Taxonomic Tapestries
The Threads of Evolutionary, Behavioural and Conservation Research
Taxonomic Tapestries
The Threads of Evolutionary, Behavioural and Conservation Research

Edited by Alison M Behie and Marc F Oxenham
Chapters written in honour of Professor Colin P Groves
Contents

List of Contributors .. vii
List of Figures and Tables.. ix

PART I

1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research ... 3
 Alison M Behie and Marc F Oxenham

PART II

2. Characterisation of the endemic Sulawesi *Lenomys meyeri* (Muridae, Murinae) and the description of a new species of *Lenomys* ... 13
 Guy G Musser

3. Gibbons and hominoid ancestry... 51
 Peter Andrews and Richard J Johnson

4. Hurricanes and coastlines: The role of natural disasters in the speciation of howler monkeys ... 75
 Alison M Behie, Travis S Steffens, Tracy M Wyman, Mary SM Pavelka

5. Adolf Remane: Notes on his work on primates 93
 Prof Ulrich Welsch

6. Retouch intensity on Quina scrapers at Combe Grenal: A test of the reduction model ... 103
 Peter Hiscock and Chris Clarkson

7. What are species and why does it matter? Anopheline taxonomy and the transmission of malaria 129
 Robert Attenborough

PART III

8. Lamarck on species and evolution 155
 Marc F Oxenham
9. Naming the scale of nature ... 171
 Juliet Clutton-Brock

10. Changes in human tooth-size and shape with the Neolithic transition in Indo-Malaysia .. 183
 David Bulbeck

11. Variation in the Early and Middle Pleistocene: The phylogenetic relationships of Ceprano, Bodo, Daka, Kabwe and Buia . . . 215
 Debbie Argue

12. Human evolution in Sunda and Sahul and the continuing contributions of Professor Colin Groves 249
 Michael C Westaway, Arthur Durband and David Lambert

PART IV

13. The domestic and the wild in the Mongolian horse and the takhi ... 279
 Natasha Fijn

14. Rhino systematics in the times of Linnaeus, Cuvier, Gray and Groves ... 299
 Kees Rookmaaker

15. Conservation consequences of unstable taxonomies: The case of the red colobus monkeys 321
 John Oates and Nelson Ting

16. The phylogenetic species concept and its role in Southeast Asian mammal conservation 345
 Erik Meijaard and Benjamin Rawson

17. Conserving gorilla diversity ... 361
 Angela Meder

18. The warp and weft: Synthesising our taxonomic tapestry . . . 373
 Marc F Oxenham and Alison M Behie

Index .. 381
List of Contributors

Peter Andrews Natural History Museum, Cromwell Road, London, UK SW7 5BD

Debbie Argue School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

Robert Attenborough School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601; Division of Biological Anthropology, Department of Archaeology & Anthropology, University of Cambridge, Pembroke Street, Cambridge, UK, CB2 3DZ

Alison M Behie School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

David Bulbeck Department of Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Canberra, Australia, 2601

Chris Clarkson Department of Archaeology, School of Social Sciences, The University of Queensland, Brisbane, St Lucia, QLD, Australia, 4072

Juliet Clutton-Brock Natural History Museum, Cromwell Road, London, UK, SW7 5BD

Arthur Durband Department of Sociology, Anthropology and Social Work, Kansas State University, 204 Waters Hall, Manhattan, KS, 66502

Natasha Fijn School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

Peter Hiscock Department of Archaeology, School of Philosophical and Historical Inquiry | Faculty of Arts and Social Sciences, The University of Sydney, Sydney, Australia, 2006

Richard J Johnson University of Colorado, Denver Aurora, USA, CO 80045

David Lambert Griffith School of Environment, Nathan campus, Griffith University, 170 Kessels Road Nathan, QLD, Australia, 4111

Angela Meder Berggorilla & Regenwald Direkthilfe c/o Rolf Brunner Lerchenstr. 545473 Muelheim, Germany

Guy G Musser Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, New York, NY 10024

John Oates Department of Anthropology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065

Marc F Oxenham School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

Mary SM Pavelka Department of Anthropology, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4

Kees Rookmaaker Department of Biological Sciences, National University of Singapore, 14 Science Drive 4 Singapore 117543; Rhino Resource Centre

Travis S Steffens Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario, M5S 2S2

Nelson Ting 308 Condon Hall, Department of Anthropology, 1218 University of Oregon, Eugene, OR 97403

Ulrich Welsch Ludwig Maximilians University Munich, Institute for Anatomy and Cell Biology Schillerstr. 42 80336 München Germany

Michael C Westaway Griffith School of Environment, Nathan campus, Griffith University, 170 Kessels Road, Nathan, QLD, Australia, 4111

Tracy M Wyman Department of Anthropology, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4
List of Figures and Tables

