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Abstract: Descriptive analysis of sample survey data estimates means, totals and their variances in a design
framework.When analysis is extended to linearmodels, the standard design-basedmethod for regression pa-
rameters includes inverse selection probabilities as weights, ignoring the joint selection probabilities. When
joint selection probabilities are included to improve estimation, and the error covariance is not a diagonal
matrix, the unbiased sample based estimator of the covariance is the Hadamard product of the population
covariance, the elementwise inverse of selection probabilities and joint selection probabilities, and a sam-
ple selection matrix of rank equal to the sample size. This Hadamard product is however not always positive
de�nite, which has implications for best linear unbiased estimation. Conditions under which a change in
covariance structure leaves BLUEs and/or BLUPs are known. Interestingly, this class of “equivalent”matrices
for linear models includes non-positive semi-de�nite matrices. The paper uses these results to explore how
the estimated covariance from the sample can be modi�ed so that it meets necessary conditions to be posi-
tive semide�nite, while retaining the property that �tting a linear model to the sampled data yields the same
BLUEs and/or BLUPs as when the original Hadamard product is used.

1 Introduction
Traditional or design-based sample survey design theory, as developed in [8] or [4], uses the probabilities of
selection to form estimators, for example of means and totals, with estimation of the variance of these es-
timators being based on selection and joint selection probabilities. Many such estimators for a wide range
of survey designs, including expansion estimators for strati�ed, clustered, and probability proportional de-
signs, can be subsumed under the heading of Horvitz-Thompson estimators [11].

The alternative conceptualisation of sample surveys is model-based. See, for example [15], and conse-
quent papers by the same authors.

During the 1980’s and early 1990’s there was much debate about which method was best. The model
based approach was of considerable interest to academics doing research on sample design and analysis
theory, and the design based approachwas entrenched among practitioners and statisticians at o�cial statis-
tics agencies. O�cial Statisticians argued, quite correctly, that the model-based estimators were not robust
to model failure. This led in time to a rapprochement, with development of model assisted sampling with the
publication of [16]. The model assisted approach had the major advantage that it made explicit the underly-
ing models that practitioners use when deciding on the “best” design for a particular survey, because design
unbiasedness alone (which is simple to ensure at least in theory) is insu�cient to ensure a good estimator.
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Interestingly, and this is why designing a good sampling scheme remains somewhat an art, no uniformly best
(minimum variance) sample design exists [1].

Themodel-assisted approach had been foreshadowed, for example in [5], and the joint design andmodel
based approach was considered in [9] and used in [7].

To be explicit, suppose for a given population that the population mean of the variable y is:

Ȳ = 1
N

N∑
i=1

Yi

Let χi = 1 if i ∈ s and χi = 0 if i ∈ ̸ s where s is the sample, so that χi = 1 for n of the Npopulation units. In
the design-based context, Yi = yi for i =1,2,. . . ,N and it is only the {χi : i = 1, 2, . . . , N} which are random
variables.

Then the only design-unbiased estimators of the mean are of the form:

ȳ = 1
N

N∑
i=1

χiyi/πi

with E(χi) = πi for i =1,2,. . . ,N where E denotes design expectation and πi is the selection probability for the
ith unit; this is the Horvitz-Thompson estimator.

In the model-based approach, the population is now itself considered to be a sample from a superpopu-
lation with model-expectation E and model-variance V, so that each of the {Yi : i = 1, 2, . . . , N} is random
with respect to the superpopulation, and so is Ȳ.

Design-based, model-based andmodel-assisted estimators, and their variances and estimated variances
can be derived in this framework. For further details, see [7] or [9].

The importance of this broad framework is that it allows time series, as well as linear and generalized
linear models to be �tted to sample survey data in a way that provides better and more accurate estimates
both of the parameters and of the variance of those estimates.

2 Linear Models

2.1 Design based estimation for linear models

One of the standard ways of �tting linear models, particularly regression models, to survey data is to use
inverse selection probabilities as weights.

The linear model for the survey data can be speci�ed as:

Y = Xβ + e, (1)

where Y is an n×1 vector of responses, X is an n×pmatrix of auxiliary variables, β a p×1 vector of parameters,
and e an n×1 vector of errors with variance of V(e) = E(eeT) = Ve. In general, neither X nor Ve need be of full
rank.

