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ABSTRACT

Diurnal temperature range (DTR) is a useful index of climatic change in addition to mean temperature

changes. Observational records indicate that DTR has decreased over the last 50 yr because of differential

changes in minimum and maximum temperatures. However, modeled changes in DTR in previous climate

model simulations of this period are smaller than those observed, primarily because of an overestimate of

changes in maximum temperatures. This present study examines DTR trends using the latest generation of

global climate models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5) and

utilizes the novel CMIP5 detection and attribution experimental design of variously forced historical simu-

lations (natural-only, greenhouse gas–only, and all anthropogenic and natural forcings). Comparison of ob-

served and modeled changes in DTR over the period of 1951–2005 again reveals that global DTR trends are

lower inmodel simulations than observed across the 27-member multimodel ensemble analyzed here.Modeled

DTR trends are similar for both experiments incorporating all forcings and for the historical experiment with

greenhouse gases only, while no DTR trend is discernible in the naturally forced historical experiment. The

persistent underestimate of DTR changes in this latest multimodel evaluation appears to be related to ubiq-

uitous model deficiencies in cloud cover and land surface processes that impact the accurate simulation of

regional minimum or maximum temperatures changes observed during this period. Different model processes

are likely responsible for subdued simulated DTR trends over the various analyzed regions.

1. Introduction

Changes in diurnal temperature range (DTR) are an

identifiable characteristic of recent climatic change and

also provide a useful diagnostic index for evaluating

global climate models (GCMs) (Braganza et al. 2004).

The global mean warming trend over land has been as-

sociated with asymmetric minimum and maximum tem-

perature changes. Hence, DTR has been decreasing on

a global scale over the last 50 yr because of the relatively

stronger increases in daily minimum temperatures

(Tmin) than daily maximum temperatures (Tmax) (Karl

et al. 1993; Easterling et al. 1997; Vose et al. 2005). As

Tmin is closely related to the longwave radiative flux,

whereas Tmax is largely determined by shortwave ra-

diative forcing, DTR trends are useful for diagnosing

recent climatic change and particularly anthropogenic

forcing components.

However, the precise causes of DTR changes and

their spatial and seasonal characteristics remain poorly

understood (Stone and Weaver 2003). Recent studies

investigating regional-scale DTR trends highlight the

importance of multiple process in determining DTR,

including cloud cover, soil moisture, and precipitation

variability (Zhou et al. 2008; Lauritsen and Rogers 2012;

Wang et al. 2013). In addition, previous comparisons of

GCM simulations with observations indicate a signifi-

cant underestimation of modeled DTR trends, which in

some instances are linked to a strong simulated increase

in Tmax (Braganza et al. 2004). Previous differences be-

tween model and observational DTR trends are largely

attributed to increases in cloudiness and land surface

processes that are not well represented in models (Stone

andWeaver 2003; Braganza et al. 2004; Lobell et al. 2007).

Variations in cloud cover, in particular, are strongly linked

to DTR changes: increased cloud cover decreases down-

ward solar radiation and therefore reduces Tmax, whereas

cloud cover increases net longwave radiation and conse-

quently Tmin, thereby narrowing the diurnal temperature

range (Karl et al. 1993; Dai and Trenberth 1999). DTR is

highly sensitive to small changes in both Tmax and Tmin
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and changes in land surface processes also influence

DTR. Ultimately, modeled representations of cloud and

land surface processes can impact the accurate simula-

tion of Tmax and Tmin trends.

In this study, as a basis for comparison with observa-

tional datasets, we investigate simulated DTR changes

in nine GCMs participating in phase 5 of the Coupled

Model Intercomparison Project (CMIP5) archived by

the Program for Climate Model Diagnosis and Inter-

comparison (PCMDI; http://cmip-pcmdi.llnl.gov). We

examine whether the accuracy of modeled DTR trends

has improved with this latest generation of GCMs par-

ticipating in CMIP5. Furthermore, to understand DTR

trends in relation to forcings more thoroughly, temper-

ature trends are also examined in CMIP5 detection and

attribution experiments of the historical period using

only a subset of known forcings, including natural-only

and greenhouse gas–only forcings (Taylor et al. 2012). In

particular, we use these new CMIP5 detection and at-

tribution type experiments to investigate the possible role

of aerosols in determining historical changes in DTR.

