
PHYSICAL REVIEW B 94, 195436 (2016)

Q-factor enhancement in all-dielectric anisotropic nanoresonators
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It is proposed and demonstrated that the Q factor of optical resonators can be significantly enhanced
by introducing an extra anisotropic cladding. We study the optical resonances of all-dielectric core-shell
nanoresonators and show that radially anisotropic claddings can be employed to squeeze more energy into
the core area, leading to stronger light confinement and thus significant Q-factor enhancement. We further
demonstrate that the required homogenous claddings of unusual anisotropy parameters can be realized through
all-dielectric multilayered isotropic structures. It is expected that the mechanism we have revealed not only
offers extra flexibilities of resonance manipulations for conventional dielectric structures, but also may shed new
light onto investigations into unconventional nanostructures consisting of two-dimensional materials that are
intrinsically highly anisotropic.
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I. INTRODUCTION

Optical resonators serve almost ubiquitously as an indis-
pensable platform for efficient light-matter interactions and
constitute the cornerstone of many fields not only in physics,
but also in quite a few other interdisciplinary subjects in both
chemistry and biology [1]. Different kinds of optical res-
onators correspond to different light-confining mechanisms,
which can be roughly categorized as total internal reflection
for whispering-gallery resonators [1–3], photonic band gap
for photonic crystal cavities [4,5], Anderson localization for
random resonators [6,7], electromagnetic surface waves for
plasmonic and graphene resonators [8–14], etc. For optical-
resonator-based fundamental research and applications, such
as cavity-enhanced spectroscopy and sensing [15,16], cavity
optomechanics [17], nonlinear and quantum optics [18–20],
high-Q resonators are required to achieve a significant field
confinement and low scattering loss rate, thus providing an
efficient platform for strong light-matter interactions.

To support high-Q resonances, the aforementioned mech-
anisms have different specific problems: photonic band gap
and random resonators are limited by fabrication and cannot
function beyond the diffraction limit; plasmonic and graphene
resonators can be scaled down to the subwavelength spectral
regime but, unfortunately, their performance is restricted
by intrinsic losses of materials employed. Although an
extremely-high-Q whispering gallery resonator is almost free
from intrinsic loss and can be easily fabricated, it relies on
the excitation of the high-order modes (higher-order modes
correspond to larger transverse light momentum, which leads
to lower radiation losses and higher Q factors [2,13,21]) and,
thus, is inevitably compromised by the large footprint of the
resonator and also the large mode volume. For some specific
applications, such as lasing, high-Q low-order modes are
required, which nevertheless is very challenging to achieve
in whispering-gallery-type resonators [22]. It was recently
found that the principle of total internal reflection (TIR) can be
extended to the interface of isotropic and anisotropic materials
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(or the so-called relaxed total internal reflection [23–25],
RTIR) and it has been demonstrated that material anisotropy
can be employed to accelerate the decay rate of evanescent
waves, resulting in a stronger light-confinement capability in
waveguiding systems [23,24].

In this paper, we study the resonances of all-dielectric
core-shell cylindrical nanoresonators of nanowires from new
perspectives of the total internal reflection at the interface of
anisotropic media. To take advantage of the faster evanescent
wave decay induced by the RTIR condition, we study a
resonator that consists of an isotropic core and radially
anisotropic cladding layer (the refractive index of the core
is larger and smaller than the radial and transverse refractive
index of the cladding layer, respectively). We show that such
an anisotropic cladding can squeeze more energy of the mode
into the core area, which results in stronger field confinement
and thus larger Q factors for resonances of various orders
of the resonator. We further demonstrate that the cladding
layer of naturally inaccessible anisotropy can be substituted
by realistic multilayered isotropic metamaterial structures
without compromising the property of Q-factor enhancement.
The principle we have revealed is general, which can be applied
to resonators of various shapes or of other sorts of anisotropy
(such as magnetic anisotropy), to modes of higher orders,
and to resonators operating at other spectral regimes. Such
a mechanism cannot only play a critical role in the rapidly
developing field of all-dielectric metamaterials [25,26], but
also inspires many other fundamental studies and applications
based on two-dimensional (2D) materials that are intrinsically
highly anisotropic [27,28], thus shedding light onto various
subjects of cavity optomechanics, resonant quantum and
nonlinear optics, thermal photonics, lasing and imaging, etc.

