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Parity measurement of remote qubits using dispersive coupling and photodetection
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Parity measurement is a key step in many entanglement generation and quantum error correction schemes. We
propose a protocol for nondestructive parity measurement of two remote qubits, i.e., macroscopically separated
qubits with no direct interaction. The qubits are instead dispersively coupled to separate resonators that radiate to
shared photodetectors. The scheme is deterministic in the sense that there is no fundamental upper bound on the
success probability. In contrast to previous proposals, our protocol addresses the scenario where number-resolving
photodetectors are available but the qubit-resonator coupling is time independent and only dispersive.
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I. INTRODUCTION

One of the main challenges in quantum computing is
that generally controlled qubit-qubit interactions should be
strong while uncontrolled interactions should be negligible.
Conceptually, the most straightforward approach to solving
this issue is to physically remove uncontrolled degrees of
freedom within a distance comparable to the qubit spacing,
e.g., by trapping ions in ultrahigh vacuum [1]. An alternative
approach is to entangle the qubits with photons that act as flying
ancilla qubits. This approach allows placing the stationary
qubits in remote locations because the photonic ancilla qubits
generally interact weakly with the environment. In order to
entangle the stationary qubits, the ancilla qubits only need to
interfere optically with each other at detector inputs [2,3]. Post-
selection or local qubit operations conditioned on the detector
outputs can then entangle the stationary qubits [2–13]. Such
entanglement generation is at the heart of quantum repeaters
and cluster-state models of quantum computing [14,15].

More generally, the photon-mediated approach allows
one to perform a remote nondestructive parity measurement
(RNPM) [11] described by the measurement operators �̂1 =
|gg〉〈gg| + |ee〉〈ee| and �̂−1 = |ge〉〈ge| + |eg〉〈eg| for the
even- and odd-parity outcomes, respectively. Here, |g〉 and |e〉
are orthogonal single-qubit states that define the computational
basis. Parity measurement is more general than entanglement
generation in the sense that RNPM can generate entanglement
without ancilla qubits, but protocols for preparing entangled
states do not necessarily allow measuring parity without the
use of ancilla qubits. Specifically, Bell pairs are generated
from an initial product state (|g〉 + |e〉) ⊗ (|g〉 + |e〉)/2 by
measuring its parity, which provides just the right amount of
information to produce maximally entangled pairs. However,
we envision that the most useful application for ancilla-free
RNPM may be in quantum error correction, where multiqubit
parity measurements are central to a wide variety of stabilizer
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codes [16]. Remote parity measurement in particular may
prove useful in circumventing limitations that are inherent
to codes that only use geometrically local parity checks [17].

We note that the main challenge in nondestructive parity
measurement is that the protocol must preserve coherence
of arbitrary superpositions within the parity subspaces. In
contrast, entanglement generation protocols drive the system
into a known state and may assume a fixed initial state. In this
sense, RNPM is similarly challenging as applying a CPHASE

gate to remote qubits [7], although the two operations are not
interchangeable without ancilla qubits.

We propose a protocol for RNPM that can be implemented
in circuit quantum electrodynamics (cQED) [18–21] using
standard and minimalistic resources, with the exception of
number-resolving photodetectors with high temporal resolu-
tion. Such detectors for itinerant microwave photons have
not been realized to date, but are under active theoretical
and experimental development [22–31]. In addition to the
detectors, the requirements for our protocol are the following:
a beam splitter, two qubit-resonator systems with dispersive
coupling, coherent drive pulses applied to the resonators, and
single-qubit phase gates conditioned on the recorded arrival
times of the photons.

We emphasize that our protocol places few restrictions on
the systems used as qubits. Specifically, we do not require
�-type internal level structure to entangle the qubit state and a
Fock state of the resonator, which is the typical starting point of
most proposals for optical experiments [2–7,9,12,13]. Instead,
our proposal works with a time-independent dispersive shift
χ and resonator decay rate κ , both of which are standard
features of cQED setups. The time-independent and dispersive
qubit-resonator coupling gradually entangles the qubit state
with coherent states of the resonator and continues to play an
important role throughout the protocol. This is in contrast to
the generation of single photons on demand in Ref. [7], where
the qubit state is entangled with Fock states quickly compared
to other time scales. However, if on-off modulation of χ is
possible, we can use it to speed up the parity measurement by
turning off the interaction at a specific time toff that maximizes
the qubit-resonator entanglement. If the strong dispersive limit
[32] χ � κ is also reached, the interaction becomes effectively
instantaneous compared to other time scales (toff � κ−1). In
this particular scenario, the protocol after toff reproduces a spe-
cific case of the protocol proposed by Azuma et al. in Ref. [11].
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Kerckhoff et al. proposed another parity-measurement
protocol that relies on homodyne detection and sequential
reflection of a probe signal from two resonators coupled to
three-level atoms [33]. Roch et al. experimentally demon-
strated the generation of odd-parity Bell states in cQED using
a similar sequential setup, but with dispersive qubit-resonator
coupling and three distinct outcomes [34]. The disadvantage
of the latter scheme is that it distinguishes the even-parity
states from each other and therefore reveals too much to
function as RNPM. Our protocol, on the other hand, measures
both parities nondestructively in a nonsequential setup. This is
possible because the photodetectors effectively erase the phase
information that would allow distinguishing qubit states of the
same parity. Instead, the photodetectors reveal the stochastic
relative phase acquired by the states, which is the fundamental
backaction of dispersive measurements [35–37]. Conditioning
phase gates on the photodetector outputs therefore allows one
to undo the measurement-induced dephasing within the parity
subspaces, much like in the extensively studied case of a joint
measurement of two qubits in a single resonator [38–40].

