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Abstract

Eolian dust plays an important role in the Earth’s climate system. Environmental magnetism has been widely used
to trace dust variations at different spatial and temporal scales. However, the magnetic properties of sediments
from key dust sources have not been well determined. In this study, surface samples from potential dust sources in
inner Eastern Asia were systematically investigated. Our results indicate that ferrimagnetic and antiferromagnetic
minerals are both present in surface sediments and that they have broad grain size distributions. Ferrimagnetic
components are dominated by partially oxidized coarse-grained (pseudo-single domain and multi-domain) lithogenic
magnetite particles with minor contributions from pedogenic fine-grained (single domain and superparamagnetic)
particles. Antiferromagnetic hematite can be classified into three groups in terms of diffuse reflectance spectroscopy
(DRS) band positions (P560 nm, P545 nm, and P535 nm, where numbers indicate the DRS band wavelength for hematite).
The first group (P560 nm) is the coarse-grained hematite of lithogenic origin and is mostly confined to western China.
The P535 nm group is of pedogenic origin. The P545 nm group is an intermediate phase that is present both in surface
samples from the source regions and in loess. Therefore, the P545 nm and P535 nm groups are related to eolian inputs to
the Chinese Loess Plateau and pedogenic processes, respectively. In addition, significant differences exist between the
magnetic properties of eolian material from sources and depositional regions due to gravitational sorting. These
insights provide strong constraints on interpretation of dust signals recorded by the Chinese loess and marine
sediments from the North Pacific Ocean.

Keywords: Eolian dust; Environmental magnetism; Hematite; Diffuse reflectance spectroscopy; Eastern Inland Asia;
Chinese loess

Background
Wind-borne mineral aerosols (dust) are important com-
ponents of Earth’s climate system. On the one hand, pro-
duction, transportation, deposition, and preservation of
dust respond sensitively to subtle changes in climatic con-
ditions (Ding et al. 1998, 2002; Rea et al. 1998; Guo et al.
2002; Maher et al. 2010; Roberts et al. 2011). Thus, dust
preserved in loess (Ding et al. 2002), ice cores (Bory et al.
2003), and marine sediments (Larrasoaña et al. 2003;
Bailey et al. 2011; Roberts et al. 2011) carries important

information covering past changes in atmospheric circula-
tion and the aridity history of dust source areas. On the
other hand, dust also directly influences climate (Sokolik
and Toon 1996, Sokolik et al. 1998; Harrison et al. 2001;
Maher et al. 2010) by changing the physical and chemical
properties of the atmosphere and ocean (Spracklen et al.
2008), e.g., the iron cycle in the ocean (Jickells et al. 2005;
Wolff et al. 2006; Bailey et al. 2011). Therefore, it is essen-
tial to determine spatial-temporal variations of the dust
cycle to understand its contributions to global climate
change (Roberts et al. 2011).
Mineral magnetism can make important contributions

to our understanding of the global dust cycles (Maher
and Dennis 2001; Maher et al. 2009, 2010; Roberts et al.
2011). To better decipher the dust signal preserved in

* Correspondence: qsliu@mail.iggcas.ac.cn
1State Key Laboratory of Lithospheric Evolution, Institute of Geology and
Geophysics, Chinese Academy of Sciences, 19 Beitucheng W RdChaoyang,
Beijing 100029, People’s Republic of China
Full list of author information is available at the end of the article

© 2015 Liu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

Liu et al. Earth, Planets and Space  (2015) 67:61 
DOI 10.1186/s40623-015-0237-8



sedimentary archives, it is necessary not only to under-
stand the magnetic properties of terrestrial and marine
sediments in depositional sinks to obtain high-resolution
records of dust flux from key source regions, but there
is also a need to study the magnetic properties of dust
material from different sources to their depositional
sinks. Previous studies have focused on dust signals re-
corded by terrestrial and marine sediments, e.g., from
the Chinese Loess Plateau (CLP) (Liu et al. 2012), the
Red Sea (Rohling et al. 2008; Roberts et al. 2011), the
Indian Ocean (Bloemendal and deMenocal 1989), the
North Pacific Ocean (Doh et al. 1988; Yamazaki and
Ioka 1997; Bailey et al. 2011), and the North Atlantic
Ocean (Bloemendal and deMenocal 1989; Itambi et al.
2009, 2010a, b). Recently, a few studies have been con-
ducted on surface sediments from dust source regions,
e.g., the Asian interior (Maher et al. 2009; Zan et al.
2015) and North Africa (Lyons et al. 2010, 2012; Oldfield
et al. 2014). Nevertheless, systematic environmental
magnetic studies on material from broader dust source
regions are still sparse.
On the basis of satellite data, most major global dust

source regions are located in the northern hemisphere,
of which East Asia is one of the most important (Prospero
et al. 2002). A portion of Asian dust (approximately 20%)
is transported to the CLP and surrounding regions by the
Asian winter monsoon, while most of this dust is trans-
ported to the North Pacific Ocean (approximately 50%)
via westerlies (Zhang et al. 2003). Therefore, systematic
studies of the magnetic properties of surface samples from
the East Asian interior will significantly improve our
understanding of the global dust cycle.
Previous studies have suggested that potential dust

