Taxonomic Tapestries
The Threads of Evolutionary, Behavioural and Conservation Research
## Contents

List of Contributors .................................................. vii  
List of Figures and Tables. ........................................... ix  

### PART I

1. The Groves effect: 50 years of influence on behaviour, evolution  
   and conservation research ........................................ 3  
   *Alison M Behie and Marc F Oxenham*  

### PART II

2. Characterisation of the endemic Sulawesi *Lenomys meyeri*  
   (Muridae, Murinae) and the description of a new species of  
   *Lenomys* .............................................................. 13  
   *Guy G Musser*  

3. Gibbons and hominoid ancestry. .................................. 51  
   *Peter Andrews and Richard J Johnson*  

4. Hurricanes and coastlines: The role of natural disasters  
   in the speciation of howler monkeys .............................. 75  
   *Alison M Behie, Travis S Steffens, Tracy M Wyman,*  
   *Mary SM Pavelka*  

5. Adolf Remane: Notes on his work on primates .................. 93  
   *Prof Ulrich Welsch*  

6. Retouch intensity on Quina scrapers at Combe Grenal:  
   A test of the reduction model .................................... 103  
   *Peter Hiscock and Chris Clarkson*  

7. What are species and why does it matter?  
   Anopheline taxonomy and the transmission of malaria ....... 129  
   *Robert Attenborough*  

### PART III

8. Lamarck on species and evolution ............................... 155  
   *Marc F Oxenham*
9. Naming the scale of nature................................. 171
   Juliet Clutton-Brock

10. Changes in human tooth-size and shape with the Neolithic
    transition in Indo-Malaysia ............................ 183
    David Bulbeck

11. Variation in the Early and Middle Pleistocene: The phylogenetic
    relationships of Ceprano, Bodo, Daka, Kabwe and Buia . . . 215
    Debbie Argue

12. Human evolution in Sunda and Sahul and the continuing
    contributions of Professor Colin Groves ................ 249
    Michael C Westaway, Arthur Durband and David Lambert

PART IV

13. The domestic and the wild in the Mongolian horse and
    the takhi ................................................. 279
    Natasha Fijn

14. Rhino systematics in the times of Linnaeus, Cuvier,
    Gray and Groves ....................................... 299
    Kees Rookmaaker

15. Conservation consequences of unstable taxonomies:
    The case of the red colobus monkeys .................. 321
    John Oates and Nelson Ting

16. The phylogenetic species concept and its role in
    Southeast Asian mammal conservation .................. 345
    Erik Meijaard and Benjamin Rawson

17. Conserving gorilla diversity ............................ 361
    Angela Meder

18. The warp and weft: Synthesising our taxonomic tapestry . . . 373
    Marc F Oxenham and Alison M Behie

Index............................................................. 381
List of Contributors

Peter Andrews Natural History Museum, Cromwell Road, London, UK SW7 5BD

Debbie Argue School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

Robert Attenborough School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601; Division of Biological Anthropology, Department of Archaeology & Anthropology, University of Cambridge, Pembroke Street, Cambridge, UK, CB2 3DZ

Alison M Behie School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

David Bulbeck Department of Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Canberra, Australia, 2601

Chris Clarkson Department of Archaeology, School of Social Sciences, The University of Queensland, Brisbane, St Lucia, QLD, Australia, 4072

Juliet Clutton-Brock Natural History Museum, Cromwell Road, London, UK, SW7 5BD

Arthur Durband Department of Sociology, Anthropology and Social Work, Kansas State University, 204 Waters Hall, Manhattan, KS, 66502

Natasha Fijn School of Archaeology and Anthropology, The Australian National University, Canberra, Australia, 2601

Peter Hiscock Department of Archaeology, School of Philosophical and Historical Inquiry | Faculty of Arts and Social Sciences, The University of Sydney, Sydney, Australia, 2006

Richard J Johnson University of Colorado, Denver Aurora, USA, CO 80045

David Lambert Griffith School of Environment, Nathan campus, Griffith University, 170 Kessels Road Nathan, QLD, Australia, 4111