Figures

<p>| Figure 2.1 | An adult Bunomys chrysocomus skull illustrating limits of cranial and dental measurements employed. | 14 |
| Figure 2.2a | Collection localities for modern and subfossil samples of Lenomys meyeri. | 17 |
| Figure 2.2b | Collection localities for modern and subfossil samples of Lenomys meyeri. | 18 |
| Figure 2.3 | Holotype of Mus meyeri. | 21 |
| Figure 2.4 | Skull of the holotype of Mus meyeri. | 21 |
| Figure 2.5 | Young adult female Lenomys meyeri from tropical lowland evergreen rainforest near Tomado, 1000 m. | 25 |
| Figure 2.6 | Length of distal white tail segment relative to total length of tail in the sample of Lenomys meyeri. | 25 |
| Figure 2.7 | Cranium and left dentary of Lenomys meyeri lampo, an adult female collected at 2200 m on Gunung Lompobatang. | 26 |
| Figure 2.8 | Nomenclature of dental structures using right upper and lower molars of Lenothrix canus. | 27 |
| Figure 2.9 | Occlusal views of right maxillary and mandibular molar rows of Lenomys meyeri from Gunung Lompobatang. | 28 |
| Figure 2.10 | Specimen scores representing modern examples of Lenomys meyeri projected on first and second principal components. | 31 |
| Figure 2.11 | Hillside primary forest along Sungai Sadaunta in area near where Lenomys meyeri was caught. | 32 |
| Figure 2.12 | Ground cover over terrace where burrow of Lenomys meyeri was located. | 33 |
| Figure 2.13 | Burrow system of Lenomys meyeri excavated on a stream terrace adjacent to Sungai Sadaunta, 915 m. | 35 |
| Figure 2.14 | Dentaries from Lenomys obtained in the southwest peninsula. | 42 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15</td>
<td>Occlusal views of subfossil mandibular molar rows from two species of Lenomys.</td>
<td>43</td>
</tr>
<tr>
<td>2.16</td>
<td>Scores representing specimens of modern and subfossil Lenomys meyeri and subfossil L. grovesi projected on first and second principal components.</td>
<td>44</td>
</tr>
<tr>
<td>4.1a</td>
<td>Total number of storms that crossed through the ranges of Alouatta pigra and Alouatta palliata from 1851 to 2007.</td>
<td>82</td>
</tr>
<tr>
<td>4.1b</td>
<td>Total number of hurricanes that crossed through the ranges of Alouatta pigra and Alouatta palliata from 1851 to 2007.</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Photograph of Professor Remane.</td>
<td>94</td>
</tr>
<tr>
<td>6.1</td>
<td>Examples of specimens classified into each of the four scraper classes.</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>Diagrammatic representation of the staged reduction model proposed by Dibble.</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>Notional illustration of the relationship of blank cross-section and extent of reduction for dorsally retouched Quina scrapers.</td>
<td>109</td>
</tr>
<tr>
<td>6.4</td>
<td>Illustration of the measurements of reduction used multiple values of Kuhn’s (1990) unifacial reduction index and a count of the number of zones.</td>
<td>112</td>
</tr>
<tr>
<td>6.5</td>
<td>Relationship between Kuhn GIUR and the percentage of original flake mass lost through retouching in the experimental dataset.</td>
<td>113</td>
</tr>
<tr>
<td>6.6</td>
<td>Histogram of the Kuhn GIUR values for single scrapers from Layer 21.</td>
<td>117</td>
</tr>
<tr>
<td>6.7</td>
<td>Examples of different levels of reduction on scrapers.</td>
<td>117</td>
</tr>
<tr>
<td>6.8</td>
<td>Histogram showing differences in the distribution of retouch on specimens classified as single scrapers and transverse scrapers.</td>
<td>120</td>
</tr>
<tr>
<td>6.9</td>
<td>Illustration of the typological status and reduction history of flakes retouched to different degrees.</td>
<td>122</td>
</tr>
<tr>
<td>8.1</td>
<td>Diagram ‘Showing the Origin of the Various Animals’.</td>
<td>162</td>
</tr>
<tr>
<td>8.2</td>
<td>This is a modification of Ruse following Bowler’s interpretation of Lamarck’s scheme.</td>
<td>165</td>
</tr>
<tr>
<td>Figure 10.1</td>
<td>Dental metrics, Penrose size statistics comparisons.</td>
<td>192</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td>Figure 10.2</td>
<td>Dental metrics, Penrose shape distances, 17 male samples, 32 diameters, seriated average-linkage dendrogram.</td>
<td>194</td>
</tr>
<tr>
<td>Figure 10.3</td>
<td>Dental metrics, Penrose shape distances, 18 male samples, 16 buccolingual diameters, seriated average-linkage dendrogram.</td>
<td>196</td>
</tr>
<tr>
<td>Figure 10.4</td>
<td>Dental metrics, Penrose shape distances, 19 bisexual samples, 32 diameters, seriated average-linkage dendrogram.</td>
<td>199</td>
</tr>
<tr>
<td>Figure 10.5</td>
<td>Dental metrics, Penrose shape distances, 19 bisexual samples, 16 buccolingual diameters, seriated average-linkage dendrogram.</td>
<td>201</td>
</tr>
<tr>
<td>Figure 10.6</td>
<td>Dental metrics, Penrose shape distances, 23 bisexual samples, up to 32 diameters, seriated average-linkage dendrogram.</td>
<td>203</td>
</tr>
<tr>
<td>Figure 11.1a</td>
<td>Three shortest trees.</td>
<td>221</td>
</tr>
<tr>
<td>Figure 11.1b</td>
<td>Three shortest trees.</td>
<td>222</td>
</tr>
<tr>
<td>Figure 11.1c</td>
<td>Three shortest trees.</td>
<td>222</td>
</tr>
<tr>
<td>Figure 11.2</td>
<td>Bootstrap analysis.</td>
<td>223</td>
</tr>
<tr>
<td>Figure 11.3</td>
<td>Bodo and H. rhodesiensis.</td>
<td>226</td>
</tr>
<tr>
<td>Figure 11.4</td>
<td>Bodo and H. erectus.</td>
<td>226</td>
</tr>
<tr>
<td>Figure 11.5</td>
<td>Daka and H. erectus.</td>
<td>227</td>
</tr>
<tr>
<td>Figure 11.6</td>
<td>Daka and KNMs.</td>
<td>228</td>
</tr>
<tr>
<td>Figure 11.7</td>
<td>Ceprano and H. erectus.</td>
<td>228</td>
</tr>
<tr>
<td>Figure 11.8</td>
<td>Preferred phylogeny.</td>
<td>231</td>
</tr>
<tr>
<td>Figure 12.1a</td>
<td>The extreme thickness of Sangiran 6 is compared to that of Sangiran 1b.</td>
<td>253</td>
</tr>
<tr>
<td>Figure 12.1b</td>
<td>The very thick corpus of Sangiran 6 is similar to that seen in the Peninj Paranthropus mandible.</td>
<td>254</td>
</tr>
<tr>
<td>Figure 12.1c</td>
<td>The posterior view of Sangiran 31 showing the extreme robusticity of the occipital torus.</td>
<td>254</td>
</tr>
<tr>
<td>Figure 12.1d</td>
<td>Lateral view of Sangiran 31 showing the extreme robusticity of the occipital torus.</td>
<td>255</td>
</tr>
<tr>
<td>Figure 12.2</td>
<td>Liang Bua 1, the type specimen of Homo floresiensis.</td>
<td>257</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 12.3a</td>
<td>Autapomorphic characters identified in the Ngandong series.</td>
<td>259</td>
</tr>
<tr>
<td>Figure 12.3b</td>
<td>Autapomorphic characters identified in the Ngandong series.</td>
<td>259</td>
</tr>
<tr>
<td>Figure 12.4a</td>
<td>Robust and gracile Australian fossils often discussed in the Aboriginal origins debate.</td>
<td>261</td>
</tr>
<tr>
<td>Figure 12.4b</td>
<td>Robust and gracile Australian fossils often discussed in the Aboriginal origins debate.</td>
<td>262</td>
</tr>
<tr>
<td>Figure 12.5</td>
<td>Theorised representation of the emergence of cranial robusticity associated with the onset of the Last Glacial Maximum.</td>
<td>263</td>
</tr>
<tr>
<td>Figure 13.1</td>
<td>Takhi herd with stallion to the right, Hustai Nuruu National Park.</td>
<td>280</td>
</tr>
<tr>
<td>Figure 13.2</td>
<td>Individual takhi at Hustai Nuruu National Park.</td>
<td>282</td>
</tr>
<tr>
<td>Figure 13.3</td>
<td>A Mongolian horse herd in a snowstorm in spring, Arkhangai Province.</td>
<td>285</td>
</tr>
<tr>
<td>Figure 13.4</td>
<td>A prized Mongolian horse with elaborate saddle and bridle and wild-type characteristics.</td>
<td>287</td>
</tr>
<tr>
<td>Figure 13.5</td>
<td>Mongolian herder with Mongolian horse.</td>
<td>290</td>
</tr>
<tr>
<td>Figure 13.6</td>
<td>A saddled piebald (kharlag) Mongolian horse.</td>
<td>293</td>
</tr>
<tr>
<td>Figure 13.7</td>
<td>Mongolians greeting by passing snuff.</td>
<td>295</td>
</tr>
<tr>
<td>Figure 14.1</td>
<td>Black rhinoceros and skull, sketched by Anders Sparrman.</td>
<td>302</td>
</tr>
<tr>
<td>Figure 14.2</td>
<td>The famous Indian rhinoceros ‘Clara’, shown all around Europe between 1741 and 1758, depicted behind a human skeleton.</td>
<td>303</td>
</tr>
<tr>
<td>Figure 14.3</td>
<td>A rhinoceros skull drawn by the English physician James Parsons.</td>
<td>304</td>
</tr>
<tr>
<td>Figure 14.4</td>
<td>The first description of the double horned rhinoceros of Sumatra by William Bell.</td>
<td>305</td>
</tr>
<tr>
<td>Figure 14.5</td>
<td>Broadside published by the Dutch professor Petrus Camper to show the differences between skulls of a black rhinoceros obtained from the Cape of Good Hope and of a rhinoceros from Java.</td>
<td>306</td>
</tr>
</tbody>
</table>
Figure 14.6 Depiction of a rhino hunt at Chué Spring (Heuningvlei) in South Africa by William Burchell in 1812.