II. SCATTERING CONFIGURATION AND THEORETICAL
ANALYSIS

We begin with one of the most fundamental structures of 2D
nonmagnetic cylindrical resonators, as is shown in Fig. 1(a):
the core layer (of radius R1) is isotropic and the refractive index
is n1; the cladding layer (of radius R2) is radially anisotropic
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FIG. 1. (a) Schematic of the core-shell cylindrical resonator
consisting of an isotropic core (refractive index n1 and radius R1)
and a radially anisotropic cladding layer (radial index n2r , transverse
index n2t , and radius R2). The anisotropy parameter is defined
as η2 = n2t /n2r and the incident plane wave to excite the TM
resonances is polarized along the x direction. (b) Conventional TIR:
the evanescent wave (dashed curve) resides within the lower-index
(n2) isotropic medium and decays exponentially away from the
boundary. (c) RTIR: the evanescent wave decays much faster away
from the boundary, which is due to the anisotropy of the medium
involved.

on the x-z plane with radial index of n2r and transverse
(along the azimuthal direction) index of n2t ; the anisotropy
parameter is defined as η2 = n2t /n2r . The resonant modes of
2D cylindrical resonators can be classified into two sets: (i)
the transverse-magnetic (TM) modes with no magnetic field
in the x-z plane, and (ii) the transverse-electric (TE) modes
with no electric fields in the x-z plane [29–31]. Since the TE
resonances are not affected by the radial anisotropy of the shell
layer, here we study only the TM resonances with electric fields
in the x-z plane. As a result, the incident plane wave is fixed
to be polarized along the x direction (in terms of the electric
field). According to the proposed principle of RTIR [23,24],
the radial anisotropy of the cladding layer can reduce the skin
depth of the evanescent waves, as is shown schematically in
Figs. 1(b) and 1(c): Fig. 1(b) shows the conventional TIR,
where an evanescent wave (dashed curve) resides within the
lower-index media, and it decays exponentially away from
the boundary; Fig. 1(c) shows the RTIR geometry, where
the evanescent waves decay faster, which is induced by the
anisotropic layer employed.

As a first step, we study the scattering properties of the
structure shown in Fig. 1(a). This problem can be solved an-
alytically [29,32,33], and the scattering efficiency (scattering
cross section divided by the geometrical cross section of the
structure πR2) can be expressed as:

�sca = 2

kR

∞∑
m=−∞

|am|2, (1)

where k is the angular wave number in the background material
(vacuum in our work); R is the radius of the outermost layer;
a0 and am (am = a−m) are the scattering coefficients, which
depend on the anisotropy parameter (see the Appendix for
more details). To be more specific, a0 corresponds to the
magnetic dipole (MD), which has all the electric fields along
the transverse direction on the x-z plane [30]. As the result, the
MD resonance is only dependent on the transverse (azimuthal)
refractive index of the cylindrical resonator, and consequently

it is not affected by the radial anisotropy. In contrast,
am (m �= 0) corresponds to the electric resonance of the mth
order [e.g., a1 and a2 correspond to the electric dipole (ED) and
electric quadrupole (EQ), respectively], which is dependent on
the anisotropy parameter.

III. SCATTERING AND Q FACTOR OF HOMOGENEOUS
ISOTROPIC RESONATORS

In Fig. 2(a) we show the scattering efficiency spectra for
a homogenous and isotropic cylinder (radius R = 300 nm
and refractive index n = 2) in terms of the total scattering
together with the contributions from the first three dominant
resonances: MD, ED, and EQ. Because MD is not affected
by the radial anisotropy, throughout this work we focus only
on the ED and EQ resonances which are both anisotropy
sensitive. The indicated points D and Q in Fig. 2(a) correspond
to the resonant positions of ED and EQ respectively: λD =
1046 nm and λQ = 821 nm. The corresponding near-field
distributions |E|2 at those two points are shown in Figs. 2(b)
and 2(c). We show here only the partial fields of the ED
and EQ resonances, respectively (fields associated with other
multipoles are neglected), which as a result exhibit typical pure
ED and EQ characteristics, respectively.