Angela Meder Berggorilla & Regenwald Direkthilfe c/o Rolf Brunner Lerchenstr. 545473 Muelheim, Germany

List of Figures and Tables

Figures

Figure 2.1  An adult *Bunomys chrysocomus* skull illustrating limits of cranial and dental measurements employed. 14

Figure 2.2a Collection localities for modern and subfossil samples of *Lenomys meyeri*. 17

Figure 2.2b Collection localities for modern and subfossil samples of *Lenomys meyeri*. 18

Figure 2.3 Holotype of *Mus meyeri*. 21

Figure 2.4 Skull of the holotype of *Mus meyeri*. 21

Figure 2.5 Young adult female *Lenomys meyeri* from tropical lowland evergreen rainforest near Tomado, 1000 m. 25

Figure 2.6 Length of distal white tail segment relative to total length of tail in the sample of *Lenomys meyeri*. 25

Figure 2.7 Cranium and left dentary of *Lenomys meyeri lampo*, an adult female collected at 2200 m on Gunung Lompobatang. 26

Figure 2.8 Nomenclature of dental structures using right upper and lower molars of *Lenothrix canus*. 27

Figure 2.9 Occlusal views of right maxillary and mandibular molar rows of *Lenomys meyeri* from Gunung Lompobatang. 28

Figure 2.10 Specimen scores representing modern examples of *Lenomys meyeri* projected on first and second principal components. 31

Figure 2.11 Hillside primary forest along Sungai Sadaunta in area near where *Lenomys meyeri* was caught. 32

Figure 2.12 Ground cover over terrace where burrow of *Lenomys meyeri* was located. 33

Figure 2.13 Burrow system of *Lenomys meyeri* excavated on a stream terrace adjacent to Sungai Sadaunta, 915 m. 35

Figure 2.14 Dentaries from *Lenomys* obtained in the southwest peninsula. 42
Figure 2.15  Occlusal views of subfossil mandibular molar rows from two species of *Lenomys*.  43

Figure 2.16  Scores representing specimens of modern and subfossil *Lenomys meyeri* and subfossil *L. grovesi* projected on first and second principal components.  44

Figure 4.1a  Total number of storms that crossed through the ranges of *Alouatta pigra* and *Alouatta palliata* from 1851 to 2007.  82

Figure 4.1b  Total number of hurricanes that crossed through the ranges of *Alouatta pigra* and *Alouatta palliata* from 1851 to 2007.  83

Figure 5.1  Photograph of Professor Remane.  94

Figure 6.1  Examples of specimens classified into each of the four scraper classes.  105

Figure 6.2  Diagrammatic representation of the staged reduction model proposed by Dibble.  105

Figure 6.3  Notional illustration of the relationship of blank cross-section and extent of reduction for dorsally retouched Quina scrapers.  109

Figure 6.4  Illustration of the measurements of reduction used multiple values of Kuhn’s (1990) unifacial reduction index and a count of the number of zones.  112

Figure 6.5  Relationship between Kuhn GIUR and the percentage of original flake mass lost through retouching in the experimental dataset.  113

Figure 6.6  Histogram of the Kuhn GIUR values for single scrapers from Layer 21.  117

Figure 6.7  Examples of different levels of reduction on scrapers.  117

Figure 6.8  Histogram showing differences in the distribution of retouch on specimens classified as single scrapers and transverse scrapers.  120

Figure 6.9  Illustration of the typological status and reduction history of flakes retouched to different degrees.  122

