Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

T. Sunn Pedersen1,2, M. Otte1, S. Lazerson3, P. Helander1,2, S. Bozhenkov1, C. Biedermann1, T. Klinger1,2, R.C. Wolf1,4, H.-S. Bosch1,4 & The Wendelstein 7-X Team

Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.

1 Max Planck Institute for Plasma Physics, Wendelsteinstrasse 1, 17491 Greifswald, Germany. 2 University of Greifswald, Domstrasse 11, 17489 Greifswald, Germany. 3 Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543, USA. 4 Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany. Correspondence and requests for materials should be addressed to T.S.P. (email: thomas.sunn.pedersen@ipp.mpg.de).
†A full list of consortium members appears at the end of the paper.
Fusion has the potential to cover the energy needs of the world’s population into the distant future. Lawson showed in 1957 that magnetic confinement fusion based on deuterium–tritium fusion can work as a net energy source if one achieves a sufficiently high triple product, $n_i T_i \tau_E > 4 \times 10^{21} \text{ keV m}^{-3} \text{s}$ for the plasma, approximately valid for ion temperatures T_i in the range 10–40 keV (ref. 1).

Here n_i is the ion density, and τ_E is the energy confinement time, which for a typical operating point in magnetic fusion reactor studies is a few seconds.

A promising approach to meeting this challenge is the use of a magnetic field that creates toroidal magnetic surfaces.

Of these concepts, the tokamak has so far shown the best confinement properties, but the stellarator is not far behind, and there is reason to believe that it can catch up. In a stellarator, nested toroidal magnetic surfaces are created from external magnetic coils, see Fig. 1. Each magnetic field line meanders around on its magnetic surface; it never leaves it. In general, if one follows a field line from one point on a magnetic surface, one never comes back to the same exact location. Instead, one covers the surface, coming infinitely close to any point of the surface.

The stellarator is different from the other toroidal magnetic surface concepts in that both the toroidal and the poloidal field components—which together create the magnetic surface topology—are created from currents in external coils. In the tokamak and the reversed-field pinch, a strong toroidal current driven within the plasma is needed to generate the poloidal magnetic-field component. The stellarator’s lack of a strong current parallel to the magnetic field greatly reduces macroscopic plasma instabilities, and it eliminates the need for steady-state current drive. This makes it a more stable configuration, capable of steady-state operation. These are important advantages for a power plant.

The stellarator was invented by Lyman Spitzer in the 1950s (ref. 3). So why did it fall behind? And why do some believe that it is about to have a comeback?

Plasma confinement in early stellarators was disappointing. This was due to poorly confined particle orbits—many of the particle trajectories were not fully confined, even though the magnetic field lines were. If each guiding centre (the point around which the particle performs its rapid gyration) were to stay exactly on the magnetic field line it starts out on, the magnetic surfaces would guarantee good confinement. But for all toroidal magnetic systems, the orbits deviate from the field lines, since the guiding centres drift perpendicular to the magnetic field. This is due to the field-line curvature and magnetic field strength inhomogeneities inherent to the toroidal magnetic topology. In a magnetically confined fusion plasma, the drift is on the order of 10,000 times slower than the particle velocity, but, at 100 ms$^{-1}$, it will lead to particle losses in less than 1/10 of a second, if the drifts do not average out or stay within the magnetic surface, but instead carry the particle from the inner to the outer magnetic surfaces. This was the case in early stellarator experiments. The tokamak and the reversed-field pinch do not suffer from this problem since their toroidal symmetry makes the particle drifts average out for all the particles and therefore only cause minor excursions from the magnetic surface.

