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Abstract
In 2014, Central England experienced its warmest year in a record extending back to 1659. Using both
state-of-the-art climatemodels and empirical techniques, our analysis shows a substantial and
significant increase in the likelihood of record-breakingwarm years, such as 2014, due to human
influences on climate.With 90%confidencewefind that anthropogenic forcings on the climate have
increased the chances of recordwarm years inCentral England by at least 13-fold. This study points to
a large influence of human activities on extremewarm years despite the small region of study and the
variable climate of Central England. Our analysis shows that climate change is clearly visible on the
local-scale in this case.

1. Introduction

The Central England temperature (CET) series is the
longest instrumental time series of temperature in the
world (Parker et al 1992). The monthly CET series
extends back to 1659 whilst the daily CET goes as far
back as 1772. In 2014, the highest annual value for the
CET was recorded in the 356 year long series. During
the last 60 years there has been a rapid warming in the
CET which is consistent with the anthropogenic
influence on the climate (Karoly and Stott 2006). This
leads us to the question of what was the contribution
of human-induced climate change to the 2014 record
annual CET value.

Attribution studies of extreme climate events have
been undertaken for many different types of event
across a range of locations around theworld with vary-
ing degrees of anthropogenic influences found (e.g.
Peterson et al 2012, 2013, Herring et al 2014). The
majority of event attribution analyses focus on larger
regions than Central England so as to maximize the
signal-to-noise ratio (e.g. Fischer et al 2013); for exam-
ple, studies of the cold spring of 2013 in the UK
(Christidis et al 2014) and the warm summer of 2013
in Western Europe (Dong et al 2014). Smaller regions
and shorter timescales (between a single day and a

month) may be studied using very large ensembles of
regionalmodel simulations, such as those based on the
‘weather@home’ setup (Massey et al 2014) which har-
nesses volunteers’ computers to generate tens of thou-
sands of simulations. Examples include analyses of
heavy snowfall in the Pyrennes (Añel et al 2014) and
heavy rainfall in the Danube and Elbe basins (Schaller
et al 2014). The model-based component of our study
uses an ensemble of state-of-the-art climate model
simulations to examine the 2014 record CET. Our
analysis uses a multi-model ensemble of simulations
that is smaller than the weather@home ensemble. This
is possible because we are studying an annual anomaly
as opposed to a single day or month. The annual CET
anomaly that is being studied has a higher signal-to-
noise ratio than the events mentioned above. There-
fore, differences between models, with differing attri-
butes including a range of parameterization schemes,
are more important relative to the natural variability,
hence themulti-model set-up is preferred.

Our study employs two different methods for per-
forming this event attribution; one analysis based pri-
marily on climate model simulations (where we
calculate the change in probability of a very warm year,
like 2014, between simulations with natural-only for-
cings and simulations with both natural and
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anthropogenic forcings) and a second purely observa-
tions-based analysis (where the changing probability
of exceeding a temperature threshold is investigated
using a trend covariate). Using these two methods
(described in more detail in section 3) allows for a
comparison of the attribution statistics and provides
increased confidence in our results. The sensitivity of
the results to themethods used is discussed.

2.Data

The CET monthly series (Manley 1974, Parker
et al 1992) updated to 2014 and maintained by the UK
Met Office (http:metoffice.gov.uk/hadobs/hadcet/)
was analysed. The CET series is calculated from a
station network that varies through time (the locations
of all stations are shown in figure 1(a)) and is designed
to represent the climate of the English Midlands
approximated by a triangular area enclosed by Lanca-
shire in the North, Bristol in the South–West and
London in the South–East. The CET has undergone
thorough and extensive quality control (Parker
et al 1992) and can, therefore, be studied in the context
of event attribution. The annual CET value for 2014

was 10.93 °C, the highest in the 356 year series.
However, it is worth noting that, at approximately
0.06 °C above the previous 2006 record, we cannot be
entirely certain that 2014 was the warmest on record.
Parker and Horton (2005) state that for annual mean
CET values to be deemed significantly different a
0.25 °C difference is required.

