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Strong laws at zero for trimmed Lévy processes*
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Abstract

We study the almost sure (a.s.) behaviour of a Lévy process (Xt)t≥0 on IR with extreme
values removed, giving necessary and sufficient conditions for the a.s. convergence as
t ↓ 0 of normed and centered versions of “trimmed" processes, in which the r largest
positive jumps or the r largest jumps in modulus of X up to time t are subtracted
from it. Integral criteria in terms of the canonical measure of X are given for the
required convergences, under natural conditions on the norming functions. Random
walk results of Mori (1976, 1977) and Lévy process results of Shtatland (1965) and
Rogozin (1968) are thereby generalised. Another application is to characterise the
relative stability at 0 of the trimmed processes, in probability and almost surely.
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1 Introduction

Suppose that X = {Xt : t ≥ 0}, X0 = 0, is a Lévy process with triplet (γ, σ2,Π).
Thus the characteristic function of X is given by the Lévy-Khintchine representation,
E(eiθXt) = etΨ(θ), where

Ψ(θ) = iθγ − σ2θ2/2 +

∫
IR\{0}

(eiθx − 1− iθx1{|x|<1})Π(dx), for θ ∈ IR, t ≥ 0. (1.1)

Here γ ∈ IR, σ2 ≥ 0 and Π is a Borel measure on IR∗ := IR\{0} such that
∫
IR∗

(x2∧1)Π(dx)

is finite. The positive, negative and two-sided tails of Π are

Π
+

(x) := Π{(x,∞)}, Π
−

(x) := Π{(−∞,−x)}, and Π(x) := Π
+

(x) + Π
−

(x), x > 0,

assumed right-continuous. We are only interested in small time behaviour of Xt, so we

eliminate trivial cases by assuming Π(0+) =∞ or Π
+

(0+) =∞, as appropriate.
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Strong laws at zero for trimmed Lévy processes

Denote the jump process of X by (∆Xt)t≥0, where ∆Xt = Xt − Xt−, t > 0, with
∆X0 ≡ 0. Recall that X is of bounded variation if

∑
0<s≤t |∆Xs| < ∞ a.s. for all t > 0,

equivalently, if σ2 = 0 and
∫
|x|≤1

|x|Π(dx) <∞. If this is the case (1.1) takes the form

iθdX +

∫
IR∗

(eiθx − 1)Π(dx),

where dX is the drift of X.

For any integer r = 1, 2, . . ., let ∆X
(r)
t and ∆̃X

(r)

t be the r–th largest positive jump
and the r-th largest jump in modulus up to time t respectively. Formal definitions of
these, allowing for the possibility of tied values (we choose the order uniformly among
the ties), are given in Buchmann, Fan and Maller (2014). “One-sided" and “modulus"
trimmed versions of X are then defined for r = 1, 2, . . . as

(r)Xt := Xt −
r∑
i=1

∆X
(i)
t and (r)X̃t := Xt −

r∑
i=1

∆̃X
(i)

t .

When r = 0 we take (0)Xt = (0)X̃t = Xt. For x > 0 define truncated moment functions by

ν(x) = γ −
∫
x<|y|≤1

yΠ(dy) and V (x) = σ2 +

∫
|y|≤x

y2Π(dy). (1.2)

Our aim is to study the a.s. behaviour of centered and normed versions of (r)Xt

and (r)X̃t when t ↓ 0. We introduce centering and norming functions a(t) ∈ IR and
b(t) > 0 and characterise the a.s. finiteness or otherwise of ((r)Xt − a(t))/b(t) and
((r)X̃t − a(t))/b(t), and some possible a.s. limits of these quantities, when t ↓ 0. In
particular, we characterise the relative stability at 0 of the trimmed processes, i.e.,
convergences of the type (r)Xt/b(t)→ ±1 and (r)X̃t/b(t)→ ±1, for some b(t) > 0, both in
the almost sure and “in probability" senses, as t ↓ 0.

Previous investigations of this sort have been restricted to the case r = 0. An early
result of Khinchin (1939) (Sato 1999, Prop. 47.11, p.358) states that, for any Lévy
process X with triplet (γ, σ2,Π), σ2 ≥ 0,

lim sup
t↓0

|Xt|√
2t log | log t|

= σ, a.s. (1.3)

From this we see that Xt/t
1/α → 0 a.s. as t ↓ 0 for all α > 2, and in view of this the

norming sequences b(t) we consider will satisfy b(t) = O(t1/α) as t ↓ 0, for some α < 2,
α > 0. Then b(t) = o(

√
t) as t ↓ 0, so in this sense b(t) is not too close to the square root

function.
The case α = 2, of a square root norming, is special, and we do not consider it in detail

here (but see Remark (ii) following Theorem 2.1 below). However, as a consequence of

Lemma 3.1 below, we observe that ∆̃X
(1)

t = o(
√
t) a.s. and ∆X

(1)
t = o(

√
t) a.s. as t ↓ 0

are always true, so we always have (r)X̃t = Xt + o(
√
t) a.s. and (r)Xt = Xt + o(

√
t) a.s. as

t ↓ 0. One implication of this is that (1.3) is also true with Xt replaced by (r)Xt or (r)X̃t,
r = 1, 2, . . ..

The behaviour of Xt relative to powers of t, as t ↓ 0, has been studied in Blumenthal
and Getoor (1961), Bertoin, Doney and Maller (2008), and others. The heavily-cited
article by Blumenthal and Getoor (1961) has recently received renewed prominence
by virtue of its application in time series/financial mathematics areas; cf., e.g., Aït-
Sahalia and Jacod (2012). Bertoin, Doney and Maller (2008) extended and completed
the Blumenthal and Getoor analysis, in a certain sense, and in particular added in the
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√
t case. Savov (2009, 2010), among other results, extended the results of Bertoin et al.

(2008) to more general norming sequences.
We refer to Bertoin (1996, Sect. III.4) and Sato (1999, Sect. 9.47, p.351) for further

background on local behaviour of Lévy processes.
The paper is organised as follows. In Section 2, Theorem 2.1 gives necessary

and sufficient conditions for the existence of a centering function a(t) ∈ IR such that,
for a specified norming function b(t) > 0, not too close to the square root function,
((r)Xt − a(t))/b(t) and ((r)X̃t − a(t))/b(t) are a.s. bounded when t ↓ 0. If this is the case,
then these quantities in fact tend to 0 a.s. as t ↓ 0, when a(t) is chosen as tν(b(t)). Some
preliminary results needed for the proof of Theorem 2.1, concerning order statistics of
the jumps and a version of Prokhorov’s inequality for Lévy processes, are in Section 3.
Theorem 2.1 is then proved in Section 4. Relative stability at 0 of the trimmed processes
is dealt with in Section 5, using the results in Section 2.

2 Results

Throughout, assume the norming function b(·) is positive and nondecreasing. Keeping
in mind (1.3), for our main result we will also impose the condition: there are constants
c > 0, α ∈ (0, 2), and t0 > 0 such that

b(s)

s1/α
≤ cb(t)

t1/α
(2.1)

whenever 0 < s ≤ t ≤ t0. (2.1) implies in particular that b(t) = O(t1/α) as t ↓ 0. The
functions b(t) = t1/α with α ∈ (0, 2), or b(t) strictly nondecreasing and regularly varying
at 0 with index greater than 1/2, satisfy (2.1).

Define a function inverse to b(t) by

B(x) := b←(x) = inf{t > 0 : b(t) > x}, x > 0.

Then B(x) is nondecreasing and right continuous. It may have intervals of constancy
corresponding to jumps in b(t) or jumps corresponding to intervals of constancy in b(t).
If b(t) is assumed continuous and strictly increasing then B(x) is continuous and strictly
increasing. For integers r = 1, 2, . . ., define the integrals

Jr :=

∫ 1

0

Π
r
(x)dBr(x), (2.2)

and also the “one-sided" versions

J (±)
r :=

∫ 1

0

(
Π
±

(x)
)r
dBr(x), r = 1, 2, . . . . (2.3)

The main results for both one- and two-sided trimming are stated in Theorem 2.1.

Theorem 2.1. Assume σ2 = 0 and Π(0+) =∞. Suppose b(t) > 0 is continuous, strictly
increasing and satisfies (2.1) with 0 < α < 2, and fix r = 0, 1, 2, . . ..