The remainder of this article is organized as follows.
Section II reviews measurement-induced dephasing and dis-
cusses its reversal in a single-qubit scenario. Section III
introduces the RNPM protocol and demonstrates its validity
under ideal conditions. It also suggests an alternative variation
of the protocol for the strong dispersive limit and briefly
discusses some practical hurdles to implementing the protocol.
Section IV concludes the article.

II. REVERSING MEASUREMENT-INDUCED
DEPHASING OF A SINGLE QUBIT

Measurement-induced dephasing and the possibility of
reversing it have been extensively discussed in the context
of dispersive qubit measurement using quadrature detectors
[35–43]. The principle of reversing the dephasing using a
photodetector has also been described by Frisk Kockum et al.
in Ref. [42]. Nevertheless, we begin by reviewing these
concepts in a single-qubit scenario because it maps one to one
to the even-parity subspace of the two-qubit scenario discussed
in Sec. III.

We consider the qubit-resonator system illustrated in
Fig. 1. We assume that the coupling is dispersive so that the
closed-system Hamiltonian in the Schrödinger picture is well
approximated by

Ĥq-r = �(ωr + χσ̂z)â
†â + �ω̃a

2
σ̂z

+ �[ε(t)e−iωrt â† + ε∗(t)eiωrt â],

as given in Ref. [36]. Here, σ̂z = |e〉〈e| − |g〉〈g|, â is the
annihilation operator for photons in the resonator, ωr/2π is
the resonator frequency, ω̃a/2π is the Lamb-shifted qubit
frequency, χ/π is the dispersive frequency shift of the qubit per
photon, and ε(t) describes the amplitude of a classical drive
of the resonator through a weakly coupled port. However,
we work in an interaction picture where we transform the
basis states by exp[i(ωrâ

†â + ω̃aσ̂z/2)t] and correspondingly

κ−1Td
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χâ†âσ̂z
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FIG. 1. (Color online) (a) Schematic diagram of a qubit disper-
sively coupled to a resonator that radiates into a photodetector. At
t = 0, a short (Td � κ−1,χ−1) external pulse drives the resonator
mode (â) from vacuum to a coherent state |α〉. The resonator then
evolves into a superposition of two coherent states at a rate χ due to
a dispersive interaction that entangles the qubit (σ̂z) and the phase of
the coherent state. At a rate κ , the resonator decays through a single
port to an output mode monitored by a photodetector that encodes
the arrival time ti of each photon in its output record N (t). (b) The
same setup depicted using cQED components. The optical cavity with
asymmetric mirrors is replaced by a microwave transmission-line
resonator with asymmetric coupling capacitors. The free-space links
are replaced by transmission lines. The circulator ensures that the
photodetector causes no direct backaction on the system, even if the
detector is not ideal.

redefine

Ĥq-r = �χσ̂zâ
†â + �[ε(t)â† + ε∗(t)â]. (1)

We consider a drive that displaces the resonator from vacuum
|0〉 into a coherent state |α〉 = D̂(α)|0〉 at t = 0, but is
otherwise off. This is approximately the case for a short
but strong Gaussian pulse ε(t) = iαe−t2/2T 2

d /
√

2πT 2
d , where

κ,χ � T −1
d � ωr. We note that the average photon number

|α|2 in the initial state is typically limited by assumptions
underlying the dispersive coupling approximation [36].

We assume that the dominant interaction between the
qubit-resonator system and its environment is a weak linear
coupling between the resonator and a transmission line
with a photodetector at the other end. We assume that the
photodetector emits negligible noise power to its input and
that it is impedance matched, i.e., the detector is operated in
the scattering mode [44]. Given the rotating-wave, secular, and
Born-Markov approximations, the corresponding stochastic
master equation for the reduced density operator ρ̂I (t) of
the qubit-resonator system conditioned on the photodetector
output is

dρ̂I = dN(t)G[
√

ηκâ]ρ̂I − dtH
[

i

�
Ĥq-r + ηκ

2
â†â

]
ρ̂I

+ dtD[
√

(1 − η)κâ]ρ̂I , (2)

as given in Ref. [45]. Here, η is the efficiency of the
photodetector, dN(t) ∈ {0,1} encodes the photon arrival times
T = {ti |dN(ti) = 1}, and 〈dN(t)〉 = dt tr[ηκâ†âρ̂I ] gives the
detection probability. The superoperatorH[ĉ]ρ̂ = ĉρ̂ + ρ̂ĉ† −
tr[ĉρ̂ + ρ̂ĉ†]ρ̂ describes the continuous evolution between
detection events, G[ĉ]ρ̂ = ĉρ̂ĉ†/tr[ĉρ̂ĉ†] − ρ̂ accounts for the
discrete jumps at T , and D[ĉ]ρ̂ = ĉρ̂ĉ† − 1

2 (ĉ†ĉρ̂ + ρ̂ĉ†ĉ)
includes the effects of unmonitored decay. The subscript I
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emphasizes that the solutions, called trajectories, depend on
the stochastic photodetector output. In general, Eq. (2) should
include terms corresponding to other imperfectly monitored
decay channels, such as D[

√
γ σ̂−]ρ̂I describing spontaneous

relaxation of the qubit, but we assume that κ is sufficiently
large to neglect them.