2. Model and observational datasets

Data for this study were compiled from both model

and observational sources.Monthly mean observed land

surface temperatures from the Climatic Research Unit

(CRU) surface temperature, version 4 (CRUTEM4),

dataset (Braganza et al. 2004; Jones et al. 2012) were

used, together with monthly averages of observed daily

maximum temperatures (TX) and minimum tempera-

tures (TN) from the Hadley Centre Global Historical

Climatology Network (GHCN)-Daily (HadGHCND)

dataset (Caesar et al. 2006). Diurnal temperature ranges

are calculated from HadGHCND as the difference be-

tween monthly averages of Tmax and Tmin. In addi-

tion, DTR values were used from both the GHCN-Daily

climate extremes (GHCNDEX; Donat et al. 2013a) and

HadleyCentreGlobalClimateExtremes Index 2 (HadEX2;

Donat et al. 2013b) datasets. It is noted that the partly

different data sources and requirements regarding ho-

mogeneity and record length of the station observations

utilized in creating gridded observational datasets can

lead to differences in climate parameters. As HadEX2

stations data are assessed more rigorously for both quality

and homogeneity prior to gridding (Donat et al. 2013b),

the observed DTR values quoted hereafter are those

calculated from HadEX2, unless otherwise indicated.

Observational precipitation data were also used from

both the CRU time series, version 3.1 (TS3.1), monthly

gridded precipitation dataset [for an earlier version, see

Mitchell and Jones (2005)] andGHCN (version 2) gridded

land-only precipitation anomalies (Jones and Moberg

2003), in order to investigate temperature–rainfall re-

lationships. Precipitation in both modeled and obser-

vational datasets are also utilized as a simple diagnostic

for cloud cover changes, as high-quality observations of

cloud cover changes are not available for the period of

interest. This approach is discussed further in section 5.

For the model experiments, results are detailed from

nine global coupled ocean–atmosphere climate models

participating in CMIP5 (see Table 1 for model version

and institutional details). Each historical period en-

semble is initialized from an arbitrary point in a multi-

century preindustrial control integration conducted for

each model, providing a range of different climatic tra-

jectories across ensembles. Models were selected where

mean near-surface air temperature (Tmean), Tmin, Tmax,

and precipitation fields were available for at least three

ensemble members, which were all included in analyses

here. Monthly mean modeled DTR values were calcu-

lated as the difference between Tmax and Tmin. En-

semble averages were calculated for eachmodel analyzed

and a multimodel mean was determined as average con-

ditions across all realizations, using all analyzed models.

First, we used the historical all-forcings experiment,

simulating the climate of 1850–2005. In this experiment,

changing atmospheric composition (including CO2) re-

sulting from anthropogenic and volcanic influences, so-

lar forcing, and emissions of short-lived species and

natural and anthropogenic aerosols are imposed to re-

produce climate evolution over the twentieth century as

accurately as possible. Additional detection and attri-

bution simulations, with natural forcing only (historicalNat)

and greenhouse gas forcing only (historicalGHG), were

utilized in order to separate anthropogenic and natural

influences on twentieth century climate. The major

distinction between the historical and historicalGHG

experiments is the inclusion of aerosols. Fewer detec-

tion and attribution simulations have been performed

than for the core historical experiment, and hence

a subset of five of the nine selected models with three

ensemble members was available for this part of the

analysis.

Pre-industrial control experiments (piControl) were

also examined to assess potential long-term control

drifts that may impact surface temperature trends in the

historical experiments and obscure the comparatively

small DTR trends. We compared trends in the con-

temporaneous preindustrial control segment (following

historical branching) with the internal variability de-

termined by the spread in ensemble members. Assess-

ments were made for each temperature variable, in each

defined region. Drifts in surface properties were found

to be small and had a negligible impact on simulated

trends in the historical experiment.
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Model data were regridded onto a common 2.58 by
2.58 horizontal grid, then seasonal [June–August (JJA)

and December–February (DJF)] and annual (ANN)

averages were calculated and anomalies taken from the

1961–90 climatological mean, so that trends were com-

mensurable with observations. Results are presented

from 1951 to 2005, covering the period of overlap be-

tween the observed data and model simulations. Model

fields were then masked to exclude areas of poor ob-

servational data coverage, which were identified from

the observed GHCNDEX dataset, which had sparser

coverage than either HadGHCND or HadEX2. Spe-

cifically, we used a land surface datamask including only

grid boxes with at least 80% temporal coverage from

1951 to 2005 and also containing at least 60% of tem-

perature records in the first and last five of these years

(Fig. 1). This mask was applied to all model and obser-

vational datasets. Finally, four large land surface regions

were defined (North America, Europe, midlatitude Asia,

and Australia; Fig. 1) to facilitate the examination of spa-

tial temperature trend variability over distinct regional

land surface areas.