Figure 14.7 Skeleton of the ‘Rhinoceros unicorn de Java’ in the Paris Museum of Natural History.

Figure 14.8 Lateral view of black rhinoceros called ‘Rhinoceros keitloa’ drawn by Gerald Ford.

Figure 14.9 Images of the female Sumatran rhino ‘Begum’ shown in London Zoo from 15 February 1872 to 31 August 1900.

Figure 14.10 Nile rhino from the Lado Enclave in Sudan. Plate drawn by J. Terrier and printed by J. Pitcher.

Figure 15.1 Distribution of 18 allopatric populations of red colobus monkeys that have been given taxonomic names of subspecies or species rank.

Figure 15.2 Geographical distribution of red colobus monkeys according to nine-species arrangement of Groves.

Figure 15.3 Geographical distribution of red colobus monkeys according to 16-species arrangement of Groves.

Figure 15.4 Geographical distribution of red colobus monkeys according to five-species arrangement of Ting.

Figure 16.1 Change over time of the number of South-East Asian pig species described and generally recognised.

Figure 16.2 Change over time of the number of gibbon species described and generally recognised.
Tables

Table 2.1 Descriptive statistics for measurements of lengths of head and body, tail, hind foot, and ear, and for weight, derived from modern samples of *Lenomys meyeri* 22

Table 2.2 Age, sex, number of teats, and external, cranial, and dental measurements for holotypes associated with *Lenomys meyeri* 23

Table 2.3 Descriptive statistics for cranial and dental measurements derived from modern samples of *Lenomys meyeri* 30

Table 2.4 Results of principal-components analysis comparing modern specimens of *Lenomys meyeri* 31

Table 2.5 Summary of microhabitats at trapping sites and other relevant information for two specimens of *Lenomys meyeri* collected in Central Sulawesi, 1974-1975 34

Table 2.6 Subfossil fragments of *Lenomys meyeri* from the southwest peninsula of Sulawesi 36

Table 2.7 Measurements of mandibular molars from subfossil and modern samples of *Lenomys meyeri* and the subfossil specimen of *Lenomys grovesi* 38

Table 2.8 Subfossil representatives of murids excavated from Leang Burung 1 40

Table 2.9 Murid species represented by middle and late Holocene subfossils excavated from caves and rock shelters on the southern end of the southwestern peninsula of Sulawesi 41

Table 2.10 Results of principal-components analysis comparing modern and subfossil samples of *Lenomys meyeri* with the subfossil specimen of *Lenomys grovesi* 45