A. Unmonitored system: Measurement-induced dephasing

In the limit η → 0, Eq. (2) reduces to the deterministic
master equation

∂t ρ̂ = − i

�
[Ĥq-r,ρ̂] + D[

√
κâ]ρ̂, (3)

where we have dropped the subscript I since the evolution is
independent of the photodetector output. Furthermore, in the
scattering mode, the detector type is irrelevant for determining
ρ̂, and hence Eq. (3) is the same as for quadrature detection
[36,45].

Gambetta et al. solved Eq. (3) for a general drive ε(t) [36].
For the specific parameters in our work, the solution can be
expressed in closed form. For t > 0, it is a superposition of
two coherent resonator states entangled with the qubit state,

ρ̂(t) =
∑

i,j∈{e,g}
cij (t)|i〉〈j | ⊗ |αi(t)〉〈αj (t)|, (4)

where αg = αe(iχ−κ/2)t (αe = αe(−iχ−κ/2)t ) describes the ex-
ponentially decaying coherent resonator state given that the
qubit is in |g〉 (|e〉) [see Fig. 2(a)]. The diagonal elements cgg

and cee remain at their initial values since there are no terms in
Eq. (3) that flip |g〉 and |e〉. The off-diagonal elements decay
according to ceg(t) = aeg(t)/〈αg(t)|αe(t)〉 and ceg(t) = c∗

ge(t),
where 〈αg(t)|αe(t)〉 = exp[−|α|2e−κt (1 − e2iχt )],

aeg(t) = ceg(0)exp

[
−2iχ

∫ t

0
αe(t ′)α∗

g(t ′)dt ′
]

= ceg(0)exp

[
−|α|2 1 − e(2iχ−κ)t

1 − iκ/2χ

]
, (5)

and ceg(0) is the initial value of the off-diagonal element.
Here, |ceg(t)| quantifies the phase coherence remaining

in the qubit-resonator system as a whole, while 2aeg(t) =
〈σ̂x(t)〉 − i〈σ̂y(t)〉 describes the lateral components of the qubit
Bloch vector after tracing out the resonator [see Fig. 2(b)].
For t � κ−1, the two are equivalent because the resonator
state approaches vacuum exponentially, irrespective of the
qubit state. Furthermore, in the long-time limit, ceg(t)/ceg(0) ≈
exp[−|α|2/(1 − iκ/2χ )], so the net effect of the process on the
qubit consists of a coherent rotation by an angle

φuncond = −|α|2/(2χ/κ + κ/2χ ), (6)

together with a reduction of coherence by a factor of
exp[−|α|2/(1 + κ2/4χ2)]. The latter is called measurement-
induced dephasing because it is directly related to the ability to
determine the qubit state by monitoring the radiation leaking
out of the system [36,37].
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FIG. 2. (Color online) Example trajectory (solid lines) and av-
erage evolution (dashed lines) of the qubit-resonator system (see
Fig. 1) for χ = κ , α = 1, and the qubit initially in (|g〉 + |e〉)/√2.
(a) Expectation values that are independent of the photon arrival times
T = {ti}: square root of the photon number â†â, the initially excited
quadrature (â† + â)/2, and product of the conjugate quadrature
i(â† − â)/2 and the qubit operator −σ̂z. Individually, 〈â† − â〉 =
〈σ̂z〉 = 0 for all t (not shown). (b) Expectation values of σ̂x and
σ̂y which show decoherence of the qubit in the computational basis.
The solid points at t = 10κ−1 show the state after applying a phase
gate R̂(φ) that reverses the measurement-induced dephasing φ(t) [see
Eq. (8)]. The curves describe numerical solutions to Eqs. (3) and (7).

B. Reversing dephasing using a photodetector

In the opposite limit of perfect photodetection (η → 1),
Eq. (2) reduces to

dρ̂I = dN(t)G[
√

κâ]ρ̂I − dtH
[

i

�
Ĥq-r + κ

2
â†â

]
ρ̂I , (7)

which does not include any unmonitored decay channels and
therefore does not change the purity of the initial state [45].
Since the purity does not change and there are no terms that
flip |g〉 and |e〉, the initial qubit state must be restored in the
long-time limit by a phase gate,

R̂(φ) = e−iφ/2|g〉〈g| + eiφ/2|e〉〈e|,
where φ is determined by solving Eq. (7) for a given dN(t).
Below, we show that this stochastic phase is independent of
the initial qubit state and can be written in closed form as

φ(t) = 2χ
∑
ti∈T

ti . (8)

Equation (8) can be intuitively understood by noting that the
photons are all injected into the resonator at t = 0, and hence
the time each detected photon interacts with the qubit is equal
to ti . The contributions add linearly so the total accumulated
dispersive phase shift between |e〉 and |g〉 is

∑
i 2χti , as

shown below for a pure initial state. Frisk Kockum et al. used
an alternative method of solving the problem by applying
a polaron transformation that allows writing a stochastic
master equation for a two-level system only [42]. Specifically,
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choosing η = 1, εmtmeas = iα, and tmeas � χ−1,κ−1 for the
parameters defined in Ref. [42] corresponds to the scenario we
consider. Note, however, that the analysis in Ref. [42] excludes
the coherent evolution due to the ac Stark shift 2χRe(αgα

�
e ).