For sample survey data, the data Y = (y1, y2, ..., yi , ...yn)Thave selection probabilities Π0 = diag(πi)
where i =1,2,. . .n with a parallel de�nition for the N − n non-sampled elements.

Then the standard solution for the case where X is full rank is

β̃ = (XTΠ−1
0 X)−1XTΠ−1

0 Y, (2)

with estimated variance given by

Ṽ(β̃) = [(XTΠ−1
0 X)−1XTΠ−1

0 ]Ve [Π−1
0 X(XTΠ−1

0 X)−1]. (3)

See, for example, [3, 12, 17]. This design-based solution (2) is essentially weighted least squares (with weights
equal to the inverse selection probabilities) but nevertheless has parallels with ordinary least squares in that
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the covariance Ve is not accounted for. However, Ve is accounted for in the estimated variance, which gen-
erally di�ers from the appropriately scaled version of (XTΠ−1

0 X)−1 that would be the estimated variance of
β̃ under simple random sampling. There is an additional minor di�erence from ordinary (or even weighted)
least squares:XTΠ−1

0 X is an design unbiased estimator ofXTPXP, andXTΠ−1
0 Y is a design unbiased estimator

of XTPYP, where XP and YP are the �nite population analogues of X and Y, but since the ratio of expectations
is not the expectation of the ratio, β̃ is not quite a design unbiased estimator of β.

3 Simultaneous adjustment of estimates for selection
probabilities, joint selection probabilities and covariance
structure for design-based estimates from linear models

Consider a population as a sample from a superpopulation and the linear model based on that population

YP = XPβ+eP , (4)

with E(eP) = 0, where E denotes expectation with respect to the superpopulation, andV(eP) = E(ePeTP) = VeP
is the N×N covariancematrix with ijth element vij. Then, because the sampling scheme is non-informative [2]
so that the selection probabilities do not depend on (i.e., are independent of) the errors eP in (4), standard
results apply and the best linear unbiased estimate (BLUE) of the superpopulation parameter β in the full
rank case is

β̂P = (XTPV−1
eP XP)−1XTPV−1

eP YP . (5)

3.1 Design unbiased estimation of the population covariance matrix

Suppose nowwe have a sample s, selected from the population P. Using a probability based sampling scheme
with selection probabilities {πi : i = 1, 2, ..., N} and joint selection probabilities {πij : i = 1, 2, ..., N; j =
1, 2, ..., N} (and noting that πi = πii for i = 1, 2, ..., N), de�ne χP to be the N×N matrix with ijth element χij
equal to one if i ∈ s and j ∈ s and zero otherwise. Note that χP depends on the sample s that is drawn, has n
non-zero diagonal elements all equal to one, and n(n − 1) o�-diagonal elements equal to one, with all other
elements equal to zero. Also provided the design is noninformative, E(χP) = ΠP where E is expectation with
respect to the design, and ΠP has ijth element πij for i = 1, 2, ..., N; j = 1, 2, ..., N.

De�ne the matrix Π�−
P to have ijth element 1/πij for i = 1, 2, ..., N; j = 1, 2, ..., N.

Note that for i = 1, 2, ..., N; j = 1, 2, ..., N, we have

E(χijvijπ−1
ij ) = vijπ−1

ij E(χij) = vijπ−1
ij πij = vij ,

which in matrix form is
E(χP � VeP � Π�−

P ) = VeP , (6)

where� denotes the Hadamard (or elementwise) product, where χP andΠ�−
P are non-negativematrices (i.e.,

all entries positive or zero), and VeP is positive semide�nite.
It is the matrix χP � VeP � Π�−

P which is the principal focus of the remainder of this paper.
Note that, after suitable permutation, there is only an n×n submatrix of χP that is non-zero, so that χP �

VeP � Π�−
P has ijth element vij/πij if i ∈ s and j ∈ s and is zero otherwise, with the convention that the

diagonal elements are vii/πi if i ∈ s and zero otherwise, and so (after the same permutation) χP � VeP �Π�−
P

also has only an n×n submatrix that is non-zero.
Note too that ifVeP = σ2

eP I, where I is the identity matrix and σ2
eP is a scale factor, χP�VeP �Π�−

P reduces
to a diagonal matrix with ith element vii/πi if i ∈ s and 0 if i ∈ ̸ s.
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3.2 Improved approximate to BLUE for design based estimation from sample survey
data

The permutation or re-ordering of χP � VeP �Π�−
P so that the sampled elements occur in the �rst n rows and

n columns is straightforward. Denote this re-ordering by VeP ,ΠP ,s or, since there is no ambiguity, by VeP ,s.
Now, VeP ,s has a generalized inverse (which is also the Moore-Penrose inverse)

V+
eP ,s =

(
V−1
eP ,s,n 0
0 0

)
, (7)

where VeP ,s,n is n×n with ijth element vij/πij. Because 0 < πi ≤ 1 for i =1,2,. . . ,N, the inverse V−1
eP ,s,n exists

provided VeP is full rank.
After the rows of XP have also been appropriately permuted to match the permutation for the rows and

columns of V+
eP ,s we have

XTPV+
eP ,sXP =

(
XT XT∼s

)( V−1
eP ,s,n 0
0 0

)(
X
X∼s

)
= XTV−1

eP ,s,nX (8)

and

XTPV+
eP ,sYP =

(
XT XT∼s

)( V−1
eP ,s,n 0
0 0

)(
Y
Y∼s

)
= XTV−1

eP ,s,nY, (9)

where Y∼s denotes the y-values and X∼s the auxiliary variables for the non-sampled elements.
Thus, by extension of (2) and (3), the approximate BLUE based on the sampled elements only is:

β̂ = (XTV−1
eP ,s,nX)−1XTV−1

eP ,s,nY (10)

with
V̂(β̂) = [(XTV−1

eP ,s,nX)−1XTV−1
eP ,s,n] Ve [V−1

eP ,s,nX(XTV−1
eP ,s,nX)−1], (11)

where, as in Section 2.1, V(e)= Ve and e denotes that part of eP that corresponds to the n sampled elements.
When VeP is diagonal, i.e., VeP = σ2

eP I, then VeP ,s,n is also diagonal and (10) and (11) reduce to (2) and (3)
respectively.

One major advantage of (10) and (11) over (2) and (3) is that they can be applied to estimation of �xed
e�ects inmixed linearmodels, where incorporation of the random e�ects intoVePmeans thatVeP is no longer
a diagonal matrix, so that (2) and (3) cannot be applied.

3.3 Is VeP ,s positive semide�nite, and is this necessary for BLUE?

Perhaps surprisingly, following from [10] and the earlier results of [14], to produce viable estimates of β from
(9), VeP ,ΠP ,s = VeP ,s = χP � VeP � Π�−

P need not be positive semide�nite, and its submatrix VeP ,s,n need not
be positive de�nite.

This can be seen for �xed e�ect linear models from an extension to [14]. Given a linear model of the form
(1) with error variance V1, then for any V2of the form

V2 = λV1 + XKXXT + V1X⊥KX⊥
XT⊥V1, (12)

where λ ≠ 0, X⊥ is a matrix orthogonal to X such that (X : X⊥ ) is of full column rank, and KX⊥
and KX⊥

are
arbitrary, the BLUE of β is unchanged. If λ = −1, KX⊥

= 0 and KX⊥
= 0, for example, then clearly V2 is not

positive semide�nite.
Rao’s and Haslett and Puntanen’s results are relevant here because the diagonal elements of the n×n

submatrix VeP ,s,n are vii/πi and its ijth element is vij/πij. Of course, vij/
√viivjj ≤ 1, but generally 1/πi �

1/πij, because the joint selection probabilities are such that (unless the survey design is clustered) πij ≈ πiπj.
So the diagonal elements ofVeP ,s,n may bemuch smaller than its o�-diagonal elements andVeP ,s,n may have
at least some negative eigenvalues.

