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Abstract

This paper addresses a robust and efficient so-
lution to eliminate false loop-closures in a pose-
graph linear SLAM problem. Linear SLAM was
recently demonstrated based on submap join-
ing techniques in which a nonlinear coordinate
transformation was performed separately out
of the optimisation loop, resulting in a con-
vex optimisation problem. This however in-
troduces added complexity in dealing with any
false loop-closures, which mostly stems from
two factors: a) the limited local observations
in submap-joining stages and b) the non block-
diagonal nature of the information matrix of
each submap. To address these problems, we
propose a Robust Linear SLAM (RL-SLAM) by
1) developing a delayed optimisation for out-
lier candidates and 2) utilising a Schur com-
plement to efficiently eliminate corrupted in-
formation block. Based on this new strategy,
we prove that the spread of outlier information
does not compromise the optimisation perfor-
mance of inliers and can be fully filtered out
from the corrupted information matrix. Exper-
imental results based on public synthetic and
real-world datasets in 2D and 3D environments
show that this robust approach can cope with
the incorrect loop-closures robustly and effec-
tively.

1 Introduction

Autonomous navigation system, which is a critical com-
ponent of autonomous vehicles, is commonly composed
of GPS sensors integrated with dead-reckoning sen-
sors, such as inertial measurement units (IMU) or
wheel/laser/visual odometry. To overcome the inher-
ent vulnerabilities of this integrated system in GPS-
denied environments, map-aided navigation has been ex-
tensively investigated and applied for environments such

as indoor, the urban canyon and underwater. Thus
building accurate maps becomes an essential prerequi-
site for a large number of robotics applications. Si-
multaneous Localization and Mapping, well-known as
SLAM [Smith and Cheeseman, 1986], was creatively pro-
posed to circumvent the extra loads of map building.
SLAM presents that an autonomous robot can incremen-
tally map an unknown environment without any prior
information, whilst simultaneously determining its loca-
tion utilizing the generated map. No infrastructure or
any prior knowledge is required, making it quite attrac-
tive for robots operating in partially or fully unknown
environments [Guivant and Nebot, 2001],[Newman et al.,
2002], [Kim and Sukkarieh, 2007], [Ribas et al., 2008].

There exist a large number of SLAM solutions which
can be broadly categorised as a) filtering based and/or
b) optimisation based approach. For the former, the
SLAM problem is formulated in an augmented state
space with the current robot pose and observed land-
mark positions as the state variables. Following the the-
oretical work on Bayesian filtering, extended Kalman fil-
ter (EKF) [Dissanayake et al., 2001], compressed EKF
(CEKF) [Guivant and Nebot, 2001], particle filter known
as FastSLAM [Montemerlo, 2002] and sparse extended
information filter (SEIF) [Thrun et al., 2004] were suc-
cessfully demonstrated. Due to their incremental nature,
these approaches are generally acknowledged as on-line
SLAM techniques. On the other hand, the latter, also
called as graph-based SLAM, models the SLAM system
in a graphical structure in which each robot pose or land-
mark position is represented as a node, whilest a con-
straint resulted from either odometry or scan matching
is represented as an edge to connect two related nodes.
Finding its solution is then equivalent to finding an op-
timal configuration of nodes by a nonlinear least square
optimisation, thus called an off-line or batch processing
technique.

Motivated by the progresses on the nonlinear op-
timisation techniques, and Linear SLAM (L-SLAM)
which utilises submap joining approach by separating
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the nonlinear transformation out of the optimisation pro-
cess [Zhao et al., 2013], we present a robust implemen-
tation of Linear SLAM under outliers. In particular, the
main contributions of this paper are:
• We introduce a delayed optimisation strategy for

L-SLAM to effectively handle any potential loop-
closure outliers in each map-joining stage. This is
crucial in utilising map joining techniques as the
outlier detection becomes very challenging due to
the limited local information available.

• We realise efficient outlier-detection in the local
submap joining process by using the Expectation-
Maximization (EM) method. At the expectation
step, all erroneous loop closures except the delayed
constraints are iteratively down-weighted.