Advances in plasma theory, in particular in the 1980s and 1990s, allowed the development of stellarator magnetic field configurations that display greatly improved confinement (see refs 4,5), reducing the drift orbit losses to a level sufficiently small so that it is predicted to be compatible with an economically feasible fusion power plant. The optimization itself, as well as the associated design of coils that realize the optimized magnetic fields, requires computer power that only became available in the 1980s. The first generation of optimized stellarators started operation in the 1990s, and confirmed many of the expected improvements6,7. These devices were, however, too small to reach the high ion temperatures where the optimization really comes to its test. Moreover, they were built with copper coils, which are adequate for proof-of-principle studies but incompatible with steady-state operation at high magnetic field strengths. The Wendelstein 7-X (W7-X) stellarator experiment is the first representative of the new generation of optimized stellarators, and aims to show with its superconducting coil system and relatively large size (major radius 5.5 m), quasi-steady-state operation with plasma parameters, including ion temperatures, close to those of a future fusion power plant8,9. The sophisticated computer optimization of W7-X came at a price, however: the coils have complicated three-dimensional (3D) shapes, reminiscent of sculptures, Fig. 1. With today’s 3D design and manufacturing techniques, complex 3D engineering has become feasible, albeit still challenging10. Strict requirements for the manufacturing and assembly accuracy of the coils add to the engineering challenge, which was in fact viewed by some as unrealistic. High engineering accuracy is needed because small magnetic field errors can have a large effect on the magnetic surfaces and the confinement of the plasma.

The measurements that are presented in the following sections confirm that the engineering challenges of building and assembling the device, in particular its coils, with the required accuracy, are met successfully. To explain how this was done, we first describe a few key concepts.

Results

Hamiltonians and magnetic surfaces. The equations governing magnetic field lines can be written in Hamiltonian form. It is curious that this simple, but little-known, fact was discovered only a century ago11, but thanks to it, the entire arsenal of Hamiltonian chaos theory can be applied to magnetic fields. For instance, the celebrated Kolmogorov–Arnold–Moser (KAM) theorem12–14 guarantees that small perturbations to an otherwise integrable magnetic field preserve the topology of most field lines, and break it by generating so-called magnetic islands only at well-defined locations. As we shall see, these islands can be measured and visualized directly in W7-X and offer the opportunity to detect field perturbations smaller than $\delta B/B < 10^{-5}$. To our knowledge, it is the first time that the topology of a magnetic field has been measured so accurately. For more information on the

![Figure 1 | Layout of W7-X.](image-url)
theory of shaped magnetic fields and their role in plasma confinement, we refer to two recent reviews15,16.

A magnetic surface is not only characterized by its shape and enclosed volume, but also by its rotational transform, \(i \). This is a measure of the poloidal rotation (‘twist’) of the field lines as one follows them around the magnetic surface; \(i = 1/2 \) indicates that the field line moves halfway around a magnetic surfaces in the poloidal direction for each toroidal turn it makes. Thus, for \(i = 1/2 \), the field line bites itself in the tail after two toroidal transits. Since there are many more irrational than rational numbers, \(i \) is typically irrational, and a magnetic field line generally does not close on itself, it densely traces out a two-dimensional surface.

Measuring the magnetic topology. Since the magnetic surface topology in a stellarator is created entirely from external coils, it can be measured in the absence of a plasma. This is done using an electron beam injected along the magnetic field. It follows and therefore maps out the magnetic field lines, and thus allows confirmation of the magnetic surface topology, providing a flux surface map. As mentioned earlier, the motion along the field is much faster than the guiding-centre drifts. This is even more so for the relatively low-energy electrons used in magnetic-surface mapping. Owing to the launch of the electrons parallel to the magnetic field, and the much smaller mass of electrons relative to any ion, its ratio of parallel velocity to guiding centre drift velocity is of order 1 million. Thus, the beam follows the magnetic field lines to a very high accuracy. The source of the electron beam is an electron gun, a small negatively biased and heated thermionic electron emitter surrounded by a small electrically grounded cylindrical structure. This electron beam alone can visualize the magnetic field line on which it is placed, through collisional excitation of a dilute background gas inside the vacuum chamber. This way, striking images can be made of the 3D structure of the magnetic surfaces; see Fig. 2 and refs 17,18.

A two-dimensional cross-sectional image generally provides clearer information though, just as Poincaré phase-space maps do for other Hamiltonian systems. Such a Poincaré plot of the magnetic surface is realized experimentally by intersecting the electron beam with a rod covered with a fluorescent, here a special zinc oxide powder (ZnO:Zn). When the rod intersects the magnetic surface on which the electron beam circulates, it fluoresces at the one or usually two locations where the rod intersects the magnetic surface and therefore collides with the electron beam. As the rod moves through the surface, all points on the latter will eventually light up. In a long camera exposure of this sweep motion, the entire cross-section of the magnetic surface appears, as shown in Fig. 3. The motion of the rod itself is often invisible on such an image, since the light sources (other than the fluorescence) are kept as weak as possible. After an exposure, one can move the electron gun to another field line that defines another magnetic surface, and repeat the process. This way, the nested, closed magnetic surface topology, which is illustrated in Fig. 1, can be experimentally verified19–22, and if any magnetic island chains exist, they will show up in the Poincaré plot, as explained in the following.