A set of model simulations from the fifth phase of
the CoupledModel Intercomparison Project (CMIP5;
Taylor et al 2012) was analysed. Monthly surface air
temperature data from historical (1900–2005), histor-
icalNat (1900–2005), and RCP8.5 (2006–2020) simu-
lations from climate models (listed in table 1) were
used to calculate the change in likelihood of warm
years like 2014 in the CET region due to anthro-
pogenic influences on the climate. The historical
simulations were run with both time-dependent
anthropogenic (greenhouse gas concentrations, aero-
sols and ozone) and natural (solar and volcanic) for-
cings. The historicalNat simulations were run only
with the time-dependent natural forcings (thus pro-
viding estimates of the Earth’s climate without anthro-
pogenic influences). The RCP8.5 simulations were
run with projected increases in greenhouse gases and
are a ‘high-end emissions scenario’ that agrees best

Figure 1. (a)Mapwith theCentral England areamarked (51°N–54°N, 3°W–0°E). The black crosses show the locations of stations used
in the calculation of theCET at some time from1659 to the present day. (b) Timeseries of the observed CET (black). Timeseries of the
mean of the historical simulations (solid orange), RCP8.5 simulations (solid red) and historicalNat simulations (solid blue). The
maximumandminimumvalues of themodelled CET are shown for the historical simulations (dashed orange), RCP8.5 simulations
(dashed red) andHistoricalNat simulations (dashed blue). The record annual CET ismarked by the black cross.
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with observed emissions since 2006. The choice of
emissions scenario for analysis to 2020 is relatively
unimportant compared to other sources of uncer-
tainty (Hawkins and Sutton 2009). Only models with
at least three historical simulations available on the
Australian node of the Earth System Grid were ana-
lysed. An assessment of the model simulated varia-
bility in the Central England region was conducted, as
described in section 3. In the models, the Central Eng-
land region was defined as the area within 51°N–54°N
and 3oW–0oE, also shown infigure 1(a).

The observed CET time series and themean,mini-
mum andmaximumCET in each set ofmodel simula-
tions are shown infigure 1(b).

3.Methods

The CMIP5 analysis largely follows the methodologies
of Lewis and Karoly (2013, 2014) used to study
Australia’s record hot 2013 annual and summer
temperatures. Here we outline the exact methods
applied in the model analysis. Annual temperatures
anomalies were calculated (relative to a 1961–90
climatology) for the 1900–2005 period for the histor-
ical and historicalNat simulations from 14 climate
models (see table 1). Annual temperature anomalies
for the 2006–2020 period were also calculated for each
RCP8.5 simulation (relative to the 1961–90 climatol-
ogy in the corresponding historical run).

Gridboxes containing at least 75% land were used
to calculate the area-average CET. All model simula-
tions were regridded onto a common regular 1.5°
resolution grid.

A sub-selection of models that adequately capture
the variability of observed annual temperature varia-
bility in the Central England region was made. A Kol-
mogorov–Smirnov (KS) statistic was calculated to
compare the probability density function (PDF) of

annual temperature anomalies from each model’s his-
torical simulation with the PDF of the CET series over
the 1900–2005 period. Models were selected for fur-
ther study if at least three historical simulations were
available and no more than one simulation was sig-
nificantly different (p< 0.05) from the observed CET
anomalies. The models that passed this test are shown
in bold in table 1. There is good agreement between
the statistical distributions of thosemodels that passed
the test, and were therefore used in our attribution
study, and the PDF of observed annual CET anomalies
(figure 1(b)). The observed trend of the mean CET
over 1950–2011 is also well within the CMIP5 ensem-
ble in this region (vanOldenborgh et al 2013).

The historicalNat (1900–2005) and RCP8.5
(2006–2020) simulations were used to perform the
attribution analysis. The historicalNat temperature
anomalies, defined relative to a 1961–1990 period,
were adjusted for any change in temperature prior to
the 1961–1990 climatological period as simulated by
each climate model. This adjustment, ΔT, compen-
sates for the warming trend up to the reference period
1961–1990 andwas calculated as:

Δ = −

−

−

− −

−

−

{ }
{

}

T T T

T

T ,

Hist(1901 1930) Hist(1961 1990)

HistNat(1901 1930)

HistNat(1961 1990)

where −THist(1901 1930) and −THist(1961 1990) are the aver-
age temperatures in the historical simulations for
1901–1930 and 1961–1990 respectively, and

−THistNat(1901 1930) and −THistNat(1961 1990) are the average
temperatures in the historicalNat simulations for
1901–1930 and 1961–1990 respectively. The adjust-
ments applied to eachmodel are shown in table 1.

