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Abstract

Face images can provide vital clues for identity recognition and expression analysis.
However, those tasks require face images have sufficient resolutions and clear details.
Due to different imaging conditions, face images might be captured in very low
resolutions. Obtaining high-resolution (HR) face images plays an important role for
the following face analysis tasks. In this thesis, we tackle the face super-resolution
problem, also known as face hallucination, and propose our methods to upsample
very low-resolution face images as well as recover fine details of the deteriorated
faces.

We firstly address aligned low-resolution (LR) face images (i.e., 16 × 16 pixel-
s) by designing a discriminative generative network, named URDGN. URDGN is
composed of two networks: a generative model and a discriminative model. We
introduce a pixel-wise `2 regularization term to the generative model and exploit
the feedback of the discriminative network to make the upsampled face images re-
semble real ones. In our framework, the discriminative network learns the essential
constituent parts of the faces and the generative network blends these parts in the
most accurate fashion to the input image. Regarding the difficulty of training two
individual networks, we also present a single network which consists of deconvo-
lutional and convolutional layers to upsample faces by a large upscaling factor of
8×. These two methods only require frontal and ordinary aligned images in train-
ing. Therefore, our methods can super-resolve a wide range of LR images directly
regardless of pose and facial expression variations.

State-of-the-art face hallucination methods rely heavily on accurate alignment
of LR faces before upsampling them. Misalignments often lead to deficient results
and unnatural artifacts for large upscaling factors. To overcome this challenge, we
present an end-to-end transformative discriminative neural network (TDN) devised
for super-resolving unaligned tiny face images. TDN embeds spatial transforma-
tion layers to enforce local receptive fields to line-up with similar spatial supports. In
this manner, unaligned faces are automatically aligned in the upsampling procedure.
Moreover, previous works often assume LR face images are noise-free. When input
images are contaminated by noise, their super-resolution performance will degrade
dramatically. To upsample noisy unaligned LR face images, we propose decoder-
encoder-decoder networks. A transformative discriminative decoder network is em-
ployed to upsample and denoise LR inputs simultaneously. Then we project the in-
termediate HR faces to aligned and noise-free LR faces by a transformative encoder
network. Finally, high-quality hallucinated HR images are generated by a second
decoder.

When the resolutions of LR input images vary, previous deep neural network
based face hallucination methods require input images at a fixed resolution. Down-
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sampling LR input faces to a required resolution will lose high-frequency informa-
tion of the original input images. This may lead to suboptimal super-resolution
performance for the state-of-the-art face hallucination networks. We present an end-
to-end multiscale transformative discriminative neural network (MTDN) to super-
resolve unaligned LR face images in different resolutions ranging from 16×16 to
32×32 pixels in a unified framework.

Previous face hallucination methods do not account for facial structure and thus
suffer from degradation due to large pose variations and misalignments. We pro-
pose a method that explicitly incorporates structural information of faces into the
face super-resolution process by using a multi-task convolutional neural network (C-
NN). Our CNN has two branches: one branch for super-resolving face images and
the other one for predicting salient regions of a face coined facial component heatmaps.
These heatmaps encourage the upsampling stream to generate super-resolved faces
in large poses with higher-quality details. Our method not only uses low-level in-
formation (i.e., intensity similarity), but also employs middle-level information (i.e.,
face structure) to super-resolve facial components in LR face images. Therefore, our
method is able to super-resolve very small unaligned face images while preserving
face structure.

Since an LR input patch may correspond to many HR candidate patches, this am-
biguity may lead to distorted HR facial details and inaccurate facial attributes, such
as gender reversal and age rejuvenation. We observe that an LR input face mainly
contains low-frequency facial components of its HR version while its residual face
image, defined as the difference between the HR ground-truth and interpolated L-
R images, contains the missing high-frequency facial details. We demonstrate that
supplementing residual images or feature maps with additional facial attribute in-
formation can significantly reduce the ambiguity in face super-resolution. To explore
this idea, we develop an attribute-embedded upsampling network. The upsampling
network is composed of an autoencoder with skip-connections, which incorporates
facial attribute vectors into the residual features of LR inputs at the bottleneck of the
autoencoder, and deconvolutional layers used for upsampling. In this manner, our
method is able to super-resolve LR faces by a large upscaling factor while reducing
the uncertainty of one-to-many mappings remarkably.

We further push the boundaries of hallucinating a tiny, non-frontal face image
to understand how much of this is possible by leveraging the availability of large
datasets and deep networks. To this end, we introduce a novel transformative ad-
versarial neural network (TANN) to jointly frontalize very LR out-of-plane rotated
face images (including profile views) and aggressively super-resolve them by 8×,
regardless of their original poses and without using any 3D information. TANN is
composed of two components: a transformative upsampling network, which first
projects/encodes side-view LR faces close to the latent representation of their corre-
sponding frontal ones and then upsamples the latent representation, and a discrimi-
native network that enforces the generated high-resolution frontal faces to lie on the
same manifold as real frontal face images.

Besides super-resolving an HR face image from its LR version, this thesis also
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addresses the task of restoring realistic faces from stylized portrait images, which
can also be regarded as a type of face hallucination. We develop a style removal net-
work composed of convolutional, fully-connected and deconvolutional layers. The
convolutional layers are designed to extract facial components from stylized face im-
ages. Consecutively, the fully-connected layer transfers the extracted feature maps of
stylized images into the corresponding feature maps of real faces and then the decon-
volutional layers generate real faces from the transferred feature maps. To enforce the
destylized faces to be similar to authentic face images, we employ a discriminative
network, which consists of convolutional and fully connected layers. Furthermore,
by constraining feature-wise similarity between the recovered faces and the ground-
truth ones, we can achieve realistic faces much closer to their ground-truth in terms
of appearance and identity similarity. Since the facial details are distorted in the
stylized portraits, such as skin and hair colors, we embed facial attributes into the
destylizing procedure to recover face images faithful to the ground-truth ones.

In summary, this thesis exploits deep neural networks to super-resolve HR face
images from their LR counterparts in different challenging scenarios as well as to re-
store realistic face images from stylized portrait images. Our extensive experimental
results demonstrate our proposed methods outperform the state-of-the-art.

Keywords: Face super-resolution, face hallucination, face destylization
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Chapter 1

Introduction

1.1 Background

Face images arguably carry the most interesting and valuable visual information and
can be obtained in a non-intrusive manner. Additionally, for many applications from
content enhancement to forensics, face images require significant magnification. Ob-
taining high-resolution (HR) face images will facilitate the other face analysis tasks.
However, due to camera settings and the large distances between objects and cam-
eras, the resolutions of face images might be very small, (e.g., in typical surveillance
videos). There is little information that can be inferred from the captured face im-
ages, as visible in Fig. 1.1. Very low-resolution (LR) face images not only degrade the
performance of the face recognition systems but also impede human interpretation.

When face images are imperceptibly small, their resolutions have to be increased
by a large upscaling factor. However, conventional super-resolution (SR) method-
s are mostly limited up to 2 ∼ 4× upscaling factors. As reported by Yang et al.
[2014], when the upscaling factor increases to 8×, the performance of state-of-the-
art super-resolution techniques decreases rapidly, rendering them unsuitable for this
task. This challenge motivates the reconstruction of HR face images from given LR
counterparts, known as face hallucination, and has attracted increasing interest in
recent years.

Existing face hallucination methods achieve exciting super-resolution results when
accurate facial features and landmarks can be found in LR images, suitably similar
HR images of the same person are included in the support dataset, or the exemplar
HR face images are densely aligned [Tappen and Liu, 2012; Yang et al., 2013; Wang
and Tang, 2005; Liu et al., 2007; Jia and Gong, 2008; Yang et al., 2010]. For instance,
landmark based methods [Tappen and Liu, 2012; Yang et al., 2013] first localize facial
components in the LR face images, and then transfer the similar HR facial compo-
nents extracted from the exemplar dataset to the input LR faces. However, when the
input image resolution becomes smaller, landmark based methods fail gravely be-
cause of erroneous landmark localization. In other words, their performance highly
depends on the input image sizes. Another stream of face hallucination methods
employs the similarity of the subspace projection of LR and HR images to recon-
struct HR face images [Baker and Kanade, 2000; Liu et al., 2001; Baker and Kanade,
2002; Wang and Tang, 2005; Liu et al., 2007]. Due to the variations of poses, lighting
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(a) LR (b) Bicubic (c) Ours (d) HR

Figure 1.1: Illustration of face hallucination. (a) The input 16× 16 LR image. (b)
Bicubic interpolation of (a). (c) Our hallucinated result. (b) The original 128× 128

HR image.

(a) Stylized (b) Recovered (c) Original

Figure 1.2: Illustration of face destylization. (a) Stylized input portrait. (b) Recovered
realistic face image from (a). (c) Original ground-truth face image.

and expressions existing in LR face images, the appearances of the input LR face im-
ages may be different from the HR images in the dataset. Subspace based methods
will degrade dramatically and produce ghosting artifacts in the outputs. To mitigate
the ghosting artifacts caused by the pose variations in the input LR faces and the
HR exemplar dataset, position-patch based methods are proposed [Ma et al., 2010;
Yang et al., 2010]. However, as the magnification factor increases, the blocky artifacts
between neighboring patches appear and lead to unnatural super-resolved HR faces.

As mentioned above, state-of-the-art face hallucination methods would suffer
from obvious artifacts when they are applied to super-resolve very low-resolution
faces undergoing misalignments or even contaminated by noise. Therefore, this
thesis intends to better explore the structure of faces and appearance similarities
between individuals and then recovers HR realistic face images by leveraging the
emergence of large-scale face datasets [Huang et al., 2007; Liu et al., 2015] as well as
deep neural networks.

In this thesis, we also investigate the problem of reverting an artistic portrait
back to its photo-realistic version. Although applying artistic styles to existing pho-
tographs has attracted much attention in both academia and industry with several
interesting applications, hallucinating a photo-realistic face image from an artistic
portrait, dubbed face destylization, has not been studied thoroughly. As seen in
Fig. 1.2, revealing the latent real faces can provide essential information for human
perception, computer analysis and photo-realistic multimedia content editing. Since
facial details and expressions in stylized portraits often undergo severe distortions
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and become contaminated with artifacts, such as the changes of profile edges and
colors, recovering a photo-realistic face image from its stylized version is very chal-
lenging.

Overall, this thesis presents face hallucination methods to upsample LR face im-
ages in different cases, including unaligned LR faces, inputs contaminated by noise,
LR faces undergoing large pose variations. Furthermore, we also try to push the
boundary of face hallucination methods, i.e.super-resolving and frontalizing LR faces
simultaneously. Inspired by the ideas of face super-resolution, we also hallucinate
realistic face images from abstract portrait images, thus providing a solution to reveal
the real identity information in the portraits.

In this chapter, we first review the related works on face super-resolution as well
as style transfer. Then, we outline our proposed solutions to the challenging prob-
lems in the field of face super-resolution and stylized portrait recovery. We also
introduce the organization of this thesis and the relationship between each chapter.
Since the format of this thesis is “thesis by compilation”, each chapter is composed of
a published paper or manuscript written during my PhD period.

1.2 Related Works

Over the past decades, image super-resolution methods have been proposed to mag-
nify an LR image to its HR version that comprises authentic high-frequency detail-
s. Super-resolution can be basically classified into two categories: generic super-
resolution methods and class-specific super-resolution methods. When upsampling
LR images, generic methods employ priors that ubiquitously exist in natural images
without considering any image class information. Class-specific methods, also called
face hallucination [Baker and Kanade, 2000] if the class is face, aim to exploit statis-
tical information of objects in a certain class. Thus, they usually attain better results
than generic methods when super-resolving images of a known class. In this thesis,
we not only super-resolve LR faces but also frontalize input LR faces. Therefore,
we also review the most related face frontalization methods. Due to the inherently
under-determined nature of super-resolution, an LR face may correspond to many
HR candidate faces, especially when the upscaling factor becomes larger. We embed
facial attribute information into the super-resolution procedure to achieve more ac-
curate hallucinated faces by a conditional generative adversarial network. Thus, we
review the generative adversarial network [Goodfellow et al., 2014] and its variants
related to our work. Furthermore, since we also address the problem of recovering
realistic face images from stylized ones, state-of-the-art image style transfer methods
are also introduced in this section.

1.2.1 Generic Super-resolution Methods

In general, there are three categories of generic super-resolution approaches: inter-
polation based techniques, image statistics based schemes [Peleg and Elad, 2014;
Yang and Yang, 2013] and example/patch based methods [Freeman et al., 2002;
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Hong Chang et al., 2004; Glasner et al., 2009; Yang et al., 2010; Schulter and Leist-
ner, 2015; Huang et al., 2015]. Interpolation based techniques such as bilinear and
bicubic upsampling are computationally efficient. However, they fail to establish
high-frequency details since they generate overly smooth edges as the upscaling fac-
tor increases. Image statistics based schemes employ image priors to reconstruct HR
images with sharper edges, but they are still limited to smaller scaling factors [Lin
and Shum, 2006].

Example based methods have the potential to break this limitation. They can be
further classified into two groups: internal and external example methods depend-
ing on how the reference samples are derived. The first group of methods [Glasner
et al., 2009; Freedman and Fattal, 2010; Singh et al., 2014; Huang et al., 2015] exploit
self-similarity of patches in the input image. Alternatively, several methods [Free-
man et al., 2002; Hong Chang et al., 2004; Yang et al., 2010] aim to learn mappings
between LR and HR patches from external reference datasets, and then utilize the
learned correspondences to upsample LR images. Nevertheless, when the input im-
age size is very small, it is difficult for internal example based methods to find similar
patches across different scales. When the scaling factor is large, it is hard for external
example based methods to determine the correct correspondences between LR and
HR patches because many different HR patches can correspond to a single LR patch,
which induces artifacts at intensity edges.

Recently, many generic super-resolution methods based on deep neural network-
s have been proposed [Dong et al., 2016a,b; Bruna et al., 2016; Kim et al., 2016a,b;
Mao et al., 2016; Shi et al., 2016; Ledig et al., 2017]. For instance, SRCNN [Dong
et al., 2016a] apply cascaded convolutional layers to obtain a mapping function be-
tween LR and HR patches from a large-scale dataset, while Kim et al. [2016a] learn
to upsample the residuals between the HR and interpolated LR patches. To improve
the performance of super-resolution without introducing extra parameters of the
networks, Kim et al. [2016b] employ recursive convolutional layers to increase the
depth of the convolutional layers. Mao et al. [2016] apply symmetric-skip connec-
tions between convolutional layers and deconvolutional layers to pass information to
the latter layers, thus mitigating the difficulty of training their very deep network.
Shi et al. [2016] employ convolutional layers to extract LR features and then rear-
range the LR feature maps into HR images by a sub-pixel convolutional layer, which
can be considered as a variant of deconvolutional layers. Dong et al. [2016b] use
convolutional and deconvolutional layers with smaller filter sizes to speed up SRCN-
N [Dong et al., 2016a]. Ledig et al. [2017] exploit an adversarial loss and a perceptual
loss [Johnson et al., 2016] to obtain more realistic upsampled results. Bruna et al.
[2016] extract statistical priors using a convolutional neural network (CNN) to regu-
larize the super-resolution process. Since these generic SR methods based on neural
networks do not consider class-specific priors, they cannot achieve high performance
when they are employed for super-resolving faces.
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1.2.2 Face Hallucination Methods

Unlike generic methods, class-specific super-resolution methods [Baker and Kanade,
2000; Liu et al., 2001; Baker and Kanade, 2002; Wang and Tang, 2005; Liu et al., 2007;
Jia and Gong, 2008; Ma et al., 2010; Tappen and Liu, 2012; Yang et al., 2013; Zhou and
Fan, 2015; Wang et al., 2014; Kolouri and Rohde, 2015; Jin and Bouganis, 2015; Zhu
et al., 2016b] further exploit the statistical information in the image categories, thus
leading to better performances.

In one of the earlier works, Baker and Kanade [2000] transfer high-frequency de-
tails from a face dataset by building the relationships between LR and HR patches.
Their method can generate face images with richer details. However, due to the
possible inconsistency of the transferred HR patches, their method tends to produce
artifacts. Wang and Tang [2005] employ constraints on both LR and HR images, and
then hallucinate HR face images by an eigen-transformation. Although it is able to
magnify LR images by a large scaling factor, the output HR images suffer from ghost-
ing artifacts as a result of using a subspace based on a holistic model. Similarly, Liu
et al. [2007] enforce linear constraints for HR face images using a subspace learned
from the training set via Principle Component Analysis (PCA), and a patch-based
Markov Random Field (MRF) is proposed to reconstruct the high-frequency details
in the HR face images. This method works when the images are precisely aligned
at fixed poses and expressions. In other cases, the results usually contain ghosting
artifacts due to PCA based holistic appearance model. To mitigate artifacts, a blind
bilateral filtering is used as a post-processing step in [Liu et al., 2007]. Kolouri and
Rohde [2015] use optimal transport in combination with subspace learning to morph
an HR image from the LR input. Since the subspace based face hallucination meth-
ods require the HR images in the reference dataset to be precisely aligned and the
LR test image to have the same pose and facial expression as the reference ones, they
are overly sensitive to the misalignments of LR images. In particular, methods that
depend on PCA based holistic appearance models suffer from ghosting artifacts.

Considering pose and expression variations in both LR and HR face images, it
is difficult to hallucinate HR faces by employing only one global appearance mod-
el. Thus, local part based methods are proposed to super-resolve individual facial
regions separately. They reconstruct the HR counterparts of LR inputs based on ei-
ther reference patches or facial components in the training dataset. Ma et al. [2010]
construct a super-resolved HR patch by multiple reference HR patches at the corre-
sponding spatial position. Yang et al. [2010] and Li et al. [2014] model the local struc-
tures of faces as a sparse representation problem. Jin and Bouganis [2015] process
multiple LR face images to recover an HR image by exploiting a patch-wise mixture
of the probabilistic PCA prior instead of the holistic PCA prior in [Liu et al., 2007].
Hence, face hallucination methods that constrain the spatial positions of patches may
avoid ghosting artifacts caused by PCA, but their performance degrades dramatically
when LR image is not aligned precisely to the reference HR images.

To handle various poses and expressions, Tappen and Liu [2012] integrate the
SIFT flow to align images. By exploiting local patterns, Yang et al. [2013] present a
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structured face hallucination method. It first detects facial components in the given
LR image and then transfers the corresponding HR facial components in the refer-
ence dataset to the LR input.

Very recently, deep convolutional neural networks based face hallucination meth-
ods are proposed. Zhou and Fan [2015] propose a bi-channel CNN to hallucinate face
images in wild scenes. Since they require extraction of local features from the input
images, the smallest input image size is limited to 48× 48 pixels. Zhu et al. [2016b]
employ a cascade bi-network, dubbed CBN, to upsample very low-resolution and
unaligned faces, where the low-frequency parts are upsampled by a convolutional
network and the high-frequency parts, i.e., facial components, are firstly localized by
a pre-defined model and then upsampled by the another network. Since CBN needs
to localize facial components in LR images, CBN may produce ghosting faces when
there are localization errors. Chen et al. [2018] present a two-stage network, where
low-frequency components of LR face are first super-resolved and then face priors
(i.e., facial component locations) are also employed to enrich facial details. Neverthe-
less, these facial component based methods may fail to produce authentic HR face
images due to potentially inaccurate landmark localization.

Xu et al. [2017] employ the framework of generative adversarial networks [Good-
fellow et al., 2014; Radford et al., 2015] to recover blurry LR face images while enhanc-
ing the facial details by a multi-class discriminative loss. Dahl et al. [2017] leverage
the framework of PixelCNN [Van Den Oord et al., 2016] to super-resolve very low-
resolution faces. To relax the requirement of face alignment, Bulat and Tzimiropou-
los [2017b] present a constraint that the landmarks of the upsampled faces should
be close to the landmarks detected in their ground-truth images. Since ground-truth
landmarks are not provided in the training stage and erroneous localization of land-
marks may lead to distorted upsampled face images, their results are only restricted
to 64×64 pixels and facial details are not sharp enough.

1.2.3 Face Frontalization

Generating a frontal face from a single non-frontal face image is very challenging
due to self-occlusions and various pose variations, and has received significant at-
tention in computer vision. Seminal works date back to the 3D Morphable Model
(3DMM) [Blanz and Vetter, 1999], where a face is represented by the shape and tex-
ture bases in PCA subspace. After obtaining the the shape and texture coefficients
of an input face image, Blanz and Vetter [1999] render novel views of an input face.
Driven by 3DMM, Yang et al. [2011] estimate 3D surface from face appearance and
then synthesize new expressions of the given face. However, these methods require
the input face images to be nearly frontal in order to estimate the shape and appear-
ance coefficients of input faces in PCA subspace. Dovgard and Basri [2004] exploit
the facial symmetry to estimate 3D geometry of the given faces and render frontal
faces. Similarly, Hassner et al. [2015] use facial symmetry to render out-of-view facial
regions. Several methods [Asthana et al., 2011; Hassner, 2013; Taigman et al., 2014;
Masi et al., 2016; Zhu et al., 2015] attempt to reconstruct frontal views by mapping
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a 2D face image onto a 3D reference surface mesh after registering and normalizing
the face image. Since they need to detect facial landmarks in the input images and
establish correspondences of landmark points to 3D or 2D reference models, they re-
quire images in sufficiently high resolutions. Based on the fact that frontal faces have
the minimum rank of all different poses, Sagonas et al. [2015] propose a statistical
face frontalization method, but the appearance of their frontalized faces may not be
consistent with the input faces.

Deep learning based face frontalization methods have been proposed recently
as well [Zhu et al., 2014; Yim et al., 2015; Zhu et al., 2015; Tran et al., 2017b; Cole
et al., 2017; Huang et al., 2017b; Chang et al., 2017; Yin et al., 2017]. Zhu et al. [2014]
present a deep neural network to frontalize HR faces by exploiting the symmetry and
similarity of facial components. Their method does not require estimation of a 3D
model, but it cannot maintain appearance similarity between the frontalized and in-
put faces either. Yim et al. [2015] develop a multi-task deep neural network to rotate
faces, but their method outputs blurry frontal faces due to the aggressive downsam-
pling operations in the encoder. Similarly, Cole et al. [2017] learn to generate facial
landmarks and textures from features extracted by a face recognition network. Since
Cole et al.warp input faces to the mean face geometry by using facial landmarks, the
resolutions of their inputs need to be sufficiently large.

Very recently, Huang et al. [2017b] employ two deep neural networks, i.e., global
and local networks, to frontalize faces. However, their local network needs to extract
HR facial components for identity preservation and to align HR facial components
to pre-defined positions, and thus their method is not suitable for very LR unaligned
non-frontal face images. Yin et al. [2017] combine 3DMM and a generative adver-
sarial network to frontalize faces with arbitrary poses. They also need to localize
facial landmarks when mapping the input faces to the 3DMM. Thus their method
requires sufficient resolutions for input images. Tran et al. [2017a] present a convo-
lutional neural network to regress 3DMM shape and texture parameters to speed up
the optimization of 3DMM, but their method does not render frontalized faces which
are similar to the input faces in terms of image intensity. Instead of localizing facial
landmarks explicitly in the face images, Chang et al. [2017] employ a simple CNN
to regress 6 degrees of freedom (6DoF) 3D head poses from image intensities. Then
the estimated 6DoF parameters can be used to align face images without localizing
facial landmarks explicitly. By transforming input image intensities with the estimat-
ed parameters, Chang et al. [2017] can preserve the appearance similarity between
the input faces and their counterparts in the generated views. However, since their
method needs to project facial landmarks from a 3D model to the input face images
when rendering faces in new views, landmark misalignments between the 3D model
and real face images may lead to artifacts in the generated images.

1.2.4 Generative Adversarial Networks

Image generation also has a close relationship to face hallucination when generated
images are faces. Goodfellow et al. [2014] propose a generative adversarial network
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(GAN), which is able to generate random face images from nothing but random
noise, but the resolution of constructed images is limited (i.e.48×48 pixels) due to
difficulty in training. Later, variants of GANs have been proposed to increase the
resolutions and quality of generated images [Denton et al., 2015; Radford et al., 2015;
Zhao et al., 2016; Arjovsky et al., 2017; Berthelot et al., 2017].

Similarly, variational auto-encoders (VAE) [Kingma and Welling, 2013] exploit
neural networks to generate an entirely new image that is endowed similar prop-
erties to the training data distribution from a random noise input, but their results
suffer from blurriness due to the lack of the discrimination in the model. Thus, the
adversarial loss is fused into VAE, known as VAE-GAN, to enhance the quality of
generated images [Larsen et al., 2016].

Instead of generating face images from noise, Reed et al. [2016] and Zhang et al.
[2017b] generate images based on textual inputs. Yan et al. [2016] use a conditional
CNN to generate faces based on attribute vectors. Perarnau et al. [2016] develop an
invertible conditional GAN to generate new faces by manipulating facial attributes
of the input images, while Shen and Liu [2016] change attributes of an input im-
age on its residual image by training two generative networks in a complementary
fashion. Since the above methods aim at generating new face images rather than
super-resolving faces, they cannot guarantee the identity information as well as the
appearance of the generated HR faces to be consistent with the input LR counter-
parts.

Conditional GANs have been used for the task of generating photographs from
sketches [Sangkloy et al., 2017; Nejati and Sim, 2011; Yuen and Man, 2007; Tang and
Wang, 2003; Sharma and Jacobs, 2011], or from semantic layout and scene attributes
[Karacan et al., 2016]. Isola et al. [2016] develop “pix2pix” framework which uses
Unet architecture and the patch-GAN to transfer low-level features from the input to
the output domain. In addition, pix2pix framework needs paired images from both
of the domains to train the networks. Considering paired images from two different
domains may not be available, Zhu et al. [2017] present a CycleGAN to bridge two
domains by unpaired images. Since these methods are patch based generative net-
works and may fail to capture the global structure of faces, these approaches produce
visual artifacts when they are applied to transfer the style of face images.

1.2.5 Style Transfer

Style transfer is a technique which can render a given content image (input) by in-
corporating a specific painting style while preserving the contents of input. Style
transfer methods can be roughly grouped into two categories: image optimization-
based methods and feed-forward style transfer methods.

The seminal optimization-based work [Gatys et al., 2016b] transfers the style of
an artistic image to a given photograph. It uses an iterative optimization to generate
a target image which is randomly initialized (Gaussian distribution). During the
optimization step, the statistics of the neural activations of the target, the content and
style images are matched. The idea of Gatys et al. [2016b] inspires many follow-up
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studies. Yin [2016] presents a content-aware style transfer method which initializes
the optimization algorithm with a content image instead of a random noise. Li and
Wand [2016a] propose a patch-based style transfer method by combining MRF and
CNN. The work [Gatys et al., 2016a] proposes to transfer the style by using linear
models, and it preserves colors of content images by matching color histograms.
Gatys et al. [2017] decompose styles into perceptual factors and then manipulate
them for the style transfer over spatial locations, color information and across spatial
scales. Selim et al. [2016] modify the content loss through a gain map for the head
portrait painting transfer. Risser et al. [2017] use histogram-based losses in their
objective and build on the algorithm of Gatys et al. [2016b]. Although the above
optimization-based methods further improve the quality of style transfer, they are
computationally expensive due to the iterative optimization procedure, thus limiting
their practical use.

To address the inefficient computational speed, feed-forward methods are pro-
posed to replace the original on-line iterative optimization step with training a feed-
forward neural network off-line and generating stylized images on-line [Ulyanov
et al., 2016a; Johnson et al., 2016; Li and Wand, 2016b].

Johnson et al. [2016] train a generative network for a fast style transfer by us-
ing perceptual loss functions. The perceptual loss function is employed to control
the content similarity between the stylized images and their original ones. The ar-
chitecture of the generator network follows the work [Radford et al., 2015] and al-
so uses residual blocks to increase the capacity of the network. Another concurrent
work [Ulyanov et al., 2016a], named Texture Network, employs a multi-resolution ar-
chitecture in the generator network. Furthermore, Ulyanov et al. [2016b] and Ulyanov
et al. [2017] replace the spatial batch normalization with the instance normalization
to achieve a faster convergence. Wang et al. [2017] enhance the granularity of the
feed-forward style transfer with a multimodal CNN which performs stylization hi-
erarchically via multiple losses deployed across multiple scales. Those feed-forward
methods perform stylization ∼1000 times faster than the optimization-based meth-
ods. However, they cannot adapt to arbitrary styles that are not used for training.
For instance, in order to synthesize an image from a new style, the entire networks
need retraining.

To deal with such a restriction, a number of recent approaches encode multi-
ple styles within a single feed-forward network [Dumoulin et al., 2016; Chen and
Schmidt, 2016; Chen et al., 2017; Li et al., 2017a]. Dumoulin et al. [2016] use con-
ditional instance normalization that learns normalization parameters for each style.
Given feature activations of the content and style images, Chen and Schmidt [2016]
replace content features with the closest-matching style features in a patch-by-patch
manner. Chen et al. [2017] present a network that learns a set of new filters for ev-
ery new style. Similarly, Li et al. [2017a] also adapt a single feed-forward network
via a texture controller module which forces the network to synthesize the desired
style only. Because style transfer aims to generate multiple stylized images from
one image, the existing feed-forward approaches need to compromise between the
generalization [Li et al., 2017a; Huang and Belongie, 2017; Zhang and Dana, 2017]
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and quality [Ulyanov et al., 2017, 2016b; Gupta et al., 2017]. On the contrary, we tar-
get at generating high-quality realistic face images from multiple stylized faces, and
style information is unknown beforehand. Therefore, state-of-the-art style transfer
methods cannot be directly applied to our task.

1.3 Thesis Outline

This thesis is formatted as a compilation of my publications during my PhD period
at The Australian National University.

In chapter 2, we develop a discriminative generative network to super-resolve
aligned very LR face images. Our network is able to upsample LR faces with different
pose and expression variations by a large upscaling factor 8×.

In chapter 3, we present a single network to ease the training difficulty of GAN
based upsampling networks as well as reduce artifacts caused by deconvolutional
layers and discriminative networks. We notice that our network may generate blurry
upsampled HR faces to achieve better quantitative results in terms of peak signal-to-
noise ratio (PSNR). Thus, we employ a post-processing step to enhance visual quality
of final results.

In chapter 4, we present a transformative discriminative network which embeds
spatial transformer network into the upsampling network to super-resolve unaligned
LR input images while aligning them automatically.

In chapter 5, we tackle the noisy unaligned very LR face images by exploiting a
transformative discriminative autoencoder, where a decoder-encoder-decoder struc-
ture is proposed to reduce noise while hallucinating input face images.

In chapter 6, we propose a two branch upsampling network to receive LR inputs
in different resolutions ranging from 16×16 pixels to 32×32 pixels. In this manner,
our network does not lose information of input images when feeding them into the
upsampling network.

Our previous works can super-resolve faces in nearly frontal poses. When the
pose variations are large, such as side-view faces, the proposed methods may fail to
localize the low-resolution facial patterns accurately, thus generating severe artifacts
in the upsampled faces. In chapter 7, we incorporate the facial structure into the
super-resolution process to handle input faces with large pose variations. Thus, we
propose a multitask convolutional neural network which not only super-resolves
faces but also predicts facial components. The estimated structure information from
upsampled feature maps is also exploited to facilitate face hallucination in return.

Even though the previous chapters propose different schemes to super-resolve
faces in different situations, the inherently ill-posed nature of super-resolution may
still lead to inaccurate hallucinated faces, such as gender reversal and age rejuvena-
tion. In chapter 8, we introduce an attribute embedded face super-resolution net-
work to mitigate the uncertainty caused by one to many mappings especially when
the magnification factor is very large, such as 8×.

Unlike the previous works which only focus on super-resolving input faces, in



§1.3 Thesis Outline 11

chapter 9, we design a transformative adversarial neural network to jointly frontalize
and super-resolve LR face images. The LR profile faces are firstly projected to latent
representations which are enforced to be similar to the representations of their frontal
counterparts and then we upsample the encoded representations by deconvolutional
layers. In this fashion, we achieve frontalized HR face images from the corresponding
LR non-frontal ones.

Inspired by our previous works on hallucinating LR face images, in chapter 10, we
develop a style removal network to recover photo-realistic face images from stylized
portraits by employing an `2 loss to constrain the appearance similarity between the
destylized faces and the ground-truth ones.

In chapter 11, we further exploit a feature-wise similarity constraint, known as
perceptual loss, to enforce the identity similarity between the destylized faces and
their ground-truths, as well as spatial transformer networks to align the destylized
faces simultaneously, which facilitate the proposed network to learn common facial
patterns.

During the procedure of face destylization, the original facial attributes, such as
skin and hair colors, are hard to be determined from the input stylized portraits. In
chapter 12, we present a face destylization network to restore photo-realistic faces
by using supplementary facial attributes. Benefiting from the high-level semantic
information (i.e., facial attributes), we can restore the facial details much closer the
ground-truth ones, even including skin and hair colors. Furthermore, we are able to
generate different destylized faces by editing the attributes rather than a determinis-
tic one, thus increasing the flexibility of face destylization.

In chapter 13, we draw the conclusions of our thesis and provide some future
research directions.
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Chapter 2

Ultra-Resolving Face Images by
Discriminative Generative
Networks

2.1 Foreword

As mentioned in the previous chapter, state-of-the-art methods require LR faces to
be precisely aligned and to have similar poses and expressions to the HR exem-
plary training dataset. In order to relax those requirements as well as achieve better
super-resolution performance, we exploit a deep convolutional neural network to
super-resolve LR faces, regarding that convolutional neural networks are robust to
translational misalignments and able to explore similar facial patterns from different
individuals. Therefore, we propose a discriminative generative network to super-
resolve face images by a large upscaling factor of 8× in this chapter.

This chapter has been published as a conference paper: Xin Yu, Fatih Porikli:
Ultra-Resolving Face Images by Discriminative Generative Networks. In European
Conference on Computer Vision (ECCV), 2016.

2.2 Abstract

Conventional face super-resolution methods, also known as face hallucination, are
limited up to 2∼4× scaling factors where 4 ∼ 16 additional pixels are estimated for
each given pixel. Besides, they become very fragile when the input low-resolution
image size is too small that only little information is available in the input image. To
address these shortcomings, we present a discriminative generative network that can
ultra-resolve a very low resolution face image of size 16× 16 pixels to its 8× larger
version by reconstructing 64 pixels from a single pixel. We introduce a pixel-wise `2

regularization term to the generative model and exploit the feedback of the discrimi-
native network to make the upsampled face images more similar to real ones. In our
framework, the discriminative network learns the essential constituent parts of the
faces and the generative network blends these parts in the most accurate fashion to
the input image. Since only frontal and ordinary aligned images are used in train-

13
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ing, our method can ultra-resolve a wide range of very low-resolution images directly
regardless of pose and facial expression variations. Our extensive experimental eval-
uations demonstrate that the presented ultra-resolution by discriminative generative
networks (UR-DGN) achieves more appealing results than the state-of-the-art.

2.3 Motivation

Face images arguably carry the most interesting and valuable visual information and
can be obtained in a non-intrusive manner. Still, for many applications from content
enhancement to forensics, face images require significant magnification.

In order to generate high-resolution (HR) face images from low-resolution (L-
R) inputs, face hallucination [Baker and Kanade, 2000; Liu et al., 2001; Baker and
Kanade, 2002; Wang and Tang, 2005; Liu et al., 2007; Jia and Gong, 2008; Yang et al.,
2010; Ma et al., 2010; Tappen and Liu, 2012; Yang et al., 2013; Zhou and Fan, 2015;
Wang et al., 2014] attracted great interest in the past. These state-of-the-art face hal-
lucination methods can achieve exciting results up to 4× upscaling factors when
accurate facial features and landmarks can be found in LR images [Tappen and Liu,
2012; Yang et al., 2013], manual supervision is provided, suitably similar HR images
of the same person are included in the support dataset, and the exemplar HR face
images are densely aligned [Wang and Tang, 2005; Liu et al., 2007; Jia and Gong,
2008; Yang et al., 2010]. When the input image resolution becomes smaller, landmark
based methods fail gravely because of erroneous landmark localization. In other
words, their performances highly depend on the input image size. Furthermore,
when the appearances of the input LR images are different from the HR images in
the dataset due to pose, lighting and expression changes, subspace based methods
degrade by producing ghosting artifacts in the outputs.

When ultra-resolving (8× scaling factor) a low-resolution image, almost 98.5%
of the information is missing. This is a severely ill-posed problem. As indicated
in [Yang et al., 2014], when the scaling factor increases to 8×, the performances of
existing approaches degrade acutely.

Our intuition is that by better exploring the information available in the natural
structure of face images, appearance similarities between individuals, and emerg-
ing large-scale face datasets [Huang et al., 2007; Liu et al., 2015], it may be possible
to derive competent models to reconstruct authentic 8× magnified HR face images.
Deep neural networks, in particular convolutional neural networks (CNN), are in-
herently suitable for learning from large-scale datasets. Very recently, CNN based
generic patch super-resolution methods have been proposed [Dong et al., 2016a; Kim
et al., 2016a] without focusing on any image class. A straightforward retraining
(fine-tuning) of these networks with face image patches cannot capture the global
structure of faces. As shown in Fig. 2.1(e), these networks fail to produce realistic
and visually pleasant results. In order to retain the global structure of faces while
being able to reconstruct instance specific details, we use whole face images to train
our networks.
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(a) LR (b) HR (c) NN (d) Bicubic (e) Dong et al. (f) Ours (g) Ours

Figure 2.1: Comparison of our UR-DGN over CNN based super-resolution. (a) 16×
16 pixels LR face images [given]. (b) 128× 128 original HR images [not given]. (c) The
nearest neighbors of (a) in the training set. (d) Upsampling by bicubic interpolation.
(e) The results generated by the CNN based super-resolution [Dong et al., 2016a].
This network is retrained with face images. (f) Our UR-DGN without the feedback of

the discriminative model. (g) Our UR-DGN.

We are inspired from the generative adversarial network (GAN) [Goodfellow
et al., 2014] that consists of two topologies: a generative network G that is designed to
learn the distribution of the training data samples and generate a new sample similar
to the training data, and a discriminative network D that estimates the probability
that a sample comes from the training dataset rather than G. This work is empowered
with a Laplacian pyramid by Denton et al. [2015] to progressively generate images
due to the higher dimensional nature of the training images. One advantage of GAN
is that it generates face images yet sharp images from nothing but noise. However, it
has two serious shortcomings: (i) The output faces are totally random. (ii) GAN has
fixed output size limitation (32× 32 [Goodfellow et al., 2014] and 64× 64 [Denton
et al., 2015] pixels). Therefore, GAN cannot be used for ultra-resolution directly.

Instead of noise, we apply the LR face image l as the input for our discriminative-
generative network (DGN) and then generate an HR face image ĥ. In order to enforce
the similarity between the generated HR face image ĥ and the exemplar HR image
h, we impose a pixel-wise `2 regularization on the differences between ĥ and h in the
generative network. This enables us to constrain the affinity between the exemplar
HR images and the generated HR images. Hereby, a loss function layer is added to
G. Finally, the generative network G produces an HR image consistent with the ex-
emplar HR image. In training DGN, the discriminative network D provides feedback
to G to distinguish whether the upsampled face image is considered (classified by
the D) as real (sharp) or as generated (smooth). As shown in Fig. 2.1(f), by direct-
ly upsampling images by the generative network G, we are not able to obtain face
images with sharp details. In contrast, with the help of the network D, we can gen-
erate much sharper HR face images, as shown in Fig. 2.1(g). Since the discriminative
network is designed to distinguish between the real face images and generated ones,
the generative network can produce HR face images more similar to real images.
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Our method does not make any explicit assumption or require the location of the
facial landmarks. Because the convolutional neural network topologies we use pro-
vide robustness to translations and deformations, our method does not need densely
aligned HR face images or constrain the face images to controlled settings, such as
the same pose, lighting and facial expression. Our approach only requires frontal
and approximately nearby eye locations in the training images, which can be easily
satisfied in most of face datasets. Hence, our UR-DGN method can ultra-resolve 8×
a wide range of LR images without taking other information into account.

Overall, the contributions of this paper are mainly in four aspects:

• We present a novel method to ultra-resolve, 8× scaling factor, low-resolution
face images. The size of our input low-resolution images is tiny, 16× 16 pixels,
which makes the magnification task even more challenging as almost all facial
details are missing. We reconstruct 64 pixels from only 1 pixel.

• To the best of our knowledge, our method is the first attempt to develop
discriminative generative networks for generating authentic face images. We
demonstrate that our UR-DGN achieves better visual results than the state-of-
the-art.

• We show that by introducing a pixel-wise `2 regularization term into the net-
work and backpropagating its residual, it is possible to ultra-resolve in any size
while GANs can only generate images in fixed and small sizes.

• When training our network, we only require frontal and approximately aligned
images, which makes the training datasets more attainable. Our UR-DGN can
ultra-resolve regardless of pose, lighting and facial expressions variations.

• Due to its feed-forward topology, our ultra-resolution method is very fast.

2.4 Related Work

Super-resolution can be basically classified into two categories: generic super-resolution
methods and class-specific super-resolution methods. When upsampling LR images,
generic methods employ priors that ubiquitously exist in natural images without
considering any image class information. Class-specific methods, also called face
hallucination [Baker and Kanade, 2000] if the class is face, aim to exploit statistical
information of objects in a certain class. Thus, they usually attain better results than
generic methods when super-resolving images of a known class.

Generic super-resolution: In general, generic single image super-resolution
methods have three types: interpolation based methods, image statistics based meth-
ods [Peleg and Elad, 2014; Yang and Yang, 2013] and example (patch)-based method-
s [Freeman et al., 2002; Hong Chang et al., 2004; Glasner et al., 2009; Yang et al., 2010;
Schulter and Leistner, 2015; Huang et al., 2015]. Interpolation based methods such as
bilinear and bicubic upsampling are simple and computationally efficient, but as the
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scaling factor increases, they generate overly smooth edges and fail create high reso-
lution details. Image statistics based methods employ natural image priors to predict
HR images, but they are limited to smaller scaling factors [Lin and Shum, 2006].
Example-based methods have potential to break this limitation of the maximum s-
caling factor. Several works [Glasner et al., 2009; Freedman and Fattal, 2010; Singh
et al., 2014; Huang et al., 2015] exploit self-similarity of patches in an input image to
generate high resolution patches. Freeman et al. [2002] and Hong Chang et al. [2004]
construct LR and HR patch pairs from a training dataset, and then the nearest neigh-
bor of the input patch is searched in the LR space. The HR output is reconstructed
from the corresponding HR patch. Yang et al. [2010] propose a sparse representa-
tion formulation by reconstructing corresponding LR and HR dictionaries, while Gu
et al. [2015] apply convolutional sparse coding instead of patch-based sparse coding.
Recently, several deep learning based methods [Dong et al., 2016a; Kim et al., 2016a]
have been proposed. Dong et al. [2016a] incorporate convolutional neural networks
to learn a mapping function between LR and HR patches from a large-scale dataset.
Since many different HR patches may correspond to one LR patch, the output images
would suffer from artifacts at the intensity edges. In order to reduce the ambiguity
between the LR and HR patches, Bruna et al. [2016] exploit the statistical information
learned from deep convolutional network to reduce ambiguity between LR and HR
patches.

Face hallucination: Unlike generic methods, class-specific super-resolution meth-
ods [Baker and Kanade, 2000; Liu et al., 2001; Baker and Kanade, 2002; Wang and
Tang, 2005; Liu et al., 2007; Jia and Gong, 2008; Ma et al., 2010; Tappen and Liu, 2012;
Yang et al., 2013; Zhou and Fan, 2015; Wang et al., 2014] further exploit the statisti-
cal information in the image categories, thus leading to better performances. In one
of the earlier works, Baker and Kanade [2000] build the relationship between HR
and LR patches using Bayesian formulation such that high-frequency details can be
transferred from the dataset for face hallucination. It can generate face images with
richer details. However, artifacts also appear due to the possible inconsistency of the
transferred HR patches.

The work [Wang and Tang, 2005] employs constraints on both LR and HR images,
and then hallucinate HR face images by an eigen-transformation. Although it is able
to magnify LR images by a large scaling factor, the output HR images suffer from
ghosting artifacts as a result of using a subspace. Similarly, Liu et al. [2007] enforce
linear constraints for HR face images using a subspace learned from the training
set via Principle Component Analysis (PCA), and a patch-based Markov Random
Field is proposed to reconstruct the high-frequency details in the HR face images.
This method works only when the images are precisely aligned at fixed poses and
expressions. In other cases, the results usually contain ghosting artifacts due to PCA
based holistic appearance model. To mitigate artifacts a blind bilateral filtering is
used as a post-processing step. Instead of imposing global constraints, Ma et al.
[2010] use multiple local constraints learned from exemplar patches, and Li et al.
[2014] reserve to sparse representation on the local structures of faces. Kolouri and
Rohde [2015] use optimal transport in combination with subspace learning to morph
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an HR image from the LR input. These subspace based methods require that face
images in the dataset are precisely aligned and the test LR image has the same pose
and facial expression as the HR face images.

In order to handle various poses and expressions, Tappen and Liu [2012] integrate
SIFT flow to align images. This method performs adequately when the training
face images are highly similar to the test face image in terms of identity, pose, and
expression. Since it uses local features to match image segments, the global structure
is not preserved either.

By exploiting local structures of face images, Yang et al. [2013] present a struc-
tured face hallucination method. It divides a face image into facial components,
and then maintains the structure by matching gradients in the reconstructed output.
However, this method relies on accurate facial landmark points that are usually un-
available when the image size is very small. The recent work in [Zhou and Fan, 2015]
proposes a bichannel CNN to hallucinate face images in the wild. Since it needs to
extract features from the input images, the smallest input image size is 48× 48.

Some generative networks [Kingma and Welling, 2013; Goodfellow et al., 2014;
Denton et al., 2015; Radford et al., 2015] can generate random face images from
nothing but random noise. Among those generative models, generative adversari-
al networks (GANs) [Goodfellow et al., 2014; Denton et al., 2015] can generate face
images with much sharper details due to the discriminative network. However, the
generated images are only similar in the class domain but different in the appear-
ance domain. In other words, GAN is capable of generating only random faces.
Moreover, GAN only uses the cross entropy loss function of discriminative models
to optimize the entire network. Hence, the generative models in GAN are difficult
to generate images in high resolutions. For instance, Goodfellow et al. [2014] only
produce images of size 32× 32 pixels.

2.5 Proposed Ultra-Resolution Method

A processing pipeline of UR-DGN is shown in Fig. 2.2. Below, we present the pipeline
of UR-DGN and describe the details of training the network. We also discuss the
differences between UR-DGN and GAN.

2.5.1 Model Architecture

Let us first recap the generative model G that takes a noise vector z from a distribu-
tion Pnoise(z) as an input and then outputs an image x̂ in [Goodfellow et al., 2014].
The discriminative model D takes an image stochastically chosen from either the
generated image x̂ or the real image x drawn from the training dataset with a dis-
tribution Pdata(x) as an input. D is trained to output a scalar probability, which is
large for real images and small for generated images from G. The generative model
G is learned to maximize the probability of D making a mistake. Thus a minmax
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Figure 2.2: The pipeline of UR-DGN. In the testing phase, only the generative net-
work in the red dashed block is employed.

objective is used to train these two models simultaneously

min
G

max
D

Ex∼Pdata(x)[log D(x)] + Ez∼Pnoise(z)[log(1− D(G(z)))]. (2.1)

This equation encourages G to fit Pdata(x) so as to fool D with its generated samples
x̂.

We cannot directly employ Eqn. 2.1 for the ultra-resolution task since GAN takes
noise as input to learn the distribution on the training dataset. In UR-DGN, we
design a deconvolutional network [Zeiler et al., 2011] as the generative model G to
ultra-resolve LR inputs, and a convolutional network as the discriminative model D.
We construct LR and HR face image pairs {li, hi} as the training dataset. Because the
generated HR face image ĥi should be similar to its corresponding HR image hi, a
pixel-wise `2 regularization term induces the similarity. Thus, the objective function
F(G, D) is modeled as follows:

min
G

max
D

F(G, D) = Ehi∼PH(h)[log D(hi)] + Eli∼PL(l)[log(1− D(G(li)))]

+ λE(hi ,li)∼PHL(h,l)[‖ĥi − hi‖2
F]

= Ehi∼PH(h)[log D(hi)] + Eli∼PL(l)[log(1− D(G(li)))]

+ λE(hi ,li)∼PHL(h,l)[‖G(li)− hi‖2
F],

(2.2)
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where PL(l) and PH(h) represent the distributions of LR and HR face images respec-
tively, PHL(h, l) represents the joint distribution of HR and LR face images, and λ is
a trade-off weight to balance the cross entropy loss of D and the Euclidean distance
loss of G.

2.5.2 Training of the Network

The parameters of the generative network G and the discriminative network D are
updated by backpropagating the loss in Eqn. 2.2 through their respective networks.
Specifically, when training G, the loss of the last two terms in Eqn. 2.2 is backpropa-
gated through G to update its parameters. When training D, the loss of the first two
terms in Eqn. 2.2 is backpropagated through D to update its parameters.

Training D: Since D is a CNN with a negative cross-entropy loss function, back-
propation is used to train the parameters of D. Thus, the derivative of the loss
function F(G, D) with respect to D is required when updating the parameters in D.
It is formulated as follows:

∂F(G, D)

∂D
= ∇θD

(
Ehi∼PH(h)[log D(hi)] + Eli∼PL(l)[log(1− D(G(li)))]

)
, (2.3)

where θD is the parameters of D, and ∇ is the derivative operator. Specifically, given
a batch of LR and HR image pairs {li, hi}, i = 1, . . . , N, the stochastic gradient of the
discriminator D is written as

∂F(G, D)

∂D
= ∇θD

(
1
N

N

∑
i=1

log D(hi) + log(1− D(G(li)))

)
, (2.4)

where N is the number of LR and HR face image pairs in the batch. Since we need to
maximize D, the parameters θD are updated by ascending their stochastic gradients.
RMSprop [Hinton, 2012] is employed to update the parameters θD as follows:

δj+1 = αδj + (1− α)(
∂F(G, D)

∂D
)2,

θ
j+1
D = θ

j
D + η

∂F(G, D)

∂D
/
√

δj+1 + ε.
(2.5)

where η and α represent the learning rate and the decay rate respectively, j indicates
the iteration index, ε is set to 10−8 as a regularizer to avoid division by zero, and δ is
an auxiliary variable.

Training G: G is a deconvolutional neural network [Zeiler et al., 2011]. It is
trained by backpropagation as well. Similar to training D, the derivative of the loss
function F(G, D) with respect to G is written as

∂F(G, D)

∂G
= ∇θG

(
Eli∼PL(l)[log(1− D(G(li)))]

+λE(hi ,li)∼PHL(h,l)[‖G(li)− hi‖2
F]
)

, (2.6)
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Algorithm 1 Minibatch stochastic gradient descent training of UR-DGN
Input: minibatch size N, LR and HR face image pairs {li, hi}, maximum number of

iterations K.
1: while iter < K do
2: Choose one minibatch of LR and HR image pairs {li, hi}, i = 1, . . . , N.
3: Generate one minibatch of HR face images ĥi from li, i = 1, . . . , N, where ĥi =

G(li).
4: Update the parameters of the discriminative network D by using Eqn. 2.4 and

Eqn. 2.5.
5: Update the parameters of the generative network G by using Eqn. 2.7 and

Eqn. 2.8.
6: end while

Output: UR-DGN.

where θG denotes the parameters of G. Given a batch of LR and HR face image pairs
{li, hi}, i = 1, . . . , N, the stochastic gradient of the generator G is

∂F(G, D)

∂G
= ∇θG

(
1
N

N

∑
i=1

log(1− D(G(li))) + λ‖G(li)− hi‖2
F

)
. (2.7)

Since we will minimize the cost function for G, the parameters θG are updated by
descending their stochastic gradients as follows:

δj+1 = αδj + (1− α)(
∂F(G, D)

∂G
)2,

θ
j+1
G = θ

j
G − η

∂F(G, D)

∂G
/
√

δj+1 + ε.
(2.8)

In our algorithm, we set the learning rate η to 0.001 and the decay rate to 0.01, and
the learning rate is multiplied by 0.99 after each epoch. Since we super-resolve an
image rather than generate a face image, we set λ to 100 to constrain the similarity
between the generated face image G(li) and the exemplar HR face image hi. The
training procedure of our UR-DGN is presented in Algorithm 1.

2.5.3 Ultra-Resolution of a Given LR Image

The discriminative network D and the pixel-wise `2 regularization are only required
in the training phase. In the ultra-resolution (testing) phase, we take LR face images
as the inputs of the generative network G, and the outputs of G are the ultra-resolved
face images. This end-to-end mapping is able to keep the global structure of HR face
images while reconstructing local details.
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(a) LR (b) HR (c) GAN∗ (d) GAN (e) Ours

Figure 2.3: Illustration of the differences between GAN and our UR-DGN. (a) Given
LR image. (b) Original HR image (not used in training). (c) GAN∗: GAN with no
fully connected layer. Without a fully connected layer, GAN∗ cannot rearrange the
convolutional layer features (activations) of the input noise to a face image. (d) GAN
with fully connected layer. Given the test LR image (not noise!), GAN still outputs a

random face image. (d) Result of our UR-DGN.

2.5.4 Differences between GAN and UR-DGN

GAN of [Goodfellow et al., 2014] consists of fully connected layers, while Denton
et al. [2015] use a fully connected layer and deconvolutional layers. In [Denton et al.,
2015], the noise input is required to be fed into a fully connected layer first before
fed into deconvolutional layers. The fully connected layer can be considered as a
nonlinear mapping from the noise to the activations of a feature map. If we remove
the fully connected layer while leaving other layers unchanged, GAN will fail to
produce face images, as shown in Fig. 2.3(c). Therefore, fully connected layers are
necessary for GAN.

Since deconvolutional layers are able to project low-resolution feature maps back
to high-resolution image space, we take an LR face image as a 3-channel feature map,
and then project this LR feature map into the HR face image space. However, the
fully connected layers are not necessary in our UR-DGN. Because LR face images are
highly structured, they can be regarded as feature maps after normalization, which
scales the range of intensities between −1.0 and 1.0. Feeding an LR face image into
a fully connected layer may destroy the global structure of the feature map, i.e. the
input LR face image. In other words, UR-DGN does not need a nonlinear mapping
from an input LR image to a feature map via a fully connected layer.

Furthermore, since there is no pixel-wise regularization in GAN, it cannot pro-
duce HR results faithful to the input LR face images and generate high-quality face
images as the output size increases as shown in Fig. 2.3(d). In conclusion, the original
architecture of GAN cannot be employed in the ultra-resolution problem.

2.6 Experiments

In order to dissect the performance of UR-DGN, we evaluate it qualitatively and
quantitatively, and compare with the state-of-the-art methods [Liu et al., 2007; Yang
et al., 2010, 2013; Dong et al., 2016a; Ma et al., 2010]. The method of Liu et al.
[2007] is a subspace based face hallucination method. The work in [Yang et al., 2010]
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uses sparse representations to super-resolve HR images by constructing LR and HR
dictionaries. The method of Yang et al. [2013] hallucinates face images by using
facial components from exemplar images in the dataset. Dong et al. [2016a] employ
CNN to upsample images. Ma et al. [2010] use position-patches in the dataset to
reconstruct HR images.

2.6.1 Datasets

We trained UR-DGN with the celebrity face attributes (CelebA) dataset [Liu et al.,
2015]. There are more than 200K images in this dataset, where Liu et al. [2015] use
similarity transformation to align the locations of eye centers. We use the cropped
face images for training. Notice that the images in this dataset cover remarkably
large pose variations and facial expressions. We do not classify the face images into
different subcategories according to their poses and facial expressions when training
UR-DGN.

We randomly draw 16, 000 aligned and cropped face images from the CelebA
dataset, and then resize them to 128× 128. We use 15, 000 images for training, 500
images for validation, and 500 images for testing. Thus, our UR-DGN model never
sees the test LR images in the training phase.

We downsample the HR face images to 16× 16 pixels (without aliasing), and then
construct the LR and HR image pairs {li, hi}. The input of UR-DGN is an image of
size 16× 16 with 3 RGB channels, and the output is an image of size 128× 128 with
3 RGB channels.

2.6.2 Comparisons with SoA

We do side-by-side comparisons with five state-of-the-art face hallucination methods.
In case an approach does not allow 8× scaling factor directly, i.e. [Yang et al., 2010]
and [Dong et al., 2016a], we repeatedly (three times) apply a scaling factor 2× when
ultra-resolving an LR image. For a fair comparison, we use the same dataset CelebA
for training of all other algorithms. Furthermore, we apply bicubic interpolation to
all input LR images as another baseline.

Comparison with Liu et al.’s method: Since this method requires the face im-
ages in the dataset to be precisely aligned, it is difficult for it to learn a representative
subspace from the CelebA dataset where face images have large variations. There-
fore, the global model of the input LR image cannot be represented by the learned
subspace, and its local model impels patchy artifacts on the output. As shown in
Fig. 2.4(d), Fig. 2.5(d) and Fig. 2.6(d), this method cannot recover face details accu-
rately, and suffers from distorted edges and blob-like artifacts.

Comparison with Yang et al.’s method: As illustrated in Fig. 2.4(e), Fig. 2.5(e)
and Fig. 2.6(e), Yang et al.’s method does not recover high-frequency facial details.
Besides, non-smooth over-emphasized edge artifacts appear in their results. As the
scaling factor becomes larger, the correspondence between LR and HR patches be-
comes ambiguous. Therefore, their results suffer exaggerated pixellation pattern of
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2.4: Comparison with the state-of-the-art methods on frontal faces. (a) LR
inputs. (b) Original HR images. (c) Bicubic interpolation. (d) The method of Liu
et al. [2007]. (e) The method of Yang et al. [2010]. (f) The method of Yang et al.
[2013]. (g) The method of Dong et al. [2016a]. (h) The method of Ma et al. [2010]. (i)
UR-DGN. (please zoom-in to see the differences between (f) and (g). In (f), there are

artificial facial edges while (g) has jitter artifacts.)

the LR, similar to a contrast enhanced bicubic upsampled results.
Comparison with Yang et al.’s method: This method requires landmarks of fa-

cial components and building on them, and reconstructs transferred high-resolution
facial components over the low-resolution image. In 16× 16 input images, it is ex-
tremely difficult to localize landmarks. Hence, this method cannot correctly transfer
facial components as shown in Fig. 2.4(f), Fig. 2.5(f) and Fig. 2.6(f). In contrast, UR-
DGN does not need landmark localization and still preserve the global structure.

Comparison with Dong et al.’s method: It applies convolutional layers to learn
a generic patch-based mapping function, and achieves state-of-the-art results on nat-
ural images. Even though we retrain their CNN on face images to suit better for face
hallucination, this method cannot generate high-frequency facial details except some
noisy spots in the HR images as shown in Fig. 2.4(g), Fig. 2.5(g) and Fig. 2.6(g).

Comparison with Ma et al.’s method: This method employs local constraints
learned from positioned exemplar patches to avoid ghosting artifacts caused by a
global model such as PCA. However, it requires the exemplar patches to be precisely
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2.5: Facial expression: Comparison with the state-of-the-art methods on im-
ages with facial expressions. (a) LR inputs. (b) Original HR images. (c) Bicubic
interpolation. (d) The method of Liu et al. [2007]. (e) The method of Yang et al.
[2010]. (f) The method of Yang et al. [2013]. (g) The method of Dong et al. [2016a].
(h) The method of Ma et al. [2010]. (i) UR-DGN. (please zoom-in to see the differences

between (f) and (g) )

Table 2.1: Quantitative comparisons on the entire test dataset

Methods PSNR SSIM

Bicubic 23.22 0.67
[Liu et al., 2007] 21.60 0.55

[Yang et al., 2010] 21.35 0.60
[Yang et al., 2013] 23.07 0.65

[Dong et al., 2016a] 23.11 0.65
[Ma et al., 2010] 23.12 0.64

Ours 24.82 0.70

aligned. As shown in Fig. 2.4(h), Fig. 2.5(h) and Fig. 2.6(h), this method suffers from
obvious blocking artifacts and uneven oversmoothing as a result of the unaligned
position patches in the dataset CelebA.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2.6: Pose: Comparison with the state-of-the-art methods on face images with
different poses. (a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d)
The method of Liu et al. [2007]. (e) The method of Yang et al. [2010]. (f) The method
of Yang et al. [2013]. (g) The method of Dong et al. [2016a]. (h) The method of Ma
et al. [2010]. (i) UR-DGN. (please zoom-in to see the differences between (f) and (g) )

In contrast to the above approaches, our method provides more visually pleasant
HR face images that not only contain richer details but also are similar to the original
(not given to our method). UR-DGN takes the input LR image as a whole and
reduces the ambiguity of the correspondence between LR and HR patches. Our
method attains much sharper results.