Island chains and error fields. An island chain can appear on any magnetic surface with a rational value of \(i \); a direct confirmation of the small-denominator problem in KAM theory12. In practice, island chains with a detectable and operation-relevant size only appear for low-order rational values of \(i \), and only if there is a Fourier component of the magnetic field that has matching (that is, resonant) toroidal and poloidal mode numbers, \(n \) and \(m \), so that \(i = n/m \).

W7-X is designed to reach \(i = 1 \) at the outermost flux surface. It is a fivefold periodic device, with a pentagon-like shape, and thus has an \(n = 5 \) Fourier component to its magnetic field, so that an \(n = m = 5 \) island chain appears at the plasma edge. We denote unwanted field components error fields, and describe them in relative terms, \(b_{nm} = B_{nm}/B_0 \), where \(B_0 \) is the average magnetic field strength in the confinement region, and \(B_{mn} \) is the amplitude of the Fourier component of the error field. In the search for error fields, we focus on the toroidal \(n \) numbers since only \(n = 5 \) and multiples thereof should be present, whereas a broad spectrum of poloidal \(m \) numbers is present in W7-X. The \(n = 1 \) through 4 components are to be avoided as much as possible, to ensure symmetric heat load distributions onto the 2 \(\times \) 5 = 10 divertor units to be installed at the vessel wall in future operation phases23. For the symmetry-breaking \(n = 1 \) through 4 error fields, deformations due to electromagnetic forces do not play a major role and the \(b_{mn} \)'s are largely independent of the magnitude of \(B_0 \), in contrast to the effects discussed in the ‘Discussion’ section. Of particular concern is the \(n = 1 \) component, which would create an \(n/m = 1/1 \) island chain, and would result from, for example, a slightly misplaced coil module.

Figure 2 | Experimental visualization of the field line on a magnetic surface. The field lines making up a magnetic surface are visualized in a dilute neutral gas, in this case primarily water vapour and nitrogen (\(\rho_n \approx 10^{-6} \text{ mbar} \)). The three bright light spots are overexposed point-like light sources used to calibrate the camera viewing geometry.

Figure 3 | Poincaré section of a magnetic surface. The Poincaré section of a closed magnetic surface is measured using the fluorescent rod technique. The electron beam circulates more than 40 times, that is, over 1 km along the field line.
When minimizing the error fields, the main engineering challenge is the geometrical precision during coil manufacturing and coil assembly. The $3.5 \times 2.5 \times 1.5$ m-size non-planar coil winding packs with their five different geometries (cf. Fig. 1) are particularly critical. The construction of W7-X required, for the first time, industry to manufacture superconducting coils with a highly complex shapes, with tolerances in the ± 1 mm regime. This was accomplished by using specialized winding devices combined with precision metrology.

It was even more challenging to maintain the precision, and keep track of it, during installation of the coils: Positioning of the coils, machining of the contact elements, welding of mechanical supports and bolting to the massive central support ring, all sums up to create an additional contribution to the error field. It was only possible to keep deviations during installation and assembly into coil groups under control by intensive use of laser-based metrology tools, systematic adjustment procedures, as well as advanced welding and machining technologies. The largest coil placement errors were less than 4.4 mm, resulting in an expected largest Fourier coefficient of the magnetic perturbation error of $b_{11} \approx 1.2 \times 10^{-4}$ (ref. 26).