source regions in inland Asia include a wide range of re-
gions, such as the Gobi and Taklimakan deserts (Liu
1985; Sun et al. 2001; Zhang et al. 2003), the Qaidam
Basin (Bowler et al. 1987), the Tibetan Plateau and its
eastern areas (Fang et al. 2004; Chen et al. 2007), and
the Gansu Corridor (Derbyshire et al. 1998). Most previ-
ous studies have focused on eolian material preserved in
the depositional regions, e.g., the CLP (Ding et al. 2002;
Sun 2002; Sun et al. 2007) and the North Pacific Ocean
(Janecek and Rea 1985; Rea and Leinen 1988; Hovan
et al. 1989; Rea 1994; Chen et al. 1999, 2007; Nilson and
Lehmkuhl 2001; Bailey et al. 2011), while less attention
has been paid directly to the physical-chemical proper-
ties of material from potential source regions. On the
basis of modern meteorological observations (Sun et al.
2001) and constraints from electron spin resonance
(ESR) signal intensity and the crystallinity index of fine-
grained quartz (Sun et al. 2007), dust from the Taklimakan
Desert has been argued to be largely redeposited onto
the desert and surrounding mountains. The Hobq
Desert and the Otindag/Horqin sandy lands are also

excluded as sources of Chinese loess because of their
relative geographic locations with respect to the CLP
(Sun et al. 2001; Zhang et al. 2003).
The properties of magnetic minerals (domain state,

concentration, and type) have been intensively used to
reconstruct paleoclimate variations and to determine cir-
culation patterns of ocean currents and even of air pol-
lution (Liu et al. 2012). Environmental magnetism has
also been successfully used to trace the provenance of
magnetic minerals within marine sediments (Gyllencreutz
and Kissel 2006; Roberts et al. 2013).
In this study, we systematically investigated surface

sediments from a wide range of potential dust regions in
inland East Asia using environmental magnetic methods
to better characterize and quantify iron oxides from
different dust source areas. We also examine the rela-
tionship among different kinds of iron oxides that repre-
sent different environmental processes and further test
whether magnetic approaches can be used to distinguish
between dust sources.

Geological setting and sampling
From 2007 to 2008, surface sediments were collected at
ten sites from the potential source regions of Asian dust,
where four potential provenances for the CLP sediments
include the Badain and Juran deserts (GB + BJ), the
Tengger Desert (TG), the Mongolia-Gobi Desert (MG),
and the Mu Us Desert (MU), as well as six non-CLP
sources, including Xizang (XZ), Taklimakan Desert (TK),
Qinghai (QH), Qaidam Basin (QD), Gansu Hexi Corridor
(HC), and Hobq Desert (HB) (Figure 1) (Sun et al. 2013).
Zan et al. (2014) systematically investigated surface sam-
ples from the Tarim Basin and found that the bulk grain
size is coarser (>100 μm) for samples from the interior
basin than from the basin margin. Previous studies have
shown that dust has a relatively unimodal grain size distri-
bution with a peak value of approximately 40 μm and a
secondary shoulder at approximately 100 μm. The coarse-
grained shoulder could be due to platy minerals, which
have aerodynamic behavior similar to fine-grained spher-
ical particles (Stuut et al. 2005; De Dekker et al. 2008,
2014). Because fine-grained particles (mainly <63 μm) can
be easily transported by wind from the source region to
the CLP or to the North Pacific Ocean (Pye 1989; Rea
1994; Sun et al. 2013), relatively fine-grained samples were
collected for this study mainly from desert margins, dried
riverbeds, or small hydrocephalus depressions within
Gobi/sandy deserts, and alluvial fans at spacings of 50 to
100 km (Sun et al. 2013). These regions are the major
sources for spring dust from the Asian interior. In order
to reduce the influence of vehicle emissions and human
activities, samples were collected at least 100 m away from
roads. In addition, fresh samples were collected from 5 to
10 cm below the surface.
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The geological setting of the major sampling sites and
the physical properties of these samples have been de-
scribed in detail by Sun et al. (2013). Samples used in this
study are shared with Sun et al. (2013). Grain size distribu-
tions of surface soil samples resemble those of the CLP
loess. On the basis of ESR signal intensity crystallinity
index and oxygen isotopes of quartz, samples from the
Mongolian Gobi, northern Chinese, and Taklimakan
deserts can be clearly distinguished (Sun et al. 2007, 2013;
Yan et al. 2014). This indicates that the physical properties
of different source regions can be used to determine dust
provenance.
The Tibetan Plateau has an area larger than 49,000 km2.

