The necessity of feedback physics in setting the peak of the initial mass function

Dávid Guszejnov,1 Mark R. Krumholz2 and Philip F. Hopkins1

1 TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125, USA
2 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA

Accepted 2016 February 8. Received 2016 January 20; in original form 2015 October 16

ABSTRACT
A popular theory of star formation is gravito-turbulent fragmentation, in which self-gravitating structures are created by turbulence-driven density fluctuations. Simple theories of isothermal fragmentation successfully reproduce the core mass function (CMF) which has a very similar shape to the initial mass function (IMF) of stars. However, numerical simulations of isothermal turbulent fragmentation thus far have not succeeded in identifying a fragment mass scale that is independent of the simulation resolution. Moreover, the fluid equations for magnetized, self-gravitating, isothermal turbulence are scale-free, and do not predict any characteristic mass. In this paper we show that, although an isothermal self-gravitating flow does produce a CMF with a mass scale imposed by the initial conditions, this scale changes as the parent cloud evolves. In addition, the cores that form undergo further fragmentation and after sufficient time forget about their initial conditions, yielding a scale-free pure power-law distribution $dN/dM \propto M^{-2}$ for the stellar IMF. We show that this problem can be alleviated by introducing additional physics that provides a termination scale for the cascade. Our candidate for such physics is a simple model for stellar radiation feedback. Radiative heating, powered by accretion on to forming stars, arrests the fragmentation cascade and imposes a characteristic mass scale that is nearly independent of the time-evolution or initial conditions in the star-forming cloud, and that agrees well with the peak of the observed IMF. In contrast, models that introduce a stiff equation of state for denser clouds but that do not explicitly include the effects of feedback do not yield an invariant IMF.

Key words: turbulence – stars: formation – galaxies: evolution – galaxies: star formation – cosmology: theory.

1 INTRODUCTION
New stars form in dense molecular clouds as self-gravitating sub-regions collapse. Turbulent fragmentation is thought to be the main driving force of this process: turbulence compresses the gas, creating local density fluctuations that may be large enough to become self-gravitating. The appeal of this model comes from the fact that supersonic turbulence naturally produces a power-law relationship between velocity dispersion and size scale that is in good agreement with observations of molecular clouds (Larson 1981; Bolatto et al. 2008; Kritsuk, Lee & Norman 2013). A second advantage of a turbulence-based model is its universality. The initial mass function (IMF) of stars is observed to be close to universal (Bastian, Covey & Meyer 2010; Offner et al. 2014), with a high-mass end that is well described by a power law with a slope of roughly $M^{-2.35}$ (Salpeter 1955) and a turnover at a few tenths of a solar mass.1 The mass at which this turnover occurs is robustly determined to be a few tenths of a solar mass in all resolved stellar populations in the Milky Way (e.g. fig. 2 of Offner et al. 2014) and in nearby galaxies (e.g. Geha et al. 2013). Only a few resolved systems show even minor deviations in the location of the peak, and even then only by a factor of ~ 2 (e.g. $0.6\text{--}0.8 M_\odot$ in Taurus – Luhman et al. 2009). This lack of variation is remarkable, given that the star-forming systems over which it is measured span many orders of magnitude in mass and density. Even in the most extreme environments, such as the cores of giant elliptical galaxies, the IMF turnover mass differs from the

Due to the high uncertainty of measurements of brown dwarfs the functional form of the turnover is not obvious from the data (Krumholz 2014; Offner et al. 2014). The most common fits are either a broken power law (Kroupa 2002) or a lognormal (Chabrier 2005).

1
one found locally by at most a factor of a few (van Dokkum & Conroy 2010; Cappellari et al. 2012; Geha et al. 2013). Such a universal distribution is most naturally explained by simple, universal physics that is independent of galactic environment, and the physics of turbulence is an obvious candidate.

There have been many attempts to formulate an analytic theory for the IMF, and for its turnover in particular, based on turbulence. Most are based on the random field approach first used in cosmology by Press & Schechter (1974). This method was first applied to explain the IMF by Padoan, Nordlund & Jones (1997) and Padoan & Nordlund (2002), then made more rigorous by Hennebelle & Chabrier (2008, 2009, 2013) and Hopkins (2012a). Using such a model Hopkins (2012b) calculated the mass function of non-fragmented bound structures at a fixed time instant, a real life equivalent of which would be the core mass function (CMF), as opposed to the IMF. The observed CMFs of nearby star-forming regions have functional forms similar to that of the IMF (Alves, Lombardi & Lada 2007; Rathborne et al. 2009; Sadavoy et al. 2010), with a Salpeter-like power law at high masses and a turnover at lower masses, though the existence and the exact location of the CMF turnover are both quite uncertain due to issues of completeness and confusion see Offner et al. (2014) and Krumholz (2014) for more discussion. The CMF derived by Hopkins (2012b) shares these features. The turnover mass in this model is set by the sonic mass $M_{\text{sonic}} \sim c_s^2 R_{\text{sonic}} / G$ that corresponds to the scale below which self-gravitating structures are subsonic; a similar mass scale arises in the Hennebelle and Chabrier model, and one can show that the Hennebelle and Chabrier and Hopkins mass scales are in fact identical up to constants of order unity (Krumholz 2014). However, this scale is not universal, as it depends on the initial conditions in the star-forming cloud, which calls into question whether such a model can truly explain the near-universality of the IMF.

