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Non-collapsing for hypersurface flows
in the sphere and hyperbolic space
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Abstract. We prove a non-collapsing property for curvature flows of embedded
hypersurfaces in the sphere and in hyperbolic space.
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ondary).

1. Introduction

Let X : Mn
⇥ [0, T ) ! (Nn+1(c), ḡ) be a family of embedded hypersurfaces in

the simply connected space-form Nn+1(c) with sectional curvature c, evolving by
the curvature flow

@X (x, t)
@t

= �F(x, t)⌫(x, t), (1.1)

where ⌫ is the unit outward normal, and the speed F is given by a homogeneous
degree-one, monotone increasing function of the principal curvatures defined on a
symmetric convex cone 0 ⇢ Rn . We further assume that F is normalized so that
F(1, . . . , 1) = n. The purpose of this paper is to prove a non-collapsing result for
the flow (1.1) in Nn+1(c). Here c = 1 corresponds to the sphere Sn+1 = {X 2

Rn+2
: hX, Xi = 1}, and c = �1 corresponds to the hyperbolic space Hn+1. We

use the hyperboloid model of Hn+1, i.e., Hn+1 is the upper sheet (x0 > 0) of the
two-sheeted hyperboloid {X : hX, Xi = �1} in the Minkowski space Rn+1,1.
In these expressions the inner product h·, ·i refers to the inner product in Rn+2 or
Rn+1,1 respectively.

The ‘non-collapsing’ property we prove is one first formulated for mean cur-
vature flow in [18], and is conceptually analogous to the concept of non-collapsing
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for Ricci flow employed by Perel’man [17], and formulated earlier for Riemannian
manifolds in work of Cheeger and Gromov [9,10]: While in the Riemannian setting
‘non-collapsing’ controls the injectivity radius from below on a scale determined by
the curvature, in the hypersurface setting it controls the separation between sheets
of the submanifold, or more precisely the radii of balls in the complement of the
hypersurface touching at each point, on a scale determined by curvature. A non-
collapsing estimate allows rescaling about arbitrary points to make the curvature
bounded, producing hypersurfaces which are ‘uniformly’ embedded. In particular,
limits of sequences of such hypersurfaces can be extracted without difficulty.

This non-collapsing condition was formulated in [2] as an inequality for a func-
tion defined on pairs of points on the submanifold. We recall this formulation here,
following the treatment in [6]: For y 6= x and t � 0 define

k(x, y, t) =

2
d2

hX (x, t) � X (y, t), ⌫(x, t)i, (1.2)

where d=kX (x,t)�X (y,t)k. The supremum of k(x, y, t) over y gives the geodesic
curvature of the largest interior sphere which touches at x . We call k̄(x, t) =

sup{k(x, y, t) : y 2 M, y 6= x} the interior sphere curvature at the point (x, t),
and k(x, t) = inf{k(x, y, t) : y 2 M, y 6= x} the exterior sphere curvature at (x, t).
Note that the definitions of k̄(x, t) and k(x, t) involve extrema of k(x, y, t) over the
noncompact set {y 2 M : y 6= x}. The function k extends continuously to a com-
pactification obtained by adjoining the unit sphere in the tangent space at each point
(x, t) (see [6]), and it follows that k̄(x, t) is no less than the maximum principal cur-
vature max(x, t), and either there exists ȳ 2 M \ {x} such that k̄(x, t) = k(x, ȳ, t),
or there exists a unit vector v 2 TxM such that k̄(x, t) = h(x,t)(v, v) = max(x, t).
Similarly, k(x, t) is no greater than the minimum principal curvature min(x, t).

In geometric flow problems, the idea of dealing with a function on the product
M⇥M first appears in the work of Huisken [16] and Hamilton [12,13] on the curve
shortening flow and Ricci flow. See also the recent refinements of these works by
the first author and Bryan [3–5]. The first author [2] used an argument of this kind to
give a direct proof of Sheng-Wang’s non-collapsing theorem [18] for mean-convex
mean curvature flow in Rn+1. Later this was generalized to fully nonlinear curva-
ture flows by the first author, Langford and McCoy [6]. Recently, the technique
of [2] was used by Brendle [8] to prove the Lawson conjecture, and subsequently
by the first and third authors [7] to prove the Pinkall-Sterling conjecture. In this
paper, we follow the ideas in [2,6] to prove the following non-collapsing properties
of the flow (1.1) in Sn+1 and Hn+1.