Using the adjusted historicalNat simulations and
the RCP8.5 simulations, a fractional attributable risk
(FAR; Allen 2003) calculation was performed. The

Table 1.Table of CMIP5model simulations analysed.Models shown in bold adequately captured historical variability of the
observedCET andwere used in the FAR analysis. The simulations in theHistoricalNat andRCP8.5 columnswere bootstrapped
to calculate 10 000 estimates of the FAR. The adjustments applied to theHistoricalNat simulations are shown for eachmodel.
The total numbers ofHistorical, HistoricalNat, andRCP8.5 simulations are shown in the bottom row.

Model Historical runs HistoricalNat runs RCP8.5 runs Adjustment toHistoricalNat (°C)

ACCESS1.3 1,2,3 1 1 −0.12

CanESM2 1,2,3,5 1,2,3,5 1,2,3,5 +0.09

CCSM4 1,2,3,5 1,2 1,2 −0.37

CESM1-CAM5 1,2,3 1,2,3 1,2,3 −0.08

CNRM-CM5 1,2,3,5 1,2 1,2 −0.13

CSIROMk3.6.0 1,2,3 1,2,3 1,2,3 +0.10

FGOALS-g2 1,2,3,5

GISS E2H 1,3,5 1 1 −0.44

GISS E2R 1,2,3,5 1,2 1,2 −0.43

HadGEM2-ES 1,2,3,5 1,2,3 1,2,3 −0.37

IPSL-CM5A-LR 1,2,3,5

IPSL-CM5A-MR 1,2,3 1 1 −0.34

MIROC-ESM 1,2,3 1 1 +0.02

NorESM1-M 1,2,3 1 1 +0.21

Total 49 24 24
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FARwas calculated as:

= − P

P
FAR 1 ,HistNat

RCP8.5

where PHistNat and PRCP8.5 are the probabilities of a
warm annual CET value (T>+ 1.38 °C) in the histor-
icalNat and RCP8.5 simulations respectively. The
threshold for the FAR analysis of +1.38 °C was chosen
as it is the second warmest annual CET anomaly in the
observed 1659–2014 series and occurred in 2006. This
meant the FAR analysis could be used to answer the
question of whether anthropogenic climate change
has increased the chance of years warmer than 2006 in
Central England, such as 2014.

In order to estimate the uncertainty in the FAR,
the historicalNat and RCP8.5 simulations were boot-
strapped with replacement such that 10 000 sub-sam-
ples each composed of half of the complete number of
model simulations were chosen each time to calculate
the FAR statistic. Ranking these 10 000 FAR statistics
means the median and 10th percentile FAR values can
be extracted and these are shown in section 4 and
figure 2.

An alternative methodology was also used involving
the application of empirical techniques to the available
observational data (van Oldenborgh 2007, van Old-
enborgh et al 2012). This empirical methodology is
outlined below. This methodology allows for a detec-
tion of changes in the likelihood of warm years like
2014 in theCET time series. The attribution to anthro-
pogenic factors is then done by relating changes in the
extremes, captured by the trend covariate, to changes
in the mean that have been attributed to anthro-
pogenic forcings in a previous analysis, in this case by
Karoly and Stott (2006). That study found that two-
thirds (±one-third) of the 100 year warming in the
CET annual series up to 1999 could be attributed to
anthropogenic forcings.

The statistical model we used to detect trends in
extremes was a peak-over-threshold method. The
20% warmest years above a time-varying threshold
were fitted to a generalized Pareto distribution (GPD).
This is a very low threshold, but still only gives 23
points for fitting the GPD (figure 3(a)). The GPD is
used to allow for non-normal tails, although in this
case it is not strictly necessary as a normal distribution
fits the observations quite well. The threshold is
allowed to vary nonlinearly with time; it is

