higher diffusion signal reconstruction accuracy of SO(NO),
compared with SE(NO) and SS(NO), results in a higher SR and lower mean(θ̄).
In the absence of noise, SO(NO) therefore enables more accurate intra-voxel fibre
structure estimation compared with SE(NO) and SS(NO).

With Noise We use 2012 HARDI Challenge Data with SNR = 10, 20 and 30
(4) to evaluate the intra-voxel fibre structure estimation performance of SO(NO)
used with QBICSAin the presence of noise. The regularisation parameter in LS
used for SE(NO) and SS(NO) filters the noise [12]. For SO(NO), we use a
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Gaussian kernel given by e−`(`+1)t [4], with parameter t = 0.032 (empirically
chosen to maximise SR), to low pass filter the noisy signal. More sophisticated
filtering techniques that take into account the noise statistics is future work.

Fig. 5c and Fig. 5d show the SR and mean(θ̄) respectively for different SNR
averaged over 10 realisations of the noise for SO(NO), SE(NO) and SS(NO) for
L = 9, 11, 13 (NO = 45, 66, 91), which are typical numbers for single-shell sam-
pling). SO(NO) has a higher SR and lower mean(θ̄) than SE(NO) and SS(NO)
for all SNR, demonstrating that the estimation of fibre structure from noisy
measurements taken over SO(NO) is more accurate.

5 Conclusions

In this work, we have evaluated the antipodal optimal dimensionality sampling
scheme on the sphere for the reconstruction of the diffusion signal and subsequent
intra-voxel structure estimation in dMRI. Unlike other schemes in the literature,
this scheme allows for the accurate and efficient computation of the SHT with
the minimum number of measurements. The antipodal optimal dimensionality
scheme achieved a greater diffusion signal reconstruction and intra-voxel fibre
structure estimation accuracy in the absence and presence of noise, in comparison
to the antipodal electrostatic repulsion and spherical code sampling schemes
when the minimum number of samples were used. It has also been shown that
all three schemes give rotationally invariant reconstruction accuracy to the same
extent. Extension of the work to multiple q-shell sampling and the analysis of
the scheme with real data is being carried out.
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sition and analysis method on fiber orientation estimation in diffusion MRI. In:
Computational Diffusion MRI and Brain Connectivity, pp. 13–24 (2014)