Theorem 1.1. Let X : Mn
⇥[0, T ) ! Sn+1 be an embedded solution of (1.1). If F

is concave and positive, then we have k̄(x,t)
F(x,t)�

1
n  C1e�2nt withC1 = sup

n
k̄(x,0)
F(x,0)�

1
n : x 2 M

o
� 0. If F is convex and positive, then k(x,t)

F(x,t) �
1
n � C2e�2nt with

C2 = inf
n
k(x,0)
F(x,0) �

1
n : x 2 M

o
 0.
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An important example of flows of the form (1.1) is the mean curvature flow, in
which F is equal to the mean curvature H =

P
i i (here 1, . . . , n are the princi-

pal curvatures). Since this is both concave and convex as a function of the principal
curvatures, we get from Theorem 1.1 that under the mean-convex embedded mean
curvature flow in Sn+1, the following pinching result holds:

C2e�2nt +

1
n



k(x, t)
H(x, t)



k̄(x, t)
H(x, t)



1
n

+ C1e�2nt .

In the hyperbolic case, we state a result only for the mean curvature flow. We prove
the following:

Theorem 1.2. Let X : Mn
⇥ [0, T ) ! Hn+1 be an embedded solution of the mean

curvature flow.

(1) If M0 = X (M, 0) is mean-convex, then k̄(x,t)
H(x,t) �

1
n  C3e2nt with C3 =

sup
n
k̄(x,0)
H(x,0) �

1
n : x 2 M

o
, and k(x,t)

H(x,t) �
1
n � C4e2nt with C4 = inf

n
k(x,0)
H(x,0) �

1
n : x 2 M

o
.

(2) If M0 = X (M, 0) satisfies H(x, 0) > n, then k̄(x,t)
H(x,t)�n  C5 with C5 =

sup
n

k̄(x,0)
H(x,0)�n : x 2 M

o
.

The result of case (1) allows the ‘collapsing ratio’ k̄
H to grow exponentially with

time. This should be expected. For example, consider a non-compact convex region
with two boundary components each having constant principal curvatures less than
1: The boundary sheets move together with exactly such a rate of non-collapsing.
Compactifying this example by intersecting with a large sphere and pasting in a
large semi-cylindrical shell will produce compact examples for which the collapsing
ratio grows in this way on arbitrarily long finite time intervals.

Despite the fact that the collapsing ratio can become large, the result still pro-
vides useful information concerning finite time singularities (we remark that a com-
pact hypersurface in hyperbolic space always has finite time of existence since we
can enclose it by a large sphere). An inspection of the proof shows that a similar
non-collapsing bound for finite times holds for more general flows of the form (1.1)
with F concave (for interior non-collapsing) or convex (for exterior non-collapsing)
provided trḞ is bounded.

2. Proof of the main theorems

In this section, we prove the main theorems using the maximum principle. We first
derive a differential inequality of k̄(x, t) (in the viscosity sense). As we said in the
Introduction, k̄(x, t) � max(x, t), and either there exists ȳ 2 M \ {x} such that
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k̄(x, t) = k(x, ȳ, t), or there exists a unit vector v0 2 TxM such that k̄(x, t) =

h(x,t)(v0, v0) = max(x, t). In the following we will treat the two cases separately.
In the case where k̄(x, t) = k(x, ȳ, t) for some ȳ 2 M \ {x}, we choose

local normal coordinates around x and ȳ. To simplify notation we denote ! =

1
d (X (y, t) � X (x, t)) and write @xi =

@X
@xi (x), @

y
i =

@X
@yi (y). Then at (x, ȳ, t),

0 =

@k
@yi

= �

2
d2

h@
y
i , ⌫(x) + kd!i.

Noting that hX (ȳ), ⌫(x) + kd!i = 0 and k⌫(x) + kd!k
2

= 1, we have

⌫(ȳ) = ⌫(x) + kd!. (2.1)

On the other hand, a straightforward calculation gives hX (ȳ), @xi � 2h@xi ,!i!i = 0
and h⌫(ȳ), @xi � 2h@xi ,!i!i = 0. So we conclude that the plane spanned by @xi �

2h@xi ,!i!, i = 1, · · · , n coincides with the plane spanned by @ yi , i = 1, · · · , n. By
a suitable choice of the coordinates system near ȳ, we can arrange that

@
y
i = @xi � 2h@xi ,!i!, i = 1, · · · , n. (2.2)