Figure 8.1  Diagram ‘Showing the Origin of the Various Animals’.  162

Figure 8.2  This is a modification of Ruse following Bowler’s interpretation of Lamarck’s scheme.  165
Figure 10.1 Dental metrics, Penrose size statistics comparisons. 192
Figure 10.2 Dental metrics, Penrose shape distances, 17 male samples, 32 diameters, seriated average-linkage dendrogram. 194
Figure 10.3 Dental metrics, Penrose shape distances, 18 male samples, 16 buccolingual diameters, seriated average-linkage dendrogram. 196
Figure 10.4 Dental metrics, Penrose shape distances, 19 bisexual samples, 32 diameters, seriated average-linkage dendrogram. 199
Figure 10.5 Dental metrics, Penrose shape distances, 19 bisexual samples, 16 buccolingual diameters, seriated average-linkage dendrogram. 201
Figure 10.6 Dental metrics, Penrose shape distances, 23 bisexual samples, up to 32 diameters, seriated average-linkage dendrogram. 203
Figure 11.1a Three shortest trees. 221
Figure 11.1b Three shortest trees. 222
Figure 11.1c Three shortest trees. 222
Figure 11.2 Bootstrap analysis. 223
Figure 11.3 Bodo and *H. rhodesiensis*. 226
Figure 11.4 Bodo and *H. erectus*. 226
Figure 11.5 Daka and *H. erectus*. 227
Figure 11.6 Daka and KNMs. 228
Figure 11.7 Ceprano and *H. erectus*. 228
Figure 11.8 Preferred phylogeny. 231
Figure 12.1a The extreme thickness of Sangiran 6 is compared to that of Sangiran 1b. 253
Figure 12.1b The very thick corpus of Sangiran 6 is similar to that seen in the Peninj *Paranthropus* mandible. 254
Figure 12.1c The posterior view of Sangiran 31 showing the extreme robusticity of the occipital torus. 254
Figure 12.1d Lateral view of Sangiran 31 showing the extreme robusticity of the occipital torus. 255
Figure 12.2 Liang Bua 1, the type specimen of *Homo floresiensis*. 257
Figure 12.3a  Autapomorphic characters identified in the Ngandong series.

Figure 12.3b  Autapomorphic characters identified in the Ngandong series.

Figure 12.4a  Robust and gracile Australian fossils often discussed in the Aboriginal origins debate.

Figure 12.4b  Robust and gracile Australian fossils often discussed in the Aboriginal origins debate.

Figure 12.5  Theorised representation of the emergence of cranial robusticity associated with the onset of the Last Glacial Maximum.

Figure 13.1  Takhi herd with stallion to the right, Hustai Nuruu National Park.

Figure 13.2  Individual takhi at Hustai Nuruu National Park.

Figure 13.3  A Mongolian horse herd in a snowstorm in spring, Arkhangai Province.

Figure 13.4  A prized Mongolian horse with elaborate saddle and bridle and wild-type characteristics.

Figure 13.5  Mongolian herder with Mongolian horse.

Figure 13.6  A saddled piebald (kharlag) Mongolian horse.

Figure 13.7  Mongolians greeting by passing snuff.

Figure 14.1  Black rhinoceros and skull, sketched by Anders Sparrman.

Figure 14.2  The famous Indian rhinoceros ‘Clara’, shown all around Europe between 1741 and 1758, depicted behind a human skeleton.

Figure 14.3  A rhinoceros skull drawn by the English physician James Parsons.

Figure 14.4  The first description of the double horned rhinoceros of Sumatra by William Bell.