3. Evaluation of model performance

Before temperature trends were assessed against ob-

servations for the suite of models, we conducted an

evaluation of model performance in simulating vari-

ability in Tmean, Tmax, and Tmin over the period of

1951–2005. First, the standard deviations of interannual

variations of detrended regional average anomalies

were calculated for each temperature variable and then

compared to the equivalent observational standard de-

viation (Fig. 2). In this comparison, the regional average

anomalies were linearly detrended to remove any exter-

nally forced monotonic climate signal that would poten-

tially obscure variability on shorter time scales (Karoly and

Braganza 2005). Detrending climatic time series using

FIG. 1. Land surface mask derived from temporal coverage of

GHCNDEX observed temperature datasets and used to mask

model data. Shaded areas represent grid boxes included in this

study, with greater than 80% observed monthly coverage during

1951–2005 and at least 60% coverage in the first and last 5 yr of the

temperature record. Four land surface regions (North America,

Europe, midlatitude Asia, and Australia) are also defined.

FIG. 2. Standard deviations of interannual variations of linearly detrended regional average

Tmean, Tmax, Tmin, and DTR for historical simulations (circles) and observations (crosses).

As the HadGHCND, GHCNDEX, and HadEX2 observational data points are effectively

identical, a single observational point is shown, representing all analyzed gridded date prod-

ucts. Plot circles represent model ensemble mean values and ranges indicate the 5th–95th

percentile values simulated across all realizations for global (black), North American (blue),

Europe (green), midlatitude Asian (red), and Australian (gray) area averages.
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any polynomial trend may introduce artifacts, particu-

larly for local or regional time series (Sen Gupta et al.

2012). Nonetheless, the multimodel historical mean in-

terannual standard deviations for global Tmean, Tmax,

and Tmin are similar to those observed, indicating that

the model suite captures the observed temperature vari-

ability. Regionally, simulated Tmin standard deviations

over Australia are notably larger than those observed

(Ds520.20K). The variabilitywas relatively insensitive to

the order of the polynomial used to detrend the time series.

We also compared distributions of global land average

detrended annual mean temperatures across the suite of

model ensembles, with observations using probability

density functions (PDFs) estimated using a kernel

smoothing function in order to identify any potential

differences between modeled and observed tempera-

tures (Fig. 3). Comparison of the model and observa-

tional PDFs for Tmax indicates that there are some

differences in temperature distributions that are not

apparent in comparisons between the simulated and

observed interannual variability of Tmax. In particular,

there is an increased (decreased) representation of high

(low) Tmax values in the model realizations compared

with observations (Fig. 3b). In addition, although the

interannual variability of Tmin was similar for both

observational data and the multimodel mean, the model

Tmin PDFs are somewhat different to the range of values

represented in the observational record (Fig. 3c). In

particular, there are decreased representations of low

Tmin values relative to observations, although the ob-

servational Tmin PDF lies in themiddle of the simulated

Tmin PDFs for warmer values.

Lastly, to assess the similarity of statistical associations

between analyzed variables in the historical experiments

and those in the observed datasets, the correlation be-

tween DTR and Tmean, Tmin, Tmin, Tmax, and pre-

cipitation (PR)was calculated for linearly detrended time

series for both the historical model experiments and ob-

servations (Table 2). The correlation between DTR and

each of Tmin, Tmax, Tmean, and precipitation values is

similar for model experiments and observations, al-

though it should be noted that correlations are sensitive

to both the sampling period and the detrending method

(Braganza et al. 2004) and so statistical associations are

only broadly insightful.

Overall, the relationship between the temperatures

and precipitation fields, and the interannual tempera-

ture variability within the models investigated here is

similar to that observed. However, as DTR is highly

sensitive to changes in both Tmax and Tmin, the over-

estimate of warmTmax values and underestimate of low

Tmin values may be important for accurately modeling

changes in DTR over the historical period.