(i) Then for some function a(t) ∈ IR

lim sup
t↓0

|(r)X̃t − a(t)|
b(t)

<∞ a.s. (2.4)

iff Jr+1 <∞. If this holds we can take a(t) = tν(b(t)), t > 0 (see (1.2)), and then in fact

lim
t↓0

(r)X̃t − tν(b(t))

b(t)
= 0 a.s. (2.5)
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(ii) Further: assume Π
+

(0+) = ∞. Then (2.4) holds for some function a(t) ∈ IR with
(r)X̃t replaced by (r)Xt iff J (+)

r+1 < ∞ and J
(−)
1 < ∞. If this is the case we can take

a(t) = tν(b(t)), t > 0, and then (2.5) holds with (r)X̃t replaced by (r)Xt.

Remarks: (i) In view of (1.3) and the remarks following it, we exclude the case σ2 > 0

from Theorem 2.1.
(ii) The case α = 2 also is not included in Theorem 2.1. Since, as remarked in Section

1, we always have (r)X̃t = Xt+o(
√
t) and (r)Xt = Xt+o(

√
t) a.s., as t ↓ 0, the Jr integrals

cannot test for boundedness of the type in (2.4) when b(t) =
√
t. For related results in

this case see Bertoin, Doney and Maller (2008) and Savov (2009, 2010).
(iii) Theorem 2.1 yields as a corollary an uncentered version of (2.5). Under the

assumptions of the theorem, we can deduce that

lim sup
t↓0

|(r)X̃t|
b(t)

<∞ a.s.

iff Jr+1 <∞ and tν(b(t)) = O(b(t)), as t ↓ 0. For example, when b(t) ≡ t, we deduce that
(r)X̃t = O(t) a.s as t ↓ 0 iff Jr+1 <∞ and ν(t) = O(1). Similarly, we can characterise the
boundedness condition (r)Xt = O(t) a.s., as t ↓ 0.

(iv) The case r = 0 is included in Theorem 2.1. This allows us to recover a result of
Shtatland (1965) and Rogozin (1968) to the effect that Xt = O(t) a.s. as t ↓ 0 iff X is of
bounded variation. When r = 0 and b(t) = t, so B(x) = x, the convergence of J1 together
with σ2 = 0 is equivalent to the bounded variation of X, and the convergence of J1 also
implies ν(t) = O(1). So we obtain the Rogozin-Shtatland result from the case r = 0 of
the previous paragraph. (Recall that (0)Xt = (0)X̃t = Xt.) The cases r > 0 in the previous
paragraph constitute a generalisation of the Rogozin-Shtatland result1, when b(t) = t.

(v) We observe following Lemma 3.1 below that Jr < ∞ implies Jr+1 < ∞ for
r = 1, 2, . . .. As a simple example, suppose Π(x) ∼ 1/(x| log x|) as x ↓ 0, and take b(t) = t.
Then J1 = ∞ so (2.4) does not hold for any a(t) (X is not of bounded variation), but
J2 <∞ so (2.5) holds with r = 1, in fact, with r = 1, 2, . . ..

(vi) Theorem 2.1 can be seen as a refinement of Theorem 2.1 of Bertoin et al. (2008)
and, particularly, Proposition 2.1 and Corollary 2.1 of Savov (2009), in which the contri-
bution of the large jumps to X near 0 is quantified in an explicit way. See also Maller
(2008) for some related results.

(vii) The genesis of Theorem 2.1 is in papers of Mori (1976, 1977), who considered the
corresponding strong laws for random walks at large times. (See also Hatori, Maejima
and Mori (1979).) As far as possible we adapt his methods for the small time behaviour
of the Lévy, adding in variants for one-sided trimming and relative stability. Of course
some quite different arguments are needed in places.

3 Preliminary Results

Before proving the theorems we present some preliminary results relating to the
order statistics of the jumps (Subsection 3.1) and a version of Prokhorov’s inequality for
Lévy processes (Subsection 3.2).

3.1 Some Properties of the Jumps

The point measure associated with the jumps of X is a Poisson point process on

[0,∞)× IR∗ with intensity measure ds⊗dΠ(x). So the tail of the distribution of |∆̃X
(r+1)

t |
1We remark that Rogozin and Shtatland prove a little more; they show that, when X is not of bounded

variation, then −∞ = lim inft↓0Xt/t < lim supt↓0Xt/t = +∞, a.s.
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can be calculated as

P

(
|∆̃X

(r+1)

t | > x

)
= P (#{jumps ∆Xs with 0 < s ≤ t and |∆Xs| > x} ≥ r + 1)

= e−tΠ(x)
∑
i≥r+1

(
tΠ(x)

)i
i!

, x > 0. (3.1)

From this we derive the inequalities

e−tΠ(x)

(
tΠ(x)

)r+1

(r + 1)!
≤ P

(
|∆̃X

(r+1)

t | > x

)
= e−tΠ(x)

(
tΠ(x)

)r+1 ∑
i≥r+1

(
tΠ(x)

)i−r−1

i!

≤
(
tΠ(x)

)r+1

(r + 1)!
, x > 0. (3.2)

Now we can prove:

Lemma 3.1. Assume b(t) > 0 is nondecreasing and fix r = 0, 1, 2, . . . and a > 0.
(i) The following are equivalent:∫ 1

0

Π
r+1

(ab(x))dxr+1 <∞; (3.3)

∑
n≥0

(
2−nΠ(ab(2−n))

)r+1
<∞; (3.4)

P

(
|∆̃X

(r+1)

t | > ab(t) i.o. as t ↓ 0

)
= 0; (3.5)

∑
n≥0

P

(
|∆̃X

(r+1)

2−n | > ab(2−n)

)
<∞. (3.6)

If any of these hold then

lim
t↓0

tΠ(ab(t)) = 0. (3.7)

(ii) Next assume b(t) > 0 is right-continuous, nondecreasing, and satisfies (2.1) with
α > 0. Then any of (3.3)–(3.6) are equivalent to

Jr+1 <∞. (3.8)

Further, since (3.8) does not depend on a, any of conditions (3.3)–(3.6) hold for all a > 0

if they hold for some a > 0, and (3.7) then holds for all a > 0.

Remarks: (i) Note that the restriction α < 2 is not required in Part (ii) of Lemma 3.1.
(2.1) is not assumed at all in Part (i).

(ii) As a consequence of (3.7) we see from (3.3) that the convergence of Jr implies
the convergence of Jr+1, r = 1, 2, . . ..

(iii) When r = 0, a = 1 and b(x) =
√
x, the integral in (3.3) becomes

∫ 1

0
Π(
√
x)dx =

2
∫ 1

0
xΠ(x)dx, which is finite as a consequence of the basic relation

∫
IR∗

(x2∧1)Π(dx) <∞.

Thus (3.5) always holds for all a > 0 when r = 0 and b(x) =
√
x, hence ∆̃X

(1)

t = o(
√
t) a.s.

and ∆X
(1)
t = o(

√
t) a.s. as t ↓ 0 are always true.
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Proof of Lemma 3.1: Fix r = 0, 1, 2, . . . and a > 0. First, (3.3) and (3.4) are equivalent
because, by the monotonicity of b(·) and Π,

(1− 2−r−1)
∑
n≥0

(
2−nΠ(ab(2−n))

)r+1 ≤
∑
n≥0

∫ 2−n

2−n−1

Π
r+1

(ab(x))dxr+1

=

∫ 1

0

Π
r+1

(ab(x))dxr+1

≤ (2r+1 − 1)
∑
n≥0

(
2−n−1Π(ab(2−n−1))

)r+1
.

Next, assume (3.4). Then

P

(
|∆̃X

(r+1)

t | > ab(t) i.o. as t ↓ 0

)
= lim
m→∞

P
⋃
n≥m

⋃
2−n<t≤2−n+1

{
|∆̃X

(r+1)

t | > ab(t)

}
≤ lim

m→∞

∑
n≥m

P

(
|∆̃X

(r+1)

t | > ab(t) for some t ∈ (2−n, 2−n+1]

)
≤ lim

m→∞

∑
n≥m

P

(
|∆̃X

(r+1)

2−n+1 | > ab(2−n)

)
≤ lim
m→∞

1

(r + 1)!

∑
n≥m

(
2−n+1Π(ab(2−n))

)r+1

= 0 (by (3.4)),

where we used the righthand inequality in (3.2) with x = ab(2−n) in the last inequality.
Thus (3.5) holds.

Conversely, suppose the series in (3.4) diverges. Let

An :=
{
|∆Xt| > ab(t) for at least r + 1 values of t in (2−n−1, 2−n]

}
, n = 1, 2, . . . .