The altitude of sampling sites from the Xizang area (XZ)
arranges between approximately 1,300 m and approxi-
mately 5,200 m, with samples taken mainly along national
highways, i.e., highways 109 and 318. The Taklimakan des-
ert (TK) (3.5 × 105 km2), which is the largest desert in
China, is located in the Tarim Basin of Xinjiang province
and is surrounded by the Kunlun, Pamir, and Tianshan
mountains. TK has been regarded as a major Asian dust
source (Zhang et al. 2003). Using ESR signal intensity and
quartz crystallinity, Sun et al. (2008) proposed that mater-
ial from TK contributes insignificantly to loess deposits on
the CLP at least since the last interglacial period, and that
is mostly carried by westerlies to the Western and North
Pacific Ocean. Samples from Qinghai (QH) were collected
at sites with altitudes higher than 3,000 m. The material
includes loess, paleosols, and mud. The Qaidam Basin
(QD), which is the largest basin in the northeastern
Tibetan Plateau, has an average elevation of 3,000 m,
which is much lower than that of the surrounding moun-
tains, including the Qiman Tagh-Kunlun Shan, the Altyn

Tagh, the Qilian Shan, and the Ela Shan mountains (4,000
to 5,000 m). Sediment from QD is the Cenozoic material
from the surrounding mountains (Huang et al. 1996; Xia
et al. 2001). The Gansu Hexi Corridor (HC) is located on
the northeastern margin of the Qinghai-Tibetan Plateau.
It is a Cenozoic foreland basin system. The altitude of
sampling sites at HC is less than 2,000 m. The Hobq
Desert (HB), which is the seventh largest desert in China,
is located in Inner Mongolia. Its eastern, western, and
northern margins are all confined by the Yellow River. HB
is 400 km long and 50 km wide.
The Mongolian Gobi Desert is in Southern Mongolia

and is covered by stone and gravel. The altitude is usually
less than 1,700 m, and it has an even topography. The
Badain and Juran deserts (GB + BJ) are located in the
western Alxa Plateau (Figure 1) with altitudes between
1,200 and 1,700 m. The Tengger Desert is located on the
southeastern Alxa Plateau and is mainly composed of mo-
bile dunes with many dry or drying lakes. The Mu Us
Desert is located in a depression on the Ordos Plateau
and the CLP. Material from the Mu Us Desert is geo-
graphically non-uniform with red and gray Cretaceous
sandstones cropping out in the middle and northwest and
Quaternary loess exposed at the surface in the south and
east, respectively (Zhu et al. 1980).

Methods
Room temperature magnetic hysteresis loops were mea-
sured using a Princeton Measurements Corporation (31
Airpark Rd, Princeton, NJ, USA) vibrating sample magnet-
ometer (VSM3900). The maximum applied field was set
at 1 T. Hysteresis parameters, including the saturation
magnetization (Ms), saturation remanent magnetization

Figure 1 Map of East Asia with locations of the sampling sites (dots). Arrows are a schematic representation of the Asian winter monsoons and
westerlies. CLP: Chinese Loess Plateau; GB + BJ: Badain and Juran deserts; TG: Tengger Desert; MG: Mongolian Gobi Desert; MU: Mu Us Desert; XZ:
Xizang Province; TK: Taklimakan Desert; QH: Qinghai province; QD: Qaidam Basin; HC: Gansu Hexi Corridor; HB: Hobq Desert.
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(Mrs), and coercivity (Bc), were obtained after correcting
for the high-field slope of the loops, which was estimated
using data between 0.7 and 1 T. The remanence coercivity
(Bcr) was obtained by demagnetizing samples from +1 T
back to −1 T with a direct current back-field that was
applied at 5 mT field increments. The averaging time
was set at 300 ms. The hysteresis ratios Mrs/Ms vs. Bcr/
Bc were used to construct a Day plot (Day et al. 1977;
Dunlop 2002a, b).
A saturation isothermal remanent magnetization

(SIRM) was imparted in a 1-T field. Samples were then
demagnetized with backfields of −100 and −300 mT using
the VSM3900. The corresponding remanence is termed
IRM−100 mT and IRM−300 mT, respectively. The hard
fraction of the IRM (HIRM−300 mT) and S-ratio are de-
fined as 0.5 × (SIRM + IRM−300 mT) and −IRM−300 mT/
SIRM, respectively (King and Channell 1991). In addition,
HIRM−100 mT is defined as 0.5 × (SIRM + IRM−100 mT).
HIRM−300 mT and HIRM−100 mT are equivalent to the hard
fraction of SIRM after AF demagnetization at 300 and 100
mT, respectively (Liu et al. 2007). They represent the rem-
anence carried by particles with Bcr >300 mTand Bcr >100
mT, respectively (Liu et al. 2007). To determine variations
in the coercivity of magnetically hard minerals, the L-ratio
is defined as HIRM−300 mT/HIRM−100 mT (Liu et al. 2007).
Generally, a higher L-ratio corresponds to a higher Bcr,
and only when the L-ratio is stable can higher HIRM and
lower S-ratio values be conventionally interpreted to cor-
respond to higher concentrations of antiferromagnetic
minerals (e.g., hematite and goethite). If the L-ratio values
are variable, HIRM and S-ratio values are affected by the
remanence coercivity of hematite and goethite, which
probably reflects variability in the provenance or relative
concentration of these minerals (Liu et al. 2007).
Compared to ferrimagnetic minerals, antiferromagnetic