Table 3.1 Morphological features of proconsulids related to their form of locomotion 55

Table 4.1 Howler species (Genus *Alouatta*) as recognised by Colin Groves in *Primate Taxonomy* (2001) 76

Table 4.2 Studies included in behavioural comparisons of *Alouatta pigra* and *A. palliata* 79

Table 6.1 Sample of complete retouched flakes from Layer 21 used in this analysis, presented by implement type. 111

Table 6.2 Descriptive statistics for the Kuhn GIUR, Retouched zone index, and surface area/platform area ratio of four implement classes in Layer 21 of Combe Grenal. 115

Table 7.1 Key features of the primary Pacific malaria vectors 142
Table 7.2 Selected contrasts in variables relevant to malaria transmission between selected cryptic species in the *An. punctulatus* and *An. gambiae* species complexes

Table 10.1 Recent/historical samples used in the comparisons

Table 10.2 Historical Sulawesi dental metrics

Table 10.3 Prehistoric samples used in the comparisons

Table 10.4 Early Sulawesi dental metrical data

Table 10.5 First analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left)

Table 10.6 Second analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left)

Table 10.7 Third analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left)

Table 10.8 Fourth analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left)

Table 10.9 Fifth analysis, four additional samples: square roots of Penrose shape distances (left) and after calibration and seriation (right)

Table 10.10 Comparative data on major limb-bone lengths(A) in Java

Table 10.11 Comparison of Indo-Malaysian tooth size and cranial index

Table 15.1 Taxonomic arrangements of red colobus forms by different authors

Table 15.2 Selected threat status listings of red colobus taxa by IUCN
PART I
1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research

Alison M Behie and Marc F Oxenham

This volume explores the complexity, diversity and interwoven nature of taxonomic pursuits primarily within the context of explorations of humans and related species, although it also delves into more distantly related species to show how taxonomy has impacted fields outside of human research. Essentially we are interested in showcasing recent research into that somewhat unique species we call humankind through the theoretical and conceptual approaches afforded by the discipline of biological anthropology. Structurally, our approach to understanding human uniqueness is tripartite in focusing on: (1) the evolution of the human species, (2) the behaviour of primates and other species, and (3) how humans affect the distribution and abundance of other species through anthropogenic impact. In this manner we weave together these three key areas of bio-anthropological endeavour and scrutinise how changes in taxonomic theory and methodology, including our fluctuating understanding of speciation, have recrafted the way in which we view animal behaviour, human evolution and conservation studies.

Taxonomy forms perhaps the most fundamental structural principle of arguably all biological knowledge and research. Indeed, taxonomy is the epistemological cornerstone of the biological sciences. In this context it is somewhat astonishing to note that within the last 20 years significant gaps in taxonomic knowledge have appeared, ostensibly due to a dearth of adequately trained taxonomists in the current generation of scholars. This lacuna, referred to as the taxonomic impediment, is in our view exacerbated by a recent over reliance on ‘geno-hype’ (Holtzmann, 1999), which refers to our scientific love affair with genetic-based approaches, at the expense of traditional taxonomic principles. Taxonomy, however, is more than its constituent parts, with DNA but one piece of the taxonomic fabric.

While the invention of improved and non-invasive ways to collect DNA has resulted in its resurgence in the field of taxonomy, this reliance on genetics to define species is nothing new. The Biological Species Concept defines species as ‘groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups’ (Mayr, 1940: 256). This concept, which relies heavily on interbreeding, or lack thereof, to define species,
8. Lamarck on species and evolution

Marc F Oxenham

Introduction

For the last decade I have lived three doors down from Colin’s office, in the bowels of the AD Hope building at The Australian National University. However, my first contact with Colin was indirect, in as much as he was an examiner of my Honours thesis (‘Progress and Evolution: A re-evaluation of some ideas, devices and scholars in the study of human evolution to 1950’) back in 1995. Those familiar with the Australian and New Zealand university systems will realise that Honours is where undergraduates start to play with the big kids, and examiner’s reports can be a rude entree to the world of academia. Colin’s positive comments inspired me to think about publishing from my Honours research, and while my PhD quickly got in the way of that, this chapter is in fact a reworked early version of a paper drafted just after my Honours year. While my research interests have developed in very different directions since then, I have maintained a strong ‘armchair’ interest in the history of evolutionary thought and hope this contribution will excite others to revisit the works of the early evolutionary theorists. Much of my discussion concerns the nature of and the role of species in Lamarck’s theory of evolution. Many readers are no doubt aware of Colin’s own particular interest in species (see the discussion by Robert Attenborough, this volume, particularly with respect to the phylogenetic species concept) and while Colin may not necessarily agree with my interpretations of Lamarck on species, I am sure he would see it a most appropriate topic for this volume.

In popular and scientific mythology Darwin is reified as the founder of modern evolutionary theory and Lamarck lampooned as that ‘odd chap’ who believed in the inheritance of acquired characteristics. While not of concern here, the inheritance of acquired characteristics (what is now termed transgenerational epigenetic inheritance) would now seem to be a reality (see Morris, 2012 for an overview of recent developments in this area). The purpose of this chapter is not to bring Darwin ‘down a peg’, and in fact Darwin hardly gets a mention, but to entreat the reader to see Lamarck in an alternative light.

The role and influence of the French naturalist Jean-Baptiste Pierre Antoine de Monet, Chevalier de Lamarck (1744–1829) with regard to the development of evolutionary theory has been extensively researched over the past 50 years
or so (Cannon, 1959; Gillispie, 1959; Lovejoy, 1959; Burkhardt, 1977, 1984; Hull, 1984; Lovtrup, 1987; Corsi, 1988) and is not pursued here. In this chapter I wish to review Lamarck's ideas on the nature of species, which directly relates to his evolutionary model, and then re-evaluate what I will argue are misinterpretations of two central aspects of this model: first, the view that Lamarck's theory was strictly vertical in nature and lacked a crucial horizontal component; secondly, that his evolutionary model is best viewed as a collection of multiple, independent lineages and is inconsistent with a theory of descent. Both of these themes are generally considered evidence of pivotal differences between Lamarck's and Darwinian, or modern, evolutionary theory. While I am not proposing that Darwin's theory of evolution be seen as resting on the foundations of Lamarck's theorising, I am asking that Lamarck at least be given a fair go in light of a close reading of his actual works.