Figure 14.5  Broadside published by the Dutch professor Petrus Camper to show the differences between skulls of a black rhinoceros obtained from the Cape of Good Hope and of a rhinoceros from Java.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 14.6</td>
<td>Depiction of a rhino hunt at Chué Spring (Heuningvlei) in South Africa by William Burchell in 1812.</td>
<td>306</td>
</tr>
<tr>
<td>Figure 14.7</td>
<td>Skeleton of the ‘Rhinoceros unicorn de Java’ in the Paris Museum of Natural History.</td>
<td>307</td>
</tr>
<tr>
<td>Figure 14.8</td>
<td>Lateral view of black rhinoceros called ‘Rhinoceros keitloa’ drawn by Gerald Ford.</td>
<td>308</td>
</tr>
<tr>
<td>Figure 14.9</td>
<td>Images of the female Sumatran rhino ‘Begum’ shown in London Zoo from 15 February 1872 to 31 August 1900.</td>
<td>310</td>
</tr>
<tr>
<td>Figure 14.10</td>
<td>Nile rhino from the Lado Enclave in Sudan. Plate drawn by J. Terrier and printed by J. Pitcher.</td>
<td>311</td>
</tr>
<tr>
<td>Figure 15.1</td>
<td>Distribution of 18 allopatric populations of red colobus monkeys that have been given taxonomic names of subspecies or species rank.</td>
<td>326</td>
</tr>
<tr>
<td>Figure 15.2</td>
<td>Geographical distribution of red colobus monkeys according to nine-species arrangement of Groves.</td>
<td>334</td>
</tr>
<tr>
<td>Figure 15.3</td>
<td>Geographical distribution of red colobus monkeys according to 16-species arrangement of Groves.</td>
<td>334</td>
</tr>
<tr>
<td>Figure 15.4</td>
<td>Geographical distribution of red colobus monkeys according to five-species arrangement of Ting.</td>
<td>335</td>
</tr>
<tr>
<td>Figure 16.1</td>
<td>Change over time of the number of South-East Asian pig species described and generally recognised.</td>
<td>347</td>
</tr>
<tr>
<td>Figure 16.2</td>
<td>Change over time of the number of gibbon species described and generally recognised.</td>
<td>351</td>
</tr>
</tbody>
</table>
## Tables

| Table 2.1 | Descriptive statistics for measurements of lengths of head and body, tail, hind foot, and ear, and for weight, derived from modern samples of *Lenomys meyeri* | 22 |
| Table 2.2 | Age, sex, number of teats, and external, cranial, and dental measurements for holotypes associated with *Lenomys meyeri* | 23 |
| Table 2.3 | Descriptive statistics for cranial and dental measurements derived from modern samples of *Lenomys meyeri* | 30 |
| Table 2.4 | Results of principal-components analysis comparing modern specimens of *Lenomys meyeri* | 31 |
| Table 2.5 | Summary of microhabitats at trapping sites and other relevant information for two specimens of *Lenomys meyeri* collected in Central Sulawesi, 1974-1975 | 34 |
| Table 2.6 | Subfossil fragments of *Lenomys meyeri* from the southwest peninsula of Sulawesi | 36 |
| Table 2.7 | Measurements of mandibular molars from subfossil and modern samples of *Lenomys meyeri* and the subfossil specimen of *Lenomys grovesi* | 38 |
| Table 2.8 | Subfossil representatives of murids excavated from Leang Burung 1 | 40 |
| Table 2.9 | Murid species represented by middle and late Holocene subfossils excavated from caves and rock shelters on the southern end of the southwestern peninsula of Sulawesi | 41 |
| Table 2.10 | Results of principal-components analysis comparing modern and subfossil samples of *Lenomys meyeri* with the subfossil specimen of *Lenomys grovesi* | 45 |
| Table 3.1 | Morphological features of proconsulids related to their form of locomotion | 55 |
| Table 4.1 | Howler species (Genus *Alouatta*) as recognised by Colin Groves in *Primate Taxonomy* (2001) | 76 |
| Table 4.2 | Studies included in behavioural comparisons of *Alouatta pigra* and *A. palliata* | 79 |
| Table 6.1 | Sample of complete retouched flakes from Layer 21 used in this analysis, presented by implement type. | 111 |
| Table 6.2 | Descriptive statistics for the Kuhn GIUR, Retouched zone index, and surface area/platform area ratio of four implement classes in Layer 21 of Combe Grenal. | 115 |
| Table 7.1 | Key features of the primary Pacific malaria vectors | 142 |
Table 7.2  Selected contrasts in variables relevant to malaria transmission between selected cryptic species in the *An. punctulatus* and *An. gambiae* species complexes 146