2.6.3 Quantitative Results

We also assess UR-DGN performance quantitatively by comparing the average PSNR
and structural similarity (SSIM) on the entire test dataset. Table 2.1 shows that our
method achieves the best performance. As expected, bicubic interpolation achieves
better results than the other baselines since it explicitly builds on pixel-wise intensity
values without any hallucination. Notice that bicubic interpolation achieves the sec-
ond best results, which implies that the high-frequency details reconstructed by the
state-of-the-art methods are not authentic. Our method on the other hand achieves
facial details consistent with real faces as it attains the best PSNR and SSIM results
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while improving the PSNR an impressive 1.6 dB over the previous best.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2.7: Comparison with the state-of-the-art methods on unaligned faces. (a) LR
inputs. (b) Original HR images. (c) Bicubic interpolation. (d) The method of Liu et al.
[2007]. (e) The method of Yang et al. [2010]. (f) The method of Yang et al. [2013]. (g)
The method of Dong et al. [2016a]. (h) The method of Ma et al. [2010]. (g) UR-DGN.

(a)LR,HR (b) UR-DGN

Figure 2.8: Illustrations of influence of occlusions. Top row: the LR inputs, bottom
row: the results of UR-DGN. (a) LR and HR images. (b) Results of UR-DGN with
occlusions. As seen, occlusions of facial features and landmarks (eyes, mouth, etc.)

does not cause any degradation of the unoccluded parts of the faces.

2.7 Limitations

Since we use a generative model to ultra-resolve LR face images, if there are oc-
clusions in the images, our method cannot resolve the occlusions. Still, occlusions
of facial features do not adversely affect ultra-resolution of the unoccluded parts as
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(a)LR,HR (b) UR-DGN

Figure 2.9: Effects of misalignment. Top row: the LR images, bottom row: the results
of UR-DGN. (a) LR and HR images. (b) Results with translations. From left to
right, the y-axis translations are from -4 to +4 pixels. Notice that, the size of the LR
image is 16× 16 pixels. As visible, UR-DGN is robust against severe translational

misalignments.

shown in Fig. 2.8.
Our algorithm alleviates the requirements of exact face alignment. As shown in

Fig. 2.7 and Fig. 2.9, it is robust against translations, but sensitive to rotations. As
a future work, we plan to investigate incorporating an affine transformation esti-
mator and adapting the generative network according to estimated transformation
parameters.

2.8 Conclusion

We present a new and very capable discriminative generative network to ultra-
resolve very small LR face images. Our algorithm can both increase the input LR
image size significantly, i.e. 8×, and reconstruct much richer facial details. The larg-
er scaling factors beyond 8× only require larger training datasets (e.g., larger than
128× 128 training face images for 16× 16 inputs), and it is straightforward to achieve
even much extreme ultra resolution results.

By introducing a pixel-wise `2 regularization on the generated face images into
the framework of DGN, our method is able to generate authentic HR faces. Since our
method learns an end-to-end mapping between LR and HR face images, it preserves
well the global structure of faces. Furthermore, in training, we only assume the
locations of eyes to be approximately aligned, which significantly makes the other
face datasets more attainable.



Chapter 3

Imagining the Unimaginable Faces
by Deconvolutional Networks

3.1 Foreword

In chapter 2, we present an ultra-resolution discriminative generative network (UR-
DGN) to hallucinate very low-resolution face images. Since our proposed URDGN
also suffers from the training difficulty similar to generative adversarial networks
(GANs), the convergence of URDGN might be unstable. In particular, the discrimi-
native network may also introduce artifacts into the generative network. In this chap-
ter, we present a single deconvolutional-convolutional network to ease the training
difficulty of URDGN as well as reduce artifacts caused by the deconvolutional layers
and the discriminative network in URDGN. Furthermore, we demonstrate that with
data augmentation the proposed network is able to upsample rotationally unaligned
faces.

This chapter has been published as a journal paper: Xin Yu, Fatih Porikli: Imag-
ining the Unimaginable Faces by Deconvolutional Networks. IEEE Transactions on
Image Processing, 27(6): 2747-2761, 2018.

3.2 Abstract

We tackle the challenge of constructing 64 pixels for each individual pixel of a thumb-
nail face image. We show that such an aggressive super-resolution objective can
be attained by taking advantage of the global context and making the best use of
the prior information portrayed by the image class. Our input image is so small
(e.g., 16×16 pixels) that it can be considered as a patch of itself. Thus, conven-
tional patch-matching based super-resolution solutions are unsuitable. In order to
enhance the resolution while enforcing the global context, we incorporate a pixel-
wise appearance similarity objective into a deconvolutional neural network, which
allows efficient learning of mappings between low-resolution input images and their
high-resolution counterparts in the training dataset. Furthermore, the deconvolu-
tional network blends the learned high-resolution constituent parts in an authentic
manner where the face structure is naturally imposed and the global context is pre-

29
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served. To account for the possible artifacts in upsampled feature maps, we employ
a sub-network composed of additional convolutional layers. During training, we use
roughly aligned images (only eye locations), yet demonstrate that our network has
the capacity to super-resolve face images regardless of pose and facial expression
variations. This significantly reduces the requirement of precisely face alignments
in the dataset. Owing to the network topology we apply, our method is robust to
translational misalignments. In addition, our method is able to upsample rotation-
al unaligned faces with data augmentation. Our extensive experimental analysis
manifests that our method achieves more appealing and superior results than the
state-of-the-art.

3.3 Introduction

The human face is perhaps the most powerful channel of nonverbal communication.
It provides valuable clues to our own feelings and those of the people around us.
Even in the most simple interaction, our attention naturally gravitates to the face,
seeking to read some of the vital information is “written” there. Faces also play an
important role in physical attractiveness.

Naturally, face perception is possible if the face is visible in sufficient detail and
resolution. When the face image is imperceptibly small, its resolution has to be super-
resolved with a large upscaling factor. However, conventional super-resolution (SR)
methods are mostly limited up to 2 ∼ 4× upscaling factors. As reported in [Yang
et al., 2014], when the upscaling factor increases to 8×, the performance of most SR
techniques decreases rapidly, rendering them unsuitable for this challenge.

Existing state-of-the-art SR methods highly rely on a variety of assumptions about
the quality of the given low-resolution (LR) image and the availability of an associ-
ated set of high-resolution (HR) images. They are applicable only when (i) accurate
facial features and landmarks can be found in LR images [Yang et al., 2013; Zhu
et al., 2016b], (ii) similar appearances of the “same” person are included in the ref-
erence HR dataset [Tappen and Liu, 2012], and (iii) the exemplar HR face images
are “densely” aligned in order to derive a representative subspace [Wang and Tang,
2005; Liu et al., 2007; Jia and Gong, 2008; Yang et al., 2010; Kolouri and Rohde, 2015].
When the input image resolution is inadequately small, the performance of the face
SR methods that require detection of precise landmarks for a dense alignment de-
grades dramatically due to the problematic localization of such refined features and
landmark points. This is a consequence of the fact that there is little margin for error
or flexibility when the LR image is tiny. Typical pose, facial expression and illumina-
tion differences between the input LR image and exemplary HR images hinder the
ability of subspace-based face SR methods in capturing local variations and lead to
unavoidable ghosting artifacts in the reconstructed HR images.

Several super-resolution methods based on deep neural networks have been pro-
posed [Dong et al., 2016a,b; Kim et al., 2016a; Bruna et al., 2016; Kim et al., 2016a,b;
Mao et al., 2016] recently. However, these methods are all patch based and ignore
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(a) LR (b) HR (c) NN (d) Bicubic (e) RED (f) Ours

Figure 3.1: Comparison of our method with the CNN based super-resolution. (a) The
input 16× 16 LR image. (b) The original 128× 128 HR image. (c) The corresponding
HR version of the nearest neighbor of (a) in the training set. (d) Bicubic interpolation
of (a). (e) The image generated by the CNN based super-resolution [Mao et al., 2016].
Notice that, the CNN based approach is further fine-tuned with a large corpus of face

images. (f) Our result.

image class information. As shown in Fig. 3.1(e), the Convolutional Neural Network
(CNN) based network [Mao et al., 2016], even when it has been retrained with face
images, fails to produce authentic facial details.

When super-resolving an LR image with an 8× upscaling factor, 98.5% of the
original information is missing. Hallucinating such a significant chunk of missing
information is an ill-posed problem without a competent regularization term and
efficient exploitation of strong priors.

As a solution, we exploit a variant of deconvolutional neural networks [Zeiler and
Fergus, 2014] to learn the mappings between the LR facial patterns and HR facial de-
tails across individual samples while maintaining the underlying global structure of
face images by taking advantage of the collective representation power of large-scale
face datasets [Huang et al., 2007; Liu et al., 2015]. Deconvolutional layers, also known
as backwards-convolutional layers, are convolutional layers where the forward and
backward passes are reversed. In other words, for a stride larger than 1, the output
of such a deconvolutional layer has larger resolution than its inputs. They are first
utilized in the works [Zeiler et al., 2010; Zeiler and Fergus, 2014] to visualize the
features a CNN has learned by back-projecting activations in the low-dimensional
feature maps to the high-dimensional image domain. Rather than projecting feature
activations to the image domain, Long et al. [2015] use a deconvolutional network to
upsample heat maps while Fischer et al. [2015] upsample optical flow fields. Howev-
er, the upsampling results of these methods tend to be over-smoothed without pro-
nounced high-frequency details. To enhance image details, Shi et al. [2016] present
a variant of deconvolutional networks that rearranges multiple LR feature maps into
an HR image as its output. These deconvolutional networks do not formulate the
super-resolution task on class-specific settings; hence, they fail to model and gen-
erate valuable class-specific cues. Furthermore, since our deconvolutional layers are
not used for back-projecting activations of feature maps, our method does not require
unpooling layers for super-resolution.

Our intuition is that, deconvolutional networks can be trained to generate certain
HR image patterns given specific LR activations by presenting the network with a
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set of well-structured LR-HR image pairs. Such well-structured data conveniently
exists for the face class. Our analysis in Sec. 3.5.3 demonstrates that deconvolutional
networks can be trained to recognize particular facial patterns.

In the training stage of our deconvolutional neural network, we feed the entire
images, i.e., not patches but whole faces, into our network. This allows maintaining
the global structure of faces while reconstructing instance specific details. As a result,
our deconvolutional network produces realistic HR facial components that seamless-
ly blend into an HR face image. Since the filters in each layer of our deconvolutional
neural network architecture are applied to the entire image, our method achieves ro-
bustness to spatial translations and deformations of input faces. For training, we use
approximately frontal HR face images that are only aligned at eye locations, which
is readily available for most face datasets. We do not make any assumption on facial
landmarks and facial expressions.

Overall, our contributions are fourfold:

• We present a novel method to super-resolve with an 8× upscaling factor a very
small (16× 16 pixels) face image.

• Our method consolidates a deconvolutional network for hallucinating face im-
ages. We demonstrate that without using an adversarial loss, our network is
still able to super-resolve realistic HR face images and achieves an impressive
1.16 dB PSNR improvement over the state-of-the-art.

• Since only convolution operations are used in our network, our method is not
sensitive to translational misalignments, which significantly reduces the accu-
racy requirement of the face localization in the LR image. This means, even
when the face detector response may not be accurate since the face region is
very small, our network can still super-resolve it.

• When training our network, we only require approximately frontal and rough-
ly aligned images regardless of pose and facial expression variations, which
makes the training datasets more attainable.

3.4 Related Work

Image super-resolution methods aim to magnify an LR image to its HR version that
comprises authentic high-frequency details. In general, there are three categories of
generic super-resolution approaches: interpolation based techniques, image statistic-
s based schemes [Peleg and Elad, 2014; Yang and Yang, 2013] and example/patch
based methods [Freeman et al., 2002; Hong Chang et al., 2004; Glasner et al., 2009;
Yang et al., 2010; Schulter and Leistner, 2015; Huang et al., 2015]. Interpolation based
techniques such as bilinear and bicubic upsampling are computationally efficien-
t. However, they fail to establish high-frequency details since they generate overly
smooth edges as the upscaling factor increases. Image statistics based schemes em-
ploy image priors to reconstruct HR images with sharper edges, but they are still
limited to smaller scaling factors [Lin and Shum, 2006].
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Example based methods have the potential to break this limitation. They can be
further classified into two groups: internal and external example methods depend-
ing on how the reference samples are derived. The first group of methods [Glasner
et al., 2009; Freedman and Fattal, 2010; Singh et al., 2014; Huang et al., 2015] exploit
self-similarity of patches in the input image. Alternatively, several methods [Free-
man et al., 2002; Hong Chang et al., 2004; Yang et al., 2010] aim to learn mappings
between LR and HR patches from external reference datasets, and then utilize the
learned correspondences to upsample LR images. Nevertheless, when the input im-
age size is very small, it is difficult for internal example based methods to find similar
patches across different scales. When the scaling factor is large, it is hard for external
example based methods to determine the correct correspondences between LR and
HR patches because many different HR patches can correspond to a single LR patch,
which induces artifacts at intensity edges.

Recently, many generic super-resolution methods based on deep neural networks
have been proposed [Dong et al., 2016a,b; Bruna et al., 2016; Kim et al., 2016a,b; Mao
et al., 2016; Shi et al., 2016; Ledig et al., 2017]. For instance, SRCNN [Dong et al.,
2016a] applies cascaded convolutional layers to obtain a mapping function between
LR and HR patches from a large-scale dataset, while Kim et al. [2016a] learn to up-
sample the residuals between the HR and interpolated LR patches. To improve the
performance of super-resolution without introducing extra parameters of the net-
works, Kim et al. [2016b] employ recursive convolutional layers to increase the depth
of the convolutional layers. Mao et al. [2016] apply symmetric-skip connections be-
tween convolutional layers and deconvolutional layers to pass information to the lat-
ter layers, thus mitigating the difficulty of training their very deep network. Shi et al.
[2016] employ convolutional layers to extract LR features and then rearrange the LR
feature maps into HR images by a sub-pixel convolutional layer, which can be con-
sidered as a variant of deconvolutional layers. Dong et al. [2016b] use convolutional
and deconvolutional layers with smaller filter sizes to speed up SRCNN [Dong et al.,
2016a]. Ledig et al. [2017] exploit an adversarial loss and a perceptual loss [Johnson
et al., 2016] to obtain more realistic upsampled results. Bruna et al. [2016] extract
statistical priors using CNN to regularize the super-resolution process. Since these
generic SR methods based on neural networks do not consider class-specific priors,
they cannot achieve high performance when they are employed for super-resolving
faces. Retraining (fine-tuning) of these networks with face image patches cannot
capture the global structure of faces either.

Related to face hallucination, the works in generative adversarial networks (GAN-
s) [Goodfellow et al., 2014; Denton et al., 2015; Radford et al., 2015] and variational
auto-encoders [Kingma and Welling, 2013] exploit neural networks to generate an
entirely new image that endows similar properties to the training data distribution,
from a random noise input.

Unlike generic SR methods, class-specific super-resolution approaches, such as
face hallucination [Baker and Kanade, 2000; Liu et al., 2001; Baker and Kanade, 2002;
Wang and Tang, 2005; Liu et al., 2007; Jia and Gong, 2008; Ma et al., 2010; Tappen
and Liu, 2012; Yang et al., 2013; Zhou and Fan, 2015; Wang et al., 2014; Kolouri and
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Figure 3.2: Our deconvolutional network consists of two parts: an upsampling part
(the orange block) and an enhancement part (the green block).

Rohde, 2015; Jin and Bouganis, 2015; Zhu et al., 2016b; Yu and Porikli, 2016], explore
the underlying patterns of a certain class, thus leading to better performance. Baker
and Kanade [2000] transfer high-frequency details from a face dataset by building
the relationships between LR and HR patches. Due to the possible inconsisten-
cy of the transferred HR patches, their method tends to produce artifacts. Eigen-
transformation is employed to hallucinate face images by establishing a mapping
between the LR and HR face subspaces in [Wang and Tang, 2005]. Similarly, Liu
et al. [2007] employ a subspace that is learned from the training set via Principle
Component Analysis (PCA) as a linear constraint for HR face images and propose a
patch-based Markov Random Field (MRF) to reconstruct the missing high-frequency
details. Kolouri and Rohde [2015] use optimal transport in combination with sub-
space learning to morph an HR image from the LR input. Since the subspace based
face hallucination methods require the HR images in the reference dataset to be pre-
cisely aligned and the LR test image to have the same pose and facial expression
as the reference ones, they are overly sensitive to the misalignments of LR images.
In particular, methods that depend on PCA based holistic appearance models suffer
from ghosting artifacts.

Rather than imposing global constraints, Ma et al. [2010] construct a super-resolved
HR patch by multiple reference HR patches at the corresponding spatial position. Li
et al. [2014] model the local structures of faces as a sparse representation problem.
Jin and Bouganis [2015] process multiple LR face images to recover an HR image
by exploiting a patch-wise mixture of probabilistic PCA prior instead of the holistic
PCA prior in [Liu et al., 2007]. Hence, face hallucination methods that constrain the
spatial positions of patches may avoid ghosting artifacts caused by PCA, but their
performance degrades dramatically when LR image is not aligned precisely to the
reference HR images. To handle various poses and expressions, Tappen and Liu
[2012] integrate the SIFT flow to align images. By exploiting local patterns, Yang
et al. [2013] present a structured face hallucination method. It first detects facial
components in the given LR image and then transfers the corresponding HR facial
components in the reference dataset to the LR input. Zhu et al. [2016b] present a deep
bi-network to super-resolve LR faces. It uses a CNN to localize facial components and
then recovers the high-frequency of the localized facial components by another CNN.
Nevertheless, these facial component based methods may fail to produce authentic
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(a) (b) (c) (d) (e)

Figure 3.3: Blocking artifacts caused by the deconvolutional layers are effectively
removed by the enhancement part. (a) LR input images. (b) Results upsampled only
by the deconvolutional layers (the upsampling part). (c) The close-ups of (b). (d)

Results upsampled by the entire network. (e) The close-ups of (d).

HR face images due to potentially inaccurate landmark localization. Zhou and Fan
[2015] propose a bi-channel CNN to hallucinate face images in wild scenes. Since
they require extraction of local features from the input images, the smallest input
image size is limited to 48× 48 pixels. Yu and Porikli [2016] extend the framework
of GAN for very low-resolution face super-resolution. Their follow-up work [Yu and
Porikli, 2017b] employs an adversarial loss to distinguish whether super-resolved
HR faces are realistic, and uses spatial transformer networks (STN) [Jaderberg et al.,
2015] in their deconvolutional networks to compensate for misalignments. When LR
face images are aligned and in low noise levels, Yu and Porikli [2017b] super-resolve
face images similar to the results of the work [Yu and Porikli, 2016] because they em-
ploy similar architectures for upsampling. Due to the sensitive training procedure
of GAN, artifacts may appear in the HR outputs; as a result, their high-frequency
details may be inconsistent with the ground-truth data.

3.5 Our Face Super-Resolution Network

As shown in Fig. 3.2, our complete network consists of two parts: an upsampling
part (deconvolutional), and an image enhancement part (convolutional).

In the upsampling part, we employ deconvolutional layers, as our upsampling
part, to super-resolve the LR face images as well as we exploit convolutional layers,
as our enhancement part, to remove the blocking artifacts caused by the deconvo-
lutional layers [Odena et al., 2016]. We utilize the `2 regression loss, also known as
the Euclidean distance loss, as the objective of the entire network to attain appear-
ance similarity between the reconstructed images and the original HR images in the
training stage.

We first feed the input LR images into a convolutional layer to extract low-level
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patterns (features). Since the resolution of input images is very small, i.e., 16×16,
the filter size is set to 3×3. The reason for applying a convolutional layer to LR in-
puts is to mitigate the artifacts introduced by the following deconvolutional layers.
As reported in [Odena et al., 2016], a direct application of deconvolutional layers to
input images may lead to severe blocking artifacts due to the overlapping regions
between the receptive fields. We exploit deconvolutional layers to upsample feature
maps, in which most of the activations are close to zero, and thus the artifacts can
be mitigated. After the feature extraction, three deconvolutional layers are employed
to upsample the feature maps. Each layer upsamples the previous feature maps by
an upscaling factor of 2. Since upsampling images is an under-determined problem,
we intend to increase the capacity of the network as the neural network goes deep-
er, i.e., the resolutions of feature maps become larger. Hereby, we double the channel
numbers of feature maps of previous layers. The filter sizes of these three deconvo-
lutional layers are 3×3×64, 5×5×128, and 5×5×256, respectively. We apply batch
normalization [Ioffe and Szegedy, 2015] after each deconvolutional layer to accelerate
the convergence behavior of the network.

Since deconvolutional layers introduce aliasing artifacts in the output images, we
incorporate convolutional layers as a subsequent enhancement subnetwork to remove
such artifacts. We use three convolutional layers with the filter sizes of 5×5×64,
5×5×32 and 3×3×3 in the enhancement part. We note that Dong et al. [2015] in-
dicate adding more convolutional layers does not suppress artifacts (in their case
compression artifacts) but makes the training convergence of the network more d-
ifficult. This phenomenon also appears in SRCNN [Dong et al., 2016a], where they
show that using more than three layers does not provide a significant improvement
in the super-resolution performance. Moreover, a larger network cannot be fed into
the GPU memory, either. Hence, we employ a three convolutional layers network to
remove aliasing artifacts rather than using a deeper enhancement network.

To illustrate the effectiveness of the two parts of our network, we present the
outputs of each part separately in Fig. 3.3. For visualization of the images that are
super-resolved only by the upsampling part, we switch the output channel of the
last deconvolutional layer to 3 and remove the enhancement part from the entire
network. To retrain the upsampling part, we employ the `2 regression loss between
the upsampled images and the HR ground-truth as the object function. As shown
in Fig. 3.3(b), the upsampling part generates HR facial details, but the results suf-
fer from the blocking and aliasing artifacts. As shown in Fig. 3.3(d), the artifacts
are significantly suppressed, and the facial details are sharpened by the image en-
hancement part when we train the entire network comprised of the upsampling and
enhancement parts. Additionally, the output of the entire network obtains almost 1.3
dB PSNR improvement over the output of the upsampling part on the test dataset.
Notice that, the upsampling part produces a total of 256 feature maps.
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(a) LR,HR (b) Our results with occlusions (c) Altered

Figure 3.4: Illustrations of influence of occlusions. Top row: the LR images, bottom
row: the results of our deconvolutional network. (a) Result without occlusions. (b)
Results for partially occluded input images. (c) Result when the upper-lower parts

are altered.

3.5.1 Training of the Entire Network

We use LR-HR face image pairs {xi, yi} as our training data. Since the output of
the entire network ŷi is imposed to be similar to the corresponding HR image yi, a
pixel-wise `2 regularization term is integrated to induce similarity. The loss E of the
complete network for a mini-batch of N face image pairs becomes

E =
1

ACN

N

∑
i=1
‖Φ(xi)− yi‖2

2, (3.1)

where Φ(xi) = ŷi denotes the output of the entire network. Here, A and C represent
the area and the number of the channels of the training HR images.

The loss E in Eqn. 3.1 is back-propagated to update the parameters of the com-
plete network. Since each layer of our network is differentiable, RMSprop [Hinton,
2012] is used for back-propagation. In RMSprop, we set the learning rate to 10−3 and
the decay rate α to 0.9. In addition, the learning rate η is multiplied by 0.99 after each
epoch.

3.5.2 Super-Resolution of an LR Face Image

We input the LR image x into our network to construct its upsampled HR image ŷ.
In our previous work [Yu and Porikli, 2016], we used a discriminative network to
enforce the final results to be similar to typical face images, yet that discriminative
network has potential to inject ringing artifacts in the final results. To improve the
overall visual quality, we also apply an unsharp filtering [Gonzalez and Wintz, 1977]
to the upsampled HR results, which is an image enhancement technique and widely
used in low-level image processing tasks, such as super-resolution [Gu et al., 2015]
and deblurring [Yu et al., 2014]. Specifically, unsharp filtering is used to generate a
sharp image by adding an difference image, which is obtained from subtracting an



38 Imagining the Unimaginable Faces by Deconvolutional Networks

(a) L-
R/HR

(b) Translations along the vertical direction (from -4 to +4 pixels)

(c) Translations along the horizontal direction (from -4 to +4 pixels)

Figure 3.5: Our method is robust against the translational misalignments of the LR
image.

image a blurred version of itself, to the original version. In this way, we preserve the
visual fidelity while avoiding the artifacts introduced by the discriminative network.

Since only convolutional operations are used in the network, our end-to-end map-
ping can maintain the global structure of HR face images while infusing rich and
localized details. It is also robust to translational misalignments of LR images. As
illustrated in Fig. 3.5, our method can accurately reconstruct the corresponding HR
face images even if the LR images are shifted in horizontal and vertical directions.

Thanks to its feed-forward architecture, our method runs in real-time on GPU
when it super-resolves an LR image.

3.5.3 What does the Deconvolutional Network Learn?

In our deconvolutional network, the hallucination of the entire face and the formation
of individual facial components are implemented seamlessly. To dissect what our
deconvolutional network learns, we apply a set of masks to occlude different parts
and facial components of the input image. Our assumption here is that a holistic
face model based neural network can still generate a complete face without missing
parts, even if the reconstructions of the originally occluded parts may be not realistic.
Otherwise, it is more likely that the network learns face components.

Figure 3.4 suggests that our deconvolutional network learns facial components
and their relative local arrangements. Figure 3.4(b) shows that the visible parts of
the input images are super-resolved well while the masked parts are not recovered.
Even when we switch the upper and lower parts of the face as shown in Fig. 3.4(c),
which does not look like a face, the corresponding parts can be super-resolved by
our network. As presented in Fig. 3.5, our network can reconstruct the translated
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.6: Comparison with fine-tuned SRCNNs [Dong et al., 2016a] and REDs [Mao
et al., 2016]. (a) The LR image. (b) The original HR image. (c) Result of the original
SRCNN applying an upscaling factor of 2× three times. (d) Result of the SRCNN
fine-tuned and retrained with whole face images. (e) Result of the SRCNN retrained
with patches with an upscaling factor of 8×. (f) Result of the original RED apply-
ing an upscaling factor of 2× three times. (g) Result of the RED fine-tuned and
retrained with whole face images. (h) Result of the RED retrained with patches with

an upscaling factor of 8×. (i) Our result.

versions of the HR face images consistent with the LR face images when the input
face undergoes large translations. This also indicates that our network learns the
facial components rather than a rigid holistic face model, and generates HR facial
components given specific LR facial patterns.

3.5.4 Differences Between Our Network and CNN based Nets

One major difference between our network and CNN based super-resolution net-
works, such as SRCNN [Dong et al., 2016a] and RED [Mao et al., 2016], lies on the
network architecture. Our method employs deconvolutional layers for upsampling
LR face images, while CNN based super-resolution networks apply convolution-
al layers. For instance, SRCNN and RED firstly upsample the input LR patches by
bicubic interpolation and then use convolutional layers to enhance the corresponding
details of the interpolated LR patches. Since the corresponding receptive fields of the
filters in the HR images are just the same as the filter sizes, only local information is
incorporated in the generated high-frequency details. As shown in Fig. 3.6(c), when
SRCNN is directly applied to the face hallucination task, the output HR face image
is severely blurred due to the small size of the input image and the large upscaling
factor. The same phenomenon for the RED can be seen in Fig. 3.6(f) as well.

Another difference is that generic super-resolution methods [Dong et al., 2016a;
Mao et al., 2016] are patch based while our method uses the entire image. Since
SRCNN released its training code, we can compare its variants more objectively.
To achieve the most objective comparison, we not only assess the performance of
the original SRCNN but also its possible adaptations for face hallucination. The
original SRCNN does not provide a direct upscaling factor of 8× but requires 2×
upsampling of the input image three times. When sequentially upsampling, facial
components that appear in different scales cannot be learned by the original SRCNN.
Hence, we first retrain SRCNN with face patches with an upscaling factor 8×. We
use the same architecture and hyperparameters of SRCNN and retrain the network
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Figure 3.7: Comparisons of the training and validation errors with and without using
batch normalization.

by using face patches with the scaling factor 8×. As shown in Fig. 3.6(e), SRCNN
cannot produce an HR face image with authentic high-frequency details. Because
the scaling factor is large, the interpolated LR images are too smooth for SRCNN to
manage. In other words, local neighbors provide little information in enhancing the
details. Moreover, when retraining SRCNN with entire face images, the large size of
training patches, i.e., 128×128 pixels, introduces more ambiguity in learning of the
parameters, compared with the 33×33 pixels patch size the original SRCNN employs.
During the training, the weights of SRCNN gets stuck into erroneous local minima
and decrease to zero, thus produce a zero-valued image. As shown in Fig. 3.6(d),
the SRCNN retrained with entire face images fails to provide high-quality HR face
images.

One factor that affects the super-resolution performance is the depth of neural
networks. Since SRCNN only has 3 convolutional layers, its performance may be
limited. We also compare with another CNN based method, RED, which consists of
15 convolutional layers and 15 deconvolutional layers, much deeper than our network
and trained on image patches of size 50×50 pixels. Note that, the deconvolutional
layers employed in RED are different from our deconvolution layers; the deconvolu-
tional layers in RED only implement backward convolutional operations without in-
creasing the output resolutions. To tackle the vanishing gradient problem and obtain
an efficient training scheme, RED passes information from the convolutional layers
to their corresponding deconvolutional layers by exploiting skip connections. Similar
to SRCNN, RED firstly upsamples inputs by bicubic interpolation and then enhances
details. As shown in Fig. 3.6(f), directly applying RED to the LR face by an upscaling
factor 2× three times cannot achieve realistic facial details, e.g., the LR eye regions
only consist of dark colors. It only enhances edges and textures rather than generat-
ing semantically new pixels, such as the white color in the eyeballs. As presented in
Fig. 3.6(h), retraining RED with face patches by an upscaling factor 8× cannot obtain
authentic facial details since the large upscaling factor introduces severe ambiguity
between LR and HR patches. We also retrain RED with the whole face images as
well as the same training protocol that we use. As seen in Fig. 3.6(g), RED fails to
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generate realistic facial details; instead, it outputs ringing artifacts. Hence, simply
increasing the depth of convolutional networks cannot super-resolve LR faces either.

In contrast to SRCNN and RED, our deconvolutional network upsamples the LR
face images gradually without any bicubic interpolation. This strategy can be re-
garded as leveraging the image pyramid to address the under-determined task of 8×
super-resolution. In a hierarchical manner, we hallucinate facial details, thus mitigat-
ing the ambiguity between LR and HR face images. In contrast, bicubic interpolation
employed in CNN based super-resolution methods cannot reduce the ambiguity be-
tween the interpolated LR and HR faces since it only relies on upsampling of pixels
without any hallucination. Furthermore, the receptive field of the filters of our first
deconvolutional layer is 24×24 pixels in the HR images, which is much larger than
the largest receptive field of the filters in SRCNN, i.e., 9×9 pixels. As a result, our
network can better capture LR facial patterns, and it can access expanded spatial
neighborhood to generate HR faces. Our deconvolutional layers are able to project
the low-dimensional feature maps to the high-dimensional image domain and the
learned feature patterns are embedded in the weights of the network. Hence, our de-
convolutional network is more suitable to construct a mapping from LR face images
to their HR versions.

Generic CNN based super-resolution methods, such as SRCNN and RED, do not
incorporate batch normalization either. Batch normalization is originally invented
to reduce internal covariate shift by whitening feature maps and widely used for
classification tasks. Since batch normalization will change the intensity distributions
of feature maps in each layer, it may distort the mapping relationships between LR
and HR patches in the super-resolution problem. Specifically, generic CNN based
SR methods construct a nonlinear mapping between different LR and HR patches on
image intensities. Considering the intensity distributions of different patches may
vary dramatically, the distributions of their corresponding feature maps in each layer
would be significantly different because image patches are not normalized when they
are fed into super-resolution networks. Thus, the mean and variance for each layer
vary in a mini-batch. Using a statistical mean and variance to normalize the feature
maps in each layer will shift activations of input patches. This effect will increase
the ambiguity in super-resolution, thus increasing the training loss. As a result, the
intensity of the reconstructed HR patches would be distorted. This phenomenon that
embedding batch normalization into the CNN based super-resolution, e.g., SRCNN
and VDSR [Kim et al., 2016a], degrades the super-resolution performance is also
observed in the very recent works [Ren et al., 2017; Yang et al., 2017b]. Therefore,
it is not suitable to use batch normalization in generic patch based super-resolution
convolutional networks.

Since our inputs are class-specific, the feature maps share similar distributions in
each layer. Using batch normalization allows speeding up the training phase without
shifting the reconstructed faces in our network. In Fig. 3.7, we compare the training
errors with and without using batch normalization. As seen in the first 50 epochs, our
network achieves lower training and validation errors by using batch normalization.
It indicates that batch normalization speeds up the learning process of our network.



42 Imagining the Unimaginable Faces by Deconvolutional Networks

Even though after 50 epochs the training errors of the network without using batch
normalization become lower than the one using batch normalization, their validation
errors stop decreasing and the validation errors of the network without using batch
normalization are higher than the one using batch normalization. It implies that
batch normalization facilitates the generalization ability of our network.

3.6 Experimental Analysis

We compare our method with a large set of eleven state-of-the-art methods [Liu et al.,
2007; Yang et al., 2010, 2013; Dong et al., 2016a; Ma et al., 2010; Kim et al., 2016a,b;
Mao et al., 2016; Jin and Bouganis, 2015; Zhu et al., 2016b; Yu and Porikli, 2016]
both qualitatively and quantitatively. Liu et al. [2007] employ a subspace based face
hallucination method. Yang et al. [2010] use sparse representations to super-resolve
HR images by constructing LR and HR dictionaries. The method in [Yang et al., 2013]
hallucinates face images by using facial components from an exemplar image dataset
while CBN [Zhu et al., 2016b] super-resolves facial components by deep cascaded bi-
networks. SRCNN [Dong et al., 2016a], VDSR [Kim et al., 2016a], DRCN [Kim et al.,
2016b], and RED [Mao et al., 2016] apply CNNs to upsample images. Ma et al. [2010]
use the same position reference patches to reconstruct HR images. Jin and Bouganis
[2015] exploit multiple LR faces to recover an HR version by a patch-wise mixture of
probabilistic PCA prior (MPPCA).

3.6.1 Datasets

Our network is trained on the Celebrity Face Attributes (CelebA) dataset [Liu et al.,
2015]. There are more than 200K face images in this dataset where only the similarity
transformation is employed to align the locations of eye centers [Liu et al., 2015]. The
images cover different pose variations and facial expressions. We simply use all
available data regardless of these variations and do not require grouping the face
images into different pose and facial expression subcategories.

We randomly select 30K cropped face images from the CelebA dataset, and then
resize them to 128×128 pixels as HR images. We downsample the HR face images to
16×16 pixels to obtain the LR counterparts. We use 29K images for the training, 1K
images for validation and 1K images for testing.

Our network never sees the test LR images in the training phase. The test and
training images are substantially different. To illustrate this, we find the best match-
ing LR image in the training data for a random input test LR image. As shown in
Fig. 3.1, the corresponding HR version of the best match has significant differences
from the original HR version of the LR test image.

3.6.2 Qualitative Comparisons

We perform side-by-side comparisons with eleven state-of-the-art face hallucination
methods. In case an approach does not allow an 8× scaling factor directly, e.g., [Yang
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o)

Figure 3.8: Comparison with the state-of-the-art on frontal face images. (a) LR in-
puts. (b) Original HR images. (c) Bicubic interpolation. (d) The method of Yang
et al. [2010]. (e) The method of Dong et al. [2016a] (SRCNN). (f) The method of Kim
et al. [2016a] (VDSR). (g) The method of Kim et al. [2016b] (DRCN). (h) The method
of Mao et al. [2016] (RED). (i) The method of Liu et al. [2007]. (j) The method of Yang
et al. [2013]. (k) The method of Ma et al. [2010]. (l) The method of Jin and Bouganis
[2015] (MPPCA). (m) The method of Zhu et al. [2016b] (CBN). (n) The method of Yu
and Porikli [2016] (URDGN). (o) Our method. (Please see the electronic version for

fine-grained details)



44 Imagining the Unimaginable Faces by Deconvolutional Networks

(a) (b) (c) (d) (e) (f) (g) (h)
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Figure 3.9: Comparison with the state-of-the-art on images with facial expressions.
(a) LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) The method
of Yang et al. [2010]. (e) The method of Dong et al. [2016a] (SRCNN). (f) The method
of Kim et al. [2016a] (VDSR). (g) The method of Kim et al. [2016b] (DRCN). (h) The
method of Mao et al. [2016] (RED). (i) The method of Liu et al. [2007]. (j) The method
of Yang et al. [2013]. (k) The method of Ma et al. [2010]. (l) The method of Jin
and Bouganis [2015] (MPPCA). (m) The method of Zhu et al. [2016b] (CBN). (n) The

method of Yu and Porikli [2016] (URDGN). (o) Our method.
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Figure 3.10: Comparison with the state-of-the-art on different pose face images. (a)
LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) The method of Yang
et al. [2010]. (e) The method of Dong et al. [2016a] (SRCNN). (f) The method of Kim
et al. [2016a] (VDSR). (g) The method of Kim et al. [2016b] (DRCN). (h) The method
of Mao et al. [2016] (RED). (i) The method of Liu et al. [2007]. (j) The method of Yang
et al. [2013]. (k) The method of Ma et al. [2010]. (l) The method of Jin and Bouganis
[2015] (MPPCA). (m) The method of Zhu et al. [2016b] (CBN). (n) The method of Yu

and Porikli [2016] (URDGN). (o) Our method.
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et al., 2010; Dong et al., 2016a; Kim et al., 2016a,b; Mao et al., 2016], we repeatedly
apply a scaling factor of 2× three times. For fair comparisons, we use the same
CelebA dataset for the training of all other algorithms. As another baseline, we
present the bicubic interpolation results.

Comparison with Yang et al.’s method: As depicted in Fig. 3.8(d), Fig. 3.9(d),
Fig. 3.10(d) and Fig. 3.11(d), Yang et al.’s method does not recover high-frequency
facial details. Besides, irregular over-emphasized edge artifacts appear in the results.
As the scaling factor increases, the correspondence between LR and HR patches be-
comes ambiguous. Therefore, the results suffer from exaggerated pixelation patterns.

Comparison with Dong et al.’s method: SRCNN applies convolutional layers to
learn a generic patch-based mapping function. Even though we retrain their CNN on
face images, SRCNN cannot generate high-frequency facial details in the HR images
as shown in Fig. 3.8(e), Fig. 3.9(e), Fig. 3.10(e) and Fig. 3.11(e). This demonstrates
that our deconvolutional network is more suitable to address the face hallucination
task. In contrast to SRCNN, our deconvolutional network incorporates class-specific
information to induce fine-grained patterns authentic to faces, thus leads to better
performance.

Comparison with Kim et al.’s method: Kim et al. propose a very deep convo-
lutional network for generic image super-resolution, known as VDSR, where they
increase the number of the convolutional layers to 20 while SRCNN uses only 3. To
accelerate the training of its network, VDSR learns the high-frequency residuals be-
tween the upsampled input patches and their HR ground truths instead of producing
HR patches directly. Similar to SRCNN, VDSR also firstly upsamples LR input patch-
es by bicubic interpolation and then reconstructs high-frequency details by a deep
CNN. As shown in Fig. 3.8(f), Fig. 3.9(f) and Fig. 3.10(f), VDSR fails to output realistic
facial details and over-enhances edges of the upsampled LR facial patterns. This also
indicates that just increasing the depth of traditional convolutional networks may not
necessarily generate authentic facial details.

Comparison with Kim et al.’s method: Kim et al. develop a deeply recursive
convolutional network (DRCN) to super-resolve generic images. DRCN employs
16 recursive convolutional layers followed by ReLU layers to increase the super-
resolution performance without introducing extra parameters. Similar to VDSR,
the high-frequency residuals are learned from the neural network. As shown in
Fig. 3.8(g), Fig. 3.9(g) and Fig. 3.10(g), DRCN over-emphasizes edges and cannot hal-
lucinate authentic high-frequency facial textures, i.e., eyes and mouths. In contrast,
our network can reconstruct realistic facial details.

Comparison with Mao et al.’s method: Mao et al. employ a very deep residual
encoder-decoder network to upsample images, named as RED, which has 15 convo-
lutional and 15 deconvolutional layers to recover the missing high-frequency contents
in LR patches. Different from our deconvolutional layers, the deconvolutional lay-
ers in RED do not increase the resolution of feature maps. RED is a patch-based
generic super-resolution method, and it is trained with generic image patches. As
shown in Fig. 3.8(h), Fig. 3.9(h), Fig. 3.10(h), Fig. 3.11(d) and Fig. 3.12(c), RED cannot
produce authentic HR face images either. Hence, we conclude that directly upsam-
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pling LR inputs by bicubic interpolation and then generating image details from the
interpolated images by CNNs is not suitable for the face hallucination task.

Comparison with Liu et al.’s method: Since Liu et al.’s method requires the
face images in the dataset to be precisely aligned, it is difficult for their method
to learn a representative subspace from the CelebA dataset where large variations
exist. Therefore, the global model of the input LR image cannot be represented by
the learned subspace, and its local model leads to patchy artifacts in the results. As
shown in Fig. 3.8(i), Fig. 3.9(i) and Fig. 3.10(i), this method cannot recover face details
correctly, and noisy artifacts appear in the final results.

Comparison with Yang et al.’s method: This method requires landmarks of fa-
cial components. It reconstructs LR images by transferring high-resolution facial
components. In a 16 × 16 input image, it is extremely difficult to localize land-
marks. Hence, this method cannot correctly transfer facial components as shown in
Fig. 3.8(j), Fig. 3.9(j), Fig. 3.10(j) and Fig. 3.12(d). Moreover, as seen in Fig. 3.11(e),
facial details cannot be recovered either due to the very large upscaling factor. To
our advantage, our method does not need landmark localization and still preserves
the global structure of the faces.

Comparison with Ma et al.’s method: This method requires the reference images
to be precisely aligned. As shown in Fig. 3.8(k), Fig. 3.9(k) and Fig. 3.10(k), it suffers
from obvious blocking artifacts and uneven over-smoothing as a result of unaligned
reference patches in the training dataset and the large scaling factor. As illustrated
in Fig. 3.11(h) and Fig. 3.12(g), this method mixes the magnified input face with a
reference positioned ghost face due to translational and rotational misalignments.
Our method, on the other hand, can still upsample the misaligned LR face images
with rich high-frequency details.

Comparison with the method of Jin and Bouganis: Instead of generating a holis-
tic face model by PCA, this method, also known as MPPCA, super-resolves each
patch of an LR face by exploiting a prior of the mixture probabilistic principal com-
ponent analysis [Tipping and Bishop, 1999]. MPPCA uses multiple LR images to
recover an HR face. As reported in their experimental part, MPPCA utilizes multiple
LR images synthesized from a single HR image to evaluate its performance. Hence,
following its experimental protocol, we also generate multiple LR faces from an HR
ground-truth image and then apply MPPCA to reconstruct the HR face. Because MP-
PCA needs to estimate the motion transformations between LR images, any error in
transformation parameter estimation causes reconstruction errors. To prevent from
this, we use the ground-truth motion transformation parameters to align LR images
in our experiments. Since each pixel of the LR inputs corresponds to an MPPCA
model and the upscaling factor is large, i.e., 8×, inconsistency may appear along the
boundaries of generated HR patches. As seen in Fig. 3.8(l), Fig. 3.9(l), Fig. 3.10(l),
Fig. 3.11(g) and Fig. 3.12(f), MPPCA suffers visible blocking artifacts and produces
overly smooth HR faces due to the large upscaling factor.

Comparison with Zhu et al.’s method: Zhu et al.’s method, called as CBN, first
detects the facial components and then applies a deep neural network to super-
resolve facial components. Since the resolution of the input faces is very small, it
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Table 3.1: Quantitative evaluation on the entire test dataset
Methods PSNR SSIM

Bicubic 23.15 0.67
[Yang et al., 2010] 21.29 0.60

[Dong et al., 2016a] 22.25 0.65
[Kim et al., 2016a] 20.17 0.58
[Kim et al., 2016b] 20.75 0.60
[Mao et al., 2016] 20.11 0.58
[Liu et al., 2007] 21.54 0.55

[Yang et al., 2013] 23.05 0.66
[Ma et al., 2010] 23.09 0.64

[Jin and Bouganis, 2015] 22.96 0.64
[Zhu et al., 2016b] 20.27 0.58

[Yu and Porikli, 2016] 23.88 0.71
Ours− 24.39 0.72
Ours 25.04 0.74

is difficult to detect and localize facial components accurately. Such errors directly
lead to ghosting artifacts. As illustrated in Fig. 3.8(m), Fig. 3.9(m) and Fig. 3.10(m),
CBN fails to output authentic HR faces when erroneous localization of the LR facial
components occurs. As shown in Fig. 3.11(f) and Fig. 3.12(e), the upsampled facial
details are inconsistent with the LR faces. CBN firstly aligns the LR inputs to its pre-
defined coordinates and then generates high-frequency details. When we transform
the hallucinated faces back onto the original coordinates, the black regions appear in
the final results.

Comparison with the method of Yu and Porikli: Yu and Porikli’s method,
also known as URDGN, exploits the framework of the generative adversarial net-
work [Goodfellow et al., 2014] to super-resolve HR faces. Its discriminator network
enforces the generated HR face images to be similar to the real ones, but it may al-
so introduce artifacts and thus distorts the hallucinated facial details. As shown in
Fig. 3.8(n), Fig. 3.9(n) and Fig. 3.10(n), although the results of URDGN are sharp,
the high-frequency details may not comply with the HR ground-truth as indicated in
the quantitative evaluation. In contrast, our method can recover facial details more
faithfully to the ground-truth faces. Note that the artifacts caused by deconvolutional
layers as well as the adversarial loss are not suppressed by URDGN while they are
significantly reduced by our convolutional layers. Furthermore, URDGN employs
the procedure of generative adversarial networks (GAN) to train its entire network,
and it is difficult to maintain the balance between the generative and discriminative
networks. Thus, the convergence of URDGN is not as stable as our method.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.11: Comparison with the state-of-the-art on translational misaligned face
images. (a) LR inputs. (b) Original HR images. (c) The method of Dong et al.
[2016a] (SRCNN). (d) The method of Mao et al. [2016] (RED). (e) The method of Yang
et al. [2013]. (f) The method of Zhu et al. [2016b] (CBN). (g) The method of Jin and

Bouganis [2015] (MPPCA). (h) The method of Ma et al. [2010]. (i) Our method.

3.6.3 Quantitative Comparisons

We also measure the performance by the average PSNR and the structural similarity
(SSIM) scores on the entire test dataset. Table 3.1 shows that our method achieves the
best performance with an impressive 1.16 dB PSNR improvement. In Tab. 3.1, we also
compare the PSNR and SSIM scores without using batch normalization, as indicated
by Ours−. Benefiting from batch normalization, our method is able to achieve higher
PSNR and SSIM scores.

Notice that, the bicubic interpolation explicitly builds on pixel-wise intensities
without any hallucination, and attains better performance than several state-of-the-
art methods. This implies that either the high-frequency details reconstructed by the
state-of-the-art methods are not authentic or the artifacts caused by those methods
severely degrade their quantitative results.

Unlike the existing approaches, our method consistently provides visually ap-
pealing super-resolved HR face images that contain rich details, and at the same
time, exhibit close similarity to the original ones (not used in the training). Since
our method takes the input LR image as a whole and learns facial components in a
data-driven manner, it reduces the ambiguity of the correspondence between LR and
HR patches, leading to superior results both qualitatively and quantitatively.

3.6.4 Sensitivity to Translational Misalignments

Since the low-resolution of the input face images is very small, state-of-the-art face
detectors may not localize the face precisely. In particular, when the translation-
al alignments occur, the previous face hallucination methods may fail as seen in
Fig. 3.11. By contrast, our method is able to upsample the LR face images without
any degradation. In our method the translational alignment requirement is signifi-
cantly relaxed. Even when the face detector fails to localize LR faces accurately, our
method can still upsample the face images that have the similar sizes as the faces in
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.12: Comparison with the state-of-the-art on rotational misaligned face im-
ages. (a) LR inputs. (b) Original HR images. (c) The method of Mao et al. [2016]
(RED). (d) The method of Yang et al. [2013]. (e) The method of Zhu et al. [2016b]
(CBN). (f) The method of Jin and Bouganis [2015] (MPPCA). (g) The method of Ma

et al. [2010]. (h) Our method. (i) Our method with rotated face augmentation.

Figure 3.13: Our method can hallucinate face images regardless of the racial profiles
of the input images. Top row: the original HR face images. Middle row: the input

LR face images. Bottom row: our results.

the training dataset.

3.6.5 Sensitivity to Rotational Misalignments

As shown in Fig. 3.5 and Fig. 3.11, our method significantly reduces the requirement
of face alignment, in particular, it can tolerate the translational misalignments of LR
face images. Having said that, our network is trained with only upright face images;
thus its performance would decrease when LR face images undergo large rotations
as shown in Fig. 3.12(h). The rotated facial parts are not explicitly learned in the
training stage. Therefore, our network may not recognize the corresponding low-
dimensional features. As a result, we crop the HR faces from CelebA, randomly
rotate HR faces and then downsample the HR faces to 16× 16 pixels as LR faces. We
augment our training and testing datasets with the rotated faces and then retrain our
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Figure 3.14: Hallucinating face images with eyeglasses. Top row: the input LR face
images. Bottom row: our results.

network on the augmented dataset. Notice that, the ground-truth images may not
be upright due to the data augmentation. As shown in Fig. 3.12(i), our method can
super-resolve LR faces with rotational misalignments as well.

3.6.6 Face Super-Resolution without a Face Detector

In Fig. 3.15, we present an example where the face region in the LR image is di-
rectly super-resolved without a face detector, i.e., the face region is not detected and
cropped before it is applied to our network. As visible, the face region is restored
with sufficient and pleasant high-frequency facial details while the background re-
gions are also upsampled without artifacts. Our method can efficiently remove the
blocking artifacts along the edges in the background. In comparison, the CNN based
super-resolution not only fails to generate authentic facial features such as mouth
and eyes but also injects faulty checkerboard patterns (around fingers, hair, etc.) and
overemphasized edges (around the black dress).

This example demonstrates that our deconvolutional network allows generating
high-frequency details for faces without creating artifacts in the generic regions. Our
method can recognize and super-resolve the LR facial features regardless of the lo-
cations of the features. We can upsample the LR faces without using a face detector
when the LR faces approximately have the size of 16×16 pixels while the existing
face hallucination methods rely on face detectors to crop faces in advance.

3.6.7 Different Racial Profiles

When training our deconvolutional network, we do not partition the training face
images into different training sets based on their racial profiles. Instead, we use al-
l available face images. We observe that our network can still conceive the shared
characteristics of each race and upsample LR input images without requiring dif-
ferent models for different races. In other words, our method does not need a face
attribute for the input image. As shown in Fig. 3.13, our method can super-resolve
while maintaining the original racial profiles without mixing different racial charac-
teristics.
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(a) LR (b) SRCNN (c) Ours

Figure 3.15: Hallucinating face images without detecting and cropping faces. (a) The
input LR image. (b) The result of SRCNN. (c) Our result. Note that the face region
upsampled by our method contains much richer high-frequency details, such as the

eyes and mouth. (please see the electronic version for details)

3.6.8 Glasses

There are three cases around the super-resolution of faces with eyeglasses. The first
one is the people wearing sunglasses, as shown in the first column of Fig. 3.14. In
this case, eyes are occluded by the sunglasses. Obviously, the eyes cannot be super-
resolved while the other facial parts including the sunglasses can be well reconstruct-
ed. The second case is that the frames of eyeglasses are thin and invisible in the small
LR images. Since the eyeglasses are not visible, they cannot be reconstructed in the
HR outputs, i.e., the eyeglasses will not affect the face super-resolution. Lastly, the
frames of eyeglasses might be thick enough to be hinted in the small LR images.
Since the resolution of the LR image is only 16×16 pixels, the pixels corresponding
to the eyeglasses frames are blended with the pixels of the eyes (the last column of
Fig. 3.14). This may introduce some degradation around the upsampled eyes yet the
rest of the face is well hallucinated. Since the styles and colors of eyeglass frames
vary remarkably, using a proportionally larger dataset of annotated training images
with eyeglasses can provide a remedy. However, this may not be practical.

3.6.9 Training Dataset Bias

In the CelebA dataset, the most common facial expression is the smile, which consti-
tutes 48.2 percent of all faces in the dataset. This is the reason that in Fig. 3.9 most
of the samples have smiling expressions. Although there are other expressions in the
dataset, they do not exist in sufficient numbers to train a deep neural network. Given
enough training samples, our deconvolutional network can be devised to hallucinate
any facial expressions.
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3.6.10 Limitations

Since our deconvolutional network hallucinates facial parts from a very low-resolution
face image and then assembles them in an authentic manner into an HR face image,
our method does not generate a complete face image when some regions are occlud-
ed in the LR input image. Nevertheless, as shown in Fig. 3.4(b), such occlusions do
not degrade the super-resolution performance of the visible parts.

3.7 Conclusion

We presented an effective method to super-resolve very small LR face images by ex-
ploiting deconvolutional neural networks. Our method increases the input LR image
size significantly, i.e., 8×, and reconstructs rich facial details. Since it learns an end-
to-end mapping between the LR and HR face images and uses only convolutional
operations, it preserves the global structure of faces while mitigating the alignment
requirements of LR inputs. Due to the simple feed-forward network architecture, our
method runs in real-time.



54 Imagining the Unimaginable Faces by Deconvolutional Networks



Chapter 4

Face Hallucination with Tiny
Unaligned Images by
Transformative Discriminative
Neural Networks

4.1 Foreword

In chapter 2 and chapter 3, our ultra-resolution discriminative generative network
(URDGN) as well as deconvolutional network are only designed to hallucinate very
low-resolution aligned face images. Since the networks are composed of deconvolu-
tional and convolutional layers, they are inherently robust to translational misalign-
ments but not to rotational misalignments. In this chapter, we present a transforma-
tive discriminative network to super-resolve unaligned low-resolution input images
while aligning them automatically. Since spatial transformer networks are able to
align images or image regions, we embed them into our upsampling network to
compensate for the misalignments in the low-resolution face images in the process
of super-resolution.

This chapter has been published as a conference paper: Xin Yu, Fatih Porikli:
Face Hallucination with Tiny Unaligned Images by Transformative Discriminative
Neural Networks. In The Thirty-First AAAI Conference on Artificial Intelligence (AAAI),
4327-4333, 2017.

4.2 Abstract

Conventional face hallucination methods rely heavily on accurate alignment of low-
resolution (LR) faces before upsampling them. Misalignment often leads to deficient
results and unnatural artifacts for large upscaling factors. However, due to the di-
verse range of poses and different facial expressions, aligning an LR input image, in
particular when it is tiny, is severely difficult. To overcome this challenge, here we
present an end-to-end transformative discriminative neural network (TDN) devised
for super-resolving unaligned and very small face images with an extreme upscaling
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factor of 8. Our method employs an upsampling network where we embed spatial
transformation layers to allow local receptive fields to line-up with similar spatial
supports. Furthermore, we incorporate a class-specific loss in our objective through
a successive discriminative network to improve the alignment and upsampling per-
formance with semantic information. Extensive experiments on large face datasets
show that the proposed method significantly outperforms the state-of-the-art.

4.3 Introduction

Face images provide vital information for visual perception and identity analysis.
Nonetheless, when the resolution of the face image is very small (e.g. in typical
surveillance videos), there is little information that can be inferred from it. Very
low-resolution (LR) face images not only degrade the performance of the recognition
systems but also impede human interpretation. This challenge motivates the recon-
struction of high-resolution (HR) images from given LR counterparts, known as face
hallucination, and attracts increasing interest in recent years.

Previously proposed face hallucination methods based on holistic appearance
models [Liu et al., 2001; Baker and Kanade, 2002; Wang and Tang, 2005; Liu et al.,
2007; Hennings-Yeomans et al., 2008; Ma et al., 2010; Yang et al., 2010; Li et al.,
2014; Arandjelović, 2014; Kolouri and Rohde, 2015] demand LR faces to be precise-
ly aligned beforehand. However, aligning LR faces to appearance models is not a
straightforward task itself, and more often, it requires expert feedback when the in-
put image is small. Pose and expression variations that naturally exist in LR face
images hinder the accuracy of automatic alignment techniques, which usually as-
sume facial landmarks are visible and detectable. As a result, the performance of
face hallucination degrades severely. Such a broad spectrum of pose and expres-
sion variations also makes learning a comprehensive appearance model even harder.
For instance, Principal Component Analysis (PCA) based schemes become critically
ineffective to learn a reliable face model while aiming to capture different in- and
out-plane rotations, scale changes, translational shifts, and facial expressions. As a
result, these methods lead to unavoidable artifacts when LR faces are misaligned or
depict different poses and facial expressions from the base appearance model.

Rather than learning holistic appearance models, many methods upsample facial
components by transferring references from an HR training dataset and then blend-
ing them into an HR version [Tappen and Liu, 2012; Yang et al., 2013; Zhou and Fan,
2015]. These methods expect the resolution of input faces to be sufficient enough
for detecting the facial landmarks and parts. When the resolution is very low, they
fail to localize the components accurately, thus producing non-realistic faces. In oth-
er words, the facial component based methods are unsuitable to upsample very LR
faces.

In this paper, we present a new transformative discriminative neural network
(TDN) to overcome the above issues and achieve super-resolving a tiny (i.e.16×16
pixels) and unaligned face image by a remarkable upscaling factor 8, where we re-
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construct 64 pixels for each single pixel of the input LR image.
Our network consists of two components: an upsampling network that compris-

es deconvolutional and spatial transformation network [Jaderberg et al., 2015] layers,
and a discriminative network. The upsampling network is designed to progressively
improve the resolution of the latent feature maps at each deconvolutional layer. We
do not assume the LR face is aligned in advance. Instead, we compensate for any
misalignment and changes through the spatial transformation network layers that
are embedded into the upsampling network. One can use the pixel-wise intensity
similarity between the estimated and the ground-truth HR face images as the ob-
jective function in the training stage. However, when the upscaling factor becomes
larger, employing only the pixel-wise intensity similarity causes over-smoothed out-
puts. Therefore, we incorporate class similarity information that is provided by a
discriminative network to enforce the upsampled HR faces to be similar to real face
images. We back-propagate the discriminative errors to the upsampling network.
Our end-to-end solution allows fusing the pixel-wise and class-wise information in
a manner robust to spatial transformations and obtaining a super-resolved output
with much richer details.

Overall, our main contributions have four aspects:

• We present a novel end-to-end transformative discriminative network (TDN) to
super-resolve very low-resolution (16×16 pixels) face images with an upscaling
factor 8×.

• For tiny input images where landmark based methods inherently fail, our
method is the first solution to hallucinate an unaligned LR face image without
requiring precise alignment in advance, which makes our method practical.

• Fusion of pixel-wise appearance similarity and class-wise discriminative in-
formation allows the super-resolution process to take full advantage of class-
specific cues for the alignment and detail enhancement tasks.

• Our method achieves almost 4 dB PSNR improvement over the state-of-the-art.

4.4 Related Work

Face hallucination aims to magnify an LR image to its HR version, which con-
tains extra high-frequency details. State-of-the-art face hallucination methods can
be grouped into two categories: appearance based methods and facial components
based methods.

Appearance based methods employ PCA to build a holistic face model or apply
reference HR patches to reconstruct the HR counterparts of the LR patches. Baker
and Kanade [2002] construct high-frequency details of aligned frontal face images by
searching the best mapping between LR and HR patches from the training dataset.
Wang and Tang [2005] develop an eigen-tranformation to super-resolve face images
by establishing a linear mapping between LR and HR face subspaces. Liu et al.
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[2007] employ a PCA based global appearance model to upsample LR faces and a
local non-parametric model to enhance the facial details. Kolouri and Rohde [2015]
explore optimal transport and subspace learning to morph an HR output. Ma et al.
[2010] hallucinate an LR face image with position patches sampled from multiple
aligned HR images, while Li et al. [2014] model the local face patches as a sparse
coding problem. Since appearance based face hallucination methods require that the
LR images are precisely aligned and have the same pose and expression as the HR
references, these methods are sensitive to the misalignment of LR images. When mis-
alignment or different poses and expressions exist, their performance may degrade
dramatically.