We first calculate the first spatial derivatives of k at (x, ȳ, t):
✓
@

@xi
+

@

@yi

◆
k =

2
d2

⇣
h@xi � @

y
i , ⌫(x) + kd!i � dh!, h pi (x)@xpi

⌘

=

2
d2

⇣
h@xi � @

y
i , ⌫(ȳ)i � dh!, h pi (x)@xpi

⌘

=

2
d

(k � i )h@
x
i ,!i, (2.3)

where i denote the principal curvatures at (x, t).
By the homogeneity of F , we have F(x) = Ḟ i j (x)hi j (x), here Ḟ i j are the

derivatives of F with respect to the components hi j of the second fundamental
form. We assume F is concave, then for any y 6= x we have Ḟ i j (x)hi j (y) � F(y)
(see [6, Lemma 5]). Since the proof is easy, we include it here for convenience: By
the concavity of F , we have

F(y) F(x) + Ḟ i j (x)(hi j (y) � hi j (x))
=F(x) + Ḟ i j (x)hi j (y) � F(x)
=Ḟ i j (x)hi j (y),

as claimed, where the equality used the Euler relation F(x) = Ḟ i j (x)hi j (x) by the
homogeneity of F . The inequality is reversed when F is convex.
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Then we compute the second spatial derivatives of k at (x, ȳ, t):

Ḟ i j (x)
✓
@

@xi
+

@

@yi

◆✓
@

@x j
+

@

@y j

◆����
(x,ȳ,t)

k

=

2
d2
Ḟ i j (x)

✓
hhi j (ȳ)⌫(ȳ) � hi j (x)⌫(x) + c�i j d!, ⌫(ȳ)i

+ h@xi � @
y
i , 2h pj (x)@

x
p + 2d!

✓
@

@x j
+

@

@y j

◆
k + k(@ yj � @xj )i

� dh!,r j h
p
i (x)@xpi + dh!, chi j (x)X (x) + h pi (x)h pj (x)⌫(x)i

◆

�

2
d2

✓
hF(ȳ)⌫(ȳ) � F(x)⌫(x), ⌫(ȳ)i +

d2

2
tr(Ḟ)ck � dh!,rF(x)i

+ 4(k � i )h@i ,!ih@ j ,!iḞ i j (x)
◆

� cF(x) � Ḟ i j (x)h pi (x)h pj (x)k,

where we used (1.2), (2.1), (2.2), (2.3) and the inequality Ḟ i j (x)hi j (ȳ) � F(ȳ).
Here tr(Ḟ) denotes the trace of the matrix Ḟ i j .

Noting that the evolution of ⌫(x, t) is given by

@⌫

@t
(x, t) = rF(x, t) + cF(x, t)X (x, t),

the time derivative of k at (x, ȳ, t) can be calculated as

@k
@t

=

2
d2

✓
hF(ȳ)⌫(ȳ) � F(x)⌫(x), ⌫(ȳ)i � dh!,rF(x) + cF(x)X (x)i

◆
.

Since k̄ is in general not smooth, we prove that it satisfies a differential inequality
in a viscosity sense: For an arbitrary C2 function � which touches k̄ from above
on a neighbourhood of (x, t) in M ⇥ [0, t], with equality at (x, t), we prove the
differential inequality for � at (x, t). From �(x, t) = k̄(x, t) = k(x, ȳ, t), and
�(x 0, t 0) � k(x 0, y0, t 0) for all points x 0 near x , y0

6= ȳ and earlier time t 0  t , we
conclude that at (x, t)
✓
@

@t
� Ḟ i jrir j

◆
�(x, t) 

✓
@

@t
� Ḟ i j

✓
@

@xi
+

@

@yi

◆✓
@

@x j
+

@

@y j

◆◆����
(x,ȳ,t)

k



⇣
Ḟ i j h pi h pj � tr(Ḟ)c

⌘
k(x, ȳ, t) + 2cF(x, t)

�

8
d2

(k(x, ȳ, t) � i (x, t))h@i ,!ih@ j ,!iḞ i j (x, t)



⇣
Ḟ i j h pi h pj � tr(Ḟ)c

⌘
�(x, t) + 2cF(x, t),
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where we used k(x, ȳ, t) = k̄(x, t) � i (x, t) and the fact that the matrix Ḟ i j is
positive definite.

We now consider the case k̄(x, t) = h(x,t)(v0, v0) = max(x, t). We define a
smooth unit vector field v near (x, t) by choosing v(x, t) = v0, extending in space
by parallel translation along geodesics, and extending in time by solving @v

@t =

FW(v), whereW is the Weingarten map. We need the following lemma about the
evolution equation for the second fundamental form.