Measuring error fields. Magnetic flux surface mapping, in particular of island chains, allows for detailed error field detection and correction. Island chains are sensitive indicators of small changes in the magnetic field topology, since they are physical manifestations of resonances in the magnetic topology. The radial full width w of an island chain is related to a resonant magnetic field component through ref. 16

$$w = 4 \sqrt{\frac{R_0 B_{mn}}{m(d_i/dr)}} \Leftrightarrow B_{mn} = \frac{d_i}{dr} \frac{w^2 m}{16 R_0}.$$

(1)

The width of an island chain depends on the square root of the resonant field component, B_{mn} with $i = n/m$, and the magnetic shear dt_i/dr, as well as the poloidal mode number m and the size of the device (via the major radius $R_0 = 5.5$ m in W7-X). In W7-X, the rotational transform i is nearly constant from the inner to the outer magnetic surfaces, then dt_i/dr is small, and a sizeable island chain will result from even a very small resonant error field.

With field-line mapping, island chains can be detected, and thus, i can be determined at a specific radial location, and resonant error fields, if present, can be measured.

We show in the following that effects due to slight deformations of the magnetic coils are clearly visible, and that an important error field component in W7-X has been measured to be less than 1 in 100,000. To our knowledge, this is an unprecedented accuracy, both in terms of the as-built engineering of a fusion device, as well as in the measurement of magnetic topology.

Adjustment of i. The magnetic topology used for initial plasma experiments in W7-X was chosen so as to avoid island chains at the plasma edge.

The rotational transform i varies from 0.79 in the centre to 0.87 at the outer magnetic surface that just touches the graphite.

Figure 5 | Island chain shifts at higher field. The 5/6 island chain is shown in cyan for $B = 0.4$ T, and in yellow for $B = 2.5$ T. Although nominally one might expect them to be identical, the 5/6 island chain is about 10 cm further out at high field strength, due to small deformations of the magnet coils under electromagnetic forces.

Figure 6 | Profile of i for error field studies. The i profile is shown for the special configuration developed for field error detection. The i varies only minimally around the resonant value of 1/2. The x axis is a measure of the minor radial size (in meters) of the magnetic flux surface, that is, a pseudo-radial coordinate.

Figure 4 | The natural 5/6 island chain. The 5/6 island chain is visible in a poloidal-radial Poincaré plot created by an electron gun and a sweep rod, as a set of six ‘bubbles’, reflecting the $m = 6$ poloidal mode number. A thin background gas in the chamber creates a visualization of the field lines that create the x-points of the island chain.
limiters installed to protect in-vessel components by intercepting the plasma heat loads.

The $i = 5/6 \approx 0.83$ resonance is located inside the confinement region—and is thus unproblematic for the plasma-facing components. It creates a prominent island chain, because of the built-in $n = 5$ component in W7-X. This island chain is indeed clearly visible, as seen in Fig. 4 showing a measurement performed at the field strength $B = 2.5 \text{T}$ later intended for plasma operation. The island chain location was detected almost exactly at the position expected from calculations taking the elastic deformation of the superconducting coils into account. These deformations, due to the electromagnetic forces between the magnets, cause a roughly 1% decrease in i, thus shifting the location of $i = 5/6$ a few centimetres outward from where they would be without coil deformation. This was confirmed by repeating the measurements at $B = 0.4 \text{T}$ and observing that the island chain indeed appears those few centimetres further inward, Fig. 5. At $B = 0.4 \text{T}$, the electromagnetic forces are $(2.5/0.4)^2 \approx 39$ times smaller than at $B = 2.5 \text{T}$. The actual change in the angle of the magnetic field vector detected in this way is only about 0.1%. Nevertheless, it shows up in Fig. 5 as a clearly visible radial shift of the island chain. A more detailed analysis of these data can be found elsewhere.

Evaluation of an important error field component. For the first measurements of the $n = 1$ error field, a special magnetic surface configuration was used, where i varies slowly and passes through the resonance $i = 1/2$, see Fig. 6.

In the complete absence of error fields, a small $n = 5$ island chain would appear at the $i = 1/2$ location at around 25 cm distance from the innermost magnetic surface, but in the presence of even a small $n = 1$ error field, an $n = 1$, $m = 2$ island chain, visible in a Poincaré plot as two 'bubbles', will appear.

The B_{21} error field is too small to create an island structure large enough to be measured clearly. This is in part due to the good news that it is small, and in part due to i being so close to 1/2, that the electron beam comes very close to its launch position.
(the electron gun) after two toroidal transits, thus running the risk of hitting the back of the electron gun and disappearing.