The proposition that the IMF is determined by the CMF, which in turn is set by the physics of isothermal gravito-turbulent fragmentation, has the appeal of simplicity. However, there remains an obvious question: once a core forms, why should one assume that it will collapse to form a single star, rather than fragmenting further? Simulations of isolated isothermal cores suggest exactly the latter (fragmented) outcome (e.g. Goodwin, Whitworth & Ward-Thompson 2004; Dobbs, Bonnell & Pringle 2006; Walch, Whitworth & Girichidis 2012). In principle, the question of the fate of isothermal cores should be resolvable by simulations. In practice, however, this turns out to be a formidable technical challenge. Isothermal turbulence is scale-free (McKee, Li & Klein 2010; Krumholz 2014), and thus it is not obvious what dynamic range is required to obtain a converged numerical result. To date, no published simulation of isothermal gravito-turbulent fragmentation has demonstrated that the spectrum of point masses it produces is numerically converged, and those few authors who have attempted convergence studies (Martel, Evans & Shapiro 2006; Kratter et al. 2010) report non-convergence to the highest numerical resolutions probed. One possible explanation, advanced by Krumholz (2014), is that the characteristic structures created by isothermal turbulence are not singular points but singular filaments. Simulations produce filaments down to the smallest size scales they reach, and then the sink particle algorithm they use to represent collapsing regions breaks those filaments up into points at the grid scale.

Given these problems with purely isothermal fragmentation, a number of authors have proposed that the fragmentation cascade is arrested when the gas begins to heat up, in which case the characteristic stellar mass is determined by whatever physics causes the deviation from isothermality. The most common approach to this problem has been to adopt an equation of state (EOS) that ‘stiffens’ (i.e. the temperature begins to rise) above some characteristic density or surface density. Since superisothermal gas is resistant to further fragmentation, one then identifies the IMF peak with the Jeans mass at this ‘stiffening density’, on the basis that fragmentation will be suppressed beyond that point (Whitworth, Boffin & Francis 1998; Larson 2005).

Stiffening of the EOS can be caused by a diverse range of processes, including the inability of radiative cooling to keep up with adiabatic heating at a density $n \sim 10^{10} \text{ cm}^{-3}$ (e.g. Masunaga, Miyama & Inutsuka 1998) or a surface density $\Sigma \sim 5000 \ M_\odot \text{ pc}^{-2}$ (e.g. Glover & Mac Low 2007), the onset of dust–gas coupling at a density $n \sim 10^5 \text{ cm}^{-3}$ (Larson 2005; Elmegreen, Klessen & Wilson 2008), or combinations of the above (e.g. Spaans & Silk 2000). Numerical simulations based on these EOSs do find a converged mass scale that can plausibly be identified as a characteristic mass for the IMF (e.g. Bonnell, Clarke & Bate 2006; Bate 2009a). However, it is not clear that the mass scale introduced by those models is actually universal (as opposed to set by initial conditions). Moreover, a number of authors have pointed out that radiative feedback is likely to be more important than any of these processes in setting the gas temperature in an actively star-forming region, and that this process is not well-described by an EOS (Krumholz 2006; Krumholz, Klein & McKee 2007; Offner et al. 2009; Urban, Martel & Evans 2010). Simulations of star cluster formation including radiative feedback suggest that it is capable of producing an IMF peak that is numerically converged and relatively insensitive to changes in interstellar conditions (Bate 2009b, 2012, 2014; Krumholz, Klein & McKee 2011, 2012; Myers et al. 2011).

While these developments are promising, the numerical expense of large-scale simulations including radiative feedback means that only a very small number of calculations have been performed. Moreover, analytic models of fragmentation with radiative feedback have, up to this point, been quite simple (e.g. Krumholz & McKee 2008; Krumholz et al. 2011), and have not been linked to an analytic theory for the full IMF. Recently, Guszejnov & Hopkins (2015a) introduced a new method for performing semi-analytic calculations of turbulent fragmentation. Crucially, this method retains spatial information about how gas fragments, making it possible to include localized feedback mechanisms like stellar radiative heating. These calculations are rapid, enabling a much broader exploration of parameter space than can yet be accomplished with full three-dimensional radiation-hydrodynamic simulations.