FIG. 3. Probability density functions for global land average

detrended annual temperature anomalies for (a) Tmean, (b) Tmax,

and (c) Tmin for observations (dashed red) and historical simula-

tions. The multimodel mean is shown in black and values for each

of the 27 model realizations are shown in blue, based on the three

relevant realizations.
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4. Land surface temperature changes

During the 1951–2005 period, the observed near-surface

Tmean increases over land are similar to the simulated

historical multimodel mean (Fig. 4). The equivalent

temperature changes for the historicalNat experiment

are notably outside the 5th–95th percentile window of

model values across the 27-member historical ensemble

for Tmean, Tmax, and Tmin from around 1990 to 2005,

highlighting the role of anthropogenic forcings in ob-

served warming in the late twentieth century. Over this

period, the simulated evolution of DTR for the histori-

cal, historicalGHG, and historicalNat experiments is

dissimilar to that observed: the decrease in observed

DTR is not captured by the multimodel mean of any

experiment. Furthermore, observed DTR anomalies

since around 1980 are beyond or near the 5th–95th

percentile window of the historical experiment en-

semble (Fig. 4d). From 1951 to 2005, the observed

annual mean temperature increases over land sur-

faces (0.21Kdecade21) are similar to multimodel mean

changes in the historical simulation (0.17Kdecade21)

(Fig. 5). The equivalent multimodel Tmean trend in

the historicalGHG experiment over this period is higher

(0.29Kdecade21) but is near zero for historicalNat

(20.02Kdecade21), indicating both a dominant role for

anthropogenic forcings in determining temperature

TABLE 2. Correlation R matrices of Tmean, Tmax, Tmin, DTR,

and PR for observations and historical experiment multimodel

mean. Observed Tmean data are derived from CRUTEM4; Tmin

and Tmax are from HadGHCND; DTR is the mean R of

HadGHCND, GHCNDEX, and HadEX2; and precipitation is the

mean R of the CRU TS3.1 and GHCN monthly gridded pre-

cipitation datasets.

Tmin Tmax Tmean DTR PR

Obs

Tmin 1 — — — —

Tmax 0.79 1 — — —

Tmean 0.88 0.90 1 — —

DTR 20.16 0.37 0.12 1 —

PR 0.04 20.28 20.15 20.50 1

Historical

Tmin 1 — — — —

Tmax 0.84 1 — — —

Tmean 0.94 0.96 1 — —

DTR 20.13 0.36 0.15 1 —

PR 20.01 20.28 20.16 20.54 1

FIG. 4. Time series of global land surface mean annual (a) Tmean, (b) Tmax, (c) Tmin, and (d) DTR for model

experiments (historical, historicalGHG, and historicalNat) and observational values. Average HadGHCND,

GHCNDEX, andHadEX2 observedDTR values are shown.Gray plumes indicate the 5th and 95th percentile values

of each temperature variable simulated in the 27-member historical experiment suite.
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increases throughout this period and a cooling effect

from aerosols.

Throughout this period, differences between the his-

torical experiment and observational datasets in Tmin

trends, in particular, result in discernible disparities in

DTR trends. The multimodel historical mean Tmin

trend (0.18Kdecade21) is lower than the average ob-

served trend (0.24Kdecade21), while the mean simu-

lated and observed land surface Tmax trends are the

same (0.17Kdecade21). Hence, the multimodel mean

simulated DTR trend (20.02Kdecade21) is substan-

tially smaller thanobserved (20.07Kdecade21). TheDTR

trend in thehistorical simulations is similar to that simulated

in the historicalGHG experiment (20.02Kdecade21),

although no DTR trend is discernible in the histor-

icalNat simulation. The similarity of DTR trends in the

historical and historicalGHG experiments suggests a

potentially small role for aerosols in drivingDTR changes,

and previous studies have also indicated a negligible

impact of sulfate aerosols on DTR (Mitchell et al. 1995;

FIG. 5. Global mean trends (K decade21) in Tmean, Tmax, Tmin, and DTR for observations

and for (a) historical, historicalGHG, and historicalNat experiment multimodel means and

(b) all models for the historical experiment. Plot circles represent model ensemblemean trends

and ranges indicate the minimum and maximum trends simulated across all 27 historical re-

alizations. The observed DTR data are derived from the HadGHCND, GHCNDEX, and

HadEX2 datasets, whereas the Tmean trend is calculated the CRUTEM4 gridded dataset and

Tmin and Tmax are fromHadGHCND.Note that theHadGHCNDandGHCNDEXobserved

DTR trends are plotted together, giving only two distinct data points.
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Stone and Weaver 2003; Braganza et al. 2004; Lobell

et al. 2007). However, in these cases, indirect aerosol

effects have not been represented in models. Possible

aerosol effects on DTR trends in CMIP5 models are dis-

cussed further in section 5.