It is nevertheless possible to indirectly measure the B_{z1} field error, despite this shadowing problem, by adding an $n = 1$ error field with a well-defined amplitude and phase, using the set of five large external coils\(^3\), four of which are shown in yellow in Fig. 1. The primary purpose of these coils is to trim away the unwanted $n = 1$ error field components, but the trim coils are used here to create an extra $n = 1$ error field, and thus generate an $n/m = 1/2$ island chain wide enough to be measurable.

Light fibres installed in the vessel along with detailed measurements of their location allow the pixels of the image plane to be mapped to physical dimensions. In this way, the width of the island in physical units can be inferred from a measurement in pixels. Error bars account for both the physical width of the flux surface traces and the step size going from outside the island chain to inside it. A best attempt is made to report the maximum width of the magnetic islands.

By scanning the phase and amplitude of the imposed, well-defined error field, measuring the island phase and width (Fig. 7), and comparing with equation 1, we find that an $n/m = 1/2$ island with a width of 4 cm must be present, even in the absence of trim-coil induced fields.

The configuration has $\frac{dl}{dr} \approx 0.15$ m$^{-1}$ at the $i = 1/2$ location, so using equation (1) again, we arrive at $B_{z1} \approx 5.4 \times 10^{-6}$. This value is well within the range that can be corrected with the trim coils\(^3\). The careful and accurate metrology described earlier in this article is validated by our flux-surface measurements: the as-built coil forms and their as-installed locations have been implemented numerically in our codes, and then used to calculate the size, phase and location of the intrinsic 1/2 island chain resulting from the B_{z1} component. These data agree very well with our fully independent direct measurements of the magnetic topology. The agreement regarding amplitude is shown in Fig. 8. Good agreement is obtained not only for the amplitude of the island chain but also its phase.

Discussion

The now experimentally validated numerical model of the coil system allows us to identify the primary source of the measured field error. The measured field error is caused primarily by imperfections in the placement and shapes of the planar coils. For the special magnetic configuration chosen here, the planar coils produce a much larger fraction of the magnetic field than they do in configurations used for plasma operation; in fact the one major configuration that has $i = 1$ at the plasma edge has no planar coil current. Therefore, we plan to measure the B_{z1} error field in a configuration whose magnetic field is overwhelmingly dominated by the non-planar coils with $i \approx 1$ (ref. 33). Since the B_{z1} and the B_{z2} components should be roughly of the same order of magnitude, and since the B_{z2} error is reproduced by our numerical models, the B_{z1} error is also expected to be small, likely close to or somewhat below the aforementioned estimate of 1.1×10^{-4}, thus well within the correction capabilities of the W7-X coil set.

The need for complex 3D shaping and high-accuracy requirements have been viewed as major problems for optimized stellarators. Wendelstein 7-X demonstrates that a large, optimized, superconducting stellarator can be built with an accuracy sufficient to generate good magnetic surfaces with the required topology, and that experimental tools exist to verify the magnetic topology down to and below errors as small as 1:100,000. These results were obtained using magnetic field-line mapping, a sensitive technique to measure the detailed topology of the magnetic surfaces. To reach the other goals of the device, and provide an answer to the question ‘is the stellarator the right concept for fusion energy?’, years of plasma physics research is needed. That task has just started.

Data availability

The data sets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

Acknowledgements
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. S.L. acknowledges support from US DOE grant DE-AC02-09CH11466. T.S.P. thanks U. Nielsen and K. Søndergaard Larsen for useful suggestions to improve the text.

Author contributions
T.S.P., M.O. and C.B. led the design and construction of the flux surface measurement system, based on a concept developed by M.O. and R.C.W. M.O., S.B., T.K. and P.H. analysed the data. The article was written primarily by H.-S.B., R.C.W., T.K. and C.B. conducted the flux surface measurement experiments. M.O., M.O. and P.H., but with input from all the co-authors. The W7-X team contributed the infrastructure, the metrology measurements and proper operation of W7-X, in particular its vacuum systems, the cryostat and the superconducting magnet system.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Pedersen, T. S. et al. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000. Nat. Commun. 7, 13493 doi: 10.1038/ncomms13493 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016