Facial components based methods super-resolve facial parts rather than entire
faces, and thus they can address various poses and expressions. Tappen and Liu
[2012] use SIFT flow [Liu et al., 2011] to align LR images, and then restore the de-
tails of LR images by deforming the reference HR images. Yang et al. [2013] first
detect facial components in the LR images and then transfer the most similar HR
facial components in the dataset to the LR input. Since the facial components based
methods require to extract facial components from LR inputs, the resolution of the
input LR images cannot be very low. Otherwise, these methods may fail to localize
facial components, thus generating non-realistic HR results.

Recently, convolutional neural network (CNN) based methods have been pro-
posed and claimed the state-of-the-art performance [Dong et al., 2016a; Kim et al.,
2016a; Wang et al., 2015; Bruna et al., 2016]. Because these methods are designed to
upsample generic patches and do not fully exploit class-specific information, they are
not suitable to hallucinate tiny faces. Zhou and Fan [2015] present a bi-channel CNN
to hallucinate blurry face images. They first use CNN to extract facial features and
then feed the features to fully connected layers to generate high-frequency facial de-
tails. This method is restricted to the input image size as the other facial component
based approaches.

4.5 Proposed Method: TDN

Our transformative discriminative neural network achieves the image alignment and
super-resolution simultaneously. The entire processing pipeline is shown in Fig. 4.1.

4.5.1 Network Architecture

The transformative discriminative neural network consists of two parts: an upsam-
pling network that combines spatial transformation network layers and deconvolu-
tional layers, and a discriminative network.

4.5.1.1 Upsampling Network

The parameters of our upsampling network are shown in Fig. 4.1 (red frame).
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Figure 4.1: Our TDN consists of two parts: an upsampling network (in the red frame)
and a discriminative network (in the blue frame).

Deconvolutional Layers: The deconvolutional layer, also known back-convolutional
layer, can be made of a cascade of an upsampling layer and a convolutional layer, or
a convolutional layer with a fractional stride. Therefore, the resolution of the output
of the deconvolutional layers is larger than the resolution of its input. We employ the
`2 regression loss, also known as Euclidean distance loss, to constrain the similarity
between the hallucinated HR faces and their original HR ground-truth versions. We
notice that previous works also employ similar deconvolutional layers to upsample
natural scenes [Long et al., 2015; Fischer et al., 2015]. However, they only apply to
generic images without exploiting any class-specific cues. Thus, their results tend to
be smooth. In contrast, we train the network with face images and let it learn and
memorize the facial parts for hallucination.

Spatial Transformation Layers: The spatial transformation network (STN) is re-
cently proposed by Jaderberg et al. [2015]. It can estimate the motion parameters
of images, and warp images to the canonical view. In our architecture, the spatial
transformation network layers are represented as the green boxes in Fig. 4.1. These
layers contain three modules: a localization module, a grid generator module, and
a sampler. The localization module consists of a number of hidden layers and out-
puts the transformation parameters of an input relative to the canonical view. The
grid generator module creates a sampling grid according to the estimated parame-
ters. Finally, the sampler module maps the input onto the generated grid by bilinear
interpolation.

Since we focus on in-plane rotations, translations, and scale changes without re-
quiring a 3D face model, we employ the similarity transformation for face alignment.
Although the STN can warp images, it is not straightforward to use them directly
to align very LR face images. There are several factors needed to be considered: (i)
After the alignment of LR images, facial patterns are blurred due to the resampling
of the aligned faces by bilinear interpolation. (ii) Since the resolution is very low and
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a wide range of poses exists, spatial transformations lead to alignment errors. (iii)
Due to the blur and alignment errors, the upsampling network may fail to generate
realistic HR faces. These factors can be observed in Fig. 4.2(f), where simply em-
ploying an STN to align an LR image causes artifacts in the upsampled faces due to
interpolation blur and alignment errors.

Instead of using a single STN to align LR face images, we employ multiple STN
layers to line up the feature maps. Using multiple layers significantly reduces the
load on each spatial transformation network. In addition, resampling feature maps
by multiple STN layers prevents from damaging or blurring input LR facial patterns.
Since STN layers and the upsampling network are interwoven together (rather than
being two individual networks), the upsampling network can learn to eliminate the
undesired effects of misalignment in the training stage. As shown in Fig. 4.2(e),
our upsampling network can reconstruct more high-frequency details than the CNN
based super-resolution method (SRCNN) [Dong et al., 2016a], even when SRCNN is
retrained with face patches.

4.5.1.2 Discriminative Network

As seen in Fig. 4.2(e), the hallucinated faces are not sharp enough because the com-
mon parts learned by the upsampling network are averaged from similar components
shared by different individuals. Thus, there is a quality gap between the real face
images and the hallucinated faces. To bridge this gap, we inject class information.
We integrate a discriminative network to distinguish whether the generated image is
classified as an upright real face image or not. The parameters of the discriminative
network are shown in the blue frame of Fig. 4.1. We employ a binary cross-entropy
as the loss function. We backpropagate the discriminative error to revise the coef-
ficients of the upsampling network, which enforces the facial parts learned by the
deconvolutional layers to be as sharp and authentic as the real ones. A similar idea
is employed in the generative adversarial networks [Goodfellow et al., 2014; Denton
et al., 2015; Radford et al., 2015], which are designed to generate a new face. Further-
more, the use of class information also improves the performance of the STN layers
for face alignment since only upright faces are classified as valid faces. Therefore,
the discriminative network also determines whether the faces are upright or not. As
shown in Fig. 4.2(g), with the help of the discriminative information, the hallucinated
face embodies more authentic, much sharper and better aligned details.

4.5.2 Training Details of TDN

In the training stage of our TDN, we assemble LR and HR face image pairs {Li, Hi}
as our training dataset. Notice that the LR image Li is not directly downsampled
from the HR image Hi. There are different rotations, translations, and scale changes
applied in the LR images while the training HR images are kept upright.

For the upsampling network, we use a pixel-wise `2 regression loss. Our intuition
here is that the hallucinated HR face image Ĥi should be similar to its correspond-
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.2: Illustration of TDN with different configurations. (a) Unaligned 16× 16
LR image. (b) Original 128× 128 HR image. (c) Bicubic interpolation. (d) Result of
SRCNN [Dong et al., 2016a] retrained with face patches. (e) Result of TDN without
the discriminator network. (f) Result of TDN where an STN applied on the LR image

directly. (g) Our full TDN.

ing reference HR image Hi. Since the STN layers are embedded in the upsampling
network, the objective function V(u, t) of the upsampling network is modeled as

min
u,t

V(u, t) = Ep(Li ,Hi)‖Ĥi − Hi‖2
F, (4.1)

where u and t represent the parameters of the upsampling network and the STN
layers that are updated jointly. The STN layers align the feature maps while the
upsampling network super-resolves the LR images with the deconvolutional layers.
Above, p(Li, Hi) represents the joint probability distribution of the LR and HR faces
in the training dataset.

As we mentioned, we exploit the discriminative information to achieve high-
quality super-resolution of face images. To this end, we employ a set of convolutional
layers in our discriminative network. These layers assess whether the hallucinated
face is real and upright, or not. If the upsampling network can hallucinate an HR
face that can convince the discriminative network that it is an authentic face, our
super-resolved face will be very similar to real face images. In other words, the
discriminative network cannot differentiate upsampled faces from real faces. This
objective is achieved by maximizing the cross entropy. Therefore, we optimize the
loss function of the discriminative network D as follows:

max
d

D(d) = E
[
log D(Hi) + log(1− D(Ĥi))

]
= Ep(Hi)[log D(Hi)] + Ep(Ĥi)

[log(1− D(Ĥi))],
(4.2)

where d indicates the parameters of the discriminative network, and p(Hi) and p(Ĥi)
represent the distributions of real faces and the hallucinated faces from LR faces in
the dataset. The above objective reaches the maximum when the network cannot
distinguish Hi and Ĥi. The loss D is backpropagated to the upsampling network to
update the parameters u and t. By tuning u and t, the upsampling network not only
can super-resolve the LR face images with appearance similarity, but also makes the
hallucinated faces contain more class-specific details.
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We use RMSprop [Hinton, 2012] to update the parameters u, t and d. In order to
maximize D, the parameters d are updated by the stochastic gradient ascent,

∆j+1 = α∆j + (1− α)(
∂D
∂d

)2,

dj+1 = dj + γ
∂D
∂d

1√
∆j+1 + ε

,
(4.3)

where γ and α are the learning rate and the decay rate, j represents the iteration
index, ∆ is an auxiliary variable, and ε is set to 10−8 to avoid division by zero. The
parameters u and t are not only updated by the loss V but also D. For simplicity, let
T = (u, t), and the parameters are updated by the stochastic gradient descent,

∆j+1 = α∆j + (1− α)(
∂V
∂T

+ λ
∂D
∂T

)2,

T j+1 = T j − γ(
∂V
∂T

+ λ
∂D
∂T

)
1√

∆j+1 + ε
,

(4.4)

where λ is used to trade off the appearance similarity constraint and the class-specific
discriminative constraint. Since we aim to super-resolve an LR image, we put more
constraint on appearance similarity. In our experiments, we set λ to 0.01. As the
iterations progress, the upsampled faces become more similar to real faces, and thus
we reduce the impact of the discriminative network gradually,

λi = max{λ · 0.99i, λ/2}, (4.5)

where i indicates the index of the epochs. Eqn. 4.5 guarantees that the influence
of the discriminative information is preserved in the upsampling network. In our
algorithm, the learning rate γ is set to 0.001 and multiplied by 0.99 after each epoch,
and the decay rate is set to 0.01.

4.5.3 Hallucinating a Very LR Face Image

The discriminative network is only used for training of the upsampling network. In
the testing stage (super-resolving a given test image), we feed the LR image into the
upsampling network to obtain its upright super-resolved HR version. Because the
ground-truth HR face images are upright in the training stage of the entire network,
the output of the upsampling network will be an upright face image. As a result, our
method does not require alignment of the very low-resolution images in advance.
Our network provides an end-to-end mapping from an unaligned LR face image to
an upright HR version, which mitigates potential artifacts caused by misalignment.

4.5.4 Implementation Details

In Fig. 4.1, the STN layers are constructed by convolutional and ReLU layers (Con-
v+ReLU), max-pooling layers with a stride 2 (MP2) and fully connected layers (FC).
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Table 4.1: Quantitative evaluation on the entire test dataset.
Methods PSNR SSIM

Bicubic 18.41 0.54
[Yang et al., 2010] 18.21 0.52

[Dong et al., 2016a] 18.28 0.54
[Liu et al., 2007] 18.00 0.48

[Yang et al., 2013] 18.40 0.53
[Ma et al., 2010] 18.34 0.52

Ours 22.66 0.66

In particular, STN1 layer is cascaded by: MP2, Conv+ReLU (with the filter size:
512×20×5×5), MP2, Conv+ReLU (with the filter size: 20×20×5×5), FC+ReLU (from
400 to 20 dimensions) and FC (from 20 to 4 dimensions). STN2 is cascaded by: MP2,
Conv+ReLU (with the filter size: 256×128×5×5), MP2, Conv+ReLU (with the filter
size: 128×20×5×5), MP2, Conv+ReLU (with the filter size: 20×20×3×3), FC+ReLU
(from 180 to 20 dimensions) and FC (from 20 to 4 dimensions). In the convolution
operations, we do not use padding.

In the following experimental part, some algorithms [Liu et al., 2007; Ma et al.,
2010] require the alignments of LR inputs. Thus, we use STN0 to align the LR inputs
images for those methods. The only difference between STN0 and STN1 is that the
first MP2 step in STN1 is removed in STN0.

4.6 Experiments

In this section, we compare our method with the state-of-the-art methods qualitative-
ly and quantitatively.

4.6.1 Dataset

Our network is trained on the Celebrity Face Attributes (CelebA) dataset [Liu et al.,
2015]. There are more than 200K face images in this dataset, and the images cover
different pose variations and facial expressions. In training our network, we disre-
gard these variations without grouping the face images into different pose and facial
expression subcategories.

When generating the LR and HR face pairs, we randomly select 30K cropped
face images from the CelebA dataset, and then resize them to 128×128 pixels as HR
images. We manually transform the HR images while constraining the faces in the
image region, and then downsample the HR images to generate their corresponding
LR images. Note that, we do not explicitly change the scale of faces because in the
CelebA the face sizes are different. (All protocol details, data, and code for this paper
will be released.)
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4.6.2 Comparison with the State-of-the-Art

Since we super-resolve an image with a substantial upscaling factor of 8×, for the
methods that do not provide 8×, we apply the maximum upscaling factors recom-
mended by the original papers multiple times (e.g., twice 4× upscaling). For the
face hallucination methods that assume very low-resolution faces are aligned before-
hand, we use STN0 to align LR faces. For fair comparisons and better illustration,
we transform all the LR input images to the upright view as the inputs of the other
methods.

In Tab. 4.1, we report the quantitative comparison results using the average PSNR
and structural similarity scores (SSIM) on the entire test dataset. As indicated in
Tab. 4.1, our TDN attains the best PSNR and SSIM results. We found that if we only
use the upsampling network to super-resolve LR faces, we can gain an extra 0.18
dB improvement but produces over-smoothed results. Therefore, there is a trade-off
between the upsampling and discriminative networks. Since we aim to hallucinate
high-resolution realistic facial details, we incorporate our discriminative network,
and our TDN achieves an impressive 4.25 dB PSNR improvement over the state-of-
the-art.

As shown in Fig. 4.3(c), traditional upsampling methods, i.e., bicubic interpola-
tion, cannot hallucinate authentic facial details. Since the resolution of inputs is very
small, little information is contained in the input images. Simply interpolating input
LR images cannot recover extra high-frequency details. As seen in Fig. 4.3(c), the
upsampled images by bicubic interpolation still have some skew effects rather than
laying in the upright view. This implies that simply using STN0 to align input im-
ages still suffers from misalignment. Since we apply multiple STNs on the feature
maps, which improves the alignment of the LR inputs, our method outputs well-
aligned faces. As shown in the last row of Fig. 4.3, STN0 uses bilinear interpolation
to resample images, which changes the intensities of the LR input and introduces
extra blurriness as well. In contrast, with the help of the discriminator network, our
method can achieve much sharper results.

As shown in Fig. 4.3(d), the sparse coding based super-resolution (SCSR) method [Yang
et al., 2010] cannot reconstruct high-frequency details either when the scaling factor
is very large (e.g.8×), because the SCSR method cannot find a consistent correspon-
dence between LR and HR patches as the upscaling factor becomes larger.

Dong et al. [2016a] propose a patch based convolutional network to super-resolve
generic images, also known as SRCNN. This method is trained on generic patches
and the maximum upscaling factor is 4. SRCNN, as a patch based method, cannot
capture the whole face structure. However, training SRCNN with the whole face will
introduce more ambiguity between LR and HR patches because the training patch
size (i.e.128×128) is too large to learn a valid non-linear mapping. Hence, we retrain
their model with face patches and an upscaling factor 8. As seen in Fig. 4.2(e),
SRCNN cannot produce authentic high-frequency facial details. This also implies
that our upsampling network is more suitable for the face hallucination task.

The face hallucination method based on appearance model [Liu et al., 2007] can
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4.3: Comparison with the state-of-the-arts methods. (a) LR inputs. (b) Original
HR images. (c) Bicubic interpolation. (d) The method of Yang et al. [2010]. (e) The
method of Dong et al. [2016a] (SRCNN). (f) The method of Liu et al. [2007]. (g) The

method of Yang et al. [2013]. (h) The method of Ma et al. [2010]. (i) Our method.

super-resolve very LR face images when the faces are precisely aligned (i.e., face po-
sitions and head poses). Because the alignment errors of LR faces by STN0 exist, the
aligned LR faces have shifts with the appearance model. Besides, we use all the faces
in the training dataset to train an appearance model, and there are different facial
expressions and poses in the training dataset, which make the appearance model
noisy. Hence, as shown in Fig. 4.3(f), their results suffer severe artifacts without
hallucinating authentic facial details.

The structured face hallucination method [Yang et al., 2013] looks for the most
similar facial components in the dataset and then transfer those HR components
to the LR input ones. However, when the resolution of the input images is very
small, localizing facial landmarks in LR inputs is difficult. Thus their method cannot
accurately find the most similar facial components in the dataset and fails to output
HR transferred components, as illustrated in Fig. 4.3(g). Therefore, this method is
unsuitable to hallucinate very LR face images.

The method of Ma et al. [2010] exploits position patches to hallucinate HR faces.
Thus this method requires the LR inputs to be precisely aligned with the reference
images in the training dataset. As seen in Fig. 4.3(h), when there are obvious align-
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ment errors in the aligned LR faces, their method will output mixed faces in their
results. Furthermore, as the upscaling factor increases, the correspondences between
LR and HR patches become more inconsistent. Hence, this method suffers from
obvious block artifacts around the boundaries of different patches.

As shown in Fig. 4.3(i), our method reconstructs authentic facial details. Note
that, the reconstructed faces have different poses and facial expressions. Since our
method applies multiple STNs on feature maps to align face images, we can achieve
better alignment results without damaging input LR images. Furthermore, our
method does not need to warp input images directly, so there are no blank regions in
our results. It implies that our method can exploit information better than the other
methods.

4.7 Conclusions

We presented a transformative discriminative network to super-resolve unaligned
very low-resolution face images in an end-to-end manner. Our network learns how
to align faces and how to upsample them by making use of the class-specific infor-
mation. It attains a significant upsampling factor of 8× while hallucinating rich and
authentic facial details. Since our method does not require any feedback of face poses
and facial expressions, it is very practical.

4.8 Appendix

4.8.1 Impact of Using Multiple STNs

In this part, we demonstrate that using multiple STNs can improve the accuracy of
face alignment according to the work [Jaderberg et al., 2015] and the impact of each
STN on the alignment. We employ STN1 and STN2 individually in the upsampling
network, and then compare the upsampled results quantitatively by PSNR and SSIM.
The results of solely applying STN1 or STN2 to align feature maps in the upsampling
network are shown in the first and second columns of Tab. 4.2. As illustrated in the
third column of Tab. 4.2, by using multiple STNs, our TDN achieves the highest PSNR
and SSIM. It implies that better alignment accuracy can be obtained by employing
multiple STNs.

Table 4.2: Evaluation on using different STNs

Modules STN1 STN2 STN1 + STN2

PSNR 22.50 22.23 22.66
SSIM 0.65 0.63 0.66
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4.4: Comparison with the state-of-the-arts. (a) LR inputs. (b) Original HR
images. (c) Bicubic interpolation. (d) The method of Yang et al. [2010]. (e) The
method of Dong et al. [2016a] (SRCNN). (f) The method of Liu et al. [2007]. (g) The

method of Yang et al. [2013]. (h) The method of Ma et al. [2010]. (i) Our method.
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4.8.2 Addtional Experimental Results

Here, we demonstrate more experimental comparisons with the state-of-the-art meth-
ods in Fig. 4.4.

We do not apply an STN on the third deconvolutional layer due to the limita-
tion of hardware memory. Because the upsampling network learns common facial
components from aligned feature maps, aligning feature maps in the early layers can
facilitate the learning of the upsampling network. As expected, Tab. 4.2 shows that
applying an STN in the first deconvolutional layer (STN1) can achieve better results
than in the second layer (STN2).



Chapter 5

Hallucinating Very Low-Resolution
Unaligned and Noisy Face Images
by Transformative Discriminative
Autoencoders

5.1 Foreword

In chapter 2 and chapter 3, our methods require all the low-resolution face images
to be aligned. Then we reduce the requirements of alignments of low-resolution
faces by incorporating spatial transformer networks into our upsampling network
in chapter 4. However, our previous works assume the low-resolution face images
are noise-free. Since the resolution of input face images is very small, every pixel
matters significantly in super-resolution. Thus, image noise will deteriorate the face
hallucination performance dramatically. In this chapter we present a transforma-
tive discriminative autoencoder to upsample noisy low-resolution face images while
suppressing artifacts caused by the noise. We observe that directly denoising low-
resolution faces may corrupt low-resolution facial patterns and leads to distortions
and artifacts in upsampled high-resolution face images. Instead of denoising low-
resolution images, we first super-resolve low-resolution face images while reducing
noise. Since noise may cause artifacts in upsampled high-resolution faces, we then
project denoised and upsampled high-resolution faces to noise-free low-resolution
ones to reduce the artifacts. Finally, we can achieve high-quality high-resolution face
images by upsampling the noise-free low-resolution ones.

This chapter has been published as a conference paper: Xin Yu, Fatih Porikli: Hal-
lucinating Very Low-Resolution Unaligned and Noisy Face Images by Transforma-
tive Discriminative Autoencoders. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 3760-3768, 2017.

69



70 Hallucinating Very Low-Resolution Unaligned and Noisy Face Images

5.2 Abstract

Most of the conventional face hallucination methods assume the input image is suf-
ficiently large and aligned, and all require the input image to be noise-free. Their
performance degrades drastically if the input image is tiny, unaligned, and contami-
nated by noise.

In this paper, we introduce a novel transformative discriminative autoencoder to
8× super-resolve unaligned noisy and tiny (16×16) low-resolution face images. In
contrast to encoder-decoder based autoencoders, our method uses decoder-encoder-
decoder networks. We first employ a transformative discriminative decoder network
to upsample and denoise simultaneously. Then we use a transformative encoder
network to project the intermediate HR faces to aligned and noise-free LR faces. Fi-
nally, we use the second decoder to generate hallucinated HR images. Our extensive
evaluations on a very large face dataset show that our method achieves superior hal-
lucination results and outperforms the state-of-the-art by a large margin of 1.82 dB
PSNR.

5.3 Introduction

Face images provide critical information for visual perception and identity analysis.
However, when they are noisy and their resolutions are inadequately small (e.g.as in
some surveillance videos), there is little information available to be inferred reliably
from them. Very low-resolution and noisy face images not only impede human
perception but also impair computer analysis.

To tackle this challenge, face hallucination techniques aim at recovering high-
resolution (HR) counterparts from low-resolution (LR) face images and have received
significant attention in recent years. Previous state-of-the-art methods mainly focus
on recovering HR faces from aligned and noise-free LR face images. More specifically,
face hallucination methods based on holistic appearance models [Baker and Kanade,
2000, 2002; Liu et al., 2001; Wang and Tang, 2005; Liu et al., 2007; Hennings-Yeomans
et al., 2008; Ma et al., 2010; Yang et al., 2010; Li et al., 2014; Kolouri and Rohde,
2015; Wang et al., 2014; Yu and Porikli, 2016] require LR faces to be precisely aligned
beforehand. However, when the LR images are contaminated by noise, the accuracy
of face alignment degrades dramatically. Besides, due to the wide range of pose and
expression variations, it is difficult to learn a comprehensive, holistic appearance
model for LR images not aligned appropriately. As a result, these methods often
produce ghosting artifacts for noisy unaligned LR inputs.

Rather than learning holistic appearance models, facial components based face
hallucination methods have been proposed [Tappen and Liu, 2012; Yang et al., 2013;
Zhou and Fan, 2015; Zhu et al., 2016b]. They transfer HR facial components from
the training dataset to the input LR images without requiring alignment of LR input
images in advance. These methods heavily rely on the successful localization of facial
landmarks. Because facial landmarks are difficult to detect in very low resolution
(16×16 pixels) images, they fail to localize the facial components accurately and thus
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.1: Comparison of our method with the CNN based face hallucination UR-
DGN [Yu and Porikli, 2016]. (a) 16× 16 LR input image. (b) 128× 128 HR original
image. (c) Denoised and aligned LR image. We firstly apply BM3D [Dabov et al.,
2007] and then STN [Jaderberg et al., 2015]. (d) The corresponding most similar face
in the training dataset. (e) Bicubic interpolation of (c). (f) Image generated by UR-
DGN. Note that, URDGN super-resolves the denoised and aligned LR image, not the
original LR input (in favor of URDGN). (g) The denoised and aligned LR image by
our decoder-encoder as an intermediate output. (h) The final hallucinated face by

our TDAE method.

produce artifacts in the upsampled face images. In other words, the facial component
based methods are not suitable to upsample noisy unaligned LR faces either.

Considering the resolution of faces is too small and the presence of noise, face
detectors may also fail to locate such tiny noisy faces. Thus, using pose specific face
detectors as a preprocessing step to compensate for misalignments is also impractical.

In this paper, we propose a new transformative discriminative autoencoder (T-
DAE) to super-resolve a tiny (16×16 pixels) unaligned and noisy face image by a
remarkable upscaling factor of 8×, where we estimate 64 pixels for each single pixel
of the input LR image. Furthermore, each pixel has also been contaminated by noise,
making the task even more challenging.

Our TDAE consists of three serial components: a decoder, an encoder, and a sec-
ond decoder. Our decoder network comprises deconvolutional and spatial transfor-
mation layers [Jaderberg et al., 2015]. It can progressively upsample the resolutions
of the feature maps by its deconvolutional layers while aligning the feature maps by
its spatial transformation layers. Similar to [Yu and Porikli, 2016], we employ not
only the pixel-wise intensity similarity between the hallucinated face images and the
ground-truth HR face images but also the class similarity constraint that enforces
the upsampled faces to lie on the manifold of real faces by a discriminative network.
Hence, we achieve a transformative decoder that is also discriminative. Since the LR
inputs are noisy, the hallucinated faces after the decoder may still contain artifacts.
In order to obtain aligned and noise-free LR faces, we project the upsampled HR
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faces back onto the LR face domain by a transformative encoder. Finally, we train
our second decoder on the projected LR faces to attain hallucinated HR face images.
In this manner, the artifacts are greatly reduced and our TDAE produces authentic
HR face images.

Overall, the contributions of this paper are mainly in four aspects:

• We propose a new transformative-discriminative architecture to hallucinate tiny
(16×16 pixels) unaligned and noisy face images by an upscaling factor of 8×.

• In contrast to conventional autoencoders, we first device a decoder-encoder
structure to generate noise-free and aligned LR faces, and then a second de-
coder trained on the encoded LR faces to hallucinate high-quality HR face im-
ages.

• Our method does not require to model or estimate noise parameters. It is
agnostic to the underlying spatial deformations and contaminated noise.

• To the best of our knowledge, our method is the first attempt to address the
super-resolution of tiny and noisy face images without requiring alignment of
LR faces beforehand, which makes our method practical.

5.4 Related Work

Face hallucination has received significant attention in recent years [Tappen and Liu,
2012; Yang et al., 2013; Wang et al., 2014; Kolouri and Rohde, 2015; Zhou and Fan,
2015; Zhu et al., 2016b; Yu and Porikli, 2016]. Previous face hallucination methods
mainly focus on recovering HR faces from aligned and noise-free LR face images, and
in general, they can be grouped into two categories: holistic methods and part-based
methods.

Holistic methods use global face models learned by PCA to hallucinate entire HR
faces. In the work [Wang and Tang, 2005], an eigen-transformation is proposed to
generate HR face images by establishing a linear mapping between LR and HR face
subspaces. Similarly, Liu et al. [2007] employ a global appearance model learned
by PCA to upsample aligned LR faces and a local non-parametric model to enhance
the facial details. The work [Kolouri and Rohde, 2015] explores optimal transport
and subspace learning to morph an HR output according to the given aligned LR
faces. Since holistic methods require LR face images to be precisely aligned and
share the same pose and expression as the HR references, they are very sensitive to
the misalignments of LR images. Besides, image noise makes the alignment of LR
faces even more difficult.

Part-based methods upsample facial parts rather than entire faces, and thus they
can handle various poses and expressions. They either employ a training dataset
of reference patches to reconstruct the HR counterparts of the input LR patches or
exploit facial components. In [Baker and Kanade, 2002], high-frequency details of
aligned frontal face images are reconstructed by finding the best mapping between
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LR and HR patches. The work in [Yang et al., 2010] uses coupled LR/HR dictionar-
ies to enhance the details. In [Ma et al., 2010], an LR face image is super-resolved
with position patches sampled from multiple aligned HR images. Li et al. [2014]
model the local face patches as a sparse coding problem rather than averaging the
reference HR patches directly. In [Tappen and Liu, 2012], SIFT flow [Liu et al., 2011]
is exploited to align the facial parts of LR images, and then the details of LR im-
ages are reconstructed by warping the reference HR images. Yang et al. [2013] first
localize facial components in the LR images and then transfer the most similar HR
facial components in the dataset to the LR inputs. Since part-based methods often
require extraction of facial components in LR inputs, their performance degrades
dramatically when the LR faces are tiny or noisy.

As large-scale data becomes available, convolutional neural network (CNN) based
SR methods [Kim et al., 2016a; Wang et al., 2015; Dong et al., 2016a; Bruna et al., 2016]
have been proposed and achieved the state-of-the-art performance. However, because
these SR methods are designed to upsample generic patches and do not fully exploit
class-specific information, they are not suitable to hallucinate tiny faces. The work
[Zhou and Fan, 2015] employs a CNN to extract facial features and then generates
high-frequency facial details based on the extracted features. Due to the requirement
of the facial feature extraction, the resolution of the input cannot be low. Very recent-
ly, Yu and Porikli [2016] present a discriminative generative network to super-resolve
LR face images. Their method addresses different facial expressions and head poses
without requiring facial landmarks, but it needs the eyes to be aligned in advance.
Zhu et al. [2016b] propose a cascade bi-network to super-resolve very low-resolution
and unaligned faces. However, when there is noise in the LR images, this method
may fail to localize the face parts accurately, thus producing artifacts in the outputs.

5.5 Proposed Method: TDAE

Our transformative discriminative autoencoder has three complementary compo-
nents: two transformative discriminative decoders (as shown in Fig. 5.2) and a trans-
formative encoder (as shown in Fig. 5.3). In the training phase, our parameters
of TDAE are learned in three steps (Sec. 5.5.3). In the testing phase, we cascade the
transformative upsampling network of the first decoder DEC1, the encoder ENC, and
the second decoder DEC2 together to hallucinate the final HR faces in an end-to-end
manner. The whole pipeline is illustrated in Fig. 5.4

5.5.1 Architecture of Decoder

Our decoder architecture is composed of two sub-networks, a transformative upsam-
pling network (TUN) and a discriminative network. In the transformative upsam-
pling network, we first apply two convolutional layers with larger receptive fields to
partially reduce noise artifacts rather than feeding noisy images into the deconvo-
lutional layers directly. The deconvolutional layer can be made of a cascade of an
upsampling layer and a convolutional layer, or a convolutional layer with a fractional
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Figure 5.2: Our transformative discriminative decoder consists of two parts: a trans-
formative upsampling network (in the red frame) and a discriminative network (in

the blue frame).

Figure 5.3: Architecture of our transformative encoder.

stride [Zeiler et al., 2010; Zeiler and Fergus, 2014]. Therefore, the resolution of the
output image of the deconvolutional layer is larger than the resolution of its input
image. We employ the `2 regression loss, also known as Euclidean distance loss, to
constrain the similarity between the hallucinated HR faces and their HR ground-truth
versions.

As reported in the work [Yu and Porikli, 2016], deconvolutional layers super-
vised by `2 loss tend to produce over-smoothed results. To tackle this, we embed
the class-specific discriminative information into the deconvolutional layers by a dis-
criminative network (as shown in the blue frame in Fig. 5.2). The discriminative
network is able to distinguish whether an image (its input) is sampled from authen-
tic face images or hallucinated ones. The corresponding discriminative information
is backpropagated to the deconvolutional layers. Hence, the deconvolutional layers
can generate HR face images more similar to the real faces.

We notice that rotational and scale misalignments of LR face images will lead to
apparent artifacts in the upsampled face images in [Yu and Porikli, 2016]. By con-
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Figure 5.4: Workflow of our transformative discriminative autoencoder. Colors of the
boxes refer to the networks in Fig.5.2 and Fig.5.3.

trast, our decoder can align the LR faces automatically and hallucinate face images
simultaneously. In order to align LR faces, we incorporate the spatial transformation
network (STN) [Jaderberg et al., 2015] into our network, as shown in the green box in
Fig. 5.2. STN can estimate the transformation parameters of images, and then warp
images to a canonical view.

There are three modules in STN: a localization module, a grid generator module,
and a sampler. The localization module consists of a number of hidden layers and
outputs the transformation parameters of an input relative to the canonical view.
The grid generator module constructs a sampling grid according to the estimated
parameters, and then the sampler module maps the input onto the generated grid by
bilinear interpolation.

Here, we mainly focus on in-plane rotations, translations, and scale changes, and
thus use the similarity transformation to align faces. Considering the resolution of
our inputs is very small and input images are noisy, using state-of-the-art denoising
algorithms to reduce noise and then employing an STN to align LR faces will intro-
duce extra blurriness, as shown in Fig. 5.1(c) and Fig. 5.5(c). Therefore, aligning LR
faces in the image domain may blur the original LR facial patterns and leads to arti-
facts as visible in the results of Yu and Porikli [2016] in Fig. 5.1(f). To prevent from
this, we apply STNs to align feature maps. As reported in [Jaderberg et al., 2015], using
multiple STNs can improve the accuracy of the alignment. As a trade-off between
the accuracy and GPU memory usage, we employ two STNs following the first two
deconvolutional layers.

Our decoder not only embeds discriminative information but also processes mul-
tiple tasks (denoising, alignment, and upsampling) simultaneously. As shown in
Fig. 5.5(f), our transformative discriminative decoder can reconstruct more salient
high-frequency details and aligned upsampled HR face images as well.

5.5.2 Architecture of Encoder

By feeding an unaligned and noisy LR input to our transformative discriminative
decoder network DEC1, we obtain an intermediate HR face image. As shown in
Fig. 5.5(f), the intermediate HR face contains more high-frequency details and it is
roughly aligned. The noise is comparatively reduced as well. However, the inter-
mediate images may still contain artifacts, which are mainly caused by noise. We
observe that noise not only distorts the LR facial patterns but also affects the face
alignment. In order to achieve authentic HR face images, these artifacts should be
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Comparison of our method with the CNN based face hallucination meth-
ods. (a) The input 16× 16 LR image. (b) The original upright 128× 128 HR image
(for comparison purposes). (c) The denoised and aligned version of (a). (d) The
result of URDGN [Yu and Porikli, 2016]. (e) The result of CBN [Zhu et al., 2016b].
(f) The result of our DEC1. (g) The aligned and noise-free LR face projected by our

ENC. (h) Our final result.

removed while preserving the high-frequency facial details.
Our intuition is that projecting intermediate HR images to LR images, artifacts

and noise can be suppressed further, which would allow us to apply our decoder to
super-resolve these almost noise-free and approximately aligned LR faces. However,
a decimation with anti-aliasing or simple downsampling may introduce addition-
al artifacts into the LR face images. Therefore, we design another CNN, regarded
as the encoder ENC, to project intermediate HR images to noise-free LR versions
as illustrated in Fig. 5.3. Considering the upsampled HR faces may still have mis-
alignments, we also incorporate STNs into our encoder to provide further alignment
improvement.

When training the encoder, we constrain the projected LR faces to be similar to
the aligned ground-truth LR faces. This helps us to generate aligned and noise-free
LR faces, as shown in Fig. 5.1(g) and Fig. 5.5(g).

To obtain HR face images, we employ a second decoder DEC2 to super-resolve
the LR faces projected by the ENC. The decoder DEC2 shares the same architecture
as the one in Fig. 5.2. By employing the decoder-encoder structure, we can jointly
align the input LR faces and handle noise as shown in Fig. 5.1(g) and Fig. 5.5(g).
By exploiting the encoder-decoder structure, we are able to remove artifacts in the
upsampled HR faces, thus achieving high-quality, more authentic, hallucinated HR
face images as shown in Fig. 5.5(h).

5.5.3 Training Details of TDAE

We divide the training phase of our TDAE into three stages: i) Training the transfor-
mative discriminative decoder network DEC1, as illustrated in Fig. 5.2. ii) Training
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the encoder ENC, as shown in Fig. 5.3. iii) Training the decoder DEC2, which shares
the same architecture as DEC1.

5.5.3.1 Training Discriminative Decoder

We construct LR and HR face image pairs {ln
i , hi} as our training dataset for the

training of our transformative discriminative decoder DEC1. Here, hi represents
aligned HR face images, and ln

i is not directly downsampled from the HR face image
hi. We apply rotations, translations, and scale changes to hi to obtain unaligned HR
image hu

i . Then, we downsample hu
i and then add Gaussian noise to obtain the noisy

unaligned LR faces ln
i .

Since we impose the upsampled image ĥi by our decoder should be similar to
its corresponding reference HR image hi, we use pixel-wise Euclidean distance, as
known as `2 regression loss, to enforce the intensity similarity. The loss function
U(s) of the TUN is modeled as,

min
s

U(s) = E(ln
i ,hi)∼p(ln,h)‖ĥi − hi‖2

F, (5.1)

where s indicates the parameters of the TUN. The convolutional layers, the STN
layers, and the deconvolutional layers are updated jointly in the TUN. The STN layers
align the feature maps while the deconvolutional layers upsample the resolution of
the feature maps gradually. Here, p(ln, h) indicates the joint distribution of the LR
and HR face images in the training dataset.

As mentioned in [Yu and Porikli, 2016], only applying intensity similarity con-
straint will lead to over-smoothed results. Similar to [Goodfellow et al., 2014; Denton
et al., 2015; Radford et al., 2015; Yu and Porikli, 2016], we infuse class-specific dis-
criminative information into the TUN by exploiting a discriminative network. The
architecture of the discriminative network is illustrated in the blue frame in Fig. 5.2.
It is designed to distinguish whether an image is realistic or hallucinated. If an HR
face super-resolved by our decoder can convince the discriminative network that it is
a real face image, our hallucinated faces will be similar to real face images. In other
words, our goal is to make the discriminative network fail to distinguish hallucinat-
ed faces from real ones. Hence, we maximize the cross-entropy of the discriminative
network L as follows:

max
t

L(t) = E
[
log D(hi) + log(1− D(ĥi))

]
= Ehi∼p(h)[log D(hi)] + Eĥi∼p(ĥ))[log(1− D(ĥi))],

(5.2)

where t represents the parameters of the discriminative network, p(h) and p(ĥ) in-
dicate the distributions of the real faces and the hallucinated faces, and D(hi) and
D(ĥi) are the outputs of the discriminative network. The loss L is backpropagated to
the TUN in order to update the parameters s. By injecting discriminative information
to s, our decoder can hallucinate more authentic HR faces.

In our decoder network, every layer is differentiable, and thus we use backpropa-
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gation to learn its parameters. RMSprop [Hinton, 2012] is employed to update s and
t. To maximize the discriminative network objective L, we use the stochastic gradient
ascent that updates the parameters t as follows:

∆i+1 = γ∆i + (1− γ)(
∂L
∂t

)2,

ti+1 = ti + r
∂L
∂t

1√
∆i+1 + ε

,
(5.3)

where r and γ are the learning rate and decay rate, respectively, i is the index of
iteration, ∆ is an auxiliary variable, and ε is set to 10−8 to avoid division by zero. For
the TUN, both losses U and L are used to update the parameters s by the stochastic
gradient descent,

∆i+1 = γ∆i + (1− γ)(
∂U
∂s

+ λ
∂L
∂s

)2,

si+1 = si − r(
∂U
∂s

+ λ
∂L
∂s

)
1√

∆i+1 + ε
,

(5.4)

where λ is a trade-off weight between the intensity similarity term and the class
similarity term. Since our goal is to hallucinate an HR face, we put a higher weight on
the intensity similarity term and set λ to 0.01. As the iteration progresses, the super-
resolved faces will be more similar to real faces. Therefore, we gradually reduce the
impact of the discriminative network by decreasing λ as,

λj = max{λ · 0.99j, λ/2}, (5.5)

where j indicates the index of the epochs. Eqn. 5.5 also guarantees that the class-
specific discriminative information is preserved in the decoder network during the
training phase.

5.5.3.2 Training Encoder

In training our transformative encoder, we use the outputs of DEC1 ĥi and the
ground-truth aligned LR images li as our training dataset. Since there may be mis-
alignment in ĥi, we also embed STNs into our encoder ENC to align the LR faces.
During the training of the transformative encoder, the downsampled LR faces l̂i is
constrained to be similar to the ground-truth aligned LR faces li. Therefore, the
objective function of the transformative encoder E(e) is modeled as,

min
e

E(e) = E(li ,ĥi)∼p(l,ĥ)‖Ψ(ĥi)− li‖2
F

= E(li ,ĥi)∼p(l,ĥ)‖l̂i − li‖2
F,

(5.6)

where e is the parameters of the transformative encoder, and Ψ(ĥi) represents the
mapping from the intermediate upsampled HR faces ĥi to the projected LR faces l̂i.
Similar to Eqn. 5.1 and Eqn. 5.2, we also use RMSprop to update e by the stochastic
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gradient descent,

∆i+1 = γ∆i + (1− γ)(
∂E
∂e

)2,

ei+1 = ei − r
∂E
∂s

1√
∆i+1 + ε

.
(5.7)

To obtain the final HR faces, we integrate a second decoder DEC2 to super-resolve
the projected LR face images. DEC2, as shown in Fig. 5.4, is trained on the encoded
LR and aligned ground-truth HR image pairs {l̂i, hi}.

After training the encoder network, we use the encoder ENC to generate the
training dataset l̂i, and then train DEC2 by using the image pairs {l̂i, hi}. The training
procedure of DEC2 is as the same as Sec. 5.5.3.1.

5.5.4 Hallucinating HR from Unaligned & Noisy LR

The discriminative network is only employed in training our decoders. When hal-
lucinating HR faces, the discriminative work is not used. In the testing phase, we
first feed an unaligned and noisy LR face ln

i into the decoder DEC1 to obtain an up-
sampled intermediate HR image ĥi. Then, we use our encoder ENC to project the
intermediate HR face ĥi to an aligned LR face l̂i. Finally, we use the decoder DEC2 to
super-resolve the aligned LR face l̂i and attain our final hallucinated face h̃i.

Since in the training phase we use upright HR faces as targets, our TDAE not only
super-resolves the LR faces but also aligns HR face images simultaneously. Although
we need to train our network in three steps, it can hallucinate an unaligned and noisy
LR face to an upright HR version in an end-to-end fashion.

5.5.5 Implementation Details

The STN layers, as shown in Fig. 5.2 and Fig. 5.3, are built by convolutional and ReLU
layers (Conv+ReLU), max-pooling layers with a stride 2 (MP2) and fully connected
layers (FC). Specifically, STN1 layer is built by cascading the layers: MP2, Conv+ReLU
(filter size: 512×20×5×5), MP2, Conv+ReLU (20×20×5×5), FC+ReLU (from 400 to
20 dimensions) and FC (from 20 to 4 dimensions). STN2 is constructed by cascading
the layers: MP2, Conv+ReLU (256×128×5×5), MP2, Conv+ReLU (128×20×5×5), M-
P2, Conv+ReLU (20×20×3×3), FC+ReLU (from 180 to 20 dimensions) and FC (from
20 to 4 dimensions). STN3 is constructed by cascading the layers: MP2, Conv+ReLU
(128×20×5×5), MP2, Conv+ReLU (filter size: 20×20×5×5), MP2, FC+ReLU (from 80
to 20 dimensions) and FC (from 20 to 4 dimensions). STN4 layer is built by cascading
the layers: Conv+ReLU (96×20×5×5), MP2, Conv+ReLU (20×20×5×5), FC+ReLU
(from 80 to 20 dimensions) and FC (from 20 to 4 dimensions). In the convolution
operations, padding is not used.

In the following experimental part, some algorithms [Ma et al., 2010; Yu and
Porikli, 2016] require the alignment of LR inputs. Thus, we employ STN0 to align the



80 Hallucinating Very Low-Resolution Unaligned and Noisy Face Images

LR images for those methods. The only difference between STN0 and STN1 is that
the first MP2 step in STN1 is removed in STN0.

In training our decoders and encoder, we use the same learning rate r and decay
rate γ. We set the learning rate r to 0.001 and multiply 0.99 after each epoch, and the
decay rate is set to 0.01.

5.6 Experiments

We compare our method with the state-of-the-art methods qualitatively and quanti-
tatively. We employ BM3D [Dabov et al., 2007] to reduce the image noise, and then
align the LR inputs by STN0. In the experiments, we only show the upright HR
ground-truth faces hi for comparison purposes.

5.6.1 Dataset

We use the Celebrity Face Attributes (CelebA) dataset [Liu et al., 2015] to train our
TDAE. There are more than 200K face images in this dataset, and the images cov-
er different pose variations and facial expressions. We use these images without
grouping them into different pose and facial expression subcategories.

When generating the LR and HR face pairs, we randomly select 30K cropped
aligned face images from the CelebA dataset, and then resize them to 128×128 pixels
as HR images. We use 28K images for training and 2K for our tests. We manually
transform the HR images while constraining the faces to be visible in the in the
image, downsample the HR images to generate LR images, and add Gaussian noise.
In the training of the decoder DEC1, we apply zero mean Gaussian noise with the
standard deviation 10% of the maximum image intensity to the LR images.

5.6.2 Qualitative Comparison with the SoA

Since some super-resolution baselines [Ma et al., 2010; Yu and Porikli, 2016] require
the input LR faces to be aligned, for a fair comparison we align the LR faces by STN0

for the compared methods. We present only the aligned upright HR ground-truth
faces for easy comparisons.

As shown in Fig. 5.6(c), conventional bicubic interpolation cannot generate facial
details. Since the resolution of inputs is very small, little information is contained in
the input images. Furthermore, the upsampled images also have some deformations.
This indicates that aligning very LR images is more difficult when there is noise in
the images.

Dong et al. [2016a] present a CNN based general purpose super-resolution method,
also known as SRCNN. Since SRCNN is patch based, it cannot capture the global face
structure. Training SRCNN with the full face images introduces more ambiguity be-
cause the patch size (i.e.128×128) is too large to learn a valid non-linear mapping.
Hence, we employ an upscaling factor of 8× to retrain it. As seen in Fig. 5.6(d),
SRCNN cannot produce authentic facial details.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.6: Comparison with the state-of-the-arts methods at the noise level 10%. (a)
Unaligned and noisy LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Dong et al. [2016a]. (e) Results of Ma et al. [2010]. (f) Results of Zhu

et al. [2016b]. (g) Results of Yu and Porikli [2016]. (h) Our method.

Ma et al. [2010] exploit position patches to hallucinate HR faces. This method
requires the LR inputs to be precisely aligned with the reference images in the train-
ing dataset. As visible in Fig. 5.6(e), when there are alignment errors, it produces
deformed faces. Moreover, as the upscaling factor increases, the correspondences be-
tween LR and HR patches become inconsistent. Hence, it suffers from severe block
artifacts around the boundaries of different patches.

Zhu et al. [2016b] propose a deep cascaded bi-network for face hallucination,
known as CBN. This method has its own aligning process that localizes facial land-
marks used to fit a global face model. When the noise level is low, it can align LR
faces based on the landmarks. However, when the noise is not negligible, it fails
to localize landmarks thus produces ghosting artifacts (see Fig. 5.6(f)). Since noise
impedes the landmark detection, we apply BM3D as a remedy. However, LR faces
becomes smooth, and detecting facial landmarks becomes even difficult. Our obser-
vation is that CBN is not designed for noisy images.

Yu and Porikli [2016] develop a discriminative generative network to super-resolve
very low resolution face images, known as URDGN. Their method also employs de-
convolutional layers to upsample LR faces and a discriminative network is used to
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Table 5.1: Quantitative evaluations on the entire test dataset. Different configura-
tions: (1) STN+SR+BM3D, (2) STN+BM3D+SR, (3) BM3D+STN+SR. Here, SR is the
compared super-resolution method. Our method does not use BM3D or a separate

STN.
PSNR SSIM

Noise 5% 10% 5% 10%

1

Bicubic 17.93 17.77 0.51 0.49
SRCNN 17.77 17.53 0.51 0.48

Ma 17.98 17.90 0.51 0.50
CBN 17.16 16.93 0.47 0.44

URDGN 16.58 16.45 0.38 0.36

2

Bicubic 18.59 18.30 0.52 0.51
SRCNN 18.59 18.32 0.53 0.51

Ma 18.63 18.37 0.50 0.49
CBN 18.34 18.26 0.52 0.52

URDGN 16.95 16.79 0.41 0.40

3

Bicubic 17.87 17.63 0.52 0.50
SRCNN 17.74 17.53 0.51 0.50

Ma 17.86 17.65 0.49 0.48
CBN 17.39 17.28 0.49 0.48

URDGN 18.95 18.65 0.49 0.47

Ours 21.02 20.47 0.58 0.56

force the generate network to produce sharper results. However, this method re-
quires aligned images and cannot super-resolve unaligned faces. In addition, noise
may damage the LR facial patterns, which may degrade the performance as visible
in Fig. 5.6(g).

In comparison, our method reconstructs authentic facial details as shown in
Fig. 5.6(h). We note that the input faces have different poses and facial expressions.
Since our method applies multiple STNs on feature maps to align face images and
remove noise simultaneously, it achieves much better alignment. With the help of
the encoder, it obtains aligned and noise-free LR images. With its second decoder,
it produces visually pleasing results, which are similar to the ground-truth faces as
well. Our method does not need any landmark localization or any information about
the noise. When the noise is low, it also attains superior performance.

5.6.3 Quantitative Comparison with the SoA

We quantitatively measure the performance of all methods on the entire test dataset
in different noise levels by the average PSNR and the structural similarity (SSIM)
scores. Table 5.1 presents that our method achieves superior performance in compar-
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Figure 5.7: The PSNR curves of the state-of-the-art methods on synthetic test datasets
with noise level from 1% to 10%.

(a) 3% (b) 5% (c) 7% (d) 10%

Figure 5.8: Visualization of our results for different noise levels. Please refer to
Fig. 5.5(b) for the ground-truth HR image.

ison to other methods, outperforming the second best with a large margin of 1.82 dB
in PSNR.

For an objective comparison with the SoA methods, we report results for three
possible scenarios. In the first case, we first apply STN0 to align noisy LR faces, then
super-resolve the aligned LR images by the SoA, and finally use BM3D to remove the
noise in the upsampled HR images. In the second case, we apply STN0 followed by
BM3D and then super-resolution. In the third case, we first denoise by BM3D, then
align by STN0, and finally super-resolve. When aligning noisy LR images, we train
STN0 with noisy LR faces. Otherwise, if we first use BM3D to reduce noise, we train
STN0 with noise-reduced LR faces.

Table 5.1 also indicates that simply denoising and then aligning, or aligning and
then denoising LR faces cannot lead to good performance by the SoA methods.

Furthermore, we demonstrate that our method can successfully hallucinate faces
in different noise levels in Fig. 5.8. When the noise level increases, our hallucinated
faces remain consistent and retain their visual quality, which implies that our method
is robust to noise variations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: Illustration of necessity of the transformative encoder. (a) unaligned and
noisy LR input with noise level 10%. (b) original HR image. (c) the output of DEC1.
(d) super-resolution of the downsampled result by DEC1. (e) super-resolution of the
downsampled result by DEC2. (f) super-resolution of the downsampled result by the
method of Yu and Porikli [2016]. (g) the output of our transformative encoder. (h)

our final result.

(a) HR

(b) 0% (c) 5% (d) 10%

Figure 5.10: Visualization of our results for different noise levels. Notice that, in (b)
our method is able to super-resolve a noise-free LR face.

Figure 5.7 shows the PSNR curves for different noise levels. We observe that our
method achieves higher PSNRs over the other methods, and for lower noise levels
it performs even better. Note that, we do not need to know the noise level in our
algorithm.

5.7 Conclusion

We presented a transformative autoencoder network to super-resolve very low-resolution
(16×16 pixels) unaligned and noisy face images with a challenging upsampling factor
of 8×. We leverage on a new decoder-encoder-decoder architecture. Our networks
jointly align, remove noise, and discriminatively hallucinate input images. Since our
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.11: Comparison with the state-of-the-arts methods at the noise level 5%. (a)
Unaligned and noisy LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Dong et al. [2016a]. (e) Results of Ma et al. [2010]. (f) Results of Zhu

et al. [2016b]. (g) Results of Yu and Porikli [2016]. (h) Our method.

method is agnostic to image noise, face pose, and spatial deformations, it is very
practical. At the same time, it can generate rich and authentic facial details.

5.8 Appendix

5.8.1 Necessity of Transformative Encoder

In Fig. 5.9, we illustrate the necessity of our transformative encoder. We firstly down-
sample the output of the decoder DEC1, and then apply three different ways to
super-resolve the downsampled face image: (1) we employ our first decoder DEC1 to
upsample the dowmsampled face image, as shown in Fig. 5.9(d). (2) we employ our
second decoder DEC2 to upsample the downsampled version, as shown in Fig. 5.9(e).
(3) we employ the method of Yu and Porikli [2016] to super-resolve the downsampled
LR image, as shown in Fig. 5.9(f). As shown in Fig. 5.9(d), Fig. 5.9(e) and Fig. 5.9(f),
the artifacts still remain in the upsampled HR face images. Hence, simply downsam-
pling the upsampled HR faces and then super-resolving the downsampled images
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.12: Comparison with the state-of-the-arts methods at the noise level 10%. (a)
Unaligned and noisy LR inputs. (b) Original HR images. (c) Bicubic interpolation.
(d) Results of Dong et al. [2016a]. (e) Results of Ma et al. [2010]. (f) Results of Zhu

et al. [2016b]. (g) Results of Yu and Porikli [2016]. (h) Our method.
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cannot attain high-quality HR face images. By contrast, our method can remove the
artifacts and output a realistic HR face image, as illustrated in Fig. 5.9(h).

5.9 Additional Experimental Results

Figure 5.10 illustrates another example that our method can upsample an unaligned
noisy LR image regardless of noise levels. Furthermore, as shown in Fig. 5.10(b), our
method can super-resolve unaligned and noise-free LR face images as well.

In Fig. 5.6, we have compared with the state-of-the-art methods when the noise
level is 10%. In order to demonstrate our method is able to super-resolve LR images
at different noise levels, we also compare with the state-of-the-art methods at the
noise level 5%, as shown in Fig. 5.11. Notice that, the visual quality of our results does
not degrade as noise levels vary. Furthermore, we also show some extra experimental
results in Fig. 5.12. In these experiments, we also demonstrate that our method is able
to hallucinate face images regardless of facial expressions and head poses.
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Chapter 6

Hallucinating Unaligned Face
Images by Multiscale
Transformative Discriminative
Networks

6.1 Foreword

Previous chapters only address low-resolution face images at a fixed resolution.
When the resolutions of input face images are larger than the desired resolution
of the upsampling networks, our previous methods need to downsize the input im-
ages. In this way, some high-frequency details of input images will be discarded,
thus leading to inferior super-resolution performance. In this chapter, we develop a
multiscale upsampling network which is able to explore all the information in input
images for face hallucination. Furthermore, we employ a feature-wise constraint,
known as perceptual loss, to enforce the upsampled HR faces to share similar facial
features to the ground-truths. By doing so, the upsampled facial features are much
closer to their ground-truth features. Therefore, our multiscale network outperforms
our previous networks qualitatively and quantitatively.

This chapter has been submitted to International Journal of Computer Vision as a
journal paper: Xin Yu, Basura Fernando, Fatih Porikli, Richard Hartley: Hallucinat-
ing Unaligned Face Images by Multiscale Transformative Discriminative Networks.

6.2 Abstract

Conventional face hallucination methods heavily rely on accurate alignment of low-
resolution (LR) faces before upsampling them. Misalignment often leads to deficient
results and unnatural artifacts for large upscaling factors. However, due to the di-
verse range of poses and different facial expressions, aligning an LR input image, in
particular when it is tiny, is severely difficult. In addition, when the resolutions of LR
input images vary, previous deep neural network based face hallucination methods
require input images at a fixed resolution. Downsampling LR input faces to a re-

89
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quired resolution will lose high-frequency information of the original input images.
This may lead to suboptimal super-resolution performance for the state-of-the-art
face hallucination networks. To overcome these challenges, we present an end-to-
end multiscale transformative discriminative neural network (MTDN) devised for
super-resolving unaligned and very small face images of different resolutions rang-
ing from 16×16 to 32×32 pixels in a unified framework. Our proposed network
embeds spatial transformation layers to allow local receptive fields to line-up with
similar spatial supports, thus obtaining a better mapping between LR and HR fa-
cial patterns. Furthermore, we incorporate a class-specific loss designed to classify
upright realistic faces in our objective through a successive discriminative network
to improve the alignment and upsampling performance with semantic information.
Extensive experiments on a large face dataset show that the proposed method signif-
icantly outperforms the state-of-the-art.

6.3 Introduction

Face images provide vital information for visual perception and identity analysis.
Nonetheless, when the resolution of the face image is very small (e.g. in typical
surveillance videos), there is little information that can be inferred from it. Very
low-resolution (LR) face images not only degrade the performance of the recognition
systems but also impede human interpretation. This challenge motivates the recon-
struction of high-resolution (HR) images from given LR counterparts, known as face
hallucination, and has attracted increasing interest in recent years.

Previous face hallucination methods based on holistic appearance models [Liu
et al., 2001; Baker and Kanade, 2002; Wang and Tang, 2005; Liu et al., 2007; Hennings-
Yeomans et al., 2008; Ma et al., 2010; Yang et al., 2010; Li et al., 2014; Arandjelović,
2014; Kolouri and Rohde, 2015] demand LR faces to be precisely aligned beforehand.
However, aligning LR faces to appearance models is not a straightforward task itself,
and more often, it requires expert feedback when the input image is small. Regard-
ing pose and expression variations naturally exist in LR face images, aligning LR
faces by state-of-the-art automatic alignment techniques [Zhu and Ramanan, 2012;
Bulat and Tzimiropoulos, 2017a] which usually assume facial landmarks are visi-
ble and detectable would be even more difficult. As a result, the performance of
face hallucination degrades severely. Such a broad spectrum of pose and expres-
sion variations also makes learning a comprehensive appearance model even harder.
For instance, Principal Component Analysis (PCA) based schemes become critically
ineffective to learn a reliable face model while aiming to capture different in- and
out-of-plane rotations, scale changes, translational shifts, and facial expressions. As
a result, these methods lead to unavoidable artifacts when LR faces are misaligned or
depict different poses and facial expressions from the base appearance model. More-
over, once appearance models are learned, input LR faces at different resolutions
need to be downscaled to fit the input size of the learned models. By doing so, some
high-frequency information of LR faces will be lost and different LR faces tend to be
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(a) LR (b) HR (c) Aligned LR (d) NN (e) Bicubic (f) VDSR

(g) SRGAN (h) CBN (i) LF (j) HF (k) Ours− (l) Ours

Figure 6.1: Comparison of our method with the CNN based super-resolution. (a)
The input 24× 24 LR image. (b) The original 128× 128 HR image. (c) Aligned LR
image of (a). The resolution of the aligned LR image is 16× 16 pixels since STN0
only outputs a fixed resolution for all images. (d) The corresponding HR version of
the nearest neighbor (NN) of (c) in the training set. (e) Bicubic interpolation of (c).
(f) The image generated by a CNN based generic super-resolution, i.e., VDSR [Kim
et al., 2016a]. We retrain VDSR with face images to better capture LR facial pat-
terns in super-resolution. (g) The image upsampled by a GAN based generic super-
resolution method, i.e., SRGAN [Ledig et al., 2017]. Here, SRGAN is also fine-tuned
on face images. (h) The image super-resolved by a state-of-the-art face hallucina-
tion method, i.e., CBN [Zhu et al., 2016b]. (i) The low-frequency component of (a).
(j) The high-frequency component of (a). (k) The upsampled face by our previous
method [Yu and Porikli, 2017b], which only uses the image (i) as input. (l) The result

of our MTDN.

indistinguishable at a lower resolution. Thus, the downscaling operation may result
in suboptimal super-resolution performance.

Rather than learning holistic appearance models, many methods upsample facial
components by transferring references from an HR training dataset and then blending
them into an HR version [Tappen and Liu, 2012; Yang et al., 2013, 2017a]. Although
these methods do not need LR face images to be aligned in advance or to resize input
images to a fixed resolution, they expect the resolution of input faces to be sufficient
enough for detecting the facial landmarks and parts. When the resolution is very low,
they fail to localize the components accurately, thus producing non-realistic faces. In
other words, the facial component based methods are unsuitable to upsample very
low-resolution faces.