Then, we study the Q factors of the ED and EQ resonances
of the homogeneous cylindrical nanowire. If we use ωm =
ω′

m + iω′′
m (ω′′

m > 0) to denote the complex resonant angular-
frequency of the mth-order resonance, which corresponds to
the singular point of the scattering matrix of the resonator, then

FIG. 2. (a) Scattering efficiency spectra for a homogeneous
(η = 1) and isotropic cylindrical resonator (n = 2 and R = 300 nm).
Both the total scattering efficiency spectrum (black curve) and those
contributions from ED (red curve), MD (green curve), and EQ
(blue curve) are shown. Two points D (λD = 1046 nm) and Q
(λQ = 821 nm), which correspond to the resonant positions of ED and
EQ respectively, are marked in panel (a) and the corresponding near
fields (partial electric-field intensity |E|2) are shown in panels (b) and
(c). (d) The refractive-index dependence of the Q factors for the ED
and EQ supported. The curves correspond to the Q factors obtained
through Eq. (2) while circles correspond to Q factors calculated based
on FWHM of the scattering spectra.
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the corresponding Q factor can be expressed as [3,29]:

Qm = ω′
m

2ω′′
m

. (2)

It is worth noticing that, for a homogenous cylindrical
resonator, the scattering matrix is dependent only on the
normalized radius ρ = kR and refractive index n. That is to
say, for fixed mode order m, ωm is proportional to the resonator
radius. As a result, according to Eq. (2), Qm is R independent
and depends only on the refractive index n. The dependence of
the Q factors of ED and EQ on refractive index n is shown in
Fig. 2(d). As expected, with increasing n, the Q factors of both
ED and EQ increases monotonically, since larger momentum
mismatch between the resonator and the background leads
to stronger energy-confinement capability [3,13,29,34]. We
note that, besides the definition shown in Eq. (2) [the results
are shown by curves in Fig. 2(d)], Q factors can be also
obtained by calculating the full width at half maximum
(FWHM) of the scattering spectrum [3]: Qω = ω0/�ω1/2,
where ω0 denotes the central resonant scattering frequency
[such as the points indicated in Fig. 2(a)] and ω1/2 is width
of the scattering spectrum curve measured between the points
where the magnitudes are half of the maximum amplitude
at the central resonant position. The results calculated through
the scattering spectrum are also shown in Fig. 2(d) by circles
and it is obvious they agree well with those obtained through
Eq. (2). Throughout this paper, we focus on the ED and EQ
resonances of the lowest frequency [besides the resonant peaks
shown in Fig. 2(a), there are other scattering peaks for ED and
EQ at higher frequencies [29,35] ] and calculate the Q factor
through Eq. (2). Nevertheless, it should be reminded that, for
ED and EQ of higher frequencies and for other ways to define
and/or calculate the Q factors (or non-Lorentzian asymmetric
linewidths of the scattering spectrum [36,37]), the conclusions
drawn in our work are still valid.

IV. SCATTERING AND Q FACTOR OF CORE-SHELL
ANISOTROPIC RESONATORS

As a next step, we switch to the cylindrical resonator
with an anisotropic cladding and demonstrate how the RTIR
mechanism can be employed to enhance the Q factor and
energy-confinement ability of the resonances. First we study
the core-shell resonator with an isotropic core (R1 = 200 nm)
and an anisotropic cladding. For better comparison with the
homogenous resonator investigated above, we set the core
index as n1 = 2, cladding layer radius as R2 = 300 nm, and
the indexes of the cladding satisfy n2rn2t = n2

1. As a result,
the anisotropy parameter can be expressed as η2 = (n2t /n1)2.
The scattering spectra with η2 = (n2t /n1)2 = 4 is shown in
Fig. 3(a), where only the contributions from ED and EQ are
shown [for a clearer comparison, the results of the homogenous
case with the same outermost layer radius R = 300 nm shown
already in Fig. 2(a) are replotted here by dashed curves]. As
expected from the RTIR principle, the anisotropic cladding
improves the energy confinement and thus can enhance the
Q factor for both ED and EQ, which can be justified by
the presence of sharper and narrower scattering curves with
anisotropy materials incorporated [3,29]. To quantitatively
characterize the Q-factor enhancement, in Fig. 3(b) we show