• We prove that the outlier information in the cor-
rupted information matrix does not degrade the op-
timisation performance before the outlier-rejection.
In particular, The corrupted information matrix
block can be efficiently eliminated by using the
Schur complement.

The remainder of the paper is organized as follows.
Following an overview of related work in the next sec-
tion, pose-graph based SLAM is described in Section 3.
In Section 4, an insight into Linear SLAM is provided.
Section 5 presents a robust strategy for solving the Lin-
ear SLAM problem, including the delayed optimisation,
the detection of outliers and the recovery of information
matrix, namely the exclusion of outliers. The perfor-
mance of the proposed RL-SLAM is validated in Sec-
tion 6 through publicly available synthetic and practical
datasets in 2D and 3D environments. Finally, conclu-
sions and future work are provided in Section 7.

2 Related Work

The optimisation-based approaches to solve the SLAM
problem consider all measurements in a batch process.
Lu and Milios [Lu and Milios, 1997] were the first in
formulating the SLAM problem as a global graph op-
timisation based on maximum likelihood criterion. It
is quite common that the optimisation process refers to
thousands of nonlinear equations, resulting high com-
putational complexity. Several approaches have been
proposed to significantly improve the performance, in
terms of efficiency and convergence, such as relax-
ationased [Howard et al., 2001], square root smoothing
and mapping (

√
SAM) [Dellaert and Kaess, 2006], in-

cremental SAM (iSAM) [Kaess et al., 2007], stochas-
tic gradient descent-based (SGD) [Olson et al., 2006]
and so forth. Grisetti et al. [Grisetti et al., 2010] pro-
vided a comprehensive introduction to the graph-based
SLAM problem, in particular for the manifold-based ap-
proach to handle the non-Euclidean nature of angular

orientation. More recently, Kümmerle et al. [Kümmerle
et al., 2011] presented a general framework of graph-
based SLAM optimisation, called g2o, with open-source
C++ codes to implement nonlinear minimization effi-
ciently. Different from filtering-based approaches, these
approaches aim to optimize the full trajectory. Thus
they are also known as smoothing methods.

Local submap joining techniques have shown to be
computationally efficient in large-scale map building.
The key idea of this method is to partition the whole
map into a sequence of submaps with limited, manage-
able size, and then to combine them to build up the
original large map. Under the bounded size, the local
computation or transformation commonly holds better
performances. Tardós et al. [Tardós et al., 2002] applied
sonar sensor measurements to build the local maps and
finished the joining with sequential operations. Pérez et
al. [Paz et al., 2008] proposed the Divide and Conquer
joining method which efficiently reduced the computa-
tional complexity to be linear with the number of the
features at each joining step. Taking into account the
sparse property of the graphical structure, a sparse local
submap joining filter (SLSJF) based on extended infor-
mation filter (EIF) was proposed in [Huang et al., 2008],
where each local submap is processed as an integrated
measurement, resulting in an exactly sparse information
matrix and no information lost.

Efforts on the linear formulation of graph-based SLAM
have been devoted to reducing or avoiding the nonlinear
and nonconvex optimisation which is susceptible to local
minima. One theoretical analysis work in [Huang et al.,
2010] showed that the nonlinearity of the SLAM prob-
lem is mainly introduced by orientations, while the map
joining strategy can significantly reduce the linearization
error in optimisation stage. With the independence as-
sumption of the position and orientation measurements,
Carlone [Carlone et al., 2011] proposed a closed-form ap-
proximation to the 2D pose-graph based SLAM problem,
so that the nonlinear optimisation problem is cast into
a linear optimisation one. In exploring why the conven-
tional nonlinear SLAM solutions commonly do not trap
into local minima even with a poor initial guess, Huang
et al. [Huang et al., 2012] provided an insight into the
number of local minima in SLAM systems. In addition,
another crucial performance of the nonlinear solutions
to SLAM is the convergence, which is affected by the
measurement accuracy, the inter-nodal distance and the
connectivity of the graph as discussed in [Carlone, 2013].
To address these issues, Zhao et al. [Zhao et al., 2013]
proposed a linear SLAM algorithm which firstly transfers
two submaps into the same coordinate frame before the
joining. Then the joining process can be implemented
by a linear least square. In particular, this method is
available for 2D/3D cases and feature/pose-based SLAM
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and has been successfully used for the monocular SLAM
problem [Zhao et al., 2014].