The core problem parallels issues of negative estimates of variance for the Horvitz-Thompson estimator.
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4 Properties of VeP ,s

4.1 Adjusting VeP ,s to be positive semide�nite

Recall thatVeP ,s = χP�VeP �Π�−
P , where all three componentmatrices are N×N,VeP is positive semide�nite

and known or estimable, ΠP and hence Π�−
P is positive but not necessarily positive semide�nite, and χP is

also a non-negative matrix dependent on the sample s and containing n2 ones, n of them on the diagonal
(corresponding to the sampled elements), and N2-n2 zeros.

Now V positive semide�nite if xTVx ≥ 0, for all x, so that after any choice of permutation of the rows and
columns of V, and choosing x0 = ( x1 0 ), the submatrix V11 corresponding to x1 has the property that
xT1V11x1 ≥ 0 and so is positive semide�nite.

Nevertheless, VeP ,s not being positive semide�nite is an undesirable property so, to avoid complications
entirely, for survey designs where the intention is to �t linear models, when VeP (positive semide�nite) is
known, ΠP (nonnegative, but not necessarily positive semide�nite) should be chosen via the survey design
so that VeP � Π�−

P and hence VeP ,s = χP � VeP � Π�−
P is positive semide�nite, because then, for any sample

s, VeP ,s,n must also be positive semide�nite.
An alternative may be to consider using (12) to generate an equivalent matrix for the error covariance

structure in BLUE so that the equivalent matrix is positive semide�nite. For example, it may su�ce to use
(VeP � Π�−

P ) + k1XPXTP + k2(VeP � Π�−
P )XP⊥XTP⊥ (VeP � Π�−

P ), where XP⊥ spans the space orthogonal to XP

and k1 and k2 are suitable scalars. Provided the second and third terms taken together span the same space
as (VeP � Π�−

P ), k1 and k2 can be increased until they dominate and the resulting covariance structure is
positive semide�nite. This is however not always possible; as the sum of the second and third terms imply
some restrictions. Matrices formed from the sum of these two terms do not span the same space as (VeP �
Π�−
P ), because vectors generated from them are either in the space spanned by XP or the space spanned by

(VeP � Π�−
P )XP⊥ , but cannot be in both. More formally, this result follows from noting that

XPKXXTP + (VeP � Π�−
P )XP⊥KX⊥

XTP⊥ (VeP � Π�−
P )

=
(

XP (VeP � Π�−
P )XP⊥

)( KX 0
0 KX⊥

)(
XTP

XTP⊥ (VeP � Π�−
P )

)
.

A simple example in two dimensions would be vectors that can be along the x-axis or the y-axis only, when
compared with whole of two dimensional space.

4.2 Cauchy’s interlace theorem and VeP ,s

An alternative approach is to use Cauchy’s interlace theorem which, as stated in [6], says that the character-
istic polynomial of a Hermitian (or, if all entries are real, symmetric) matrix is interlaced by the characteristic
polynomial of any of its principal submatrices. By interlacing is meant that if two polynomials of order n
and n-1 have roots q1, q2,. . . ., qn and r1, r2,. . . rn−1 respectively then q1 ≤ r1 ≤ q2 ≤ r2 . . . ≤ rn−1 ≤ qn. An
alternative statement of the theorem is that the eigenvalues of a Hermitian matrix of order n are interlaced
with those of any principal submatrix of order n−1, where a principal submatrix is obtained by compression,
i.e., by removing any n − m rows and the same n − m columns. See also [13]. Of course, Cauchy’s interlace
theorem may be re-applied for any of n-2, n-3,. . . ,2, 1 so that the eigenvalues q1 and qn constitute upper and
lower bounds respectively of the eigenvalues of any 2×2 principal submatrix.

As a corollary, a necessary (but not su�cient) condition for all the eigenvalues of a matrix (with real
eigenvalues) to be non-negative is that the eigenvalues of all its 2×2 principal submatrices are non-negative.
Consider then a 2×2 symmetric matrix A with real entries, the two diagonal entries equal to one, and the
two o�-diagonal entries equal to a.Then A has eigenvalues (1+a) and (1-a) and corresponding eigenvectors
(1 1)T /

√
2 and (1 − 1)T /

√
2. For |a| ≤ 1, A is positive semi de�nite, and for |a| < 1, A is positive de�nite.
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Applying this result to the 2×2 principal submatrices ofVeP ,s = χP�VeP�Π�−
P , rescaled to be a correlation

matrix rather than covariance matrix (so that all diagonal entries are zeros or ones), yields matrices of three
types:
– a matrix of zeros,
– a matrix with either the 1st or 2nd diagonal entry is one (and the other zero), and both o� diagonal entries

are zero, and
– a matrix of the form of A with vii>0, vjj>0 and

a = vij√viivjj

√πiiπjj
πij

.