List of W7-X team members
Ivana Abramovic5, Simppa Äkäslompolo1, Pavel Aleynikov1, Ksenia Aleynikova1, Adnan Ali1, Arturo Alonso6, Gabor And17, 7, Tamara Andreeva1, Enrique Ascasibar6, Jürgen Baldzuhn1, Martin Banduch1, Tullio Barbui1, Craig Beidler1, Andree Benndorf1, Marc Beurskens1, Wolfgang Bie19, Dietrich Birus1, Boyd Blackwell10, Emilio Blanco6, Marko Blatzheim1, Torsten Bluhm1, Daniel Böckenhoff1, Peter Bolgert1, Matthias Borchardt1, Lukas-Georg Böttger1, Rudolf Brakel1, Christian Brandt1, Torsten Bräuer1, Harald Braune1, Rainer Burhenn1, Birger Buttenschöen1, Victor Bykov1, Ivan Calvo6, Alvaro Cappa6, Andre Carls1, Bernardo Brotas de Carvalho13, Francisco Castejon6, Markian Cincio14, Michael Cole15, Stefan Costea16, Gabor Cseh17, Agata Czarnecka17, Andrea Da Molin18, Eduardo de la Cal6, Ángel de la Pena6, Sven Degenkolbe1, Chandra Prakash Dhard1, Andreas Dinklage1, Marion Dostal9, Michael Drevlak1, Peter Drewelow1, Philipp Drews9, Andrzej Dudek1, Frederic Durodie9, Anna Dzikowicka19, Paul van Eeten1, Florian Effenberg8, Michael Endler1, Volker Erckmann1, Teresa Estrada6, Nils Fahrenkamp1, Joris Fellinger1, Yuhe Feng1, Waldemar Figacz17, Oliver Ford1, Tomasz Fornal17, Heinke Freirichs1, Golo Fuchert1, Manuel Garcia-Munoz1, Benedikt Geiger1, Joachim Geiger1, Niels Giere1, Alena Gogoleva20, Bruno Goncalves13, Dorothée Gradic1, Michael Grahl1, Silvia Groß1, Heinzi Große1, Olaf Gruhlke1, Carlos Guarro13, Matthias Haas1, Jeffrey Harris14, Hans-Jürgen Hartfuß1, Dirk Hartmann1, Dag Hirthamani1, Bernd Hein1, Stefan Heinrich1, Sophia Henneberg1, Christine Hennig1, Julio Hernandez6, Carlos Hidalgo6, Ulises Hidalgo6, Matthias Hirsch1, Udo Höfel1, Hauke Höße1, Alf Höting1, Michael Houry21, Valentina Huber22, Cordina Ionita16, Ben Israeli3, Slowomir Jablonski17, Marcin Jakubowski1, Anton Jansen van Vuuren1, Hartmut Jenzsch1, Jacek Kaczmarczyk17, Johann-Peter Kallmeyer1, Ute Kamionka1, Hiroshi Kasahara23, Naoki Kenmochi23, Winfried Kernbichler24, Carsten Keller1, David Kinna22, Ralf Kleiber1, Jens Knauer1, Florian Köchli26, Gabor Kocsis7, Yaroslav Kolesnichenko27, Axel Könies1, Ralph König1, Petra Kornejew1, Felix Köster4, Andreas Krämer-Flecken9, Rüdiger Krapmitz1, Natalia Krawczyk17, Thierry Kremeyer8, Maciej Krychwia1, Ireneusz Ksiazek28, Monika Kubkowska17, Georg Kühner1, Taina Kurki-Suonio29, Peter Kurz1, Katja Küttler1, Sehyun Kwak1, Matt Landreman12, Andreas Langenberg1, Fernando Lapayese6, Heike Laqua1, Heinrich-Peter Laqua1, Ralph Laube1, Michael Laux1, Holger Lentz1, Marc Lewerentz1, Yunfeng Liang9, Shaocheng Liu9, Jim-Felix Lobsien1, Joaquim Loizu Cisquella1, Daniel Lopez-Bruna6, Jeremy Lore14, Axell Lorenz1,
Vadym Lutsenko27, Henning Maaßberg1, Jeanette Maisano-Brown30, Oleksandr Marchuk9, Lionello Marrelli18, Stefan Marsen1, Nikolai Marushchenko1, Suguru Masuzaki23, Kieran McCarthy6, Paul McNeely1, Francisco Medina6, Dusan Milojevic1, Alexey Mishchenko1, Bernd Missal1, Joseph Mittelstaedt3, Albert Mollen1, Victor Moncada21, Thomas Mönich1, Dmitry Moseev1, Michael Nagel1, Dirk Naujoks1, George Hutch Neilson3, Olaf Neubauer9, Ulrich Neuner1, Tran-Thanh Ngo21, Holger Niemann1, Carolin Nüßenberg1, Jürgen Nüßenberg1, Marian Ochando6, Kunihiro Ogawa23, Jef Ongena26, Hans Oosterbeek1, Novimir Pablan3, Danilo Pacella31, Luis Pacios6, Nerea Panadero6, Ekkehard Pasch1, Ignacio Pastor6, Andrea Pavone6, Ewa Pawelec28, Angeles Pedrosa6, Valeria Perseo1, Byron Peterson23, Dirk Pilopp1, Fabio Pisano32, Maria Estef Puiatti18,31, Gabriel Plunk1, Melanie Preynas33, Josefine Proll1, Alexi Puig Sitjes1, Frank Purps1, Michael Rack9, Kian Rahbarnia1, Jörg Riemann1, Konrad Rieß1, Peter Rong1, Joachim Rosenberger1, Lukas Rudischhauser1, Kerstin Rummel1, Thomas Rummel1, Alexey Runov1, Norbert Rust1, Leszek Rycz17, Haruhiyo Saitoh1, Shinsuke Satake23, Jörg Schacht1, Oliver Schmitz8, Stefan Schmuck22, Bernd Schneider16, Matthias Schneider1, Wolfgang Schneider1, Roman Schrittwieser16, Michael Schröder1, Timo Schröder1, Ralf Schröder1, Hans Werner Schumacher34, Bernd Schweer9, Ryosuke Seki23, Priyajana Sinha1, Seppo Sipiläe29, Christoph Slaby1, Hákan Smith1, Jorge Sousa13, Anett Spring1, Brian Standley1, Torsten Stange1, Adrian von Stechow1, Laurie Stephey8, Matthew Stoneking25, Uwe Stridde1, Yasuhiro Suzuki23, Jakob Svensson1, Tamás Szabolics7, Tamás Szepesi7, Henning Thomsen1, Jean-Marcel Traver21, Peter Traverso35, Humberto Trimino Mora1, Hayato Tsuchiya23, Tohru Tsujimura23, Yurii Turkin1, Swetlana Valet1, Boudewijn van Milligen6, Luis Vela20, Jose-Luis Velasco6, Maarten Vergote36, Michel Vervier9, Holger Viebke1, Reinhard Vilbrandt1, Christian Perez von Thun22, Friedrich Wagner1, Erhui Wang9, Nengchao Wang9, Felix Warmer1, Tom Walters36, Lutz Wegener1, Thomas Wegener1, Gavin Weir1, Jörg Wendorf1, Uwe Wenzel1, Andreas Werner1, Yanling Wie9, Burkhard Wiegel34, Fabian Wilde1, Thomas Windisch1, Mario Winkler1, Victoria Winters8, Adelle Wright10, Glen Wurden11, Pavlos Xanthopoulos1, Ichiro Yamada23, Ryo Yasuhara23, Masayuki Yokoyama23, Daihong Zhang1, Manfred Zilker1, Andreas Zimbal34, Alessandro Zocco1 & Sandor Zoletnik7