Compared to our results, this leads to an additional phase factor
that approaches exp(−iφuncond) for t � κ−1 (see Eq. (26) in
Ref. [42]).

For a pure initial state, Eq. (7) for the density operator ρ̂I =
|ψI 〉〈ψI | is equivalent to a stochastic Schrödinger equation
for an unnormalized state |ψ ′

I (t)〉 = 〈ψ ′
I (t)|ψ ′

I (t)〉1/2|ψI 〉 [45].
For t > 0, this means solving the Schrödinger equation for
a non-Hermitian Hamiltonian �(χσ̂z − iκ/2)â†â between de-
tection events, while a detected photon is taken into account by
applying the jump operator â and renormalizing the resulting
state. A photon is detected whenever 〈ψ ′

I (t)|ψ ′
I (t)〉 reaches a

random number ri drawn uniformly and independently from
[0,1] for each detection event i.

For a normalized initial state (qg|g〉 + qe|e〉)|α〉, the unnor-
malized state before the first detection event is

|ψ ′
I (t)〉 = e−|α|2(1−e−κt )/2(qg|g〉|αe(iχ−κ/2)t 〉

+ qe|e〉|αe(−iχ−κ/2)t 〉).
If r1 > e−|α|2 , a photon is detected at t1 = −κ−1 ln[1 +
|α|−2 ln (r1)] and the normalized state after applying â be-
comes

qge
iχt1 |g〉|αe(iχ−κ/2)t 〉 + qee

−iχt1 |e〉|αe(−iχ−κ/2)t 〉.
Similarly, each subsequent detection event results in factors of
e±iχti , leading to the normalized state

|ψI (t)〉 = qg exp

[
iχ

∑
ti<t

ti

]
|g〉|αe(iχ−κ/2)t 〉

+ qe exp

[
−iχ

∑
ti<t

ti

]
|e〉|αe(−iχ−κ/2)t 〉,

where ti ∈ T and no more jumps occur when ri <

exp(−|α|2e−κti−1 ), with t0 = 0. See Fig. 2(b) for an example
with one detection event.

Evidently applying R̂[φ(T |ti < t)] to |ψI (t)〉 undoes the
relative phase between the |g〉 and |e〉 terms above. In the long-
time limit t � κ−1 log |α|, the overlap |〈ψI (0)|R̂(φ)|ψI (t)〉|
furthermore approaches unity and additional detection events
become exponentially unlikely as the resonator returns to |0〉.
Therefore, we conclude that the combination of photodetection
and R̂(φ) effectively erases all of the information that leaked
out of the qubit during the process. In the parity-measurement
protocol, the same principle is used to erase only the part of
the information that would allow distinguishing between |gg〉
and |ee〉 if a different scattering-mode detection scheme were
used.

Note that the resonator and the qubit periodically return
to a product state, i.e., αg(t̃k) = αe(t̃k) = (−1)ke−κt̃k/2 for
all t̃k ∈ {kπχ−1|k ∈ Z+} [see Fig. 2(a)]. At these times,
the dynamics can be stopped by a second displacement
D̂[−αg(t̃k)] that brings the resonator to |0〉 deterministically,
thereby decoupling the duration of the measurement from κ−1

in the χ � κ regime. We take advantage of this possibility in
the parity-measurement protocol proposed in the next section.

â1

χâ†
1â1σ̂z,1

σ̂z,1

κ−1
â2

σ̂z,2

N−

t
t1,−

N+

t
t1,+t2,+

ĉ± ∼ (â1 ± â2)

tf(a)

(b)
N−

N+

â1

σ̂z,1

â2

σ̂z,2

FIG. 3. (Color online) (a) Schematic setup for measuring the
parity σ̂z,1σ̂z,2 of two qubits located in identical resonators (see also
Fig. 1). The resonators are driven into a coherent state |α〉 at t = 0,
after which their phase becomes entangled with the local qubit at a rate
χ . At a rate κ , the resonators radiate into a 50:50 beam splitter with
photodetectors monitoring the output modes. The relative phases are
chosen such that the detectors monitor ĉ± = (â1 ± â2)/

√
2. At a final

time tf (integer multiple of πχ−1), the resonators are displaced back
to vacuum. Recording more than zero photons for ĉ− [N−(tf) > 0 ]
indicates odd parity with certainty, while N−(tf) = 0 partially projects
the qubits to the even-parity subspace. The final N−(tf) is sufficient
for reversing measurement-induced dephasing within the odd-parity
subspace, but the full time-resolved N+(t) is needed in the even-parity
case. (b) The same setup depicted using cQED components. The beam
splitter is replaced by a 180◦ hybrid coupler.