By better exploring the information available in the natural structure of face
images, appearance similarities between individuals and emerging large-scale face
datasets [Huang et al., 2007; Liu et al., 2015], it becomes possible to derive competent
models to reconstruct authentic 4× ∼8× magnified HR face images. Deep neural
networks, in particular convolutional neural networks (CNN), are inherently suit-
able for learning from large-scale datasets. Very recently, CNN based generic patch
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super-resolution methods [Dong et al., 2016a; Kim et al., 2016a; Ledig et al., 2017]
have been proposed without focusing on any image class. A straightforward retrain-
ing (fine-tuning) of the networks, i.e., VDSR [Kim et al., 2016a] and SRGAN [Ledig
et al., 2017] with face images cannot produce realistic and visually pleasant results, as
shown in Fig. 6.1(f) and Fig. 6.1(g), because these networks cannot address misalign-
ments of LR inputs inherently. Misalignments of LR faces lead to the degradation of
the super-resolution performance.

Recently, deep neural network based face hallucination methods have been pro-
posed, and achieve state-of-the-art performance [Yu and Porikli, 2016, 2017a,b, 2018;
Zhu et al., 2016b; Huang et al., 2017a]. However, those networks are only designed
to super-resolve fixed-sized LR face images. When the input images are larger than
the desired input size of the networks, images are required to be downsampled to fit
the input size of the networks. After downsampling, some high-frequency compo-
nents are lost. Thus, those deep learning based methods cannot fully exploit all the
information of input images and output suboptimal results.

In this paper, we present a new multiscale transformative discriminative neural
network (MTDN) to overcome the above issues. Our proposed network is able to
super-resolve a range of small and unaligned face images (i.e., from 16×16 to 32×32
pixels) to HR images of 128×128 pixels. In particular, when the resolution of input
images is 16×16 pixels, we upsample LR faces by a remarkable upscaling factor 8×,
where we reconstruct 64 pixels for each single pixel of an input LR image. Unlike
previous works [Yu and Porikli, 2016, 2017a,b], when the resolutions of input images
are larger than the input size of the networks, i.e., 16×16 pixels, our network can
preserve all the information of input face images. Specifically, our MTDN develops
two branches to receive an downscaled LR input image as well as its residuals. In this
fashion, our MTDN is able to exploit the residuals from the downscaled images for
super-resolution. In order to retain the global structure of faces while being able to
reconstruct instance specific details, we use whole face images to train our networks.

Our network consists of two components: an upsampling network that compris-
es deconvolutional and spatial transformation network [Jaderberg et al., 2015] layers,
and a discriminative network. The upsampling network is designed to progressively
improve the resolution of the latent feature maps at each deconvolutional layer. We
do not assume the LR face is aligned in advance. Instead, we compensate for any
misalignment and changes through the spatial transformation network layers that are
embedded into the upsampling network. In order to avoid the loss of information
caused by downsampling LR face images, we separate LR images into two branches,
i.e., a low-frequency branch and a high-frequency branch. For instance, we down-
sample an LR image of 24×24 pixels to 16×16 pixels to obtain the low-frequency
image as well as upsample its residual image (i.e., an image is subtracted from the
original LR image by the resized low-frequency image) to 32×32 pixels to achieve the
high-frequency image. Then, we extract features from these two branches and then
combine the feature maps for further super-resolution without losing information of
inputs. One can use the pixel-wise intensity similarity between the estimated and the
ground-truth HR face images as the objective function in the training stage. However,
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when the upscaling factor becomes larger, employing only the pixel-wise intensity
similarity causes over-smoothed outputs. In order to force the upsampled faces to
share facial features similar to their ground-truth counterparts, we employ the per-
ceptual loss [Johnson et al., 2016]. Since face hallucination is an under-determined
problem, there would be one-to-many mappings between image intensities and fea-
tures. Thus, the upsampled HR faces may not be sharp and realistic-looking enough.
To make the upsampled HR faces realistic, we incorporate class similarity informa-
tion that is provided by a discriminative network. We back-propagate the discrim-
inative errors to the upsampling network. Our end-to-end solution allows fusing
the pixel-wise, feature-wise and class-wise information in a manner robust to spatial
transformations and obtaining a super-resolved output with much richer details.

Overall, our main contributions have four aspects:

• We present a novel end-to-end multiscale transformative discriminative net-
work (MTDN) to super-resolve very low-resolution face images to HR face im-
ages of 128×128 pixels, where the upscaling factor ranges from 4× to 8×.

• We propose a unified framework which super-resolves LR faces at different
resolutions, i.e., from 16×16 to 32×32 pixels, and outputs aligned upscaled HR
faces by a single deep neural network.

• In order to accept different sizes of LR input face images, we firstly divide an
input image into a low-frequency component and a high-frequency residual
one, and then design a two branch network to receive these two components
for upsampling. In this manner, we do not need to discard the residuals of the
downsample LR faces so as to fit the input size of deep neural networks, thus
avoiding losing information of inputs.

• For tiny input images where landmark based methods inherently fail, our
method is able to align and hallucinate an unaligned LR face image without
requiring precise alignment in advance, which makes our method practical.

This paper is an extension of our previous conference papers [Yu and Porikli,
2016, 2017a,b]. In this paper, we propose a new unified framework to super-resolve
LR faces at different resolutions. Since our previous methods need to downsample
LR faces at different resolutions to a fixed resolution, this downsampling operation
lose some high-frequency details of the LR inputs, i.e., residual images. Thus, they
may lead to suboptimal super-resolution results, as shown in our experimental part.
Different from our previous works, the proposed network can preserve all the infor-
mation of LR faces by our newly proposed multiscale network, thus achieving better
super-resolution performance. In addition, we also conduct more comprehensive
qualitative and quantitative experiments and discussions on each component of our
proposed network.
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6.4 Related Work

Super-resolution can be classified into two categories: generic super-resolution meth-
ods and class-specific super-resolution methods. When upsampling LR images,
generic methods employ priors that ubiquitously exist in natural images without
considering any image class information. Class-specific methods aim to exploit sta-
tistical information of objects in a certain class and they usually attain better results
than generic methods, e.g., the task of super-resolving LR face images.

Generic single image super-resolution methods generally have three types: inter-
polation based methods, image statistics based methods and learning-based method-
s. Interpolation based methods such as linear and non-linear upsampling are simple
and computationally efficient, but they may produce overly smooth edges and fail to
generate HR details as the upscaling factor increases. Image statistics based methods
employ natural image priors to enhance the details of upsampled HR images, such
as image gradients are sparse and follow heavy-tailed distributions [Tappen et al.,
2003], but these methods are also limited to smaller magnification factors [Lin and
Shum, 2006].

Learning-based methods demonstrate their potentials to exceed this limitation
of the maximum upscaling factor by learning a mapping from a large number of
LR/HR pairs [Lin et al., 2008]. Several methods [Glasner et al., 2009; Freedman and
Fattal, 2010; Singh et al., 2014; Huang et al., 2015] exploit self-similarity of patches in
an input image to generate HR patches. Freeman et al. [2002] and Hong Chang et al.
[2004] construct LR and HR patch pairs from a training dataset, and then infer high-
frequency details by searching the corresponding HR patch of the nearest neighbor
of an input LR patch. Yang et al. [2010] employ sparse representation to construct
the corresponding LR and HR dictionaries and then reconstruct HR output images
by the sparse coding coefficients inferred from LR images. Gu et al. [2015] apply
convolutional sparse coding instead of patch-based sparse coding to reconstruct HR
images.

Deep learning based super-resolution methods have been also proposed. Dong
et al. [2016a] incorporate convolutional neural networks to learn a mapping function
between LR and HR patches from a large-scale dataset. Motivated by this idea, the
follow-up works [Kim et al., 2016a; Ledig et al., 2017; Kim et al., 2016b; Shi et al.,
2016; Lai et al., 2017; Tai et al., 2017] try to explore deeper network architectures
to improve super-resolution performance. Since many different HR patches may
correspond to one LR patch, output images may suffer from artifacts at the intensity
edges. In order to reduce the ambiguity between the LR and HR patches, Bruna
et al. [2016] explore the statistical information learned from a deep convolutional
network to reduce ambiguity between LR and HR patches. Johnson et al. [2016]
propose a perceptual loss to constrain the feature similarity by a pre-trained deep
neural network. Ledig et al. [2017] employ the framework of generative adversarial
networks (GAN) [Goodfellow et al., 2014] to enhance image details by combining
an image intensity loss and an adversarial loss. Since those generic super-resolution
methods do not take class-specific information into account, they still suffer over-
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smoothed results when input sizes are tiny and magnification factors are large.
Class-specific super-resolution methods further exploit the statistical information

in the image categories, thus leading to better performance. When the class is faces,
they are also called face hallucination methods [Baker and Kanade, 2000; Liu et al.,
2001; Baker and Kanade, 2002].

The seminal works [Baker and Kanade, 2000, 2002] build the relationship between
facial HR and LR patches using Bayesian formulation such that high-frequency de-
tails can be transferred from the dataset for face hallucination. It can generate face
images with richer details. However, artifacts also appear due to the possible in-
consistency of the transferred HR patches. Wang and Tang [2005] apply PCA to LR
face images, and then hallucinate HR face images by an Eigen-transformation of LR
images. Although their method is able to magnify LR images by a large scaling fac-
tor, the output HR images suffer from ghosting artifacts when the HR images in the
exemplar dataset are not precisely aligned. Liu et al. [2007] enforce linear constraints
for HR face images using a subspace learned from the training set via PCA, and
a patch-based Markov Random Field is proposed to reconstruct the high-frequency
details in the HR face images. To mitigate artifacts caused by misalignments, a bi-
lateral filtering is used as a post-processing step. Kolouri and Rohde [2015] employ
optimal transport in combination with subspace learning to morph an HR image
from the LR input. Their method still requires that face images in the dataset are
precisely aligned and the test LR images have the same poses and facial expressions
as the exemplar HR face images. Instead of imposing global constraints, Ma et al.
[2010] super-resolve local HR patches by a weighted average of exemplar HR patches
and the weights are learned from the corresponding LR patches. Rather than hallu-
cinating HR patches in terms of image intensities, Li et al. [2014] resort to sparse
representation on the local regions of faces. However, blocky artifacts may appear as
magnification factors become large.

To handle various poses and expressions, Tappen and Liu [2012] integrate SIFT
flow [Liu et al., 2011] to align facial components in LR images. Their method per-
forms competently when the training face images are highly similar to the test
face image in terms of identity, pose, and expression. Yang et al. [2013] and Yang
et al. [2017a] first localize facial components, and then upsample each component by
matching gradients with respect to the similar HR facial components in the exem-
plar dataset. However, these methods rely on accurate facial landmark points that
are usually unavailable when the image size is very small. More comprehensive lit-
erature review of early face hallucination works can be referred to the work [Wang
et al., 2014].

Deep learning based face hallucination methods are proposed to fully exploit the
face structure and priors from emerging large-scale face datasets [Liu et al., 2015;
Huang et al., 2007; Yang et al., 2016]. Zhou and Fan [2015] propose a convolutional
neural network (CNN) to extract facial features and recover facial details from the
extracted features. Yu and Porikli [2018] combine deconvolutional and convolutional
layers to upsample LR face images, but they resort a post-processing step [Yu et al.,
2014] to improve the visual quality of the super-resolved faces. Later, Yu and Porikli
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Figure 6.2: Our MTDN consists of two parts: an upsampling network (in the red
frame) and a discriminative network (in the blue frame).

[2016] explore a discriminative generative network to super-resolve aligned LR face
images in an end-to-end manner while Huang et al. [2017a] estimate wavelet coeffi-
cients for a face upsampled by a generative adversarial network and then reconstruct
the HR image from the estimated coefficients. Xu et al. [2017] employ a multi-class
adversarial loss in the framework of generative adversarial networks to super-resolve
LR blurry face and text images. Dahl et al. [2017] exploit an autoregressive generative
model [Van Den Oord et al., 2016] to hallucinate pre-aligned LR face images. In order
to mitigate the ambiguity of the mappings between LR and HR faces, Yu et al. [2018]
embed high-level semantic information, i.e., face attributes, into the procedure of face
hallucination. To relax the requirement of face alignment, Bulat and Tzimiropoulos
[2018] present a constraint that the landmarks of the upsampled faces should be
close to the landmarks detected in their ground-truth images. Since ground-truth
landmarks are not provided in the training stage and erroneous localization of land-
marks may lead to distorted upsampled face images, their results are only restricted
to 64×64 pixels and facial details are not sharp enough. Zhu et al. [2016b] develop
a cascade bi-network to super-resolve unaligned LR faces, where facial components
are localized first and then upsampled. Chen et al. [2018] present a two-stage net-
work, where low-frequency components of LR face are first super-resolved and then
face priors (i.e., facial component locations) are also employed to enrich facial details.
However, those methods may produce ghosting artifacts when the facial component
localization is erroneous. Towards the same goal, our previous works [Yu and Porik-
li, 2017a,b; Yu et al., 2018] embed multiple spatial transformer networks [Jaderberg
et al., 2015] into the upsampling networks. However, those networks are trained in
a fixed input resolution, and thus LR faces at different resolutions have to be resized
(i.e., downsampling) to meet the input resolution of the networks. Therefore, these
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(a) HR

(b) LR faces of different resolu-
tions

(c) Our results of (b)

(d) HR

(e) LR faces of different resolu-
tions

(f) Our results of (e)

Figure 6.3: Illustrations of our results with respect to the different resolutions of LR
input images. (a)(d) Ground-truth HR face images. (b)(e) unaligned LR face images.
From left to right, the resolutions of the images are 16×16, 24×24 and 32×32. (c)
Our results of (b). From left to right, the corresponding PSNRs are 22.79 dB, 23.59
dB and 24.63 dB. (f) Our results of (e). From left to right, the corresponding PSNRs

are 17.80 dB, 19.96 dB and 21.94 dB.

methods may lose information of input images and introduce extra ambiguity due
to the downscaling operation.

6.5 Proposed Method: MTDN

6.5.1 Background

Our face hallucination method is motivated by the generative adversarial network-
s [Goodfellow et al., 2014] since they can generate an face image from random noise
represented by a fairly low-dimensional vector. Specifically, the generative model G
takes a noise vector z from a distribution Pnoise(z) as an input and then outputs an
image x̂. The discriminative model D takes an image stochastically chosen from ei-
ther the generated image x̂ or the real image x drawn from the training dataset with
a distribution Pdata(x) as an input. D is trained to output a scalar probability, which
is large for real images and small for generated images from G. The generative mod-
el G is learned to maximize the probability of D making a mistake. Thus a minmax
objective is used to train these two models simultaneously,

min
G

max
D

Ex∼Pdata(x)logD(x) + Ez∼Pnoise(z)log(1−D(G(z))).

This equation encourages G to fit Pdata(x) so as to fool D with its generated samples
x̂. However, we cannot directly employ the above equation for the face hallucination
task since GAN takes a fixed size noise vector as input to learn the distribution on
the training dataset. In contrast, the input for our face super-resolution task is an
LR face image, and its resolution is not fixed either. LR faces also undergo rotations,
translations and scale changes.
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In this paper, we propose a transformative discriminative neural network (MTD-
N) which achieves the image alignment and super-resolution simultaneously. Fur-
thermore, our MTDN accepts LR input images in various sizes without losing image
information. The entire pipeline is shown in Fig. 6.2.

6.5.2 Network Architecture

Our MTDN consists of two parts: a multiscale transformative upsampling network
that combines autoencoder, spatial transformation network layers, upsampling lay-
ers and residual block layers, and a discriminative network that is composed of con-
volutional layers, max-pooling layers, and fully-connected layers. The multiscale
transformative upsampling network is designed for receiving and super-resolving
LR images at different resolutions while the discriminative network is developed to
force the super-resolved faces to be realistic.

6.5.2.1 Multiscale Transformative Upsampling Network

Reception for LR Images in a Multiscale Manner: State-of-the-art CNN based
super-resolution networks [Yu and Porikli, 2016, 2017a,b; Zhu et al., 2016b; Bulat and
Tzimiropoulos, 2018; Chen et al., 2018] only accept LR inputs in a fixed resolution,
i.e., 16×16 pixels. When the resolutions of LR images are larger than the desired res-
olution, those methods need to downsample input images. However, downsampling
input images may result in the loss of high-frequency details of LR inputs as well
as more ambiguous mappings between LR and HR face images in super-resolution.
In addition, we assume that the resolutions of LR images are smaller than 32×32
pixels. Otherwise, LR images can provide enough resolution for human observation
and computer analysis. Hence, we only focus on LR images whose resolutions are
smaller than 32×32 pixels in this paper.

Inspired by the Laplacian pyramid, we decompose an image into two compo-
nents: a low-frequency part and a high-frequency part. We downsample an input
image to 16×16 pixels as our low-frequency part, as illustrated in Fig. 6.1(i). The
high-frequency part is obtained by subtracting the input image by the interpolated
low-frequency components. Then, we upsample the high-frequency component to
32×32 pixels, as visible in Fig. 6.1(j). In this way, our transformative upsampling
network can receive LR face images at different resolutions while preserving high-
frequency residual details of the inputs for super-resolution.

In order to combine the information of the high-frequency and low-frequency
branches together, we extract feature maps from the images of those tow branch-
es and then concatenate the feature maps for further super-resolution. Specifically,
we firstly employ an autoencoder with skip connections to extract features from the
low-frequency component and then upsample the feature maps by a deconvolutional
layer. After the deconvolutional layer, the resolution of the low-frequency branch has
been increased as the same as the resolution of the high-frequency branch. Rather
than directly combining the high-frequency residual component with the feature
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maps of the low-frequency component, we apply two cascaded residual blocks to
extract features from the high-frequency component as well. Then, we concatenate
the feature maps extracted from the high-frequency residual component with the up-
sampled feature maps of the low-frequency component and then employ a residual
block to fuse the concatenated feature maps.

As shown in Fig. 6.3, our network is able to super-resolve LR face images at
different resolutions. Note that, we do not need to fine-tune our network on images
of different sizes. As expected, the PSNRs of our upsampled results become higher
as the resolutions of LR faces increase. This indicates our network exploits all the
information in LR input images for super-resolution.

Upsampling Layers: After obtaining the concatenated features maps of input
images, we further super-resolve the feature maps by the deconvolutional layers and
residual blocks. The deconvolutional layer, also known back-convolutional layer, can
be made of a cascade of an upsampling layer and a convolutional layer, or a con-
volutional layer with a fractional stride [Zeiler et al., 2010; Zeiler and Fergus, 2014].
Therefore, the resolution of the output of the deconvolutional layers is larger than
the resolution of its input. To reduce potential blocky artifacts caused by deconvolu-
tional layers [Yu and Porikli, 2018] as well as increase the capacity of the network, we
cascade a residual block after each deconvolutional layer as our upsampling layer.

Spatial Transformation Layers: The spatial transformation network (STN) is
proposed by Jaderberg et al. [2015]. It can estimate the motion parameters of images,
and warp images to the canonical view. In our architecture, the spatial transfor-
mation network layers are represented as the green boxes in Fig. 6.2. These layers
contain three modules: a localization module, a grid generator module, and a sam-
pler. The localization module consists of a number of hidden layers and outputs the
transformation parameters of an input relative to the canonical view. The grid gener-
ator module creates a sampling grid according to the estimated parameters. Finally,
the sampler module maps the input onto the generated grid by bilinear interpolation.

Since we focus on in-plane rotations, translations, and scale changes without re-
quiring a 3D face model, we employ the similarity transformation for face alignment.
Although STNs can warp images, it is not straightforward to use them directly to
align very LR face images. As shown in Fig. 6.1(c), directly applying an STN to align
LR images causes distortion artifacts due to the difficulty of spatial transformation
estimation on very LR faces. There are several factors needed to be considered: (i)
After the alignment of LR images, facial patterns are blurred due to the resampling
of the aligned faces by bilinear interpolation. (ii) Since the resolution is very low and
a wide range of poses exists, estimating spatial transformations on such small face
images may lead to alignment errors. (iii) Due to the blur and alignment errors, the
upsampling network may fail to generate realistic HR faces. (iv) If STNs are em-
ployed to the two branches separately, the estimated transformation parameters of
these two branches may be different. This will result in misalignments between the
low-frequency component and the high-frequency residual components. As a result
of the misalignments, distortion artifacts or ghosting artifacts may appear in the final
results. Therefore, we employ STNs to align the concatenated feature maps. In this
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.4: Illustrations of different losses for super-resolution. (a) The input 16× 16
LR images. (b) The original 128× 128 HR images. (c) The aligned LR images. (d)
The upsampled faces by SRGAN [Ledig et al., 2017]. Here, SRGAN is applied to the
aligned LR faces. Since SRGAN is trained on generic images patches, we re-train
SRGAN on whole face images. (e) The face images super-resolved by our previous
method [Yu and Porikli, 2017b]. (f) The super-resolved faces by Lpix. (g) The super-
resolved faces by Lpix + L f eat. (h) The super-resolved faces by Lpix + L f eat + LU .

Here, we omit the trade-off weights for simplicity.

way, we can align the low-frequency and high-frequency parts simultaneously.
Instead of using a single STN to align LR face images, we employ multiple STN

layers to line up the feature maps. Using multiple layers significantly reduces the
load on each spatial transformation network and further reduces the errors of mis-
alignments. In addition, resampling feature maps by multiple STN layers prevents
from damaging or blurring input LR facial patterns. Since STN layers and the up-
sampling layers are interwoven together (rather than being two individual networks),
the upsampling network can learn to eliminate the undesired effects of misalignment
in the training stage.

6.5.2.2 Discriminative Network

In generic super-resolution [Kim et al., 2016a,b], only the `2 regression loss, also
known as Euclidean distance loss, is employed to constrain the similarity between
the upsampled HR images and their original HR ground-truth versions. However,
as reported in our previous work [Yu and Porikli, 2016], deconvolutional layers su-
pervised by a `2 loss tend to produce over-smoothed results. As seen in Fig. 6.4(f),
the hallucinated faces are not sharp enough because the common parts learned by
the upsampling network are averaged from similar components shared by differen-
t individuals. Thus, there is a quality gap between the real face images and the
hallucinated faces. To bridge this gap, we inject class information. We integrate a
discriminative network to distinguish whether the generated image is classified as
an upright real face image or not. A similar idea is employed in the generative ad-
versarial networks [Goodfellow et al., 2014; Denton et al., 2015; Radford et al., 2015],
which are designed to generate a new face. The architecture of the discriminative
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network is shown in the blue frame of Fig. 6.2. It consists of convolutional, max-
pooling, fully-connected and non-linear transformation layers. We employ a binary
cross-entropy as the loss function to distinguish whether the input HR faces are sam-
pled from super-resolved or real images. We backpropagate the discriminative error
to revise the coefficients of the multiscale transformative upsampling network (for
simplicity, we also refer to it as the upsampling network), which enforces the facial
parts learned by the deconvolutional layers to be as sharp and authentic as real face
images. Furthermore, the use of class information also facilitates the performance of
the STN layers for face alignment since only upright faces are classified as valid faces.
Therefore, our discriminative network also determines whether the faces are upright
or not. As shown in Fig. 6.4(h), with the help of the discriminative information, the
hallucinated face embodies more authentic, much sharper and better aligned details.

6.5.3 Training Details of MTDN

We construct LR and HR face image pairs {li, hi} as our training dataset, where hi
represents the aligned HR face images (only eyes are aligned), and li is the synthe-
sized LR face images downsampled from hi. Notice that, different from our pre-
vious works, the resolutions of input LR images li are different. As mentioned in
Sec. 6.5.2.1, the input LR faces li are further decomposed into two components: the
low-frequency component lL

i of size 16×16 pixels and the high-frequency residual
component lH

i of size 32×32 pixels.
In training our MTDN, we not only employ the conventional pixel-wise intensity

similarity, known as pixel-wise `2 loss, but also the feature-wise similarity, known
as perceptual loss [Johnson et al., 2016]. The perceptual loss is able to enforce the
upsampled facial characteristics to resemble their ground-truth counterparts. Even
though pixel-wise and feature-wise similarity are applied in training our network,
learning a mapping between LR and HR face images is still an ill-posed problem.
Our network will tend to output blurry results to lower the training losses. Thus,
in the testing stage, the upsampling network generates blurry faces. Similar to our
previous works [Yu and Porikli, 2016, 2017a], the adversarial loss is also employed to
attain visually appealing HR face images.

6.5.3.1 Pixel-wise Intensity Similarity Loss

We enforce the generated HR face ĥi to be similar to its corresponding ground-truth
hi in terms of image intensities. Thus we employ a pixel-wise `2 regression loss Lpix
to impose the appearance similarity constraint, expressed as:

Lpix = E(ĥi ,hi)∼p(ĥ,h)‖ĥi − hi‖2
F

= E(li ,hi)∼p(l,h)‖Ut(lL
i , lH

i )− hi‖2
F,

(6.1)

where t and U are the parameters and the output of the upsampling network, p(ĥ, h)
represents the joint distribution of the frontalized HR faces and their corresponding
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frontal HR ground-truths, p(l, h) indicates the joint distribution of the LR and HR
face images in the training dataset, and the LR input li is decomposed into lL

i and lH
i

before fed into the upsampling network. Here, we do not distinguish the parameters
of the upsampling layers and the STN layers because all the parameters are learned
simultaneously. We employ t to represent all the parameters in our multiscale trans-
formative upsampling network.

6.5.3.2 Feature-wise Similarity Loss

As illustrated in Fig. 6.4(f), the pixel-wise `2 loss leads to over-smoothed super-
resolved results. Therefore, we employ a feature-wise similarity loss to force the
super-resolved HR faces to share the same facial features as their ground-truth coun-
terparts. The feature-wise loss L f eat measures Euclidean distance between the feature
maps of super-resolved and ground-truth HR faces which are extracted by a deep
neural network, written as:

L f eat = E(ĥi ,hi)∼p(ĥ,h)‖Φ(ĥi)−Φ(hi)‖2
F

= E(li ,hi)∼p(l,h)‖Φ(Ut(lL
i , lH

i ))−Φ(hi)‖2
F,

(6.2)

where Φ(·) denotes feature maps extracted by the ReLU32 layer in VGG-19 [Si-
monyan and Zisserman, 2014], which gives good empirical performance in our ex-
periments.

6.5.3.3 Class-wise Discriminative Loss

In order to achieve visually appealing results, we infuse class-specific discriminative
information into our upsampling network by exploiting a discriminative network,
similar to our previous works [Yu and Porikli, 2016, 2017a,b]. Since our goal is to
output realistic HR faces, the upsampled face images should be able to fool the
discriminative network. In other words, the upsampling network makes the dis-
criminative network fail to distinguish generated faces from real ones. To do so, we
enforce the super-resolved HR frontal faces to lie on the manifold of real HR face
images. The discriminative network is used to classify real and super-resolved faces,
and thus its objective function is written as:

LD = −E(ĥi ,hi)∼p(ĥ,h)

[
logDd(hi) + log(1−Dd(ĥi))

]
= −Ehi∼p(h) logDd(hi)−Eĥi∼p(ĥ) log(1−Dd(ĥi))

= −Ehi∼p(h) logDd(hi)

−Eli∼p(l) log(1−Dd(Ut(lL
i , lH

i ))),

(6.3)

where d represents the parameters of the discriminative network, p(l), p(h) and
p(ĥ) indicate the distributions of the LR, HR ground-truth and upsampled faces
respectively, and Dd(hi) and Dd(ĥi) are the outputs of the discriminative network.
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To make the discriminative network distinguish hallucinated faces from real ones,
we minimize the loss LD and update the parameters d.

Meanwhile, our upsampling network aims to fool the discriminative network.
It needs to generate realistic HR face images and make the discriminative network
classify the super-resolved faces as real faces. Therefore, the objective function of our
upsampling network is written as:

LU = −Eĥi∼p(ĥ) log(D(ĥi))

= −Eli∼p(l) log(D(Ut(lL
i , lH

i ))).
(6.4)

By minimizing the loss LU , we update the parameters t and thus the discriminative
network will be prone to categorize the upsampled faces as real ones. These two
discriminative losses in Eqn. 6.3 and Eqn. 6.4 are used to update our upsampling
and discriminative networks respectively in an alternating fashion.

All the layers in our MTDN are differentiable and thus RMSprop [Hinton, 2012]
is employed to update the parameters t and d. We update the parameters d by
minimizing the loss LD as follows:

∆i+1 = γ∆i + (1− γ)(
∂LD
∂d

)2,

di+1 = di − r
∂LD
∂d

1√
∆i+1 + ε

,
(6.5)

where r and γ represent the learning rate and the decay rate respectively, i indicates
the index of the iterations, ∆ is an auxiliary variable, and ε is set to 10−8 to avoid
division by zero.

Multiple losses, i.e., Lpix, L f eat, and LU , are used for learning the parameters of
our upsampling network and the object function is expressed as:

LT = Lpix + ηL f eat + λLU , (6.6)

where η and λ are the trade-off weights. We employ lower weights on the feature-
wise and discriminative losses because we aim at super-resolving HR faces rather
than generating random faces. Thus, λ and η are both set to 0.01. Then, the param-
eters of our upsampling network t are updated by the gradient descent as follows:

∆i+1 = γ∆i + (1− γ)(
∂LT

∂t
)2,

ti+1 = ti − r
∂LT

∂t
1√

∆i+1 + ε
.

(6.7)

As the iteration progresses, the output faces will be more similar to real faces.
Therefore, we gradually reduce the impact of the discriminative network by decreas-
ing λ,

λj = max{λ · 0.995j, λ/2}, (6.8)
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Algorithm 2 Minibatch stochastic gradient descent training of MTDN
Input: minibatch size N, LR and HR face image pairs {li, hi}, maximum number of

iterations K.
1: while Iter < K do
2: Choose one minibatch of LR and HR image pairs {li, hi}, i = 1, . . . , N.
3: Decompose LR images into the low-frequency and high-frequency components

{lL
i , lH

i }.
4: Generate one minibatch of HR face images ĥi from {lL

i , lH
i }, i = 1, . . . , N, where

ĥi = Ut(lL
i , lH

i ).
5: Update the parameters of the discriminative network Dd by using Eqn. 6.3 and

Eqn. 6.5.
6: Update the parameters of the multiscale transformative upsampling network

Ut by using Eqn. 6.6 and Eqn. 6.7.
7: Update the trade-off weight λ by using Eqn. 6.8.
8: end while

Output: MTDN.

where j is the index of the epochs. Equation 6.8 not only increases the impact of
the appearance similarity term but also preserves the class-specific discriminative
information in the training phase. The training procedure of our MTDN is illustrated
in Algorithm 2.

6.5.4 Hallucinating a Very LR Face Image

The discriminative network is only used for training of the upsampling network. In
the testing phase, we first decompose an LR image into a low-frequency component
image and its high-frequency residual image and then feed them into the upsam-
pling network to obtain a super-resolved HR face. Because the ground-truth HR
face images are upright in the training stage of the entire network, the output of the
upsampling network will be an upright face image. As a result, our method does
not require alignment of the very low-resolution images in advance. Our network
provides an end-to-end mapping from an unaligned LR face image to an upright HR
version, which mitigates potential artifacts caused by misalignments and facilitates
achieving high-quality super-resolved HR face images.

6.5.5 Implementation Details

In Fig. 6.2, the STN layers are constructed by convolutional and ReLU layers (Con-
v+ReLU), max-pooling layers with a stride 2 (MP2) and fully connected layers (FC).
In particular, STN1 layer is cascaded by: MP2, Conv+ReLU (with the filter size:
128×20×5×5), MP2, Conv+ReLU (with the filter size: 20×20×5×5), FC+ReLU (from
80 to 20 dimensions) and FC (from 20 to 4 dimensions). STN2 is cascaded by: MP2,
Conv+ReLU (with the filter size: 64×128×5×5), MP2, Conv+ReLU (with the filter
size: 128×20×5×5), MP2, Conv+ReLU (with the filter size: 20×20×3×3), FC+ReLU
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(from 180 to 20 dimensions) and FC (from 20 to 4 dimensions). We do not use zero-
padding in the convolution operations.

In order to merge the low-frequency images with the information extracted from
the high-frequency branch, we employ an autoencoder with skip connections. The
encoder is composed of convolutional layers with a stride of 2 and zero-paddings.
The decoder consists of deconvolutional layers with a stride of 2 and zero-paddings
as well. The feature maps from the encoder and decoder are concatenated by skip
connections. The residual block is composed of a convolutional layer with a kernel
size 3×3, batch normalization, ReLU, a convolutional layer with a kernel size 1×1
and a high-pass connection.

In the following experimental part, some algorithms [Ma et al., 2010; Ledig et al.,
2017; Kim et al., 2016b] require the alignments of LR inputs. Thus, we use STN0 to
align the LR inputs images (i.e., 16×16 pixels) for those methods. The only difference
between STN0 and STN1 is that the first MP2 operation in STN1 is removed in STN0

and the input channel is 3.

6.6 Experiments

In this section, we compare our method with the state-of-the-art methods [Ma et al.,
2010; Kim et al., 2016a; Ledig et al., 2017; Zhu et al., 2016b; Yu and Porikli, 2017b]
qualitatively and quantitatively. Kim et al. [2016a] employ very deep CNN to up-
sample images. Ledig et al. [2017] use the generative adversarial framework to en-
hance super-resolved details. Ma et al. [2010] exploit position-patches in the dataset
to reconstruct HR images. Zhu et al. [2016b] develop a deep CNN to localize fa-
cial components and then super-resolve them in a cascaded manner. Yu and Porikli
[2017b] propose a single-scale face hallucination method, which also employs STN
layers and deconvolutional layers for super-resolution.

6.6.1 Dataset

Our network is trained on the Celebrity Face Attributes (CelebA) dataset [Liu et al.,
2015]. There are more than 200K face images in this dataset, and the images cover
different pose variations and facial expressions. In training our network, we disre-
gard these variations without grouping the face images into different pose and facial
expression subcategories.

When generating the LR and HR face pairs, we crop the aligned HR face images
from the CelebA dataset, and then resize them to 128×128 pixels as HR images. We
manually transform the HR images including 2D translations, rotations and scale
changes while constraining the faces in the image region, and then downsample the
HR images to generate their corresponding LR images, where the resolutions of LR
images are also randomly set between 16 to 32 pixels. We use 70%, 10% and 20% of
LR and HR image pairs for training, validation and testing, respectively.
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6.6.2 Qualitative Comparisons with the State-of-the-Art

Since our method is able to super-resolve an image with a substantial upscaling fac-
tor of 8×, for the methods that do not provide 8× [Kim et al., 2016a; Ledig et al.,
2017], we retrain their network on face images with a magnification factor 8×. Fur-
thermore, the resolutions of LR inputs are various, i.e., 16×16∼32×32 pixels, but
STNs can only accept an image in a fixed resolution due to the network architecture
of its localization module. Considering some methods [Ma et al., 2010; Kim et al.,
2016a; Ledig et al., 2017] require alignments before super-resolution and some ap-
proaches [Zhu et al., 2016b; Yu and Porikli, 2017b] only accept the input resolution of
16×16 pixels,the input images are resized to 16×16 pixels to meet the requirements.
For fair comparisons and better illustration, we transform all the LR input images to
the upright view as the inputs of the other methods. In this way, we compare the
super-resolution performance with different algorithms for different magnification
factors.

As shown in Fig. 6.5(c), traditional upsampling methods, i.e., bicubic interpola-
tion, cannot hallucinate authentic facial details. Since the resolution of inputs is very
small, little information is contained in the input images. Simply interpolating in-
put LR images cannot recover extra high-frequency details. As seen in Fig. 6.5(c),
Fig. 6.6(c) and Fig. 6.7(c), the images upsampled by bicubic interpolation have some
skew effects rather than laying in the upright view. This also indicates that aligning
input images by STN0 suffers from misalignments because it is difficult to estimate
transformation parameters accurately from images in such a small size. On the con-
trary, we apply multiple STNs on the upsampled feature maps, which improves
the alignment of the LR inputs. Therefore, our method outputs well-aligned faces.
Moreover, with the help of our discriminative network, our method can achieve much
sharper results.

Kim et al. [2016a] propose a very deep convolutional neural network based gener-
al purpose super-resolution method, dubbed VDSR. Since VDSR is trained on natural
image patches, it may be not suitable to super-resolve face images. Furthermore, VD-
SR does not provide a magnification factor of 8×. Thus, we fine-tune VDSR with face
images with an upscaling factor of 8×. However, VDSR is only composed of convo-
lutional layers, and cannot address misalignments of LR faces. Hence, STN0 is em-
ployed to align LR faces before super-resolution. As shown in Fig. 6.5(d), Fig. 6.6(d)
and Fig. 6.7(d), VDSR fails to produce realistic facial details. This implies only using
a pixel-wise loss as supervision leads to overly smoothed super-resolved results.

Ledig et al. [2017] develop a generic super-resolution method, known as SR-
GAN. SRGAN employs the framework of generative adversarial networks [Good-
fellow et al., 2014; Radford et al., 2015] to enhance the visual quality. It is trained by
using not only a pixel-wise `2 loss but also an adversarial loss. Similar to VDSR, orig-
inal SRGAN is also trained on image patches, and thus it is hard to capture the global
structure of face images. Therefore, we also retrain SRGAN with entire face images.
As seen in Fig. 6.5(e), Fig. 6.6(e) and Fig. 6.7(e), SRGAN captures LR facial patterns
and achieves sharper upsampled results compared to VDSR, but misalignments in
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6.5: Comparisons with the state-of-the-art methods on the input images of
size 16×16 pixels. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic
interpolation. (d) Kim et al.’s method [Kim et al., 2016a] (VDSR). (e) Ledig et al.’s
method [Ledig et al., 2017] (SRGAN). (f) Ma et al.’s method [Ma et al., 2010]. (g)
Zhu et al.’s method [Zhu et al., 2016b] (CBN). (h) Yu and Porikli’s method [Yu and

Porikli, 2017b] (TDAE). (i) Our method.

LR faces cause severe distortions and artifacts in the final hallucinated faces.

Ma et al. [2010] exploit position patches to hallucinate HR faces. Thus their
method requires the LR inputs to be precisely aligned with the reference images
in the training dataset. As seen in Fig. 6.5(f), Fig. 6.6(f) and Fig. 6.7(f), as the upscal-
ing factor increases, the correspondences between LR and HR patches become more
inconsistent. As a result, this method suffers from obvious blocky artifacts around
the boundaries of different patches. In addition, when there are obvious alignment
errors in the aligned LR faces or large poses exist, their method will output mixed
and blurry facial components in their results.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6.6: Comparisons with the state-of-the-art methods on the input images of
size 24×24 pixels. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic
interpolation. (d) Kim et al.’s method [Kim et al., 2016a] (VDSR). (e) Ledig et al.’s
method [Ledig et al., 2017] (SRGAN). (f) Ma et al.’s method [Ma et al., 2010]. (g)
Zhu et al.’s method [Zhu et al., 2016b] (CBN). (h) Yu and Porikli’s method [Yu and

Porikli, 2017b] (TDAE). (i) Our method.

Zhu et al. [2016b] present a deep cascaded bi-branch network for face halluci-
nation, named CBN, where one branch first localizes facial components, then aligns
and upsamples LR facial components while the other branch is used to upsample
global face profiles. However, when the inputs undergo large pose variations, CBN
cannot localize facial components accurately, and thus produces severe artifacts as
seen in Fig. 6.5(g), Fig. 6.6(g) and Fig. 6.7(g). In contrast, our method estimates the
2D deformations of LR faces and aligns them by multiple STNs in the procedure of
super-resolution, where misalignments from the previous STN layer can be eliminat-
ed by the latter STN layer. Therefore, our results do not suffer the ghosting artifacts
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 6.7: Comparisons with the state-of-the-art methods on the input images of
size 32×32 pixels. (a) Unaligned LR inputs. (b) Original HR images. (c) Bicubic
interpolation. (d) Kim et al.’s method [Kim et al., 2016a] (VDSR). (e) Ledig et al.’s
method [Ledig et al., 2017] (SRGAN). (f) Ma et al.’s method [Ma et al., 2010]. (g)
Zhu et al.’s method [Zhu et al., 2016b] (CBN). (h) Yu and Porikli’s method [Yu and

Porikli, 2017b] (TDAE). (i) Our method.

as shown in Fig. 6.5(i), Fig. 6.6(i) and Fig. 6.7(i). Note that the facial component
localization branch in CBN requires the input resolution to be fixed, i.e.16×16 pix-
els. Therefore, if the resolutions of input images are larger than 16×16 pixels, CBN
needs to downsample input images first. In that case, CBN may lose high-frequency
information of inputs and achieves suboptimal hallucination results.

Yu and Porikli [2017b] design a transformative discriminative autoencoder, called
TDAE, to upsample noisy and unaligned LR face images. However, TDAE only
takes LR images in a fixed resolution, and it has to downsample LR images to a
lower-resolution when the resolutions of input images are larger than the required
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Table 6.1: Quantitative comparisons on the entire test dataset

Methods Bicubic VDSR SRGAN Ma et al. CBN TDAE IBSR Ours

PSNR 19.23 20.13 19.08 19.11 18.78 20.83 21.45 21.98
SSIM 0.56 0.57 0.57 0.54 0.54 0.57 0.59 0.62

resolution, i.e., 16×16 pixels. Therefore, TDAE will lose details of input images and
may generate inaccurate facial characteristics, such as gender reversal as visible in
the second row of Fig. 6.6(h) and the third row of Fig. 6.7(h). Furthermore, benefiting
from the feature-wise loss, our MTDN is able to hallucinate facial characteristics akin
to the ground-truth HR faces. Furthermore, TDAE is trained mainly on near-frontal
face images. It does not super-resolves LR faces in large poses well. In contrast, we
enlarge the training dataset with more examples and more challenging poses to train
our MTDN. Therefore, our network attains better super-resolution performance.

As shown in Fig. 6.5(g), Fig. 6.6(g) and Fig. 6.7(g), our method reconstructs au-
thentic facial details and the reconstructed faces have different poses and facial ex-
pressions. Since our method applies multiple STNs on feature maps to align face
images, we can achieve better alignment results without damaging input LR facial
patterns. Furthermore, our method does not warp input images directly, so there
are no blank regions in our results. Since our network is able to receive LR images
at different resolutions without discarding residual images, our method can exploit
information better than the other methods. Notice that, we only use a single network
to super-resolve all the LR face images in various resolutions.

6.6.3 Quantitative Results

We report the quantitative comparison results using the average Peak Single-to-Noise
Ratio (PSNR) and Structural SIMilarity scores (SSIM) on the entire test dataset in
Tab. 6.1. Note that, in the test dataset the resolutions of LR input face images ranges
from 16×16 to 32×32. We use all the methods to upsample LR face images to the
HR images of size 128×128 pixels and then compare the upsampled HR faces with
their corresponding ground-truths. As mentioned in Sec. 6.6.2, all the other methods
need to downsample input images to 16×16 pixels.

As indicated in Tab. 6.1, our MTDN attains the best PSNR and SSIM results and
outperforms the second best with a large margin of 1.15 dB in PSNR. Note that, our
previous work TDAE [Yu and Porikli, 2017b] also interweaves STN layers as well
as deconvolutional layers to upsample unaligned face images, but it only accepts
input images in a fixed resolution, i.e.16×16 pixels, and thus achieves the second best
performance. This indicates that TDAE loses important high-frequency information
of LR images in the downsampling operation. As indicated in Tab. 6.1, by using
the multi-scale strategy and the two branch architecture network, we can preserve
all the information of the LR inputs in super-resolution and thus obtain superior
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Table 6.2: Quantitative evaluations on different STN layers

STNs STN1 STN2 Ours

PSNR 21.47 21.74 21.98
SSIM 0.62 0.62 0.62

Table 6.3: Quantitative evaluations on different losses
Losses Lpix Lpix+ f eat Lpix+U LT
PSNR 22.34 22.09 21.71 21.98
SSIM 0.65 0.65 0.61 0.62

performance.

6.7 Discussions

6.7.1 Impacts of Residual Branch

As indicated by the quantitative result of TDAE in Tab. 6.1, the downsampling op-
eration leads to suboptimal super-resolution performance. Since our MTDN also
employs extra residual blocks, the improvement of the performance may be caused
by the increased capacity of the network. In order to evaluate the impacts of the
high-frequency residual branch, similar to our previous methods [Yu and Porikli,
2016, 2017b], we only employ one branch, i.e., the low-frequency branch, to upsam-
ple LR input face images. Note that, we do not need to re-train our MTDN net-
work. As shown in Tab. 6.5, the performance of only using low-frequency branch is
marked by noHF, and its performance degrades 0.71 dB in PSNR. It indicates that the
high-frequency residual information extracted from the input images contains useful
clues for super-resolution. Thus, providing more high-frequency details improves
face super-resolution performance.

6.7.2 Effects of Different Losses

As mentioned in Sec. 6.5.3, there are three different losses employed to train our
network, i.e., pixel-wise and feature-wise `2 losses and a class-wise discriminative
loss. Pixel-wise `2 loss is used to constrain the appearance similarity. As reported in
our previous work [Yu and Porikli, 2016] and as indicated in Tab. 6.3, the upsampling
network which is trained only by a pixel-wise `2 loss to super-resolve LR faces obtains
the highest PSNR but produces over-smoothed results as shown in Fig. 6.4(f).

The feature-wise loss is able to make the super-resolved results sharper without
suffering over-smoothness because it forces the high-order moments of upsampled
faces, i.e., feature maps of faces, to be similar to their ground-truths. In addition,
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Table 6.4: Quantitative evaluations on different input resolutions

Resolutions 16×16 24×24 32×32

PSNR 20.97 22.16 22.23
SSIM 0.59 0.63 0.63

Table 6.5: Quantitative evaluations on different components in our MTDN

Modules NoAE NoSkip NoHF Ours

PSNR 21.16 21.57 21.27 21.98
SSIM 0.62 0.61 0.60 0.62

we also incorporate a class-wise discriminative loss to force the upsampling network
to generate realistic faces. Since the class-specific loss is not used to measure the
similarity between two images, too large discriminative loss will distort our super-
resolution performance. Therefore, there is a trade-off between the upsampling and
discriminative networks and we gradually decrease the influence of the discrimina-
tive network as iterations progress.

Because PSNR is designed to measure the similarity of appearance intensities but
does not reflect visual quality of reconstructed images, using the feature-wise and
class-wise losses decreases the PSNR, as seen in Tab. 6.3 but improves the visual
quality significantly, as visible in Fig. 6.4.

6.7.3 Impacts of Multiple STN Layers

As illustrated in Fig. 6.2, we apply two STN layers to align feature maps in our net-
work. Our previous works [Yu and Porikli, 2017a,b] only use one branch to upsample
LR faces and they align feature maps at the resolution of 16×16 pixels. However, our
MTDN has two branches and the resolutions of these two branch inputs are different.
Therefore, we apply STN layers after the concatenation layer, where the resolution
of the feature maps is 32×32 pixels. In this manner, all feature maps can be aligned
simultaneously. As mentioned in [Jaderberg et al., 2015], using multiple STNs can
achieve more accurate alignment. Due to the GPU memory limitation, we cannot
apply an STN layer to align the feature maps of size 128×128 pixels. Hence, we only
employ two STN layers to the feature maps of size 32×32 and 64×64 pixels in our
network. As shown in Tab. 6.2, we demonstrate the contributions of different STN
layers to the final performance. Table 6.2 also indicates that using multiple STN layers
can improve face alignment, thus obtaining better face hallucination performance.
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(a) (b) (c) (d) (e)

Figure 6.8: Comparisons of different variants of our network. (a) The input 16× 16
LR images. (b) The original 128× 128 HR images. (c) Results of the network without

using the autoencoder. (d) Results of IBSR. (e) Our results.

Figure 6.9: Real-world cases. The top row: real-world LR faces captured in the wild.
The bottom row: our super-resolved results.

6.7.4 Effects of Autoencoder in Low-frequency Branch

Different from our previous works [Yu and Porikli, 2016, 2017a, 2018], our MTDN
does not super-resolve LR faces directly by deconvolutional layers. Since our method
needs to fuse two branch images together, we first extract feature maps from the
two branch input images separately. In order to make the resolutions of the feature
maps from the two branches compatible, we upsample the feature maps of the low-
frequency branch to 32×32 pixels. In particular, we apply an autoencoder with skip
connections to extract features and then upsample features by a deconvolutional layer
in the low-frequency branch while residual blocks are applied to extract features
from the high-frequency branch. Since the resolution of the low-frequency branch is
very small, the autoencoder does not require much GPU memory but increases the
capacity of our network.

We replace the autoencoder with a convolutional layer and use a deconvolutional
layer to upsample the LR feature maps in the low-frequency branch, and we repre-
sent this variant as noAE in Tab. 6.5. As demonstrated in Tab. 6.5, the performance
of noAE degrades 0.82 dB compared to our MTDN. Therefore, by increasing the net-
work capacity, i.e., the employment of the autoencoder, our MTDN achieves better
quantitative super-resolution performance. Furthermore, the upsampled faces also
achieve better visual quality by using the autoencoder, as shown in Fig. 6.8. It al-
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so demonstrates that our autoencoder can extract feature maps better than a single
convolutional layer. Since skip connections are employed in the autoencoder, we can
also preserve the spatial information from the encoder to the decoder. Removal of
the skip connections in our network, marked as NoSkip, causes 0.41 dB degradation
in PSNR, as shown in Tab. 6.5. However, we do not observe significant deterioration
in visual quality.

6.7.5 PSNR and SSIM at Different Input Resolutions

Since our test dataset consists of LR face images at different resolutions, it cannot
reflect the performance of our network as the input resolutions increase. Hence, we
generate another test dataset where each HR face image corresponds to three differ-
ent LR image versions, i.e., 16×16, 24×24 and 32×32 pixels. We group and super-
resolve input LR images according to their resolutions and then measure the perfor-
mance of our network in each group. As indicated in Tab. 6.4, our network generates
better super-resolved results in terms of PSNR as the input resolution increases. It
implies our proposed two branch network can fully exploit input information when
more information is provided in LR input images.

6.7.6 Interpolation before Super-resolution

There is another option for preserving all the information in the LR input images:
we can first resize the different LR image sizes to 32×32 pixels by bicubic interpola-
tion and then super-resolve the interpolated images. We name this super-resolution
approach as IBSR. As reported in previous generic super-resolution methods [Kim
et al., 2016a; Ledig et al., 2017], using convolutional and deconvolutional layers can
achieve better super-resolution performance than traditional interpolation methods,
e.g.bicubic interpolation. Therefore, we use an autoencoder and a deconvolution-
al layer to upsample low-frequency part as well as residual blocks to extract fea-
tures from high-frequency residuals. After obtaining the feature maps from the low-
frequency and high-frequency branches, we fuse those feature maps by a residual
block. In this fashion, we achieve 128 channel features maps of size 32×32 for fur-
ther super-resolution rather than only 3 channel interpolated images in IBSR. Hence,
our network architecture can achieve better performance qualitatively and quantita-
tively, as demonstrated in Fig. 6.8(d) and Tab. 6.1.

6.7.7 Real World Cases

Since it is easy to obtain real-world LR face images but very difficult to attain their
corresponding HR images, we use bicubic downsampling to mimic the degradation
process. Although our network is trained on CelebA dataset, our model can also
super-resolve real-world LR face images effectively, as seen in Fig. 6.9. In Fig. 6.9, we
randomly choose LR face images from 16×16 pixels to 32×32 pixels in WiderFace
dataset [Yang et al., 2016] where LR faces are captured in the wild. As visible in
real-world LR faces, the mosaic artifacts and noise are obvious, which can degrade
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the super-resolution performance. We believe with proper data augmentation our
network is able to super-resolve real-world LR faces even better.

6.8 Conclusion

We present a novel and capable multiscale transformative discriminative network to
super-resolve very small LR face images. By designing a two branch input neural
network, our network can upsample LR images in various resolutions without dis-
carding the residuals of resized input images. In this manner, our method is able to
utilize all the information from inputs for face super-resolution. Furthermore, our
algorithm can increase the input LR image size significantly, e.g. 8×, and recon-
struct much richer facial details. Since our method does not require any alignments
of LR faces and learns an end-to-end mapping between LR and HR face images, it
preserves well the global structure of faces and is more practical.
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Chapter 7

Face Super-resolution Guided by
Facial Component Heatmaps

7.1 Foreword

In previous chapters, our networks are designed to super-resolve low-resolution face
images undergoing different 2D transformations, such as rotational and translational
misalignments. Even though our networks can hallucinate faces in different poses,
those low-resolution input faces are nearly frontal. When the input faces undergo
large pose variations, such as side-view poses, our previous methods may fail to
upsample those faces authentically. There may be two possible reasons: one is that
we do not use sufficient data to train our networks, and the other is that our proposed
networks cannot recognize those facial components inherently. In this chapter, we
first demonstrate that our previously presented networks cannot recognize facial
components when input low-resolution faces exhibit large poses. Thus, they fail to
upsample faces in large poses. Then, we propose a multi-task upsampling network
to super-resolve low-resolution face images while localizing facial components on the
fly. Since our proposed network can localize facial components, it can super-resolve
facial components explicitly. Therefore, our network is able to super-resolve faces in
a wide range of poses.

This chapter has been published as a conference paper: Xin Yu, Basura Fernando,
Bernard Ghanem, Fatih Porikli, Richard Hartley: Face Super-Resolution Guided by
Facial Component Heatmaps. In European Conference on Computer Vision (ECCV), 217-
233, 2018.

7.2 Abstract

State-of-the-art face super-resolution methods leverage deep convolutional neural
networks to learn a mapping between low-resolution (LR) facial patterns and their
corresponding high-resolution (HR) counterparts by exploring local appearance in-
formation. However, most of these methods do not account for facial structure
and suffer from degradations due to large pose variations and misalignments. In
this paper, we propose a method that explicitly incorporates structural information
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(a) (b) (c) (d) (e) (f) (g)

Figure 7.1: Comparison of state-of-the-art face super-resolution methods on very
low-resolution (LR) face images. Columns: (a) Unaligned LR inputs. (b) Original HR
images. (c) Nearest Neighbors (NN) of aligned LR faces. Note that image intensities
are used to find NN. (d) CBN [Zhu et al., 2016b]. (e) TDAE [Yu and Porikli, 2017b].
(f) TDAE†. We retrain the original TDAE with our training dataset. (g) Our results.

of faces into the face super-resolution process by using a multi-task convolutional
neural network (CNN). Our CNN has two branches: one for super-resolving face
images and the other branch for predicting salient regions of a face coined facial
component heatmaps. These heatmaps encourage the upsampling stream to generate
super-resolved faces with higher-quality details. Our method not only uses low-level
information (i.e., intensity similarity), but also middle-level information (i.e., face
structure) to further explore spatial constraints of facial components from LR inputs
images. Therefore, we are able to super-resolve very small unaligned face images
(16×16 pixels) with a large upscaling factor of 8×, while preserving face structure.
Extensive experiments demonstrate that our network achieves superior face halluci-
nation results and outperforms the state-of-the-art.

7.3 Introduction

Face images provide crucial clues for human observation as well as computer anal-
ysis [Fasel and Luettin, 2003; Zhao et al., 2003]. However, the performance of most
existing facial analysis techniques, such as face alignment [Xiong and De la Torre,
2013; Bulat and Tzimiropoulos, 2017a] and identification [Taigman et al., 2014], de-
grades dramatically when the resolution of a face is adversely low.

Face super-resolution (FSR) [Baker and Kanade, 2000], also known as face hallu-
cination, provides a viable way to recover a high-resolution (HR) face image from
its low-resolution (LR) counterpart and has attracted increasing interest in recen-
t years. Modern face hallucination methods [Zhou and Fan, 2015; Yu and Porikli,
2016, 2017b; Zhu et al., 2016b; Cao et al., 2017; Dahl et al., 2017] employ deep learn-
ing and achieve state-of-the-art performance. These methods explore image intensity
correspondences between LR and HR faces from large-scale face datasets. Since
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near-frontal faces prevail in popular large-scale face datasets [Liu et al., 2015; Huang
et al., 2007], deep learning based FSR methods may fail to super-resolve LR faces
under large pose variations, as seen in the examples of Fig. 7.1. In fact, in these ex-
amples, the face structure has been distorted and facial details are not fully recovered
by state-of-the-art super-resolution methods.

A naive idea to remedy this issue is to augment training data with large pose vari-
ations (i.e., [Zafeiriou et al., 2017]) and then retrain the neural networks. As shown in
Fig. 7.1(f), this strategy still leads to suboptimal results where facial details are miss-
ing or distorted due to erroneous localization of LR facial patterns. This limitation
is common in intensity-based FSR methods that only exploit local intensity infor-
mation in super-resolution and do not take face structure or poses into account. We
postulate that methods that explicitly exploit information about the locations of facial
components in LR faces have the capacity to improve super-resolution performance.

Another approach to super-resolve LR face images is to localize facial components
in advance and then upsample them [Yang et al., 2013; Zhu et al., 2016b] progres-
sively. However, localizing these facial components with high accuracy is generally a
difficult task in very LR images, especially under large pose variations. As shown in
Fig. 7.1(e), the method of Zhu et al. [2016b] fails to localize facial components accu-
rately and produces an upsampled face with severe distortions. Therefore, directly
detecting facial components or landmarks in LR faces is suboptimal and may lead to
ghosting artifacts in the final result.

In contrast to previous methods, we propose a method that super-resolves LR
face images while predicting face structure in a collaborative manner. Our intuition is
that, although it is difficult to accurately detect facial landmarks in LR face images, it
is possible to localize facial components (not landmarks) and identify the visibility of
the components on the super-resolved faces or the intermediate upsampled feature
maps because they can provide enough resolution for localization. Obtaining the
locations of facial components can in turn facilitate face super-resolution.

Driven by this idea, we propose a multi-task deep neural network to upsample LR
images. In contrast to the state-of-the-art FSR methods [Yu and Porikli, 2017b; Zhu
et al., 2016b; Cao et al., 2017; Dahl et al., 2017], our network not only super-resolves
LR images but also estimates the spatial positions of their facial components. Then
the estimated locations of the facial components are regarded as a guidance map
which provides the face structure in super-resolution. Here, face structure refers to
the locations and visibility of facial components as well as the relationship between
them and we use heatmaps to represent the probability of the appearance of each
component. Since the resolution of the input faces is small, (i.e., 16 × 16 pixels),
localizing facial components is also very challenging. Instead of detecting facial
components in LR images, we opt to localize facial components on super-resolved
feature maps. Specifically, we first super-resolve features of input LR images, and
then employ a spatial transformer network [Jaderberg et al., 2015] to align the feature
maps. The upsampled feature maps are used to estimate the heatmaps of facial
components. Since the feature maps are aligned, the same facial components may
appear at the corresponding positions closely. This also provides an initial estimation
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for the component localization. Furthermore, we can also largely reduce the training
examples for localizing facial components when input faces or feature maps are pre-
aligned. For instance, we only use 30K LR/HR face image pairs for training our
network, while a state-of-the-art face alignment method [Bulat and Tzimiropoulos,
2017a] requires about 230K images to train a landmark localization network.

After obtaining the estimated heatmaps of facial components, we concatenate
them with the upsampled feature maps to infuse the spatial and visibility infor-
mation of facial components into the super-resolution procedure. In this fashion,
higher-level information beyond pixel-wise intensity similarity is explored and used
as an additional prior in FSR. As shown in Fig. 7.1(g), our presented network is
able to upsample LR faces in large poses while preserving the spatial structure of
upsampled face images.

Overall, the contributions of our work can be summarized as:

• We present a novel multi-task framework to super-resolve LR face images of
size 16× 16 pixels by an upscaling factor of 8×, which not only exploits im-
age intensity similarity but also explores the face structure prior in face super-
resolution.

• We not only upsample LR faces but also estimate the face structure in the frame-
work. Our estimated facial component heatmaps provide not only spatial infor-
mation of facial components but also their visibility information, which cannot
be deduced from pixel-level information.

• We demonstrate that the proposed two branches, i.e., upsampling and facial
component estimation branches, collaborate with each other in super-resolution,
thus achieving better face hallucination performance.

• Due to the design of our network architecture, we are able to estimate facial
component heatmaps from the upsampled feature maps, which provides e-
nough resolutions and details for estimation. Furthermore, since the feature
maps are aligned before heatmap estimation, we can largely reduce the num-
ber of training images to train the heatmap estimation branch.

To the best of our knowledge, our method is the first attempt to use a multi-task
framework to super-resolve very LR face images. We not only focus on learning the
intensity similarity mappings between LR and HR facial patterns, similar to [Yu and
Porikli, 2017b; Dahl et al., 2017; Ma et al., 2010], but also explore the face structure
information from images themselves and employ it as an additional prior for super-
resolution.

7.4 Related Work

Exploiting facial priors, such as spatial configuration of facial components, in face
hallucination is the key factor different from generic super-resolution tasks. Based
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on the usage of the priors, face hallucination methods can be roughly grouped into
global model based and part based approaches.