minerals (AFMs) are magnetically weak but have much
higher coercivities. Therefore, AFMs can be readily distin-
guished in terms of their coercivity. S-ratios indicate the
relative concentration of AFMs (e.g., hematite and goeth-
ite) and ferrimagnetic minerals (e.g., magnetite and
maghemite). Generally, the S-ratio ranges between 0 and
1 for natural samples containing mixtures of AFMs and
ferrimagnetic minerals, with negative values observed for
pure hematite and goethite (Liu et al. 2007). When the S-
ratio is close to 1, ferrimagnetic minerals are dominant. In
contrast, when the S-ratio approaches 0, significant
amounts of hematite and goethite are present.
To further assist in identifying magnetic minerals in

samples, low-temperature experiments were conducted
using a Quantum Design Magnetic Property Measure-
ment System (MPMS) for selected samples with contrast-
ing magnetic susceptibility values. The MPMS was
operated under the reciprocating sample option (RSO)
mode. First, a SIRM was acquired at 20 K (SIRM20 K) in a

2.5-T field. Then, the SIRM20 K was thermally demagne-
tized by sweeping the temperature from 20 to 300 K in an
effectively zero field. The temperature sweep rate was set
to 5 K/min. IRM acquisition curves for selected samples
at 300 K were also obtained using the MPMS. In total, 32
steps were set from 4 mT to 5 T. Different magnetic com-
ponents were decomposed in terms of remanence coerciv-
ity from these IRM acquisition curves using the algorithm
of Kruiver et al. (2001).
Diffuse reflectance spectroscopy (DRS) was recorded

using a Cary 5000 ultraviolet–visible-infrared spectropho-
tometer (Varian Inc., Palo Alto, CA, USA) equipped with
an integrating sphere accommodating a photomultiplier
tube/PbS detector. The scan rate is 300 nm/min from 300
to 2,600 nm in 0.5-nm steps. The second derivative of the
Kubelka-Munk (K-M) remission function was used to
enhance signals due to hematite and goethite. For pure
hematite and goethite, characteristic bands are located at
approximately 535 nm and approximately 425 nm,
respectively (Scheinost et al. 1998; Torrent et al. 2007),
but are reduced with increasing degree of Al substitution
within the crystal lattice (Liu et al. 2011; Jiang et al. 2014).
The characteristic DRS band wavelengths for hematite
and goethite are defined as Phm and PGt, and the corre-
sponding band intensity are defined as IHm and IGt,
respectively.

Results and discussion
Results
Low-temperature magnetic results
Low-temperature (low-T) experiments are useful for iden-
tifying magnetic iron oxides and even their domain states
(Banerjee et al. 1993; Özdemir et al. 1993; Moskowitz
et al. 1998). SIRM20 K gradually decreases upon heating
due to the gradual unblocking of fine-grained magnetic
particles. Sudden remanence drops between 100 and 120
K mark the Verwey transition temperature (TV) of mag-
netite (Verwey 1939). Stoichiometric magnetite undergoes
a distinctly sharp drop in SIRM intensity at 120 K. How-
ever, when magnetite is partially oxidized,TV will decrease
and remanence intensity changes across TV will be more
smooth (Özdemir et al. 1993; Cui et al. 1994). Therefore,
our data indicate that magnetite particles in the studied
samples have been partially oxidized (Figure 2).
Sharp drops at Tv also reflect the presence of coarser-

grained (pseudo-single domain, PSD, and multi-domain,
MD) magnetite particles (Cui et al. 1994; Dunlop and
Özdemir 1997). Therefore, to first order, sharp SIRM
drops at Tv can be used to indicate that PSD/MD parti-
cles are magnetically dominant within samples (Figure 2).
Among the studied samples, those from XZ, TK, and
QD contain more PSD/MD magnetite because of the
sharper SIRM drops at Tv. In contrast, magnetite parti-
cles from QH, HB, GB + BJ, MG, and TG are relatively
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Figure 2 Low-temperature thermal demagnetization of SIRM curves for the non-CLP (a-f) and CLP sources (g-j). The dashed vertical lines indicate the
Verwey transition temperature at 120 K for stoichiometric magnetite. The variable magnitude of the Verwey transition indicates that magnetite in the
samples has undergone variable degrees of low-temperature oxidization.
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finer-grained because of the relatively smaller SIRM drops
at Tv. Samples from MU and HC have variable behaviors.