the dependence of Q factors of both resonances on the
anisotropy parameter, which further verifies the anisotropy-
induced Q-factor enhancement. In principle, higher Q factor
indicates better energy confinement capability of the resonator.
To confirm this directly, in Fig. 3(a), the positions of the
ED and EQ resonances for both isotropic and anisotropic
cases are indicated by D, D′ and Q, Q′ (λD = 1046 nm,
λD′ = 1213 nm, λQ = 821 nm, λQ′ = 734 nm) and the
corresponding total electric field (combining the contributions
of all multipoles) intensity (|E|2 = |η−2Er + Et|2) are shown
in Figs. 3(c)–3(f). Compared to the isotropic case [Figs. 3(c)
and 3(e)], when anisotropy is introduced [Figs. 3(d) and 3(f)]
more energy of the mode is squeezed into the core layer,
indicating better energy confinement and as a result leading to
more significant field enhancement [we note that, to make the
field distributions clearer, different scales of the color bars for
the fields at different points are employed in Figs. 3(c)–3(f)].
It is worth mentioning that, compared with the symmetric
field distributions shown in Fig. 2, those shown in Fig. 3 are
asymmetric because here we show the total fields contributed
by all the multipoles. This is also the case for Figs. 4
and 5.

To further quantify the capability of better energy confine-
ment and more significant field enhancement, we denote the
energy stored inside the core and shell cladding as Uc and Us ,
which can be defined respectively as

Uc =
∫∫

core
n2

1|E(r)|2d2r,

(3)

Us =
∫∫

shell

[
n2

2r |Er (r)|2 + n2
2t |Et (r)|2]d2r,

where Er (r) and Et (r) correspond to electric fields along
the radial and transverse direction respectively, which can
be calculated analytically [29,32,38]; the total stored energy
inside the resonator is Ut = Uc + Us; and the core energy
ratio is Uc/Ut. In Fig. 3(g) we show the dependence of
Ut and Uc/Ut on the anisotropy parameter η2 for the ED
resonance. As is clearly shown, with larger η2 both the
total stored energy and the core energy ratio would increase,
which proves convincingly tighter energy confinement and
larger field enhancement inside the resonator that accompany
the efficient Q-factor enhancement shown in Figs. 3(a)
and 3(b).

In the discussions above, we fixed the overall resonator
radius to investigate the Q-factor dependence on anisotropy
parameter. Now we fix the anisotropy parameter η2 = 4 (with
R1 = 200 nm, n1 = 2, and n2t = 4) and study the relationship
between Q factor and the shell-cladding radius R2. The results
are summarized in Fig. 4(a) as solid curves for both ED
and EQ resonances. It is clear that the Q factor does not
increase monotonically with increasing cladding radius, and
there is actually an optimal radius of the shell to achieve the
highest Q factor for each resonance. To reveal the mechanism
behind, we select three points for both ED [R2(i) = 250 nm,
R2(ii) = 330 nm (optimal radius for EQ), R2(iii) = 600 nm]
and EQ [R2(iv) = 250 nm, R2(v) = 300 nm (optimal radius for
ED), R2(vi) = 600 nm] and show the corresponding total near-
field distributions (|E|2) in Figs. 4(b)–4(g). It is shown that,
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FIG. 3. (a) Scattering efficiency spectra for both ED (red curve) and EQ (blue curve) supported by the isotropic core-anisotropic shell
cylindrical resonator of inner radius R1 = 200 nm (n1 = 2) and outer radius R2 = 300 nm (η2 = 4, n2t = 4). For comparison, the ED and EQ
scattering efficiency spectra for the homogenous and isotropic (n = 2) resonator of radius 300 nm are also shown as dashed curves. The total
scattering efficiency spectrum is shown as black curves (dashed for the isotropic case and solid for the anisotropic case). Four resonant points
for both cases D, D′ and Q, Q′ (λD = 1046 nm, λD′ = 1213 nm, λQ = 821 nm, λQ′ = 734 nm) are indicated and the corresponding total
near-field distributions (|E|2) are shown in panels (c)–(f). (b) The dependence of the Q factor for both ED and EQ on anisotropy parameter.
The indexes of the cladding layer is constrained by n2rn2t = n2

1 = 4 and thus the anisotropy parameter is η2 = (n2t /n1)2. (g) The dependence
of Ut and Uc/Ut for ED on the anisotropy parameter.

