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Abstract. The effective refractive index of the active region of 1.3 μm edge-emitting tilted wave
lasers based on InAs/InGaAs self-assembled quantum dots by the analysis of the far-field pattern
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1 Introduction

The design of any optical cavities or waveguides to be used in optoelectronic devices requires
adequate numerical simulations. One of the key parameters for such simulations is the refractive
index of each cavity component. In some cases, correct values of refractive indexes are critical
for the proper interpretation of the observed experimental data.1,2 Refractive indexes of com-
monly used bulk semiconductors, such as GaAs and InGaAs, are quite well known and verified
by a number of experiments and models.3,4 There are experimental data and some comprehensive
models of refractive indexes and related phenomena in quantum wells, widely used in optoelec-
tronics. However, in literature, there is limited data on refractive indexes of quantum dot (QD)
media. As often as not, a refractive index of QDs is adopted as the value for a bulk semiconductor
with the same composition,1 although the validity of doing so is doubtful. Strictly speaking, in
the case of QDs, a refractive index can be considered only as an empirical parameter since a
refractive index is a macroscopic measurable quantity. At the same time, optical properties of
low-dimension materials strongly depend on the dielectric constant,5 which is simply the square
of the complex refractive index in nonmagnetic macroscopic media. In some cases, refractive
index or dielectric constant profiles in waveguides can be reconstructed from measurements of
spatial distributions, such as near-field or far-field patterns, of waveguide modes. Such methods
have been successfully used for optical fibers6 but are hardly applicable to reconstruct refractive
index profiles of conventional edge-emitting semiconductor lasers. Their waveguide thicknesses
are usually close to the diffraction limit so measurements of near-field patterns become a non-
trivial task. Gaussian-like far-field patterns of these lasers are quite wide and are not to be used to
determine modest changes of the waveguide refractive indexes.7

0091-3286/2013/$25.00 © 2013 SPIE

Journal of Nanophotonics 073087-1 Vol. 7, 2013

Downloaded From: http://nanophotonics.spiedigitallibrary.org/ on 09/29/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx

http://dx.doi.org/10.1117/1.JNP.7.073087
http://dx.doi.org/10.1117/1.JNP.7.073087
http://dx.doi.org/10.1117/1.JNP.7.073087
http://dx.doi.org/10.1117/1.JNP.7.073087
http://dx.doi.org/10.1117/1.JNP.7.073087


In this paper, we present our results on the reconstruction of the refractive index of InAs/
GaAs QD active region from the analysis of the experimental far-field patterns measured for
edge-emitting tilted wave lasers (TWL).

2 Waveguide Design

The concept of TWL (Ref. 8) is based on the existence of tilted modes originating in planar
waveguides with thin cladding layers. The laser waveguide, schematically presented in Fig. 1,
is based on two planar waveguides (1 and 3) coupled via a thin cladding layer (2) with lower
refractive index. The active region is placed in the thin waveguide (1). The optical modes tunnel
from this thin waveguide into the thick waveguide (3) and vice versa. The requirement for the
thin waveguide is that it should support only one guided mode. The thick waveguide supports
several modes but only one mode, effectively coupled with the thin waveguide, contributes to the
lasing since it has the largest optical confinement factor. Thus, the lasing mode is a combined
mode formed by the two coupled waveguides.

The most remarkable feature of the TWL is the mode spatial distribution schematically
shown in Fig. 1. In the vertical far-field pattern, there are two major outer lobes and several
lobes between them. A comprehensive theoretical analysis of TWL far-field patterns is presented
in Ref. 9. The total number of lobes and their angular distribution mostly depends on the thick
waveguide (3) thickness and its refractive index. At the same time, the waveguide coupling
strength controls intensity redistribution between major and minor lobes. For example, in
the case of stronger coupling, a larger fraction of the lasing mode is contained within the
thick waveguide, which is expressed in the far-field pattern by the increased relative intensity
of the two outer lobes. In the TWL waveguide, the coupling was found to be very sensitive to the
changes in the thickness and the refractive index of the thin waveguide (1). Since the layer con-
tains QDs, this gives an opportunity to reconstruct their refractive index from the analysis of the
intensity redistribution between the lobes in the far-field pattern. It can be done by numerical
fitting of the experimental far-field patterns when the unknown refractive index is used as a
fitting parameter.

3 Growth and Processing

The QD structure used in this paper was grown by molecular beam epitaxy on a Si-doped (100)
GaAs substrate. The active region contained 10 layers of self-assembled InAs QDs separated by
35-nm thick GaAs spacers. The active region was located in the middle of 0.95-μm thick GaAs
waveguide layer. Composition and growth conditions of the active region were similar to the
ones described earlier.10 The structure had 1.5-μm thick p-Al0.35Ga0.65As cladding layer and
200 nm p-GaAs contact layer. The lower part of the wafer was composed of 10.5-μm thick

Fig. 1 Schematic cross-section of the edge-emitting laser with coupled cavities waveguide.
Lasing mode profile (near-field) and far-field pattern are shown qualitatively.
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n-GaAs coupled waveguide and 2-μm thick n-Al0.35Ga0.65As reflecting layer. Two waveguides
were coupled via 300-nm thick n-Al0.35Ga0.65As layer. The TWL wafer was processed into
10 μm wide shallow-mesa ridge lasers by etching through the p-contact and partly through the
p-cladding layer. The samples were mounted p-side down on copper heatsinks. To avoid any
self-heating effects, the laser parameters were measured in pulsed mode at a fixed ambient tem-
perature of 300 K.