Zoological philosophy

Coming from a background in botany Lamarck assumed the position of professor of invertebrates at the Museum National d'Histoire Naturelle in Paris in 1793 at 50 years of age. At the turn of the nineteenth century Lamarck made a seemingly abrupt ideological change with his conversion to evolutionism (Lamarck, 1800, 1802). Less than a decade later he became the first scholar (Lamarck, 1809) to publish a detailed theory of bio-evolution or transmutation. While neither of these terms were used by Lamarck, contemporary synonymous concepts such as 'changed', 'converted', 'mutation' and 'transformed' were used in their stead. Lamarck was also to a large extent responsible for integrating the threads of an emerging nineteenth century bio-evolutionary theory with the notion of progress.

Lamarck's most famous work, published in 1809 (the year of Darwin's birth), *Zoological Philosophy*, was not only a treatise on evolution but a system of biology treating three broad areas of study: (1) zoological classification and evolution; (2) the nature and causes of life; and (3) the nature and causes of intelligence, emotions and so forth. While the first part of this work dealt specifically with Lamarck, contemporary synonymous concepts such as 'changed', 'converted', 'mutation' and 'transformed' were used in their stead. Lamarck was also to a large extent responsible for integrating the threads of an emerging nineteenth century bio-evolutionary theory with the notion of progress.

In his own lifetime Lamarck's views were essentially either ignored or actively disparaged (Cannon, 1959; Bowler, 1984, 2003; Burkhardt, 1984; Hull, 1984), although he received support in some quarters, the French naturalist Henri de Blainville for instance (see Appel, 1987). Perhaps one reason for Lamarck’s dearth of support was related to his lack of compunction in seeing humanity as a creature of the evolutionary process. Cannon (1959) has also suggested that
Georges Cuvier, a younger highly influential contemporary of Lamarck’s, was the central cause of Lamarck’s problems whilst living and dead. During his time at the Museum of Natural History Lamarck came into conflict with Cuvier over both geological gradualism and transmutation, both concepts to which Cuvier was totally antagonistic. The power and influence Cuvier wielded during these years (Coleman, 1964) did nothing for Lamarck’s cause. Cannon (1959) has even suggested that nineteenth and twentieth century interpretations of Lamarck and his ideas stem from Cuvier’s reinterpretations or misrepresentations. Indeed, in Cuvier’s *Biographical Memoir* (Cuvier, 1831: 434) of Lamarck, he contrasted him to men of true genius:

[Those], with minds not less ardent, nor less adapted to seize new relations, have been less severe in scrutinizing the evidence; with real discoveries with which they have enriched science, they have mingled many fanciful conceptions; and, believing themselves able to outstrip both experience and calculation, they have laboriously constructed vast edifices on imaginary foundations, resembling the enchanted palaces of our old romances, which vanished into air on the destruction of the talisman to which they owed their birth.

Notwithstanding, Cuvier was one man and insufficient to the task of countering all materialist thought at the time (see Corsi, 1988). Burkhardt (1984) has outlined three additional reasons why Lamarck was so unsuccessful in his own time. In brief these are the materialist overtones of his work; his reputation for wild speculation; and the fact that he was ‘unable to cultivate a circle of capable naturalists willing to champion his views’ (Burkhardt, 1984: xxxiv). Moreover, less than three decades after his death, Lamarck was to present ‘a serious public relations problem for Darwin and the Darwinians’ (Hull, 1984: xlvi). Lamarck was perceived as Darwin’s scientific precursor in a sense. Lyell even went as far as to describe Darwin’s theory of evolution as a modification of Lamarck’s views, much to the annoyance of Darwin (Hull, 1984). A perception of Darwinian evolution as Lamarckian evolution revisited (Lovtrup, 1987) would not have been an idea that would have sat well in the Darwin camp. Unfortunately, only Lamarck’s mechanism for change survives as his legacy to the history of evolutionary thought. Furthermore, it is unlikely that Lamarck would recognise what was understood and presented as Lamarckism after his death (see Bowler, 1992).

Lamarck on species

Lamarck’s particular understanding of species impacts on the two principal themes of this chapter and it is necessary to outline his ideas on this subject.
Lamarck argued for the ability of species to change, and while not in itself ground breaking at the time, he presented his case by positing that species form a continuum:

I do not mean that existing animals form a very simple series, regularly graded throughout; but I do mean that they form a branching series, irregularly graded and free from discontinuity, or at least once free from it. For it is alleged that there is now occasional discontinuity, owing to some species being lost. (Lamarck, 1809: 37)

In his view species changed or transformed very gradually, that is by way of extremely small changes or micro-mutations over time. Because of this Lovtrup (1987) has argued that Lamarck was in fact the first micro-mutationist. Lamarck needed evolution to be gradual to fit with his understanding of deep geological time and views of environmental change.

As compared to the periods which we look upon as great in our ordinary calculations, an enormous time and wide variation in successive conditions must doubtless have been required to enable nature to bring the organization of animals to that degree of complexity and development in which we see it at its perfection. (Lamarck, 1809: 50)

Lamarck, like those after him who subscribed to the view of gradual species change, had a problem with species recognition. How does one separate a temporally and physically continuous entity into discrete units or species? Lamarck’s solution was unique: species for him did not actually become extinct, although he noted the exception of recent cases of non-natural human induced extinctions. The fossil evidence in his time indicated many forms with no known contemporary representatives. Lamarck forwarded two explanatory arguments. The first, it was likely the living counterparts existed in the vast unexplored regions of the earth; the second and more important, species did not become extinct but they change over time by way of the accumulation of tiny mutations into new or different forms.