Global model based approaches aim at super-resolving an LR input image by
learning a holistic appearance mapping such as PCA. Wang and Tang [2005] learn
subspaces from LR and HR face images respectively, and then reconstruct an HR
output from the PCA coefficients of the LR input. Liu et al. [2007] employ a global
model for the super-resolution of LR face images but also develop a local nonpara-
metric model, i.e., markov random field (MRF), to augment the facial details and
reduce ghosting artifacts caused by the misalignments in LR images. Kolouri and
Rohde [2015] employ optimal transport techniques to morph an HR output by inter-
polating exemplar HR faces whose downsampled versions are close to the LR input
in terms of distances in the LR face subspace. In order to learn a good global model,
LR inputs are required to be precisely aligned and to share similar poses to the ex-
emplar HR images. When large pose variations and misalignments exit in LR inputs,
these methods are prone to produce severe artifacts.

Considering pose and expression variations in both LR and HR face images, it
is difficult to hallucinate HR faces by employing only one global appearance model.
Thus, part based methods are proposed to super-resolve individual facial regions
separately. They reconstruct the HR counterparts of LR inputs based on either refer-
ence patches or facial components in the training dataset. Baker and Kanade [2002]
search the best mapping between LR and HR patches and then use the matched HR
patches to recover high-frequency details of aligned LR face images. Motivated by
this idea, some works [Ma et al., 2010; Yang et al., 2010; Li et al., 2014] average weight-
ed position patches extracted from multiple aligned HR images to upsample aligned
LR face images in either the image intensity domain or sparse coding domain, while
Jin and Bouganis [2015] exploit a patch-wise mixture of probabilistic PCA priors to
reconstruct HR faces. However, patch based methods also require LR inputs to be
aligned in advance and may produce blocky artifacts when the upscaling factor is
too large. Instead of using position patches, Tappen and Liu [2012] super-resolve
HR facial components by warping the reference HR images and the warping trans-
formation is estimated by SIFT flow [Liu et al., 2011] between the LR input and LR
training exemplars. Yang et al. [2013] localize facial components in the LR images by
a facial landmark detector and then reconstruct missing high-frequency details from
similar HR reference components. Because facial component based methods need to
extract facial parts in LR images and then align them to exemplar images accurately,
their performance degrades dramatically when the resolutions of input faces become
unfavorably small.

Recently, deep learning techniques have been applied to the face hallucination
field and achieved significant progress. Yu and Porikli [2016] present a discrimina-
tive generative network to hallucinate aligned LR face images. Their follow-up works
[Yu and Porikli, 2017a,b] interweave multiple spatial transformer networks [Jader-
berg et al., 2015] with the deconvolutional layers to handle unaligned LR faces. Zhou
and Fan [2015] extract features from a blurry LR face image by a convolutional neu-
ral network (CNN) and then reconstruct a sharp HR face image from them. Xu et al.
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[2017] employ the framework of generative adversarial networks [Goodfellow et al.,
2014; Radford et al., 2015] to recover blurry LR face images while enhancing the fa-
cial details by a multi-class discriminative loss. Dahl et al. [2017] leverage the frame-
work of PixelCNN [Van Den Oord et al., 2016] to super-resolve very low-resolution
faces. Since the above deep convolutional networks only consider local information
in super-resolution without taking the holistic face structure into account, they may
distort face structure when super-resolving non-frontal LR faces. Zhu et al. [2016b]
employ a cascade bi-network, dubbed CBN, to upsample very low-resolution and
unaligned faces, where the low-frequency parts are upsampled by a convolutional
network and the high-frequency parts, i.e., facial components, are firstly localized
by a pre-defined model and then upsampled by the another network. Since CBN
needs to localize facial components in LR images, CBN may produce ghosting faces
when there are localization errors. Concurrent to our work, the algorithms [Bulat
and Tzimiropoulos, 2018; Chen et al., 2018] also employ facial structure in face hal-
lucination. In contrast to their works, we propose a multi-task network which can
be trained in an end-to-end manner. In particular, our network not only estimates
the facial heatmaps but also employs them for achieving high-quality super-resolved
results.

7.5 Our Proposed Method

Our network mainly consists of two parts: a multi-task upsampling network and a
discriminative network. Our multi-task upsampling network (MTUN) is composed
of two branches: an upsampling branch and a facial component heatmap estimation
branch. Our upsampling branch consists of an autoencoder, deconvolutional layers
and one spatial transformer layer [Jaderberg et al., 2015]. Different from [Yu and
Porikli, 2017b], we employ an autoencoder to reduce image noise while extracting
high-frequency details from LR inputs before upsampling without requiring much
memory. In order to explore the face structure information from LR inputs, we pro-
pose a facial component heatmap estimation branch (HEB). The predicted heatmaps
will be fed into the upsampling branch as additional mid-level structure information
for super-resolution. Benefiting from our HEB, we not only impose face structure in
super-resolution but also estimate the structure on the fly rather than localizing facial
components in very LR input images beforehand. Thus, HEB is the key part of our
algorithm which is distinct from previous works [Zhu et al., 2016b; Yu and Porikli,
2016, 2017b]. The discriminative network enforces the generated HR faces to lie on
the manifold of real HR face images. Figure 7.2 illustrates the overall architecture of
our proposed network. The entire network is trained in an end-to-end fashion.

7.5.1 Facial Component Heatmap Estimation

When the resolution of input images is too small, facial components will be even
smaller and thus it is very difficult for state-of-the-art facial landmark detectors to
localize facial landmarks in very low-resolution images accurately. However, we
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Figure 7.2: The pipeline of our multi-task upsampling network. In the testing phase,
the upsampling branch (blue block) and the heatmap estimation branch (green block)

are used.

propose to predict facial component heatmaps from super-resolved feature maps
rather than localizing landmarks in LR input images, because the upsampled feature
maps contain more details and their resolutions are large enough for estimating facial
component heatmaps. Moreover, since 2D faces may exhibit a wide range of poses,
such as in-plane rotations, out-of-plane rotations and scale changes, we may need
a large number of images for training HEB. For example, Bulat and Tzimiropoulos
[2017a] require over 200K training images to train a landmark detector, and there
is still a gap between the accuracy of [Bulat and Tzimiropoulos, 2017a] and human
labeling. To mitigate this problem, our intuition is that when the faces are roughly
aligned, the same facial components lie in the corresponding positions closely. Thus,
we employ a spatial transformer network (STN) to align the upsampled features
before estimating heatmaps. In this way, we not only ease the heatmap estimation
but also significantly reduce the number of training images used for learning HEB.

We use heatmaps instead of landmarks based on three reasons: (i) localizing each
facial landmark individually is difficult in LR faces even for humans and erroneous
landmarks would lead to distortions in the final results. On the contrary, it is much
easier to localize each facial components as a whole. (ii) Even state-of-the-art land-
mark detectors may fail to output accurate positions in high-resolution images, such
as in large pose cases. However, it is not difficult to estimate a region represented
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(a) (b) (c) (d) (e)

Figure 7.3: Visualization of estimated facial component heatmaps. Columns: (a)
Unaligned LR inputs. (b) HR images. (c) Ground-truth heatmaps generated from the
landmarks of HR face images. (d) Our results. (e) The estimated heatmaps overlying
over our super-resolved results. Note that, we overlap four estimated heatmaps

together and upsample the heatmaps to fit our upsampled results.

by a heatmap in those cases. (iii) Furthermore, our goal is to provide clues of the
spatial positions and visibility of each component rather than the exact shape of each
component. Using heatmaps as a probability map is more suitable for our purpose.

In this paper, we use four heatmaps to represent four components of a face, i.e.,
eyes, nose, mouth and chain, respectively. We exploit 68 point facial landmarks to
generate the ground-truth heatmaps. Specifically, each landmark is represented by
a Gaussian kernel and the center of the kernel is the location of the landmark. By
adjusting the standard variance of Gaussian kernels in accordance with the resolu-
tions of feature maps or images, we can generate a heatmap for each component.
The generated ground-truth heatmaps are shown in Fig. 7.3(c). Note that, when self-
occlusions appear, some components are not visible and they will not appear in the
heatmaps. In this way, heatmaps not only provides the locations of components but
also their visibility in the original LR input images.

In order to estimate facial component heatmaps, we employ the stacked hourglass
network architecture [Newell et al., 2016]. It exploits a repeated bottom-up and top-
down fashion to process features across multiple scales and is able to capture various
spatial relationships among different parts. As suggested by Newell et al. [2016], we
also use the intermediate supervision to improve the performance. The green block
in Fig. 7.2 illustrates our facial component heatmap estimation branch. We feed the
aligned feature maps to HEB and then concatenate the estimated heatmaps with the
upsampled feature maps for super-resolving facial details. In order to illustrate the
effectiveness of HEB, we resize and then overlay the estimated heatmaps over the
output images as visible in Fig. 7.3(e). The ground-truth heatmaps are shown in
Fig. 7.3(c) for comparison.
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7.5.2 Network Architecture

7.5.2.1 Multi-task Upsampling Network

Figure 7.2 illustrates the architecture of our proposed multi-task upsampling net-
work (MTUN) in the blue and green blocks. MTUN consists of two branches: an
upsampling branch (blue block) and a facial component heatmap estimation branch
(green block). The upsampling branch firstly super-resolves features of LR input
images and then aligns the feature maps. When the resolution of the feature maps
is large enough, the upsampled feature maps are fed into HEB to estimate the loca-
tions and visibility of facial components. Thus we obtain the heatmaps of the facial
components of LR inputs. The estimated heatmaps are then concatenated with the
upsampled feature maps to provide the spatial positions and visibility information
of facial components for super-resolution.

In the upsampling branch, the network is composed of a convolutional autoen-
coder, deconvolutional layers and an STN. The convolutional autoencoder is de-
signed to extract high-frequency details from input images while removing image
noise before upsampling and alignment, thus increasing the super-resolution perfor-
mance. The deconvolutional layers are employed to super-resolve the feature maps.
Since input LR faces undergo in-plane rotations, translations and scale changes, STN
is employed to compensate for those affine transformations, thus facilitating facial
component heatmap estimation.

After obtaining aligned upsampled feature maps, those feature maps are used to
estimate facial component heatmaps by an HEB. We construct our HEB by a stacked
hourglass architecture [Newell et al., 2016], which consists of residual blocks and
upsampling layers, as shown in the green block of Fig. 7.2.

Our multi-task network aims at super-resolving input face images as well as pre-
dicting heatmaps of facial components in the images. As seen in Fig. 7.4(c), when we
only use the upsampling branch to super-resolve faces without using HEB, the facial
details are blurred and some facial components, e.g., mouth and nose, are distorted
in large poses. Furthermore, the heatmap supervision also forces STN to align the
upsampled features more accurately, thus improving super-resolution performance.
Therefore, these two tasks collaborate with each other and benefit from each other as
well. As shown in Fig. 7.4(f), our multi-task network achieves better super-resolved
results.

7.5.2.2 Discriminative Network

Recent works [Yu and Porikli, 2016, 2017b; Xu et al., 2017; Ledig et al., 2017] demon-
strate that only using Euclidean distance (`2 loss) between the upsampled faces and
the ground-truth HR faces tends to output over-smoothed results. Therefore, we in-
corporate a discriminative objective into our network to force super-resolved HR face
images to lie on the manifold of real face images.

As shown in the red block of Fig. 7.2, the discriminative network is constructed
by convolutional layers and fully connected layers similar to [Radford et al., 2015].
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7.4: Comparisons of different losses for the super-resolution. Columns: (a)
Unaligned LR inputs. (b) Original HR images. (c) Lp. (d) Lp +L f . (e) Lp +L f +LU .
(f) Lp + Lh. (g) Lp + L f + Lh. (h) Lp + L f + LU + Lh. For simplicity, we omit the

trade-off weights.

It is employed to determine whether an image is sampled from real face images or
hallucinated ones. The discriminative loss, also known as adversarial loss, is back-
propagated to update our upsampling network. In this manner, we can super-resolve
more authentic HR faces, as shown in Fig. 7.4(h).

7.5.3 Loss Function

7.5.3.1 Pixel-wise Loss

Since the upsampled HR faces should be similar to the input LR faces in terms of
image intensities, we employ the Euclidean distance, also known as pixel-wise `2

loss, to enforce this similarity as follows:

Lp(w) = E(ĥi ,hi)∼p(ĥ,h)‖ĥi − hi‖2
F = E(li ,hi)∼p(l,h)‖Uw(li)− hi‖2

F, (7.1)

where ĥi and Uw(li) both represent the upsampled faces by our MTUN, w is the
parameters of MTUN, li and hi denote the LR input image and its HR ground-truth
counterpart respectively, p(l, h) represents the joint distribution of the LR and HR
face images in the training dataset, and p(ĥ, h) indicates the joint distribution of the
upsampled HR faces and their corresponding HR ground-truths.

7.5.3.2 Feature-wise Loss

As mentioned in [Yu and Porikli, 2016; Ledig et al., 2017; Xu et al., 2017], only using
pixel-wise `2 loss will produce over-smoothed super-resolved results. In order to
achieve high-quality visual results, we also constrain the upsampled faces to share
the same features as their HR counterparts. The objective function is expressed as:

L f (w)=E(ĥi ,hi)∼p(ĥ,h)‖ψ(ĥi)− ψ(hi)‖2
F =E(li ,hi)∼p(l,h)‖ψ(Uw(li))− ψ(hi)‖2

F, (7.2)
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where ψ(·) denotes feature maps of a layer in VGG-19 [Simonyan and Zisserman,
2014]. We use the layer ReLU32, which gives good empirical results in our experi-
ments.

7.5.3.3 Discriminative Loss

Since super-resolution is inherently an under-determined problem, there would be
many possible mappings between LR and HR images. Even imposing intensity and
feature similarities may not guarantee that the upsampling network can output real-
istic HR face images. We employ a discriminative network to force the hallucinated
faces to lie on the same manifold of real face images, and our goal is to make the
discriminative network fail to distinguish the upsampled faces from real ones. There-
fore, the objective function for the discriminative network D is formulated as:

LD(d) = E(ĥi ,hi)∼p(ĥ,h)

[
logDd(hi) + log(1−Dd(ĥi))

]
= Ehi∼p(h)[logDd(hi)] + Eĥi∼p(ĥ))[log(1−Dd(ĥi))]

= Ehi∼p(h)[logDd(hi)] + Eli∼p(l))[log(1−Dd(Uw(li)))],

(7.3)

where d represents the parameters of the discriminative network D, p(h), p(l) and
p(ĥ) indicate the distributions of the real HR, LR and super-resolved faces respective-
ly, and Dd(hi) and Dd(ĥi) are the outputs of D. To make our discriminative network
distinguish the real faces from the upsampled ones, we maximize the loss LD(d) and
the loss is back-propagated to update the parameters d.

In order to fool the discriminative network, our upsampling network should pro-
duce faces as much similar as real faces. Thus, the objective function of the upsam-
pling network is written as:

LU (w) = E(ĥi)∼p(ĥ)

[
logDd(ĥi)

]
= Eli∼p(l) [logDd(Uw(li))] . (7.4)

We minimize Eqn. 7.4 to make our upsampling network generate realistic HR face
images. The loss LU (w) is back-propagated to update the parameters w.

7.5.3.4 Face Structure Loss

Unlike previous works [Yu and Porikli, 2017b; Xu et al., 2017; Yu and Porikli, 2016],
we not only employ image pixel information (i.e., pixel-wise and feature-wise losses)
but also explore the face structure information during super-resolution. In order
to achieve spatial relationships between facial components and their visibility, we
estimate the heatmaps of facial components from the upsampled features as follows:

Lh(w) = E(li ,hi)∼p(l,h)
1
M

M

∑
k=1

1
N

N

∑
j=1
‖Hk

j (hi)−Hk
j (Ũw(li))‖2

2, (7.5)
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where M is the number of the facial components, N indicates the number of Gaussian
kernels in each component, Ũw(li) is the intermediate upsampled feature maps by
U , Hk

j represents the j-th kernel in the k-th heatmap, and Hk
j (hi) and Hk

j (Ũw(li))
denote the ground-truth and estimated kernel positions in the heatmaps. Due to self-
occlusions, some parts of facial components are invisible and thus N varies according
to the visibility of those kernels in the heatmaps. Note that, the parameters w not
only refer to the parameters in the upsampling branch but also those in the heatmap
estimation branch.

7.5.3.5 Training Details

In training our discriminative network D, we only use the loss LD(d) in Eqn. 7.3 to
update the parameters d. Since the discriminative network aims at distinguishing
upsampled faces from real ones, we maximize LD(d) by stochastic gradient ascent.

In training our multi-task upsampling network U , multiple losses, i.e., Lp, L f ,
LU and Lh, are involved to update the parameters w. Therefore, in order to achieve
authentic super-resolved HR face images, the objective function LT for training the
upsampling network U is expressed as:

LT = Lp + αL f + βLU + Lh, (7.6)

where α, β are the trade-off weights. Since our goal is to recover HR faces in terms of
appearance similarity, we set α and β to 0.01. We minimize LT by stochastic gradient
descent. Specifically, we use RMSprop optimization algorithm [Hinton, 2012] to up-
date the parameters w and d. The discriminative network and upsampling network
are trained in an alternating fashion. The learning rate r is set to 0.001 and multiplied
by 0.99 after each epoch. We use the decay rate 0.01 in RMSprop.

7.5.4 Implementation Details

In our multi-task upsampling network, we employ similarity transformation esti-
mated by STN to compensate for in-plane misalignments. In Fig. 7.2, STN is built
by convolutional and ReLU layers (Conv+ReLU), max-pooling layers with a stride
2 (MP2) and fully connected layers (FC). Specifically, our STN is composed of MP2,
Conv+ReLU (k5s1p0n20), MP2, Conv+ReLU (k5s1p0n20), MP2, FC+ReLU (from 80
to 20 dimensions) and FC (from 20 to 4 dimensions), where k, s and p indicate the
sizes of filters, strides and paddings respectively, and n represents the channel num-
ber of the output feature maps. Our HEB is constructed by stacking four hourglass
networks and we also apply intermediate supervision to the output of each hour-
glass network. The residual block is constructed by BN, ReLU, Conv (k3s1p1nNi),
BN, ReLU and Conv (k1s1p0nNo), where Ni and No indicate the channel numbers of
input and output feature maps.

In the experimental part, some algorithms require alignment of LR inputs, e.g., [Ma
et al., 2010]. Hence, we employ an STN0 to align the LR face images to the up-
right position. STN0 is composed of Conv+ReLU (k5s1p0n64), MP2, Conv+ReLU
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(k5s1p0n20), FC+ReLU (from 80 to 20 dimensions), and FC (from 20 to 4 dimension-
s).

7.6 Experimental Results

In order to evaluate the performance of our proposed network, we compare with
the state-of-the-art methods [Kim et al., 2016a; Ledig et al., 2017; Ma et al., 2010;
Zhu et al., 2016b; Yu and Porikli, 2017b] qualitatively and quantitatively. Kim et al.
[2016a] employ a very deep convolutional network to super-resolve generic images,
known as VDSR. The method of Ledig et al. [2017], dubbed SRGAN, is a generic
super-resolution method, which employs the framework of generative adversarial
networks and is trained with pixel-wise and adversarial losses. Ma et al. [2010]
exploit position patches in the dataset to reconstruct HR images. The method of Zhu
et al. [2016b], known as CBN, first localizes facial components in LR input images and
then super-resolves the localized facial parts. Yu and Porikli [2017b] upsample very
low-resolution unaligned face images by a transformative discriminative autoencoder
(TDAE).

7.6.1 Dataset

Although there are large-scale face datasets [Liu et al., 2015; Huang et al., 2007], they
do not provide structural information, i.e., facial landmarks, for generating ground-
truth heatmaps. In addition, we found that most of faces in the celebrity face at-
tributes (CelebA) dataset [Liu et al., 2015], as one of the largest face datasets, are
near-frontal. Hence, we use images from the Menpo facial landmark localization
challenges (Menpo) [Zafeiriou et al., 2017] as well as images from CelebA to gen-
erate our training dataset. Menpo [Zafeiriou et al., 2017] provides face images in
different poses and their corresponding 68 point landmarks or 39 point landmarks
when some facial parts are invisible. Because Menpo only contains about 8K images,
we also collect another 22K images from CelebA. The landmarks of CelebA are firstly
localized by two state-of-the-art facial landmark detectors [Bulat and Tzimiropoulos,
2017a; Xiong and De la Torre, 2013] and then the erroneous localizations will be re-
moved manually. Menpo is also aligned to the coordinates of CelebA. Then we crop
the aligned faces and then resize them to 128×128 pixels as our HR ground-truth
images hi. Our LR face images li are generated by transforming and downsampling
the HR faces to 16×16 pixels. We choose 80 percent of image pairs for training and
20 percent of image pairs for testing.

7.6.2 Qualitative Comparisons with SoA

Since Ma et al. [2010] need to align input LR faces before super-resolution and Yu
and Porikli [2017b] automatically output upright HR face images, we align LR faces
by a spatial transformer network STN0 for a fair comparison and better illustration.
The upright HR ground-truth images are also shown for comparison.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7.5: Comparisons with the state-of-the-art methods. (a) Unaligned LR inputs.
(b) Original HR images. (c) Bicubic interpolation. (d) The method of [Kim et al.,
2016a] (VDSR). (e) The method of Ledig et al. [2017] (SRGAN). (f)The method of Ma
et al. [2010]. (g) The method of Zhu et al. [2016b] (CBN). (h) The method of Yu and
Porikli [2017b] (TDAE). Since TDAE is not trained with near-frontal face images, we

retrain it with our training dataset. (i) Our method.

Bicubic interpolation only upsamples image intensities from neighboring pixels
instead of generating new contents for new pixels. As shown in Fig. 7.5(c), bicubic
interpolation fails to generate facial details.

VDSR only employs a pixel-wise `2 loss in training and does not provide an
upscaling factor 8×. We apply VDSR to an LR face three times by an upscaling
factor 2×. As shown in Fig. 7.5(d), VDSR fails to generate authentic facial details and
the super-resolved faces are still blurry.

SRGAN is able to super-resolve an image by an upscaling factor of 8× directly
and employs an adversarial loss to enhance details. However, SRGAN does not take
the entire face structure into consideration and thus outputs ringing artifacts around
facial components, such as eyes and mouth, as shown in Fig. 7.5(e).

Ma et al.’s method is sensitive to misalignments in LR inputs because it halluci-
nates HR faces by position-patches. As seen in Fig. 7.5(f), obvious blur artifacts and
ghosting facial components appear in the hallucinated faces. As the upscaling fac-
tor increases, the correspondences between LR and HR patches become inconsistent.
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Table 7.1: Quantitative comparisons on the entire test dataset

Methods PSNR SSIM

Bicubic 18.83 0.57
VDSR [Kim et al., 2016a] 18.65 0.57

SRGAN [Ledig et al., 2017] 18.57 0.55
Ma et al. [2010] 18.66 0.53

CBN [Zhu et al., 2016b] 18.49 0.55
TDAE [Yu and Porikli, 2017b] 18.87 0.52
TDAE† [Yu and Porikli, 2017b] 21.39 0.62

Ours† 22.69 0.66
Ours‡ 22.83 0.65
Ours 23.14 0.68

Thus, the super-resolved face images suffer severe blocky artifacts.
CBN first localizes facial components in LR faces and then super-resolves facial

details and entire face images by two branches. As shown in Fig. 7.5(g), CBN gener-
ates facial components inconsistent with the HR ground-truth images in near-frontal
faces and fails to generate realistic facial details in large poses. This indicates that it
is difficult to localize facial components in LR faces accurately.

TDAE employs `2 and adversarial losses and is trained with near-frontal faces.
Due to various poses in our testing dataset, TDAE fails to align faces in large poses.
For a fair comparison, we retrain the decoder of TDAE with our training dataset. As
visible in Fig. 7.5(h), TDAE still fails to realistic facial details due to various poses
and misalignments.

Our method reconstructs authentic facial details as shown in Fig. 7.5(i). Our
facial component heatmaps not only facilitate alignment but also provide spatial
configuration of facial components. Therefore, our method is able to produce visually
pleasing HR facial details similar to the ground-truth faces while preserving face
structure.

7.6.3 Quantitative Comparisons with SoA

We also evaluate the performance of all methods quantitatively on the entire test
dataset by the average PSNR and the structural similarity (SSIM) scores. Table 7.1
indicates that our method achieves superior performance compared to other meth-
ods, i.e., outperforming the second best with a large margin of 1.75 dB in PSNR. Note
that, the average PSNR of TDAE for its released model is only 18.87 dB because it is
trained with near-frontal faces. Even after retaining TDAE, indicated by TDAE†, its
performance is still inferior to our results. It also implies that our method localizes
facial components and aligns LR faces more accurately with the help of our estimated
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Table 7.2: Ablation study of HEB

Position Depth
R16 R32 S1 S2 S3 S4

PSNR 21.97 21.98 22.32 22.91 22.93 23.14
SSIM 0.63 0.64 0.64 0.67 0.67 0.68

Table 7.3: Ablation study on the loss

w/o Lh w/ Lh

Lp Lp+f Lp+f+U Lp Lp+f Lp+f+U

PSNR 21.43 21.57 21.55 23.23 23.35 23.14
SSIM 0.66 0.66 0.65 0.69 0.69 0.68

heatmaps.

7.7 Analysis and Discussion

Effectiveness of HEB: As shown in Fig. 7.4(c), Fig. 7.4(d) and Fig. 7.4(e), we demon-
strate that the visual results without HEB suffer from distortion and blur artifacts. By
employing HEB, we can localize the facial components as seen in Fig. 7.3, and then
recover realistic facial details. Furthermore, HEB provides the spatial locations of
facial components and an additional constraint for face alignments. Thus we achieve
higher reconstruction performance as shown in Tab. 7.3.
Feature Sizes for HEB: In our network, there are several layers which can be used
to estimate facial component heatmaps, i.e., feature maps of sizes 16, 32, 64 and 128,
respectively. We employ HEB at different layers and demonstrate the influence of
the sizes of feature maps. Due to GPU memory limitations, we only compare the
super-resolution performance of using features of sizes 16 (R16), 32 (R32) and 64
(S4) to estimate heatmaps. As shown in Tab. 7.2, as the resolution of feature maps
increases, we obtain better super-resolution performance. Therefore, we employ the
upsampled feature maps of size 64×64 to estimate heatmaps.
Depths of HEB: Table 7.2 demonstrates the performance influenced by the stack
number of hourglass networks. Due to the limitation of GPU memory, we only
conduct our experiments on the stack number ranging from 1 to 4. As indicated in
Tab. 7.2, the final performance improves as the stack number increases. Hence, we
set the stack number to 4 for our HEB.
Loss Functions: Table 7.3 also indicates the influences of different losses on the
super-resolution performance. As indicated in Tab. 7.3 and Fig. 7.4, using the face
structure loss improves the super-resolved results qualitatively and quantitatively.
The feature-wise loss improves the visual quality and the discriminative loss makes



§7.8 Conclusion 133

the hallucinated faces sharper and more realistic, as shown in Fig. 7.4(h).
Skip Connection and Autoencoder: Considering there are estimation errors in the
heatmaps, fusing feature maps with erroneous heatmaps may lead to distortions
in the final outputs. Hence, we employ a skip connection to correct the errors in
Fig. 7.2. As indicated in Tab. 7.1, using the skip connection, we can improve the final
quantitative result by 0.45 dB in PSNR. The result without using skip connection
is indicated by Ours†. We also remove our autoencoder and upsample LR inputs
directly and the result is denoted as Ours‡. As shown in Tab. 7.1, we achieve 0.31 dB
improvement with the help of the autoencoder.

7.8 Conclusion

We present a novel multi-task upsampling network to super-resolve very small LR
face images. We not only employ the image appearance similarity but also exploit
the face structure information estimated from LR input images themselves in the
super-resolution. In this manner, we preserve the spatial relationships between facial
components, thus producing more authentic face images. With the help of our facial
component heatmap estimation branch, our method super-resolves faces in different
poses without distortions caused by erroneous facial component localization in LR
inputs.

7.9 Appendix

Here, we also provide additional experimental results.



134 Face Super-resolution Guided by Facial Component Heatmaps

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7.6: Comparisons with the state-of-the-art methods. (a) Unaligned LR inputs.
(b) Original HR images. (c) Bicubic interpolation. (d) The method of Kim et al.
[2016a] (VDSR). (e) The method of Ledig et al. [2017] (SRGAN). (f) The method of Ma
et al. [2010]. (g) The method of Zhu et al. [2016b] (CBN). (h) The method of Yu and
Porikli [2017b] (TDAE). Since TDAE is not trained on near-frontal face images, we

retrain it on our training dataset. (i) Our method.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7.7: Comparisons with the state-of-the-art methods. (a) Unaligned LR inputs.
(b) Original HR images. (c) Bicubic interpolation. (d) The method of Kim et al.
[2016a] (VDSR). (e) The method of Ledig et al. [2017] (SRGAN). (f) The method
of [Ma et al., 2010]. (g) The method of Zhu et al. [2016b] (CBN). (h) The method

of Yu and Porikli [2017b] (TDAE). (i) Our method.
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Chapter 8

Semantic Face Hallucination:
Super-Resolving Very
Low-Resolution Face Images with
Supplementary Attributes

8.1 Foreword

Previous chapters propose different schemes to super-resolve faces in different situa-
tions, such as noisy and unaligned low-resolution faces and faces in large poses, but
the inherently ill-posed nature of super-resolution may still lead to inaccurate upsam-
pled faces, especially when the magnification factor is very large, e.g., 8×. Thus, our
previously proposed methods may suffer from generating reverse genders as well as
rejuvenating ages of face images. In this chapter, we intend to embed facial attribute
information into face super-resolution network. By leveraging high-level semantic
information, we can mitigate the uncertainty caused by one to many mappings in
face super-resolution and thus achieve more accurate face hallucination results.

This chapter has been published as a conference paper: Xin Yu, Basura Fernando,
Richard Hartley, Fatih Porikli: Super-Resolving Very Low-Resolution Face Images
with Supplementary Attributes. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 908-917, 2018. Furthermore, we extended this work and sub-
mitted it to IEEE Transactions on Pattern Analysis and Machine Intelligence as a journal
paper: Xin Yu, Basura Fernando, Richard Hartley, Fatih Porikli: Semantic Face Hal-
lucination: Super-Resolving Very Low-Resolution Face Images with Supplementary
Attributes.

8.2 Abstract

Given a tiny face image, existing face hallucination methods aim at super-resolving
its high-resolution (HR) counterpart by learning a mapping from an exemplary
dataset. Since a low-resolution (LR) input patch may correspond to many HR can-
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didate patches, this ambiguity may lead to distorted HR facial details and wrong
attributes such as gender reversal and rejuvenation. An LR input contains low-
frequency facial components of its HR version while its residual face image, defined
as the difference between the HR ground-truth and interpolated LR images, con-
tains the missing high-frequency facial details. We demonstrate that supplementing
residual images or feature maps with additional facial attribute information can sig-
nificantly reduce the ambiguity in face super-resolution. To explore this idea, we
develop an attribute-embedded upsampling network, which consists of an upsam-
pling network and a discriminative network. The upsampling network is composed
of an autoencoder with skip-connections, which incorporates facial attribute vectors
into the residual features of LR inputs at the bottleneck of the autoencoder, and de-
convolutional layers used for upsampling. The discriminative network is designed to
examine whether super-resolved faces contain the desired attributes or not and then
its loss is used for updating the upsampling network. In this manner, we can super-
resolve tiny (16×16 pixels) unaligned face images with a large upscaling factor of 8×
while reducing the uncertainty of one-to-many mappings remarkably. By conduct-
ing extensive evaluations on a large-scale dataset, we demonstrate that our method
achieves superior face hallucination results and outperforms the state-of-the-art.

8.3 Introduction

Face images provide important information for human visual perception as well
as computer analysis [Fasel and Luettin, 2003; Zhao et al., 2003]. Depending on
the imaging conditions, the resolution of a face area may be unfavorably low, thus
raising a critical issue that would directly impede our understanding. Motivated by
this challenge, recovering high-resolution (HR) face images from their low-resolution
(LR) counterparts, also known as face hallucination, has received increasing attention
recently [Yu and Porikli, 2016, 2017b; Zhu et al., 2016b; Cao et al., 2017]. State-of-the-
art face hallucination methods try to explore and utilize image domain priors for
super-resolution. Even though they are trained on large-scale datasets benefiting
from the development of deep learning techniques, ill-posed nature of the problem,
which induces inherent ambiguities such as one-to-many correspondence between a
given LR face and its possible HR counterparts, would still lead to drastically flawed
outputs especially when the magnification factor is very large.

For instance, as shown in Fig. 8.1, the hallucinated details generated by the state-
of-the-art face super-resolution methods [Zhu et al., 2016b; Yu and Porikli, 2017b]
are semantically and perceptually inconsistent with the ground-truth HR image,
and inaccuracies range from unnatural blur to attribute mismatches including the
wrong facial hair and mixed gender features just to count a few. Note that Zhu et
al.’s method [Zhu et al., 2016b], dubbed CBN, exploits facial structure information
to super-resolve facial components while Yu and Porikli’s method [Yu and Porikli,
2017b], known as TDAE, employ a class-specific discriminative prior. These method-
s explore either the low-level class-specific feature similarity or mid-level structure
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(a) LR (b) HR (c) NN (d) VDSR

(e) VDSR† (f) CBN (g) TDAE (h) Ours

Figure 8.1: Comparison with the state-of-the-art CNN based face hallucination meth-
ods. (a) 16 × 16 LR input image. (b) 128 × 128 HR original image (not used in
training). (c) The corresponding HR image of the nearest neighbor of the given LR
image in the dataset after compensating for misalignments. (d) Result of VDSR [Kim
et al., 2016a], which is a CNN based generic super-resolution method. (e) Result of
VDSR† [Kim et al., 2016a] retrained with LR and HR face image pairs. (f) Result of
CBN [Zhu et al., 2016b]. (g) Result of TDAE [Yu and Porikli, 2017b]. (h) Our result.

information as a spatial constraint in face super-resolution. However, they cannot
capture high-level facial characteristic information and thus generate semantically
inaccurate upsampled facial details in the outputs.

Unlike previous works, we aim to utilize high-level semantic information, i.e.,
facial attributes, to reduce the ambiguity when super-resolving very low-resolution
faces. However, a direct embedding of the binary facial attribute vector as an addi-
tional input channel to the network would still yield degraded results (see Fig. 8.3(c)).
A simple combination of low-level visual information (an LR image) with high-level
semantic information (attributes) in the input layer does not prevent ambiguity or
provide consistent LR-HR mappings. We also note that the low-frequency facial
components are visible in the LR input while the missing high-frequency details are
often contained in the corresponding residual between the HR face image and the
upsampled LR image (e.g.interpolated by Bicubic interpolation). Thus, our intuition
is to incorporate facial attribute information into the residual features that are ex-
tracted from LR inputs (as seen in the yellow block of Fig. 8.2) for super-resolution
of high-frequency facial details.

Driven by our observations above, we present a novel LR face image upsampling
network that is able to embed facial attributes into face super-resolution. In contrast
to previous face super-resolution networks [Baker and Kanade, 2000; Ma et al., 2010;
Yu and Porikli, 2016, 2017a,b; Zhu et al., 2016b; Yu and Porikli, 2018], our network
employs an autoencoder with skip connections to amalgamate visual features ob-
tained from LR face images and semantic cues provided from facial attributes. It
progressively upsamples the concatenated feature maps through its deconvolution-
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al layers. Inspired by the architecture of StackGAN [Zhang et al., 2017b; Yan et al.,
2016], we also employ a discriminative network that is used to examine whether a
super-resolved face image is similar to authentic face images as well as the attributes
extracted from the upsampled faces are faithful to the input attributes. As a result,
our discriminative network can guide the upsampling network to incorporate the
semantic information in the overall process. In this manner, the ambiguity in hal-
lucination can be significantly reduced. Furthermore, since we apply the attribute
information into the LR residual feature maps rather than concatenating it to the
low-resolution input images, we can learn more consistent mappings between L-
R and HR facial patterns. This allows us to generate realistic high-resolution face
images as shown in Fig. 8.1(h).

Above all, the contributions of our work can be summarized as:

• We present a new semantics-embedded face hallucination framework to super-
resolve LR face images. Instead of directly upsampling LR face images, we first
encode LR images with facial attributes and then super-resolve the encoded
feature maps.

• We propose an autoencoder with skip connections to extract residual feature
maps from LR inputs and concatenate the residual feature maps with attribute
information. This allows us to fuse visual and semantic information to achieve
better visual results.

• Even though our network is trained to super-resolve very low-resolution face
images, the upsampled HR faces can be further modified by tuning the face
attributes in order to add or remove particular attributes. This property sig-
nificantly increases the flexible of our face super-resolution method rather than
only outputting a deterministic upsampled face.

• To the best of our knowledge, our method is the first attempt to utilize high-
level semantic information, i.e., facial attribute, into face super-resolution, ef-
fectively reducing the ambiguity caused by the inherent nature of this task,
especially when the upscaling factor is very challenging, i.e.8×.

8.4 Related Work

Since our work not only relates to traditional face hallucination methods but also has
a close relationship with generative adversarial networks (GANs) [Goodfellow et al.,
2014], we briefly review the related literatures in these two fields.

Face hallucination methods can be roughly grouped into three categories: global
model based, part based, and deep learning based. Global model based methods
upsample a whole LR input image, often by a learned mapping between LR and HR
face images such as Principal Component Analysis (PCA). The seminal works [Baker
and Kanade, 2000, 2002] progressively transfer the pixels of HR faces to the given LR
face in a Gaussian Pyramid by maximizing a posteriori estimate of the ground-truth
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HR face. Wang and Tang [2005] learn a linear mapping between LR and HR face
subspaces, and then reconstruct an HR output with the coefficients estimated from
the LR input. Liu et al. [2007] not only establish a global model for upsampling LR
inputs by PCA but also exploit a local nonparametric model, i.e., Markov Random
Field (MRF), to enhance the facial details as well as mitigate blocky and ghosting
artifacts in the upsampled faces. Kolouri and Rohde [2015] morph an HR output
from the exemplar HR faces whose downsampled versions are similar to the LR input
by optimal transport and subspace learning techniques. Global model based methods
require LR inputs to be precisely aligned and share similar poses to exemplar HR
images. However, aligning LR faces is difficult when the resolutions of LR faces
are very low (e.g., 16×16 pixels). Therefore, global model based algorithms produce
severe artifacts when there are misalignments and pose variations in LR inputs.

Aimed at addressing pose variations, part based methods super-resolve individ-
ual facial regions separately. They either exploit reference patches or facial compo-
nents to reconstruct the HR counterparts of LR inputs. Ma et al. [2010] blend position
patches extracted from multiple aligned HR images to super-resolve aligned LR face
images. In order to suppress image noise, the works [Yang et al., 2010; Li et al., 2014]
reconstruct the position patches in LR faces by sparse coding. Tappen and Liu [2012]
use SIFT flow [Liu et al., 2011] to align the facial components of LR images and re-
construct HR facial details by warping the reference HR images. Yang et al. [2013]
employ a facial landmark detector to localize facial components in the LR images
and then reconstruct details from the similar HR reference components. Because part
based methods need to extract and align facial parts in LR images accurately, their
performance degrades dramatically when LR faces are tiny. More comprehensive
survey of traditional face super-resolution methods can be referred to the literature
review [Wang et al., 2014].

Recently, deep learning based models achieve significant progress in several im-
age processing tasks and are now pushing forward the state-of-the-art in super-
resolution. For instance, Yu and Porikli [2018] employ deconvolutional layers to
super-resolve aligned LR faces and convolutional layers to remove potential blocky
artifacts. Their method also resorts an unsharp filter to enhance the edges of hallu-
cinated faces. In order to train an end-to-end upsampling network, Yu and Porikli
[2016] introduce a discriminative generative network to super-resolve aligned tiny LR
face images. Instead of restoring image intensities of HR faces, Huang et al. [2017a]
estimate wavelet coefficients of an upsampled HR face in the framework of gener-
ative adversarial networks. Then the upsampled HR face is reconstructed from the
estimated wavelet coefficients. Zhou and Fan [2015] first extract feature maps from a
blurry LR face image by a convolutional neural network (CNN) and then reconstruct
a sharp HR version from the extracted feature maps. Xu et al. [2017] design a multi-
class adversarial loss to super-resolve aligned LR blurry faces and text images in the
framework of generative adversarial networks. Dahl et al. [2017] exploit an autore-
gressive generative model, also known as Pixel-RNN [Van Den Oord et al., 2016], to
upscale pre-aligned LR face images.

To relax the requirement of face alignments, Yu and Porikli [2017a] interweave
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Figure 8.2: The architecture of our attribute embedded upsampling network. The
network consists of two parts: an upsampling network and a discriminative net-
work. The upsampling network takes LR faces and attribute vectors as inputs while
the discriminative network takes real/super-resolved HR face images and attribute

vectors as inputs.

multiple spatial transformer networks [Jaderberg et al., 2015] with the deconvolu-
tional layers. In this manner, their method can align LR faces while super-resolving
them simultaneously. Based on the observation that mild distortions and artifacts in
upsampled HR faces can be mitigated in their downsampled versions, their follow-
up work [Yu and Porikli, 2017b] develops a decoder-encoder-decoder structure to
super-resolve noisy and unaligned LR faces. Zhu et al. [2016b] develop a cascade bi-
network to localize facial components first and then super-resolve the unaligned LR
faces. Chen et al. [2018] propose a two-stage network, where low-frequency compo-
nents of LR faces are first super-resolved and then face priors (i.e., facial component
locations) are used to enrich facial details. Bulat and Tzimiropoulos [2018] employ
a constraint that the landmarks of the upsampled faces should be close to the land-
marks detected in their ground-truth images to handle various poses. However, due
to the inherent under-determined nature of super-resolution, they may still produce
results unfaithful to the ground-truths, such as gender reversal and face rejuvenation.

The method of Lee et al. [2018], concurrent with our work, also employs at-
tributes in face super-resolution, where a feature extractor network is used to extract
and combine the features of attributes and LR faces. However, their discriminative
network is only designed to distinguish whether the upsampled faces are realistic
or not and there is no mechanism to exam whether the attributes are successfully
embedded or not.

Image generation also has a close relationship to face hallucination when gen-
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8.3: Ablation study of our network. (a) 16× 16 LR input image. (b) 128× 128
HR ground-truth image, its ground-truth attributes are male and old. (c) Result
without using an autoencoder. Here, the attribute vectors are replicated and then
concatenated with the LR input directly. (d) Result without using skip connections
in the autoencoder. (e) Result by only using an `2 loss. (f) Result without using the
attribute embedding but with a standard discriminative network. In this case, the
network is similar to the decoder in [Yu and Porikli, 2017b]. (g) Result without using

the perceptual loss. (h) Our final result.

erated images are faces. Goodfellow et al. [2014] propose a generative adversarial
network (GAN) to construct images from noise, but the resolution of constructed
images is limited (i.e.48×48 pixels) due to difficulty in training. Later, variants of
GANs [Denton et al., 2015; Radford et al., 2015; Zhao et al., 2016; Arjovsky et al.,
2017; Berthelot et al., 2017] have been proposed to increase the resolutions and qual-
ity of generated images. Rather than generating face images from noise, Reed et al.
[2016] and Zhang et al. [2017b] generate images based on textual inputs. Yan et al.
[2016] use a conditional CNN to generate faces based on attribute vectors. Perarnau
et al. [2016] develop an invertible conditional GAN to generate new faces by ma-
nipulating facial attributes of the input images, while Shen and Liu [2016] change
attributes of an input image on its residual image by training two generative net-
works in a complementary fashion. Since their methods aim at generating new face
images rather than super-resolving faces, they may change the identity information.
In contrast, our work focuses on obtaining HR faces faithful to LR inputs. We employ
the attribute information to reduce the uncertainty in face hallucination rather than
producing new face images.

8.5 Super-resolution with Attribute Embedding

Each low-resolution face image may correspond to many high-resolution face can-
didates during the process of increasing their resolutions. To reduce the ambiguity
encountered in the super-resolution process, we present an upsampling network that
takes LR faces and semantic information (i.e., facial attributes) as inputs and outputs
super-resolved HR faces. The entire network consists of two parts: an upsampling
network and a discriminative network. The upsampling network is used for embed-
ding facial attributes into LR input images as well as upsampling the fused feature
maps. The discriminative network is used to constrain the input attributes to be
encoded and the hallucinated face images to be similar to real ones. The entire ar-
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chitecture of our network is illustrated in Fig. 8.2.

8.5.1 Attribute Embedded Upsampling Network

The upsampling network is composed of a facial attribute embedding autoencoder
and upsampling layers (as shown in the blue frame). Previous works [Yu and Porikli,
2018, 2016, 2017a,b] only take LR images as inputs and then super-resolve them by
deconvolutional layers. They do not make use of any valuable semantic information
into account during super-resolution. Indeed, obtaining semantic information such
as facial attributes for face images is not difficult, yet it is logical to make use of
semantic information, especially for face images. For instance, we can deduce gender
information from the outfits. Unlike previous works, we incorporate low-level visual
and high-level semantic information in face super-resolution to reduce the ambiguity
of the mappings between LR and HR images.

Rather than concatenating LR input images with attribute vectors directly, in our
proposed attribute embedding network we employ a convolutional-deconvolutional
autoencoder with skip connections [Long et al., 2015] to fuse visual features and at-
tribute vectors. Due to the skip connections, we can utilize residual features obtained
from LR input images to incorporate the attribute vectors. Specifically, at the bottle-
neck of the autoencoder, we concatenate the attribute vector with the residual feature
vector as illustrated in the green and blue vectors of Fig. 8.2. As shown in Fig. 8.3(d),
when we encode attributes with the feature maps of LR faces at the bottleneck of the
autoencoder without using the skip connections instead of residual feature maps,
artifacts appear in the smooth regions of the super-resolved result. After combin-
ing the residual feature vectors of LR inputs with the attribute vectors, we employ
deconvolutional layers to upsample the concatenated feature maps. Since LR input
images may undergo misalignments, such as in-plane rotations, translations and s-
cale changes, we use spatial transformer networks (STNs) [Jaderberg et al., 2015]
to compensate for misalignments similar to [Yu and Porikli, 2017a,b], as shown in
the purple blocks in Fig. 8.2. Since STNs employ bilinear interpolation to re-sample
images, they will blur LR input images, as reported in [Yu and Porikli, 2017a]. There-
fore, we only employ STNs in the upsampling layers.

To constrain the appearance similarity between the super-resolved faces and their
HR ground-truth counterparts, we exploit a pixel-wise Euclidean distance loss, also
known as pixel-wise `2 loss, and a feature-wise `2 loss, dubbed perceptual loss [John-
son et al., 2016]. The pixel-wise `2 loss is employed to enforce image intensity sim-
ilarity between the upsampled HR faces and their ground-truth images. As report-
ed in [Yu and Porikli, 2016], deconvolutional layers supervised by an `2 loss tend
to output over-smoothed results as shown in Fig. 8.3(e). Since the perceptual loss
measures Euclidean distance between features of two images, we use it to constrain
feature similarity between the upsampled faces and their ground-truth ones. We use
VGG-19 [Simonyan and Zisserman, 2014] to extract features from images (please re-
fer to Sec. 8.5.3 for more details). Without the help of the perceptual loss, the network
tends to produce ringing artifacts to mimic facial details, such as wrinkles, as seen in
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Fig. 8.3(g).

8.5.2 Discriminative Network

In order to force the upsampling work to encode facial attribute information, we
employ a conditional discriminative network. Specifically, the discriminative network
is designed to distinguish whether the attributes of super-resolved face images are
faithful to the desired attributes embedded in the upsampling network or not and is
used to constrain the upsampled images to be similar to HR real face images too.

Even though our autoencoder concatenates attribute vectors with residual feature
maps of the LR inputs, the upsampling network may simply learn to ignore them,
e.g., the weights corresponding to the semantic information are zeros. Therefore, we
need to design a discriminator network to enforce semantic attribute information into
the generative process. As shown in Fig. 8.3(f), by employing a standard discrimi-
native network [Yu and Porikli, 2016; Radford et al., 2015], the output HR face still
looks like a female face even if the expected figure should be an old male. It implies
that the attribute information is not well embedded. Therefore, simply embedding
a semantic vector into LR inputs may increase the ambiguity or deviate the learned
mapping between the LR and correct HR face images.

We present a discriminative network to enforce the input attribute information to
be embedded in LR inputs, thus generating the desired attributes in the hallucinated
face images. As shown in the red frame of Fig. 8.2, our discriminative network is
constructed by convolutional layers and fully connected layers. HR face images (real
and upsampled faces) are fed into the network while attribute information is also fed
into the middle layer of the network as conditional information. Here, an attribute
vector is replicated and then concatenated with the feature maps of images. Because
CNN filters in the first layers mainly extract low-level features while filters in higher
layers extract image patterns or semantic information [Zeiler and Fergus, 2014], we
concatenate the attribute information with the extracted feature maps on the third
layer, which yields good empirical results in our experiments. If the extracted fea-
tures do not comply with the input attribute information, the discriminative network
ought to pass that information to the upsampling network. Our discriminative net-
work is a binary classifier which is trained with a binary cross-entropy loss. With the
help of the discriminative network, the attribute information can be embedded into
the upsampling network. As shown in Fig. 8.3(h), our final result is faithful to the
age and gender of the ground-truth image.

8.5.3 Training Procedure

Our face super-resolution network is trained in an end-to-end fashion. We use an LR
face image denoted by li and its ground-truth attribute label vector ai as the inputs
and the corresponding HR ground-truth face image hi as the target. Note that, since
our network aims at super-resolving very low-resolution face images rather than
manipulating facial attributes of HR face images, we only feed the correct attributes
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of LR face images into the upsampling network in the training phase.

In training the entire network, we employ a binary cross-entropy loss to update
our discriminative network and then train the upsampling network using a pixel-
wise `2 loss, a perceptual loss and the discriminative loss obtained from our dis-
criminative network. Therefore, we first update the parameters of the discriminative
network and then the parameters of the upsampling network because the upsam-
pling network relies on the loss back-propagated from the discriminative network to
update its weights.

8.5.3.1 Training Discriminative Network

Our discriminative network is designed to embed attribute information into the up-
sampling network as well as to force the super-resolved HR face images to be au-
thentic. Similar to [Yan et al., 2016; Zhang et al., 2017b], our goal is to make the
discriminative network be able to tell whether super-resolved faces contains the de-
sired attributes or not but fail to distinguish hallucinated faces from real ones. Hence,
in order to train the discriminative network, we take real HR face images hi and their
corresponding ground-truth attributes ai as positive sample pairs {hi, ai}. Negative
data is constructed from super-resolved HR faces ĥi by our upsampling network and
their ground-truth attributes ai as well as real HR faces and mismatched attributes ãi.
Therefore, the negative sample pairs consist of both {ĥi, ai} and {hi, ãi}. The objective
function for the discriminative network LD is expressed as:

LD =−E [logDd(h, a)]

−E
[
log(1−Dd(ĥ, a)) + log(1−Dd(h, ã))

]
=−E(hi ,ai)∼p(h,a) [logDd(hi, ai)]

−E(hi ,ãi)∼p(h,ã) [log(1−Dd(hi, ãi))]

−E(ĥi ,ai)∼p(ĥ,a)

[
log(1−Dd(ĥi, ai))

]
=−E(hi ,ai)∼p(h,a) [logDd(hi, ai)]

−E(hi ,ãi)∼p(h,ã) [log(1−Dd(hi, ãi))]

−E(li ,ai)∼p(l,a) [log(1−Dd(Ut(li, ai), ai))] ,

(8.1)

where d represents the parameters of the discriminative networkD, Dd(hi, ai), Dd(ĥi, ai)
and Dd(hi, ãi) are the outputs of D, Ut(li) is the output of our upsampling network
and t represents the parameters of our upsampling network. In addition, p(h, a)
represents the joint distribution of positive sample pairs, p(ĥ, a) as well as p(h, ã)
represent the joint distributions of negative sample pairs, and p(l, a) represents the
joint distribution of the LR input faces and their ground-truth attributes.

Since all the layers in our discriminative network are differentiable, back-propagation
is used to calculate the gradients with respect to the parameters of the discriminative
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network d. Thus, we minimize LD by RMSprop [Hinton, 2012] as follows:

∆i+1 = γ∆i + (1− γ)(
∂LD
∂d

)2,

di+1 = di − r
∂LD
∂d

1√
∆i+1 + ε

,
(8.2)

where r and γ represent the learning rate and the decay rate respectively, i indicates
the index of the iterations, ∆ is an auxiliary variable, and ε is set to 10−8 to avoid
division by zero.

8.5.3.2 Training Upsampling Network

Since our upsampling network aims at super-resolving LR input images, we on-
ly feed our upsampling network with LR face images li and their corresponding
attributes ai as inputs. To constrain the upsampled faces to be similar to the HR
ground-truth face images, we employ a pixel-wise `2 loss on image intensities, ex-
pressed as:

Lpix = E(ĥi ,hi)∼p(ĥ,h)‖ĥi − hi‖2
F

= E(li ,ai ,hi)∼p(l,a,h)‖Ut(li, ai)− hi‖2
F,

(8.3)

where p(ĥ, h) is the joint distribution of the upsampled faces and their ground-truth
counterparts and p(l, h, a) represents the joint distribution of the LR and HR face
images and their corresponding attributes in the training dataset.

As mentioned in Sec. 8.5.1, we also employ a perceptual loss L f eat to enforce the
feature similarity between the super-resolved faces and their corresponding ground-
truths, written as:

L f eat = E(ĥi ,hi)∼p(ĥ,h)‖Φ(ĥi)−Φ(hi)‖2
F

= E(li ,ai ,hi)∼p(l,a,h)‖Φ(Ut(li, ai))−Φ(hi)‖2
F,

(8.4)

where Φ(·) denotes feature maps extracted by the ReLU32 layer in VGG-19 [Si-
monyan and Zisserman, 2014], which gives good empirical performance in our ex-
periments.

To enforce the upsampling network to encode the attribution information, a dis-
criminative loss Ldis is also exploited as follows:

Ldis = −E(ĥi ,ai)∼p(ĥ,a) log(Dd(ĥi, ai))

= −E(li ,ai)∼p(l,a) log(Dd(Ut(li, ai), ai)),
(8.5)

where p(ĥ, a) indicates the joint distribution of the upsampled faces and their corre-
sponding attributes.

All the above three losses are used to update the parameters of our upsampling
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Algorithm 3 Training procedure of our entire network
Input: minibatch size N, LR and HR face image pairs {li, hi} and their corresponding

attributes ai, maximum number of iterations K.
1: while iter < K do
2: Choose one minibatch of LR and HR image pairs {li, hi} and their correspond-

ing attributes, i = 1, . . . , N.
3: Generate one minibatch of HR face images ĥi from {li, ai}, i = 1, . . . , N, where

ĥi = Ut(li, ai).
4: Generate mismatched attributes ãi from ai by randomly permuting one dimen-

sion in an attribute vector.
5: Generate positive sample pairs {hi, ai} and negative sample pairs {ĥi, ai} and

{hi, ãi}.
6: Update the parameters of the discriminative network Dd by using Eqn. 8.1 and

Eqn. 8.2.
7: Update the parameters of the upsampling network Ut by using Eqn. 8.6 and

Eqn. 8.7.
8: end while

Output: Our attribute embedded upsampling network.

network, and the total loss LU is expressed as:

LU = Lpix + αL f eat + βLdis, (8.6)

where α is a weight term which trades off between the image intensity similarity and
the feature similarity, and β is a weight which trades off between the appearance
similarity and the attribute similarity. Here, we also employ RMSprop to update the
parameters of our upsampling network:

∆i+1 = γ∆i + (1− γ)(
∂LU
∂t

)2,

ti+1 = ti − r
∂LU
∂t

1√
∆i+1 + ε

.
(8.7)

After updating the upsampling network, we can obtained upsampled face images
in better quality. Hence, we use HR faces hallucinated by the newly updated upsam-
pling network to train the discriminative network again. By updating these two
network alternatingly, we can achieve realistic super-resolved face images including
correct attributes. The entire training procedure is illustrated in Algorithm 3.

8.5.4 Super-Resolving LR Inputs with Attributes

The discriminative network D is only required in the training phase. In the super-
resolving (testing) phase, we take LR face images and their corresponding attributes
as the inputs of the upsampling network U , and the outputs of U are the hallucinated
HR face images. In addition, although the attributes are binary values, i.e., either 0 or
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1, in training, the attributes can be further scaled, such as negative values or values
exceeding 1, to manipulate the final super-resolved results according to the users’
descriptions in the testing phase.

8.5.5 Implementation Details

The detailed architectures of the upsampling and discriminative networks are illus-
trated in Fig. 8.2. We employ convolutional layers with kernels of size 4 × 4 in a
stride 2 in the encoder and deconvolutional layers with kernels of size 4 × 4 in a
stride 2 in the decoder. The feature maps in our encoder will be passed to the de-
coder by skip connections. We also use the same architectures of the STN layers
in [Yu and Porikli, 2017b] to align feature maps. Specifically, the STN layers are con-
structed by convolutional and ReLU layers (Conv+ReLU), max-pooling layers with a
stride 2 (MP2) and fully connected layers (FC). STN1 layer is cascaded by: MP2, Con-
v+ReLU (with the filter size: 128×20×5×5), MP2, Conv+ReLU (with the filter size:
20×20×5×5), FC+ReLU (from 80 to 20 dimensions) and FC (from 20 to 4 dimen-
sions). STN2 is cascaded by: MP2, Conv+ReLU (with the filter size: 64×128×5×5),
MP2, Conv+ReLU (with the filter size: 128×20×5×5), MP2, Conv+ReLU (with the
filter size: 20×20×3×3), FC+ReLU (from 180 to 20 dimensions) and FC (from 20 to 4
dimensions). We do not use zero-padding in the convolution operations.

We set the learning rate to 0.001 and multiplied by 0.95 after each epoch, and α is
set to 0.01. As suggested by Yu and Porikli [2017b], we also set β to 0.01 and gradually
decrease it by a factor 0.995, thus emphasizing the importance of the appearance
similarity. On the other hand, in order to guarantee the attributes to be embedded in
the training phase, we stop decreasing β when it is lower than 0.005.

8.6 Experiments

We evaluate our network qualitatively and quantitatively, and compare with the
state-of-the-art methods [Kim et al., 2016a; Ma et al., 2010; Zhu et al., 2016b; Yu
and Porikli, 2017b; Ledig et al., 2017]. Kim et al.’s method [Kim et al., 2016a], dubbed
VDSR, is a generic CNN based super-resolution method. Ledig et al.’s method [Ledig
et al., 2017], also known as SRGAN, is also a generic CNN based super-resolution
method, which employs an adversarial loss to enhance the super-resolved details.
Since VDSR and SRGAN are trained on natural images, they may not capture LR
facial patterns well for face super-resolution. We retrain VDSR and SRGAN on en-
tire face images for fair comparisons. Ma et al. [2010] exploit position-patches in the
exemplary dataset to reconstruct HR images. Zhu et al. [2016b] employ a cascad-
ed deep convolutional neural network to hallucinate facial components of LR face
images. Yu and Porikli [2017b] use a decoder-encoder-decoder structure to super-
resolve unaligned LR faces.
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Table 8.1: Quantitative evaluations on the test dataset.
Method PSNR SSIM

Bicubic 19.23 0.56
VDSR [Kim et al., 2016a] 19.58 0.57
VDSR† [Kim et al., 2016a] 20.12 0.57

SRGAN† [Ledig et al., 2017] 19.06 0.57
Ma et al. [2010] 19.11 0.54

CBN [Zhu et al., 2016b] 18.77 0.54
TDAE [Yu and Porikli, 2017b] 20.40 0.57

Ours 21.82 0.62

8.6.1 Dataset

We use the Celebrity Face Attributes (CelebA) dataset [Liu et al., 2015] to train our
network because CelebA dataset contains over 220K face images and also provides 40
binary-value attributes for each face image. Unlike previous face generation method-
s [Perarnau et al., 2016; Yan et al., 2016; Shen and Liu, 2016], our network focuses on
super-resolving LR faces by exploiting facial attributes. Hence, we only choose the
attributes related to facial details, such as gender, age and beard information, rather
than the attributes which can be directly extracted from LR faces, such as hair and
skin colors, and are not related to facial details, such as wearing hats, glasses and
earrings. In particular, we select the 18 attributes from the 40 attributes, including 5
o’clock shadow, arched eyebrow, bags under eyes, big lips, big nose, bushy eyebrows,
double chin, goatee, heavy makeup, high cheekybone, male, mouth open, mustache,
narrow eyes, no beard, pointy nose, sideburns and young. In this way, we reduce
the potential inconsistency between visual and semantic information imposed by the
supplementary attributes.