FIG. 4. (a) Dependence of Q factor (solid red curve for ED and solid blue curve for EQ) on the shell-cladding radius R2 with the following
fixed parameters: R1 = 200 nm, n1 = 2, η2 = 4, and n2t = 4. The dashed curves correspond to the Q factor (which is radius independent) for
both ED (red) and EQ (blue) of the homogeneously anisotropic cylindrical resonator of η = 4 and nt = 4. Three points have been indicated
for the core-shell configuration [ED resonance: R2(i) = 250 nm, R2(ii) = 330 nm, R2(iii) = 600 nm; EQ resonance: R2(iv) = 250 nm,
R2(v) = 300 nm, R2(vi) = 600 nm] and the total near-field distributions in terms of electric-field intensity |E|2 at those points are shown in
panels (b)–(g) where R = 600 nm.
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before the optimal radius, for both resonances more energy is
squeezed into the core region with increasing cladding radius,
which leads to both Q-factor and near-field enhancement. In
sharp contrast, after the optimal radius, with increasing R2,
more and more energy will leak out from the core, reducing
both Q factor and the field intensity within the resonator. This
is due to the fact that, when the cladding layer is becoming suf-
ficiently large, resonances can be formed within the cladding
layer, with comparably negligible energy distributed within the
core layer [see Figs. 4(d) and 4(g)]. To confirm directly this
process of mode-distribution transformation between the core
and the shell cladding, we plot the Q-factor-radius relationship
of a homogeneous anisotropic cylindrical resonator with η = 4
and n2t = 4 for both ED (dashed red curve) and EQ (dashed
blue curve) in Fig. 4(a): it is obvious that, for sufficiently large
R2, the Q factor would converge to that of a homogeneous
anisotropic cylinder (it is worth mentioning that, similar to the
isotropic case studied in Fig. 2, the Q factor of an anisotropic
homogeneous resonator is also independent of the radius). The
results presented here could be confusing at first glance, as it
is taken for granted that increasing the anisotropic layer width
would not break the condition of RTIR and thus would not
result in a reduced Q factor or near-field intensity. But one
has to keep in mind that RTIR (and TIR itself) is a concept
of geometric optics, and thus cannot be applied in a universal
way. When the cladding layer is sufficiently large, potential
distributions for photons would be changed drastically [21],
resulting in more energy confinement within the cladding layer
and undermining the features of the Q factor and near-field
enhancement.

V. REALIZATION OF RELATIVELY LARGE EFFECTIVE
RADIAL ANISOTROPY BASED ON MULTILAYERED

STRUCTURES

Up to now, we have demonstrated the efficient Q-factor
enhancement based on anisotropic materials. Unfortunately,
for natural materials the anisotropy parameters employed here
may not be realistic. Such a problem is not insurmountable
considering the recent development in the field of artificial
metamaterials, where other extreme refractive indices and
anisotropy parameters can be achieved [34,38–44]. Here, we
employ a cladding layer consisting of multilayers of two kinds
of realistic isotropic materials (nl and nh, respectively and
nl < nh) to substitute the homogeneous anisotropic layer,
as shown in Fig. 5(a). According to the effective-medium
theory [38,43,45], the effective indexes for the multilayered
cladding on the x-z plane are

n2r = nlnh/

√
(1 − f )n2

l + f n2
h,

(4)
n2t =

√
f n2

l + (1 − f )n2
h,

where f (the thickness of all the layers of index nl divided by
the whole thickness of the anisotropic cladding layer) is the
filling factor of the layer of index nl . When f = 0.5 the largest
anisotropy parameter can be achieved: η2 = (n2

l + n2
h)/2nlnh

for positive nl and nh, and n2rn2t = nlnh. For a proof-of-
concept demonstration, we set nl = 1 and nh = 4, which
leads to the following parameters for f = 0.5: n2r = 1.37,
n2t = 2.92, and η2 = 2.13. The structure we employ is shown
schematically in Fig. 5(a), where the cladding is made of