4 Results and Discussion

The lasers emitted in the wavelength range of 1290 to 1305 nm depending on the cavity length.
The lasers showed the threshold current density of 400 A∕cm2 and operated in the fundamental
lateral mode that was confirmed by measurements of lateral far-field patterns. Transverse far-
field patterns were measured at current densities just above the threshold. A typical experimental
far-field is presented in Fig. 2(a) in solid line. This far-field pattern was fitted by a numerical
simulation technique described below.

We simulated optical modes in the investigated waveguide by the software tool FIMMWAVE
with embedded complex engine add-on.11 The refractive indexes of GaAs and Al0.35Ga0.65As

layers used in the simulation were 3.413 and 3.227, respectively. They were calculated for the
wavelength of 1300 nm from the empirical equations suggested by Afromowitz,3 which repro-
duce within 0.004 the experimental data for moderately doped bulk GaAs and AlGaAs. It is
important to note that to obtain 1.3 μm emission, the QDs were directly formed on a GaAs
matrix by the deposition of 2.5 monolayers of InAs and then covered with a 5-nm thick
In0.15Ga0.85As layer.

10 In this case, the surface density of the QDs is about 3 to 5 × 1010 cm−2.
A form of QDs is usually assumed to be pyramidal though sometimes in numerical simulations
even a simpler shape is used.1 To avoid any ambiguity, we substituted in our simulation each
layer of QDs by a layer with a homogenized refractive index nactive. This layer included InAs
QDs, wetting layer, and InGaAs layer. Its total thickness of 6 nm corresponds to the amount of
InAs and InGaAs from which the layer is formed. We used nactive as the only parameter for the
far-field fitting. Thicknesses of the waveguide layers were verified by scanning electron micros-
copy technique. Normalized simulated far-field pattern is presented in Fig. 2(a) in dotted line.
The lasing mode is TE8 mode. It fits the experimental curve with a very good accuracy. Two
zoomed-in parts of the experimental far-field pattern and two simulated curves with nactive of
3.483 and 3.487 are presented in Fig. 2(b). It is clearly seen that minor changes in fitting param-
eter nactive redistribute intensity between major and minor lobes. The experimental curve is
located between two simulated curves. From these values, we can estimate the refractive
index of QD active region as 3.485 with the accuracy of 0.004. The latter is simply the difference
between 3.487 and 3.483. This accuracy matches with the accuracy of refractive indexes of GaAs
and Al0.35Ga0.65As layers calculated by Afromovitz’s equations. 3 The refractive indexes
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Fig. 2 Normalized experimental and simulated far-field patterns of the TWL based on QDs (pump-
ing current density J ¼ 1.25 × J threshold): (a) entire far-field patterns and (b) zoomed-in parts of the
far-field patterns (scale factor in the right part is larger).
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determined for different laser samples lie in the same error range. The value of nactive is appli-
cable for the wavelength range of 1290 to 1305 nm where the investigated lasers emitted.

We note that carrier-induced refractive index variation was neglected in the numerical sim-
ulation of TWL waveguides. Material differential refractive index dn∕dN, where N is the carrier
density, is usually negative, so cold QD active regions have higher refractive indexes than nactive
determined from fitting of the far-field patterns. This variation Δnactive can be estimated as
Δnactive ¼ ðdn∕dNÞ × N, where N in its turn is calculated from a simplified equation
N ¼ ðJ × τÞ∕ðq × dÞ, where J is the threshold current density, τ is the carrier lifetime, q is
the electronic charge, and d is the total thickness of the QD layers. We assumed that the recom-
bination takes place only in the active region via the QD ground state and that the Fermi levels
pin at and above the threshold. We used the following parameters: differential refractive index
dn∕dN¼ 0.7 × 10−20 cm−2 (Ref. 12), carrier lifetime τ ¼ 0.78 ns (Ref. 12), d ¼ 10 × 6 nm, and
J¼ 400 A∕cm2. The carrier-induced refractive index variation was found to be ≈2.3 × 10−3 by
substituting all the parameters into the equation for Δnactive. Thus, in the cold laser waveguide
nactive is slightly higher, namely, 3.487.

The obtained refractive index of the QD active region nactive is comparable with the refractive
index of bulk InAs at corresponding wavelength4 and higher than the refractive index that would
have been expected for the layer containing a significant amount of In0.15Ga0.85As. This quali-
tatively indicates that the dielectric constant of InAs QDs is higher than that of bulk InAs which
can be attributed to the size dependence of dielectric constants of low-dimension materials.
However, an analysis of this is beyond the scope of this paper.

5 Conclusion

Specific transverse far-fields of TWL allowed determining the refractive index of the QD active
region by numerical fitting of the experimental far-field patterns. It was found that in the oper-
ating lasers, the active region based on InGaAs self-assembled QDs emitting at 1.3 μm has the
refractive index as high as 3.485, whereas in the cold active region the index was estimated to be
slightly higher, namely, 3.487. The obtained values can be used for modeling optoelectronic
devices which have similar QD active regions.
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