The An are independent events and we note that

P

(
|∆̃X

(r+1)

2−n−1 | > ab(2−n)

)
= P

(
|∆Xt| > ab(2−n) for at least r + 1 values of t in (0, 2−n−1]

)
= P

(
|∆Xt| > ab(2−n) for at least r + 1 values of t in (2−n−1, 2−n]

)
≤ P

(
|∆Xt| > ab(t) for at least r + 1 values of t in (2−n−1, 2−n]

)
= P (An).

Suppose 2−nΠ(ab(2−n))→ 0. Then by the lefthand inequality in (3.2) with x = ab(2−n),∑
n≥0

P (An) ≥
∑
n≥1

P

(
|∆̃X

(r+1)

2−n−1 | > ab(2−n)

)
≥ c1

∑
n≥1

(
2−n−1Π(ab(2−n))

)r+1
, (3.9)

for some constant c1 > 0. The series on the right of (3.9) is infinite since the series
in (3.4) diverges. If 2−nΠ(ab(2−n)) 9 0 take a subsequence nk → ∞ such that xk :=

2−nkΠ(ab(2−nk))→ h ∈ (0,∞] as k →∞. Then by (3.1)

P

(
|∆̃X

(r+1)

2−nk | > ab(2−nk)

)
= 1− e−xk

r∑
i=0

xik
i!
→ 1− e−h

r∑
i=0

hi

i!
> 0,

so the middle series in (3.9) is infinite. In either case
∑
n P (An) diverges and so by the

Borel-Cantelli lemma, P (An i.o. as n → ∞) = 1. But then P (|∆̃X
(r+1)

t | > ab(t) i.o. as t ↓
0) = 1, contrary to (3.5). So (3.5) implies (3.4).

It follows from (3.4) that limn→∞ 2−nΠ(ab(2−n)) = 0. Given 0 < t < 1 choose
n(t) = b− log2 tc, so 2−n−1 ≤ t ≤ 2−n, and tΠ(ab(t)) ≤ 2−nΠ(ab(2−n−1))→ 0 as t ↓ 0, thus
we get (3.7).

EJP 20 (2015), paper 88.
Page 6/24

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3839
http://ejp.ejpecp.org/


Strong laws at zero for trimmed Lévy processes

Assume (3.4), so (3.7) holds. (3.2) with t = 2−n and x = ab(2−n) then gives

P

(
|∆̃X

(r+1)

2−n | > ab(2−n)

)
∼
(
2−nΠ(ab(2−n))

)r+1

(r + 1)!
, as t→ 0.

Similarly we deduce this also if (3.6) holds. The equivalence of (3.6) with (3.4) follows.
Finally, assume b(t) > 0 is right-continuous, nondecreasing and satisfies (2.1) with

α > 0. Fix r = 0, 1, 2, . . . and a > 0. By change of variable2 we have∫ B(1)

0

Π
r+1

(b(x))dxr+1 =

∫ 1

0

Π
r+1

(x)dBr+1(x) = Jr+1. (3.10)

When 0 < δ ≤ 1, (2.1) gives
b(δαx)

(δαx)1/α
≤ cb(x)

x1/α
.

Assume (3.8), and that a ≤ c, where c is the constant in (2.1). Let δ := a/c ≤ 1, then
b(δαx) ≤ cδb(x) = ab(x), so∫ B(1)/δα

0

Π
r+1

(ab(x))dxr+1 ≤
∫ B(1)/δα

0

Π
r+1

(b(δαx))dxr+1

= δ−(r+1)α

∫ B(1)

0

Π
r+1

(b(x))dxr+1 = δ−(r+1)αJr+1.

Thus (3.3) holds when a ≤ c and hence when a = c, and hence also when a > c by the
monotonicity of Π. Thus (3.8) implies (3.3). Conversely, assume (3.3) and take a ≥ 1/c.
Let δ = 1/(ac) ≤ 1, then ab(δαx) ≤ b(x), so∫ B(1)δα

0

Π
r+1

(ab(x))dxr+1 = δ(r+1)α

∫ B(1)

0

Π
r+1

(ab(δαx))dxr+1

≥ δ(r+1)α

∫ B(1)

0

Π
r+1

(b(x))dxr+1 = δ(r+1)αJr+1.

Thus (3.3) implies (3.8) when a ≥ 1/c and hence also when 0 < a < 1/c, by the mono-
tonicity of Π. 2

The next lemma gives formulae for the increments of (r)X̃t and (r)Xt. These are
denoted by (∆(r)X̃t)t≥0 and (∆(r)Xt)t≥0.

Lemma 3.2. (i) Suppose Π(0+) =∞. Then for r = 0, 1, 2, . . .

sup
0<s≤t

|∆(r)X̃s| = |∆̃X
(r+1)

t |, t > 0. (3.11)

(ii) Suppose Π
+

(0+) =∞. Then for r = 0, 1, 2, . . .

sup
0<s≤t

∆(r)Xs = ∆X
(r+1)
t and sup

0<s≤t
|∆(r)Xs| = max

(
(∆X−)

(1)
t ,∆X

(r+1)
t

)
, t > 0.

(3.12)

Proof of Lemma 3.2: (i) Take t > 0 and 0 < ε < t and consider

(r)X̃t − (r)X̃t−ε = Xt −
r∑
i=1

∆̃X
(i)

t −Xt−ε +

r∑
i=1

∆̃X
(i)

t−ε.

2To get (3.10), set a(t) := Br+1(t) in Theorem T16, p.300, of Bremaud (1981), so that his c(t) = b(t1/(r+1)).
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Letting ε ↓ 0 gives
∆(r)X̃t = ∆Xt −Dt,

where

Dt :=

r∑
i=1

(
∆̃X

(i)

t − ∆̃X
(i)

t−

)
and ∆̃X

(i)

t− is the jump with i–th largest modulus among (∆Xs)0<s<t. Now if |∆Xt| <

|∆̃X
(r)

t− | then the r largest in modulus of the ∆X do not change from t− to t, so{
∆̃X

(1)

t , . . . , ∆̃X
(r)

t

}
=

{
∆̃X

(1)

t− , . . . , ∆̃X
(r)

t−

}
,

|∆Xt| ≤ |∆̃X
(r+1)

t |, and Dt = 0. Then ∆(r)X̃t = ∆Xt. Alternatively if |∆Xt| > |∆̃X
(r)

t− |

then ∆Xt displaces ∆̃X
(r)

t− among the r largest in modulus to time t, so{
∆̃X

(1)

t , . . . , ∆̃X
(r)

t

}
=

{
∆̃X

(1)

t− , . . . ,∆Xt, . . . , ∆̃X
(r−1)

t−

}
,

and Dt = ∆Xt − ∆̃X
(r)

t− . Then ∆(r)X̃t = ∆̃X
(r)

t− and |∆(r)X̃t| = |∆̃X
(r)

t− | = |∆̃X
(r+1)

t |. This

also holds if |∆Xt| = |∆̃X
(r)

t− | regardless of the way ties if any may be broken. Thus

|∆(r)X̃t| = |∆Xt| ∧ |∆̃X
(r+1)

t |.

Replacing t by s then taking a supremum over 0 < s ≤ t gives (3.11).
(ii) The proof of (3.12) is similar. We obtain

∆(r)Xt = ∆Xt ∧∆X
(r+1)
t (3.13)

and this implies (3.12). 2

Remark: (i) Note that we don’t have sup0<s≤t |∆(r)Xs| = ∆X
(r+1)
t in Lemma 3.2 because

(3.13) does not imply |∆(r)Xt| = |∆Xt| ∧∆X
(r+1)
t (we could have ∆Xt < −∆X

(r+1)
t ).

3.2 Prokhorov’s Inequality for X(S,h)
t

Prokhorov’s inequality (Prokhorov (1960)) for random walks3 reads as follows: let
Sn =

∑n
i=1 ξi, where (ξi)i=1,2,... are i.i.d random variables with |ξi| ≤ h for some h > 0

and Eξ1 = 0. Then for x > 0 and n = 1, 2, . . .