Table 10.1  Recent/historical samples used in the comparisons 185
Table 10.2  Historical Sulawesi dental metrics 186
Table 10.3  Prehistoric samples used in the comparisons 187
Table 10.4  Early Sulawesi dental metrical data 188
Table 10.5  First analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left) 193
Table 10.6  Second analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left) 195
Table 10.7  Third analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left) 198
Table 10.8  Fourth analysis: square roots of Penrose shape distances (top right) and after calibration and seriation (bottom left) 200
Table 10.9  Fifth analysis, four additional samples: square roots of Penrose shape distances (left) and after calibration and seriation (right) 202
Table 10.10 Comparative data on major limb-bone lengths(A) in Java 206
Table 10.11 Comparison of Indo-Malaysian tooth size and cranial index 207
Table 15.1  Taxonomic arrangements of red colobus forms by different authors 324
Table 15.2  Selected threat status listings of red colobus taxa by IUCN 329
PART I
1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research

Alison M Behie and Marc F Oxenham

This volume explores the complexity, diversity and interwoven nature of taxonomic pursuits primarily within the context of explorations of humans and related species, although it also delves into more distantly related species to show how taxonomy has impacted fields outside of human research. Essentially we are interested in showcasing recent research into that somewhat unique species we call humankind through the theoretical and conceptual approaches afforded by the discipline of biological anthropology. Structurally, our approach to understanding human uniqueness is tripartite in focusing on: (1) the evolution of the human species, (2) the behaviour of primates and other species, and (3) how humans affect the distribution and abundance of other species through anthropogenic impact. In this manner we weave together these three key areas of bio-anthropological endeavour and scrutinise how changes in taxonomic theory and methodology, including our fluctuating understanding of speciation, have recrafted the way in which we view animal behaviour, human evolution and conservation studies.

Taxonomy forms perhaps the most fundamental structural principle of arguably all biological knowledge and research. Indeed, taxonomy is the epistemological cornerstone of the biological sciences. In this context it is somewhat astonishing to note that within the last 20 years significant gaps in taxonomic knowledge have appeared, ostensibly due to a dearth of adequately trained taxonomists in the current generation of scholars. This lacuna, referred to as the taxonomic impediment, is in our view exacerbated by a recent over reliance on ‘geno-hype’ (Holtzmann, 1999), which refers to our scientific love affair with genetic-based approaches, at the expense of traditional taxonomic principles. Taxonomy, however, is more than its constituent parts, with DNA but one piece of the taxonomic fabric.

While the invention of improved and non-invasive ways to collect DNA has resulted in its resurgence in the field of taxonomy, this reliance on genetics to define species is nothing new. The Biological Species Concept defines species as ‘groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups’ (Mayr, 1940: 256). This concept, which relies heavily on interbreeding, or lack thereof, to define species,
1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research

Alison M Behie and Marc F Oxenham

This volume explores the complexity, diversity and interwoven nature of taxonomic pursuits primarily within the context of explorations of humans and related species, although it also delves into more distantly related species to show how taxonomy has impacted fields outside of human research. Essentially we are interested in showcasing recent research into that somewhat unique species we call humankind through the theoretical and conceptual approaches afforded by the discipline of biological anthropology. Structurally, our approach to understanding human uniqueness is tripartite in focusing on: (1) the evolution of the human species, (2) the behaviour of primates and other species, and (3) how humans affect the distribution and abundance of other species through anthropogenic impact. In this manner we weave together these three key areas of bio-anthropological endeavour and scrutinise how changes in taxonomic theory and methodology, including our fluctuating understanding of speciation, have recrafted the way in which we view animal behaviour, human evolution and conservation studies.

Taxonomy forms perhaps the most fundamental structural principle of arguably all biological knowledge and research. Indeed, taxonomy is the epistemological cornerstone of the biological sciences. In this context it is somewhat astonishing to note that within the last 20 years significant gaps in taxonomic knowledge have appeared, ostensibly due to a dearth of adequately trained taxonomists in the current generation of scholars. This lacuna, referred to as the taxonomic impediment, is in our view exacerbated by a recent over reliance on ‘geno-hype’ (Holtzmann, 1999), which refers to our scientific love affair with genetic-based approaches, at the expense of traditional taxonomic principles. Taxonomy, however, is more than its constituent parts, with DNA but one piece of the taxonomic fabric.