FIG. 5. (a) Schematic of the cylindrical resonator consisting of an isotropic core (refractive index n1 = 2 and radius R1 = 200 nm) and a
multilayered cladding made of alternate n = 1 and n = 4 isotropic layers, and the width of both layers is 10 nm. There are five layers of each
medium, which leads to f = 0.5 and R2 = 300 nm. (b) Scattering efficiency spectra of the cylindrical resonator shown in panel (a) for both ED
(red solid curves) and EQ (blue solid curves). The circles correspond to the scattering efficiency spectra of a two-layered cylindrical resonator
with the same core as that shown in panel (a) and a homogenous anisotropic cladding layer of n2r = 1.37, n2t = 2.92, and R2 = 300 nm:
both the spectra of ED (red circles) and EQ (blue circles) are shown. The total scattering efficiency spectrum is also shown by black curve
(multilayer) and black circles (anisotropic cladding). Two points D̃ (λD̃ = 1191 nm) and Q̃ (λQ̃ = 791 nm), which correspond to the resonant
positions of ED and EQ, respectively, are marked in panel (b) and the corresponding total near-field distributions (|E|2) are shown in panels (c)
and (e) for the multilayered isotropic cylindrical resonator, and in panels (d) and (f) for the two-layered core-shell resonator with a homogenous
anisotropic cladding.
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alternate nl and nh layers and the width of both layers is 10 nm
[which is far smaller then the effective wavelength and then
the effective-medium theory Eq. (4) can be applied]. There
are five layers of each medium, which makes f = 0.5 and
the overall cladding layer of radius R2 = 300 nm (for direct
comparisons with the previous discussions, the core is set to
be isotropic with radius R1 = 200 nm and of n1 = 2). The
scattering efficiency spectra of such an isotropic 11-layered
cylindrical resonator can be calculated analytically [29] and the
results are shown in Fig. 5(b) by solid curves for both ED and
EQ resonances. It is worth mentioning that the specific layer
width or the periodicity or the layer number is not important
(actually they all can be random) as long as each layer width is
far smaller than the wavelength when the effective-medium
theory can be applied. This distinguishes our design from
those based on photonic band-gap structures [4,5]. To verify
the effective medium theory applied for the multilayered
cladding, we also show in Fig. 5(b) by circles the scattering
efficiency spectra when the multilayered cladding is replaced
by a homogenous anisotropic layer [according to Eq. (4)] of
n2r = 1.37, n2t = 2.92, and n2rn2t = n2

1 = 4. It is obvious
that both sets of results agree excellently well, indicating
the same Q factor for both cases [this has already been
included in Fig. 3(b)]. The two indicated points D̃ and
Q̃ in Fig. 5(a) correspond to the resonant position of ED
and EQ, respectively: λD̃ = 1191 nm and λQ̃ = 791 nm.
The corresponding total near-field distributions (|E|2) are
shown in Figs. 5(c) and 5(e) for the multilayered isotropic
cylindrical resonator, and in Figs. 5(d) and 5(f) for the
core-shell anisotropic resonator. The strong-field confinement
is clearly demonstrated by comparing Figs. 5(c)–5(f) with
Figs. 3(c) and 3(e). Although the field distributions within
the cladding layer are contrastingly different (the fields are
significantly enhanced within the n = 1 layers due to the
continuity condition along the radial direction, which is similar
to that shown in Ref. [46]), the fields inside the core and
outside the resonator are almost the same, proving further the
feasibility of applying the RTIR principle to obtain high-Q
cavity resonators.

It is worth mentioning that, here for the proof-of-concept
demonstration, we set all-dielectric materials to relatively
low index contrast (nl = 1 and nh = 4), which results in a
moderately effective anisotropy parameter (η2 = 2.13) and
a not-so-significant Q-factor enhancement [see Fig. 3(b)].
Nevertheless, we should keep in mind that the mechanism
we have revealed is scalable and applicable at other spectral
(such as microwave and terahertz) regimes, where much
higher anisotropy parameter (index contrast) and thus more
significant Q-factor enhancement can be obtained. Moreover,
many other extremely unusual anisotropy parameters (includ-
ing negative and complex ones) can be made available for
realistic applications relying on the artificial metamaterials
or the recently emerging various sorts of 2D materials
that are intrinsically highly anisotropic [34,38–44]. Although
intrinsic losses are usually inevitably present in such artificial
metamaterials, which can comprise the effect of Q-factor
enhancement and energy confinement. Basically there would
be a trade-off between the effects of loss and anisotropy,
where there must be a specific region where the Q factor can
be mostly significantly enhanced. The competition between

loss and anisotropy with regard to the Q-factor enhancement
is out of the scope of this paper, but it is expected that,
relying on the artificial metamaterials and/or 2D materials,
we would be able the design proper structures to balance the
effects of loss and anisotropy to obtain the optimum Q-factor
enhancement.