5 Eindhoven University of Technology, 5612 AZ Eindhoven, Netherlands. 6 CIEMAT, Avenue Complutense, 40, 28040 Madrid, Spain. 7 Wigner Research Centre for Physics, Konkoly Thege Miklós ut, H-1121 Budapest, Hungary. 8 University of Wisconsin-Madison, Engineering Drive, Madison, Wisconsin 53706, USA. 9 Forschungszentrum Jülich, Leo-Brandt-Strasse, 52428 Jülich, Germany. 10 The Australian National University, Acton ACT 2601, Canberra, Australia. 11 Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA. 12 University of Maryland, College Park, Paint Branch Drive, College Park, Maryland 20742, USA. 13 Instituto de Plasmas e Fusão Nuclear, Avenue Rovisco Pais 1, 1049-001 Lisboa, Portugal. 14 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. 15 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany. 16 University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria. 17 Institut Fizyki Plazmy i Laserowej Mikrosyntetyz, 04 197, Hery 23, 01-497 Warszawa, Poland. 18 Istituto di Fisica del Plasma “Piero Caldirola”, Via Roberto Cozzi, 53, 20125 Milano, Italy. 19 University of Szczecin, aleja Papieża Jana Pawła II 22A, Szczecin 70-450, Poland. 20 Universidad Carlos III de Madrid, Calle Madrid, 126, Getafe, Madrid 28903, Spain. 21 CEA Cadarache, 13108 St Paul lez Durance, Cedex, France. 22 Culham Science Centre, Abingdon OX14 3DB, UK. 23 National Institute for Fusion Science, 322-6 Orosricho, Toki City, Gifu Prefecture, 509-5292, Japan. 24 Graz University of Technology, Rechbauerstrasse 12, 8010 Graz, Austria. 25 Lawrence University, 711 E Boldt Way, Appleton, Wisconsin 54911, USA. 26 Austrian Academy of Sciences, Doktor-Ignaz-Seipel-Platz 2, 1010 Wien, Austria. 27 Institute for Nuclear Research, Prospect Nauky 47, Kyiv 03680, Ukraine. 28 Örebro University, plac Kopernika 11a, Örebro 45-040, Poland. 29 Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland. 30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 31 ENEA, UT Fusione, Via E. Fermi, 45, 00044 Frascati (Roma), Italy. 32 University of Cagliari, Campus Aresu—Via San Giorgio 12/2, 09124 Cagliari, Italy. 33 École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland. 34 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany. 35 Auburn University, Auburn, Alabama 36849, USA. 36 Laboratory for Plasma Physics, Ecole Royale Militaire—Koninklijke Militaire School, Avenue de la Renaissance 30, 1000 Brussels, Belgium.
Erratum: Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000