Considering the vulnerability of state-of-the-art non-
linear optimisation to outliers, different robust strate-
gies have been investigated in the last few years. Ol-
son and Agarwal [Olson and Agarwal, 2012] proposed
the Max-Mixture method (MM) in which loop closures
were modeled as a multi-model distribution with a null
hypothesis, which holds a very large variance. By itera-
tively verifying and weighting these hypotheses, the null
hypotheses are down-weighted and are accepted for out-
liers. Sünderhauf and Protzel [Sünderhauf and Protzel,
2012b][Sünderhauf and Protzel, 2012a] proposed switch-
able constraints-based method (SC) in which switch vari-
ables are introduced for each loop closures, so that the
outliers are switched off in the optimizing process. Agar-
wal et al. [Agarwal et al., 2013][Agarwal et al., 2014] pro-
posed Dynamic Covariance Scaling (DCS), a variant of
switchable constraints. This method efficiently reduces
the dimension of state vector by providing close-form
solutions to scaling factors. The Realizing, Reversing,
Recoving algorithm (RRR) in [Latif et al., 2013] was
proposed to detect and remove incorrect loop-closures
by a series of chi-square tests between loop closures
and optimisation results. A robust approach based on
Expectation-Maximization (EM) in [Lee et al., 2013] it-
eratively computed weights for each loop-closure con-
straints and optimizes the configuration of poses in ex-
pectation and maximization steps, respectively. Differ-
ent form the first three approaches where the failed con-
straints are always maintained with low weights, the EM
rejects all failed constraints as in the RRR. However, all
aforementioned robust methods are proposed for the full
SLAM problem, it still requires a further research on the
robust strategy for the local map joining-based SLAM.

3 Pose-Graph SLAM

Compared with the filtering SLAM, the pose-graph
SLAM constructs a graph with robot poses as its ver-
tices and inter-pose constraints as edges as briefed in
Introduction. The solution to a pose-graph SLAM prob-
lem can be seen as finding the pose trajectory which
maximally satisfies those edge constraints. This is also
equivalent to minimising a specified error function to ob-
tain an optimal pose configuration.

Let M = (V, E) denote the directed graph (or map)
of SLAM, where each vertex xi ∈ V, (1 ≤ i ≤ |V|), indi-
cates a robot pose, and each edge zij ∈ E , represents a
constraint from xi to xj . In particular, if j = i+1, zij in-
dicates a sequential motion constraint obtained from the
odometry measurement, otherwise a loop-closure con-
straint. Let the total number of vertices and edges be n
and m, that is n = |V| and m = |E|, respectively. Then,
the measurement error corresponding to zij is commonly

defined as
eij = fij(xi,xj)− zij (1)

where fij(·, ·) is a nonlinear measurement function from
xi to xj , and eij is a measurement error vector with a
zero mean and an information matrix Iij . Under Gaus-
sian assumption, the pose-graph SLAM problem is to
maximise the conditional likelihood function

p (X|Z) = C · exp

−∑
(i,j)

eT
ijIijeij

 , (2)

where C is a normalisation constant, X = {xi} and Z =
{zij} are the stacked vertex and measurement vectors,
respectively. This is equivalent to minimise the negative
log-conditional likelihood as

argmin
X

(− ln p(X|Z)) = argmin
X

∑
(i,j)

eT
ijIijeij , (3)

where the log constant term is dropped. A detail intro-
duction can be found in [Grisetti et al., 2010]. There ex-
ist a variety of popular approaches to find the minimum
of Eq. (3), such as Gaussian-Newton and Levenberg-
Marquardt (LM). In particular, g2o [Kümmerle et al.,
2011] is an open-source package providing efficient and
accurate solutions. These approaches, however, all re-
quire an initial guess of the poses for linearsation and
iteration. In case the initial value is poor, the optimisa-
tion results can easily be trapped in local minima.

4 Generalised Least Squares-based
Linear SLAM

In L-SLAM the nonlinear coordinate transformation is
performed out of the optimisation process, thus enabling
convex optimisation methods such as least-squares opti-
misation. In this work, we will only consider a pose-
graph SLAM (thus with no feature maps) and assume
no odometry errors as in the previous work.