May it not be possible … that the fossils [apparently representing extinct species] … belonged to species still existing, but which have changed since that time and become converted into the similar species that we now actually find. (Lamarck, 1809: 45).

Species for Lamarck could encompass both broad levels of variation and temporal depth. In modern evolutionary terms Lamarck was describing the model of phyletic (anagenetic) evolution. This particular conceptualisation of what defined species allowed him to see them both change through time and retain their essential identity.
There is, perhaps, an additional reason for Lamarck’s subscription to this particular notion of species. It may have been a reaction to an interpretation of extinction events as the result of the non-viability of transmutated organisms. Such a view, if sustained, would constitute direct evidence against evolution. There is some evidence for this view when one considers opposition to transmutationism from Cuvier. Coleman (1964) and Bowler (1984) have noted that Cuvier, through his studies in comparative anatomy, had come to the conclusion that biological organisms were too complex to hold to the view transmutation could result in different viable organisms. For Cuvier species were fixed (implying species had a creationist and/or saltational origin). Lamarck saw transmutation occurring very gradually and there was certainly no place for useful monsters (the expected common result of large mutations as opposed to tiny unnoticed ones) in his scheme.

Vertical and lateral evolution

A number of scholars have either denied (Mayr, 1982, 1991) the idea of lateral, as opposed to vertical, evolutionary change in Lamarck’s evolutionary model, or else seen this idea as having limited significance (Ruse, 1981, 1982; Bowler, 1984). It is Darwin who is generally credited with this ostensibly novel dichotomisation of evolutionary theory. For example, Mayr (1991: 17) argues that:

> For Lamarck, evolution was a strictly vertical phenomenon, proceeding in a single dimension, that of time. Evolution for him was a movement from less perfect to more perfect, from the most primitive infusorians up to the mammals and man.

and

> The problem of how these new species and incipient species came into being was clarified for Darwin by the Galapagos mockingbirds. These specimens showed that new species can originate by what we now call geographical (or allopatric) speciation…By this thought Darwin founded a branch of evolutionism which, for short, we might designate as horizontal evolutionism, in contrast with the strictly vertical evolutionism of Lamarck. (Mayr, 1991: 20)

Moreover, both Bowler (1984, 2003) and Ruse (1981, 1982) have tended to stress the idea that Lamarck was redeveloping the Medieval classificatory construct of a scale of being or *scala natura*, albeit a dynamic scale rather than a static one. Traditionally this scale concept was a hierarchical device that encompassed all
life from the worms in the ground through to the angels themselves and even God. Each life form was ordered and ranked in such a manner as to create a continuous, unbroken but graduated chain of life (Hodgen, 1964).

Indeed, the concept of a scale of life is prominent in Lamarck’s work. He outlined 14 classes of animals which were ranked or arranged from the single celled *infusorian* through to the most ‘perfect’ class *mammals*. Notwithstanding, Lamarck’s understanding and use of the *scala natura* concept needs some explanation. For instance, what did Lamarck mean by the concept arrangement? Arrangement related to the order of his scale, in distinction to classification which referred specifically to the divisions within it. For example, Lamarck (1809: 56) defined arrangement as:

[A]n order in that list [referring to his classes] which represents as nearly as possible the actual order followed by nature in the production of animals; an order conspicuously indicated by the affinities which she has set between them.

However, this was not a simple continuous unilinear scale with evolution being represented by change over time (refer to the Lamarck, 1809: 37 quotation above) and Lamarck’s views can be seen to be quite modern. Most evolutionary biologists today would accept some sort of loose macro-historical trend of less to more complex, mediated by the observation that the evolution of *B* from *A* is constrained by the nature of *A* itself (see Mayr, 1982; Eldridge, 1985). Further, there are controversies and difficulties with current species concepts (e.g. Paterson, 1981; Eldridge, 1985; Tattersall, 1986), a topic to which Colin has also made important contributions (e.g. Groves, 2001). The point is that Lamarck was not simply reviving the *scala natura* in newer and more dynamic garb.

If not a simple unilineal scale what then was Lamarck’s evolutionary scheme? In a summary of his own evolutionary views Lamarck notes:

Nature has produced all the species of animals in succession, beginning with the most imperfect or simplest, and ending her work with the most perfect, so as to create a gradually increasing complexity in their organization; these animals have spread at large throughout all the habitable regions of the globe, and every species has derived from its environment the habits that we find in it and the structural modifications which observation shows us. (Lamarck, 1809: 126)

Two themes are clearly presented here by Lamarck: the first is an implicit law of nature which causes the *vertical* progression from simple to complex organisation, based on the *scala natura* already spoken of; the second theme is the *lateral* secondary transformation of species due to the effects of environment, habit
and so forth. Although this bi-directional scale of vertical continuity and lateral change was a major intellectual conceptualisation of the Renaissance theistic model of Adamitic origins and subsequent diffusion (see Hodgen, 1964), it is Lamarck who was responsible for appropriating it into an evolutionary model.

Lamarck’s advocacy of lateral, or non-progressive, evolutionary change is further illustrated in his evolutionary diagram (see Figure 8.1). For instance there is an initial lateral branching from the worms into an annelids–cirrhipedes–molluscs evolutionary sequence on the one hand and an insects–arachnids–crustaceans sequence on the other. There is a similar major branching event at the reptiles. Further, there are a series of lateral bifurcations from an ancestral amphibian stock. That this is the manner in which Lamarck viewed evolutionary history, and not simply an interpretation seen through the lens of a modern understanding of evolution, is evident in his own comments concerning this diagram:

It is there shown that in my opinion the animal scale begins by at least two separate branches, and that as it proceeds it appears to terminate in several twigs in certain places. (Lamarck, 1809: 178)

The importance of this concept in his evolutionary model is further reinforced by other such specific references in his work:

As we continue to examine the probable origin of the various animals, we cannot doubt that the reptiles, by means of two distinct branches, caused by the environment, have given rise, on the one hand, to the formation of the birds and, on the other hand, to the amphibian mammals, which have in their turn given rise to all the other mammals. (Lamarck, 1809: 176; italics added)

The environment was the causal agent for Lamarck’s other secondary, or lateral, component of his evolutionary model. It is evident that environmental influence played an important role in influencing evolutionary direction. Lamarck devoted a chapter (VII: 106–127) to his secondary evolutionary causal agent.