III. REMOTE PARITY MEASUREMENT

Figure 3 shows the setup we propose for measuring the
parity σ̂z,1σ̂z,2 of two remote qubits. It consists of two identical
instances of the dispersively coupled qubit-resonator system
described in the previous section. The two resonator modes â1

and â2 are driven to an identical coherent state |α〉 at t = 0, but
the radiation leaking out of them is not measured individually.
Rather, a 50:50 beam splitter is arranged such that two identical
photodetectors monitor the sum and difference modes with
lowering operators ĉ± = (â1 ± â2)/

√
2. The stochastic master

equation for this system is

dρ̂I = dN+(t)G[
√

ηκĉ+]ρ̂I + dN−(t)G[
√

ηκĉ−]ρ̂I

− dtH
[

i

�
Ĥ (2)

q-r + ηκ

2
ĉ
†
+ĉ+ + ηκ

2
ĉ
†
−ĉ−

]
ρ̂I

+ dtD[
√

(1 − η)κĉ+]ρ̂I + dtD[
√

(1 − η)κĉ−]ρ̂I ,

(9)

where η is the photodetection efficiency, N±(t) is the number
of photons registered by the detector monitoring ĉ±, and

Ĥ (2)
q-r = �χ (σ̂z,1â

†
1â1 + σ̂z,2â

†
2â2), (10)

for t > 0. We denote coherent states of the sum and difference
modes by |β〉±.

The parity measurement and the measurement-induced
dephasing in this scenario are closely connected to the case
of multiple qubits coupled to the same resonator mode
[38–40,42,46–50]. Within the even-parity subspace, the dif-
ference mode in fact remains in vacuum so, mathematically,
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the description of the system maps one to one to the single-
resonator case. However, physically the situation is distinct
because the populated resonator mode is the nonlocal sum
mode. In the odd-parity subspace, neither mode remains in
vacuum.

A. Protocol

In this section, we describe the proposed RNPM protocol
and its effect on the qubits. Section III B proves the validity
of these claims analytically for η → 1. Additionally, the
Appendix presents some numerical trajectories in nonideal
cases.

The steps of the protocol are the following:
(1) Start with the resonators in |0〉 and the qubits in an

arbitrary pure state,

|ψq(0)〉 =
∑

i,j∈{e,g}
qij |ij 〉. (11)

(2) Apply D̂(α) to both resonators at t = 0.
(3) Wait until tf = kπχ−1, where k ∈ Z+ is arbitrary.
(4) Apply D̂[−(−1)kαe−κtf/2] to both resonators.
(5) Compute the measurement-induced phases

φ+ = 2χ
∑
ti∈T+

ti , (12)

φ− = πN−(tf), (13)

and apply the local qubit feedback operations

F̂ = R̂

(
φ+
2

+ φ−
2

)
⊗ R̂

(
φ+
2

− φ−
2

)
. (14)

Assuming η → 1, the state of the qubits after these steps is

|ψq(tf)〉 = [
√

P−1�̂−1 +
√

P1�̂1]|ψq(0)〉, (15)

where P1 = 1 − P−1. The outcome of the parity measurement
is indicated by P−1 = 〈ψq(tf)|�̂−1|ψq(tf)〉 and is determined
by N−(tf) and T+ = {ti |dN+(ti) = 1} according to

P−1 =
{

1 if N−(tf) > 0

(|qge|2 + |qeg|2)
(∏

ti∈T+ cos χti
)2

otherwise.

Evidently a single ĉ− detection event leads to complete
parity projection to the odd-parity subspace (〈σ̂z,1σ̂z,1〉 =
−1), while ĉ+ detections in general lead to an exponential
suppression of the odd-parity components, as shown in Fig. 4.
Therefore, the outcome of the protocol is not, strictly speaking,
binary, but rather is continuous in the interval P−1 ∈ [0,1].
However, in the limit of many photodetection events, the pro-
tocol is well approximated by a projective parity measurement
with P−1 ∈ {0,1}, up to exponentially small corrections given
by the exact result. The expected number of detected photons
is |α|2(1 − e−κtf ) and therefore tunable. Furthermore, if P−1

is not sufficiently close to zero or one at tf, steps 2 through
4 of the protocol can be repeated arbitrarily many times at
the expense of increased operation time. In that case, a single
feedback operation F̂ applied after the last repetition should
account for all detected photons. The displacements in steps
4 and 2 of adjacent repetitions can be combined into a single
operation as well.
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2 ĉ†+ĉ+

1/2
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ĉ†+ĉ+
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FIG. 4. (Color online) Example trajectories (solid lines) and av-
erage evolution (dashed lines) for the two-qubit setup shown in
Fig. 3 with χ = κ , α = 1, tf = πχ−1, and the qubits initially in
(|g〉 + |e〉)⊗2/2. (a),(c) A trajectory that leads to projection of the
qubits into the odd-parity subspace; (b),(d) partial projection into the
even-parity subspace. (a),(b) The expected photodetection rates in
units of κ for the sum and difference modes (ĉ±), with t1,± indicating
the first and only photodetection event in the selected trajectories. Up
to tf, the local field quadratures 〈â†

j + âj 〉/2 and −iσ̂z,j 〈â†
j − âj 〉/2

are identical to those shown in Fig. 2(a), regardless of detection
events. (c),(d) Expectation values of the Bell-state stabilizers σ̂i,1σ̂i,2,
where i ∈ {x,y,z}. A projective parity measurement of the specified
initial state leads to 〈σ̂z,1σ̂z,2〉 = ±1 and conserves 〈σ̂x,1σ̂x,2〉 = 1. The
solid points at t = 4κ−1 show the state after applying a phase gate
F̂ [see Eq. (14)] that reverses the measurement-induced dephasing,
i.e., restores 〈σ̂x,1σ̂x,2〉 = 1. The curves describe numerical solutions
to Eqs. (9) and (16) with η = 1. Overlapping points have been offset
horizontally for clarity.