Hysteresis parameters
The Day plot can be used to determine the domain states
of ferrimagnetic minerals (Day et al. 1977; Dunlop 2002a,
b). Overall, the data are dominantly located in the coarser

pseudo-single domain (PSD) region of the Day plot, with
end-members reaching close to the multi-domain (MD)
region (Figure 3). Samples from QH, MG, and TG have a
rather narrow distribution of Mrs/Ms values around 0.1,
but a relatively wider distribution of Bcr/Bc values be-
tween approximately 1.5 and 5. These results can be
interpreted as due to the effects of superparamagnetic

Figure 3 The Day plots (Mrs/Ms vs. Bcr/Bc) for the non-CLP (a-f) and CLP sources (g-j). The dashed lines define the grain size regions of the Day
plot (Dunlop 2002a). The blue ellipsoid indicates the properties of the Chinese loess with minimal pedogenic alteration (Liu et al. 2003, 2004a).
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(SP), antiferromagnetic particles. However, for almost all
samples (Figure 2) SIRM decreases gradually with no ob-
vious difference in the magnitude of decrease for different
groups. Therefore, SP effects on the Day plot are likely to
be minor, and the observed horizontal distribution in the
Day plot is probably caused by antiferromagnetic min-
erals, which is also consistent with the variable S-ratios.
Bc and Ms are usually controlled by ferrimagnetic min-

erals. For most sites (XZ, TK, QD, MU, GB + BJ, and TG),
Bc and Ms are negatively correlated (Figure 4). This indi-
cates that the increase of Ms is due to an increasing con-
centration of coarse-grained magnetite particles because
Bc is negatively correlated with grain size for PSD/MD
particles (e.g., Day et al. 1977). In contrast, samples from
QH, HB, and MG have weak correlations between these
two parameters, which indicates a wider grain size distri-
bution of magnetic particles from these sites. Some data
points plot in the region with much smaller Bcr/Bc values,
which could indicate the dominance of PSD particles.

HIRM, S-ratio, and DRS results
Overall, most of the studied samples have S-ratios larger
than 0.8, which indicates that ferrimagnetic minerals
dominate their magnetic properties (Figure 5). When Ms

is < approximately 20 × 10−3 Am2kg−1, the S-ratio de-
creases significantly, which is typically the case for samples
from XZ, TK, and QH. HIRM reflects the concentration
of antiferromagnetic minerals with remanence coercivity
above 300 mT. Generally, HIRM is <0.5 × 10−3 Am2kg−1

(Figure 6). A small portion of samples from XZ and GB +
BJ have HIRM values >0.6 × 10−3 Am2kg−1. For represen-
tative Chinese loess samples from the eolian depositional
sink with minor effects from pedogenesis, HIRM and Ms

values are about 0.3 × 10−3 Am2kg−1 and 30 × 10−3

Am2kg−1 (Liu et al. 2003, 2004a), respectively. By compari-
son between the Chinese loess and its source materials,
average HIRM values from TK, QH, QD, and HB are sig-
nificantly lower than for loess. In contrast, the average
HIRM for samples from GB + BJ, MU, and TG is compar-
able with values for loess. HIRM and Ms of samples from
MG have a positive correlation, with loess samples located
above the correlation trend (Figure 6).
Both goethite and hematite contribute to S-ratio and

HIRM variations. DRS results (Figure 7) indicate that both
hematite and goethite are the dominant AFMs. Proxies for
hematite (IHm) and goethite (IGt) concentration are weakly
correlated, which indicates that hematite and goethite
contents could have some genetic connection. The DRS
intensity ratio IHm/(IHm + IGt) provides a measure of the
relative concentration of hematite and goethite. Previous
studies have shown that this ratio is controlled by environ-
mental conditions (Cornell and Schwertmann 2003). Gen-
erally, hematite and goethite are preferentially produced
under warm/dry and cold/humid conditions, respectively.

Therefore, lack of correlation between IHm/(IHm + IGt) and
Ms (concentration proxy for ferrimagnetic minerals) indi-
cates that AFMs and ferrimagnetic minerals are produced
through different processes; otherwise, a positive correl-
ation would be expected between the concentration prox-
ies for these two types of magnetic mineral.
The DRS band position for hematite is inversely corre-

lated to Al substitution in hematite (Liu et al. 2011). For
example, the DRS band position of stoichiometric hematite
is about 560 nm but will slightly depart from 560 nm to
lower values with increasing Al substitution. Plots between
the hematite DRS band position and the L-ratio indicate
that hematite particles in all these regions can be classified
into three groups as P560 nm, P545 nm, and P535 nm, where
Px nm indicates the characteristic DRS band position for
hematite at around x nm (Figure 8). For each group,
hematite particles have a wide range of L-ratio values. Be-
cause the hematite DRS band position is controlled by Al
content, similar band positions indicate that the Al con-
tents of Al-hematite in the samples are comparable and
thus that the L-ratio will be dominantly controlled by vari-
ations in hematite grain size. Therefore, L-ratio fluctuations
for each group of samples indicate a relatively broad
hematite grain size distribution.