When generating the LR and HR face pairs, we select 170K cropped face images
from the CelebA dataset, and then resize them to 128×128 pixels as HR images.
We manually transform the HR images, including rotations, translations and scale
changes, and then downsample HR images to 16 × 16 pixels to attain their corre-
sponding LR images. We use 160K LR and HR face pairs and their corresponding
attributes for training, 2K LR and HR image pairs and their attributes for validation,
and 2K LR face images and their ground-truth attributes for testing.

8.6.2 Qualitative Comparison with the SoA

Some algorithms [Ma et al., 2010; Kim et al., 2016a; Ledig et al., 2017] need the align-
ments of LR inputs before face super-resolution while the method of Yu and Porikli
[2017b] automatically generates upright HR face images. For a fair comparison and
better illustration, we employ a spatial transformer network STN0 to align LR faces.
The aligned upright HR ground-truth images are shown for comparison. As reported
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8.4: Comparison with the state-of-the-arts methods on male images. (a) U-
naligned LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) Results
of Kim et al. [2016a] (VDSR). (e) Results of Ledig et al. [2017] (SRGAN). (f) Results
of Ma et al. [2010]. (g) Results of Zhu et al. [2016b] (CBN). (h) Results of Yu and

Porikli [2017b] (TDAE). (i) Our results.

in [Yu and Porikli, 2017a,b], LR faces aligned by STN0 may still suffer misalignments.
Therefore, we employ multiple STNs in the upsampling network to reduce misalign-
ments similar to [Yu and Porikli, 2017a,b]. The only difference between STN0 and
STN1 is that the first MP2 operation in STN1 is removed in STN0 and the input
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 8.5: Comparison with the state-of-the-arts methods on female images. (a)
Unaligned LR inputs. (b) Original HR images. (c) Bicubic interpolation. (d) Results
of Kim et al. [2016a] (VDSR). (e) Results of Ledig et al. [2017] (SRGAN). (f) Results
of Ma et al. [2010]. (g) Results of Zhu et al. [2016b] (CBN). (h) Results of Yu and

Porikli [2017b] (TDAE). (i) Our results.

channel is 3.

Bicubic upsampling only interpolates new pixels from neighboring pixels rather
than hallucinating new contents for new pixels. Furthermore, the resolution of our
input face images is very small, and little information is contained in the input im-
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(a) Gender (b) Age (c) Makeup

(d) Nose (e) Beard (f) Eyes

(g) Eyebrows (h) Lips (i) Mouth

Figure 8.6: Our method can fine-tune the super-resolved results by adjusting the
attributes. From top to bottom: the LR input faces, the HR ground-truth faces, our
results with ground-truth attributes, our results by adjusting attributes. (a) Reversing
genders of super-resolved faces. (b) Aging upsampled faces. (c) Removing makeups.
(d) Changing noses. (The first two columns: making noses pointy, and the last two
columns: making noses bigger.) (e) Adding and removing beard. (f) Narrowing and
opening eyes. (g) Making and removing bushy Eyebrows. (h) Making lips bigger. (i)

Opening and closing mouths.
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Table 8.2: Classification results impacted by tuning attributes.

Attributes
GT Attr.

Acc.
Increased
Attr. Acc.

Decreased
Attr. Acc.

Male 100% 100% 0%
Young 100% 100% 0%

Makeup 91% 100% 2.9%
Big nose 42% 100% 8.3%

Beard 100% 100% 0%
Narrow eyes 67% 100% 0%

Bushy eyebrows 88% 100% 0%
Big lips 56% 94% 0%

Mouth open 100% 100% 0%

ages. As shown in Fig. 8.4(c) and Fig. 8.5(c), conventional bicubic interpolation fails
to generate facial details. The upsampled faces also suffer from obvious skew arti-
facts. This indicates that it is difficult to align very low-resolution faces accurately by
a single STN0.

Kim et al. [2016a] present a deep CNN for generic purpose super-resolution,
known as VDSR. Because VDSR is trained on natural image patches and does not
provide an upscaling factor of 8×, it cannot capture the global face structure, as
shown in Fig. 8.1(d). We re-train the model with an upscaling factor of 8× on face
images, marked as VDSR†. As shown in Fig. 8.4(d) and Fig. 8.5(d), this method also
suffers from the distortion artifacts in the results due to misalignments. Furthermore,
since VDSR† is only trained by a pixel-wise `2 loss, it outputs overly smoothed results
as seen in Fig. 8.4(d) and Fig. 8.5(d).

Ledig et al. [2017] develop a CNN based generic super-resolution method, dubbed
SRGAN. In order to avoid producing overly smoothed super-resolved results, SR-
GAN employs an adversarial loss [Goodfellow et al., 2014; Radford et al., 2015].
Since original SRGAN is also trained on generic image patches, we also fine-tune S-
RGAN with entire face images for a fair comparison, named as SRGAN†. As seen in
Fig. 8.4(e) and Fig. 8.5(e), SRGAN is able to capture LR facial patterns and achieves
sharper upsampled results compared to VDSR. However, misalignments in LR faces
result in severe distortions in the final results.

Ma et al. [2010] super-resolve HR faces by position-patches from HR exemplar
face images. Thus, their method is sensitive to misalignments in LR inputs. As
seen in Fig. 8.4(f) and Fig. 8.4(f), there are obvious blur artifacts along the profiles
of hallucinated faces. In addition, the correspondences between LR and HR patches
become inconsistent as the upscaling factor increases. Hence, severe blocky artifacts
appear on the boundaries of different patches.

Zhu et al. [2016b] develop a cascaded bi-network (CBN) to super-resolve very
low-resolution face images. CBN firstly localizes facial components in LR faces and
then super-resolves facial details by a local network and entire face images by a global
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Table 8.3: Ablation study on our proposed network

ENs inAttr woAttr woAE noSkip Ours

PSNR 20.03 21.43 21.64 21.03 21.21 21.82
SSIM 0.55 0.60 0.60 0.58 0.58 0.62

network. As shown in the first and fifth rows of Fig. 8.4(g), CBN is able to generate
HR facial components, but it also hallucinates feminine facial details in male face
images, e.g., eye lines appear in male faces as seen in the fifth row of Fig. 8.4(g).
Furthermore, CBN fails to super-resolve faces of senior people, as shown in the first
row of Fig. 8.5(g). As the upscaling factor increases, the facial details in LR faces
become more ambiguous. Therefore, it is difficult to recover the facial details of
senior people, such as wrinkles and age spots which are even hard to observe in LR
faces.

Yu and Porikli [2017b] exploit a transformative discriminative autoencoder (T-
DAE) to upsample very low-resolution face images. They also employ deconvolu-
tional layers to upsample LR faces as well as STN layers to align LR faces, but their
discriminative network is only used to force the upsampling network to produce
sharper results without imposing any high-level semantic information, e.g., facial at-
tributes, in super-resolution. As visible in Fig. 8.4(h) and Fig. 8.5(h), their method
also reverses the genders of the upsampled faces as well as suffers from facial reju-
venation.

In contrast, our method is able to reconstruct authentic facial details as shown in
Fig. 8.4(i) and Fig. 8.5(i). Even though there are different poses, facial expressions
and ages in the input faces, our method still produces visually pleasing HR faces
which are similar to the ground-truth faces without suffering gender reversal and
facial rejuvenation. For instance, we can super-resolve faces of senior persons as
illustrated in the second row of Fig. 8.4(i) and the first rows of Fig. 8.5(i) as well as
the child face in the last row of Fig. 8.4(i).

8.6.3 Quantitative Comparison with the SoA

We quantitatively measure the performance of all the methods on the entire test
dataset by the average Peak Single-to-Noise Ratio (PSNR) and Structural SIMilarity
(SSIM) scores. Table 8.1 demonstrates that our method achieves superior perfor-
mance in comparison to other methods, outperforming the second best with a large
margin of 1.42 dB in PSNR.

As indicated in Tab. 8.1, after retraining VDSR and SRGAN with face images,
they achieve higher PSNRs but still output inferior quantitative results compared
with our results. TDAE [Yu and Porikli, 2017b] also employs multiple STNs to align
LR face images and achieves the second best results. Note that TDAE employs three
networks to super-resolve face images, which is much larger than our network. This
also indicates that the ambiguity is significantly reduced by imposing attribute infor-
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Table 8.4: Embedding attributes into different layers of D
Layers D1 D2 D3 D4

PSNR 21.59 21.76 21.82 21.63
SSIM 0.62 0.62 0.62 0.61

mation into the super-resolution procedure rather than by increasing the capacity of
a neural network. Therefore, our method is able to achieve better quantitative results.

8.7 Discussions

8.7.1 Attribute Manipulation in Super-Resolution

Given an LR face image, previous deep neural network based face hallucination
methods [Yu and Porikli, 2016, 2017b; Zhu et al., 2016b] only produce a certain HR
face image. There is no freedom for those methods to fine-tune the final results.
In contrast, our method can output different super-resolved results by adjusting the
attribute vectors. As shown in Fig. 8.6, by changing the gender attribute we can hal-
lucinate face images either from male to female or from female to male. Our method
can manipulate the age of the upsampled faces, i.e., more wrinkles and age spots, by
changing the age attribute, as seen in Fig. 8.6(b). Because gender and age informa-
tion may become ambiguous in LR face images, combining that semantic information
in super-resolution can produce more accurate results. In addition, after obtaining
super-resolved faces, our method is still able to post-edit the upsampled facial details
in accordance with the desired attributes. For instance, our method removes the eye
lines and shadows in Fig. 8.6(c), makes noses bigger in Fig. 8.6(d), removes and adds
beard in Fig. 8.6(e), opens and closes eyes in Fig. 8.6(f), makes eyebrows bushy in
Fig. 8.6(g), makes lips bigger in Fig. 8.6(h) as well as opens and closes mouths in
Fig. 8.6(i) by manipulating the corresponding attribute vectors. Therefore, infusing
semantic information into LR face images significantly increases the flexibility of our
method.

To demonstrate our upsampling network is able to embed attributes into the up-
sampled HR faces successfully, we choose 9 different attributes, i.e., gender, age,
makeup, big nose, beard, open eyes, bushy eyebrows, big lips and open mouth,
and train a attribute classifier for each attribute. Note that, some of our selected 18
attributes are coupled together, such as goatee and beard information, and some at-
tributes may not be always consistent with human observation and are even hard to
distinguish in upsampled faces in our experiments, such as eye bags. Therefore, we
conduct the quantitative evaluations on the above 9 attributes as visible in Fig. 8.6
rather than all the selected attributes. By increasing and decreasing the correspond-
ing attribute values, the true positive accuracies are changed accordingly, as illus-
trated in Tab. 8.2. This indicates that the attribute information has been successfully
embedded in super-resolution.
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Table 8.5: Quantitative evaluations of impact of different losses

Losses Lpix Lpix+L f eat Lpix+Ldis Ours

PSNR 22.45 22.31 20.96 21.82
SSIM 0.66 0.65 0.57 0.62

8.7.2 Learn to Encode Attribute Vectors in Hallucination

Since our network directly accepts binary-value attributes, an option to improve the
embedding might be using a shared CNN branch ENs to encode attribute vectors.
In the training stage, the encoding branch ENs will be updated as well in order to
embed attributes into the upsampling network. Because the output of ENs, i.e., the
embedded attribute vector, is the input of both the upsampling network and the
discriminative network, the `2 and perceptual losses from the upsampling network
U and the discriminative loss from the discriminative network D are used to update
ENs. Therefore, although the upsampling network and the discriminative network
are updated alternatingly, ENs is updated in every iteration.

In training our discriminative network, the discriminative labels for the faces up-
sampled by U are set to 0 regardless of the attribute information, the labels for real
faces with matched attributes are set to 1, and the labels for real faces with mis-
matched attributes are set to 0. Different from the previous training protocol [Yu and
Porikli, 2016, 2017b], the discriminative loss is not only used to update the discrimi-
native network but also employed to update the embedding branch ENs. We only use
one binary cross-entropy loss to update the discriminative network D, but the train-
ing errors of D may come from either the face images or the mismatched attributes.
Since the binary cross-entropy loss is not able to distinguish whether the faces are
hallucinated or the attributes does not match the faces, it may cause ambiguity in the
procedure of backpropagation.

On the other hand, in training our upsampling network, only the upsampled
faces with their corresponding ground-truth attributes are fed into the discrimina-
tive network and the discriminative labels are set to 1. Note that, in training D, the
discriminative labels for super-resolved faces with their attributes should be 1 while
in training U , the labels are set to 0. Similar to previous works [Yu and Porikli, 2016,
2017a,b], the discriminative loss should be only used to update the upsampling net-
work to make the super-resolved faces realistic, but here it is also used to update the
encoding network ENs. Thus, it is difficult for ENs to learn a consistent encoder due
to the contradicted discriminative labels in training D and U . Therefore, the super-
resolution performance using ENs decreases 1.79 dB as indicated in Tab. 8.3 and the
hallucinated faces suffer from obvious artifacts, as seen in Fig. 8.7(c). Therefore, we
directly feed a binary-value attribute vector into our upsampling and discriminative
network.
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(a) (b) (c) (d) (e) (f)

Figure 8.7: Discussions on the variants of our network. (a) 16× 16 LR input images.
(b) 128× 128 HR ground-truth images. (c) Result of using a shared CNN branch ENs
to encode attributes in super-resolution. (d) Result of using all neutral attributes. (e)

Result without embedding attribute information. (f) Our result.

8.7.3 Performance with/without Autoencoder

As shown in Fig. 8.3(c), we demonstrate that it is not suitable to concatenate high-
level semantic information with low-level image pixels directly. Specifically, we re-
move the autoencoder, replicate the attribute vector to the image size, and then con-
catenate the replicated attributes with the input LR image. In this way, all semantic
labels will be applied to the whole images by the low-level convolutional filters.
However, low-level filters are mainly responsible to extract image edges or corner-
s [Zeiler and Fergus, 2014]. It is unsuitable to employ low-level filters to fuse high-
level semantic information and low-level visual information. This is also verified by
the quantitative result, donated as woAE, in Tab. 8.3.

On the contrary, we first encode the LR input faces by an encoder and then fuse
the high-level semantic information, i.e., attribute vectors, with the high-level feature
maps extracted by the encoder. In this manner, the attribute labels are better asso-
ciated with the feature maps qualitatively and quantitatively, as shown in Fig 8.3(h)
and Tab. 8.3.

8.7.4 Performance with/without Skip-Connections

As shown in Fig. 8.2, we also employ skip-connections to pass low-frequency compo-
nents of LR inputs to the decoder. In this fashion, we only focus on embedding the
supplementary attributes into high-frequency facial details as well as preserve spa-
tial information of LR input faces. Here, the low-frequency components are not strict
low-frequency components of LR faces but relatively low-frequency compared to the
components in the residual branch, i.e., high-frequency components. Without using
skip-connections, the network will fuse the facial attributes with all the frequency
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components of LR faces. As seen in Fig. 8.3(d), the hallucinated faces suffer from
obvious artifacts at the smooth regions after removing the skip-connections. There-
fore, the attribute information should be fused into high-frequency components of
LR faces rather than low-frequency ones. We also demonstrate the quantitative re-
sult without using the skip-connections, denoted as noSkip, in Tab. 8.3. As indicated
in Tab. 8.3, with the help of the skip-connections, our super-resolution performance
increases 0.60 dB in PSNR.

8.7.5 Performance with Inaccurate Attributes

When super-resolving very low-resolution face images, we may not always obtain
all the 18 ground-truth attributes. Therefore, we may use inaccurate attribute infor-
mation in face hallucination. In this case, we set undetermined attributes to 0.5 as
neutral attributes in super-resolution because an attribute is set either 1 or 0 in train-
ing. In an extreme case, we do not know any information about attributes. Hence,
we use the neutral value for all the attributes in super-resolution, marked as inAttr,
and the quantitative result is shown in Tab. 8.3. Figure 8.7(d) also illustrates that our
network can still generate high-quality results with inaccurate attributes.

8.7.6 Performance with/without Attribute Embedding

To demonstrate the influence of embedding attributes in face hallucination, we re-
move the branches of feeding attributes into U and D for comparisons, and denote
this variant as woAttr. As shown in Fig. 8.7(e), the final results upsampled by woAt-
tr suffer from gender reversal and expression changes. The average PSNR without
embedding attributes decreases 0.18 dB, as indicated in Tab. 8.3. Furthermore, we
also employ two pretrained attribute classifiers, i.e., gender and age, to recognize the
attributes recovered by our network and woAttr. For the age classification results, the
error rate of our proposed network is 0 while the error rate of woAttr is 23.4%. For
the gender classification results, the error rate of our proposed network is 0 while the
error rate of woAttr is 6%. These experiments demonstrate that our method effective-
ly reduces ambiguity in face hallucination by embedding supplementary attributes.

8.7.7 Impact of Embedding Layers in D

As mentioned in Sec. 8.5.2, we embed attribute vectors into the third layer of the
discriminative network. Here, we also demonstrate the quantitative results of em-
bedding attributes into different layers of the discriminative network, (i.e., 1st, 2nd,
3rd and 4th convolutional layers). As reported in our previous work [Yu and Porikli,
2017a], overly smoothed upsampled results tend to achieve higher PSNR but their
visual quality is inferior. Therefore, we compare the quantitative results when these
variants generate similar visual quality results. As shown in Tab. 8.4, we achieve the
best performance when embedding attribute vectors into the third layer of D.
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8.7.8 Impact of Different Losses

As seen in Fig. 8.3, we only show the impact of different losses on the visual results.
In Tab. 8.5, we also show the quantitative results of our network trained by using
different losses. When only employing the pixel-wise `2 loss, the average PSNR is
higher but the visual results suffer from severe blurriness, as shown in Fig. 8.3(e). To
avoid generating overly smoothed results, the feature-wise `2 loss is used in training
the network. Due to the lack of the guidance of high-level semantic information in
super-resolution, the network trained by using the pixel-wise and feature-wise losses
still suffers from notorious ambiguity, such as gender reversal or facial rejuvenation.
Using the discriminative loss Ldis and the pixel-wise `2 loss is able to embed the at-
tribute information in the upsampled face images, but the facial characteristics may
not be fully captured. Thus, the upsampling network generates ringing artifacts to
mimic facial details, as shown in Fig. 8.3(g). By employing these three losses altogeth-
er, our network is able to achieve the best visual quality. Similar to the phenomenon
mentioned in our previous work [Yu and Porikli, 2016], using the discriminative loss
is a trade-off between the quantitative performance and the visual quality. Therefore,
we set the weight for the discriminative loss to 0.001.

8.8 Conclusions

We introduced an attribute embedded discriminative network to super-resolve very
low-resolution (16×16 pixels) unaligned face images by a large magnification fac-
tor 8× in an end-to-end fashion. With the help of the conditional discriminative
network, our network successfully embeds facial attribute information into the up-
sampling network to reduce the inherit ambiguity in super-resolution. After training,
our network is not only able to super-resolve LR faces but also fine-tune the upsam-
pled results by adjusting the attribute information. In this manner, our network can
generate HR face images much closer to their corresponding ground-truth ones, thus
achieving superior face hallucination performance.



Chapter 9

Can We See More? Joint
Frontalization and Hallucination of
Unaligned Tiny Faces

9.1 Foreword

Previous chapters mainly focus on super-resolving high-resolution face images from
the low-resolution inputs. When the face images are in large poses, such as pro-
file views, there is less information available for human observation and computer
analysis compared to the frontal ones. Thus, profile faces bring difficulties to the
state-of-the-art face recognition systems or even human perception. Benefiting from
the great power of deep neural networks, some works are developed to frontalize
high-resolution side-view faces. In this fashion, they can provide more information
for human observation as well as computer processing. Inspired by this idea, we also
attempt to super-resolve low-resolution faces while frontalizing the upsampled face
images simultaneously, thus providing more information for human and machine
perception.

This chapter has been submitted to IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence as a journal paper: Xin Yu, Basura Fernando, Fatih Porikli, Richard
Hartley: Hallucinating Unaligned Face Images by Multiscale Transformative Dis-
criminative Networks.

9.2 Abstract

In popular TV programs (such as CSI), a very low-resolution face image of a person,
who is not even looking at the camera in many cases, is digitally super-resolved to
a degree that suddenly the person’s identity is made visible and recognizable. Of
course, we suspect that this is merely a cinematographic special effect and such a
magical transformation of a single image is not technically possible. Or, is it? In this
paper, we push the boundaries of super-resolving (hallucinating to be more accurate)
a tiny, non-frontal face image to understand how much of this is possible by leverag-
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ing the availability of large datasets and deep networks. To this end, we introduce a
novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very-
low resolution (i.e. 16×16 pixels) out-of-plane rotated face images (including profile
views) and aggressively super-resolve them (8×), regardless of their original poses
and without using any 3D information. TANN is composed of two components:
a transformative upsampling network which embodies encoding, spatial transfor-
mation and deconvolutional layers, and a discriminative network that enforces the
generated high-resolution frontal faces to lie on the same manifold as real frontal
face images. We evaluate our method on a large set of synthesized non-frontal face
images to assess its reconstruction performance. Extensive experiments demonstrate
that TANN generates both qualitatively and quantitatively superior results achieving
over 4 dB improvement over the state-of-the-art.

9.3 Introduction

Recovering high-resolution (HR) face images from their low-resolution (LR) coun-
terparts, known as face hallucination, has received significant attention in recent
years. Existing face hallucination methods mainly focus on super-resolving near-
ly frontal faces, which provide critical perceptual information for the human visual
system [Hassner et al., 2015]. However, in most cases, LR faces may not necessari-
ly be frontal. Super-resolving such non-frontal LR faces requires either frontalizing
them first and then applying existing face hallucination techniques, or super-solving
first (which highly depends on an available pose-specific exemplar dataset) and then
frontalizing. Nevertheless, both of these options are naturally very challenging.

Conventional and emerging face frontalization methods [Blanz and Vetter, 1999;
Yang et al., 2011; Hassner, 2013; Taigman et al., 2014; Sagonas et al., 2015; Hassner
et al., 2015; Thies et al., 2016] often rely on facial landmarks for warping 2D face
images onto 3D models, and thus require the input images to have a sufficient res-
olution where such landmarks are detectable. This renders them ineffective for tiny
face images. Without a proper frontalization, directly employing face hallucination
methods [Baker and Kanade, 2000, 2002; Liu et al., 2001; Wang and Tang, 2005; Liu
et al., 2007; Hennings-Yeomans et al., 2008; Ma et al., 2010; Yang et al., 2010; Li et al.,
2014; Kolouri and Rohde, 2015; Wang et al., 2014; Yu and Porikli, 2016, 2018] may
cause severe artifacts due to large pose variations and misalignments. As shown in
Fig. 9.1 and Fig. 9.3, for very low-resolution non-frontal face images, applying either
face frontalization followed by hallucination, or hallucination followed by frontaliza-
tion produces degraded results.

In this paper, we aim to jointly frontalize and hallucinate a given input face im-
age so as to avoid the artifacts produced by either of these tasks individually. To do
so, we present a new Transformative Adversarial Neural Network (TANN) that auto-
matically frontalizes the LR faces while hallucinating the frontalized LR feature maps
by an upscaling factor of 8× in an end-to-end fashion. Considering that an LR input
face may undergo large pose variations and misalignments as seen in Fig. 9.1, our
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9.1: Comparison with the combination of face hallucination [Yu and Porikli,
2017b] and frontalization [Hassner et al., 2015] methods. (a) 16× 16 LR non-frontal
input image. (b) 128× 128 HR original frontal image (not available in training). (c)
The best possible match to the given LR image in the dataset after compensating for
in-plane rotations by STN0 [Jaderberg et al., 2015]. (d) Detected landmarks by the
method of Zhu and Ramanan [2012] after bicubic upsampling. (e) Result obtained
by applying [Hassner et al., 2015] first and then [Yu and Porikli, 2017b]. In [Yu and
Porikli, 2017b], the first decoder and encoder are used to reduce image noise. Hereby,
we only use the second decoder of Yu and Porikli [2017b] for super-resolving LR
faces. (f) Result obtained by applying [Yu and Porikli, 2017b] first and then [Hassner
et al., 2015]. (g) Image generated by [Yu and Porikli, 2017b], which is retrained with

LR non-frontal and HR frontal face images. (h) Our result.

motivation is to force a non-frontal LR face to share the same latent representation
of its corresponding frontal LR face and then super-resolve the latent representation.
Thus, we first design a transformative subnetwork to encode a non-frontal LR face
into a latent representation, where the representation of the input non-frontal LR
face is forced to be similar to the latent representation of its frontal counterpart in
the latent subspace. Then, we pass the latent representations, i.e., the frontalized LR
feature maps, through a subnetwork that is composed of deconvolutional and spatial
transformer layers [Jaderberg et al., 2015], whose goal is to generate HR outputs. In-
spired by previous works [Goodfellow et al., 2014; Denton et al., 2015; Yu and Porikli,
2016, 2017a; Xu et al., 2017], we choose to employ an adversarial network to make
these HR outputs more closely resemble real human faces.

In order to train our network, we not only employ the traditional pixel-wise im-
age appearance similarity and class-wise similarity constraints used in our previous
works [Yu and Porikli, 2017b, 2016], but also develop a triplet loss to constrain the
similarity of the latent representations between the input non-frontal faces and their
ground-truth frontal LR ones. With the help of the proposed triplet loss, we are able
to enforce that the representation of a side-view face to be close to its corresponding
frontal LR face and far from other LR frontal faces in the latent subspace. In this
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manner, the upsampled frontalized HR faces are not only similar to their HR frontal
counterparts but also distinguishable from other hallucinated faces. Furthermore, we
exploit a feature-wise similarity constraint, known as perceptual loss [Johnson et al.,
2016], to make the hallucinated facial characteristics similar to the ground-truth, thus
improving the visual quality.

Although deep neural networks have given rise to major advances in many com-
puter vision tasks, they require very large datasets to train millions of parameters in
their models. In our case, the existing large-scale face datasets [Huang et al., 2007;
Liu et al., 2015] do not provide a sufficient number of frontal and non-frontal face im-
age pairs for training our TANN. To obtain a large corpus of frontal and non-frontal
face image pairs for the goal of training our deep neural network, we construct a set
of out-of-plane rotated images from available frontal faces mapped onto a 3D face
model. We first map randomly chosen frontal images to a 3D model, and then render
different views of the 3D face, similar to the work [Masi et al., 2016]. This allows us
to have high-quality HR frontal faces as our ground-truth images. It is important to
note that this step is only to construct the training dataset, as we do not use any 3D
models in our network (neither in training, nor in testing). In our experiments, we
use non-frontal faces whose 3D models are unknown to demonstrate that TANN can
hallucinate and frontalize different views of any unaligned LR face beyond the poses
it is exposed to in training.

Overall, our contributions can be summarized as follows.

• We introduce a new transformative adversarial neural network to simultane-
ously hallucinate (by an upscaling factor of 8×) and frontalize tiny (16×16
pixels) unaligned face images with pose variations up to ±75◦.

• We propose a new triplet loss to encode non-frontal LR faces into a latent sub-
space without distorting the encoding of frontal LR ones. With the help of
the proposed triplet loss, we can force non-frontal LR faces to be close to their
ground-truth frontal ones while keeping away from other faces in the latent
subspace.

• We perform the training of our network in an end-to-end fashion by incorpo-
rating the reconstruction, perceptual, discriminative and triplet loss terms. In
order to train our network, we also provide a dataset of corresponding frontal
and non-frontal view face image pairs, which will be made available on-line to
the vision community at large.

• We achieve superior hallucination results and outperforms the state-of-the-art
by a large margin of 4.0 dB PSNR. Our method eliminates the need for facial
landmarks or 3D face models as it is agnostic to the underlying in-plane and
out-of-plane pose variations and spatial deformations. In the testing phase, our
method can successfully process faces that are imaged at views not seen during
training.

To the best of our knowledge, our method is the first attempt to provide a unified
framework for super-resolution and frontalization of unaligned very low-resolution
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face images, reducing significantly the artifacts introduced by either strategy, when
considered individually.

9.4 Related Work

Our work mainly focuses on two aspects: face frontalization and hallucination. We
briefly review noteworthy face frontalization and hallucination works below.

Face Frontalization: Generating a frontal face from a single non-frontal face im-
age is very challenging due to self-occlusions and various pose variations, and has
received significant attention in computer vision. Seminal works date back to the
3D Morphable Model (3DMM) [Blanz and Vetter, 1999], where a face is represent-
ed by the shape and texture bases in PCA subspace. After obtaining the the shape
and texture coefficients of an input face image, Blanz and Vetter [1999] render novel
views of an input face. Driven by 3DMM, Yang et al. [2011] estimate 3D surface from
face appearance and then synthesize new expressions of the given face. However,
these methods require the input face images to be nearly frontal in order to estimate
the shape and appearance coefficients of input faces in PCA subspace. Dovgard and
Basri [2004] exploit the facial symmetry to estimate 3D geometry of the given faces
and render frontal faces. Similarly, Hassner et al. [2015] use facial symmetry to ren-
der out-of-view facial regions. Some methods [Asthana et al., 2011; Hassner, 2013;
Taigman et al., 2014; Masi et al., 2016; Zhu et al., 2015] attempt to reconstruct frontal
views by mapping a 2D face image onto a 3D reference surface mesh after regis-
tering and normalizing the face image. Since they need to detect facial landmarks
in the input images and establish correspondences of landmark points to 3D or 2D
reference models, they require images in sufficiently high resolutions. Based on the
fact that frontal faces have the minimum rank of all different poses, Sagonas et al.
[2015] propose a statistical face frontalization method, but the appearance of their
frontalized faces may not be consistent with the input faces.

Deep learning based face frontalization methods have been proposed recently
as well [Zhu et al., 2014; Yim et al., 2015; Zhu et al., 2015; Tran et al., 2017b; Cole
et al., 2017; Huang et al., 2017b; Yin et al., 2017]. Zhu et al. [2014] present a deep
neural network to frontalize HR faces by exploiting the symmetry and similarity of
facial components. Their method does not require estimation of a 3D model, but it
cannot maintain appearance similarity between the frontalized and input faces either.
Yim et al. [2015] develop a multi-task deep neural network to rotate faces, but their
method outputs blurry frontal faces due to the aggressive downsampling operations
in the encoder. Similarly, Cole et al. [2017] learn to generate facial landmarks and
textures from features extracted by a face recognition network. Since Cole et al.warp
input faces to the mean face geometry by using facial landmarks, the resolutions
of their inputs need to be sufficiently large. Very recently, Huang et al. [2017b]
employ two deep neural networks, i.e., global and local networks, to frontalize faces.
However, their local network needs to extract HR facial components for identity
preservation and to align HR facial components to pre-defined positions, and thus
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their method is not suitable for very LR unaligned non-frontal face images. Yin
et al. [2017] combine 3DMM and a generative adversarial network to frontalize faces
with arbitrary poses. They also need to localize facial landmarks when mapping the
input faces to the 3DMM. Thus their method requires sufficient resolutions for input
images. Tran et al. [2017a] present a convolutional neural network (CNN) to regress
3DMM shape and texture parameters to speed up the optimization of 3DMM, but
their method does not render frontalized faces which are similar to the input faces
in terms of image intensity.

Face Hallucination: Face super-resolution (FSR), also known as face hallucina-
tion, aims at magnifying an LR image to its HR version and can be roughly grouped
into three categories: holistic-based, part-based, and deep network based solutions.

Holistic-based methods attempt to super-resolve an entire HR face by using glob-
al face models, often learned by PCA. Wang and Tang [2005] establish a linear map-
ping between LR and HR face subspaces to super-resolve HR faces, while Liu et al.
[2007] learn a global appearance model for upsampling LR inputs and employ a local
nonparametric model to enhance the facial details. Kolouri and Rohde [2015] pro-
pose to morph an HR output from the aligned exemplar faces similar to LR inputs
by the optimal transport and subspace learning techniques. Because holistic-based
methods require LR inputs to be accurately aligned and to share the same pose and
expression as HR references when learning global face models, they are very sensi-
tive to misalignments and pose variations.

Instead of super-resolving entire faces, part-based methods upsample facial re-
gions and thus can address various poses. They either use reference position patches,
or employ facial components to restore the HR counterparts of LR inputs. For in-
stance, Baker and Kanade [2002] reconstruct high-frequency details of aligned frontal
face images by finding the best mapping between LR and HR patches. Similarly, Ma
et al. [2010] employ position patches extracted from multiple aligned HR images to
upsample aligned LR face images. Rather than reconstructing patches in the im-
age domain, Yang et al. [2010] and Li et al. [2014] super-resolve HR image patches
by employing sparse coding techniques to achieve better performance. Tappen and
Liu [2012] apply SIFT flow [Liu et al., 2011] to align the facial parts of LR images
and reconstruct HR facial details by warping the reference HR images, while Yang
et al. [2013, 2017a] localize facial components in the LR images by a facial landmark
detector and then reconstruct details from the similar HR reference components. S-
ince these methods need to extract facial components in LR face images accurately,
their performance degrades dramatically when the LR faces are tiny. We refer the
readers to the paper [Wang et al., 2014] for a more comprehensive survey on face
hallucination using traditional approaches.

As large-scale datasets become available, Zhou and Fan [2015] propose a con-
volutional neural network (CNN) to extract facial features and recover facial details
from the extracted features. Yu and Porikli [2018] consolidate deconvolutional and
convolutional layers for super-resolving LR face images, but they improve the visual
quality by a post-processing technique, i.e., an unsharp filter. The work present-
ed in [Yu and Porikli, 2016] develops a discriminative generative network to super-
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resolve aligned LR face images in an end-to-end fashion while Huang et al. [2017a]
exploit wavelet coefficients learned by CNN to restore HR faces. In order to relax
the requirement of face alignment, Yu and Porikli [2017a] embed multiple spatial
transformer networks [Jaderberg et al., 2015] into the generative network of Yu and
Porikli [2016]. Their follow-up work [Yu and Porikli, 2017b] employs a decoder-
encoder-decoder structure to super-resolve noisy LR faces while suppressing image
noise. Xu et al. [2017] employ the generative adversarial framework [Goodfellow
et al., 2014] as well as a multi-class adversarial loss to upsample blurry and LR face
and text images. Dahl et al. [2017] exploit the framework of PixelCNN [Van Den O-
ord et al., 2016], known as an autoregressive generative model, to hallucinate very
low-resolution face images. Towards the same goal, Zhu et al. [2016b] use a cascade
bi-network to upsample very low-resolution and unaligned faces, of which one is
used to super-resolve low-frequency components of face images and the other is em-
ployed to hallucinate high-frequency facial details. Since these deep learning based
methods do not take out-of-plane rotations of faces into account and are restricted to
small pose variations, (i.e.within ±30◦), they may fail to super-resolve LR faces with
large pose variations.

Due to the above limitations, simply cascading face hallucination and frontaliza-
tion methods is not an acceptable solution for our problem.

9.5 Proposed Method: TANN

Our network has two components: (i) a transformative upsampling network, which
transforms different poses to the frontal one and also super-resolves the frontalized
LR feature maps; and (ii) a discriminative network, which forces the generated HR
frontal faces to lie on the manifold of authentic HR face images. Figure 9.2 illustrates
the overall architecture of TANN.

In the training phase, the entire network is trained in an end-to-end fashion to
compensate for possible artifacts induced by any of the frontalization and hallucina-
tion tasks. As shown in Fig. 9.3(i), when we train the upsampling network separately,
i.e., generating frontalized LR faces as intermediate results, the transformer subnet-
work may suffer from the loss of information contained in its feature maps because
it is enforced to output 3 channel LR faces as its objective function rather than 32
channel feature maps. This may lead to accumulated errors and obvious deviations
in the output of the upsampling subnetwork due to the incorrect input images for
upsampling. Thus, feeding 32 feature maps directly to the upsampling network is a
better choice.

9.5.1 Transformative Upsampling Network (TUN)

In Fig. 9.2, our transformative upsampling network is shown (red box). TUN is com-
posed of two parts: a transformer subnetwork and an upsampling subnetwork. The
transformer part (purple box) aims at encoding non-frontal LR faces into latent repre-
sentations which are close to the latent representations of their corresponding frontal
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Figure 9.2: TANN consists of two parts: a transformative upsampling network (red
box) and a discriminative network (blue box).

LR ones. By doing so, we can achieve the latent codes of frontalized LR faces. Our
transformer subnetwork is constructed by convolutional layers, a fully-connected lay-
er, deconvolutional layers and spatial transformer layers. Since the input LR faces un-
dergo in-plane rotations, translations and scale changes, multiple spatial transformer
networks (STN) [Jaderberg et al., 2015] are embedded as intermediate layers to com-
pensate for such affine transformations. Moreover, because STNs learn 2D affine
warps rather than out-of-plane rotations, they cannot recover self-occluded parts of
faces. To solve this problem, our intuition is that we can project different views of a
face into a subspace, where their encoded representations are enforced to lie close to
the representations of their corresponding frontal one. Therefore, we incorporate a
fully-connected layer to encode the feature maps of LR profile faces as well as design
a triplet loss to force the similarity between the representations of LR profile and
frontal ones.

To illustrate the effectiveness of the transformer subnetwork, we change the chan-
nel number of its output layer to 3, and use LR frontal faces as ground-truth images
to train this subnetwork. As shown in Fig. 9.3(j) and Fig. 9.4(d), it can successfully
generate an LR frontal face image. Note that, when training our TANN, we do not
employ LR frontal faces as supervision to prevent the aforementioned drift issue.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9.3: Artifacts caused by the state-of-the-art face frontalization and hallucina-
tion methods. (a) The input 16×16 LR image. (b) The original 128×128 HR frontal
image. (c) The aligned upright version of (a) by STN0. (d) Frontalized result of (c)
using [Hassner et al., 2015]. Note that, we first upsample (c) by bicubic interpolation,
then apply [Hassner et al., 2015], and downsample the frontalized result. (e) HR im-
age after applying [Zhu et al., 2016b] to (d). (f) HR image after applying [Zhu et al.,
2016b] to (c) directly. (g) The frontalized version of (f) by [Hassner et al., 2015]. (h)
The result of applying [Yu and Porikli, 2017b] to (a). (i) The result of TANN without
the transformer subnetwork, which is similar to the upsampling network [Yu and
Porikli, 2017b], retrained with LR non-frontal and HR frontal faces. (j) The aligned
and frontalized LR face by our transformer subnetwork. Note that, in our end-to-end
trained TANN, the output of the transformer network is a set of feature maps not
an image. (k) The hallucinated result of (j) by our upsampling subnetwork (here, we

retrained the upsampling network). (l) Our final result.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9.4: Illustrations of influence of different losses. (a) The input 16×16 LR
images. (b) The original 128×128 HR frontal images. (c) The downsampled version of
(b). (d) The frontalized LR faces by our transformer subnetwork. (e) The upsampling
results only using pixel-wise loss. (f) The upsampling results using the pixel-wise
and perceptual losses. (g) The upsampling results without using the triplet loss. (h)

Our final results.
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After obtaining the feature maps of LR frontal faces generated by the transformer
subnetwork, we apply an upsampling subnetwork (green box in Fig. 9.2) to hallu-
cinate the high-frequency facial details of frontal faces. Because the resolution of
LR input images is very low, STNs in our transformer subnetwork may not align LR
faces accurately. The LR feature maps generated by the transformer network may still
contain misalignments. We employ the upsampling structure used in our previous
works [Yu and Porikli, 2017a,b] for further alignment and super-resolution.

As shown in Fig. 9.3(h), simply applying the method of Yu and Porikli [2017b] to
LR profile faces cannot provide high-quality HR frontal face images. This manifest-
s that upsampling LR non-frontal faces with large pose variations is more difficult
compared to LR frontal faces and also indicates the necessity of our transformer sub-
network. Since the mapping between common LR patterns and HR facial details can
be easily learned from frontal faces, we frontalize LR inputs first and then hallucinate
them.

9.5.2 Discriminative Network

As demonstrated in our previous works [Yu and Porikli, 2016, 2017a,b], only using
Euclidean distance (pixel-wise `2 loss) between the upsampled faces and the ground-
truth HR faces tends to generate over-smoothed results. Therefore, a class-specific
discriminative objective is also incorporated into our TUN, aiming to force the hallu-
cinated HR face images to lie on the same manifold of real frontal face images.

As shown in Fig. 9.2 (blue box), the discriminative network consists of convo-
lutional layers, max-pooling layers, dropout layers, and fully-connected layers. It is
designed to determine whether an image is sampled from real face images or the
hallucinated ones. The discriminative loss, also known as adversarial loss, will be
back-propagated to update the parameters of TUN as well. With the help of the ad-
versarial loss, we can generate more realistic HR frontal faces. Figure 9.4 illustrates
the impact of the adversarial loss on the final results.

9.5.3 Training Details of TANN

We construct LR profile and HR frontal ground-truth face image pairs {li, hi} for our
training purpose, where hi represents the aligned frontal HR face images (only eyes
are aligned), and li is the synthesized LR side-view face images from hi. For each
HR frontal face hi, we generate five different views, i.e.{0◦,±40◦,±75◦}, to construct
LR/HR training pairs. Using these five distinct poses is a trade-off between a suffi-
cient coverage of pose variations and the reasonable size of the training dataset and
also suggested in [Masi et al., 2016]. More details are provided in Sec. 9.6.

In training our TANN, we not only enforce the conventional pixel-wise intensity
similarity, known as pixel-wise `2 loss, but also the feature-wise similarity, known
as perceptual loss [Johnson et al., 2016], to obtain high-quality results. Similar to
[Yu and Porikli, 2016, 2017a], the adversarial loss is also employed to attain visually
appealing frontalized HR face images. As mentioned in Sec. 9.5.1, we also develop
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a triplet loss to force the representations of LR profile faces to be similar to the
representations of their frontal faces. In this manner, we can frontalize LR profile
faces without degrading super-resolution of frontal ones.

Pixel-wise intensity similarity loss: We constrain the generated HR frontalized
face ĥi to be similar to its ground-truth frontal counterpart hi in terms of image inten-
sities. Thus we employ a pixel-wise `2 regression loss Lpix to impose the appearance
similarity constraint, expressed as:

Lpix = E(ĥi ,hi)∼p(ĥ,h)‖ĥi − hi‖2
F

= E(li ,hi)∼p(l,h)‖Tt(li)− hi‖2
F,

(9.1)

where t and T are the parameters and the output of TUN, p(ĥ, h) represents the joint
distribution of the frontalized HR faces and their corresponding frontal HR ground-
truths, and p(l, h) indicates the joint distribution of the LR and HR face images in
the training dataset.

Feature-wise similarity loss: As mention in [Yu and Porikli, 2016], pixel-wise
`2 loss leads to over-smoothed super-resolved results. Here, we employ a feature-
wise similarity loss, known as perceptual loss [Johnson et al., 2016], to constrain the
super-resolved HR faces to share the same facial details as their ground-truth coun-
terparts, thus attaining high-quality results with rich facial details. The perceptual
loss L f eat measures Euclidean distance between the feature maps of HR frontalized
and ground-truth faces extracted by a deep neural network, written as:

L f eat = E(ĥi ,hi)∼p(ĥ,h)‖Φ(ĥi)−Φ(hi)‖2
F

= E(li ,hi)∼p(l,h)‖Φ(Tt(li))−Φ(hi)‖2
F,

(9.2)

where Φ(·) denotes feature maps extracted by the ReLU32 layer in VGG-19 [Si-
monyan and Zisserman, 2014], which gives good empirical performance in our ex-
periments.

Adversarial loss: In order to achieve visually appealing results, we infuse class-
specific discriminative information into TUN by exploiting a discriminative network,
similar to our previous works [Yu and Porikli, 2016, 2017a,b]. Our goal is to make
the discriminative network fail to distinguish generated faces from real ones. In this
manner, we enforce the super-resolved HR frontal faces to lie on the manifold of real
frontal HR face images. Therefore, the discriminative network is used to categorize
real HR frontal faces and generated ones, and thus its objective function is expressed
as:

LD = −E(ĥi ,hi)∼p(ĥ,h)

[
logDd(hi) + log(1−Dd(ĥi))

]
= −Ehi∼p(h) logDd(hi)−Eĥi∼p(ĥ) log(1−Dd(ĥi))

= −Ehi∼p(h) logDd(hi)−Eli∼p(l) log(1−Dd(T (li))),

(9.3)

where d represents the parameters of the discriminative network, p(l), p(h) and p(ĥ)
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indicate the distributions of the LR, HR ground-truth frontal and the generated faces
respectively, and Dd(hi) and Dd(ĥi) are the outputs of the discriminative network. To
make the discriminative network distinguish hallucinated faces from real ones, we
minimize the loss LD(d) and update the parameters d.

Meanwhile, our TUN aims to fool the discriminative network. Therefore, the
adversarial loss for our TUN is:

LT = −Eĥi∼p(ĥ) log(D(ĥi))

= −Eli∼p(l) log(D(Tt(li))).
(9.4)

Here, we minimize the loss LT (t) to update the parameters t. These two adversarial
losses in Eqn. 9.3 and Eqn. 9.4 are employed to update our TUN and discriminative
network respectively in an alternating fashion.

Triplet loss: In order to frontalize side view LR faces, we present a triplet
loss to constrain the encoded LR faces to be close to the latent representations of
their corresponding frontal ones and far away from other frontal faces in the latent
subspace. Therefore, our proposed triplet loss is expressed as:

Ltri =E(l+i ,l−i ,li)∼p(S)

[
‖F (li)−F (l+i )‖2

F−‖F (li)−F (l
−
i )‖2

F
]
+

‖F (li)‖2
F

, (9.5)

where F (·) indicates the encoded latent representation by the fully-connected layer
in our transformer subnetwork, (l+i , l−i , li) represents a triplet sample from the set of
all possible triplets S in the training set. li is an LR profile face, l+i , dubbed positive
anchor, is the corresponding frontal LR face of li, and l−i , dubbed negative anchor,
is any other frontal LR face. One example of the triplets is shown in Fig. 9.2. In
addition, [x]+ denotes the operator max{x, 0}.

Since our network aims at super-resolving LR faces rather than clustering faces,
it should not distort the mapping between LR and HR frontal faces. Considering
that positive and negative anchors are LR frontal faces, updating the gradients with
respect to the representations of the positive and negative anchors will distort the
mapping between LR and HR frontal faces. In other words, clustering triplets by
adjusting the latent representations of positive and negative anchors would dam-
age the end-to-end mapping between LR and HR frontal faces and thus leads to
inferior super-resolution performance. Different from the triplet loss presented in
[Schroff et al., 2015], we take positive and negative anchors as constant and only
back-propagate gradients with respect to the latent codes of LR non-frontal faces. In
this manner, we are able to upsample frontal faces without introducing distortions
while forcing the encoded LR profile faces to be close to the representations of their
frontal counterparts.

In our TANN, all the layers are differentiable and RMSprop [Hinton, 2012] is used
to update the parameters t and d. We update the parameters d by minimizing the
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adversarial loss LD as follows:

∆i+1 = γ∆i + (1− γ)(
∂LD
∂d

)2,

di+1 = di − r
∂LD
∂d

1√
∆i+1 + ε

,
(9.6)

where r and γ represent the learning rate and the decay rate respectively, i indicates
the index of the iterations, ∆ is an auxiliary variable, and ε is set to 10−8 to avoid
division by zero. We employ multiple losses, i.e., Lpix, L f eat, LT and Ltri, to update
our TUN and the object function is expressed as:

LTUN = Lpix + ηL f eat + λLT + µLtri, (9.7)

where η, λ and µ are the trade-off weights. Since we aim at super-resolving frontal
HR faces rather than generating random faces, we put lower weights on the feature-
wise, adversarial and triplet losses and set λ, η and µ to 10e−2, 10e−2 and 10e−4

respectively. Then, the parameters of TUN t are updated by the gradient descent as
follows:

∆i+1 = γ∆i + (1− γ)(
∂LTUN

∂t
)2,

ti+1 = ti − r
∂LTUN

∂t
1√

∆i+1 + ε
.

(9.8)

As the iteration progresses, the output faces will be more similar to real faces.
Therefore, we gradually reduce the impact of the discriminative network by decreas-
ing λ,

λj = max{λ · 0.995j, λ/2}, (9.9)

where j is the index of the epochs. Equation 9.9 not only increases the impact of
the appearance similarity term but also preserves the class-specific discriminative
information in the training phase.

9.5.4 Hallucinating Frontal HR from Non-frontal LR

The discriminative network is only employed in the training phase. In the testing
phase, we feed an unaligned LR profile face image into the transformative upsam-
pling network to obtain its upright and frontal HR version. Note that, only in the
training stage, we need to feed the network with triplet samples due to employing the
triplet loss. In the testing stage, our network is able to super-resolve and frontalize a
single image. Since aligned HR frontal face images are employed as ground-truths,
TUN will output aligned and frontalized HR faces directly. As a result, our method
does not need to estimate the face orientations or align very low-resolution images
beforehand, and provides an end-to-end and highly nonlinear mapping from an un-
aligned LR profile face image to its frontal HR version.
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9.5.5 Implementation Details

The STN layers, as shown in Fig. 9.2, are built by convolutional and ReLU layers
(Conv+ReLU), max-pooling layers with a stride 2 (MP2) and fully connected layer-
s (FC). Since STN is mainly used for calibrating in-plane transformations, we em-
ploy the similarity transformation for alignment. Specifically, STN1 and STN2 share
the same architecture and consist of Conv+ReLU (filter size: 20×128×3×3 with 1
pixel padding), MP2, Conv+ReLU (20×20×3×3), FC+ReLU (from 400 to 20 dimen-
sions), and FC (from 20 to 4 dimensions). STN3 is composed of MP2, Conv+ReLU
(20×256×5×5), MP2, Conv+ReLU (20×20×5×5), FC+ReLU (from 80 to 20 dimen-
sions) and FC (from 20 to 4 dimensions). STN4 is composed of MP2, Conv+ReLU
(128×64×5×5), MP2, Conv+ReLU (20×128×5×5), MP2, Conv+ReLU (20×20×3×3),
FC+ReLU (from 120 to 20 dimensions) and FC (from 20 to 4 dimensions).

Similar to [Goodfellow et al., 2014; Radford et al., 2015], batch normalization [Ioffe
and Szegedy, 2015] is employed after each convolution except the final output layer
of TUN and dropout is applied to the feature maps in the discriminative network. In
the experimental part, some algorithms may require alignment of LR inputs, e.g. [Ma
et al., 2010]. Hence, we employ another network STN0 to align the LR face images
to the upright position, and STN0 consists of Conv+ReLU (128×3×3×3 with 1 pixel
padding), MP2, Conv+ReLU (20×20×3×3), MP2, FC+ReLU (from 180 to 20 dimen-
sions), and FC (from 20 to 4 dimensions).

We also use a triplet pair {(l+i , li, l−i ), (hi, hi, h−i )} as a unit to construct our mini-
batch in training, where hi is the HR frontal face image corresponding to the LR
profile face li and the LR frontal face l+i , and h−i is the HR frontal version of the LR
frontal face l−i . The triplet pairs are not only designed to calculate the triplet loss but
also compatible with the other losses. Therefore, our network can be trained in an
end-to-end fashion.

The learning rate r is set to 0.001 and multiplied by 0.99 after each epoch, η is set
to 0.01, and the decay rate is set to 0.01.

9.6 Synthesized Dataset

Training of a deep neural network requires a large number of samples to prevent
models from overfitting to the training dataset. However, the publicly available large-
scale face datasets [Huang et al., 2007; Liu et al., 2015] only provide faces in the wild
but not frontal/non-frontal pairs. For the training purpose, we opt to generate a
large set of synthesized LR non-frontal faces from HR frontal face images.

There are a number of alternative approaches available. For instance, Hassner
et al. [2015] render 2D frontal faces from different side-view faces using a single 3D
reference mesh. However, when the out-of-view face regions are large, these methods
are prone to artifacts. Similarly, landmark detection algorithms may fail to localize
facial landmarks accurately in large poses.

We adopt the idea of Masi et al. [2016] to generate different views from HR
frontal ones. We use a single 3D face model to render HR out-of-plane rotated faces
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(a)

(b)

(c)

Figure 9.5: Illustration of the synthesized dataset. (a) Original frontal HR face image.
(b) The generated views of (a). (c) Spatially transformed and downsampled version

of (b).

while taking advantage of the mirror-symmetry for the positive and negative angles
to produce five different views of faces, i.e., {0◦,±40◦,±75◦}. Specifically, we first
randomly select 10K cropped frontal faces (within ±5◦) from the CelebA [Liu et al.,
2015], and resize them to 128×128 pixels. We use these images as our HR ground-
truth faces hi. Then we generate the non-frontal LR faces li by transforming and
downsampling the reconstructed HR images down to 16×16 pixels. Therefore, we
obtain 50K LR/HR face pairs for training and testing of our network. Figure 9.5
illustrates sample pairs {li, hi} generated from a single frontal face.

9.7 Experimental Evaluation

We compare our method with ten state-of-the-art methods qualitatively and quanti-
tatively. As mentioned in Sec. 9.6, we assemble 50K LR/HR face pairs, and randomly
choose 9K frontal face images for training (45K LR/HR pairs), and 1K faces for test-
ing (5K LR/HR pairs). In training TANN, we randomly choose a side-view LR face,
its corresponding frontal LR face and any other frontal LR face to construct an in-
put triplet (l+i , li, l−i ) as well as employ their corresponding HR ground-truth triplet
(hi, hi, h−i ) as supervision. In all cases, the training data and test data do not overlap.
We use different ground-truth HR frontal faces in the training and testing phases.

9.7.1 Qualitative Comparisons with the SoA

Since Ma et al. [2010] require the input LR faces to be aligned uprightly, we train
STN0 to align the LR inputs to the upright position for a fair comparison. Note that,
our method does not need any alignment or pose estimation in advance.

As illustrated in Fig. 9.6(c) and Fig. 9.7(c), different combinations of bicubic inter-
polation and the frontalization method [Hassner et al., 2015] cannot produce authen-
tic frontal face details. Because of the low resolution of inputs, the method of Hassner
et al. [2015] fails to detect facial landmarks and outputs erroneous frontalized faces
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9.6: Results of the state-of-the-art methods for frontalization followed by
hallucination. The input faces are first frontalized by [Hassner et al., 2015] and then
hallucinated by different algorithms. Rows: +75◦, +40◦, 0◦, -40◦, and -75◦. Columns:
(a) Unaligned non-frontal LR inputs. (b) Original frontal HR images. (c) [Hassner
et al., 2015] + bicubic interpolation. (d) [Hassner et al., 2015] + [Kim et al., 2016a].
(e) [Hassner et al., 2015] + [Ledig et al., 2017]. (f) [Hassner et al., 2015] + [Ma et al.,
2010]. (g) [Hassner et al., 2015] + [Zhu et al., 2016b]. (h) [Hassner et al., 2015] + [Yu
and Porikli, 2017b]. (i) Our method. Notice that, TANN does not need or use the

method of Hassner et al. [2015].

while bicubic interpolation is handicapped to generate necessary high-frequency fa-
cial details.

Kim et al. [2016a] propose a very deep CNN based general purpose super-resolution
(SR) method, known as VDSR. Since VDSR is trained on natural image patches and
does not provide an upscaling factor of 8×, we retrain VDSR with face patches by
an upscaling factor of 8×. As shown in Fig. 9.6(d) and Fig. 9.7(d), VDSR fails to pro-
duce facial details and thus contaminates the outputs of Hassner et al. [2015] with
ghosting artifacts.

Ledig et al. [2017] present a generic super-resolution method, dubbed SRGAN. S-
RGAN employs the framework of generative adversarial networks [Goodfellow et al.,
2014; Radford et al., 2015] to enhance the visual quality and is trained by using not
only a pixel-wise `2 loss but also an adversarial loss. Although SRGAN provides
an upscaling factor of 8×, it fails to capture the entire face structure and produces
ringing artifacts to mimic high-frequency facial details, which also brings difficulty
for frontalization, as shown in Fig. 9.6(e) and Fig. 9.7(e).

Ma et al. [2010] super-resolve LR inputs by exploiting position patches, and re-
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9.7: Results of the state-of-the-art methods for hallucination followed by
frontalization by [Hassner et al., 2015]. Columns: (a) Unaligned non-frontal LR
inputs. (b) Original frontal HR images. (c) Bicubic interpolation + [Hassner et al.,
2015]. (d) [Kim et al., 2016a] + [Hassner et al., 2015]. (e) [Ledig et al., 2017] +
[Hassner et al., 2015]. (f) [Ma et al., 2010] + [Hassner et al., 2015]. (g) [Zhu et al.,
2016b] + [Hassner et al., 2015]. (h) [Yu and Porikli, 2017b] + [Hassner et al., 2015]. (i)

Our method.

quire the LR inputs to be precisely aligned with the exemplar training dataset. It
spawns severe artifacts in the upsampled faces because of large pose variations that
exist in the input LR images as visible in Fig. 9.7(f). Due to the faulty frontalization
by Hassner et al. [2015], this method also produces distorted facial details, as shown
in Fig. 9.6(f).

Zhu et al. [2016b] present a deep cascaded bi-network for face hallucination,
called CBN, which first localizes facial landmarks and then aligns LR faces based
on the localized landmarks. However, when the inputs undergo large pose variation-
s, CBN cannot localize facial landmarks accurately, and thus causes severe artifacts
as seen in Fig. 9.7(g). Figure 9.6(g) shows that CBN cannot hallucinate authentic HR
faces from the incorrect frontalized LR faces either.

Yu and Porikli [2017b] propose a transformative discriminative autoencoder (T-
DAE) as an extension to the method of Yu and Porikli [2016] to upsample unaligned
and noisy LR face images. TDAE interweaves deconvolutional and STN layers to
align and super-resolve LR faces while employing a discriminative network that
forces the generative network to produce sharper results. However, TDAE can on-
ly hallucinate unaligned frontal faces rather than profile faces as demonstrated in
Fig. 9.7(h) since it does not take out-of-plane rotations into account and the first
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9.8: Results of the state-of-the-art methods for frontalization followed by
hallucination. Columns: (a) Unaligned non-frontal LR inputs. (b) Original frontal
HR images. (c) [Hassner et al., 2015] + bicubic interpolation. (d) [Hassner et al., 2015]
+ [Kim et al., 2016a]. (e) [Hassner et al., 2015] + [Ledig et al., 2017]. (f) [Hassner et al.,
2015] + [Ma et al., 2010]. (g) [Hassner et al., 2015] + [Zhu et al., 2016b]. (h) [Hassner

et al., 2015] + [Yu and Porikli, 2017b]. (i) Our method.

decoder and encoder in TDAE are used for noise reduction rather than frontaliza-
tion. Figure. 9.6(h) shows that TDAE cannot produce realistic HR faces due to the
deteriorated LR facial patterns caused by the incorrect frontalization.

Our method reconstructs authentic facial details as shown in Fig. 9.6(i) and Fig. 9.7(i).
In the experiments, the face poses vary from -75◦ to +75◦. Since our transformer sub-
network can frontalize and align LR input faces more accurately, our upsampling
subnetwork achieves superior reconstruction performance from the frontalized and
aligned LR features.

9.7.2 Quantitative Comparisons to the SoA

We measure the reconstruction performance of all methods on the entire test dataset
by the average PSNR and the structural similarity (SSIM) scores. Furthermore, we
also use the layer ReLU32 in the pretrained VGG-network to measure the differences
between the ground-truth facial features and the super-resolved ones, named percep-
tual error (PE) score. A lower PE score indicates better super-resolution performance.
Note that, when we hallucinate non-frontal faces, the hair and background regions
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9.9: Results of the state-of-the-art methods for hallucination followed by
frontalization by [Hassner et al., 2015]. Columns: (a) Unaligned non-frontal LR
inputs. (b) Original frontal HR images. (c) Bicubic interpolation + [Hassner et al.,
2015]. (d) [Kim et al., 2016a] + [Hassner et al., 2015]. (e) [Ledig et al., 2017] +
[Hassner et al., 2015]. (f) [Ma et al., 2010] + [Hassner et al., 2015]. (g) [Zhu et al.,
2016b] + [Hassner et al., 2015]. (h) [Yu and Porikli, 2017b] + [Hassner et al., 2015]. (i)

Our method.

may not be symmetric or the same compared to the original HR face images. Thus,
for a fair comparison for all methods, we compute the PSNR and SSIM on the face
regions.