Figure 2. (a)Histograms of the observedCET (black) over 1900–2005 and themodelledCET (orange) in historical simulations over
1900–2005 bymodels that adequately capture the variability of the observedCET. (b)Histograms of the annual CET anomalies
(relative to 1961–90) in theHistoricalNat simulations for 1900–2005 (blue) andRCP8.5 simulations (red). The dashed linemarks the
2006 observedCET anomaly used in the FAR analysis. (c)Histogramof the 10 000 FAR values calculated frombootstrapping the
historicalNat andRCP8.5model simulations. The dashed linesmark themedian FAR value and 10th percentile FAR value.
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proportional to the increasing carbon dioxide con-
centration in the atmosphere, which is strongly corre-
lated with the global average surface air temperature
(r= 0.9). The rate at which the threshold increases is
determined simultaneously in the maximum-like-
lihood fit. The empirical analysis was restricted to the
period after 1900, as before this time there is higher
variance in the annual CET series (likely related to
observational biases). The event being studied, the
record 2014 temperature value, was also not included
in the fit. The GPD was then bootstrapped 1000 times
to estimate the uncertainties in this analysis.

Using the resulting GPD with time-varying
threshold allows for the calculation of return periods
of the 2014 temperature in the climate of 2014 and the
climate of 100 years ago. A ratio of these values gives
the increase in the return period due to the anthro-
pogenic influence on the climate. The FAR due to the

trend can be computed trivially from this ratio. Note
that this is larger than the FAR due to anthropogenic
factors as the uncertainties in the attribution step are
not included.

4. Results

The historical simulations of 12 CMIP5 models
adequately captured the variability in annual tempera-
ture anomalies seen in the Central England region
(shown in bold in table 1). The observed trend also
agrees well with the multi-model mean trend. The
strong agreement of the multi-model PDF with the
PDF of the observational CET series is shown in
figure 2(a).

Using the historicalNat (after applying the tem-
perature adjustment) and RCP8.5 simulations, the

Figure 3. (a)ObservedCET1900–2013 (blue), 2014 (purple box), threshold of theGPDfit (red) with 95% confidence intervals at
1914 and 2014, the thin red lines indicate the threshold plus (two times) the scale parameter. (b) Return times of theGPD fit for the
climate of 2014 (red lines) and the climate of 1914 (blue lines) with 95%uncertaintymargins (estimatedwith a 1000-member non-
parametric bootstrap). The crosses denote the annual CET observed values shifted up by thefitted trend to the climate of 2014 (red)
and down to 1914 (blue). The horizontal line gives the observed value in 2014, and the intersectionswith the curvesmark the return
times corresponding to the two climates. (c) The cumulative distribution of the ratio of the return times, equivalent to the FAR. The
median is at 100 (FAR= 0.99) and the 10th percentile is at 22 (FAR=0.95).
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FAR estimates could be made. The PDFs of the model
historicalNat and RCP8.5 simulations (figure 2(b))
are significantly different at the 5% level as measured
by a KS-test. The return periods for years hotter than
2006 in the historicalNat and RCP8.5 simulations are
121 years and five years respectively. The 10 000 FAR
estimates, based on 50% sub-samples of the histor-
icalNat and RCP8.5 simulations, point to a significant
anthropogenic role in the record warm 2014 CET
value (figure 2(c)). The estimate of the median FAR is
0.96. This equates to a median estimate for the
increase in risk of warm years of 28-fold. The more
conservative 10th percentile FAR is 0.92. This means
that we can state, with 90% confidence, that anthro-
pogenic climate change has increased the risk of warm
years, such as 2014, in Central England by at least
13-fold.

We assessed the sensitivity of the FAR results using
two further tests. Firstly, we used the observational
uncertainty estimates (standard error estimated at
0.09 °C) from Parker and Horton (2005) to examine
the sensitivity of the FAR to the threshold used. The
FAR analysis outlined in section 3 was repeated for a
range of 18 additional thresholds at 0.01 °C intervals
between 0.09 °C below and above the 2006 annual
CET value. The effect on the 10th percentile andmed-
ian FAR estimates was negligible. Secondly, the use of
the full model set (including the two models which
failed to adequately reproduce the observed distribu-
tion of annual CET values; listed in table 1) was com-
pared with analysing only the subset of 12 models in
the original analysis. The FAR calculations were again
applied using the same methodology to the expanded
set ofmodel simulations and the effect on the distribu-
tion of FAR values, including the 10th percentile and
median values, was negligible. The FAR statistics are,
therefore, insensitive to uncertainties in the threshold
and themodel selection.