It is obvious then that as regards the character and situation of the substances which occupy the various parts of the earth’s surface, there exits a variety of environmental factors which induces a corresponding variety in the shapes and structures of animals, independent of that special variety which necessarily results from the progress of the complexity of organisation in each animal. (Lamarck, 1809: 112)

Lamarck (1809: 127, italics added) went on in concluding his chapter on the role of environmental influence to state that:

[I]t is not the shape either of the body or its parts which give rise to the habits of animals and their mode of life; but that it is, on the contrary,
the habits, mode of life and all the other influences of the environment which have in course of time built up the shape of the body and of the parts of animals. With new shapes, new faculties have been acquired, and little by little nature has succeeded in fashioning animals such as we actually see them.

It is clear that not only should Lamarck be given credit for the first comprehensive development of this vertical–lateral dichotomy within an evolutionary model, but that it was a fundamental component of his theory. Lamarck’s answer to the riddle of specific diversity was a function of his lateral thinking.

![Image](after_lamarck_1809_179.png)

Figure 8.1: Diagram 'Showing the Origin of the Various Animals'.

Source: After Lamarck 1809: 179.

The multiple independent lineage view

Giving precedence to Lamarck for first developing a vertical–lateral evolutionary model would not be accepted by Ruse (1981, 1982) and Bowler (1984), both of whom have argued that Lamarck’s evolutionary model cannot be viewed
as encompassing a theory of common descent. In fact Bowler claimed that the **crucial** difference between modern, or Darwinian, evolutionary theory and Lamarck's evolutionary views was that Lamarck ‘...did not suppose all forms alive to have evolved from a common ancestry’ (Bowler, 1984: 80). For Lamarck complexity equated with temporal depth of lineage. Humans, for example, are the longest lived lineage which arose at the earliest period in time, relative to other lineages, from a separate spontaneous generation event (see Bowler, 1984 Fig. 10; 2003 Fig. 9).\(^1\) Lamarck is interpreted to be advocating multiple parallel lineages through time, each lineage having its roots in a separate and progressively later point of spontaneous generation (Bowler, 1984; Ruse, 1981, 1982). The most primitive species belong to the youngest lineages and in fact spontaneous generation is still occurring (Bowler, 1984; Ruse, 1981, 1982). However, I would argue that only the last point is partially correct.

Lamarck (1809: 247) devotes an entire chapter to the topic of spontaneous generation, which in summary is that:

> [I]t appears to me certain that nature does herself carry out spontaneous or direct generations, that she has this power, and that she utilises it at the anterior extremity of each organic kingdom, where the most imperfect living bodies are found; and that it is exclusively through their medium that she has given existence to all the rest.

Note that in Lamarck's scheme there are only two organic kingdoms: the plants and animals. This is Lamarck's principal view regarding the origins and subsequent development or evolution of plant and animal life. However, Lamarck does pose the question that is apparently the cause of the (mis)interpretation of his main thesis representing multiple and independent evolutionary lineages through time:

> [I]s it certain that she [nature] does not give rise to similar generations at any other point of these scales? (Lamarck 1809: 247)

When posing this question Lamarck (1809: 247) notes that he had hitherto held the view that:

> [I]n order to give existence to all living bodies, it was enough for nature to have formed directly the simplest and most imperfect of animals and plants.

It is in this context that he (1809: 247) expands on his question:

\(^1\) Bowler (1984: fig. 10; 2003: fig. 9) does not provide an argument or evidence for this particular interpretation. Presumably his view is based on arguments by Ruse (e.g. 1982) who produces a very similar schematic (1982: fig. 1.4) to Bowler. As will be come apparent later in the chapter, Ruse (1982), has misinterpreted Lamarck on this issue.
Why indeed should nature not give rise to direct generations at various points in the first half of the animal and plant scales, and even at the origin of certain separate branches of these scales? Why should she not establish, in favourable circumstances, in these diverse rudimentary living bodies, certain physical systems of organisation, different from those observed at the points where the animal and vegetable scales appear to begin?

Having posed these questions they are then put aside as aspects worthy of further investigation, but not in any way central to his main thesis. He (1809: 248, italics added) goes on to conclude this section thus:

Whether the kind of direct generations, here referred to, do or do not actually take place, as to which at present I have no settled opinion, it seems to me certain at all events that nature actually carries out such generations at the beginning of each kingdom of living bodies, and that she could never, except through this medium, have brought into existence the animals and plants which live on our earth.

Lamarck spent the majority of the first part of his book arguing that the dual agents of natural progress (vertical change) and environmental influence (lateral branching) acting on spontaneous generation events at the base of the plant and animal kingdoms are sufficient causes in and of themselves for producing the present variety and complexity of life. For Lamarck spontaneous generation is clearly important for the establishment of the animal and plant kingdoms, while the environment played a crucial role in subsequent branching events.

Not only has the direct formation of the simplest living bodies actually occurred [spontaneous generation], as I am about to show, but the following principles proves that such formations must still be constantly carried out and repeated where the conditions are favourable, in order that the existing state of things may continue. (Lamarck, 1809: 245)

The maintenance of the existing order Lamarck refers to is a reference to animals such as his infusorians (see Figure 8.1), which would become extinct, and thus disrupt the existing state of things, without continuous acts of spontaneous generation. In referring to the ephemeral and seasonal nature of these simplest of animals he goes on to state:

[H]ow fragile their existence, from what or in what way do they regenerate in the season when we again see them? Must we not think that these simple organisms, these rudiments of animality, so delicate and fragile, have been newly and directly fashioned by nature rather than have regenerated themselves? (Lamarck, 1809: 245)
With the exception of the generation of the original plant and animal progenitors, these acts of continuous spontaneous generation were not seen by Lamarck as the starting points for new independent lineages. Except for fleetingly toying with the possibility of such a scenario, the idea of multiple separate and independent lineages was certainly not part of Lamarck’s evolutionary model as substantively outlined in Zoological Philosophy.