Adopting the definition of local submaps in [Zhao et
al., 2013], Mi

j represents a jth local map anchored by a
pose xi. That is the coordinate sytem is defined by the
anchor pose with its position vector being the origin and
the attitude (orientation) the coordinate axes.

Each submap is typically built along the sequential
odometry measurements and thus the last pose in one
submap can be another anchor pose in the following
submap. For example, suppose ith map Ma

i is anchored
by a pose xa and has a pose xb as its last pose, which
subsequently becomes the next anchor pose in the fol-
lowing jth map Mb

j , where j = i + 1.
The key operation in L-SLAM is to perform the coor-

dinate transformation before applying the map joining
rather than within the joining. Consequently, the old
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anchor pose-a in Ma
i should be transformed into a new

anchor pose-b so that the submap is in the same coordi-
nate system of Mb

j as

Xb
i = h(Xa

i ) (4)
Ib

i = (JaP a
i Ja,T )−1 = JbIa

i Ja, (5)

where h(·):Rn 7→ Rn(n = |V| is the nonlinear coordinate
transformation on a pose manifold (see Eq. (9) in [Zhao
et al., 2013]), and Ja and Jb are the Jacobians of h(·)
and h−1(·), respectively. In addition, the new vertex set
should be formed by replacing the pose b with a in Va

p as
pose b becomes now the new origin of the coordinates.
Please note that Jb is the inverse of the Ja from the
inverse theorem of the coordinate transformation.

Although the information matrix of each original lo-
cal submap is commonly set as a (block) diagonal ma-
trix, it becomes a non-(block) diagonal matrix from a
sequence of nonlinear coordinate transformations in L-
SLAM. This will be further discussed in Section 5.3.

Stacking two submaps, the combined map becomes a
union of two submaps

M̃b
ij = Mb

i ∪Mb
j , (6)

with X̃b
ij = Xb

i ∪ Xb
j and Ĩb

ij = blkdiag(Ib
i , Ib

j ). Thus
Eq. (3) can be rewritten for the estimated map Mb

ij in
the generalised linear least squares framework

argmax
X̂

p (X̃b
ij |Xb

ij) = argmin
X̂

‖X̃b
ij −HXb

ij‖Ĩb
ij

, (7)

and the estimated X̂b
ij and Îb

ij become

X̂b
ij = H+X̃b

ij , Îb
ij = HT Ĩb

ijH, (8)

where H+ is a general Moore-Penrose inverse given by
(HT Ĩb

ijH)−1HT Ĩb
ij and H is a coefficient matrix of di-

mension (ni+nj)×nij . If the ith edge in X̃b
ij corresponds

to the jth vertex in Xb
ij , it has the block Hi,j = I, oth-

erwise zeros.

5 Robust Linear SLAM

L-SLAM gains the advantages of linearity by performing
the nonlinear transformation before the optimisation. It
however, introduces added difficulties in handling the
loop-closure outliers due to insufficient information and
the correlated information matrix resulted from a se-
ries of nonlinear transformations. The aforementioned
robust approaches in the SLAM problem mainly focus
on the (block) diagonal covariance matrix, where the
outlier-rejection could be facilely conducted by deacti-
vating or eliminating incorrect constraints and its infor-
mation matrix blocks. In contrast, the outlier informa-
tion can spread out over the whole information matrix

(a)

(b)

Figure 1: A pose-graph SLAM example used in this pa-
per. Solid lines denote odometry measurements, whilst
dashed lines represent loop-closure constraints. Each
vertex xi indicates a robot pose, and edges are marked
as zij .

in non block-diagonal cases as considered in this work.
Thus a necessary operation is required to correctly re-
cover the information matrix. Different from the nonlin-
ear SLAM utilising a batch optimisation, L-SLAM per-
forms a series of local optimizations on two submaps.
Due to the locality and thus limited information avail-
able in each optimisation stage, it becomes challenging
to screen out outliers reliably. To address this, we intro-
duce a robust approach to L-SLAM with three stages:
delayed optimisation, outliers detection and exclusion.