T. Sunn Pedersen, M. Otte, S. Lazerson, P. Helander, S. Bozhenkov, C. Biedermann, T. Klinger, R.C. Wolf, H.-S. Bosch & The Wendelstein 7-X Team

Nature Communications 7:13493 doi: 10.1038/ncomms13493 (2016); Published 30 Nov 2016; Updated 14 Feb 2017

The original version of this Article contained errors in the spelling of authors names and their affiliations. These errors were:
The affiliation of Boyd Blackwell is 10, but was incorrectly given as 10,11,12.
In the list of the Wendelstein 7-X (W7-X) team members, the name of Matthias Borchardt was repeated twice; one instance has been removed.
In the list of the Wendelstein 7-X (W7-X) team members, the name “Shaocheng Liu” was repeated twice and, in one instance, mistakenly spelled as “Shoacheng Lui” The misspelled instance has been removed.
The name of Paul van Eeten was incorrectly spelled as Paul von Eeten.
The affiliation of Waldemar Figacz is 17, but was incorrectly given as 1.
The name of Stefan Heinrich was incorrectly spelled as Stefan Heirnich.
The affiliation of Winfried Kernbichler is 24, but was incorrectly given as 24,25.
The name of Stefan Heinrich was incorrectly spelled as Stefan Heirnich.
The affiliation of Matthew Stoneking is 25, but was incorrectly given as 1.
The name of Konrad Riße was incorrectly spelled as Konrad Risse.
The name of Ryosuke Seki was incorrectly spelled as Ryoshuke Seki.
The affiliation of Matthew Stoneking is 25, but was incorrectly given as 1.
In the list of W7-X team members, the name of Adrian von Stechow was repeated twice; one instance has been removed.
The name of Christian Perez von Thun was incorrectly spelled as Christian Perez Von Thun.
The name of Tran-Thanh Ngo was mistakenly spelled as Tran-Tranh Ngo.

The affiliation of Adelle Wright is 10, but was incorrectly given as 10,11,12.

The affiliation of Glen Wurden is 11, but was incorrectly given as 1.

The affiliation of Masayuki Yokoyama is 23, but was incorrectly given as 1.

In affiliation 18, the Istituto di Fisica del Plasma “Piero Caldirola” was incorrectly spelled Istituto di Fisica del Plasma Piero Caldirola”.

These have now been corrected in both the PDF and HTML versions of the Article.