While the invention of improved and non-invasive ways to collect DNA has resulted in its resurgence in the field of taxonomy, this reliance on genetics to define species is nothing new. The Biological Species Concept defines species as ‘groups of actually or potentially interbreeding natural populations, which are reproductively isolated from other such groups’ (Mayr, 1940: 256). This concept, which relies heavily on interbreeding, or lack thereof, to define species,
has been a mainstream way to view and define species for decades. Despite its common acceptance, there are controversies surrounding it, many of which were brought to the forefront by Professor Colin Groves. One major criticism is that this concept can only be applied to species with overlapping ranges, meaning we cannot differentiate species that do not have the opportunity to attempt breeding due to non-overlapping ranges. In addition, our ability to analyse the genetics of many wild populations has allowed us to see that in some groups hybrid animals may actually be more numerous than the parent species, suggesting that reproductive isolation may not in fact separate species (Groves, 2012).

Up to 24 species concepts have been proposed over the years, but in the interest of brevity, just a few major players will be described here. The Ecological Species Concept proposes that species are groups of animals ‘evolving separately from others with its own evolutionary role and tendencies’ (Simpson, 1963: 153), which by anyone’s definition is a vague concept that would be nearly impossible to apply in practice. The Genetic Species Concept defines species based on the amount of genetic variation both within and between species, assuming more variation between than within species. While simple and logical, it is nearly impossible to determine a cut off point for determining too much (multiple species) or too little (single species) genetic variation. The Phylogenetic Species Concept provides a more encompassing view of species in that they are defined by their possession of unique features and/or characteristics, either primitive or derived, that separate them from other groups (Nixon and Wheeler, 1990). It does not ignore genetics, but does not require different species be genetically incompatible, while also taking into account other features such as morphological similarities (Kimbel and Martin, 1993). It is this concept that has been strongly supported by Colin Groves throughout his career.

To date, debate over the definition of species continues, creating uncertainty for any researcher using species as their basic taxonomic unit of study. While this is an important issue, no volume has yet attempted to examine how changing views on the nature and processes of taxonomy have shaped modern research agendas and interpretations in the key areas of biological anthropology. It is, however, an issue with profound implications and one may ask: Does it matter if different scientists take different approaches to defining species? Will our understanding of evolution and behaviour, or the way in which we attempt to conserve species, really be impacted by the taxonomic classification system we choose to use? Important questions such as these are what this volume explores by using new data to interpret how a fluid and ever changing understanding of taxonomy has led to diverse and disparate research outcomes. The chapters in this volume will explore the significant impacts that these changes have had by investigating both historical perspectives relating to taxonomy and employing
new data to uncover how the taxonomic impediment has influenced research processes and outcomes, with particular emphasis on humans and our close primate relatives.

**Colin Groves**

As one of the world’s leading taxonomists, this volume pays tribute to Colin Groves. Professor of Biological Anthropology at The Australian National University, where he has worked for the past 40 years, Colin’s influence has spread through multiple disciplines including, but certainly not limited to, animal morphology, animal behaviour, human evolution and conservation. Colin sees himself as a taxonomist above all else, and his dedication to taxonomic pursuits stems directly from his true love of animals, which can perhaps be traced back to his childhood when his grandfather bought him a book on animals. This fascination grew in his teen years, which would see him heading to the London Natural History Museum and requesting access to their bone collections. When it was time to attend university, it is no surprise Colin wanted to study zoology, but as his father had a preference for him to undertake a degree in linguistics, he settled on anthropology as a compromise between the two. And the rest, as they say, is history.

Immediately following his undergraduate years, Colin entered the PhD program at the University of London under the tutelage of the esteemed John Napier, who was at the time regarded as the leader in primate taxonomy. His doctoral research, completed in 1966, involved a large-scale survey of gorilla skulls. Somewhat serendipitously Colin’s work led to a meeting with Dian Fossey, who invited him to Karisoke to see the population of mountain gorillas she is now so famous for studying. Colin’s work with gorillas resulted in numerous high impact publications at a very young age, vastly expanding our knowledge of gorilla ecology, biology and morphology. The influence these early years had on Colin can still be seen today in his passion for and involvement in gorilla conservation.