P (Sn > x) ≤ exp

(
− x

2h
sinh−1

(
xh

2VarSn

))
, (3.14)

where sinh−1 is inverse function to the sinh function, sinh(x) = (ex − e−x)/2, x ∈ IR. In
this section we give a version of Prokhorov’s inequality for a Lévy process. Recall the Itô
decomposition in the form (e.g., Doney and Maller (2002, Lemma 6.1)): for h > 0, t > 0,

Xt = tν(h) +X
(S,h)
t +X

(B,h)
t , (3.15)

where ν(·) is defined in (1.2), X(S,h)
t is the compensated small jump component of X, i.e.,

having jumps of magnitude less than or equal to h in modulus, and X(B,h)
t has jumps of

magnitude greater than h in modulus.

3Prokhorov’s inequality holds in fact for independent, not necessarily distributed random variables. For a
refinement of Prokhorov’s inequality, see Kruglov (2006). The method of Lemma 3.3 can also be used to derive
Lévy versions of, e.g., Bernstein’s inequality.
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Lemma 3.3. Assume Π(0+) =∞. For x > 0, h > 0 and t > 0

P
(
X

(S,h)
t > x

)
≤ exp

(
− x

2h
sinh−1

(
xh

2VarX
(S,h)
t

))
. (3.16)

Proof of Lemma 3.3. Take t > 0, h > 0, and ε ∈ (0, h), let

Nt(ε) := #{jumps ∆Xs with 0 < s ≤ t and ε < |∆Xs| ≤ h},

and let Ji(ε), i = 1, 2, . . . , Nt(ε), be the magnitudes of those jumps. The Ji(ε) are i.i.d.,
independent of Nt(ε), with |Ji(ε)| ≤ h, and

EJ1(ε) =

∫
ε<|x|≤h xΠ(dx)

C(ε)
.

Here we abbreviate C(ε) := Π(ε)−Π(h), which is positive for ε small enough and tends
to∞ as ε ↓ 0. For any x > 0 we can write

P
(
X

(S,h)
t > x

)
= lim

ε↓0
P

Nt(ε)∑
i=1

Ji(ε)− t
∫
ε<|x|≤h

xΠ(dx) > x


= lim

ε↓0
P

Nt(ε)∑
i=1

(Ji(ε)− EJ1(ε)) +

(
Nt(ε)

C(ε)
− t
)∫

ε<|x|≤h
xΠ(dx) > x

 . (3.17)

Now Nt(ε) is Poisson with ENt(ε) = tC(ε), so for t > 0

Nt(ε)− tC(ε)√
C(ε)

D−→ N(0, t), as ε ↓ 0.

Thus for any δ ∈ (0, h),(
Nt(ε)

C(ε)
− t
)∫

δ<|x|≤h
xΠ(dx)

P−→ 0, as ε ↓ 0,

while for 0 < ε < δ, by the Cauchy-Schwarz inequality,∣∣∣∣∣
(
Nt(ε)

C(ε)
− t
)∫

ε<|x|≤δ
xΠ(dx)

∣∣∣∣∣
2

=

(
Nt(ε)− tC(ε)√

C(ε

)2 ∣∣∣∣∣ 1√
C(ε)

∫
ε<|x|≤δ

xΠ(dx)

∣∣∣∣∣
2

≤ OP (1)

(
Π(ε)−Π(δ)

Π(ε)−Π(h)

)∫
ε<|x|≤δ

x2Π(dx)

≤ OP (1)

∫
ε<|x|≤δ

x2Π(dx). (3.18)

This is arbitrarily small for choice of ε and δ. So we have(
Nt(ε)

C(ε)
− t
)∫

ε<|x|≤h
xΠ(dx)

P−→ 0, as ε ↓ 0. (3.19)

Now employ Prokhorov’s inequality (3.14) for random walks to write

P

Nt(ε)∑
i=1

(Ji(ε)− EJ1(ε)) > x


EJP 20 (2015), paper 88.

Page 9/24
ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3839
http://ejp.ejpecp.org/


Strong laws at zero for trimmed Lévy processes

=
∑
n≥0

P (Nt(ε) = n)P

(
n∑
i=1

(Ji(ε)− EJ1(ε)) > x

)

≤
∑
n≥0

P (Nt(ε) = n) exp

(
− x

2h
sinh−1

(
xh

2nVarJ1(ε)

))
= E exp

(
− x

2h
sinh−1

(
xh

2Nt(ε)VarJ1(ε)

))
. (3.20)

(Here we interpret
∑0
i=1 = 0, and e−∞ = 0.) But

Nt(ε)VarJ1(ε) = Nt(ε)
(
EJ2

1 (ε)− E2(J1(ε))
)

=
Nt(ε)

C(ε)

∫
ε<|x|≤h

x2Π(dx)− 1

C(ε)

(∫
ε<|x|≤h

xΠ(dx)

)2
 ,

in which Nt(ε)/C(ε)
P−→ t as ε ↓ 0, and

1√
C(ε)

∫
ε<|x|≤h

xΠ(dx)→ 0,

which follows as in (3.18). Hence

Nt(ε)VarJ1(ε)
P−→ t

∫
|x|≤h

x2Π(dx)

= tV (h)

= VarX
(S,h)
t .

Letting ε ↓ 0 in (3.20) gives

lim sup
ε↓0

P

Nt(ε)∑
i=1

(Ji(ε)− EJ1(ε)) > x

 ≤ exp

(
− x

2h
sinh−1

(
xh

2VarX
(S,h)
t

))
. (3.21)

Given 0 < δ < x and η > 0, take ε small enough so that probability of the term on the left
of (3.19) exceeding η in modulus is less than δ. Then from (3.17) and (3.21)

P
(
X

(S,h)
t > x

)
≤ lim sup

ε↓0
P

Nt(ε)∑
i=1

(Ji(ε)− EJ1(ε)) > x− δ

+ η

≤ exp

(
− (x− δ)

2h
sinh−1

(
(x− δ)h

2VarX
(S,h)
t

))
+ η.

Letting δ ↓ 0 and η ↓ 0 proves (3.16). 2

4 Proof of Theorem 2.1

Assume σ2 = 0 and Π(0+) = ∞, and b(t) > 0 is a continuous, strictly increasing
function satisfying (2.1) with 0 < α < 2, and having continuous, strictly increasing
inverse function B(x). Choose x0 > 0 so that Π(x) > 0 for 0 < x ≤ x0. We divide the
proof into two sections, considering two-sided and one-sided cases separately.

(i) Two-sided Case. Suppose first that Jr+1 <∞ for an r ≥ 0, and we will prove (2.5). For
0 < x ≤ x0 define

ψ(x) =

√
B(x)

Π(x)
, (4.1)
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with inverse function

φ(x) = ψ←(x) = inf{y > 0 : ψ(y) > x}.

Then ψ(x) and φ(x) are positive and nondecreasing in 0 < x ≤ x0 with ψ(0) = φ(0) = 0

and ψ is right-continuous (since Π is right continuous). These functions have the
additional properties:

B(x)

ψ(x−)
→ 0,

B(φ(x))

x
→ 0, and

φ(x)

b(x)
→ 0, as x ↓ 0. (4.2)

The first of these follows from (4.1) because B(x)Π(x−) → 0 as a consequence of
Jr+1 < ∞ (which implies (3.7)). The second follows from the first by replacing x with
φ(x) and noting that ψ(φ(x)−) ≤ x ≤ ψ(φ(x)+) = ψ(φ(x)), so

B(φ(x))

x
≤ B(φ(x))

ψ(φ(x)−)
→ 0.

The third property in (4.2) follows from the second by using (2.1) to argue

φ(x) = b(B(φ(x))) ≤ b(δx) (for small x) ≤ cδ1/αb(x), for any 0 < δ < 1.

An additional property,

xΠ(φ(x)) =
xB(φ(x))

ψ2(φ(x))
≤ B(φ(x))

x
→ 0, as x ↓ 0 (4.3)

then follows because ψ(φ(x)) ≥ x.

Recall the Itô decomposition in (3.15), and from now on write Xh
t for X(S,h)

t . From
(3.15) we have

(r)X̃t − tν(h) = Xh
t +X

(B,h)
t −

r∑
i=1

∆̃X
(i)

t

= Xh
t + (∗)

∑
∆Xs1{|∆Xs|>h} −

r∑
i=1

∆̃X
(i)

t 1
{|∆̃X(i)

t |≤h}
, (4.4)

where (∗)∑ denotes summation of jumps ∆Xs, 0 < s ≤ t, with |∆Xs| > h and terms

corresponding to ∆̃X
(1)

t , . . . , ∆̃X
(r)

t removed. Thus

P
(∣∣(∗)∑∆Xs1{|∆Xs|>h}

∣∣ > 0 i.o. as t ↓ 0
)

≤ P

(
∃ s ≤ t such that |∆Xs| ≤ |∆̃X

(r+1)

t | and |∆Xs| > h i.o. as t ↓ 0

)
≤ P

(
|∆̃X

(r+1)

t | > h i.o. as t ↓ 0

)
.