The �rst two types are positive semide�nite, so impose no constraints via the necessary condition that VeP ,s
be positive semide�nite. For the third type, the necessary condition imposed onVeP ,s for positive semide�nite
is that: ∣∣∣∣ vij√viivjj

√πiiπjj
πij

∣∣∣∣ ≤ 1

or, since vii, vjj, πii, πjj and πij are all necessarily positive for i =1,2,. . . ,N and j =1,2,. . . ,N:∣∣vij∣∣√viivjj
≤ πij√πiiπjj

. (13)

For example, for simple random sampling without replacement, πii = πjj = n/N and πij = n(n − 1)/N(N − 1)
for i =1,2,. . . ,N, and j =1,2,. . . ,N, and (13) reduces to

∣∣corr(yi , yj)∣∣ ≤ (n − 1)/(N − 1), where corr denotes
correlation. The lower bound is usually met, but the upper bound can often be exceeded when there are
neighbourhood e�ects, for example in surveys linked to socio-economic status. For random samples that are
not simple random, the results of [9] (where selection and joint selection probabilities are speci�ed for a range
of sample designs can be utilised.

Nevertheless, whether for simple random sampling or other random sampling schemes, the necessary
condition (13) for positive semide�niteness of VeP ,s is not generally met.

However from (12), the superpopulation variance structure can be modi�ed without changing the BLUE
of β in (4) for example via V2 = λV1 +XA0XT . If XA0XTcan set to have all elements equal to a0, (as when (4)
contains a common intercept term so that the vector of ones 1 ∈ C(X) where C denotes column space, and
the corresponding diagonal element of is set to a0), then (13) becomes:∣∣vij + a0

∣∣√
(vii + a0)(vjj + a0)

≤ πij√πiiπjj
. (14)

In the situation where vii for i =1,2,. . . ,N, are equal, setting a0 = −vij su�ces to ensure (14) is true. Interest-
ingly, although this is the stronger result, it has a parallel with (2) and (3) where it is e�ectively assumed that
vij = 0.

A common structure for VeP , the error covariance structure for (4), is block diagonal with blocks all of
the form σ2[(1 − ρ)I + ρ11T) where I is the identity matrix and 1 is a vector of ones. Such matrices occur, for
example, in cluster sampling where there is intra-cluster correlation for sampled elements within clusters
but no correlation between clusters. Setting a0 = −σ2ρ then ensures that the necessary condition for positive
semide�niteness of VeP ,s = χP � VeP � Π�−

P is met for any noninformative survey design.
Situations where there is not a common variance σ2 are more di�cult, since a suitable form of a0 may

not exist (for example, if there is a vij such that vij ≥ vi′ i′ for some i, j, and i′, where the range of all three
indices is 1, 2,. . . , N). This complication re�ects the issues raised for the necessary and su�cient conditions
given in Section 4.1.
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5 Conclusions
Whether the results of [14] or [10] are used, or the Cauchy interlace theorem is utilised to give necessary con-
ditions, the positive semide�niteness of some possibly augmented form of covariance structure for the error
in a linear model constructed from survey data cannot be guaranteed, except if joint selection probabilities
are ignored or equivalently the covariances between population elements are ignored.

For particular types of covariance structure often used in linear models for survey data however, where
the covariance matrix is block diagonal with common correlation and scale, it is possible to ensure the nec-
essary condition for positive de�niteness is met by using a suitable transformation.

Whether more general and/or stronger results can be obtained is an open question. So is the extent to
which structures used in linear models as covariances can depart from positive semide�niteness, without
a�ecting the numerical results of least squares algorithms used to determine BLUEs.
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