VI. CONCLUSIONS AND OUTLOOK

In summary, based on the recently proposed principle
of light localization in anisotropic media, we studied all-
dielectric cylindrical resonators with an isotropic core and
anisotropic cladding, focusing on the Q-factor enhancement
of the resonances supported. Due to the RTIR effect, we
demonstrate that more energy can be confined within the
core-layer structure, which leads to simultaneous Q-factor and
near-field enhancement for the resonances. We also show that,
with a fixed radial anisotropy parameter of the cladding, there
exist optimal cladding layer widths to achieve the highest Q

factors for resonances of different orders, thus succeeding in
revealing the limitation of the application of RTIR principle to
resonators. To verify the feasibility of our approach to achieve
high-Q resonators, we have shown that naturally inaccessible
anisotropy parameters of the cladding can be realized by
employing multilayered isotropic metamaterial structures with
the property of significant Q-factor enhancement preserved.

It is worth mentioning that, although in this work we
confine our study to the two lowest order of modes (dipole and
quadrupole modes) of cylindrical structures, the principle we
have revealed is quite general. The Q-factor enhancement can
certainly be achieved in spherical resonators and resonators of
other shapes, for other kinds of anisotropy such as magnetic
anisotropy and for modes of higher orders. Actually, the higher
the mode order is, the stronger the Q-factor enhancement effect
would be [see Fig. 3(b)]. Since more energy is confined within
the core of the resonator by the RTIR effect, it is expected that,
for a cluster of such resonators, the near-field coupling between
them can significantly be reduced [47,48]. Here in this work,
we constrain the indexes of the cladding layer by n2rn2t = n2

1,
which is implemented only for a direct comparison with
the homogeneous isotropic resonator of n = n1. Basically
there is no compulsory constraint for the indexes of the
cladding layer, and beyond this imposed constraint with higher
anisotropy parameters, for example when n2r = 1,n2t > n2

1,
more significant Q-factor enhancement can be achieved. We
believe that our work of employing the effective anisotropic
media to enhance the Q factor opens a new dimension of
freedom for manipulations of various resonators, which can
incubate many new resonator-based fundamental studies and
applications in the fields of cavity-enhanced spectroscopy
and sensing, cavity optomechanics, resonant quantum and
nonlinear optics, lasing and imaging, etc.
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APPENDIX

The seminal problem of two-dimensional (2D) plane-wave
scattering by cylindrical resonators (single or multilayered)
consisting of isotropic materials has been studied analyti-
cally [29] [e.g., for the scattering configuration shown in
Fig. 5(a) with the corresponding scattering efficiency shown
in Fig. 5(b) by solid curves]. Such analytical investigations
have also been extended to 2D cylindrical resonators made of
radially anisotropic materials [32,33] [e.g., for the configura-
tion shown in Fig. 1(a)]. It has been revealed that, for both
isotropic and radially anisotropic cases, the expressions for
the field-expansion coefficients (both inside and outside the
resonator) and far-field scattering properties are identical [see
Eq. (1)], except that, in the anisotropic case, the orders of
some Bessel and Hankel functions need to be modified by the
anisotropy parameter.

To be more specific, we take for example the simplest case
of a homogeneous radially anisotropic cylinder (radius R and
anisotropy parameter η) in vacuum. The scattering efficiency
can be expressed by Eq. (1) where the scattering coefficients for
the incident plane waves of TM polarizations can be expressed
as [29,32]

a±m = ntJm̃(ntkR)J ′
m(kR) − Jm(kR)J ′

m̃(ntkR)

ntJm̃(ntkR)H ′
m(kR) − Hm(kR)J ′

m̃(ntkR)
, (A1)

where m̃ is the modified function order m̃ = mη, J and
H are respectively the Bessel and Hankel functions of the
first kind [29], and the accompanying primes indicate their
differentiation with respect to the entire argument. Obviously
the results reduce to the those of isotropic case when η = 1.
It is clear that the MD mode of m = 0 is independent of
the anisotropy, which is consistent with our former argument
based on the field distribution. Similar to Eq. (A1), all the field
expansion coefficients within the resonator can be obtained in
all the layers by simply modifying the function order when
the radially anisotropic materials are present. As a result, the
energy stored within the resonator [see Eq. (3)] can also be
calculated analytically.
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