Now choose h = δb(t), δ > 0. Then the last term is 0 by Lemma 3.1, and the last term in
(4.4) is ≤ rδb(t) in magnitude. So we deduce

(r)X̃t − tν(δb(t)) = X
δb(t)
t +O(δb(t)), a.s., as t ↓ 0. (4.5)

Take x > 0 and define

N
φ(x)
t := #{jumps ∆Xs with 0 < s ≤ t and |∆Xs| > φ(x)}.

Then for k = 1, 2, . . .

{Nφ(x)
t ≥ k} = {|∆Xs| > φ(x) for at least k values of s ≤ t}
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= {|∆̃X
(k)

t | > φ(x)}.

Now choose t = 2−n+1 and x = 2−n. Then from (3.2)∑
n

P
(
N
φ(2−n)
2−n+1 ≥ k

)
=

∑
n

P

(
|∆̃X

(k)

2−n+1 | > φ(2n)

)
≤ 1

(k + 1)!

∑
n

(
2−n+1Π(φ(2n))

)k
.

Now, with ck := k(2k − 1),

∑
n

(
2−n+1Π(φ(2n))

)k ≤ ck
∑
n

∫ 2−n

2−n−1

xk−1Π
k
(φ(x))dx

≤ ck

∫ 1

0

x−k−1Bk(φ(x))dx (by (4.3))

≤ ck
k

∫ 1

0

x−kdBk(φ(x)) (integrate by parts)

≤ ck
k

∫ φ(1)

0

ψ−k(y)dBk(y) (change variable)

=
ck
k

∫ φ(1)

0

Π
k/2

(y)

Bk/2(y)
dBk(y) (by (4.1)). (4.6)

We assumed b(·) is strictly increasing, so B(·) is continuous. This means that dBk(y) =

kBk−1(y)dB(y) and the last expression is of the order of

ck

∫ 1

0

Π
k/2

(y)Bk/2−1(y)dB(y) =
2ck
k

∫ 1

0

Π
k/2

(y)dBk/2(y)

=
2ck
k
Jk/2 (see (2.2)).

This is finite when k ≥ 2r + 2. So

lim sup
n

N
φ(2−n)
2−n+1 ≤ 2r + 2 a.s. (4.7)

Given t > 0 choose n = n(t) so that 2−n < t ≤ 2−n+1. Then

N
φ(t)
t = #{∆Xs with 0 < s ≤ t and |∆Xs| > φ(t)}

≤ #{∆Xs with 0 < s ≤ 2−n+1 and |∆Xs| > φ(2−n)}
= N

φ(2−n)
2−n+1 ,

giving

lim sup
t↓0

N
φ(t)
t ≤ 2r + 2 a.s. (4.8)

Recall that Xh
t is the compensated sum of jumps less than or equal to h in modulus,

so when 0 < φ < h,

Xh
t −X

φ
t = lim

ε↓0

 ∑
0<s≤t

∆Xs1{ε<|∆Xs|≤h} − t
∫
ε<|x|≤h

xΠ(dx)


− lim
ε↓0

 ∑
0<s≤t

∆Xs1{ε<|∆Xs|≤φ} − t
∫
ε<|x|≤φ

xΠ(dx)
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=
∑

0<s≤t

∆Xs1{φ<|∆Xs|≤h} − t
∫
φ<|x|≤h

xΠ(dx) (4.9)

in which we set φ = φ(t) and h = δb(t), δ > 0. From (4.5) and (4.9)

|(r)X̃t − tν(δb(t))−Xφ(t)
t | ≤ |Xδb(t)

t −Xφ(t)
t |+O(δb(t)) a.s.

≤ δb(t)N
φ(t)
t + t|

∫
φ(t)<|x|≤δb(t)

xΠ(dx)|+O(δb(t)) a.s.

≤ O(δb(t)) + δtb(t)Π(φ(t)) (a.s., by (4.8))

= O(δb(t)) (a.s., using (4.3)). (4.10)

Since δ may be arbitrarily small it remains only to show X
φ(t)
t = o(b(t)) a.s.

Given t > 0 choose n = n(t) so that 2−n < t ≤ 2−n+1. Write

|Xφ(t)
t −Xφ(2−n)

t | =
∣∣ ∑

0<s≤t

∆Xs1{φ(2−n)<|∆Xs|≤φ(t)} − t
∫
φ(2−n)<|x|≤φ(t)

xΠ(dx)
∣∣

≤ φ(t)N
φ(2−n)
2−n+1 + 2−n+1φ(t)Π(φ(2−n))

= O(φ(t)) (by (4.7) and (4.3))

= o(b(t)), a.s. (by (4.2)). (4.11)

So we need only deal with Xφ(2−n)
t when 2−n < t ≤ 2−n+1.

We need some more calculations. Note that 0 < x ≤ y implies B(x) ≤ B(y) implies

b(B(x))

(B(x))1/α
≤ cb(B(y))

(B(y))1/α

(by (2.1)), and this implies
x

(B(x))1/α
≤ cy

(B(y))1/α

(since b(B(x)) = x). Thus
B(y)

B(x)
≤
(cy
x

)α
, 0 < x ≤ y.

Hence (recall σ2 = 0, and the definition of V (x) in (1.2))

y−2B(y)V (y) ≤ 2y−2B(y)

∫ y

0

xΠ(x)dx

≤ 2cαy−2

∫ y

0

x(y/x)αB(x)Π(x)dx

= 2cαy−2+α

∫ y

0

x1−αo(1)dx (by (3.7))

= o(1),

and so

V (y) = o

(
y2

B(y)

)
, (4.12)

or, equivalently,
xV (b(x))

b2(x)
= o(1), as x ↓ 0. (4.13)
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From (4.2), (4.13) and Chebychev’s inequality we get for η > 0 and small t

P
(
|Xφ(t)

t | > ηb(t)
)
≤ tV (φ(t))

η2b2(t)
≤ tV (b(t))

η2b2(t)
= o(1).

Thus Xφ(t)
t = oP (b(t)).

Now we need the following maximal inequality: for h > 0, x > 0, with mh
t as a median

of X(S,h)
t ,

P

(
sup

0<s≤t
|X(S,h)

s −mh
s | > 2x

)
= lim

k
P

(
max

1≤j≤dkte
|X(S,h)

j/k −mh
j/k| > 2x

)
≤ 2 lim

k
P
(
|X(S,h)
dkte/k| > x

)
= 2P

(
|X(S,h)

t | > x
)
.

Here we used the strong symmetrisation inequality (Stout (1974, p.116)) applied to the
random walk

X
(S,h)
j/k =

j∑
i=1

(
X

(S,h)
i/k −X(S,h)

(i−1)/k

)
, j = 1, 2, . . . , k = 1, 2, . . .

Since Xφ(t)
t = X

(S,φ(t))
t = oP (b(t)), we have sup0<s≤t |m

φ(t)
s | = o(b(t)). So, with t = 2−n+1,

h = φ(2−n) and x = δb(2−n), we get

P

(
sup

2−n<s≤2−n+1

|Xφ(2−n)
s | > 2δb(2−n)

)
≤ 2P

(
|Xφ(2−n)

2−n+1 | > δb(2−n)
)
,

for large n.
Using Prokhorov’s inequality (in Lemma 3.3), the last expression does not exceed

exp

(
− δb(2

−n)

2φ(2−n)
sinh−1 qn

)
, (4.14)

where

qn :=
δb(2−n)φ(2−n)

2−n+2V (φ(2−n))
.

If sinh−1 qn > 2/δ then (4.14) is bounded by

exp

(
− b(2

−n)

φ(2−n)

)
. (4.15)

Alternatively, sinh−1 qn ≤ 2/δ. Since the function x 7→ sinhx is convex, we can find
cδ > 0 so that sinh(cδx) ≤ x for 0 < x ≤ sinh(2/δ). Then 0 < sinh−1 qn ≤ 2/δ implies
sinh(cδqn) ≤ qn, so sinh−1 qn ≥ cδqn.