We report results for two possible scenarios. In the first case, we first apply
the method of Hassner et al. [2015] to frontalize LR face images, and then super-
resolve the frontalized LR images by the state-of-the-art SR/FSR methods (denoted
as F+H). In the second case, we super-resolve LR face images first by the state-of-
the-art SR/FSR methods and then frontalize the upsampled results by the method
of Hassner et al. [2015] (denoted as H+F). We apply STN0 to align LR inputs uprightly
in both cases. Table. 9.1 shows that our method achieves the superior performance
in comparison to the other methods, and outperforms the second best method over
4.0 dB in PSNR.

Table 9.2 indicates the PSNR and SSIM scores for different out-of-plane rotation
degrees in the F+H and the H+F cases. In Tab. 9.2, the first and second numbers
denote PSNR and SSIM scores respectively. As indicated in Tab. 9.2, first frontalizing
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9.10: Results of the state-of-the-art face hallucination methods for frontal LR
faces. Columns: (a) Unaligned non-frontal LR inputs. (b) Original frontal HR images.
(c) Bicubic interpolation. (d) Results of Kim et al. [2016a]. (e) Results of Ledig et al.
[2017]. (f) Results of Ma et al. [2010]. (g) Results of Zhu et al. [2016b]. (h) Results of

Yu and Porikli [2017b]. (i) Our method.

and then upsampling faces can achieve slightly better results than first upsampling
followed by frontalization. This also implies that it is easier to super-resolve frontal
LR facial patterns than non-frontal ones. Because of the mirror symmetry operation
in [Hassner et al., 2015], the PSNR and SSIM scores of the other methods in the
positive degrees are lower than those in the negative degrees, as seen in Tab. 9.2.
However, our method does not have this effect and produces consistent PSNR scores
in both negative and positive degrees. Furthermore, as the rotation degree increases,
our method does not degrade like the other methods. From 0◦ to ±75◦, our per-
formance only decreases 1.95 dB while the performance of the second best method
decreases 3.75 dB.

9.7.3 Comparisons with SoA on Face Retrieval

It is important to notice that we do not claim our method is designed for face recog-
nition for two reasons: (i) we do not explicitly incorporate an identification objective
in our formulation, and (ii) it might seem fruitless to attempt recognizing people in
such tiny non-frontal images even for humans.

Yet, to our advantage, our method achieves significant improvement in face re-
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Table 9.1: Quantitative evaluations on the entire test dataset.

H Method
F [Hassner et al., 2015]+H H+F [Hassner et al., 2015]

PSNR SSIM PE PSNR SSIM PE

Bicubic 20.99 0.80 3.56 20.41 0.79 3.76

VDSR 21.04 0.80 3.42 20.47 0.79 3.61

SRGAN 20.94 0.80 3.34 20.34 0.79 3.60

Ma et al. 21.60 0.82 2.99 21.15 0.80 3.28

CBN 20.61 0.79 3.94 19.40 0.77 4.74

TDAE 20.68 0.79 3.49 19.89 0.77 3.94

Ours 25.69 0.87 1.97 25.69 0.87 1.97

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 9.11: Results on LR face images beyond 3D model and training poses. Top
row: real HR images. Middle row: unaligned LR images. Bottom row: our frontal-

ized and hallucinated results.

trieval performance as shown in Tab. 9.4. We use an off-the-shelf deep face recogni-
tion model [Parkhi et al., 2015] to evaluate the performance of all the methods. First,
we randomly choose 100 frontal faces from the test data as our gallery. We generate
their corresponding four LR non-frontal images, and employ six algorithms listed
above to hallucinate the frontal HR faces on both F+H and H+F scenarios. Following
the standard protocol in [Parkhi et al., 2015], we compute the accuracy score based on
whether the correct person is included within the top-5 candidates (thus, the proba-
bility of random selection is 5%). Here, we notice that directly using off-the-shelf face
recognition is inappropriate to measure the similarity between generated HR faces
and real HR faces because there is still a domain gap between them. For instance,
the features of real faces may be different from those of generated HR faces. In order
to mitigate the domain gap, we train an autoencoder by using the same protocol of
training TANN to transfer HR real faces to the domain where generated HR images
lie in. In this way, we can significantly reduce the domain gap.
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Table 9.2: Quantitative evaluations on different out-of-plane rotation degrees.

H
Methods

−75◦ −40◦ 0◦ 40◦ +75◦

F+H

Bicubic
20.63 /

0.80
21.43 /

0.81
24.52 /

0.83
19.51 /

0.78
18.87 /

0.77

VDSR
20.69 /

0.80
21.47 /

0.81
24.59 /

0.84
19.54 /

0.78
18.90 /

0.77

SRGAN
20.58 /

0.80
21.34 /

0.80
24.53 /

0.83
19.41 /

0.78
18.81 /

0.77

Ma et al. 21.15 /
0.81

22.05 /
0.82

24.90 /
0.85

20.38 /
0.80

19.53 /
0.80

CBN
20.34 /

0.79
21.14 /

0.80
24.14 /

0.83
19.08 /

0.77
18.36 /

0.76

TDAE
20.44 /

0.79
20.69 /

0.79
23.13 /

0.82
19.74 /

0.78
19.43 /

0.78

H+F

Bicubic
20.25 /

0.79
20.68 /

0.80
23.46 /

0.83
19.05 /

0.77
18.62 /

0.77

VDSR
20.41 /

0.80
20.83 /

0.80
23.43 /

0.83
19.04 /

0.77
18.66 /

0.77

SRGAN
20.36 /

0.79
20.69 /

0.79
23.12 /

0.82
18.98 /

0.77
18.53 /

0.77

Ma et al. 21.23 /
0.80

21.90 /
0.81

23.37 /
0.83

19.97 /
0.79

19.26 /
0.78

CBN
18.64 /

0.75
19.23 /

0.76
22.13 /

0.81
18.84 /

0.76
18.16 /

0.75

TDAE
19.35 /

0.77
19.97 /

0.77
22.62 /

0.80
19.36 /

0.77
18.13 /
0.76 x

Ours−
24.86 /

0.87
25.24 /

0.87
26.58 /

0.88
25.22 /

0.87
24.78 /

0.87

Ours
25.02 /

0.87
25.72 /

0.87
26.97 /

0.89
25.70 /

0.87
25.03 /

0.87

Table 9.3: Quantitative evaluations on the frontal view

Method Bicubic VDSR SRGAN Ma et al. CBN TDAE Ours

PSNR 25.64 25.78 25.58 26.45 25.37 26.39 26.97
SSIM 0.86 0.86 0.85 0.88 0.86 0.87 0.89
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(a) (b) (c) (d) (e)

Figure 9.12: Results on real LR face images. Top row: real LR images. Bottom row:
our frontalized and hallucinated results.

Table 9.4: Face retrieval results for different methods.

H Method
Accuracy

F+H H+F

Bicubic 5.8% 6.6%

VDSR 7.0% 8.0%

SRGAN 6.0% 9.0%

Ma et al. 6.0% 9.0%

CBN 6.2% 8.2%

TDAE 7.2% 5.6%

Ours 86.7%

As seen in Tab. 9.4, we improve the face retrieval accuracy with a large margin of
77.7%. This also implies that our method is able to preserve the appearance similarity
rather than generating averaged HR faces when frontalizing and hallucinating LR
faces.

9.7.4 Comparisons with SoA on Frontal Faces

Because we do not distinguish the views of LR faces deliberately before frontaliza-
tion, the frontalization method [Hassner et al., 2015] is applied to all the views of LR
faces. As shown in Fig. 9.6, using the face frontalization method [Hassner et al., 2015]
distorts LR input faces due to the erroneous localization of facial components and its
symmetrizing operations. Therefore, the super-resolution performance of frontal LR
faces degrades dramatically.

For a fair comparison, we also include an evaluation for the frontal view case
where the frontalization is not employed. As shown in Tab. 9.3, our method still
outperforms all others in the frontal view case. Note that, our previous method T-
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Table 9.5: Quantitative evaluations on the influence of different losses

w/o Ltri w/ Ltri

Lpix Lpix+feat Lpix+feat+T Lpix Lpix+feat Lpix+feat+T

PSNR 25.01 25.17 25.33 25.19 25.33 25.69

SSIM 0.87 0.87 0.87 0.88 0.87 0.87

DAE [Yu and Porikli, 2017b] intends to increase the depth of its decoder to achieve
better super-resolution performance but is limited by the GPU memory. In contrast,
our network employs an autoencoder, i.e., our transformer subnetwork, before up-
sampling, and thus it does not require as much memory as TDAE yet achieves better
performance. This also demonstrates that our transformer subnetwork can not only
frontalize LR profile faces but also improve super-resolution performance.

9.7.5 Influence of Different Losses

Table 9.5 indicates the influences of different losses on the performance quantitative-
ly. As indicated in Fig. 9.4(f) and Tab. 9.5, the feature-wise loss not only improves
the visual quality but also increases the quantitative results. The adversarial loss
makes the hallucinated faces sharper and more realistic, as shown in Fig. 9.4(f). As
illustrated in Tab. 9.5, using adversarial loss is also able to force the super-resolved
face images to be frontal and thus improves the super-resolution performance.

As demonstrated in Tab. 9.5, using our triplet loss improves the final results. Be-
cause our triplet loss forces the LR profile faces to be close to their frontal ones in the
latent subspace, the upsampled HR frontalized faces are more similar to their frontal
ground-truths. Furthermore, we also illustrate the quantitative results without us-
ing our triplet loss for different out-of-plane rotation degrees in Tab. 9.2, marked as
Ours−. This experiment confirms that the triplet loss does not degrade the perfor-
mance of upsampling frontal faces but improves the SR performance of LR profile
faces. In addition, our triplet loss is able to reduce the reconstruction loss of LR
profile faces earlier in the transformer subnetwork rather than spreading the loss
through the entire upsampling network. Thus, the upsampling subnetwork can fo-
cus on learning mappings between LR and HR facial patterns as suggested in [Yu
and Porikli, 2016]. With the help of the triplet loss, we can even achieve better super-
resolution performance on LR frontal faces, as indicated in Tab. 9.2.

9.7.6 Performance on Faces beyond 3D models

Although our method is trained on a dataset of LR non-frontal and HR frontal image
pairs synthesized by using a single 3D face model, our method can be effectively
generalized to faces beyond the 3D model and the poses used in the training stage.
To demonstrate this, we randomly choose face images from CelebA excluding the
frontal faces used for generating our training dataset. Then we spatially deform, i.e.,
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2D transformation including rotations, translations and scale changes, and down-
sample these images to obtain LR face samples. The synthesized LR faces do not
share 3D shapes or poses with the examples used in the training dataset, and thus
these samples are much more challenging. As shown in Fig. 9.11, our network can
hallucinate and frontalize such randomly chosen images, demonstrating it is not re-
stricted to these five poses and certain models.

We also apply our network to real LR face images chosen from the WiderFace
dataset [Yang et al., 2016], where LR faces are captured in the wild. Notice that
the real LR faces are even blurrier than our training samples. Our super-resolved
results are shown in Fig. 9.12. Since our network does not need to select one specific
model for a particular angle, our method does not require estimation of the face pose
angles explicitly. Instead, our method frontalizes and hallucinates LR profile faces in
different angles by a single network.

9.8 Conclusion

We introduced a transformative adversarial network to upsample and frontalize very
low-resolution unaligned face images simultaneously in an end-to-end fashion. Our
network is able to learn how to frontalize and align LR faces while upsampling
8×. Benefiting from our proposed triplet loss, we are able to enforce LR profile
faces to be close to their frontal counterparts in the latent subspace and thus achieve
better frontalization performance. With the help of the intra-class discriminative
information and the feature constraints, our network generates realistic facial details.



186 Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces



Chapter 10

Face Destylization

10.1 Foreword

In previous chapters, we mainly address the problem of upsampling a low-resolution
face image to its high-resolution version. Besides, recovering realistic face images
from stylized portraits can be also considered as "hallucinating" faces, named face
destylization. However, our previous methods cannot be directly applied to the face
destylization task, since our previous networks only take very low-resolution face
images as inputs while stylized portraits have higher resolutions. In addition, our
previous networks do not have the mechanism to transfer the features extracted from
stylized images to the features of real faces. Inspired by the generative adversarial
networks (GANs) as well as our network URDGN presented in chapter 2, we present
a network to remove styles in face portraits regardless of different types of styles in
this chapter.

This chapter has been published as a conference paper: Fatemeh Shiri, Xin Yu, Pi-
otr Koniusz, Fatih Porikli: Face Destylization. In Digital Image Computing: Techniques
and Applications (DICTA) 1-8, 2017.

10.2 Abstract

Numerous style transfer methods which produce artistic styles of portraits have been
proposed to date. However, the inverse problem of converting the stylized portraits
back into realistic faces is yet to be investigated thoroughly. Reverting an artistic
portrait to its original photo-realistic face image has potential to facilitate human
perception and identity analysis. In this paper, we propose a novel Face Destyl-
ization Neural Network (FDNN) to restore the latent photo-realistic faces from the
stylized ones. We develop a style removal network composed of convolutional, fully-
connected and deconvolutional layers. The convolutional layers are designed to ex-
tract facial components from stylized face images. Consecutively, the fully-connected
layer transfers the extracted feature maps of stylized images into the corresponding
feature maps of real faces and the deconvolutional layers generate real faces from the
transferred feature maps. To enforce the destylized faces to be similar to authentic
face images, we employ a discriminative network, which consists of convolution-

187



188 Face Destylization

al and fully connected layers. We demonstrate the effectiveness of our network by
conducting experiments on an extensive set of synthetic images. Furthermore, we
illustrate our network can recover faces from stylized portraits and real paintings for
which the stylized data was unavailable during the training phase.

10.3 Introduction

Applying artistic styles to existing photographs has attracted much attention in both
academia and industry with several interesting applications. The inverse problem of
reverting an artistic portrait back to its photo-realistic version is investigated in this
paper. Revealing the latent real faces can provide essential information for human
perception, computer analysis and photo-realistic multimedia content editing. Since
facial details and expressions in stylized portraits often undergo severe distortions
and become contaminated with artifacts such as profile edges and color changes e.g.,
as in Fig. 10.1(a) and Fig. 10.1(e), recovering a photo-realistic face image from its
stylized version is very challenging.

The seminal work of Gatys et al. [2016b] stylizes the content of an arbitrary image
according to a given reference artwork and achieves appealing style transfer result-
s, hovewer, its iterative optimization procedure is computationally costly. Several
methods based on feed-forward neural networks [Ulyanov et al., 2016a,b; Johnson
et al., 2016; Dumoulin et al., 2016; Li et al., 2017a; Chen and Schmidt, 2016; Zhang
and Dana, 2017; Huang and Belongie, 2017] accelerate the style transfer for specific
styles.

For our inverse problem, the above style transfer methods fail to recover authentic
face images as shown in Fig. 10.1(f) and Fig. 10.1(g). These approaches typically use
Gram matrices to capture style-related contents. Since Gram matrices are designed
to measure the correlations between feature maps of a style image and a target face,
the spatial structure of an output image is not guaranteed to be similar to the target
face. Therefore, existing style transfer methods which rely on Gram matrices are not
sufficient for restoring photo-realistic portraits.

To capture local statistics of a style image, some approaches use a so-called patch-
based Generative Adversarial Network (GAN) [Li and Wand, 2016b; Isola et al., 2016].
However, patch-based GANs do not take the global structure of faces into account
thus a direct application of patch-GAN may not produce satisfactory results. We will
show later that patch-based methods [Li and Wand, 2016b; Isola et al., 2016] fail to
attain the consistency of face colors. For the inverse problem, the patch-based GAN
methods result in even bigger inconsistencies.

We note that the state-of-the-art style transfer methods [Li and Wand, 2016b;
Ulyanov et al., 2016a; Johnson et al., 2016] do not fully take into consideration how
to extract facial features from different stylized images and then recover realistic face
images. Our goal is to reveal the latent real face images from multiple style portraits
(seen styles) and achieve destylization even when the styles are not available in the
training dataset (unseen styles).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 10.1: Comparison to the state-of-art methods. (a) and (e) 128× 128 stylized
face images in Candy style (which is seen and used for training) and in Starry Night
style (which is unseen style), respectively. (b, f) Results obtained by applying the
method of Gatys et al. [2016b] for the given stylized faces. (c, g) Results obtained
by applying the method of Johnson et al. [2016]. (d, h) Our destylization results. (i)
128× 128 ground-truth face image (used for evaluation purposes; not available to the

algorithm for training).

To this end, we propose a novel destylization network that automatically maps
the stylized faces to photo-realistic ones in an end-to-end fashion. Our network
is composed of two components: a generative part, named Style Removal Network
(SRN), and a discriminative part. SRN constitutes convolutional, fully-connected
and deconvolutional layers. The convolutional layers are exploited to extract facial
components from stylized face images. As we aim to generate realistic face images,
a fully-connected layer is developed to map the extracted feature maps of stylized
faces to the feature maps of real faces. Then the mapped feature maps are projected
to the image domain, thus forming face images. The discriminative network enforces
the generated face images to lie in the same latent space as the realistic face images,
similar to [Goodfellow et al., 2014; Denton et al., 2015; Yu and Porikli, 2016]. We
train the entire network on a large-scale dataset of stylized and real face pairs. Our
proposed framework can restore important facial details and attributes thanks to the
style removal and discriminative subnetworks.

Furthermore, we observe that the filters of Convolutional Neural Network (CNN)
learned during training (seen styles) are able to extract features from images contain-
ing unseen styles. Thus, the facial information of stylized portraits can be extracted
and used to represent features of real faces. Therefore, our network can also restore
the images of faces given an unseen style. In the experimental section, we demon-
strate that our network is able to recover realistic faces from both seen and unseen
styles e.g., synthesized and original portraits and paintings.

Below, we summarize our main contributions:

• We propose FDNN which is able to generate photo-realistic faces from stylized
ones. The results resemble accurately the ground-truth faces in terms of facial



190 Face Destylization

properties e.g., facial profiles and expressions.

• We develop a style removal sub-network to extract features from stylized input
face images, then map these style features to real facial features and re-project
them to the image domain for the purpose of generating authentic looking
faces.

• We provide a dataset of pairs of the stylized and real face images used in our
experiments to stimulate further research in destylization.

To the best of our knowledge, our framework is the first attempt to provide a u-
nified approach for face destylization which can remove both seen and unseen styles
(observed cf. unobserved styles during training).

10.4 Related Work

Next, we briefly review deep generative image models, deep style transfer methods,
and image translation approaches.

10.4.1 Deep Generative Image Models

Recently, several frameworks have been proposed for image generation, such as
variational auto-encoders [Kingma and Welling, 2013], auto-regressive models [Van
Den Oord et al., 2016], and GANs [Goodfellow et al., 2014]. Among these models,
GANs generate impressive results because they employ adversarial losses that force
the generated images to be indistinguishable from their real counterparts. In order to
improve the stability of the training procedure of GANs, various methods have been
proposed [Huang et al., 2017c; Denton et al., 2015; Isola et al., 2016; Reed et al., 2016;
Salimans et al., 2016; Arjovsky et al., 2017]. GANs are also employed by the style
transfer [Li and Wand, 2016b] and cross-domain image generation [Bousmalis et al.,
2017; Ioffe and Szegedy, 2015; Liu and Tuzel, 2016; Liu et al., 2017; Kim et al., 2017]
approaches. Li and Wand [2016b] train a Markovian GAN for image style transfer
such that a discriminative training is applied on Markovian neural patches to capture
local style statistics. However, patch-based methods may fail to capture the global
structure of objects.

10.4.2 Deep Style Transfer

Style transfer methods transfer the style of a specific artwork into a given photograph.
They can be divided into two categories: image optimization-based and feed forward
methods.

The optimization-based method [Gatys et al., 2016b] transfers the style by updat-
ing pixels of the image iteratively. It minimizes the distance between Gram matrices
generated from feature maps of the style and synthesized image with respect to
input noise. Gram matrices capture so-called feature co-occurrences and they are
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popular in image recognition [Koniusz et al., 2017b,a; Koniusz and Cherian, 2016].
The approach [Yin, 2016] initializes the optimization algorithm with a content im-
age instead of noise. Li and Wand [2016a] use Markov Random Field (MRF) in the
deep feature space to enforce local patterns. The work [Gatys et al., 2016a] employs
linear models to transfer styles and to preserve colors by matching color histogram-
s. Gatys et al. [2017] detect and control spatial, color and scale factors during the
stylization process. In [Risser et al., 2017], the loss function is improved by impos-
ing a histogram-based loss. The above optimization-based methods require a time-
consuming iterative optimization process, which limits their practical application.

In contrast, feed-forward approaches replace the original on-line iterative optimiza-
tion procedure by off-line training to produce stylized images through a single for-
ward pass [Ulyanov et al., 2016a; Johnson et al., 2016; Li and Wand, 2016b]. Johnson
et al. [2016] train the generative network by perceptual loss functions. The archi-
tecture of their generator network follows the work [Radford et al., 2015]. How-
ever, they additionally use residual blocks and replace pooling layers by so-called
fractionally strided convolutions. In a concurrent work, Ulyanov et al. [2016a] use
a multi-resolution architecture for their generator network. Li and Wand [2016b]
pre-compute a Markovian GAN which captures the feature statistics of patches. To
achieve faster convergence, Ulyanov et al. [2016b, 2017] replace batch normaliza-
tion with instance normalization in their generator. These feed-forward approaches
[Ulyanov et al., 2016a; Johnson et al., 2016; Li and Wand, 2016b; Ulyanov et al., 2016b]
are three orders of magnitude faster than optimization-based style transfer methods.
However, these networks only transfer images for a predefined style and they need to
be re-trained for each new style. Some recent approaches improve the style transfer
from a single style to multiple styles [Chen and Schmidt, 2016; Dumoulin et al., 2016].
Dumoulin et al. [2016] propose to train a style transfer network for multiple styles by
the use of a conditional instance normalization. Given feature activations of the con-
tent and style images, Chen and Schmidt [2016] replace the content features with the
closest-matching style features patch-by-patch. A recent summary of state-of-the-art
stylization methods can be found in the survey paper [Jing et al., 2017].

10.4.3 Image Transformation

Mapping images from one domain to another has a wide range of applications.
The idea of image transformation comes from so-called image analogies [Hertzman-
n et al., 2001] which focuses on the non-parametric patch-based texture synthesis
from a single input-output training image pair. Methods [Isola et al., 2016; Yu and
Porikli, 2016; Sangkloy et al., 2017; Karacan et al., 2016; Denton et al., 2015; Radford
et al., 2015; Salimans et al., 2016] employ neural networks to learn a parametric trans-
lating function from a large dataset of input-output pairs, such as super-resolution
and colorization. Isola et al. [2016] propose the âĂIJpix2pixâĂİ framework to learn
a mapping from input to output by a conditional GAN. Similar ideas have been
applied to generating photographs from sketches [Sangkloy et al., 2017], semantic
layout and scene attributes [Karacan et al., 2016].
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Figure 10.2: Face destylization neural network consists of two parts: a generative
network (green frame) and a discriminative network (red frame).

Moreover, Isola et al. [2016] also use a convolutional patchGAN classifier for
their discriminator network. The above patch-based method does not take the global
structure of faces into account. Furthermore, their network employs the architecture
"Unet" to transfer the source to the target domain and utilizes low-level features
in the generative part that can result in distorted facial images. In contrast, our
approach takes into account the global structure of faces and learns how to extract
usuful features for face destylization.

10.5 Method

Our FDNN network has two components: (i) a Style Removal Network (SRN), which
transforms stylized faces to the photo-realistic ones, and (ii) a discriminative network,
which enforces the generated faces by SRN to be indistinguishable from the real faces.
Figure 10.2 illustrates the overall architecture of our proposed network.

10.5.1 Style Removal Network

In Fig. 10.2, our SRN is enclosed by the green frame. SRN aims at removing various
styles of portraits and generating realistic faces. Our SRN comprizes convolutional
layers followed by batch normalization layers, a fully connected layer and deconvo-
lutional layers followed by batch normalization layers. The convolutional layers are
employed to extract facial features from stylized face images. Then, we incorporate
a fully-connected layer to transfer the extracted feature maps of stylized images into
the feature maps of real faces. In order to synthesize images of real faces, deconvo-
lutional layers project these transferred feature maps to the image domain.

In order train SRN, we use stylized portraits as inputs and their corresponding
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ground-truth images of real faces as desired supervising output signals. Since a
dataset of portrait/real face pairs is not readily available, we opt to generate a large
number of stylized faces in numerous styles from real face images. Figure 10.3(c)
and Fig. 10.3(f) illustrate the effectiveness of SRN.

10.5.2 Discriminative Network

Using only Euclidean distance, i.e. `2 loss, between the destylized faces and the corre-
sponding ground-truth real ones tends to generate over-smoothed results as shown
in Fig. 10.3(c) and Fig. 10.3(f), and this phenomenon is also mentioned in [Yu and
Porikli, 2016]. Therefore, a class-specific discriminative objective is also incorporated
into our SRN, aiming to enforce the destylized face images to lie on the same latent
space of the authentic face images.

As shown in the red frame of Fig. 10.2, the discriminative network is constructed
by convolutional and fully connected layers. Its role is to determine whether an
image is sampled from real face images or the destylized ones. With the help of the
so-called discriminative adversarial loss, we can force generated destylized faces to
be more similar to real ones. This is achieved by back-propagating the adversarial
loss to update the parameters of SRN. Figure 10.3(d) and Fig. 10.3(g) illustrate the
impact of the adversarial loss on the final results.

10.5.3 Training Details

Our FDNN is trained in an end-to-end manner. We use Stylized Face (SF) and Real
Face (RF) ground-truth image pairs (si, ri) as our training dataset, where ri represents
the real face images aligned by eyes only, and si is a synthesized SF image from ri. For
each real face ri, we generate eight different SFs i.e., Edvard Munch’s Scream, Candy,
Feathers, Starry Night by Van Gogh, la Muse by Pablo Picasso, Wassily Kandinsky’s
Composition VII, Mosaic and Francis Picabia’s Udnie, and obtain SF/RF training pairs.
The stylized faces of Scream, Candy and Feathers are used in the training stage. As
detailed in Sec. 10.6, we find that these distinct portraits provide a sufficient training
data for our needs.

Our training strategy enforces the generated face r̂i to be similar to its correspond-
ing ground-truth ri. Therefore, we employ a pixel-wise `2 loss between r̂i and ri, and
we minimize the objective Q(T ) of SRN as follows:

min
T

Q(T )=E(r̂i ,ri)∼p(r̂,r)‖r̂i − ri‖2
F

=E(si ,ri)∼p(s,r)‖GT (si)− ri‖2
F,

(10.1)

where T indicates the parameters of SRN generator G, p(s, r) represents the joint
distribution of the SF and RF images in the training dataset and p(r̂, r) represents the
joint distribution of destylized and the ground-truth faces.
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(a) (b) (c) (d) (e) (f) (g)

Figure 10.3: Contribution of each FDNN part. (a) Ground-truth real face images. (b)
Input portrait of Feathers from training styles and (e) input portrait of la Muse from
unseen styles (from test dataset; not available in the training stage). (c, f) Destyliza-

tion results without adversarial loss. (d, g) Our final results.

To achieve high-quality results, we force SRN to fool the discriminative super-
vising network that employs a binary classifier which task is to distinguish whether
incoming image samples contain real or generated faces. Similar to the idea of [Good-
fellow et al., 2014; Denton et al., 2015; Radford et al., 2015], our goal is to make the
discriminative network fail to distinguish generated faces from real ones. Hereby, we
maximize the adversarial loss of the discriminative network F(L) as follows:

max
L

F(L)=E [log DL(ri) + log(1− DL(r̂i))]

=Eri∼p(r)[log DL(ri)]+Er̂i∼p(r̂))[log(1−DL(r̂i))],
(10.2)

where L represents the parameters of the discriminative network D, p(r) and p(r̂)
indicate the distributions corresponding to the real and the generated faces, respec-
tively, and DL(ri) and DL(r̂i) are the outputs of network D. Since the loss F is
back-propagated to update not only the parameters L but also T , we also minimize
the objective function Q f (T ) of SRN:

min
T

Q f (T )=E(si ,ri)∼p(s,r)‖GT (si)− ri‖2
F+λEsi∼p(s))[logDL(GT (si))], (10.3)

where scalar λ is a trade-off between supervising the generator by the ground-truth
data vs. the discriminator supervision, respectively.

Since each layer in our FDNN is differentiable, we employ the Root Mean Square
Propagation (RMSprop) [Hinton, 2012] to update T and L. In order to maximize the
adversarial loss F, the stochastic gradient ascent is used to update L:

∆i+1 = β∆i + (1− β)(
∂F
∂L )

2,

Li+1 = Li + α
∂F
∂L

1√
∆i+1 + ε

,
(10.4)

where α and β represent the learning and the decay rate respectively, i is the iteration
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index, ∆ is an auxiliary variable, and ε is set to 10−8 to avoid division by zero. For
SRN, both losses Q and F are used to update T by the stochastic gradient descent:

∆i+1 = β∆i + (1− β)(
∂Q f

∂T )2,

T i+1 = T i − α(
∂Q f

∂T )
1√

∆i+1 + ε
,

(10.5)

We set λ = 0.01 to limit supervision of the generator by the discriminator and al-
low appearance-based learning from the ground-truth image pairs. As the iterations
progress, the output faces will resemble the real faces more. Therefore, we gradually
reduce the impact of the discriminative network by decreasing λ,

λn = max{λ · 0.995n, λ/2}, (10.6)

where n is the index of the epochs. Eqn. 10.6 not only increases the impact of the
appearance similarity term but also preserves the class-specific discriminative infor-
mation in the training phase.

10.5.4 Implementation Details

Similar to [Goodfellow et al., 2014; Radford et al., 2015], we employ batch normal-
ization after the convolutional and deconvolutional layers of SRN except for the last
deconvolutional layers. We also use leaky rectified linear units (leakyReLU) with
a negative slope 0.2 as non-linear activation functions. For training, the learning
rate α is set to 0.001 and multiplied by 0.99 after each epoch, and the decay rate is
set to 0.01. The discriminative network is only employed in the training phase. In
the testing phase, we feed a stylized face image into the SRN to obtain its realistic
version.

10.6 Synthesized Dataset

Training of a deep neural network requires a large number of samples to prevent
models from overfitting to the training data. The publicly available large-scale face
datasets [Huang et al., 2007; Liu et al., 2015] only provide faces in the wild but not
pairs of real images of faces and their stylizations. Therefore, we opt to generate
a large number of stylized faces from the corresponding real face images in eight
distinct styles: Starry Night, la Muse, Composition VII, Scream, Candy, Feathers, Mosaic
and Udnie. To generate such a dataset, there are a number of alternative feed-forward
approaches available [Ulyanov et al., 2016a,b; Johnson et al., 2016]. We choose the
recent feed-forward style transfer model [Johnson et al., 2016].

We firstly select at random 10K images of cropped real faces (within ±30◦ ori-
entation) from the CelebA dataset [Liu et al., 2015] for training and 1K images for
testing, and then resize them to 128×128 pixels. We use 10K training images as our
real ground-truth faces ri. To generate three different portraits of each face, we retrain
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 10.4: Illustration of the synthesized dataset. (a) Original real face image. (b)-
(d) The synthesized stylized faces of (a) form Candy, Feathers and Scream which have
been used for training our network. (e)-(i) The synthesized stylized faces of (a) form
Composition VII, Mosaic, la Muse, Udnie and Starry styles which have not been used

for training.

the style transfer model [Johnson et al., 2016] for Scream, Candy and Feathers styles
separately. Finally, we obtain 30K SF/RF pairs for training our network. We also use
1K test real faces to generate 8K SF/RF face pairs from eight different styles (each
test face corresponds to eight distinct styles) for testing our network. Figure 10.4
shows the stylized samples that are generated from a single real image containing a
face (Fig. 10.4(a)).

10.7 Experiments

We compare our method qualitatively and quantitatively against four different state-
of-the-art methods. As explained in Sec. 10.6, we gather 30K SF/RF face pairs from
three styles as a training dataset and 8K SF/RF pairs faces generated from different
eight styles for testing. In all the cases, the ground-truth real faces and the corre-
sponding stylized faces do not overlap in the training and testing datasets. Since our
method is feed-forward and no optimization is required at test time. Our method
cost 10 ms for a 128-by-128 image.

10.7.1 Qualitative Evaluation

Comparison to the state of the art. Firstly, we note that the test stylized face images
were not used for training of our model. The resolution of stylized and destylized
output faces in this study is 128× 128 pixels. We compare our approach against four
different approaches as detailed below.

We compare our work against the method of Gatys et al. [2016b], an image-
optimization based style transfer method free of the training stage. To generate real
faces, this network aims to preserve the contents of a portrait and the corresponding
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(a) (b) (c) (d) (e) (f) (g)

Figure 10.5: Results of the state-of-the-art methods for face destylization. (a) Input
portraits of Feathers, Scream from seen styles as well as la Muse, Udnie and Mosaic
from unseen styles (from test dataset; not available to the algorithm during training)
(b) Ground-truth images of real faces. (c) Results of Gatys et al. [2016b]. (d) Results
of Johnson et al. [2016]. (e) Results of Li and Wand [2016b] (MGAN). (f) Results of

Isola et al. [2016] (pix2pix). (g) Our results.

photo-realistic face. The network fails to produce appealing results as shown in
Fig. 10.5(c) and Fig. 10.6(c). This method captures the correlations in feature maps of
style and synthesized images by Gram matrices and discards the spatial arrangement
at the pixel level.

We also use a feed-forward approach [Johnson et al., 2016] for destylization. Due
to the Gram matrix, this method also produces distorted facial details. As shown in
the first row of Fig. 10.5(d), the edges of the face were blurred and the color of the
face is not consistent. From the first row of Fig. 10.6(d), one can see that the style
overlapping with the eyes was not fully removed. Thus, their network fails to restore
authentic looking eyes.

Li and Wand [2016b] propose a patch-based style transfer method, known as
Markovian GAN. We use their network for destylization and apply their standard
protocols. As such a method is trained with stylized face patches, it cannot capture
the global structure of facial images. As seen in Fig. 10.5(e) and Fig. 10.6(e), the
facial color consistency cannot be preserved either. In contrast, our method produces
highly-consistent facial colors and captures the global structure of faces well.
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(a) (b) (c) (d) (e) (f) (g)

Figure 10.6: Result of the state-of-the-art methods for face destylization. (a) Input
portraits of Candy and Scream from seen styles as well as la Muse, starry Night and
Mosaic from unseen styles (from test dataset; not available to the algorithm during
training) (b) Ground-truth images of real faces. (c) Results of Gatys et al. [2016b].
(d) Results of Johnson et al. [2016]. (e) Results of Li and Wand [2016b] (MGAN). (f)

Results of Isola et al. [2016] (pix2pix). (g) Our results.

Table 10.1: Comparison of physical (PSNR) and perceptual (SSIM) quality measures
for the entire test dataset.

Method
Seen Styles Unseen Styles

PSNR SSIM PSNR SSIM

Gatys [Gatys et al., 2016b] 22.6792 0.8656 20.2320 0.8493
Johnson [Johnson et al., 2016] 22.8481 0.8745 21.2184 0.8632
MGAN [Li and Wand, 2016b] 19.5254 0.8548 17.2645 0.8270

pix2pix [Isola et al., 2016] 22.9893 0.8871 21.6316 0.8860

Ours 23.2086 0.9087 22.4430 0.9015

Isola et al. [2016] present a general image-to-image translation method, known as
pix2pix. It employs the architecture "Unet" for the generator network. A convolu-
tional patch based neural network is trained to discriminate between image patches
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Figure 10.7: Results for the original paintings. Top row: the original portraits from
DevianArt. Bottom row: our destylization results.

extracted from real and generated faces. In addition, the low-level features from the
bottom layers of Unet also participate in generating faces. These low-level features
corrupt the destylized images and result in poor removal of styles in the images e.g.,
for unseen styles. As shown in Fig. 10.5(f) and Fig. 10.6(f), while pix2pix can pro-
duce acceptable results for seen styles, it fails to remove previously unseen styles. As
shown in the fourth row of Fig. 10.6(f), obvious artifacts appear in the generated face
of an unseen style.

Our destylized results exhibit higher fidelity with respect to the real faces, better
consistency in colors and can even preserve the identity of the subject, as shown in
Fig. 10.5(g) and Fig. 10.6(g).

10.7.2 Quantitative Evaluation

Face Reconstruction. In Tab. 10.1, we report the reconstruction performance mea-
sured on the entire test dataset for each approach. We use the average Peak Signal
to Noise Ratio (PSNR) and Structural Similarity (SSIM) [Wang et al., 2004] scores for
which higher scores indicate better results.

We report performance of destylization algorithms for two scenarios: seen and
unseen styles. For the seen styles, results of the state-of-the-art style transfer methods
are shown in the first and second rows of Fig. 10.5 and Fig. 10.6. For the destylization
of portraits of unseen styles, we demonstrate results in the third, fourth and fifth rows
of Fig. 10.5 and Fig. 10.6.

Table 10.1 shows that our results achieve better PSNR and SSIM than the state-of-
the-art methods on seen styles and unseen styles. This performance also coincides
with the visual results.
Consistency Analysis. Intuitively, the destylized faces from the different styles of
the same person should look similar. Examples generated from multiple styles are
shown in Fig. 10.5(g) and Fig. 10.6(g). In this experiment, we demonstrate that our
method not only recovers realistic faces with high fidelity but also generates faces
looking close to each other given multiple styles of the same person on input. This
indicates that SRN can indeed extract facial features from portraits despite different
styles and transfer these features to recover underlying faces.

To evaluate the consistency of generated faces from different portraits of the same
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Table 10.2: Comparison of consistency between destylized faces from various seen
and unseen styles.

Seen Styles Unseen Styles

Gatys [Gatys et al., 2016b] 82% 83%
Johnson [Johnson et al., 2016] 73% 72.5%
MGAN [Li and Wand, 2016b] 2% 1%

pix2pix [Isola et al., 2016] 93.33% 85.1%

Ours 98% 90.8%

person, we adapt the off-the-shelf deep face recognition approach [Parkhi et al., 2015].
First, we randomly choose 100 RF and 800 corresponding SF faces from eight dif-
ferent styles in the test dataset for our gallery (three seen styles and five unseen
styles). Then, we employ Gatys [Gatys et al., 2016b], Johnson [Johnson et al., 2016],
MGAN [Li and Wand, 2016b], pix2pix [Isola et al., 2016] and our FDNN to recover
real faces from eight various stylized faces. For each method, we set 100 destylized
faces from the Candy style as a query dataset and set the other 700 destylized faces
from the other seven styles as a search dataset. Following the standard protocol, we
compute the Face Recognition Rate (FRR) which quantifies if the correct person is re-
trieved within the top-5 candidates (the probability of successful retrieval by chance
is 0.71%). We also use the same procedure for other styles. Table 10.2 shows the
average FRR of each method for seen and unseen styles. Our method yields high
consistency score for both seen and unseen styles. This indicates the effectiveness of
our FDNN in producing realistic faces of high-fidelity.

10.7.3 Performance on Original Paintings

Despite our method is trained on a synthetic dataset, it can efficiently generalize to
real paintings/portraits. To demostrate this, we randomly choose some paintings
with faces from DevianArt. We crop images of these faces and then align them to
the CelebA face dataset in an off-line pre-processing step. Our method successfully
reconstructs plausible facial details from real paintings as shown in Fig. 10.7. This
highlights that our method is not restricted to synthesized stylized faces.

10.7.4 Limitations

Our proposed network requires that the eyes of stylized faces to be aligned before-
hand to a template. Without such an alignment, FDNN may generate artifacts. How-
ever, we plan to automatically align the stylized facial images in our future work. As
illustrated in Fig. 10.8(a), destylization is performed on an unaligned stylized face.
As a consequence, our network cannot localize facial features correctly and produces
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(a) Unaligned (b) SF (c) Ours

(d) Upright pose (e) SF (f) Ours

Figure 10.8: Failures. (a) An unaligned ground-truth face. (e) Stylized face of (a). (c)
Our result. (d) An upright pose. (e) Stylized face of (d). (c) Our result.

erroneous feature maps. In addition, our method may produce artifacts for portraits
suffering from large pose variations, such as profile views of faces etc. Since there are
not enough side-view images of faces in the training dataset, this results in artifacts.
As shown in Fig. 10.8(f), the network fails to generate satisfying results for an upright
pose. Exploring how to address large pose variations will be our future work.

10.8 Conclusion

We present a face destylization method that extracts features of a stylized portrait and
then exploits them to generate its corresponding photo-realistic face. Our network
learns a mapping from stylized facial feature maps to realistic facial feature maps.
Our network can successfully extract facial features from different styles and thus is
able to destylize unseen style portraits as well.
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Chapter 11

Identity-preserving Face Recovery
from Portraits

11.1 Foreword

In chapter 10, we employ a generative adversarial network to recover realistic face
images from stylized portraits. In particular, a discriminative network is used to
enforce the generated faces to be authentic and an `2 loss to constrain the appearance
similarity between the recovered faces and the ground-truth real faces. However,
there is no guarantee to preserve the identity information in the destylized faces, e.g.,
facial characteristics. In addition, our previous face destylization mehtod can only
tackle aligned portraits. State-of-the-art face alignment methods may fail to align
stylized portraits since facial details have been distorted by different image styles. In
this chapter, we aim to recover realistic faces from unaligned stylized portraits while
preserving the identity information in the portraits. This work is also motivated
by our network TDN presented in chapter 4, where Spatial Transformer Networks
(STNs) are employed to align low-resolution faces during upsampling.

This chapter has been published as a conference paper: Fatemeh Shiri, Xin Yu,
Fatih Porikli, Richard Hartley, Piotr Koniusz: Identity-Preserving Face Recovery from
Portraits. In IEEE Winter Conference on Application of Computer Vision (WACV), 102-111,
2018.

11.2 Abstract

Recovering the latent photorealistic faces from their artistic portraits aids human per-
ception and facial analysis. However,a recovery process that can preserve identity is
challenging because the fine details of real faces can be distorted or lost in stylized
images. In this paper, we present a new Identity-preserving Face Recovery from
Portraits (IFRP) to recover latent photorealistic faces from unaligned stylized por-
traits. Our IFRP method consists of two components: Style Removal Network (SRN)
and Discriminative Network (DN). The SRN is designed to transfer feature maps of
stylized images to the feature maps of the corresponding photorealistic faces. By
embedding spatial transformer networks into the SRN, our method can compensate

203
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(a) Original

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11.1: Comparisons to the state-of-art method. (a) Ground-truth face image
(from test dataset; not available in the training dataset). (b) Unaligned stylized por-
traits of (a) from Candy style (seen/used style in training). (f) Unaligned stylized
portraits of (a) from Udnie style (unseen style in training). (c, g) Detected landmarks
by [Zhang et al., 2014]. (d, h) Results obtained by [Johnson et al., 2016]. (e, i) Our

results.

for misalignments of stylized faces automatically and output aligned realistic face
images. The role of the DN is to enforce recovered faces to be similar to authentic
faces. To ensure the identity preservation, we promote the recovered and ground-
truth faces to share similar visual features via a distance measure which compares
features of recovered and ground-truth faces extracted from a pre-trained VGG net-
work. We evaluate our method on a large-scale synthesized dataset of real and styl-
ized face pairs and attain state of the art results. In addition, our method can recover
photorealistic faces from previously unseen stylized portraits, original paintings and
human-drawn sketches.

11.3 Introduction

A variety of style transfer methods have been proposed to generate portraits in differ-
ent artistic styles from photorealistic images. However, the recovery of photorealistic
faces from artistic portraits has not been fully investigated yet. In general, stylized
face images contain various facial expressions, facial component distortions and mis-
alignments. Therefore, landmark detectors often fail to localize facial landmarks ac-
curately as shown in Fig. 11.1(c) and Fig. 11.1(g). Thus, restoring identity-consistent
photorealistic face images from unaligned stylized ones is challenging.

While recovering photorealistic images from portraits is still uncommon in the
literature, image stylization methods have been widely studied. Recently, Gatys et al.
[2017] achieve promising results by transferring different styles of artworks to images
via the semantic contents space. Since this method generates the stylized images
by iteratively updating the feature maps of CNNs, it requires costly computations.
In order to reduce the computational complexity, several feed-forward CNN based
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methods have been proposed [Ulyanov et al., 2016a,b; Johnson et al., 2016; Dumoulin
et al., 2016; Li et al., 2017a; Chen and Schmidt, 2016; Zhang and Dana, 2017; Huang
and Belongie, 2017]. However, these methods can use only a single style fixed during
the training phase. Such methods are insufficient for generating photorealistic face
images, as shown in Fig. 11.1(d) and Fig. 11.1(h), because they only capture the
correlations of feature maps by the use of Gram matrices and discard spatial relations
[Koniusz et al., 2017b,a; Koniusz and Cherian, 2016].

In order to capture spatially localized statistics of a style image, several patch-
based methods [Li and Wand, 2016b; Isola et al., 2016] have been developed. How-
ever, such methods cannot capture the global structure of faces either, thus fail-
ing to generate authentic face images. For instance, patch-based methods [Li and
Wand, 2016b; Isola et al., 2016] fail to attain consistency of face colors, as shown in
Fig. 11.6(e). Furthermore, the state-of-the-art style transfer methods [Gatys et al.,
2017; Li and Wand, 2016b; Ulyanov et al., 2016a; Johnson et al., 2016] transfer the de-
sired styles to the given images without considering the task of identity preservation.
Hence, previous methods cannot generate real faces while preserving identity.

In this paper, we develop a novel end-to-end trainable identity-preserving ap-
proach to face recovery that automatically maps the unaligned stylized portraits
to aligned photorealistic face images. Our network employs two subnetworks: a
generative subnetwork, dubbed Style Removal Network (SRN), and a Discrimina-
tive Network (DN). The SRN consists of an autoencoder (a downsampling encoder
and an upsampling decoder) and Spatial Transfer Networks (STNs) [Jaderberg et al.,
2015]. The encoder extracts facial components from unaligned stylized face images
and transfer the extracted feature maps to the domain of photorealistic images. Sub-
sequently, our decoder forms face images. STN layers are used by the encoder and
decoder to align stylized faces. The discriminative network, inspired by [Goodfellow
et al., 2014; Denton et al., 2015; Yu and Porikli, 2016, 2017a], forces SRN to generate
destylized faces to be similar to authentic ground-truth faces.

Moreover, as we aim to preserve the facial identity information, we constrain
the recovered faces to have the same CNN feature representations as the ground-
truth real faces. For this purpose, we employ pixel-level Euclidean and identity-
preserving loss functions to guarantee the appearance- and identity-wise similarity
to the ground-truth data. We also use an adversarial loss to achieve high-quality
visual results.

To train our network, we require pairs of Stylized Face (SF) and ground-truth Real
Face (RF) images. Therefore, we synthesize a large-scale dataset of SF/RF pairs. We
observe that our CNN filters learned on images of seen styles (used for training) can
extract meaningful features from images in unseen styles. Thus, the facial informa-
tion of unseen stylized portraits can be extracted and used to generate photorealistic
faces, as shown in the experimental section.

The main contributions of our work are fourfold:

• We propose an IFRP approach that can recover photorealistic faces from un-
aligned stylized portraits. Our method generates facial identities and expres-
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sions that match the ground-truth face images well.

• We use STNs as intermediate layers to compensate for misalignments of input
portraits. Thus, our method does not require the use of facial landmarks or 3D
face models (typically used for face alignment).

• We fuse an identity-preserving loss, a pixel-wise similarity loss and an adver-
sarial loss to remove seen/unseen styles from portraits and recover the under-
lying identity.

• As large-scale datasets of stylized and photorealistic face pairs are not available,
we synthesize a large dataset of pairs of stylized and photorealistic faces, which
will be available on-line.

To the best of our knowledge, our method is the first attempt to provide a unified
approach to the automated style removal of unaligned stylized portraits.

11.4 Related Work

In this section, we briefly review neural generative models and deep style transfer
methods for image generation.

11.4.1 Neural Generative Models

There exist many generative models for the problem of image generation [Van Den O-
ord et al., 2016; Kingma and Welling, 2013; Goodfellow et al., 2014; Denton et al., 2015;
Zhang et al., 2017a; Shiri et al., 2017]. Among them, GANs are conceptually closely
related to our problem as they employ an adversarial loss that forces the generated
images to be as photorealistic as the ground-truth images.

Several methods adopt an adversarial training to learn a parametric translating
function from a large-scale dataset of input-output pairs, such as super-resolution [Ledig
et al., 2017; Yu and Porikli, 2017a; Huang et al., 2017b; Yu and Porikli, 2017b, 2016]
and inpainting [Pathak et al., 2016]. These approaches often use the `2 or `1 norm and
adversarial losses to compare the generated image to the corresponding ground truth
image. Although these methods produce impressive photorealistic images, they fail
to preserve identities of subjects.

Conditional GANs have been used for the task of generating photographs from
sketches [Sangkloy et al., 2017], and from semantic layout and scene attributes [Kara-
can et al., 2016]. Li and Wand [2016b] train a Markovian GAN for the style transfer;
a discriminative training is applied on Markovian neural patches to capture local
style statistics. Isola et al. [2016] develop “pix2pix” framework which uses so-called
“Unet” architecture and the patch-GAN to transfer low-level features from the input
to the output domain. For faces, this approach produces visual artefacts and fails to
capture the global structure of faces.
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Patch-based methods fail to capture the global structure of faces and, as a re-
sult, they generate poor destylization results. In contrast, we propose an identity-
preserving loss to faithfully recover the most prominent details of faces.

Moreover, there exist several methods to synthesize sketches from photographs
(and vice versa) [Nejati and Sim, 2011; Yuen and Man, 2007; Tang and Wang, 2003;
Sharma and Jacobs, 2011]. While sketch-to-face synthesis is a related problem, our
unified framework can work with various more complex styles.

11.4.2 Deep Style Transfer

Style transfer is a technique which can render a given content image (input) by in-
corporating a specific painting style while preserving the contents of input. We dis-
tinguish image optimization-based and feed-forward style transfer methods. The seminal
optimization-based work [Gatys et al., 2016b] transfers the style of an artistic image
to a given photograph. It uses an iterative optimization to generate a target image
which is randomly initialized (Gaussian distribution). During the optimization step,
the statistics of the neural activations of the target, the content and style images are
matched.

The idea of Gatys et al. [2016b] inspires many follow-up studies. Yin [2016]
presents a content-aware style transfer method which initializes the optimization
algorithm with a content image instead of a random noise. Li and Wand [2016a]
propose a patch-based style transfer method by combining Markov Random Field
(MRF) and CNN techniques. The work [Gatys et al., 2016a] proposes to transfer the
style by using linear models. It preserves colors of content images by matching color
histograms.

Gatys et al. [2017] decompose styles into perceptual factors and then manipulate
them for the style transfer. Selim et al. [2016] modify the content loss through a gain
map for the head portrait painting transfer. Risser et al. [2017] use histogram-based
losses in their objective and build on the algorithm of Gatys et al. [2016b]. Although
the above optimization-based methods further improve the quality of style transfer,
they are computationally expensive due to the iterative optimization procedure, thus
limiting their practical use.

To address the poor computational speed, feed-forward methods replace the orig-
inal on-line iterative optimization step with training a feed-forward neural network
off-line and generating stylized images on-line [Ulyanov et al., 2016a; Johnson et al.,
2016; Li and Wand, 2016b].

Johnson et al. [2016] train a generative network for a fast style transfer using per-
ceptual loss functions. The architecture of their generator network follows the work
[Radford et al., 2015] and also uses residual blocks. Another concurrent work [Ulyanov
et al., 2016a], named Texture Network, employs a multi-resolution architecture in the
generator network. Ulyanov et al. [2016b, 2017] replace the spatial batch normal-
ization with the instance normalization to achieve a faster convergence. Wang et al.
[2017] enhance the granularity of the feed-forward style transfer with multimodal
CNN which performs stylization hierarchically via multiple losses deployed across
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Figure 11.2: The Architecture of our identity-preserving face destylization framework
consists of two parts: a style removal network (blue frame) and a discriminative

network (green frame).

multiple scales.
Those feed-forward methods perform stylization about 1000 times faster than the

optimization-based methods. However, they cannot adapt to arbitrary styles that are
not used for training. For synthesizing an image from a new style, the entire network
needs retraining. To deal with such a restriction, a number of recent approaches
encode multiple styles within a single feed-forward network [Dumoulin et al., 2016;
Chen and Schmidt, 2016; Chen et al., 2017; Li et al., 2017a].

Dumoulin et al. [2016] use conditional instance normalization that learns normal-
ization parameters for each style. Given feature activations of the content and style
images, Chen and Schmidt [2016] replace content features with the closest-matching
style features patch-by-patch. Chen et al. [2017] present a network that learns a set
of new filters for every new style. Li et al. [2017a] also adapt a single feed-forward
network via a texture controller module which forces the network towards synthesiz-
ing the desired style only. We note that the existing feed-forward approaches have to
compromise between the generalization [Li et al., 2017a; Huang and Belongie, 2017;
Zhang and Dana, 2017] and quality [Ulyanov et al., 2017, 2016b; Gupta et al., 2017].

11.5 Proposed Method

We aim to infer a photorealistic and identity-preserving face Îr from an unaligned
stylized face Is. For this purpose, we design our IFRP framework which contains a
Style Removal Network (SRN) and a Discriminative Network (DN). We encourage
our SRN to recover faces that come from the latent space of real faces. The DN is
trained to distinguish recovered faces from real ones. The general architecture of our
IFRP framework is depicted in Fig. 11.2.
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11.5.1 Style Removal Network

Since the goal of face recovery is to generate a photorealistic destylized image, a gen-
erative network should be able to remove various styles of portraits without losing
the identity-preserving information. To this end, we propose our SRN which com-
prises an autoencoder (a downsampling encoder and an upsampling decoder) and
the STN layers. Figure 11.2 shows the architecture of our SRN (enclosed by the blue
frame).

The autoencoder learns a deterministic mapping from a portrait space into a
latent space with the use of encoder, and a mapping from the latent space to the real
face space with the use of decoder. In this manner, the encoder extracts the high-
level features of the unaligned stylized faces and projects them into the feature maps
of the real face domain while the decoder synthesizes photorealistic faces from the
extracted information.

Considering that the input stylized faces are often misaligned, tilted or rotated
etc, we incorporate four STN layers [Jaderberg et al., 2015] to perform face alignments
in a data-driven fashion. The STN layer can estimate the motion parameters of face
images and warp them to a canonical view. Figure 11.3 illustrates that a successful
alignment can be performed by combining STN layers with out network.

11.5.2 Discriminative Network

Using only a pixel-wise distance between the recovered faces and their ground-truth
real counterparts leads to over-smoothed results, as shown in Fig. 11.3(c). To obtain
appealing visual results, we introduce a discriminator, which forces recovered faces
to reside in the same latent space as real faces. Our proposed DN is composed of
convolutional layers and fully connected layers, as illustrated in Fig. 11.2 (the green
frame). The discriminative loss, also known as the adversarial loss, penalizes the
discrepancy between the distributions of recovered and real faces. This loss is also
used to update the parameters of the SRN unit (we alternate over updates of the
parameters of SRN and DN). Figure 11.3(d) shows the impact of the adversarial loss
on the final results.

11.5.3 Identity Preservation

By using the adversarial loss, our SRN is able to generate high-frequency facial con-
tents. However, the results often lack details of identities such as the beard or wrin-
kles, as illustrated in Fig. 11.3(d). A possible way to address this issue is to constrain
the recovered faces to share as many features as possible with the ground-truth faces.

We construct an identity-preserving loss motivated by the idea of [Gatys et al.,
2016b; Johnson et al., 2016]. Specifically, we define an Euclidean distance between
the feature representations of the recovered and the ground truth image, respectively.
The feature maps are obtained from the ReLU activations of the VGG-19 network [Si-
monyan and Zisserman, 2014]. Since the VGG network is pre-trained on a very large
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(a) (b) (c) (d) (e)

Figure 11.3: Contribution of each component of our IFRP network. (a) Input un-
aligned portraits from unseen styles. (b) Ground-truth face images. (c) Recovered
faces with the `2 loss. (d) Recovered faces without the identity-preserving loss. (e)

Our final results.

image dataset, it can capture visually meaningful facial features. Hence, we can p-
reserve the identity information by encouraging the feature similarity between the
generated and ground-truth faces. We combine the pixel-wise loss, the adversarial
loss and the identity-preserving loss together as our final loss function to train our
network. Figure 11.3(e) illustrates that, with the help of the identity-preserving loss,
our IFRP network can reconstruct satisfying identity-preserving results.

11.5.4 Training Details

To train our IFRP network in an end-to-end fashion, we require a large number of
SF/RF training image pairs. For each RF, we synthesize different unaligned SF im-
ages from various artistic styles to obtain SF/RF (Is, Ir) training pairs. As described
in Section 11.6, we only use stylized faces from three distinct styles in the training
stage.

Our goal is to train a feed-forward network SRN to produce an aligned photore-
alistic face from any given unaligned portrait. To achieve this, we force the recovered
face Îr to be similar to its ground-truth counterpart Ir. Denote GΘ(Is) as the output
of our SRN. Since the STN layers are interwoven with the layers of our autoencoder,
we optimize the parameters of the autoencoder and the STN layers simultaneously.
The pixel-wise loss function LMSE between Îr and Ir is expressed as:

LMSE(Θ)=E(Is,Ir)∼p(Is,Ir)‖GΘ(Is)− Ir‖2
F, (11.1)

where p(Is, Ir) represents the joint distribution of the SF and RF images in the train-
ing dataset, and Θ denotes the parameters of the SRN unit.

To obtain convincing identity-preserving results, we propose an identity-preserving
loss to be the Euclidean distance between the features of recovered face Îr = GΘ(Is)
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and ground-truth face Ir. The identity-preserving loss Lid is written as follows:

Lid(Θ) = E(Is,Ir)∼p(Is,Ir)‖ψ(GΘ(Is))−ψ(Ir)‖2
F, (11.2)

where ψ(.) denotes the extracted feature maps from the layer ReLU3-2 of the VGG-19
model with respect to some input image.

Motivated by the idea of [Goodfellow et al., 2014; Denton et al., 2015; Radford
et al., 2015], we aim to make the discriminative network DΦ fail to distinguish re-
covered faces from real ones. Therefore, the parameters of the discriminator Φ are
updated by minimizing Ldis, expressed as:

Ldis(Φ)= −EIr∼p(Ir)[logDΦ(Ir)]−E Îr∼p( Îr)
[log(1−DΦ( Îr))], (11.3)

where p(Ir) and p( Îr) indicate the distributions of real and recovered faces respec-
tively, and DΦ(Ir) and DΦ( Îr) are the outputs of DΦ. The Ldis loss is also back-
propagated with respect to the parameters Θ of the SRN unit.

Our SNR loss is a weighted sum of three terms: the pixel-wise loss, the adversarial
loss, and the identity-preserving loss. The parameters Θ are obtained by minimizing
the objective function of the SRN loss as follows:

LSNR(Θ) =E(Is,Ir)∼p(Is,Ir)‖GΘ(Is)− Ir‖2
F

+λ EIs∼p(Is))[logDΦ(GΘ(Is))]

+η E(Is,Ir)∼p(Is,Ir)‖ψ(GΘ(Is))−ψ(Ir)‖2
F

(11.4)

where λ and η are trade-off parameters for the discriminator and the identity-preserving
losses respectively, and p(Is) is the distribution of stylized faces.

Since both GΘ(·) and DΦ(·) are differentiable functions, the error can be back-
propagated w.r.t. Θ and Φ by the use of the Stochastic Gradient Descent (SGD)
combined with Root Mean Square Propagation (RMSprop) [Hinton, 2012], which
helps our algorithm to converge faster.

11.5.5 Implementation Details

The batch normalization procedure is applied after our convolutional and deconvolu-
tional layers except for the last deconvolutional layer, similar to the models described
in [Goodfellow et al., 2014; Radford et al., 2015]. We also use leaky rectifier with
piece-wise linear units (leakyReLU [Maas et al.]) and the negative slope equal 0.2 as
the non-linear activation function. Our network is trained with a mini-batch size of
64. In all our experiments, the parameters λ and η are set to 10−2 and 10−3. We also
set the learning rate to 10−3 and the decay rate to 10−2.

