Pulse-shape effects in strong-field atomic ionization by an XUV pulse

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/635/9/092021)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.56.97.171
This content was downloaded on 29/07/2016 at 08:21

Please note that terms and conditions apply.
Pulse-shape effects in strong-field atomic ionization by an XUV pulse

Klaus Bartschat*, Joel Venzke*, John Emmons*, Sean Buczek*, Alexei N. Grum-Grzhimailo†, Elena V. Gryzlova†, Igor A. Ivanov#, and Anatoli S. Kheifets*

*Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA
†Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
#Center for Relativistic Laser Science, Institute for Basic Science, Gwangju 500-712, Republic of Korea

Synopsis

Achieving a significant displacement, defined as a time integral of the vector potential taken over the pulse duration, in strong-field atomic ionization critically depends on the envelope function used for the electric field. Due to the sensitivity of theoretical predictions to the pulse details, an experimental realization of the effect appears to be a major challenge.

In a recent paper [1], strong-field ionization of atomic hydrogen as well as lithium driven by a short extreme ultraviolet (XUV) pulse was studied. The key results of the paper were some peculiar effects in the angular-momentum distribution of the ejected electron, provided the pulse alone caused a significant non-zero displacement of the electron without it leaving the laser focus. The displacement is defined as the time integral of the pulse vector potential taken over the pulse duration, i.e., essentially the second integral over time of the electric field. These effects should be visible in the photo-electron angular distribution [1].

Further examination [2] of the origin of the displacement, however, shows that its value critically depends on the assumption of a plateau in the envelope function of the electric field, and that the ramp-on phase is fine-tuned, via its length and/or the carrier envelope phase (CEP), in such a way that a drift velocity generated during the ramp-on phase can increase this displacement further. Seemingly minor variations in the electric field cause significant changes in the final results.

Specifically, we investigate \(n_1\)-\(n_2\)-\(n_3\) pulses, where \(n_1\), \(n_2\), and \(n_3\) denote the number of cycles in the sine-squared ramp-on, plateau, and sine-squared ramp-off phases of the pulse, respectively. Furthermore, we either set the envelope function of the electric field (\(E(t)\)) or the vector potential (\(A(t)\)) and then calculate the respective other field using the relationship \(E(t) = -\frac{d}{dt}(A(t)/c)\).

Figure 1 shows the effects of two very similar pulses, which nevertheless differ slightly, since the envelope function of the electric field was set in the left panels while that for the vector potential was set on the right. Due to this variation, obtaining different results does not violate the principle of gauge invariance. For one of the cases, the displacement becomes significant and essentially grows proportional to the length of the plateau. In that case, indeed, there is a significant probability to find angular momenta of the ejected electron other than the expected \(p\)-character for a one-photon transition.

As usual, these theoretical predictions were obtained with idealized pulses, which do fulfill the basic requirements of Maxwell’s equations for electromagnetic waves propagating in vacuum. In light of the sensitivity of the results, an experimental verification of the displacement effects appears to be very challenging.

This work was supported by the United States National Science Foundation under grants PHY-1068140, PHY-1430245, and the XSEDE allocation PHY-090031, and by the Australian Research Council under Grant No. DP120101805.

References

* E-mail: klaus.bartschat@drake.edu

Published under licence by IOP Publishing Ltd 1