Now B(φ(x)) = o(x) (see (4.2)) implies, for small x,

b(B(φ(x)))

B1/α(φ(x))
≤ cb(x)

x1/α
(by (2.1)),

hence
φ(x)

b(x)
≤ cB1/α(φ(x))

x1/α
or, equivalently,

x

B(φ(x))
≤
(
cb(x)

φ(x)

)α
. (4.16)

Thus, by (4.12),

yV (φ(y))

b2(y)
= o

(
yφ2(y)

B(φ(y))b2(y)

)
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≤ o

((
b(y)

φ(y)

)α
φ2(y)

b2(y)

)
= o

(
φ(y)

b(y)

)2−α

, as y ↓ 0.

So
δb(2−n)

2φ(2−n)
sinh−1 qn ≥

cδδ
2b2(2−n)

2−n+2V (φ(2−n))
≥
(
b(2−n)

φ(2−n)

)2−α

,

for large n, and (4.14) is bounded in this case by

exp

(
−
(
b(2−n)

φ(2−n)

)2−α
)
, (4.17)

for large n. Thus (4.15) and (4.17) give

P

(
sup

0<s≤t
|Xφ(2−n)

s | > 2δb(2−n)

)
≤ 2 exp

(
−
(
b(2−n)

φ(2−n)

)min(1,2−α)
)
≤
(
φ(2−n)

b(2−n)

)k
,

for any k > 0 and all large n.
Now by (4.16)

∑
n≥1

(
φ(2−n)

b(2−n)

)k
≤ ck

∑
n≥1

Bk/α(φ(2−n))

2−nk/α

≤ kck(2k/α − 1)
∑
n≥1

∫ 2−n+1

2−n

Bk/α(φ(x))

xk/α+1
dx

= kck(2k/α − 1)

∫ 1

0

Bk/α(φ(x))

xk/α+1
dx.

In (4.6) the last integral was shown to be smaller than a constant multiple of Jk/2α. But
Jk/2α is finite when k ≥ 2α(r + 1), so by choosing k large enough we can deduce that

∑
n

P

(
sup

2−n<s≤2−n+1

|Xφ(2−n)
s | > 2δb(2−n)

)
<∞.

Hence, since δ is arbitrary,

sup
2−n<s≤2−n+1

Xφ(2−n)
s = o(b(2−n)) = o(b(t)) a.s., (4.18)

when 2−n < t ≤ 2−n+1. (2.5) now follows from (4.10), (4.11) and (4.18), after letting
t ↓ 0 then δ ↓ 0, and noting that, for 0 < δ < 1,

t|ν(b(t))− ν(b(δt))|
b(t)

=
t|
∫
b(δt)<|x|≤b(t) xΠ(dx)|

b(t)
≤ tΠ(b(δt)) = δ−1(tδ)Π(b(tδ))

→ 0, as t ↓ 0.

Conversely, assume (2.4) holds for some function a(t) ∈ IR, so that

lim sup
t↓0

|(r)X̃t − a(t)|
b(t)

< M <∞ a.s. (4.19)
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for some constant M > 0. Proposition 3.3 of Fan (2015) and (3.1) give

4P
(
|(r)X̃t − a(t)| > Mb(t)

)
≥ P

(
|∆̃X

(r+1)

t | > 4Mb(t)

)
= 1− e−tΠ(4Mb(t))

r∑
i=0

(
tΠ(4Mb(t))

)i
i!

. (4.20)

If tkΠ(4Mb(tk))→ ξ ∈ (0,∞] for a subsequence tk ↓ 0 then the RHS of (4.20) converges
to

1− e−ξ
r∑
i=0

ξi

i!
> 0,

contradicting the fact that (in view of (4.19)) the LHS of (4.20) converges to 0 as t ↓ 0.
Thus limt↓0 tΠ(4Mb(t)) = 0. Then

P

(
|∆̃X

(1)

t | > 4Mb(t)

)
= 1− e−tΠ(4Mb(t)) → 0, (4.21)

so we get

P (|Xt − a(t)| > (4r + 1)Mb(t)) ≤ P
(
|(r)X̃t − a(t)| > Mb(t)

)
+P

(
|∆̃X

(1)

t | > 4Mb(t)

)
→ 0, (4.22)

for the particular value of M . Taken any sequence tk ↓ 0 and a further subsequence
tk′ ↓ 0 so that

Xtk′ − a(tk′)

b(tk′)

D−→ Z ′,

where Z ′ is an infinitely divisible rv (by Lemma 4.1 of Maller and Mason (2008)) such
that P (|Z ′| > (4r + 1)M) = 0. As a bounded infinitely divisible rv, Z ′ is degenerate at a
constant, Z ′ = z′, say. So

Xtk′ − a(tk′)

b(tk′)

P−→ z′,

and then (by Theorem 15.14 in Kallenberg (2002)),

tk′Π(δb(tk′)) = o(1), a(tk′) = tk′ν(b(tk′)) + o(b(tk′)), tk′V (δb(tk′)) = o(b2(tk′)), (4.23)

as k′ →∞, for all δ > 0. Since this holds for all subsequences, we in fact have

tΠ(δb(t)) = o(1), a(t) = tν(b(t)) + o(b(t), and tV (δb(t)) = o(b2(t)), as t ↓ 0, (4.24)

for all δ > 0. Then from (4.19) we deduce that

lim sup
t↓0

|(r)X̃t − tν(b(t))|
b(t)

<∞ a.s. (4.25)

Using ∆ to denote a difference, we can calculate

|∆ν(b(t))| = lim
ε↓0
|ν(b(t))− ν(b(t± ε))|

= lim
ε↓0
|
∫
b(t±ε)<|x|≤b(t)

xΠ(dx)|

≤ lim sup
ε↓0

b(t+ ε)Π(b(t− ε))

= b(t)Π(b(t)−)
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(since b(·) is continuous). But tΠ(δb(t))→ 0 for all δ > 0 (by (4.24)) implies tΠ(b(t)−)→ 0,
as t ↓ 0, so t|∆ν(b(t))| = o(b(t)) as t ↓ 0. Then we get from (4.25) and the monotonicity of
b(·) that ∣∣∣∣∣∆

(
(r)X̃t − tν(b(t))

)
b(t)

∣∣∣∣∣
≤ |

(r)X̃t − tν(b(t))|
b(t)

+
limε↓0 |(r)X̃t−ε − tν(b(t− ε))|

b(t)
+
t|∆ν(b(t))|

b(t)
= O(1), a.s., as t ↓ 0.

Consequently sup0<s≤t |∆(r)X̃s| = O(b(t)) a.s. as t ↓ 0. It follows then from (3.11) that

∆̃X
(r+1)

t = O(b(t)) a.s. as t ↓ 0, and we conclude Jr+1 <∞ from Lemma 3.1.

(ii) One-sided Case. Assume Π
+

(0+) =∞. Then there are infinitely many positive jumps

a.s. in any neighbourhood of 0. Hence ∆X
(i)
t = (∆X+)

(i)
t , i = 1, 2, . . ., where (∆X+)

(i)
t is

the i–th largest among ∆X+
s for s ≤ t.

Recall the definitions of J (±)
r in (2.3) and assume at first that J (+)

r+1 <∞ and J (−)
1 <∞.

Rewrite (3.15) in the form

(r)Xt − tν(h) = X
(S,+,h)
t −

r∑
i=1

(∆X+)
(i)
t +X

(B,+,h)
t +X

(S,−,h)
t +X

(B,−,h)
t , t > 0, h > 0,

(4.26)
where

X
(S,±,h)
t = a.s. lim

ε↓0

 ∑
0<s≤t

∆Xs1{ε<±∆Xs≤h} − t
∫
ε<±x≤h

xΠ(dx)


and

X
(B,±,h)
t =

∑
0<s≤t

∆Xs1{±∆Xs>h}.

In these, we take h = b(t). Then apply Part (i) of Theorem 2.1 to the positive jump

process (so, replace (r)X̃t by (r)Xt). Since J (+)
r+1 <∞, we can infer from (2.5) that

X
(S,+,b(t))
t −

r∑
i=1

(∆X+
t )(i) +X

(B,+,b(t))
t = o(b(t)) a.s.,

and since J (−)
1 < ∞, we similarly have X(S,−,b(t))

t + X
(B,−,b(t))
t = o(b(t)) a.s. (Note that

the corresponding centering terms which would be denoted by ν(±)(·) are zero in these
applications.) Substituting in (4.26), we get (2.5) with (r)X̃t replaced by (r)Xt.