DTR trends in ensemble means from both the his-

torical and historicalGHG experiments are temporally

uniform over the analyzed period, although DTR changes

in the observed record are not temporally consistent:

large decreases in DTR occur over about 1961–80 and

substantially smaller decreases occur subsequent to these

decades. For example, the average observed land surface

DTR change for 1961–80 is20.10Kdecade21 compared

with 20.03Kdecade21 over 1981–2000. A similar re-

duction in the magnitude of DTR trends since around

1990 has been observed in a network of European sta-

tions (Makowski et al. 2008).

Furthermore, temperature trends are neither sea-

sonally nor spatially uniform in both model simula-

tions and observations. Globally, larger DTR trends

are identifiable from December to February in both

the historical simulation (20.05K decade21) and ob-

servations (20.11K decade21) than either annually or

during JJA (20.06 K decade21 for observations and

0.005Kdecade21 for historical). There are also evident

differences in DTR trends between the four regions

analyzed here (Fig. 6). Distinct Tmax, Tmin, and DTR

responses have been noted previously for different re-

gions in both observational station data (Easterling et al.

1997; Taylor et al. 2012) and in model simulations of

future emission scenarios (Lobell et al. 2007).

In both the historical multimodel mean and observa-

tional data, the largest DTR trends occur for the mid-

latitudeAsian region (20.11Kdecade21 for observations

and 20.03Kdecade21 for historical), followed by North

America (20.10 K decade21 for observations and

20.01Kdecade21 for historical). However, the DTR

trends in these regions, like the global equivalents, are

underestimated in model simulations. For the North

American region, although the variability in Tmean,

Tmax, and Tmin is simulated accurately, there is a gen-

eral overestimation of the modeled Tmax trends rela-

tive to observed (0.09Kdecade21 for observations and

0.17Kdecade21 for historical) and also an underesti-

mate of simulated Tmin trends over midlatitude Asia

(0.21Kdecade21) compared with the average observed

trend (0.38Kdecade21). Over the Australian region, al-

though simulated DTR interannual variability is sub-

stantially overestimated, the spread of model trends

captures the observed changes (Fig. 6).

There is also a notable range of simulated tempera-

ture trends across the analyzed models and in individual

model realizations. In general, modeled Tmin trends are

generally lower than observed, with similar trends to

those observed only occurring in ensembles fromNCAR,

CCCma, and BCCmodels. Of the various models, GISS-

E2-R produces the ensemble member with the most re-

alistic globalDTR trend (20.04Kdecade21). Despite the

FIG. 6. Regional average trends (Kdecade21) in Tmean, Tmax, Tmin, and DTR for obser-

vations and historical experiment multimodel mean for North America (blue), Europe (black),

midlatitude Asia (red), and Australia (gray). Plot circles represent model ensemble mean

trends and ranges indicate the minimum andmaximum trends simulated across all 27 historical

realizations. The observed DTR data are derived from the HadGHCND, GHCNDEX, and

HadEX2 datasets.
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accuracy of Tmax or Tmin trends simulated in some re-

alizations, capturing a realistic DTR trend in historical

experiments requires faithful simulation of both Tmax

and Tmin changes and none of the analyzed historical

model realizations reproduces the DTR trends of the

observational datasets. Hence, the previously identified

underestimate of global DTR trends throughout the

twentieth century in GCMs compared with observations

(Braganza et al. 2004) is also a ubiquitous feature of the

CMIP5 models considered here.