Colin’s doctoral research success not only fuelled his future academic pursuits, such as his two-year postdoctoral fellowship at Berkeley and his fixed-term appointment at Cambridge, but also beat a path to his wife of more than 40 years, Phyll. As Colin had studied with John Napier, who worked at the Royal University Hospital at the University of London, it was not surprising that when Colin fell ill in the fall of 1973 he was admitted to that hospital with a request to be put in a private ward due to the fact he was suspected of having tuberculosis, which luckily he did not. He did, however, get placed in a ward where the Ward Sister was one Phyll Dance. She would watch Colin taking the tea cart
around, not realising it may have been because he wanted a cuppa himself, and playing chess with the elderly patients. Their connection rapidly grew into a whirlwind romance leading to Phyll packing her bags and moving to Australia with Colin just a short four months later when, in January 1973, Colin took up a position at The Australian National University. This is where he has been ever since, supervising scores of Honours, Masters, Doctoral and other graduate students in addition to collaborating with myriad scientists from around the globe, resulting in close to 200 peer-reviewed publications. Lest we forget the opportunities to travel: it also gave him the opportunity to continue to conduct field work expeditions in places such as Tanzania, Indonesia, Rwanda, Kenya and Iran.

Colin’s field work adventures have included trips to museums and national parks around the globe, allowing him to study hundreds of species of animal, including every species of rhinoceros, which is still one of his greatest personal achievements. This love of the rhinoceroses may have its genesis in the work he did as an undergraduate, which resulted in his first publication, entitled ‘On the Rhinoceroses of South-East Asia’. This connection to rhinoceroses remains strong, which would be apparent to anyone who entered the Groves’ home and noticed the vast collection of rhinoceros paraphernalia crowding the shelves and walls. When Phyll first met Colin and realised she may too have to participate in these trips, she asked him ‘Do you get chased by wild animals?’ to which Colin replied ‘No. Animals don’t chase people.’ An answer he may now regret considering they have been chased by lions, a herd of banteng, as well as by a rhinoceros in Ujung Kulon. We might add that this was a rhinoceros they had been cautioned not to get too close to, but Colin with his ever inquisitive nature began to follow, not realising it would soon be following them.

Despite these close calls, Colin has always been a true conservationist. In this respect he was well ahead of his time in understanding the impact of humans on the environment. Phyll can recall when she first took Colin to her home town shortly after they met, he refused a plastic bag from a shop keeper. Although she was embarrassed by this at the time, it just goes to show that he has always been ahead of the game in his devotion to conservation – a devotion that quickly becomes apparent to anyone who has ever heard Colin speak about the plight of wild animals and the need to conserve them. He is avidly involved with conservation organisations, and right here in Canberra he often speaks at fundraising events where he is never shy about voicing his opinion on controversial topics such as the boycotting of products containing palm oil due to the impact palm oil plantations have on Asian wildlife. As taxonomy is the basis for conservation and as ‘threats to the natural world and its biodiversity are ubiquitous and accelerating, it affects conservation strategies’. After all,
how can we know what to conserve if we don’t know what species are out there? Links such as these, tying taxonomy to practical and real research outputs, are what have set Colin apart.

Colin has also devoted much of his career to refining mammalian taxonomy, which has resulted in his naming more than 40 taxa, including species of rats, civets, possums and, most famously, the human ancestor, *Homo ergaster*, which was undertaken with colleague Vratislav Mazák in 1975. This is likely the thing he is most remembered for, but his contributions to the field of human evolution certainly do not end there. As a renowned skeptic and a 30-year member of the Australian Skeptics, Colin is always pushing the boundaries and looking for new ways to understand the world and challenge those around him. This has led to him arguably making more contributions to mammalian taxonomy than any other modern scientist, including the addition of his two influential books *Primate Taxonomy* and *Ungulate Taxonomy*, which are now used as landmark taxonomy guides. More recently, Colin has also been a major player in the recent debate surrounding *Homo floresiensis* and its relationship to modern humans. Never shy to turn away from a debate, he gets great pleasure in educating young people about many things including the truth behind creationism, which is one of the only things he seems to take offence to.