Conversely assume (2.4) holds with (r)X̃t replaced by (r)Xt. Proposition 3.3 of Fan
(2015) (one-sided version) and the one-sided version of the lower bound in (3.2) give, for
some M > 0,

4P
(
|(r)Xt − a(t)| > Mb(t)

)
≥ P

(
∆X

(r+1)
t > 4Mb(t)

)
= 1− e−tΠ

+
(4Mb(t))

r∑
i=0

(
tΠ

+
(4Mb(t))

)i
i!

.

Following the same argument as in (4.21), we get

P
(

∆X
(1)
t > Mb(t)

)
= 1− e−tΠ

+
(Mb(t)) → 0, as t ↓ 0,
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and consequently P
(
|(r)X̃t − a(t)| > (4r + 1)Mb(t)

)
→ 0, just as in (4.22). From this we

deduce a one-sided version of (4.25), namely,

lim sup
t↓0

|(r)Xt − tν(b(t))|
b(t)

<∞ a.s.

We again have t|∆ν(b(t))| = o(b(t)) as t ↓ 0, and, by (3.12),

∆X
(r+1)
t = sup

0<s≤t
∆(r)Xs and (∆X−)

(1)
t ≤ sup

0<s≤t
|∆(r)Xs|, t > 0.

So we can conclude ∆X
(r+1)
t = O(b(t)) a.s. and (∆X−)

(1)
t = O(b(t)) a.s. Then by applying

Lemma 3.1 to the positive and negative jumps separately we get J (+)
r+1 <∞ and J (−)

1 <∞.
2

5 Relative Stability

Xt is said to be relatively stable in probability as t ↓ 0 if there is a non-stochastic
function b(t) > 0 such that Xt/b(t) tends in probability to a nonzero constant, which by
rescaling we can take to be ±1; thus, if for some b(t) > 0 we have

Xt

b(t)

P−→ ±1, as t ↓ 0. (5.1)

If either of these holds, b(t) may be chosen to be continuous, strictly increasing on (0,∞),

and regularly varying with index 1 as t ↓ 0. Further, (5.1) is equivalent to |Xt|/b(t)
P−→ 1,

as t ↓ 0; thus, X does not change sign near 0 with probability approaching 1, when |Xt| is
relatively stable in probability at 0. These properties and various other equivalences for
(5.1) are in Doney and Maller (2002a) and Griffin and Maller (2013). Among them, we
note two in particular to be used in the present paper. For the first, assume Π(0+) =∞,
and define the function

A(x) = γ + Π
+

(1)−Π
−

(1)−
∫ 1

x

(Π
+

(y)−Π
−

(y))dy, x > 0.

Then (5.1) implies that A(x) is of constant sign near 0, i.e., A(x) > 0 for all small x or
A(x) < 0 for all small x, the sign corresponding to that in (5.1), and4

lim
x↓0

±A(x)

xΠ(x)
=∞. (5.2)

Conversely, (5.2) implies (5.1), where b(t) can be taken to satisfy b(t) = t|A(b(t))| for all
small t, in the sense that it is asymptotically equivalent to a function satisfying this, for
small t. The function t 7→ t−βb(t), where 0 < β < 1 and t > 0, is regularly varying with
index 1− β as t ↓ 0, hence is asymptotically equivalent to a monotone function (Bingham,
Goldie and Teugels (1987, p.23)). Thus b(·) can be taken to satisfy (2.1) with α = 1/β > 1.

For the second property: X is relatively stable in probability at 0 iff there is a
nonstochastic function b∗(t) > 0 such that every sequence tk → 0 contains a subsequence
tk′ → 0 with

Xtk′

b∗(tk′)

P−→ c′, (5.3)

where c′ is a constant with 0 < |c′| <∞ which may depend on the choice of subsequence
(Griffin and Maller (2013)).

4When (5.2) holds, A(x) ∼ ν(x) (see (1.2)) as x ↓ 0, so A(x) can be replaced by ν(x) in (5.2), but there is
some advantage to working with the continuous function A(x).
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In this section we extend the idea of relative stability to describe the convergences
(r)X̃t/b(t) → ±1 or (r)Xt/b(t) → ±1, where the convergence may be in probability or
almost sure, as t ↓ 0. Since we also consider the modulus convergences, |(r)X̃t|/b(t)→ 1

or |(r)Xt|/b(t)→ 1, we split the almost sure results into two theorems, Theorem 5.1 and
Theorem 5.3. Relative stability in probability is characterised in Proposition 5.2.

Theorem 5.1. Assume σ2 = 0 and Π(0+) =∞ and fix r = 0, 1, 2, . . .. Then
(a) (r)X̃t is a.s. relatively stable as t ↓ 0, i.e., there is a function b(t) > 0 on (0,∞) such
that

(r)X̃t

b(t)
→ ±1 a.s., (5.4)

iff ±A(x) > 0 for all small x, 0 < x ≤ x0, say, and∫ x0

0

(
xΠ(x)

±A(x)

)r+1
dx

x
<∞ (5.5)

(where the + and − signs are to be taken together);
(b) there is a function b(t) > 0 on (0,∞) such that

|(r)X̃t|
b(t)

→ 1 a.s. (5.6)

iff |A(x)| > 0 for all small x, 0 < x ≤ x0, say, and∫ x0

0

(
xΠ(x)

|A(x)|

)r+1
dx

x
<∞. (5.7)

The sign in (5.6) is determined by the sign of A(x) for small x, which is constant.
(c) The conditions in (5.4) and (5.6) are equivalent, as are (5.5) and (5.7). When r = 0

they hold iff X ∈ bv with drift dX 6= 0, in which case limt↓0Xt/(t|dX |) = 1 a.s.

Remark: The case r = 0 in Part (c) of Theorem 5.1 is proved in Doney and Maller (2002a,
Thm. 4.2), so the cases r = 1, 2, . . . constitute a generalisation of this. Similarly for
Theorem 5.3 below.

Before beginning the proof of Theorem 5.1, we prove the following proposition
characterising relative stability in probability of the trimmed processes.

Proposition 5.2. Suppose Π(0+) =∞. Then for r = 1, 2, . . .,
(a) (i) There is a function b(t) > 0 on (0,∞) such that

|(r)X̃t|
b(t)

P−→ 1 iff
|Xt|
b(t)

P−→ 1 as t ↓ 0. (5.8)

(ii) There is a function b(t) > 0 on (0,∞) such that

(r)X̃t

b(t)

P−→ ±1 iff
Xt

b(t)

P−→ ±1 as t ↓ 0. (5.9)

All conditions in (5.8) and (5.9) are equivalent, and equivalent to (5.2) with the appro-
priate correspondences in signs.

(b) Assuming Π
+

(0+) = ∞, the results remain true if (r)X̃t is replaced by (r)Xt

throughout.

Proof of Proposition 5.2: (a) Suppose Π(0+) = ∞. (i) Assume the first condition in
(5.8). Then

lim
t↓0

P
(
|(r)X̃t| > 2b(t)

)
= 0.
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The inequality in (4.20) with a(t) = 0 then gives

lim
t↓0

P

(
|∆̃X

(r+1)

t | > 8b(t)

)
= 0.

The same argument as in (4.21) and (4.22) with a(t) = 0 gives

lim
t↓0

P (|Xt| > (8r + 2)b(t)) = 0.

Taken any sequence tk ↓ 0 and a further subsequence tk′ ↓ 0 so that

Xtk′

b(tk′)

D−→ Z ′,

where Z ′ is a bounded infinitely divisible rv, |Z ′| ≤ 8r + 2 a.s. Thus Z ′ is degenerate
at a constant, Z ′ = z′, say. If z′ = 0 then tk′Π(δb(tk′)) → 0 for every δ > 0 by (4.23), so

∆̃X
(1)

tk′
/b(tk′)

P−→ 0 and consequently (r)X̃tk′/b(tk′)
P−→ 0, which is not possible. Thus

z′ 6= 0 and so every sequence tk contains a subsequence tk′ ↓ 0 for which Xtk′/b(tk′)

converges in probability to a nonzero constant. This is (5.3), and implies relative stability
of X which in turn implies the second condition in (5.8). Conversely the second condition
in (5.8) is equivalent to the relative stability of X, and it implies tΠ(δb(t))→ 0 for every

δ > 0, by (4.24), hence ∆̃X
(1)

t /b(t)
P−→ 0, and hence the first condition in (5.8).