Ruse (1981: 10) has argued that (and it is worth quoting him at length):

[O]ne must note that Lamarck’s theory was in no way a theory of common descent, supposing that all organisms descended from one or a few common origins. We know that he thought simple forms of life are constantly being spontaneously generated through the action of heat, light, electricity and moisture on the inorganic world (Philosophie: 236–248). Then organic development continues on essentially the same path it started on. Lamarck believed that lions and so on, if destroyed, would be replaced in the course of time (Philosophie: 187). There is therefore no reason to believe, for example, that today’s mammals and today’s fish have common ancestors- they are merely at different stages on the scale of being [see Figure 8.2].

Figure 8.2: This is a modification of Ruse (1982: 8) following Bowler’s (1984: Figure 10) interpretation of Lamarck’s scheme. The circles along the X axis represent the spontaneous generation events of the ‘simplest’ organisms, while the circles on the right hand side of the Y axis represent progressively more complex (d being the most complex) organisms that have unilinearly evolved from separate original spontaneous generation events.

Source: After Ruse (1982).
Whilst I have already addressed the majority of points raised in this statement, it is necessary to examine the reference to the lions and other animals, as this is clearly an important component of Ruse’s argument for multiple, independent lineages. Lamarck has been taken out of context, and this is not a piece of evidence supporting the multiple independent lineage interpretation. In fact, this quote is taken from the introductory section of part two of *Zoological Philosophy*, dealing specifically with the physical causes, effects and manifestations of life, and not his evolutionary model per se.

After recognising the necessity for these acts of direct creation [spontaneous generation], we must enquire which are the living bodies that nature may produce spontaneously, and distinguish them from those which only derive their existence indirectly from her. Assuredly the lion, eagle, butterfly, oak, rose, do not derive their existence immediately from nature; they derive it as we know from individuals like themselves who transmit it to them by means of reproduction; and we may be sure that if the entire species of the lion or oak chanced to be destroyed in those parts of the earth where they are now distributed, it would be long before the combined powers of nature could restore them. (Lamarck, 1809: 186–187)

Lamarck is making two important points here, neither of which can be attributed to subscription to a model of multiple, independent lineages: (1) complex animals (e.g. lions and oaks) derive [descend] from other complex forms and are not the product of spontaneous generation; (2) enormous periods of time are involved in the complex process of evolution.

A final point before concluding concerns Bowler’s (1984, 2003) view that the multiple, independent lineage model is the only one able to explain why, in Lamarck’s world view, the *scala natura* is still visible. Lamarck provided two mechanisms to explain the continued existence of his scale. The first relates to his ideas on extinction: generally it does not happen. His understanding of the concept of species, examined previously, did not encompass the idea of extinction and this is why we still see life at all levels of organisational complexity. Secondly, and related to the first point, is the role of environmental influence again. In outlining his aims for the first part of *Zoological Philosophy* Lamarck (1809: 15, italics added) noted:

I shall [also] show the influence of environment and habit on the organs of animals, as being the factors which *favour* or *arrest* their development.

An example of this *arrest* in development can be seen in the way he dealt with an anti-evolutionary argument that used mummified Egyptian cats amongst other things. It was argued that as these cats, which were several thousand
years old, were essentially identical to modern forms this proved that species
did not change. Lamarck invoked the environmental argument to claim that
the climate and environment in Egypt had not changed to any degree over
the past several thousand years and thus one would not expect to see any
change in Egyptian cats over this time. Progress, his vertical evolutionary
component, would tend to cause all life to advance toward perfection. However,
environmental influence, his lateral component, would serve to redirect and
also arrest progressive advance. Lamarck’s understanding of species and the role
of the environment in his evolutionary model were sufficient in themselves to
explain the apparent preservation of the arrangement of life as diagrammatically
represented in Figure 8.1.

Conclusions

Ruse (1981) remarked that Lamarck was a very confusing writer and suggested
this may have been because Lamarck was confused himself. True, Zoological
Philosophy is written in a generally unclear and confusing style, but it is also
apparent that he was struggling with a number of novel ideas and concepts.
Even without an equivalent set of ‘Darwin note books’ it is clear that Zoological
Philosophy has been through a number of drafts and alterations in theoretical
orientation. Lamarck even noted in the preface to this work that this was a new,
corrected and enlarged version of Recherches sur les corps vivants (Lamarck,
1802). Perhaps it is the clutter of these vestiges of changes in point of view that
facilitated some of the misinterpretations of his work dealt with in this chapter.

Notwithstanding such concerns, Lamarck clearly and successfully grappled
with the concepts of vertical and lateral evolutionary change. The view that
he supported and promulgated a model of multiple, independent lineages all
catalysed with their own independent spontaneous origin events is clearly not
supported by a close reading of Lamarck’s own words. Moreover, the development
of the vertical and lateral dichotomy in Lamarck’s model prefigured, at least,
its appearance in Darwin’s (1859) published model half a century later. What
Lamarck gave us, whether anyone was listening or not, was a phylogenetic model
with two fundamental bifurcations, plant and animal, these in turn provided a
multitude of environmentally induced branching events: a model of vertical and
lateral evolutionary change.

Some 200 years after Lamarck published Zoological Philosophy, Colin Groves
(Groves and Grubb, 2011; Gippoliti and Groves, 2012) was criticised for his own
views on species (e.g. Zachos and Lovari, 2013). While I am sure Colin will be
vindicated with time and, indeed, has made a stellar progress on this front (e.g.
Gippoliti et al., 2013), I am not so sure about Lamarck.
References