5. Factors influencing modeled DTR trends

Changes in both cloudiness and soil moisture have

been identified as important factors determining ob-

served decreases inDTR (Easterling et al. 1997; Dai and

Trenberth 1999). Cloud cover influences DTR through

the differential impact of clouds on radiative balances

during the day and night times, and soil moisture in-

fluences DTR through variations in evaporative cooling,

surface albedo and the ground heat capacity (Stone and

Weaver 2003; Zhou et al. 2009; Jackson and Forster

2013). However, clouds represent one of the greatest

uncertainties and are a large source of model spread

(Dufresne and Bony 2008). Given the established

importance of cloud cover on DTR, potential model

inadequacies in accurately representing precipitation

may obscure simulated temperature trends and cause

the subdued modeled global DTR response relative

to observed.

In this study, we diagnose potential changes in cloud

cover by investigating changes in simulated precipita-

tion. Although precipitation provides a much-simplified

metric of cloudiness that may not be equally applicable

in all regions, high-quality precipitation rather than

cloud cover datasets are available for analysis and hence

may provide some qualitative insight into potential

model deficiencies. The influence of precipitation vari-

ability on temperature trends was examined by consid-

ering ‘‘residual’’ temperature variations after removing

the part of the temperature signal that is linearly asso-

ciated with rainfall variations (Nicholls 2003, 2004; Karoly

and Braganza 2005). However, the comparison of re-

sidual modeled and observed global temperatures trends

shows the underestimate of modeled global Tmin trends

(0.14Kdecade21) remains, when compared with ob-

served trends (0.19Kdecade21) and hence the modeled

residual global DTR trend (20.01Kdecade21) is still

weaker than observed (20.05Kdecade21).

We then extended this analysis and compared mod-

eled temperature and precipitation responses in two

versions of the Australian Community Climate and Earth-

System Simulator (ACCESS) model (Bi et al. 2012)

participating in CMIP5, using the same experiment suite

for two available historical realizations. ACCESS ver-

sions 1.0 and 1.3 use distinct land surface models and

cloud schemes, with ACCESS1.0 using the Hadley Cen-

tre Global Environment Model, version 2 (HadGEM2),

atmospheric configuration and ACCESS1.3 coupled to

the HadGEM3 atmospheric model with the prognostic

cloud, prognostic condensate (PC2) cloud scheme for

prognostic cloud fraction and condensate (Hewitt et al.

2011). Regardless of these model differences, tempera-

ture trends and their spatial characteristics over this

period are found to be similar in both model versions

(20.06 K decade21 for observations; 0 K decade21 for

ACCESS1.0; and 20.1 K decade21 for ACCESS1.3).

When residual temperatures were recalculated, with the

influence of precipitation linearly removed, both model

versions again showed similar trends and the subdued

modeled DTR trend remained pervasive.

The largest regional discrepancies in model data

temperature trends occur for midlatitude Asia (Fig. 6),

where simulated historical Tmean, Tmax, and Tmin

trends are smaller than observed and the observed DTR

trend is not captured in any historical realizations. In this

region, the underestimate of observed Tmin trends in

the historical simulations was not improved by removing

rainfall influences on temperature changes. Previous

multimodel studies attribute the smaller change in mod-

eled DTR than that observed to a stronger simulated

Tmax warming than is realistic over the historical period

(Braganza et al. 2004). However, in our study of CMIP5

models, while the multimodel mean global Tmean and

Tmax trends are similar to those observed, simulated

Tmin trends are noticeably subdued, particularly in the

boreal winter.

The persistent residual discrepancies between mod-

eled and observed Tmin trends, both globally and for

midlatitudeAsia, suggest thatmodel–observational DTR

trend discrepancies may result from underlying model

problems beyond simulated cloud processes. For ex-

ample, difficulties in modeling a suite of surface energy

balances or controlling factors, such as soil moisture,

albedo, and low-level clouds, would impact the ability of

models to capture observed temperature trends (Zhou

et al. 2009; Zwiers et al. 2011; Jackson and Forster 2013).