5.1 Delayed optimisation
Following the adjustment of the coordinate frame, the
multi-map M̃b

ij describes all available local information.
In general, there exist multiple pose constraints from the
new anchor pose. Without taking into account outliers,
all constraints are averagely fused in a least-square sense
in L-SLAM. This joining strategy can provide acceptable
results if there are no loop-closure outliers.

To handle potential erroneous edges, delayed optimi-
sation augments all pose candidates into the graph and
postpones the merge to the next joining level, while com-
bining unambiguous poses. Once odometry pose mea-
surements arrive, which are assumed highly accurate in
this work, the delayed loop-closures are declaired as in-
liers or outliers.
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Figure 2: The joined and delayed map from two submaps
Mb

1 and Mb
2. The index (1, 2, · · · ) is used to separate

different edges to a same pose. The dotted lines repre-
sent the hidden correlation between two poses. Colour
vertexes are the origins where submaps are projected to,
while gray vertexes represent the delayed pose appearing
in both two submaps.

Figure 1 illustrates an example of pose-graph SLAM
which is used in this work to demonstrate the de-
layed optimisation. From this graph, two successive lo-
cal submaps can be extracted as Ma

1 = (Va
1 , Ia

1 ) and
Mb

2 = (Vb
2 , Ib

2), where Va
1 = {b, c, g} and Vb

2 = {c, f, g}.
Note that, the two local submaps can also be delayed
submaps from the previous joining step and can include
two or more edges between two poses. The pose xb is
the last odometry-pose in Ma

1 and thus acting as a new
anchor pose of Mb

2.
As discussed in Section 4, Ma

1 , defined in the anchor
pose xa, needs to be transformed with respect to the
pose xb, giving Mb

1 with Vb
1 = {a, c, g}. The stacked

multmap M̃b
12 can then be obtained by including all

poses, giving Ṽb
12 = {a, c, g,Vb

2}. Please note that in
the diagram xc is an odometry-pose which is assumed
outlier-free and xg is potentially an outlier. In L-SLAM,
these were equally combined giving Vb

12 = {a, c, g, f} as
illustrated in Fig. 2(a), whilst the delayed pose set is
augmented with all candidates as Vb

12 = {a, c, f, g1, g2}
as shown in Fig. 2(b).

5.2 Outlier-Detection
In the robust nonlinear pose-graph SLAM with (block)
diagonal information matrix, potential outlier con-
straints are gradually down-weighted in each nonlinear
equation. Similarly, we introduce such weights in the
submap joining process. Then the conditional likelihood
(Eq.(2)) can be rewritten as a marginalisation of a joint
density with respect to the weight variables

p (X|Z) =
∫
W

p (X,W|Z)dW (9)

W = {wij |i = 1, · · · , n; j = 2, · · · , n; i < j}

where W is a diagonal weight-coefficient matrix. Lee et
al. [Lee et al., 2013] has shown that the classification EM
algorithm is an efficient approach to find the maximum

probability solution to p(X|Z), where the expectation
and maximization steps are performed iteratively to cal-
culate the weights and poses, respectively. In particular,
pose constraints with low weights are regarded as out-
liers and filtered out. Thus this strategy is employed to
detect outliers in this work.

Under the assumption of zero wheel-slips in odome-
try measurements, the weights of odometry and delayed
constraints are all set to 1. In contrast, the weight wij

for the constraint zij from a pose i to a pose j can be
modelled as a Cauchy function

wij =
C2

C2 + ‖fij(xi,xj)− zij‖2
Iij

, (10)

where the weight will have 1 if the errors are zero and will
approach to 0 as the matching errors increase. The half-
weight point is controlled by the constant C. During
each iteration, if the weight wij corresponding to the
constraint zij is larger than the pre-specified threshold
δ, this constraint is declared as an inlier loop closure,
otherwise an incorrect loop closure with wij = 0.