Finally, we claim that the outcome probabilities are dis-
tributed according to the parity of the initial state. More
specifically, the ensemble average of P−1 is E[P−1] =
〈ψq(0)|�̂−1|ψq(0)〉. This implies that the protocol is indeed
a parity measurement, rather than some other operation that
leads to a well-defined parity.

B. Full temporal evolution

Let us first give a qualitative explanation for Eqs. (12)–(15)
by rewriting the Hamiltonian in Eq. (10) in the basis of the
monitored operators as

Ĥ (2)
q-r =�χ

2
[(σ̂z,1 + σ̂z,2)(ĉ†+ĉ+ + ĉ

†
−ĉ−)

+ (σ̂z,1 − σ̂z,2)(ĉ†+ĉ− + ĉ+ĉ
†
−)].

Note that after the initial displacements, the sum and difference
modes start in |√2α〉+ and |0〉−, respectively. Furthermore,
there are no terms in Eq. (9) that flip the qubits in the
computational basis, so parity is conserved if it is initially
well defined. For an even-parity initial state, σ̂z,1 − σ̂z,2 yields
zero so there are no terms in Eq. (9) that excite the difference
mode out of |0〉− and we can therefore trace it out without
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loss of information. The remaining terms are identical to the
single-qubit case [see Eq. (7)] with the mapping |gg〉 → |g〉,
|ee〉 → |e〉, and ĉ+ → â. This explains why Eq. (12) matches
Eq. (8). On the other hand, for an odd-parity initial state,
σ̂z,1 + σ̂z,2 yields zero so the dispersive ĉ

†
±ĉ± terms in Ĥ (2)

q-r
vanish. Instead, photons are exchanged between the two
bosonic modes by the ĉ

†
±ĉ∓ terms with a phase flip between

|ge〉 and |eg〉 associated with each exchange. Since the only
other event that changes the photon number in ĉ− is a detection
event dN− = 1, the parity of N−(tf) and the parity of the
number of phase flips must match, given that ĉ− starts and
ends in vacuum and η = 1. This explains Eq. (13).

Let us formally prove the validity of Eqs. (12)–(15) and the
associated probabilities for a pure initial state by explicitly
solving the stochastic Schrödinger equation corresponding
to Eq. (9) in the η → 1 limit. Analogously to the single-
qubit case, the jump operators are ĉ± and the non-Hermitian
Hamiltonian that determines the evolution of the unnormalized
state |ψ ′

I (t)〉 is

H ′ = Ĥ (2)
q-r − i�

κ

2
(ĉ†+ĉ+ + ĉ

†
−ĉ−)

=
2∑

j=1

�

(
χσ̂z,j − i�

κ

2

)
â
†
j âj ,

for t > 0. A photon is detected whenever 〈ψ ′
I (t)|ψ ′

I (t)〉 reaches
a random number ri drawn uniformly and independently from
[0,1] for each event i. The detector that clicks is chosen at
random with probabilities weighted by 〈ψ ′

I (t)|ĉ†±ĉ±|ψ ′
I (t)〉.

For the initial state given in Eq. (11), the unnormalized state
|ψ ′

I (t)〉 before the first detection event is

e−|α|2(1−e−κt )(qgg|gg〉|Aeiχt 〉+|0〉− + qee|ee〉|Ae−iχt 〉+|0〉−
+ qge|ge〉|A cos χt〉+|iA sin χt〉−
+ qeg|eg〉|A cos χt〉+| − iA sin χt〉−),

where A(t) = √
2αe−κt/2 is an exponentially decay-

ing amplitude of the remaining radiation. If r1 >

exp [−2|α|2(1 − e−κtf )], a photon is detected at t1 =
−κ−1 ln [1 + |α|−2 ln (r1)/2] and the state |ψI (t)〉 after the
event is proportional to

iqge|ge〉|A cos χt〉+|iA sin χt〉−
+ (−i)qeg|eg〉|A cos χt〉+| − iA sin χt〉−,

if dN−(t1) = 1, or

eiχt1qgg|gg〉|Aeiχt 〉+|0〉−
+ e−iχt1qee|ee〉|Ae−iχt 〉+|0〉−
+ cos(χt1)qge|ge〉|A cos χt〉+|iA sin χt〉−
+ cos(χt1)qeg|eg〉|A cos χt〉+| − iA sin χt〉−,

if dN+(t1) = 1. See Fig. 4 for examples. The calculation
for each subsequent event at ti is identical given the new
initial state at ti−1. Therefore, at an arbitrary time t < tf, the

state is

|ψI (t)〉 ∝ iN−(t)qge|ge〉|A cos χt〉+|iA sin χt〉−
+ (−i)N−(t)qeg|eg〉|A cos χt〉+| − iA sin χt〉−,

if N−(t) > 0, and otherwise

|ψI (t)〉 ∝ exp

(
iχ

∑
ti<t

ti

)
qgg|gg〉|Aeiχt 〉+|0〉−

+ exp

(
−iχ

∑
ti<t

ti

)
qee|ee〉|Ae−iχt 〉+|0〉−

+
(∏

ti<t

cos χti

)
(qge|ge〉|A cos χt〉+|iA sin χt〉−

+ qeg|eg〉|A cos χt〉+| − iA sin χt〉−),

where ti ∈ T+. At tf = kπχ−1, the difference mode returns to
vacuum and the sum mode is in |(−1)kA(t)〉+. The sum mode
is then driven back to vacuum by the symmetric displacements
in step 4 of the protocol. Therefore, the dynamics stop and the
resonators can be traced out without loss of information.