At the land surface, deficiencies in capturing realistic

freezing and thawing cycles of soil in GCMs have been

noted previously and are known to impact simulated

diurnal temperature ranges through an underestimate of

Tmin values (Huth et al. 2003; Saito 2008). In addition,

shallow nighttime boundary layer processes may be

beyond the capacity of current models because of

comparatively coarse model resolutions (McNider

et al. 2012).
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Our analysis does not indicate that aerosols are a

contributing factor to errors in simulated Tmin trend

over midlatitude Asia, particularly as simulated tem-

perature trends are similar in the historical all-forcings

and greenhouse gas–only simulations. However, aero-

sols remain a large uncertainty within climate models,

and the simulation of aerosol direct and indirect effects

remains problematic, particularly in regions such asAsia

with high aerosol loadings (Zhou et al. 2009). The re-

gional bias in simulated DTR trends and temporally

variable nature of the observed DTR trend, ceasing

around the time of peak aerosol emissions, may indicate

a role of aerosols in determining DTR changes (Wild

2009). Observational based regional studies from China

also highlight a possible role of aerosols in driving DTR

trends (Wang et al. 2013).

Previous studies identify that DTR trends and their

causes are likely to be regionally variable and connected

to changes in cloud cover, precipitation, and soil mois-

ture (Zhou et al. 2009). In our study, the cause of dis-

crepancies between simulated and observed DTR

trends over midlatitude Asia, resulting from problem-

atic modeled Tmin changes, appear distinct from over

North America, which derive from strong modeled

Tmax trends.Although the globalmultimodelmeanTmax

trend is similar to that observed trend, simulated

Tmax trends for North America are overly large. After

rainfall-associated variations are removed in this region,

the accuracy of modeled Tmax trends is somewhat

improved, although simulated historical Tmax trends

(0.16Kdecade21) remain larger (0.12Kdecade21). The

accurate simulation of maximum temperatures requires

that numerous climatic processes beyond precipitation

be captured with accuracy, including cloud interactions

with incoming solar radiation. Maximum temperature

values may be affected by the partitioning of radiation

into sensible and latent heat fluxes by land surface

processes that may be systematically poorly represented

in climate models (Perkins et al. 2007). These processes,

particularly, are regionally variable and dependent on

the characteristics of soil moisture transitioning between

limiting to evaporation and nonlimiting (Koster et al.

2004; Perkins et al. 2007).

The representation of probability density functions of

daily maximum temperatures, as well as climatic vari-

ability, has been improved in some region using more

sophisticated land surface model schemes (Lorenz et al.

2012). The relationship between DTR and soil moisture

is notablymost significant at the warmer end of the Tmax

distribution, where, as soil get drier, hot days warm to

a greater degree than cooler days (Durre et al. 2000).

Hence, strong Tmax trends in North America relative to

observed might relate to both model land surface and

precipitation processes that impact energy balances.

Finally, land-use change has been previously identified

as a contributor to observed regional Tmax increases

(Narisma and Pitman 2003). Several of the models an-

alyzed here incorporate variable land-use changes over

the historical period (Table 1); however, these land

models confer variable skill in capturing observed his-

torical DTR trends (Fig. 5b), compared with models

utilizing static land surfaces.

Diagnosing the basis for differences in temperature

trends in individual models is not attempted here, al-

though intermodel differences in land surface processes

and cloud feedbacks may be critical for accurately sim-

ulating temperature variability and may account for the

spread in simulated temperature trends across the suite

of models. Previous assessments of model spread in

temperature responses to greenhouse gas forcing in-

dicate that cloud feedback processes are responsible for

the largest fraction of CMIP3 model response differ-

ences (Dufresne and Bony 2008). Given that the soil

moisture, land surface processes, and cloud cover changes

that influence both Tmin and Tmax are regionally de-

pendent, the regional variability in accurately modeling

DTR trends is also not surprising.

Observed DTR trends

Despite the widely identified inadequacies in the

simulation of temperature and precipitation fields in

GCMs that may limit the accurate determination of

DTR trends, there are also uncertainties in observed

trends that may affect DTR. The varying degrees of

quality control, homogenization methods, and other ob-

servational data processing steps utilized in generating

gridded observed data record can produce a spread of

observed values across different datasets.

Nonetheless, the global observed DTR trends deter-

mined using all datasets are very similar (20.07Kdecade21

for HadGHCND; 20.08Kdecade21 for GHCNDEX;

and 20.07Kdecade21 for HadEX2), despite the more

rigorous quality control of the HadEX2 data that ex-

plicitly accounts for biases such as changes in time of

observation and observational practice. In addition, the

average observed DTR trend for this period is relatively

robust to the criteria utilized for data masking. For ex-

ample, in the instance where the criteria are relaxed

and data coverage in the first and last years of the his-

torical period are no longer necessary, observed DTR

trends are essentially the same (20.08 K decade21 for

HadGHCND; 20.08 K decade21 for GHCNDEX;

20.08Kdecade21 for HadEX2; and 20.02Kdecade21

for model historical).