5.3 Outlier-Exclusion
As mentioned in Section 5.1, the information of outliers
are retained untill they are successfully resolved in the
joining process, resulting in a corrupted information ma-
trix. It can be shown that the outlier-rejection can be
performed by cutting out the corresponding rows and
columns in the covariance matrix. Thus a direct ap-
proach is to first compute its covariance matrix, elimi-
nated the corrupted rows/columns, and then recover the
information matrix. However, it is not efficient due to in-
volvement of the full matrix inversion. To avoid the full
matrix inverion while retaining the benefits of the in-
formation matrix, we propose to use Shur complement.
Suppose that Ia is an inlier information block and Ib an
outlier block

I =
[
Ia Iab

Iba Ib

]
. (11)

Unlike the covariance matrix case, the Ia is fully cor-
rupted by the Ib which can be recovered by utilising the
Shur complement,

Ia = Ia − IabI−1
b Iba. (12)

The number of the non-zero entries in Iab is no larger
than 3mlog2(n) in 2D cases or 6mlog2(n) in 3D cases.
Particularly, outliers are commonly distributed in dif-
ferent submaps and will be eliminated gradually in the
joining process. Consequently, false constraints informa-
tion can be fully filtered out by the Schur Complement
with low computational complexity.
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Figure 3: RL-SLAM results (red color) for two real
datasets: Bicocca (a) and New College (b) with real out-
liers shown as cross-lines. L-SLAM results are shown in
light cyan colour for comparison.

6 Results and Evaluations

There are several publicly available benchmark datasets
for the pose-graph SLAM. To validate the performance
of the proposed approach against different numbers
of outliers, we chose five synthetic datasets in 2D
and 3D environments: City10000, ManhattanOlson3500,
Sphere2500, Intel Research Lab, and Parking Garage
datasets. Submaps generated from these datasets can
be found in [Zhao et al., 2013] as well as the open-source
matlab codes to perform the submap joining. Due to the
limited space, those results were not shown here. The
robustness of the RL-SLAM are evaluated using the Bic-
occa and NewCollege datasets which contain real outliers
as shown in Fig. 3. For comparision, we run the DCS in
g2o with its suggested parameters Φ = 5 for the Bicocca
dataset and Φ = 1 for the NewCollege dataset.

Figure 4 shows the computational time of both algo-
rithms against 0 to 5000 outliers in the ManhtanOlson
and City10000 datasets. It can be observed that the
DCS/g2o is faster than our method with a small num-

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

Outliers

R
un

tim
e 

(s
)

 

 
DCS
RL−SLAM

(a)

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

Outliers

R
un

tim
e 

(s
)

 

 
DCS
RL−SLAM

(b)

Figure 4: The runtime comparions of the RL-SLAM (in
Matlab) and DCS/g2o (in C++) on the City10000 (a)
and ManhtanOlson datasets (b) corrupted with up to
5000 outliers. Please note that the runtime of RL-SLAM
is not much affected by the number of outliers contrary to
the DCS, showing clear benefits if the number of outliers
exceeds 1500.

ber of outliers. However, RL-SLAM outperforms when
the number of outliers becomes large (over 1500 outliers),
which is due to its submap strategy: that is outliers are
distributed in submaps and they are successively elimi-
nated in the submap joining processes. This also reveals
the cause of fluctuations in the RL-SLAM runtime. The
longer one loop-closure is delayed, the more the extra
computation time is required.

7 Conclusions

Although the existing Linear SLAM is effective in solv-
ing the nonlinear pose-graph SLAM problem, it is vul-
nerable to loop-closure outliers. To mitigate this prob-
lem, Robust Linear SLAM (RL-SLAM) was proposed in
this work by applying a delayed optimisation sterategy
where any ambiguous loop-closure outliers are left to the
next submap joining processes, and efficiently recover-
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ing the corrupted information matrix using Schur com-
plement. Experimental results using publicly available
datasets confirmed the feasibility and efficiency of the
proposed method, recovering a large number of outliers
effectively. The state-of-the-art solutions from the non-
linear SLAM showed still better pose accuracy compared
to RL-SLAM, particurarly in 3D datasets. However RL-
SLAM could outperforme nonlinear SLAM in computa-
tional time when the number of outliers increased. In
future work, we will focus on 6DOF/3D scenarios to im-
proved the accuracy and investigate the effets of odom-
etry errors which were assumed outlier-free, and imple-
ment the methods in C++ framework for the compari-
sion with DCS/g2o.
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