In the N−(tf) > 0 case, the contribution of φ− in F̂ [see
Eq. (14)] undoes the relative (−1)N−(tf) factor between |ge〉 and
|eg〉, while the contribution due to φ+ does nothing. Therefore,
|ψq(tf)〉 = F̂ [〈0+0−|ψI (tf)〉] indeed matches Eq. (15) with
P−1 = 1. In the N−(tf) = 0 case, the contribution of φ+ in
F̂ restores the initial relative phase in the even-parity subspace
so that

|ψq(tf)〉 ∝ qgg|gg〉 + qee|ee〉

+
(∏

ti<t

cos χti

)
(qge|ge〉 + qeg|eg〉).

Note that in the limit N+(tf) � 1, the product of the cosines,
in general, vanishes exponentially.

To show that E[P−1] = 〈ψq(0)|�̂−1|ψq(0)〉, we use the fact
that the expectation value of �̂−1 for the unconditioned system
state ρ̂ is invariant in time. The time invariance follows from
the fact that the master equation

∂t ρ̂ = − i

�

[
Ĥ (2)

q-r ,ρ̂
] +

∑
±

D[
√

κĉ±]ρ̂

= − i

�

[
Ĥ (2)

q-r ,ρ̂
] +

2∑
j=1

D[
√

κâj ]ρ̂ (16)

does not depend on the type of scattering-mode detection and
is solved by ρ̂ = ρ̂1q ⊗ ρ̂1q , where ρ̂1q(t) is the solution to
Eq. (3) given in Eqs. (4) and (5). As noted in Sec. II A,
the diagonal elements of ρ̂1q(t) do not change in the com-
putational basis. Therefore, the diagonal elements of the
two-qubit ρ̂(t) also remain constant, and hence tr[ρ̂(t)�̂−1]
is time invariant. Applying this time invariance to ρ̂(0) =
|ψq(0)〉〈ψq(0)| shows that 〈ψq(0)|�̂−1|ψq(0)〉 = tr[ρ̂(0)�̂−1]
is equal to tr[ρ̂(tf)�̂−1] = E[P−1].
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C. Tunable coupling

Here we propose a variation of the protocol for a scenario
where the dispersive coupling can be effectively switched on
and off in time, either by changing χ or by using dynamical
decoupling [51]. If this capability is used to turn off the
unitary evolution (Ĥ (2)

q-r → 0) at toff = π/2χ , the results of
the previous section are valid with the replacement of χt by
χ min (t,toff). Consequently, a single detection event after toff

leads to complete parity projection because odd (even) qubit
parity is associated with the sum (difference) mode being in
vacuum. In this modified protocol, we also require tf � κ−1

and skip step 4 of the protocol.
This variation of the protocol is particularly beneficial in the

strong dispersive limit [32] χ � κ , where most photons leak
out of the resonators after toff. In addition to complete parity
projection, the variation may be of practical benefit because φ+
[see Eq. (12)] becomes independent of the arrival times of the
detected photons if they can be assumed to all arrive after toff,
i.e., if χ � |α|2κ . In the extreme limit κ/χ → 0, the initial
time interval up to toff can be approximated as an instantaneous
entanglement operation between each qubit and its resonator.
In this special case, our protocol after toff coincides with the
protocol proposed by Azuma et al. for the initial state θ = π ,
where θ is defined in Ref. [11].

A detection event at t > toff also projects the resonator
into a known coherent state, so in principle the requirement
tf � κ−1 can be relaxed by driving the resonators into vacuum
by displacements conditioned on N±. Alternatively, χ can be
restored to its initial value at some time t ′ so that the difference
mode evolves back to vacuum at t ′ + toff regardless of the
qubit state. At t ′ + toff, unconditioned displacements on ĉ+
can then stop the process, analogously to step 4 of the original
protocol.

D. Practical considerations

The main experimental hurdle to implementing our
protocol in cQED is that it requires nearly ideal photodetectors.
Specifically, in order for the measurement to be nondestructive,
the photodetectors need to have high quantum efficiency,
low dark-count rate, photon-number resolution, and, for the
even-parity outcome, high temporal resolution compared to
χ−1. Here we use number resolution to mean that the detector
must not have a significant dead time after a detection event.
By high quantum efficiency, we mean that in addition to high
detector efficiency, photon losses in other parts of the setup
must be negligible. Failing to satisfy any of these requirements
leads to erroneous terms in Eq. (12) and therefore randomizes
the relative phase within the parity subspaces. The Appendix
shows the effect of imperfect quantum efficiency on example
trajectories.

It is possible to relax some of the above requirements:
Temporal resolution is unnecessary in the χ � κ case if
using the dynamical decoupling discussed in Sec. III C.
Number resolution becomes unnecessary if |α|2 � 1 and the
protocol is instead iterated many times. However, the latter
increases the duration of the protocol and will eventually
invalidate the assumption that other relaxation mechanisms
are negligible. For reference, χ/2π in cQED is often several
megahertz so a single iteration may take tf ∼ 100 ns. This

should be compared to qubit coherence times that have recently
reached roughly 100 μs [52–54]. The Appendix presents some
example trajectories for non-negligible qubit relaxation.