Furthermore, while observed DTR may be affected

by changes in land use relating to urbanization, studies
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utilizing observational datasets that comprise rural

networks or data adjusted for urbanization show the

observed DTR trend remains significant (Karl et al.

1993). Similarly, significant observed DTR trends were

evident in China at both rural and urban locations

(Wang et al. 2013). Here, the largest effect of urbani-

zation was not related to energy balance changes re-

sulting from the urban heat island but rather from

anthropogenic aerosol changes associated with increased

urbanization. In addition, the largest impact of urbani-

zation in this area was on maximum, rather than mini-

mum trends (Li et al. 2010). Finally, it is possible that the

observed DTR trend was a result of natural climate

variability and hence a large model ensemble size, be-

yond the 27-member ensemble utilized here, may be re-

quired to capture the observed trend (Meehl et al. 2012).

However, in both our study and previously (Zhou et al.

2009), changes in Tmin, Tmax, and DTR are best rep-

resented where both natural and anthropogenic forcings

are utilized, indicating some anthropogenic role in the

observed DTR trends over the last 50 yr.

6. Conclusions

The observed global decrease in diurnal temperature

range over the period of 1951–2005 resulting from the

relatively larger increase inminimum temperatures than

maximum temperatures is not captured in historical

experiments of CMIP5 participating models. The multi-

model mean DTR trend (20.02 K decade21), calcu-

lated from 27 realizations from nine analyzed climate

models, is lower than the average observed trend

(20.07Kdecade21). Conversely, the trend in Tmean

over this period identified in observations is similar to

multimodel mean historical trends. The subdued de-

crease in DTR compared with observations is a robust

feature across historical model ensembles and has been

identified previously in multimodel DTR evaluation

studies (Braganza et al. 2004).

The degree of underestimation of modeled DTR

changes in the historical experiment is similar to DTR

trends in a parallel historicalGHG experiment, which

does not include forcing by aerosol changes over the

historical period. Also, the experiment incorporating

only natural forcings (historicalNat) does not produce

a DTR trend and therefore highlights a discernible

greenhouse gas signal in DTR changes over this period.

The temporal changes in observed DTR, characterized

by stronger trends in the early part of the 1951–2005 pe-

riod thanmore recently, are also not reflected inmodeled

DTR trends in these experiments.

Simulated historical DTR trends are regionally vari-

able, with the largest model–observational discrepancies

occurring for midlatitude Asia and North America. For

these regions, although the interannual variability in

Tmean, Tmax, and Tmin and the relationship between

temperature and precipitation is simulated accurately,

the simulated DTR trend is underestimated. In the Asia

region, the largest DTR discrepancies, associated with

subdued Tmin trends, occur in the boreal winter, when

shallow boundary layer and soil freezing and thawing

cycles are likely difficult to simulate realistically. Con-

versely, over North America, simulated Tmin trends are

realistic, although Tmax trends are overestimated rela-

tive to observed, resulting in subdued DTR trends as-

sociated with problematic model land surface and cloud

processes. Hence, the causes of unrealistically small

DTR trends in each region are distinct, relating vari-

ously to stable (Tmin) and unstable (Tmax) boundary

layer processes.

Overall, diurnal temperature ranges are highly sensi-

tive to small changes in both minimum and maximum

temperatures. Anthropogenic forcings result in a de-

crease in diurnal temperature ranges, through changes

in cloudiness, radiative fluxes, and land surface moisture

balances. These are poorly understood processes that

are still not well represented in models and hence model

data inconsistencies in DTR changes remain within

these analyzed models. Further analysis of CMIP5 par-

ticipating models exploiting the full suite of available

detection and attribution experiments that incorporate

subsets of forcingsmay assist in identifyingmodel strengths

and weaknesses in simulating these processes. Also, ex-

plicit evaluation of radiative balances together with the

use of a more sophisticated metric for cloudiness (be-

yond precipitation) may improve our understanding of

DTR influences. Finally, although this study does not

identify a role for aerosols inDTR trends, they could not

be discounted. A more complete understanding of aero-

sols effects on DTR will require more sophisticated rep-

resentations of aerosol forcings.
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