Decomposition of IRM acquisition curves
For each sampling site, two samples with contrasting L-ra-
tios were selected for IRM acquisition curves analysis. Gen-
erally, three to five components are recognized (Figure 9).
Detailed properties of each component in each sample are
listed in Table 1. For most samples, component 1 has a
low midpoint value (B1/2 < 20 mT) with relatively broader
distribution, which indicates a rather ‘soft’ ferrimagnetic
mineral. Coarse PSD/MD magnetite is the most likely
candidate. Component 2 is the dominant component with
a peak remanence coercivity from 70 to 90 mT. We inter-
pret this component to be partially oxidized magnetite or
titanomagnetite because it is the dominant ferrimagnetic
mineral at all sites, especially for samples from the CLP
sources and the dry, hot climate in these source areas
would promote magnetite oxidation and thus increase the
coercivity (Liu et al. 2004a). Components 3 and 4 have
much more variable B1/2 values from 150 to 2,000 mT.
Component 3 fits the wide coercivity range for SD
hematite (Dunlop and Özdemir 1997; Jiang et al. 2012),
which increases with grain size from several hundreds of
mT up to >1 T until it reaches a maximum at the SD
threshold size at several tens of μm (Dekkers and Linssen
1989). Therefore, coercivity variations may also indicate a
broad grain size distribution.
The antiferromagnetic nature of hematite means that it

has a much weaker remanence intensity than ferrimag-
netic minerals, which results in it contributing only a
small percentage of the total IRM (<20%) in most samples.
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Components 4 and 5 are distinctive due to its extremely
high coercivity (>2 − 3 T). Such a high coercivity is due to
the weak parasitic but hard ferromagnetism of goethite
(Dekkers 1989; Liu et al. 2004b; Rochette et al. 2005).

Goethite is present at most sites, but it is not the main
remanence carrier.
To further distinguish between the two groups of surface

samples (CLP sources and non-CLP sources) sourced from

Figure 4 Correlation between Bc and Ms for the non-CLP (a-f) and CLP sources (g-j). The blue ellipsoid indicates the properties of the Chinese
loess with minimal pedogenic alteration (Liu et al. 2003, 2004a).
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distal regions west of the CLP, we define the percentage of
the high coercivity components as: HC% = IRM% of com-
ponent 3 + IRM% of component 4 + IRM% of component
5. For each group, the L-ratio is positively correlated to
HC% (Figure 10).

Discussion
Magnetic mineral assemblages
Our data indicate that both antiferromagnetic minerals
(hematite and goethite) and magnetite are present in sam-
ples from all studied regions. AFMs are complicated

Figure 5 Plots of the S-ratio vs. Ms for the non-CLP (a-f) and CLP sources (g-j).
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because of the potential effects of Al substitution. The
DRS bands for the studied hematite particles are domin-
antly controlled by Al substitution. Previous studies have
shown that with increasing Al content, the dominant DRS
wavelength systematically decreases (Kosmas et al. 1986;

Van San et al. 2001; da Costa et al. 2002; Torrent and
Barrón 2003; Liu et al. 2011; Jiang et al. 2014). Therefore,
the DRS band can be used to semi-quantitatively indicate
the Al content of Al-hematite. On the basis of hematite
DRS bands for surface sediments from the dust source

Figure 6 Plots of HIRM vs. Ms for the non-CLP (a-f) and CLP sources (g-j). The blue ellipsoid indicates the properties of Chinese loess with minimal
pedogenic alteration (Liu et al. 2003, 2004a).
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Figure 8 Plots of PHm vs. L-ratio for the non-CLP (a-f) and CLP sources (g-j). Differences in band wavelength are caused by Al substitution. Higher
band wavelength values correspond to more stoichiometric hematite.

Figure 7 Plots of (a) goethite (IGt) vs. hematite (IHm) content and (b) IHm/(IHm + IGt) vs. Ms. Weak correlation is observed between the goethite and
hematite contents.
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regions and loess/paleosol samples from the CLP (Hu
et al. 2013), hematite particles in the studied natural mate-
rials can be classified into three groups: P560 nm, P545 nm,
and P535 nm.
The P560 nm component is present only in some samples

from the source regions, e.g., XZ, TK, and MG (Figure 8).
On the basis of the study of Torrent and Barrón (2003),
only coarser-grained hematite with low Al substitution
tends to have DRS wavelength above 550 nm. Therefore,
the P560 nm group is more pure and should correspond to

lithogenic hematite that originates from physical disinte-
gration of surrounding bedrock. Lithogenic hematite is
expected to be poor in Al, and is resistant to citrate-
bicarbonate-dithionite (CBD) dissolution due to its rela-
tively coarser grain size (Hu et al. 2013).
The P535 nm group is mainly present in paleosols and

can be preferentially dissolved by CBD treatment (Hu
et al. 2013). Therefore, this component is interpreted as
due to hematite pigments that formed via pedogenesis
and that the Al content is relatively higher than for the

Figure 9 IRM decomposition curves for selected samples from the non-CLP (a, c, d, f) and CLP (g, i, j, l) sources. The middle column contains plots
of L-ratio vs. HIRM for selected non-CLP (b, e) and CLP (h, k) sources. Stars indicate samples from the representative IRM decomposition analyses.
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other two groups. The P545 nm group represents the most
abundant phase and is present both in surface samples
from the source region and in loess that has undergone lit-
tle alteration by pedogenesis. The P545 nm group is relatively
coarse-grained and less Al-substituted than the P535 nm

group and thus is more resistant to CBD dissolution (Hu
et al. 2013).
As one of the most important antiferromagnetic compo-

nents in the eolian inputs to the CLP, the P545 nm group
formed in the source regions under relatively colder and
drier conditions. Barrón and Torrent (2002) reported that
ferrihydrite will be transformed into hematite via an inter-
mediate strongly magnetic phase. If pedogenic processes
operate over a relatively long time (e.g., several thousand