Lemma 2.1 ([1]). Under the curvature flow (1.1) in Nn+1(c), we have

@h ji
@t

=Ḟklrkrlh
j
i + F̈kl,pqri hklr j h pq + (Ḟklh pk h pl � tr(Ḟ)c)h ji + 2cF� ji .

By the concavity of F , the second term on the righthand side is non-positive. Since
� = k̄ = h(v, v) at the point (x, t), and � � k̄ � h(v, v) at nearby points and
earlier times, we have

✓
@

@t
� Ḟ i jrir j

◆
�(x, t) 

✓
@

@t
� Ḟ i jrir j

◆����
(x,t)

h(v, v)



⇣
Ḟ i j h pi h pj � tr(Ḟ)c

⌘
�(x, t) + 2cF(x, t).

So we conclude that the function k̄(x, t) satisfies the following differential inequal-
ity in a viscosity sense:

✓
@

@t
� Ḟ i jrir j

◆
k̄ 

⇣
Ḟ i j h pi h pj � tr(Ḟ)c

⌘
k̄ + 2cF. (2.4)

We now complete the proof of Theorem 1.1. Recall that under the curvature flow
(1.1), the evolution of the speed F is given by (see [1])

✓
@

@t
� Ḟ i jrir j

◆
F =

⇣
Ḟ i j h pi h pj + tr(Ḟ)c

⌘
F. (2.5)

When F is positive, we define '(t) = e2nt (supx2M k̄
F �

1
n ) for each time t . We show

that '(t) is non-increasing in t . It suffices to prove that k̄(x, t)� ( 1n + e�2nt'(t0)+

✏et�t0)F(x, t)  0 for any t0 2 [0, T ), t 2 [t0, T ) and any ✏ > 0. Taking ✏ ! 0
then gives k̄(x, t) � ( 1n + e�2nt'(t0))F(x, t)  0 and therefore '(t)  '(t0) for
t0  t .

At time t0, we have k̄(x, t0) � ( 1n + e�2nt0'(t0) + ✏)F(x, t0)  �✏F(x, t0) <

0 for all x . So if k̄ � ( 1n + e�2nt'(t0) + ✏et�t0)F does not remain negative for
t > t0, there exists a first time t1 > t0 and some point x1 2 M such that k̄ �

( 1n + e�2nt'(t0) + ✏et�t0)F is non-positive on M ⇥ [t0, t1] but k̄(x1, t1) � ( 1n +

e�2nt1'(t0) + ✏et1�t0)F(x1, t1) = 0, i.e., the function �(x, t) = ( 1n + e�2nt'(t0) +
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✏et�t0)F(x, t) touches k̄(x, t) from above in M ⇥ [t0, t1], with equality at (x1, t1).
Since k̄(x, t) satisfies the differential inequality (2.4) in a viscosity sense, we have
in the case c = 1 that the following inequality holds at the point (x1, t1):

0  �

✓
@

@t
� Ḟ i jrir j

◆
� + (Ḟ i j h pi h pj � tr(Ḟ))� + 2F

=(2ne�2nt1'(t0) � ✏et1�t0)F + 2F

�

✓
1
n

+ e�2nt1'(t0) + ✏et1�t0
◆

(Ḟ i j h pi h pj + tr(Ḟ))F

+

✓
1
n

+ e�2nt1'(t0) + ✏et1�t0
◆

(Ḟ i j h pi h pj � tr(Ḟ))F

(2ne�2nt1'(t0) � ✏et1�t0)F + 2F

� 2n
✓
1
n

+ e�2nt1'(t0) + ✏et1�t0
◆
F

= � (2n + 1)✏et1�t0F < 0;

here the second inequality used tr Ḟ � n, which is due to the concavity of F and
F(1, · · · , 1) = n. This contradiction implies that k̄(x, t) � ( 1n + e�2nt'(t0) +

✏et�t0)F(x, t) remains negative. In the case where F is convex and positive, we
consider k instead of k̄, all the inequalities are reversed. Then we can apply a
similar argument to complete the proof of Theorem 1.1.

Case 1 of Theorem 1.2 follows from a similar argument by setting F(x, t) =

H(x, t) and c = �1. To show the second case in Theorem 1.2, we note that under
the mean curvature flow in Hn+1, the condition H(x, t) > n is preserved [14]. We
need to show that  (t) = supx2M k̄

H�n is non-increasing in t . As in the proof of
Theorem 1.1, it suffices to show that k̄(x, t) � (H(x, t) � n)( (t0) + ✏et�t0)  0
for any t0 2 [0, T ), t 2 [t0, T ) and any ✏ > 0. The remaining argument is similar.
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