Colin has undoubtedly influenced, directly or indirectly, thousands of people far and wide, which embodies what he truly is: a teacher. Having students in his lab or speaking in schools and getting young people excited about behaviour, morphology, evolution or conservation, or any other topic of interest, makes Colin happy. He is an educator on every level, whether working as a supervisor, mentor or even simply by taking the time to write numerous letters to newspapers to discuss topics of interest. There is no doubt his many undergraduate students enjoy hearing him lecture, his graduate students appreciate his support, supervision and insight, and the staff he has mentored welcome his helpful nature and encyclopaedic knowledge of the discipline.

Despite everything Colin has obviously achieved, what might make him the most endearing to those who know him is his humility. Just recently he was made an honorary member of the American Society of Mammalogists, something which has been bestowed on less than 100 people. He was also the 2014 recipient of an award from the Margot Marsh Biodiveristy Fund for Excellence in Contribution to Primate Conservation. Both awards were a surprise, and to hear Colin tell the story, he didn’t even realise that the great person being described as they began the ceremonies was himself. This is not the first time that we have heard Colin say such things. His gentle spirit and true passion for what he does leave no room for ego or arrogance, and all of us who have had the pleasure to work with or even briefly chat with Colin Groves are the better for it.
This volume is broken down into four main sections, prefaced by this introduction as Part I. Part II, Chapters 2 through 7, explores the influence of changing taxonomic and speciation mechanisms on studies of behaviour and morphology. Chapter 2 describes a new species of murid rodent endemic to the island of Sulawesi, *Lenomys grovesi*, a genus that up until now has been thought to be monotypic. Chapters 3 to 5 focus on primatology, with Chapter 3 providing new insights into the evolution of gibbons through consideration of the morphology of their last common ancestor. Chapter 4 considers how natural disasters may play a role in the speciation of New World monkeys, while Chapter 5 summarises, for the first time, the influence of the primatologist Adolf Remane on primatological studies. Chapter 6 turns to the hominid lineage by using new ways of thinking about lithic technology to weigh in on current debates about hominid and Neanderthal cognition. Finally, Chapter 7 explores how changes to the taxonomy of anopheline (malarial) mosquitoes have contributed to our understanding of human malaria transmission.

Part III shifts focus to studies of evolution, starting with Chapter 8, which revisits the contributions of Lamarck’s ideas on the nature of species, re-evaluating his contributions to the field of biological evolution. Chapter 9 investigates the changing nature of taxonomy from Aristotle to the current day, with a focus on what this has meant to studies of domestication. The remainder of this section focuses on human evolution, starting with Chapter 10, followed by reviews of how relationships between diet, farming and cooking techniques with reductions in tooth size and corresponding cranial changes can affect evolution in the Holocene human skeletal record. Chapter 11 uses cladistic analyses to test existing hypotheses regarding the phylogenetic relationships of Ceprano, Daka, Kabwe and Bodo in the Early and Middle Pleistocene. Chapter 12 focuses on important new insights that studies of ancient DNA (aDNA) can contribute to our rewriting of the human evolutionary narrative in Sunda and Sahul.

Part IV moves from studying species themselves, to studies that consider how to conserve them. Chapter 13 describes how Mongolians have cooperated with western conservation organisations to enable the takhi to be released back on the Mongolian steppe from a captive existence in zoos and reserves. Chapter 14 describes the history of systematic research of the small group of currently existing species of rhinoceros to better understand rhinoceros conservation needs and plans. Chapters 15 through 17 consider primate conservation. Chapter 15 examines how the ever changing taxonomy of red colobus monkeys has impacted conservation efforts in Africa, while Chapter 16 evaluates the claim that use of the phylogenetic species concept undermines conservation efforts by focusing on two groups of Southeast Asian mammals, pigs (Suidae)
and gibbons (Hylobatidae). Chapter 17 tries to make sense of the complexity of gorilla conservation in light of ever changing species designations as well as threats. Finally, Chapter 18 synthesises our taxonomic tapestry.

References