years), accumulation of the final magnetic products of pe-
dogenesis (hematite) and the strongly magnetic intermedi-
ate phases (that will eventually evolve into maghemite)
results in the buildup of both pigmentary hematite and
fine-grained pedogenic maghemite in soils or paleosols.
Apparently, in surface sediments from the source regions,
the formation processes of the P545 nm group differs
greatly from the pedogenic P535 nm group due to the much
lower temperature and drier conditions in the source re-
gions. Therefore, P545 nm and P535 nm are good indicators
for the origin of hematite. For example, the P545 nm phase
in the Chinese loess is present in both surface samples
and loess and is inherited from the source region, whereas
the P535 nm phase in paleosol units is mainly produced by

Table 1 Values of L-ratio, IRM percentage, and midpoint B1/2 of the IRM components

Region Sample L-ratio HIRM Component 1 Component 2 Component 3 Component 4 Component 5

(10−4 Am2kg−1) IRM
(%)

B1/2
(mT)

IRM
(%)

B1/2
(mT)

IRM
(%)

B1/2
(mT)

IRM
(%)

B1/2
(mT)

IRM
(%)

B1/2
(mT)

CLP sources GB07-25 0.35 28.57 9 17.0 75 87.0 11 758.6 5 3,630.8

GB07-47 0.33 40.81 7 11.2 83 64.6 7 794.3 3 3,630.8

MU07-
04

0.18 18.14 12 17.8 76 69.2 5 501.2 7 1,995.3

MU07-
07

0.36 44.07 8 17.8 68 61.7 9 512.9 6 1,584.9 9 5,623.4

MG09-
05

0.18 7.35 6 7.9 69 33.1 13 158.5 13 1,122.0

MG09-
15

0.44 38.04 5 7.9 82 40.7 9 141.3 10 524.8 2 3,162.3

TG07-36 0.25 23.14 9 19.1 76 64.6 8 631.0 4 1,380.4 3 3,311.3

TG08-13 0.35 38.00 12 20.4 74 64.6 7 524.8 3 1,258.9 4 3,162.3

Non-CLP
sources

XZ-15 0.27 17.20 13 19.1 71 79.4 15 912.0 1 5,011.9

XZ-25 0.40 46.52 4 14.1 54 66.1 31 645.7 11 3,801.9

XZ-18 0.62 76.84 10 10.0 53 60.3 31 562.3 22 1,905.5

TK07-
115

0.15 17.98 9 15.8 80 67.6 6 812.8 5 5,623.4

TK07-73 0.38 36.36 13 22.4 64 93.3 11 478.6 11 1,414.5 2 4,466.8

TK07-89 0.51 70.62 19 25.1 64 89.1 12 631.0 3 1,995.3 2 6,309.6

QH-20 0.10 3.31 20 19.1 66 74.1 11 851.1 3 3,981.1

QH-04B 0.38 12.64 8 15.8 69 79.4 19 794.3 4 3,548.1

QH-31B 0.58 35.00 10 17.8 49 56.2 25 371.5 9 1,288.2 7 3,981.1

QD-25A 0.12 10.36 10 18.2 78 69.2 12 1,000.0

QD-16 0.26 20.38 15 22.4 60 69.2 20 602.6 5 3,890.5

QD-17 0.46 35.49 35 39.8 15 112.2 23 354.8 12 758.6 15 2,398.8

HC07-67 0.05 9.80 50 28.2 41 75.9 6 1,000.0 3 5,011.9

HC07-
137

0.19 20.59 9 17.8 82 69.2 8 871.0 2 5,011.9

HC07-
139

0.32 42.01 9 17.8 77 69.2 8 501.2 6 1,862.1

HB07-15 0.23 21.90 36 33.1 52 93.30 12 1349.0 1 5,011.9

HB07-17 0.26 30.97 38 31.6 44 89.1 16 891.3 2 4,466.8
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in situ pedogenesis along with a small portion that is
inherited from the source region. The positive correlation
between the degree of pedogenesis and the pedogenic
hematite content indicates that the contribution of the
P535 nm phase from eolian inputs is minor (Hu et al. 2013).
Therefore, the P535 nm and P545 nm components can be
used reliably to investigate pedogenic and eolian pro-
cesses, respectively.
The magnetic properties of bulk samples are dominated

by ferrimagnetic minerals, although antiferromagnetic
phases are ubiquitously present. Previous studies have
shown that eolian PSD/MD magnetite particles in the
Chinese loess are partially oxidized (Figure 2) (Liu et al.
2003, 2004a). Mismatching of the crystal lattice unit cell
between the maghemite rim and magnetite core results in
an enhanced coercivity for the partially-oxidized magnetite
(van Velzen and Zijderveld 1992, 1995; Cui et al. 1994).
Liu et al. (2003) proposed that physical and chemical envi-
ronments on the CLP could favor low-temperature oxida-
tion processes. The smeared Verwey transition for material
from the CLP source regions strongly indicates that mag-
netite oxidation has occurred in the depositional regions.