As the iterations progress, the images of output faces will be more similar to
the ground-truth. Hence, we gradually reduce the effect of the discriminative net-
work by decreasing λ. Thus, λn = max{λ · 0.995n, λ/2}, where n is the epoch index.
The strategy of decreasing λ not only enriches the effect of the pixel-level similar-
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11.4: Samples of the synthesized dataset. (a) The ground-truth aligned real
face image. (b)-(d) The synthesized portraits form Candy, Feathers and Scream which
have been used for training our network. (e)-(i) The synthesized portraits form Star-
ry, Mosaic, la Muse, Udnie and Composition VII styles which have not been used for

training.

ity but also keeps the discriminative information in the SRN during training. We
also decrease η to reduce the impact of the identity-preserving constraint after each
iteration: ηn = max{η · 0.995n, η/2}.

As our method is feed-forward and no optimization is required at the test time,
it takes 10 ms to destylize a 128×128 image. We plan to release the dataset and the
code.

11.6 Synthesized Dataset and Preprocessing

To train our IFRP network and avoid overfitting, a large number of SF/RF image pairs
are required. To generate a dataset of such pairs, we employ the CelebA dataset [Liu
et al., 2015]. We first randomly choose 10K aligned real faces from the CelebA dataset
for training and 1K images for testing. We use these images as our RF ground-
truth faces Ir which are aligned by eyes. The original size of the images is 178×218
pixels. We crop the central part of each image and resize it to 128×128 pixels.
Second, we apply affine transformations to the aligned real faces to generate in-
plane unaligned faces. To synthesize our training dataset, we retrain the “fast style
transfer” network [Johnson et al., 2016] for three different artworks Scream, Candy and
Feathers separately. Note that recovering photorealistic faces from Candy, Feathers and
Scream styles is more challenging compared to other styles, because facial details are
distorted and over-smoothed during the stylization process, as shown in Fig 11.4.
Finally, we obtain 30K SF/RF training pairs. We also use 1K unaligned real faces to
generate 8K SF images from eight diverse styles (Starry Night, la Muse, Composition
VII, Scream, Candy, Feathers, Mosaic and Udnie) as our testing dataset. There is no
overlap between the training and testing datasets.
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(b) (c) (d) (e) (f) (g) (h)

Figure 11.5: Comparisons of the state-of-the-art methods. (a) The ground-truth real
face. (b) Input portraits (from the test dataset) including the seen styles Feathers
and Candy as well as the unseen styles Mosaic, Starry and Udnie. (c) The method
of Gatys et al. [2016b]. (d) The method of Johnson et al. [2016]. (e) The method of Li
and Wand [2016b] (MGAN). (f) The method of Isola et al. [2016] (pix2pix). (g) The

method of Zhu et al. [2017] (CycleGAN). (h) Our method.

11.7 Experiments

Below, we compare our approach qualitatively and quantitatively to the state-of-
the-art methods. To the best of our knowledge, there are no methods which are
designed to recover photorealistic faces from portraits. To conduct a fair comparison,
we retrain the approaches [Gatys et al., 2016b; Johnson et al., 2016; Li and Wand,
2016b; Isola et al., 2016; Zhu et al., 2017] on our training dataset for the task of
destylization.

11.7.1 Qualitative Evaluation

We visually compare our approach against five methods detailed below. To let them
achieve their best performance, we align SF images in the test dataset (via STN net-
work).

The method of Gatys et al. [2016b] is an image-optimization based style transfer
method which does not have any training stage. This method captures the correlation
between feature maps of the portrait and the synthesized face (Gram matrices) in
different layers of a CNN. Therefore, spatial structures of face images cannot be
preserved. As shown in Fig. 11.5(c) and Fig. 11.6(c), the network fails to produce
realistic results and the artistic styles have not been fully removed.
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We retrain the approach proposed by Johnson et al. [2016] for destylization. Due
to the use of the Gram matrix, their network also generates distorted facial details
and produces unnatural effects. As shown in Fig. 11.5(d) and Fig. 11.6(d), the facial
details are blurred and the skin colors are not homogeneous. As shown in the first
row of Fig. 11.6(d), we observe that the styles of the eyes were not removed from
outputs.

MGAN [Li and Wand, 2016b] is a patch-based style transfer method. We retrain
this network for the purpose of the face recovery. As this method is trained on RF/SF
patches, it cannot capture the global structure of entire faces. As seen in Fig. 11.5(e)
and Fig. 11.6(e), this method produces distorted results and the facial colors are
inconsistent. In contrast, our method successfully captures the global structure of
faces and generates highly-consistent facial colors.

Isola et al. [2016] train a "U-net" generator augmented with a PatchGAN discrim-
inator in an adversarial framework, known as "pix2pix". Since the patch-based dis-
criminator is trained to classify whether an image patch is sampled from real faces or
not, this network does not take the global structure of faces into account. In addition,
the U-net concatenates low-level features from the bottom layers of the encoder with
the features in the decoder to generate face images. Because the low-level features
of input images are passed to the outputs, this network fails to eliminate the artistic
styles in the face images. As shown in Fig. 11.5(f) and Fig. 11.6(f), although pix2pix
can generate acceptable results for the seen styles, it fails to remove the unseen styles
and produces obvious artifacts.

CycleGAN [Zhu et al., 2017] is an image-to-image translation method that uses
unpaired datasets. This network provides a mapping between two different domains
by the use of a cycle-consistency loss. Since CycleGAN also employs a patch-based
discriminator, this network cannot capture the global structure of faces. As this
network uses unpaired face datasets i.e., unpaired RF and SF images, the low-level
features of the stylized faces and real faces are uncorrelated. Thus, CycleGAN is
not suitable for transferring stylized portraits to photorealistic ones. As shown in
Fig. 11.5(g) and Fig. 11.6(g), this method produces distorted results and does not
preserve the identities with respect to the input images.

In contrast, our results demonstrate higher fidelity and better consistency with
respect to the real faces, such as facial expressions and skin colors. Our network can
preserve identity information of a subject for both seen and unseen styles, as shown
in Fig. 11.5(h) and Fig. 11.6(h).

11.7.2 Quantitative Evaluation

Pixel-wise Recovery Analysis:
To evaluate the pixel-wise recovery performance, we use the average Peak Signal

to Noise Ratio (PSNR) and Structural Similarity (SSIM) [Wang et al., 2004] scores on
seen and unseen styles of our test dataset. The pixel-wise recovery results for each
method are summarized in Tab. 11.1 (higher scores indicate better results). The PSNR
and SSIM scores confirm that our IFRP approach outperforms other state-of-the-art
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(a)

(b) (c) (d) (e) (f) (g) (h)

Figure 11.6: (a) The ground-truth real face. (b) Input portraits (from the test dataset)
including the seen styles Candy andScream as well as the unseen styles Composition
VII, Udnie and la Muse from unseen styles. (c) The method of Gatys et al. [2016b].
(d) The method of Johnson et al. [2016]. (e) The method of Li and Wand [2016b]
(MGAN). (f) The method of Isola et al. [2016] (pix2pix). (g) The method of Zhu et al.

[2017] (CycleGAN). (h) Our method.

methods on both seen (the first and second rows) and unseen (the third, fourth and
fifth rows) styles. Figure 11.5 and Fig. 11.6 verify the performance visually. Moreover,
we also apply different methods on sketches from the CUFSF dataset as an unseen
style without fine-tuning or re-training our network.

In order to demonstrate the contributions of each loss function to the quantita-
tive results, we also show the results for when only the `2 loss is used, as indicated
by SRN in Tab. 11.1, and for both the `2 and discriminative losses, as indicated by
SRN+DN in Tab. 11.1. The `2 loss considers the intensity similarity only, thus it pro-
duces over-smooth faces. The discriminative loss further forces the generated faces
to be realistic, thus it improves the final results qualitatively and quantitatively. Ben-
efiting from our combined loss, our network not only achieves highest quantitative
results but also generates photorealistic face images.
Face Retrieval Analysis:

In this section, we demonstrate that the faces recovered by our method are highly
consistent with their ground-truth counterparts. To this end, we run a face recog-
nition algorithm [Parkhi et al., 2015] on our test dataset for both seen and unseen
styles. For each investigated method, we set 1K recovered faces from one style as a
query dataset and then set 1K of ground-truth faces as a search dataset. We apply
the method [Parkhi et al., 2015] to quantify whether the correct person is retrieved



216 Identity-preserving Face Recovery from Portraits

Table 11.1: Comparisons of PSNR and SSIM on the entire test dataset.

Method
Seen Styles Unseen Styles Unseen Sketches

PSNR SSIM PSNR SSIM PSNR SSIM

Gatys [Gatys et al., 2016b] 23.88 0.84 23.25 0.83 23.33 0.82
Johnson [Johnson et al., 2016] 19.65 0.82 19.81 0.81 19.77 0.82
MGAN [Li and Wand, 2016b] 20.87 0.79 20.21 0.66 21.01 0.71

pix2pix [Isola et al., 2016] 25.28 0.89 23.10 0.85 23.88 0.86
CycleGAN [Zhu et al., 2017] 19.58 0.78 18.99 0.77 19.60 0.77

SRN 25.12 0.89 24.09 0.88 24.13 0.89
SRN + DN 25.25 0.90 24.25 0.89 24.56 0.90

IFRP 27.08 0.93 24.83 0.91 24.89 0.92

within the top-5 matched images. Then an average retrieval score is obtained. We
repeat this procedure for every style and then obtain the average Face Retrieval Ratio
(FRR) by averaging all scores from the seen and unseen styles, respectively. As in-
dicated in Tab. 11.2, our IFRP network outperforms the other methods across all the
styles. Even for the unseen styles, our method can still retain most identity features,
making the destylized results similar to the ground-truth faces. Moreover, we also
run an experiment on hand-drawn sketches of the CUFSF dataset used as an unseen
style. The FRR scores are better compared to results on other styles as facial compo-
nents are easier to extract from sketches/their contours. Despite our method is not
dedicated to face retrieval, we compare it to the approach [Zhang et al., 2011]. To
challenge our method, we did not re-train our network on sketches (we used other
styles). Thus, we recovered faces from sketches (CUFSF dataset) and performed face
identification that yielded ∼91% Verification Rate (VR) FAR=0.1%. This outperforms
photo-synthesizing method [Zhang et al., 2011] (43.66% VR at FAR=0.1%) which uses
sketches for training.
Consistency Analysis w.r.t. Styles:

As shown in Fig. 11.5(h) and Fig. 11.6(h), our network recovers the photorealistic
faces from various stylized portraits of the same person. Note that recovered faces
resemble each other. It indicates that our network is robust to different styles.

In order to demonstrate the robustness of our network to different styles quan-
titatively, we study the consistency of faces recovered from different styles. Here,
we choose 1K faces destylized from one style. For each destylized face we search
its top-5 most similar faces in another group of destylized faces. If the same person
is retrieved within the top-5 candidates, we record it as a hit. Then an average hit
number of one style is obtained. We repeat the same procedure for all the other 7
styles, and then calculate the average hit number, denoted as Face Consistency Ratio
(FCR). Note that the probability of one hit by chance is 0.5%. Table 11.2 shows the
average FCR scores on the test dataset for each method. The FCR scores indicate
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Table 11.2: Comparisons of FRR and FCR on the entire test dataset.

Method
FRR

FCR
Seen Styles Unseen Styles Unseen Sketch

Gatys 64.67% 60.28% 68.36% 72.89%

Johnson 50.54% 38.87% 40.27% 44.99%

MGAN 6.97% 12.52% 17.99% 38.24%

pix2pix 75.13% 59.98% 61.63% 87.73%

CycleGAN 1.07% 0.68% 0.70% 13.32%

IFRP 86.93% 74.52% 91.05% 92.06%

Figure 11.7: Results for the original unaligned paintings. Top row: the original
portraits from art galleries. Bottom row: our results.

that our IFRP method produces the most consistent destylized faces across different
styles. This also implies that our SRN can extract facial features irrespective of image
styles.

11.7.3 Destylizing Original Paintings and Sketches

We demonstrate that our method is not restricted to recovery of faces from computer-
generated stylized portraits but it can also deal with real paintings and sketches.
To confirm this, we randomly choose a few of paintings from art galleries such as
Archibald [arc, 2017] and hand-drawn sketches from FERET dataset [Phillips et al.,
1998]. Next, we crop face regions from them as our real test images. Figure 11.7
and Fig. 11.8 show that our method can efficiently recover photorealistic faces. This
indicates that our method is not limited to the synthesized data and does not require
an alignment procedure beforehand.

11.7.4 Limitations

We note that in the CelebA dataset, numbers of images of children, old people and y-
oung adults are unbalanced e.g., there are more images of young adults than children
and old people. This makes our synthesized dataset unbalanced. Hence, facial fea-
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Figure 11.8: Recovering photo-realistic faces from hand-drawn sketches from the
FERET dataset. Top row: ground-truth faces. Middle row: sketches. Bottom row:

our results.

Figure 11.9: Limitations. Top row: ground-truth faces. Middle row: unaligned
stylized faces. Bottom row: our results.

tures of children and old people is are not fully represented in our dataset. Therefore,
our network may be prone to recover images with facial features of young adults for
children and old people, as seen in Fig. 11.9. In addition, because the color informa-
tion has been distorted in the stylized paintings, it is very challenging to recover the
skin and hair color that is consistent with the ground-truth without introducing ad-
ditional cues. In future, we intend to embed semantic information into our network
and then generate more consistent face images in terms of the skin and hair color.

11.8 Conclusion

We introduce a novel neural network for face recovery. It extracts features from a
given unaligned stylized portrait and then recovers a photorealistic face from these
features. The SRN successfully learns a mapping from unaligned stylized faces to
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aligned photorealistic faces. Moreover, our identity-preserving loss further encour-
ages our network to generate identity trustworthy faces. This makes our algorithm
readily available for tasks such as face recognition. We also show that our approach
can recover latent faces of portraits in unseen styles, real paintings and sketches.
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Chapter 12

Recovering Faces from Portraits
with Auxiliary Facial Attributes

12.1 Foreword

In chapter 11, we aim at recovering realistic faces from stylized faces while preserve-
ing indentity information. Since there are some facial details have been distorted in
the stylized portraits, such as skin and hair colors, it is difficult to hallucinate those
missing details as well as make them consistent with the ground-truth ones. There-
fore, we exploit the high-level semantic information to facilitate face destylization,
inspired by our work presented in chapter 8. Note that, different from chapter 8,
where skin and hair colors can be deduced directly from input images, in this work
we use facial attributes including color information to restore realistic face images s-
ince the original colors of the portraits, e.g., hair colors, may be totally altered. In this
manner, we can significantly reduce the ambiguity of the mapping between the styl-
ized portraits and the recovered faces and thus achieve authentically photorealistic
faces much closer to the ground-truth ones.

This chapter has been accpted as a conference paper: Fatemeh Shiri, Xin Yu,
Richard Hartley, Fatih Porikli, Piotr Koniusz: Recovering Faces from Portraits with
Auxiliary Facial Attributes. In IEEE Winter Conference on Application of Computer Vision
(WACV), 2019.

12.2 Abstract

Recovering a photorealistic face from an artistic portrait is a challenging task since
crucial facial details are often distorted or completely lost in artistic compositions.
To handle this loss and contamination of information, here we propose an Attribute-
guided Face Recovery from Portraits (AFRP) method that utilizes a Face Recovery
Network (FRN) and a Discriminative Network (DN). FRN consists of an autoencoder
with residual block-embedded skip-connections and incorporates facial attribute vec-
tors into the feature maps of input portraits at the bottleneck of the autoencoder. DN
has multiple convolutional and fully-connected layers, and it is conditioned to en-
force FRN to generate authentic face images with corresponding facial attributes that

221
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(a) (b) (c) (d) (e) (f) (g)

Figure 12.1: Comparisons to the state-of-the-art methods. (a) Ground-truth face im-
age (from test dataset; not used in the training). (b) Unaligned stylized portraits of
(a) from Scream style (unseen style in training), respectively. (c) Detected landmarks
by the approach of Zhang et al. [2014]. (d) Results obtained by the approach of Shiri
et al. [2017]. (e) Results obtained by the approach of Shiri et al. [2018]. (f) Results

obtained by the approach of Isola et al. [2016] (pix2pix). (g) Our results.

are specified by the input attribute vectors. Levering on the spatial transformer net-
works, FRN automatically compensates for misalignments of portraits and generates
aligned face images. For the preservation of the identity information, our method
imposes the recovered and ground-truth faces to share similar visual features. Specif-
ically, DN determines whether the recovered image looks like a real face as well as
the facial attributes extracted from the recovered image are consistent with the given
attributes. Our method can recover high-quality photorealistic faces from unaligned
portraits while preserving the identity of the face images as well as it can reconstruct
a photorealistic face image with a desired set of attributes. It can also recover pho-
torealistic faces from unseen stylized portraits, artistic paintings, and hand-drawn
sketches. On large-scale synthesized and sketch datasets, we demonstrate that our
face recovery method achieves state-of-the-art results.

12.3 Introduction

Numerous style transfer methods have been proposed to transfer arbitrary artwork
styles into content images. Unlike prior research on image stylization, we address
a challenging inverse problem called photorealistic face recovery from stylized por-
traits which aims at recovering a photorealistic face image from a given stylized
portrait. The recovery of the latent photorealistic face from its artistic portrait can
provide critical information for facial analysis and the digital entertainment indus-
try. Facial details in stylized portraits contain artistic effects and distortions such
as profile edges and texture changes as shown in Fig. 12.1(b). These artistic effects
result in a partial loss of facial details and identity-related information. Moreover,
stylized face images may contain various facial expressions, facial distortions and
misalignments. Off-the-shelf facial landmark detectors often fail to localize facial
landmarks correctly as shown in Fig. 12.1(c). Therefore, restoring high-quality pho-
torealistic faces from unaligned stylized artistic portraits is a challenging problem yet
has numerous useful applications.
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Motivated by such challenges, recovery of photorealistic images from portraits
has recently received some attention [Shiri et al., 2017, 2018; Isola et al., 2016; Zhu
et al., 2017]. The existing methods [Shiri et al., 2017, 2018; Isola et al., 2016; Zhu
et al., 2017] take portrait images as inputs and then utilize a simple autoencoder
to generate a photorealistic face image. These methods do not utilize the valuable
semantic information available during the face recovery process. Despite of being
trained on large-scale datasets, they fail to provide consistent mappings between
Stylized Portraits (SP) and ground-truth Real Faces (RF). Thus, they cannot preserve
or enforce desired facial attributes in the recovered images. As shown in Fig. 12.1(d),
Fig. 12.1(e) and Fig. 12.1(f), the facial details recovered by the state-of-the-art meth-
ods [Shiri et al., 2017, 2018; Isola et al., 2016] are semantically and perceptually in-
consistent with the ground-truth images. Inaccuracies range from an unnatural blur
to attribute mismatches which include (but not limited to) the examples of Black Hair
and Open Mouth.

Unlike previous works, we propose to utilize facial attributes as high-level se-
mantic information to boost the visual performance of the recovered face images.
We note that simply embedding the binary facial attribute vector as an additional in-
put channel to the network results in visible distortions (see Fig. 12.4(e)).We observe
that only low-frequency facial components are visible in the stylized input faces as
a residual image (the difference between the RF image and the recovered face im-
age) contains the missing high-frequency details. Therefore, in order to recover the
high-frequency facial details, we propose to incorporate the auxiliary facial attribute
information into the residual features.

Based on our observations above, we present a novel Face Recovery Network
(FRN) that can embed facial attributes into the process of face recovery. Our FRN em-
ploys an autoencoder with residual block-embedded skip connections to incorporate
visual features obtained from portraits as well as semantic cues provided by facial
attributes. FRN progressively upsamples the concatenated feature maps through its
deconvolutional layers. Moreover, we employ a discriminative network that examines
whether a recovered face image resembles an authentic face image and whether the
attributes extracted from the recovered face are consistent with the input attributes.
As a result, our discriminative network can guide the generative network to incor-
porate the semantic information into the recovery process. As shown in Fig. 12.1(g),
our network can learn more consistent mappings between SP and RF facial patterns
and preserve low-frequency details unchanged. This allows us to generate realistic
face images which include details of the ground truth faces (e.g. Black Hair, Smiling,
Straight Hair, Wearing lip stick, pink cheeks), as shown in Fig. 12.1(g). Although the
attributes are normalized between 0 and 1 during training, they can be further scaled
up to manipulate the final results during the testing stage according to the users’
needs.

In order to train our network, we require a large number of pairs of Stylized
Portraits (SP) and Real Face (RF). For this purpose, we need to synthesize a large-
scale training dataset. However, the choices of styles are numerous and thus we
cannot generate all possible stylized faces for training. Thus, we need to select dis-
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tinctive styles for training. To this end, we use a style-distance metric to measure the
distinctiveness of styles. Since Gram matrices can capture the style information in
images [Gatys et al., 2016b], we measure the similarity of styles by the Log-Euclidean
distance of Gram matrices [Jayasumana et al., 2013]. Specifically, we first measure the
distance between Gram matrices of stylized images and the average Gram matrix of
real faces, and then select the most distinctive styles, i.e.largest distance, for training.
Furthermore, we note that our CNN filters learned from the data of seen styles (used
for the training phase) can also extract features from images belonging to unseen
styles. Thus, the facial information of unseen stylized portraits can be extracted and
used to generate realistic faces, as later demonstrated in our experiments. The main
contributions of our work can be summarized as follows:

• We design a novel framework to automatically remove styles from unaligned
stylized portraits. Our framework encodes stylized images with facial attributes
and then recovers realistic faces from the encoded feature maps.

• We propose an autoencoder with residual block-embedded skip-connections
to extract residual feature maps from SP inputs and combine the extracted
feature maps with facial attributes. In this fashion, we fuse visual and semantic
information to attain high-quality visual performance.

• By manipulating input attribute vectors, our network can also generate the
realistic faces towards desired attributes.

• We propose a style-distance metric to measure the most distinct styles for the
training purpose. Thus, our network achieves better generalization for other
unseen styles.

To the best of our knowledge, our method is the first attempt to utilize facial
attribute information into realistic face recovery from stylized faces. In what fol-
lows, we demonstrate that such an approach reduces the ambiguity in the recovered
images.

12.4 Related Work

Below we review neural style transfer methods and deep generative models for image
generation which are closely related to our task.

12.4.1 Deep Generative Models

Recently, Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have
led to a significant improvement in image generation tasks, where a generator net-
work attempts to fool a discriminator network that distinguishes real images from
generated ones.

Preliminary GANs learn the distribution of the training data in an unconditional
setting. Although these methods produce impressive photorealistic images, they
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Figure 12.2: The architecture of our attribute-embedded face recovery framework
consists of two parts: a generative network (red frame) and a discriminative network

(blue frame).

cannot distinguish identities of subjects. Recently, conditional GANs [Isola et al.,
2016] are introduced to learn conditional generative models which generate images
conditioned on certain input variables. This makes conditional GANs benefit many
applications such as super-resolution [Yu and Porikli, 2017a,b; Ledig et al., 2017],
image generation [Van Den Oord et al., 2016; Kingma and Welling, 2013; Denton
et al., 2015; Zhang et al., 2017a; Shiri et al., 2018], image inpainting [Yeh et al., 2016;
Pathak et al., 2016], general purpose image-to-image translation [Isola et al., 2016],
image manipulation [Zhu et al., 2016a], and style transfer [Ulyanov et al., 2016a].
In particular, Li and Wand [2016b] train a Markovian GAN for the style transfer;
a discriminative training is applied on Markovian neural patches to capture local
style statistics. Isola et al. [2016] develop “pix2pix” framework which uses the patch-
GAN to transfer low-level features from the input to the output domain. When they
are employed to destylized portraits, these patch-based approaches produce visual
artifacts and fails to capture the global structure of the faces.

Moreover, there exist several methods which synthesize sketches from photograph-
s (and vice versa) [Nejati and Sim, 2011; Yuen and Man, 2007; Tang and Wang, 2003;
Sharma and Jacobs, 2011; Sangkloy et al., 2017]. When compared to sketch-to-face
synthesis, viewed as a specific case of face recovery, our unified framework is able to
process various more complex styles to recover photo-realistic faces.

Recently, Yan et al. [2016] use a conditional CNN to generate faces based on
attributes. Perarnau et al. [2016] develop an invertible conditional GAN to generate
new faces by editing facial attributes of input images, while Shen and Liu [2016]
manipulate attributes of an input image via its residual image. As their methods are
dedicated to generating new face images rather than recovering faces from portraits,
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they do not deal with the identity preservation and the quality of the reconstructed
faces varies. In contrast, our method utilizes the attribute information to reduce the
uncertainty of the face recovery process. We focus on a faithful recovery of real faces
underlying artistic input portraits.

12.4.2 Neural Style Transfer

Style transfer methods aim to synthesize an image that preserves visual contents
of the input image and carry characteristics of a chosen style. The seminal work
of Gatys et al. [2015] shows that the correlation between feature maps, (i.e., Gram
matrix formed on features extracted by a trained deep neural network), has the abil-
ity to capture visual styles. Since then, many follow-up works synthesized stylized
images by minimizing Gram-related objectives, such as iterative optimization [Gatys
et al., 2016b, 2017; Li and Wand, 2016a; Risser et al., 2017] and feed-forward networks
[Ulyanov et al., 2016a; Johnson et al., 2016; Li and Wand, 2016b]. Iterative optimiza-
tion methods are computationally inefficient due to the optimization step required
at the testing stage. In contrast, feed-forward methods learn the transformation net-
work which performs stylization in feed-forward manner.

Johnson et al. [2016] train a generative network for a fast style transfer using per-
ceptual loss functions. The architecture of their generator network follows the work
[Radford et al., 2015] and also uses residual blocks. Another concurrent work [Ulyanov
et al., 2016a], named Texture Network, employs a multi-resolution architecture in the
generator network. Ulyanov et al. [2017] replace the spatial batch normalization
with the instance normalization to achieve a faster convergence. Wang et al. [2017]
enhance the granularity of the feed-forward style transfer with a multimodal CNN
which performs stylization hierarchically via multiple losses deployed across multi-
ple scales.

These feed-forward methods are limited by their requirement of training one net-
work per style due to the lack of generalization in network design. To deal with such
a restriction, a number of recent approaches encode multiple styles within a single
feed-forward network [Dumoulin et al., 2016; Chen et al., 2017; Li et al., 2017a,b].
Dumoulin et al. [2016] use conditional instance normalization to learn necessary nor-
malization parameters for each style. Given feature activations of the content and
style images, the approach of Chen and Schmidt [2016] replaces content features
with the closest-matching style features patch-by-patch. To achieve an arbitrary style
transfer, Chen et al. [2017] propose to swap the content feature with the closest style
feature locally. Li et al. [2017a] adapt a single feed-forward network via a texture
controller module which forces the network towards synthesizing the desired style
only.

As observed in the previous work [Shiri et al., 2018], direct use of neural style
transfer to the task of face recovery is suboptimal. Even though recent works [Shiri
et al., 2017, 2018] are designed to destylize portrait images, they tend to distort facial
details and cannot recover facial traits (e.g., hair color, lipstick, open/closed lips)
which match the ground-truth well. Since some facial traits, such as hair colors,
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(a) (b) (c) (d) (e) (f)

Figure 12.3: Contribution of each loss function in AFRP network. (a) Ground-truth
face images. (b) Input unaligned portraits from unseen styles. (c) Recovered faces
without utilizing DN and identity-preserving loss. (d) Recovered faces with the `2
loss and discriminative loss. (e) Recovered faces with the `2 loss, discriminative loss

and identity-preserving loss. (f) Our final results by embedding facial attributes.

are difficult to be inferred, only employing the pixel-wise `2 norm and perceptual
losses does not yield correct facial attributes. Thus, state-of-the-art face destylization
methods produce ambiguous results.

12.5 Proposed Method

Below we present an attribute-guided framework for face recovery that takes SP
images and facial attribute vectors as inputs and outputs photorealistic images of
faces.

12.5.1 Network Architecture

The entire network consists of two parts: a Face Recover Network (FRN) and a Dis-
criminative Network (DN). FRN is composed of an autoencoder as well as skip
connections with residual blocks. FRN extracts residual feature maps from input
portraits and concatenates the corresponding 20-dimensional attribute vector with
the extracted residual feature vector at the bottleneck of the autoencoder and then
upsamples it. In this manner, we fuse visual and semantic information to attain
high-quality visual performance. The role of DN is to enforce the input attributes
and the recovered face images to be similar to their real counterparts. The attribute
vector is replicated and then concatenated with the extracted feature maps of the
convolutional layer of DN. The entire architecture of our network is illustrated in
Fig. 12.2.

12.5.1.1 Face Recover Network

This module employs a deep fully convolutional autoencoder for face restoration
from portraits (as shown in the red frame of Fig. 12.2). The convolutional layers of
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the encoder capture the feature maps of input portraits and deconvolutional layers of
the decoder upsample the feature maps to recover the facial details. Previous work-
s [Shiri et al., 2017, 2018; Isola et al., 2016; Zhu et al., 2017] take stylized portraits as
inputs to recover the underlying faces. However, they do not make use of valuable
semantic information during face recovery. Unlike the previous works, our FRN in-
corporates low-level visual and high-level semantic information (i.e.facial attributes)
for face recovery to reduce the ambiguity of mappings between SP and RF images.
Specifically, at the bottleneck of the autoencoder, the attribute vector is concatenated
with the residual feature vector as indicated by the purple blocks in Fig. 12.2. Simply
embedding a semantic vector into SP inputs may increase the ambiguity. As shown
in Fig. 12.4(e), if we encode input portraits with attributes instead of residual fea-
ture maps, the mapping between the recovered faces and the ground-truth suffers
distortions, i.e.the identity has been changed.

We also symmetrically link top convolutional and deconvolutional layers via skip-
layer connections [Long et al., 2015]. These skip connections pass higher-resolution
visual details of portraits from convolutional to deconvolutional layers, which lead
to a better restoration performance. Moreover, each skip-connection comprises three
residual blocks. Due to usage of the residual blocks, our network can remove the
styles of input portraits while increasing accuracy as shown in Fig. 12.4(g) while the
network without the skip-connections tends to output a blurry face image as shown
in Fig. 12.4(c).

Note that input portraits are misaligned (i.e., in-plane rotations, translations).
Similar to the work [Shiri et al., 2018], we use multiple spatial transformer networks
(STNs) [Jaderberg et al., 2015] in FRN, as shown in the green blocks in Fig. 12.2.
These intermediate STN layers compensate for misalignments of the input portraits.
Thus, our method does not require the use of facial landmarks or 3D face models
(often used for face alignment).

To constrain the appearance similarity between the recovered faces and their RF
ground-truth counterparts, we exploit a pixel-wise `2 loss and an identity-preserving
loss [Shiri et al., 2018]. The pixel-wise `2 loss enforces intensity-based similarity be-
tween images of recovered faces and their ground-truth images. The autoencoder su-
pervised by the `2 loss tends to output over-smoothed results as shown in Fig. 12.3(c).
For the identity-preserving loss, we use FaceNet [Schroff et al., 2015] to extract fea-
tures from images (see Sec. 12.5.2 for more details), and then we compare Euclidean
distance between features of two images. In this way, we encourage the feature simi-
larity between the recovered faces and their ground-truth counterparts. Without the
identity-preserving loss, the network produces random artifacts that resemble facial
details, such as wrinkles, as shown in Fig. 12.3(d).

12.5.1.2 Discriminative Network

In order to force the FRN to encode facial attribute information, we employ a condi-
tional discriminative network. In particular, the discriminative network is designed
to distinguish whether the attributes of face images recovered by FRN match the
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(a) (b) (c) (d) (e) (f) (g)

Figure 12.4: Ablation study of our network architecture. (a) RF ground-truth image.
(b) Unaligned input portrait. (c) Result without using skip connections/residual
blocks in the autoencoder. (d) Result without using residual blocks in the autoen-
coder. (e) Result when the attribute vector is concatenated with the SF input directly.
(f) Result without using the attribute embedding. A standard discriminative net-
work is used, similar to the discriminative network in [Shiri et al., 2018]. (g) Our

final result.

desired attributes. Moreover, DN promotes the recovered images to be similar to
RF images. Since our FRN network may learn to ignore attribute vectors, e.g., the
weights corresponding to the semantic information are all zeros, we design a dis-
criminator network that enforces semantic attribute information into the generative
process. As shown in the first row of Fig. 12.4(f), the recovered hair color in the image
is brown even if the ground truth hair color is black. This implies that the attribute
information is not exploited by the network. Therefore, we design the discriminative
network which promotes attribute embedding into the learning process.

As shown in the blue frame of Fig. 12.2, DN consists of convolutional and fully
connected layers. The real and recovered faces are fed into the network. The attribute
information is fed into the middle layer of the network as conditional information.
As CNN filters in the first layers extract low-level features and filters in the higher
layers extract semantically-meaningful image patterns [Zeiler and Fergus, 2014], in
our experiment concatenating features maps with the attribute vectors on the fourth
convolutional layer in DN yields better empirical results. When there is a mismatch
between the extracted features and the input attributes, the discriminative network
will pass the errors to the FRN network during backpropagation. With the help of
the discriminative network, the attribute information can be embedded into the FRN
network. As shown in Fig. 12.4(g), our final result matches the ground-truth facial
expression, age and gender.

12.5.2 Training Procedure

To train our AFRP network in an end-to-end fashion, we construct SP, RF and at-
tribute vector triplets (Ip, Ir, a) as our training dataset, where Ir is the aligned real
face image, and Ip is the corresponding synthesized unaligned portrait image. For
each RF, we synthesize different unaligned SP images from various artistic styles to
obtain SP/RF training pairs. As described in Sec. 12.6, we only use stylized portraits
from three distinct styles for training. We use SP image Ip and its ground-truth at-
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tribute label vector a as inputs and the corresponding RF ground-truth image Ir as a
target in the training stage.

We train our FRN network using a pixel-wise `2 loss, a feature-wise loss and
an adversarial loss to enforce the generated face Ir to resemble its corresponding
ground-truth. In addition, we employ a binary cross-entropy loss to update our
discriminative network. Since the STN layers are interwoven with the layers of our
autoencoder, we optimize the parameters of the autoencoder and the STN layers
simultaneously. Below we explain each loss individually.

Pixel-wise Intensity Similarity Loss: We aim to train a feed-forward network to
produce an aligned photorealistic face from any given unaligned portrait. To achieve
this, we feed our FRN with Ip images and their corresponding attributes a as inputs
and then force the recovered face Îr to be similar to its ground-truth counterpart Ir

in the intensity-wise sense. Hence, we minimize the objective function Lpix:

Lpix(Θ)=E‖ Îr− Ir‖2
F= E(Ip,Ir ,a)∼p(Ip,Ir ,a)‖GΘ(Ip, a)− Ir‖2

F, (12.1)

where GΘ(Ip, a) and Θ represent the output and parameters of our FRN, respectively.
We denote p(Ip, Ir, a) as the joint distribution of the SP and RF images and the
corresponding attributes in the training dataset.

Identity-preserving Loss: To obtain faithful identity-preserving results, we extract
feature maps from the ReLU activations of the FaceNet. Then we compute the Eu-
clidean distance between the features of recovered face Îr = GΘ(Ip, a) and ground-
truth face Ir. As the FaceNet network is pre-trained on a very large image dataset, it
has the ability to capture visually meaningful facial features. Hence, we can preserve
the identity information by encouraging the feature similarity between the generated
and ground-truth faces. The identity-preserving loss Lid is written as follows:

Lid(Θ)=E‖ψ( Îr)−ψ(Ir)‖2
F = E(Ip,Ir ,a)∼p(Is,Ir ,a)‖ψ(GΘ(Ip, a))−ψ(Ir)‖2

F, (12.2)

where ψ(.) denotes the feature maps extracted from the layer ReLU3-2 of the FaceNet.

Discriminative Loss: Similar to [Yan et al., 2016; Zhang et al., 2017b], our goal
is to make the discriminative network to tell if recovered faces contain the desired
attributes or not but fail to distinguish recovered faces from real ones. In the mean-
while, FRN should make the discriminative network DΦ fail to distinguish recovered
faces from real ones and the attributes of generated faces should match the input
attributes. Hence, in order to train the discriminative network, we take real FR face
images Ir and their corresponding ground-truth attributes a as positive sample pairs
(Ir, a). Negative samples are constructed from recovered faces Îr and their ground-
truth attributes a as well as real FR faces and mismatched (fake) attributes ã. There-
fore, the negative sample pairs consist of both ( Îr, a) and (Ir, ã). The parameters of
the discriminator Φ are updated by minimizing Ldis, expressed as:

Ldis(Φ)=−E(Ir ,a)∼p(Ir ,a)[logDΦ(Ir, a)]−E( Îr ,a)∼p( Îr ,a)[log(1−DΦ( Îr, a))]

−E(Ir ,ã)∼p(Ir ,ã)[log(1−DΦ(Ir, ã))],
(12.3)
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where p(Ir, a), p( Îr, a) and p(Ir, ã) indicate the distributions of real and recovered
faces and the corresponding attributes respectively, and p(Ir, ã) represents the distri-
butions of the recovered faces and the corresponding mismatched (fake) attributes.
DΦ(Ir, a), DΦ( Îr, a) and DΦ(Ir, ã) are the outputs of DΦ. We first update the param-
eters of the discriminative network, and Ldis loss is also back-propagated to FRN.

Our FNR loss is a weighted sum of three terms: the pixel-wise loss, the discrim-
inative loss, and the identity-preserving loss. The parameters Θ are obtained by
minimizing the objective function of the FRN loss as follows:

LFNR(Θ) =E(Ip,Ir ,a)∼p(Ip,Ir ,a)‖GΘ(Ip)− Ir‖2
F

+λ EIp∼p(Ip,a))[logDΦ(GΘ(Ip, a), a)]

+η E(Ip,Ir ,a)∼p(Ip,Ir ,a)‖ψ(GΘ(Ip, a))−ψ(Ir)‖2
F,

(12.4)

where λ determines a trade-off between the appearance and the attribute similarity,
and η determines a trade-off between the image intensity and the feature similarity.

As GΘ(·) and DΦ(·) are differentiable, we apply back-propagation with respect
to Θ and Φ, and optimize via the Stochastic Gradient Descent (SGD) combined with
Root Mean Square Propagation (RMSprop).

12.5.3 Implementation Details

The discriminative network DN is only required in the training phase. In the testing
phase, we take SP portraits and their corresponding attribute vectors as inputs and
feed them to FRN. The outputs of FRN are the recovered photo-realistic face images.
Although the attributes used for training are normalized between 0 and 1, they can be
scaled up and down, e.g.above 1 or below 0, to manipulate the final results according
to the users’ demand.

We employ convolutional layers with kernels of size 4 × 4 and stride 2 in the
encoder and deconvolutional layers with kernels of size 4 × 4 and stride 2 in the
decoder. The feature maps in our encoder are passed to the decoder by skip connec-
tions. Our network is trained with a mini-batch size of 64 with the learning rate set
to 10−3 and the decay rate set to 10−2. For STNs, we also use the same architectures
as in [Shiri et al., 2018] to align feature maps. In all our experiments, the parameters
λ and η are set to 10−2 and 10−3, respectively, gradually reducing λ by a factor 0.995
to emphasize the importance of the appearance similarity. However, to guarantee the
attributes to be embedded in the training phase, we cease decreasing λ when it is
lower than 0.005. As our method is feed-forward and no optimization is required at
the test time, it takes 8 ms to destylize a 128×128 image.

12.6 Dataset and Preprocessing

To train our AFRP network and avoid overfitting, a large number of SP/RF image
pairs are required. We use the CelebA dataset [Liu et al., 2015] to generate our
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 12.5: Samples of our synthesized dataset. (a) The ground-truth aligned real
face image. (b)-(k) The synthesized unaligned portraits form Wave, Scream, Candy,
Feathers, Composition VII, Starry night, Udnie, Mosaic,la Muse and Sketch styles which

have been used for training and testing our network.

training data. First, we randomly select 110K real faces from the CelebA dataset for
training and 2K images for testing. Second, we crop the central part of each image
and resize it to 128×128 pixels as our RF ground-truth face images Ir. Then, we
transform RF images including rotation and translation to obtain unaligned faces.
Besides, we only use three distinct styles for synthesizing our training dataset and
the selection criterion for the styles will be explained in Sec. 12.6.1. Finally, we
obtain 330K SP/RF pairs and their corresponding attributes for training. We also use
2K unaligned real faces to synthesize 20K SP images from 10 diverse styles as our
testing dataset. Those 10 different sytles used for training and testing are shown in
Fig. 12.5. Furthermore, we also add sketches as an unseen style to our test dataset.
There is no overlap between the training and testing datasets.

We choose 20 dominant attributes (Bald, Bangs, Big nose, Black Hair, Blond Hair,
Brown Hair, Eyeglasses, Gray Hair, Heavy Makeup, Male, Mouth Open, Mustache, Narrow
Eyes, No Beard, Pale Skin, Smiling, Straight Hair, Wavy Hair, Wearing Lipstick and Young)
from 40 attributes in CelebA and the ground truth attributes are binary 0/1 values.

12.6.1 Style Distance Metric

It is not practical to generate a large number of possible styles for training, and
thus we propose a style distance metric to select the most difficult styles for the face
recovery process. To this end, we compute Gram matrices for various styles from
feature maps of pre-trained VGG-network [Simonyan and Zisserman, 2014]. Then,
we measure the similarity of styles based on the Log-Euclidean metric [Jayasumana
et al., 2013] between Gram matrices of style images and the average Gram matrix of
all real faces in our training dataset. Here, we choose Candy, Wave and Mosaic styles
for training as their Gram matrices have larger distances to the average Gram matrix
of real faces among all the available styles.
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Table 12.1: Impact of tuning attributes on the classification results.

Attributes GT Attr. Acc.
Increased Attr.

Acc.
Decreased Attr.

Acc.

Young 95% 100% 0.5%

Male 100% 100% 1%

Beard 79% 100% 15%

12.7 Experiments

We compare our approach qualitatively and quantitatively to the state-of-the-art
methods [Johnson et al., 2016; Shiri et al., 2017; Isola et al., 2016; Zhu et al., 2017;
Shiri et al., 2018]. To conduct a fair comparison, we retrain these approaches on our
training dataset for the task of photorealistic face recovery from stylized portraits.

12.7.1 Attribute Manipulation in Face Recovery

Given an SP portrait, previous methods based on deep neural networks [Shiri et al.,
2017, 2018; Isola et al., 2016; Zhu et al., 2017; Johnson et al., 2016] produce an arbitrary
photorealistic face image. Those methods cannot output desired attributes in the final
results. In contrast, our method generates authentic face images which share similar
attributes to the ground-truths. Furthermore, by manipulating the attribute vectors,
our method can also post-edit the recovered results. As shown in Fig. 12.6(f), by
changing the hair color attribute, we can restore a face image of the same person
with different hair colors. Our method can manipulate the age of the recovered
faces, i.e., adding more wrinkles and age spots by changing the Young attribute, as
seen in Fig. 12.6(b). In addition, our network can remove the eye-lines and lipstick in
Fig. 12.6(c), open or close mouths in Fig. 12.6(d), add beard in Fig. 12.6(e), as well as
change the hair color in Fig. 12.6(f).

Moreover, to test whether the attribute information has been successfully embed-
ded in our network, we choose three different attributes, i.e.Young, Male and Beard,
and we train an attribute classifier for each attribute. By increasing and decreasing
the corresponding attribute values, the true positive accuracy is changed according-
ly, as illustrated in Tab. 12.1. This indicates that the attribute information has been
successfully embedded in our network. Therefore, we significantly increase the flex-
ibility of our method and successfully inject semantic information into the recovery
process.

12.7.2 Qualitative Evaluation

For qualitative evaluations, we provide sample results in Fig. 12.7. Note that Shiri
et al. [2017]; Isola et al. [2016]; Johnson et al. [2016] and Zhu et al. [2017] require
input SP faces to be aligned before recovery. For a fair comparison, we employ an
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(a) Gender (b) Age

(c) Makeup (d) Mouth

(e) Beard (f) Hair Color
Figure 12.6: Our method lets us fine-tune the recovered results by manipulating the
attributes. First row: Unaligned input portraits. Second row: RF ground-truth faces.
Third row: Our results with ground-truth attributes. Fourth row: Our results by
adjusting attributes. (a) Changing gender. (b) Adding age. (c) Removing makeup.

(d) Opening/ closing mouth. (e) Adding beard. (d) Changing hair color.
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(a)

(b) (c) (d) (e) (f) (g) (h)

Figure 12.7: Comparisons to the state-of-the-art methods. (a) The original RF image.
(b) Input portraits (from the test dataset) including the unseen styles Sketch, Starry,
Scream, La Muse and Udnie as well as the seen styles Candy and Mosaic. (c) Results
of Johnson et al. [2016]. (d) Results of Shiri et al. [2017] (e) Results of Isola et al.
[2016] (pix2pix). (f) Results of Zhu et al. [2017] (CycleGAN). (g) Results of Shiri et al.

[2018]. (h) Our results.

STN to align all the SP images. Our method and the method of Shiri et al. [2018]
automatically generate upright real face images. The aligned upright RF ground-
truth images are shown for comparison. We visually compare our approach against
five methods detailed below.

Johnson et al. [2016] propose a feed-forward style transfer method. We retrain
this approach for destylization. This method captures the correlation between feature
maps of the portrait and the synthesized face (Gram matrices) in different layers of
a CNN, but fails to preserve spatial structures of face images. Thus, their network
generates distorted facial details and produces unnatural artefacts. As shown in
Fig. 12.7(c), the facial details are blurred and the artistic styles have not been fully
removed.

Shiri et al. [2017] introduce a face destylization method which only uses a pixel-
wise loss in their generative network and a standard discriminator to enhance facial
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details. Even though it is trained on a large-scale dataset, It fails to generate authentic
facial details due to the existence of various styles. As seen in Fig. 12.7(d), this
method produces distorted results and the facial colors are inconsistent. It cannot
recover faces from unaligned portraits or large pose portraits either.

Isola et al. [2016] train a "U-net" generator augmented with a PatchGAN dis-
criminator in an adversarial framework, known as "pix2pix". Since the patch-based
discriminator is trained to classify whether an image patch is sampled from real
faces or not, this network does not take the global structure of faces into account. As
shown in Fig. 12.7(e), although pix2pix can generate acceptable results for the seen
styles, it fails to remove the unseen styles and produces obvious artifacts.

CycleGAN [Zhu et al., 2017] is an image-to-image translation method that uses
unpaired datasets. This network provides a mapping between two different domains
by the use of a cycle-consistency loss. Since CycleGAN also employs a patch-based
discriminator, it cannot capture the global structure of faces either. As CycleGAN
uses unpaired face datasets, the low-level features of the stylized faces and real faces
do not match correctly. As shown in Fig. 12.7(f), this method produces distorted
results and does not preserve the identities with respect to the input images.

Shiri et al. [2018] exploit an identity-preserving loss to reveal the photorealistic
faces from unaligned stylized faces while keeping the identity of the face image. They
also employ a simple autoencoder and standard discriminative network to recover
the real faces, but their discriminative network is only used to force the generative
network to produce sharper results without imposing attribute information. As vis-
ible in Fig. 12.7(g), their method suffers mismatched hair colors. As shown in the
third rows of Fig. 12.7(g), their method also recovers male facial details.

In contrast, our results demonstrate higher fidelity and better consistency with
respect to the ground-truth face images as shown in Fig. 12.7(h). We evaluate on por-
traits from seen/unseen styles and sketches, and our method produces high-quality
realistic faces which also match the semantic composition of ground-truth images. In
addition, our network recovers the photorealistic faces from various stylized portrait-
s of the same person as shown in Fig. 12.7. Note that the recovered faces resemble
each other. This demonstrates the robustness of our network with respect to differ-
ent styles. Also, thanks to our proposed style-distance metric, we can select more
difficult styles to train our network, which also facilitates the generalization ability
of our network.

12.7.3 Quantitative Evaluation

Face Reconstruction Analysis. To evaluate the reconstruction performance, we
measure the average Peak Signal to Noise Ratio (PSNR) and Structural Similarity
(SSIM) [Wang et al., 2004] scores on the entire test dataset. Table 12.2 indicates
that our method achieves superior quantitative performance in comparison to other
methods on both seen and unseen styles. As indicated in Tab. 12.2, we show the
quantitative results of solely using FRN, marked as FRN. Also, the results of using
both FRN and a standard DN, indicated by FRN+SDN, is demonstrated in Tab. 12.2.
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Table 12.2: Comparisons of PSNR and SSIM on the entire test dataset.

Method
Seen Styles Unseen Styles Unseen Sketches

PSNR SSIM PSNR SSIM PSNR SSIM

[Johnson et al., 2016] 17.85 0.76 18.07 0.75 18.11 0.76

[Shiri et al., 2017] 19.22 0.81 19.09 0.80 19.01 0.80

[Isola et al., 2016] 18.45 0.78 18.12 0.77 18.07 0.78

[Zhu et al., 2017] 18.35 0.75 18.29 0.75 18.08 0.76

[Shiri et al., 2018] 19.35 0.80 19.31 0.79 19.045 0.80

FRN 18.42 0.76 18.51 0.75 18.49 0.75

FRN + SDN 19.66 0.81 19.58 0.80 19.62 0.80

AFRP 20.01 0.84 19.99 0.83 19.98 0.83

The standard DN only forces FRN to generate realistic faces, and thus it improves the
results qualitatively and quantitatively. Since FRN augmented with attributes may
learn a trivial solution, where all attribute vectors will be neglected, using a standard
DN cannot force FRN to embed such attribute information. On the contrary, our
conditional DN is able to distinguish whether the attributes match the input faces or
not, thus forcing FRN to embed attribute information in the process of face recovery.
In this manner, the ambiguity is significantly reduced and the network achieves better
performance.
Face Retrieval Analysis. To demonstrate that the faces recovered by our method
are highly consistent with their ground-truth counterparts, we run a face recognition
algorithm [Parkhi et al., 2015] on our test dataset for both seen and unseen styles. For
each investigated method, we consider 2K recovered faces from one style as query
images and then use their ground-truth real faces as a gallery dataset. We run the
method of Parkhi et al. [2015] to check whether the correct person is retrieved within
the top-5 matched images and then an average retrieval score is obtained. We repeat
this procedure for each style and then obtain the average Face Retrieval Ratio (FRR)
by averaging all scores from the seen and unseen styles, respectively. As indicated
in Tab. 12.3, our AFRP network outperforms the other methods across all the styles.
Even for the unseen styles, our method can still generate realistic facial details in
high fidelity to the ground-truths.

12.7.4 Destylizing Original Paintings and Sketches

Figure 12.8 illustrates that our method is not limited to computer-generated stylized
portraits and it can also efficiently recover photorealistic faces from original paintings
and sketches. We choose real paintings from art galleries and hand-drawn sketches
as our test examples. Since we do not know the ground-truth attributes, we set
the attribute vectors to neutral values, i.e., 0.5. As shown in Fig. 12.8, even though
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Table 12.3: Comparisons of FRR on the entire test dataset.

Method Seen Styles Unseen Styles Unseen Sketch

[Johnson et al., 2016] 55.57% 50.48% 54.36%

[Shiri et al., 2017] 78.00% 66.89% 65.26%

[Isola et al., 2016] 76.03% 62.67% 64.64%

[Zhu et al., 2017] 36.07% 33.68% 32.75%

[Shiri et al., 2018] 84.51% 75.32% 75.44%

AFRP 93.08% 83.14% 92.05%

(a) (b) (c) (d)

Figure 12.8: Results for the original unaligned paintings and hand-drawn sketches.
Right: the original portraits. Left: our results.

the attributes may be inaccurate, our method is still able to generate authentic face
images regardless of their original styles.

12.8 Conclusion

We introduce an attribute guided generative-discriminative network to recover pho-
torealistic faces from unaligned stylized portraits in an end-to-end fashion. With the
help of the conditional discriminative network, our network successfully incorporates
facial attribute vectors into the residual features of input portraits at the bottleneck of
the autoencoder. Our network is able to preserve the identity of generated faces and
it can post-edit the recovered results by adjusting the attribute information. More-
over, our algorithm demonstrates good generalization ability for recovery of portraits
from unseen styles, real paintings as well as hand-drawn sketches.

12.9 Appendix

In Fig. 12.9, we provide more additional results demonstrating the performance of
our AFRP network compared to the state-of-art approaches.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 12.9: Comparisons to the state-of-the-art methods. (a) The original RF images.
(b) Input portraits (from the test dataset) including the unseen styles as well as the
seen styles. (c) Results of Johnson et al. [2016]. (d) Results of Shiri et al. [2017] (e)
Results of Isola et al. [2016] (pix2pix). (f) Results of Zhu et al. [2017] (CycleGAN). (g)

Results of Shiri et al. [2018]. (h) Our results.
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Chapter 13

Conclusion and Future Work

13.1 Conclusion

This thesis mainly addresses the face hallucination problems including super-resolving
high-resolution (HR) faces from their very low-resolution (LR) counterparts and re-
covering realistic face images from stylized portrait images. The contributions of this
thesis are seven aspects: (1) we propose an Ultra-Resolution Discriminative Genera-
tive Network (URDGN) as well as a deconvolutional network to super-resolve very
LR aligned faces by leveraging large-scale face images, where similar facial patterns
are learned and used to generate HR facial details (seeing chapter 2 and 3); (2) we
incorporate spatial transformer networks into our upsampling networks to align L-
R faces in the procedure of super-resolution. In this manner, our method does not
require the input LR faces to be aligned beforehand, thus mitigating the artifact-
s caused by misalignments of LR face images (seeing chapter 4); (3) we develop a
decoder-encoder-decoder architecture to super-resolve noisy LR face images, where
the first decoder and the encoder are designed to obtain a noise-free LR faces and the
second decoder is used to achieve high-quality upsampled HR face images (seeing
chapter 5); (4) we propose a multi-scale upsampling network architecture to hallu-
cinate LR face images in different resolutions while preserving all the information
in the LR inputs (seeing chapter 6); (5) we present to embed mid-level face struc-
ture information and high-level semantic information into the process of face super-
resolution instead of only using low-level intensity similarity as a constraint (seeing
chapter 7 and 8); (6) we propose a transformative autoencoder to jointly frontalize
and super-resolving very LR face images. We also employ a triplet loss function to
train the network, which aims to minimize the distances between the projected codes
of side faces and their corresponding frontal ones (seeing chapter 9); (7) we develop
face destylization methods to recover photorealistic face images from stylized por-
trait images in terms of appearance similarity and identity similarity (seeing chapter
10, 11 and 12).

To be specific, in chapter 2, we present a new and very capable discriminative
generative network to ultra-resolve very small LR face images. Our algorithm can
both increase the input LR image size significantly, i.e., 8×, and reconstruct much
richer facial details. By introducing a pixel-wise `2 regularization on the generated
face images into the framework of URDGN, our method is able to generate authentic
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HR faces. Since our method learns an end-to-end mapping between LR and HR face
images, it preserves the global structure of faces well. Furthermore, in training, we
only assume the locations of eyes to be approximately aligned, which significantly
makes the other face datasets more attainable. As an alternative to URDGN, we
also present an effective method to super-resolve very small LR face images by ex-
ploiting deconvolutional neural networks in chapter 3. We demonstrate that using
a single deconvolutional-convolutional network is able to ease the training difficulty
of URDGN as well as reduce artifacts caused by the deconvolutional layers and the
discriminative networks in URDGN. However, a post-processing step is required to
enhance the visual quality of the upsampled faces since only using an `2 loss tends
to produce overly smooth results.

In chapter 4, we develop a Transformative Discriminative Network (TDN) to
super-resolve unaligned very LR face images in an end-to-end manner. By incor-
porating spatial transformer networks into our upsampling network, our network
learns how to align faces while upsampling. In this manner, our method does not
require the input LR faces to be aligned beforehand and thus alleviates the arti-
facts caused by the misalignments of LR face images. In chapter 5, we present a
Transformative Discriminative AutoEncoder (TDAE) to upsample noisy LR face im-
ages while reducing artifacts caused by the noise. Since directly denoising LR faces
may corrupt the LR facial patterns, the deteriorated facial patterns will lead to dis-
tortions in the upsampled HR faces. Instead of removing noise in LR images, we
leverage on a new decoder-encoder-decoder architecture to super-resolve unaligned
and noisy very LR face images with a challenging upsampling factor of 8×. Our
networks jointly align, remove noise, and discriminatively hallucinate input images,
thus achieving high-quality upsampled HR face images. In chapter 6, we present a
multiscale transformative discriminative network to super-resolve very small LR face
images. By designing a two branch input neural network, we can upsample LR im-
ages in various resolutions without discarding the residuals of resized input images.
In this manner, our method is able to utilize all the information from inputs for face
super-resolution.

In chapter 7, we present a novel multi-task upsampling network to super-resolve
very small LR face images. We not only employ the image appearance similarity but
also exploit the face structure information estimated from LR input images them-
selves in the super-resolution. In this manner, we preserve the spatial relationships
between facial components, thus producing more authentic face images. With the
help of our facial component heatmap estimation branch, our method super-resolves
faces in different poses and does not suffer from distortions caused by erroneous
facial landmark localization in LR inputs. In chapter 8, we introduce an attribute em-
bedded discriminative upsampling network to super-resolve very LR unaligned face
images by a large magnification factor (i.e., 8×) in an end-to-end fashion. With the
help of the conditional discriminative network, we successfully embed facial attribute
information into the upsampling network, and thus reduce the inherit ambiguity in
super-resolution. After training, our network is not only able to super-resolve LR
faces but also able to fine-tune the upsampled results by adjusting the attribute in-
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formation. In this way, our network can generate HR face images much closer to
their corresponding ground-truth ones, thus achieving superior face hallucination
performance.

In chapter 9, we introduce a Transformative Adversarial Nerual Network (TANN)
to upsample and frontalize very LR unaligned face images jointly in an end-to-end
fashion. Our network learns how to frontalize and align LR faces while upsampling
them, i.e., 8×. With the help of our proposed triplet loss, we can enforce the repre-
sentations of input LR profile faces to be close to the representations of their frontal
counterparts and far away from the representations of other frontal faces in the latent
subspace. In this way, the frontalized faces are much closer to their corresponding
frontal ones since the same upsampling network is used. By exploiting the intra-
class discriminative information and the feature constraints, our network generates
realistic facial details.

In chapter 10, we present a face destylization method that extracts features of a
stylized portrait and then exploits them to generate its corresponding photo-realistic
face. Thus, our network learns a mapping from stylized facial feature maps to re-
alistic facial feature maps. Moreover, our network can successfully extract facial
features from different styles and thus is able to destylize unseen style portraits as
well. In chapter 11, we employ an identity-preserving loss to further encourage our
network to generate identity trustworthy faces. Regarding that stylized portraits may
be unaligned, spatial transformer networks are incorporated into our style removal
network, motivated by the work in chapter 4. Therefore, our style removal network
can not only remove various styles from unaligned portraits but also preserve the
identity information of the portraits. In chapter 12, we introduce an attribute guid-
ed generative-discriminative network to recover photorealistic faces, inspired by the
work in chapter 8. Our network successfully incorporates facial attribute vectors into
the residual features of input portraits. In this way, our network can not only pre-
serve the identities of the generated faces but also post-edit the recovered results by
adjusting the attribute information. Therefore, we significantly increase the flexibility
of our style removal network and thus recover realistic face images much closer to
the latent face images.

13.2 Future Work

In our previous works, we mainly use bicubic interpolation to downsample ground-
truth HR face images and then construct the LR and HR face image pairs for training
our networks. However, LR faces may undergo different degradation models. For
instance, blur or mosaic effects may appear in the LR face images. Even though our
proposed TDAE is able to mitigate some artifacts caused by the blur and mosaic
effects, learning the latent degradation models from real LR face images is more
desirable. In the future, we aim to not only learn the mapping between the LR faces
and their HR counterparts but also learn the degradation process of LR faces by
taking different degradation effects into account. Therefore, we can make our face
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hallucination networks more robust and practical in real-world applications.
Similar to other supervised deep learning based methods, our neural networks

may fail to super-resolve high-quality HR faces when the testing domain, i.e., target
domain, is significantly different from the training one, i.e., source domain. For ex-
ample, our network is trained on a dataset of face photographs, while the test images
are sampled from surveillance videos. Even though we can re-train our network on
the target domain, transferring our learned network to other domains for face super-
resolution is also desirable, especially when there are not sufficiently many training
examples in another domain.

For both face super-resolution methods and face destylization methods, we do
not design specific components or losses to recover the occluded facial parts if the
faces are partially occluded by other objects. One possible research topic is to remove
occluded regions in the input images while upsampling or destylizing. In particular,
face parsing methods can be firstly utilized to analyze the facial components as well
as the occluded regions in the images. Then, we can combine high-level semantic
information to inpaint the occluded or missing regions while upsampling LR faces
or removing the styles in the portraits. Therefore, we can achieve realistic occlusion-
free face images, thus facilitating human observation as well as machine perception.
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