(ii) The first condition in (5.9) implies the first condition in (5.8), hence the relative
stability of X, that is, the second condition in (5.9). The converse result follows as in
Part (i).

The second conditions in (5.8) and (5.9) are equivalent, as mentioned after (5.1).
(b) The proofs with (r)X̃t replaced by (r)Xt are similar; we use instead of the inequality

in (4.20) the one-sided version

4P
(
|(r)Xt − a(t)| > Mb(t)

)
≥ P

(
∆X

(r+1)
t > 4Mb(t)

)
, t > 0,

which is also proved in Fan (2015). 2

Proof of Theorem 5.1 Assume σ2 = 0 and Π(0+) =∞.
(a) Suppose (5.4) holds (with a “ + ” sign, as we shall assume henceforth). Then the

conditions in (5.9) hold with a “ + ” sign, as well as

(r)X̃t − b(t)
b(t)

→ 0 a.s., as t ↓ 0. (5.10)

The (positive) relative stability (in probability) of Xt implies A(x) > 0 for all small x and
we can take b(t) to be continuous, strictly increasing, regularly varying with index 1 as
t ↓ 0, such that b(t) = tA(b(t)), and such that b(t) satisfies (2.1). From Theorem 2.1 and
(5.10) we then deduce that Jr+1 <∞, in which the inverse function B(x) of b(t) in (2.2)
equals x/A(x). Note that

dB(x)

dx
=

d

dx

(
x

A(x)

)
=

A(x)− x(Π
+

(x)−Π
−

(x))

A2(x)

∼ 1

A(x)
, as x ↓ 0 (by (5.2)). (5.11)

Then, via (2.2), the convergence of Jr+1 implies (5.5) with a “ + ” sign.
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Conversely, assume A(x) > 0 for all small x and (5.5) holds (in which we take x0 = 1,
and the “ + ” sign). First we want to show that these imply positive relative stability in
probability of Xt. Proceed as follows. Use the mean value theorem for integrals and the
continuity of A(x) to write∫ 1

0

(
xΠ(x)

A(x)

)r+1
dx

x
=

∑
n≥1

∫ 1
n

1
n+1

(
Π(x)

A(x)

)r+1

xrdx

=
∑
n≥1

1

Ar+1(ξn)

∫ 1
n

1
n+1

Π
r+1

(x)xrdx

≥
∑
n≥1

(
Π(1/n)

A(ξn)

)r+1
1

(n+ 1)r

(
1

n
− 1

n+ 1

)
(5.12)

where 1
n+1 ≤ ξn ≤

1
n . Now

1

(n+ 1)r

(
1

n
− 1

n+ 1

)
∼ 1

nr+2
∼ ξr+1

n

n
, as n→∞,

so we conclude that ∑
n≥1

1

n

(
ξnΠ(1/n)

A(ξn)

)r+1

<∞.

From the convergence of this series we can infer the existence of a sequence ni ↑ ∞
with ni+1 ∼ ni such that

lim
i→∞

ξniΠ(1/ni)

A(ξni)
= 0

(e.g. Loève (1977, p.277)) and
ξni+1

ξni
∼ ni
ni+1

→ 1.

Given x > 0 choose i so that 1
ni+1

≤ x ≤ 1
ni

. Note also that 1
ni+1

≤ ξni ≤ 1
ni

. Thus

1

ni+1
≤ min(x, ξni) ≤ max(x, ξni) ≤

1

ni
.

Then

A(x)

A(ξni+1)
= 1 +

∫ x
ξni+1

(Π
+

(y)−Π
−

(y))dy

A(ξni+1)

= 1 +
O
(
max(x, ξni+1

)Π(min(x, ξni+1
))
)

A(ξni+1
)

= 1 +
O
(
ξni+1

Π(1/ni+1)
)

A(ξni+1)
= 1 + o(1),

and
xΠ(x)

A(x)
≤

(
ξni+1

Π(1/ni+1)

A(ξni+1
)

)(
1

niξni+1

)(
A(ξni+1

)

A(x)

)
→ 0. (5.13)

This implies (5.2) with a “ + ” sign, and proves positive relative stability in probability of
Xt.

The relative stability allows us to define a norming function b(t) > 0 such that

Xt/b(t)
P−→ 1, with b(t) having the regularity properties listed in the first part of the proof.
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From the convergence in (5.5) we then deduce that of Jr+1 in (2.2) with B(x) = x/A(x)

as the inverse function to b(t), satisfying (5.11). We then get (5.4) from (2.5), on noting
that a(t) = tν(b(t)) + o(b(t)) (by (4.24)) implies a(t) = tA(b(t)) + o(b(t)), hence a(t) ∼ b(t)
as t ↓ 0.

(b) Suppose (5.6) holds. Then |(r)X̃t|/b(t)
P−→ 1, so by Proposition 5.2 we have the

(positive, say) relative stability of X. Thus A(x) > 0 for all small x and b(t) ∼ b∗(t)

where b∗(t) is continuous, strictly increasing, regularly varying with index 1 as t ↓ 0,
and satisfies b∗(t) = tA(b∗(t)). It follows that |(r)X̃t|/b∗(t)→ 1 a.s. and hence by (3.11),

lim supt↓0 |∆̃X
(r+1)

t |/b∗(t) ≤ 2 a.s. Since b∗(t) satisfies (2.1), Lemma 3.1 then gives
Jr+1 <∞, where in (5.5), the inverse function B(x) of b∗(·) equals x/A(x). This implies
(5.7), in which |A(x)| = A(x). An analogous proof with A(x) < 0 for small x works if X is
negatively relatively stable.

Conversely if |A(x)| > 0 for all small x then by continuity A(x) > 0 for all small x or
A(x) < 0 for all small x, and this together with (5.7) implies (5.5), hence, (5.6).

(c) That the conditions in (5.4)–(5.7) are all equivalent is shown in the course of
proving Parts (a) and (b) above. When r = 0, convergcence of the integral in (5.7) is
shown in Doney and Maller (2002a, Thm. 4.2) to be equivalent to X ∈ bv with drift
dX 6= 0, and then limt↓0Xt/t = dX = 1 a.s. 2

Theorem 5.3. Assume σ2 = 0 and Π
+

(0+) =∞ and fix r = 0, 1, 2, . . .. Then
(a) (r)Xt is a.s. relatively stable as t ↓ 0, i.e., there is a function b(t) > 0 on (0,∞) such
that

(r)Xt

b(t)
→ ±1 a.s., (5.14)

iff ±A(x) > 0 for all small x, 0 < x ≤ x0, say, and∫ x0

0

(
xΠ

+
(x)

±A(x)

)r+1
dx

x
<∞ and

∫ x0

0

(
xΠ
−

(x)

±A(x)

)
dx

x
<∞ (5.15)

(where the + and − signs are to be taken together);
(b) conditions (5.14) and (5.15) remain equivalent if (r)Xt, ±1 and ±A(x) are replaced
by |(r)Xt|, 1 and |A(x)|.

Proof of Theorem 5.3 (a) Assume σ2 = 0 and Π
+

(0+) =∞. Suppose (5.14) holds with
a “ + ” sign. Then by Part (b) of Proposition 5.2, X is relatively stable with norming
function b(t) which we can take as having the regularity properties listed earlier, and
with inverse function B(x) equal to x/A(x) and satisfying (5.11). Also

(r)Xt − b(t)
b(t)

→ 0 a.s., as t ↓ 0,

hence by Part (ii) of Theorem 2.1

J
(+)
r+1 =

∫ 1

0

(
Π

+
(x)
)r+1

dBr+1(x) <∞ and J
(−)
1 =

∫ 1

0

Π
−

(x)dB(x) <∞. (5.16)

Substituting B(x) = x/A(x) and using (5.11) gives (5.15) with “ + ” signs in both places.
Similarly, with “− ” signs in place of “ + ”, throughout.

Conversely, assume (5.15) with “ + ” signs. The same argument as in (5.12)–(5.13)

with Π
+

or Π
−

replacing Π shows that

lim
x↓0

A(x)

xΠ
+

(x)
=∞ and lim

x↓0

A(x)

xΠ
−

(x)
=∞,
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hence (5.2) holds with a “ + ” sign. This is relative stability again, so we can define
b(t) and its inverse function B(x) as before to obtain (5.16), and thus (2.5) with (r)Xt

replacing (r)X̃t. Since tν(b(t)) ∼ tA(b(t)) ∼ b(t) we get (5.14) (with a “ + ” sign). 2
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