The assumption of identical qubit-resonator systems is
another source of concern for practical implementations. In
cQED, χ is usually tunable through the qubit frequency but,
typically, the resonator frequency ωr and the decay rate κ

are not tunable. Fortunately, the parameters of typical cQED
resonators are highly reproducible [55]. Furthermore, in situ
tuning of both ωr and κ is possible at the cost of increased
complexity [56,57]. Finally, choosing an asymmetric drive in
step 2 of the protocol can compensate for different values
of κ . In general, this only adjusts the average number of
emitted photons per resonator and not the time scale of their
emission. However, in the strong dispersive limit, it is possible
to choose tf � κ−1 and approximate the photon emission rate
as constant.

IV. CONCLUSION

We proposed a protocol for remote nondestructive parity
measurement of two qubits. The protocol is deterministic
in the sense that it leads to complete parity projection
with a probability that approaches unity in the ideal case.
Furthermore, it conserves the relative phase within the parity
subspaces even when the parity projection is incomplete.
Therefore, the protocol is also of the repeat-until-success type
[7], in the sense that it can be repeated until the desired
degree of parity projection is reached. We proved these claims
analytically for the ideal case and investigated the effects of
some of the practical limitations numerically.

Except for requiring high-quality photodetectors, our pro-
tocol is experimentally implementable in cQED with min-
imalistic resources. In particular, the protocol places few
requirements on the qubits and their control lines as it
requires only time-independent and dispersive qubit-resonator
coupling. This is promising for scalability and calls for a future
extension of the protocol to many-qubit scenarios. Such an
extension would further reduce the overhead of measuring
nonlocal multiqubit parity checks for the purposes of quantum
error correction.
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APPENDIX: DETECTOR INEFFICIENCY
AND QUBIT RELAXATION

Here we briefly discuss the effects of imperfect photode-
tection and qubit relaxation. We point out some issues that
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FIG. 5. (Color online) Trajectories with imperfect detection
(η = 0.9 for both detectors), which leads to imperfect reversal of
the measurement-induced dephasing. See Fig. 4 for the values of
other simulation parameters and an explanation of the symbols.

inevitably arise in experimental realizations, but do not attempt
to thoroughly map the effects of nonidealities. We do this by
presenting numerical solutions to Eq. (9).

Figure 5 presents example trajectories for imperfect detec-
tion efficiency (η = 0.9). The possibility of missing photons
leads to a mixed state and prevents fully reversing the
measurement-induced dephasing, i.e., 〈σ̂x,1σ̂x,2〉 < 1 at t = tf.
However, the unconditioned master equation [Eq. (16)] is
unchanged and the parity of the initial state is correctly
measured, as long as sufficiently many photons are detected.
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FIG. 6. (Color online) Trajectories in the presence of qubit relax-
ation at a rate 0.1 × κ/π . See Fig. 4 for the values of other simulation
parameters and an explanation of the symbols.

Figure 6 shows trajectories for a nonzero-qubit relaxation
rate. Specifically, we add D[

√
γ σ̂−,j ]ρ̂I for each qubit j to the

right-hand side of Eq. (9). We choose γ = 0.1 × κ/π . As in
the case of inefficient detection, the qubit relaxation prevents
perfect reversal of the measurement-induced dephasing. In
addition, qubit decay leads to a mixed resonator state even
at tf. This implies that the displacements in step 4 of the
protocol cannot restore the resonators to vacuum perfectly,
i.e., 〈ĉ†±ĉ±〉 > 0 even after t = tf. Visually, the most striking
phenomenon in Fig. 6 is the nonconservation of parity, but it
occurs even without performing the measurement, i.e., even if
we were to choose α = 0.
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064505 (2014).

[30] S. Gasparinetti, K. L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo,
M. Meschke, and J. P. Pekola, Phys. Rev. Appl. 3, 014007
(2015).

[31] K. Koshino, K. Inomata, Z. Lin, Y. Nakamura, and T. Yamamoto,
Phys. Rev. A 91, 043805 (2015).

[32] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London)
445, 515 (2007).

[33] J. Kerckhoff, L. Bouten, A. Silberfarb, and H. Mabuchi,
Phys. Rev. A 79, 024305 (2009).

[34] N. Roch, M. E. Schwartz, F. Motzoi, C. Macklin, R. Vijay, A.
W. Eddins, A. N. Korotkov, K. B. Whaley, M. Sarovar, and I.
Siddiqi, Phys. Rev. Lett. 112, 170501 (2014).

[35] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J.
Majer, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 94,
123602 (2005).

[36] J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio,
J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
Phys. Rev. A 74, 042318 (2006).

[37] J. Gambetta, A. Blais, M. Boissonneault, A. A. Houck, D. I.
Schuster, and S. M. Girvin, Phys. Rev. A 77, 012112 (2008).

[38] K. Lalumière, J. M. Gambetta, and A. Blais, Phys. Rev. A 81,
040301 (2010).

[39] L. Tornberg and G. Johansson, Phys. Rev. A 82, 012329 (2010).
[40] D. Riste, M. Dukalski, C. A. Watson, G. de Lange, M. J.

Tiggelman, Y. Blanter, K. W. Lehnert, R. N. Schouten, and
L. DiCarlo, Nature (London) 502, 350 (2013).

[41] A. N. Korotkov and A. N. Jordan, Phys. Rev. Lett. 97, 166805
(2006).

[42] A. Frisk Kockum, L. Tornberg, and G. Johansson, Phys. Rev. A
85, 052318 (2012).
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