The empirical analysis of the observational data
produced similar results to the model analysis despite
it answering a slightly different question (as the attri-
bution step is excluded). The 1000 bootstrapped esti-
mates of the GPD fit applied to the warmest years in
the CET series were used to calculate return periods
for the 2014 CET value and confidence intervals
(figure 3(b), table 2). The best estimate of the return
period for the annual 2014 CET value in the climate of
1914 is about 2500 years, with a lower bound of the
95% confidence interval of 350 years. This means that
an annual mean CET as high as the 2014 value or
higher would not have been impossible but highly

improbable, a result which is compatible with the cli-
mate model result above. However, in the climate of
2014 the best estimate of the return period is sub-
stantially reduced to about 25 years. This means there
is a 100-fold reduction in the best estimates of the
return periods of warm years like 2014 (figure 3(c)).
Using the bootstrapped estimates of the GPD fit, this
empirical analysis finds that anthropogenic climate
change has, with 90% confidence, increased the like-
lihood of warm years in Central England, like 2014, by
at least 22-fold. Assuming a normal distribution rather
than theGPDgives a return time in the current climate
of about 10 years and a lower bound of the 90% con-
fidence interval of the ratio of 48. The difference is due
to the GPD fit finding a smaller trend in the warm
years than in themean trend.

5. Conclusions

Central England experienced its warmest year on
record in 2014 in a series that extends back to 1659. By
using both climate model simulations and the
observed CET series, we show that anthropogenic
climate change very likely played a major role in this
recordwarmyear.

Model simulations with and without anthro-
pogenic influences on the climate and the application
of a FAR methodology were used to assess the role of
anthropogenic climate change in the record warm
2014. This analysis suggests, with 90% confidence,
that the anthropogenic influence on the climate has
increased the likelihood of warm years in Central Eng-
land, such as 2014, by at least 13-fold.

The empirical techniques applied to the observa-
tional CET series produced remarkably similar results
to the model simulations. The results of this analysis
pointed to an increase in the probability of warm years
like 2014 by at least a factor of 22-fold between 1914
and 2014, with 90% confidence.

A large difference in the return periods between the
two methods was found. The return periods are much
shorter based on the model analysis (historicalNat: 121
years, RCP8.5: five years) than the best estimates from
the empirical analysis (climate of 1914: 2500 years, cli-
mate of 2014: 25 years). This is in part related to the lar-
ger sample size and also slightly higher variability in the
models giving a longer warm tail to the distribution
than is seen in the observations (figure 2(a)), where the
95% bootstrapped confidence interval goes down to 12
years. The difference in the change in likelihood esti-
mates between the two methods is partially related to

Table 2.Table of return periods and confidence intervals for the CET in 2014 relative to the climates of 1914 and 2014 and the ratio.

Return period (years) Confidence intervals (2.5–97.5%)

Climate of 1914 2500 350–1.5 × 106

Climate of 2014 25 4–200

Ratio 100 5–40 000
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uncertainties in the attribution step not being included
in the empiricalmethod.

A direct comparison of the results from the differ-
ent methods is difficult due to slight differences in
assumptions. However, overall, the agreement in the
results is strong, in part because of the breadth of the
confidence intervals on the increase in likelihood of
warm years derived from the empirical technique
(table 2) and the similarly broad distribution in FAR
statistics based on themodel simulations (figure 2(c)).
A substantial increase in the likelihood of warm years
due to anthropogenic influences is found using both
methods with very high confidence. This conclusion is
robust especially when we consider that the twometh-
ods are primarily based on different datasets, one
model simulations and the other observations.

It is remarkable that such a substantial anthro-
pogenic influence can be found for an annual extreme
in a region as small as Central England. Despite the
variability in the climate seen in this part of the world,
even on annual time-scales, the anthropogenic warm-
ing signal is evident. Trends in extremes can even be
detected on seasonal timescales except in winter when
variability is larger. It is unlikely that such a strong
anthropogenic influence would be detected on shorter
timescales, such as months or days, due to higher
variability. The methodologies employed here may
provide a framework for further event attribution stu-
dies on smaller spatial scales than studied previously.

Overall, this study provides substantial evidence to
suggest that the anthropogenic influence on the cli-
mate has significantly increased the likelihood of
warm years inCentral England.
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