Implications for loess magnetism
Previous studies have shown that eolian dust that is depos-
ited on the CLP originates mainly from the surrounding
regions, e.g., the Gobi Desert in Southern Mongolia, the
Badain Juran Desert, the Mu Us Desert, and the Tengger
Desert in northern China (e.g., Sun et al. 2001; Zhang et al.
2003). These studies provide the strongest constraints for
testing the efficiency of environmental magnetic proxies

for understanding dynamic transportation processes from
the source regions to the depositional sink.
Loess samples have a rather narrow distribution of mag-

netic properties (Liu et al. 2004a), e.g., Mrs/Ms and Bcr/Bc

(Figure 3) and HIRM (Figure 6). In contrast, the magnetic
properties of surface samples from potential dust source
regions are widely distributed. The uniformity of loess
magnetic properties can be reasonably attributed to mix-
ing and sorting processes, by which coarse-grained mag-
netic particles are winnowed out. This will increase the
overall Bc for loess samples because Bc is inversely corre-
lated to grain size for PSD/MD magnetite (Figure 3). In
addition, for loess samples with minimal pedogenic alter-
ation, grain size-dependent parameters (e.g., Bc) could be
good indicators for the strength of Asian winter mon-
soons. It is expected that magnetic susceptibility (χ, mass-
specific) values for loess samples from the western CLP
will be dominated by two alternative mechanisms. Similar
to the Alaskan loess (Begét et al. 1990; Lagroix and
Banerjee 2004), χ is positively correlated to the grain
size of PSD/MD magnetite during glacials (e.g., L2),
and, thus, higher χ corresponds to relatively colder
periods. In contrast, for paleosols that formed during
interglacial periods, χ is controlled by pedogenic
maghemite nanoparticles and is thus enhanced in
paleosols. This contrast will be minimized by stronger
summer monsoons in the central and northern CLP.
By integrating information from both ferrimagnetic and

antiferromagnetic minerals, the dust provenance of the
CLP loess samples can be reasonably discriminated to first
order. In terms of the remanence contribution (Figures 9
and 10; Table 1), samples from the CLP source regions
(MG, GB + GJ, MU, and TG) and other non-CLP source
regions differ significantly. For the CLP sources, detrital
maghemite (oxidized magnetite) dominates the magnetic
behavior and accounts for >70% of the remanence, while
low coercivity magnetite as well as high coercivity hematite
and goethite only play a minor role. This behavior is con-
sistent with that of loess samples from the CLP (Eyre,
1996). By correlating HC% and the L-ratio (Figure 10), we
observe that samples from the CLP source regions have a
rather uniform coercivity distribution and relatively low L-
ratios. In contrast, samples from other regions have higher
AFM concentrations. Therefore, the composition and grain
size of magnetic minerals from the non-CLP source re-
gions are more variable. In summary, identification of the
three groups of hematite with broad grain size distributions
of magnetite indicates the non-uniformity of eolian dust
sources, even from a single site. In addition, Bcr values for
lithogenic hematite in surface samples from the non-CLP
sources are usually larger than 300 mT (Table 1). In con-
trast, Bcr values of pedogenic hematites in paleosols are
usually <150 mT (Hu et al. 2013; Nie et al. 2014). There-
fore, the conventional HIRM−300 mT proxy dominantly

Figure 10 Plot of L-ratio vs. the hard components (HC%) for the studied
surface samples.
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reflects concentration changes of lithogenic hematite and
is insensitive to pedogenic hematite.

Conclusions
The main purpose of this study is to characterize iron ox-
ides in surface sediments from potential dust source re-
gions distributed throughout western and northern China.
Magnetic mineral assemblages in the studied samples con-
tain both antiferromagnetic (hematite and goethite) and
ferrimagnetic (magnetite and maghemite) minerals with
broad grain size distributions, which indicates multiple ori-
gins for these iron oxides. For antiferromagnetic minerals,
three groups of hematite are identified; the P545 nm group is
the dominant type of hematite in eolian dust inputs to the
CLP from surrounding source regions. Goethite is also
widely present in the studied samples, but it carries a weak
remanence. A weak but detectable positive correlation be-
tween hematite and goethite contents could indicate that
Al-hematite and Al-goethite could have both formed dur-
ing pedogenesis. For ferrimagnetic minerals, PSD/MD mag-
netite particles were partially oxidized in the dust source
regions. In addition, significant differences exist between
the magnetic properties of eolian material from source to
sink on the CLP. CLP sediments have relatively uniform
magnetic properties, while the source material does not. By
comparing the magnetic properties between the CLP loess
and material from potential dust source regions (MG, GB +
BJ, MU, and TG), it is clear that coarse-grained (MD) mag-
netite has been winnowed deposit during transportation so
that such particles are not common in loess deposits. De-
tailed characterization of iron oxides in samples from dust
source regions in East Asia provides excellent constraints
on the initial properties of dust sources that are transported
either to the CLP by the Asian winter monsoon or to the
North Pacific Ocean by westerly winds.
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