In this paper, we combine the Guszejnov & Hopkins (2015a) fragmentation model with the Krumholz (2011) model for stellar radiative feedback (henceforth referred to as GH15 and K11, respectively). We also explore alternative treatments of gas thermodynamics, including both isothermal and stiff EOS models. We use these methods to study the predicted IMF in a wide variety of star-forming environments. The remainder of this paper is laid out as follows. First, in Section 2, we introduce the semi-analytical framework we use to test different models of star formation. In Section 3.1, we show that isothermal turbulent fragmentation leads to a scale-free IMF. In Section 3.2, we show that models with a stiffened EOS are inherently sensitive to the initial conditions so they cannot provide an invariant mass scale. In Section 3.3, we provide a simple model for protostellar heating that leads to an IMF with remarkably little sensitivity to initial conditions. Finally, in Section 4 we discuss the implications of our findings, and conclude.
2 MODEL AND METHODOLOGY

2.1 Model overview

In order to test the different models, we are using the semi-analytical framework of GH15. This takes advantage of the fact that the density fluctuations in a highly turbulent medium locally obey approximately lognormal random field statistics, thereby avoiding the need for computationally expensive hydrodynamical simulations while still preserving spatial information (unlike analytical excursion set models like Hopkins 2012b and Guszczew & Hopkins 2015b). The present version of the model only includes the bare essential physics: turbulence (pumped by the collapse of the cloud), collapse (at constant virial parameter, motivated by Robertson & Goldreich 2012 and Murray et al. 2015), an EOS and a simple feedback prescription.

The initial conditions of clouds are defined by their mass, the sonic length (R_{sonic}, scale at which the turbulent velocity dispersion is equal to the sound speed) and the sonic mass (M_{sonic}), from which other parameters (e.g. temperature, Mach number) can be derived. For details about initial conditions see GH15 (a detailed step-by-step guide to the model is provided in Appendix A).

Our simulations start from a giant molecular cloud (GMC) with fully developed turbulence and follow its collapse. Every time a new self-gravitating substructure appears (i.e. the cloud fragments) the code is run recursively for each substructure. When a cloud reaches the protostellar size scale ($\sim 10^{-4} \text{pc}$), it is considered to be fully collapsed into a protostar and the simulation stops. This means that the final output of the code is the protostellar system mass function which we will assume to be identical to the IMF throughout this paper. This assumption is not quite accurate, particularly in the brown dwarf regime, as it neglects the production of brown dwarfs (see Section 3.3) in the standard ($T_0 = 10 \text{ K}$) scenario. This means $\Sigma_{\text{crit}} \sim 130 \text{ M}_{\odot} \text{ pc}^{-2}$. Using a higher surface density would only shift the turnover mass scale to lower values, it would not affect its sensitivity to initial conditions (see GH15 for results with such an EOS). In other words, we are giving these models their ‘best chance’ to fit the data.

Another formulation we consider is one where the stiffening occurs at a characteristic volume density ρ_{crit}, which we refer to as a $\gamma(\rho)$ EOS. The form we adopt for this EOS is equivalent to the one used by Bate (2009a):

$$
\gamma(\rho) = \begin{cases}
1.0 & \rho < \rho_{\text{crit}} \\
1.4 & \rho > \rho_{\text{crit}}
\end{cases}
$$

where $\rho = 3 M/4\pi R^2$. Once again we chose the critical value so that it is convenient to compare with the other models so we set $\rho_{\text{crit}} = 15 000 \text{ M}_{\odot} / \text{ pc}^{-2}$ corresponding to $n_{\text{H}_2, \text{crit}} \approx 2.6 \times 10^3 \text{ cm}^{-3}$.

For reference we also include a scenario with a more physically motivated EOS based on the works of Masunaga & Inutsuka (2007) where we set $\rho_{\text{crit}} = 5000 \text{ M}_{\odot} / \text{ pc}^{-2}$ and $\rho_{\text{crit},2} = 5 \times 10^8 \text{ M}_{\odot} / \text{ pc}^{-3}$ corresponding to $n_{\text{H}_2, \text{crit},1} \approx 10^3 \text{ cm}^{-3}$ and $n_{\text{H}_2, \text{crit},2} \approx 10^{10} \text{ cm}^{-3}$.

While these are only three of the EOSs that have been proposed in the literature, they serve as representative examples of the outcomes produced by such an approach.

2.2 Equation of state models

In this paper, we consider a series of models that include increasingly sophisticated treatments of gas thermodynamics. The simplest, which correspond to the usual assumption in turbulent fragmentation models, is that the gas is isothermal, corresponding to an adiabatic index $\gamma = 1$. The next level of complexity is simulations with a non-constant γ. The simulation allows for arbitrary EOSs which are taken into account as effective polytropics:

$$
T(x, t + \Delta t) = T(x, t) \left(\frac{\rho(x, t + \Delta t)}{\rho(x, t)} \right)^{\gamma(t)-1},
$$

where $\gamma(t)$ is the effective polytropic index at the time t. To explore models in which the key physical process is a stiffening of the EOS, we consider two possible formulations. Some authors have proposed that stiffening occurs at a characteristic surface density Σ_{crit}, and we refer to models of this form as $\gamma(\Sigma)$ EOSs. The particular parametrization we explore in this work is similar to that proposed by Glover & Mac Low (2007), which is

$$
\gamma(\Sigma) = \begin{cases}
1.0 & \Sigma < \Sigma_{\text{crit}} \\
31/24 & \Sigma > \Sigma_{\text{crit}}
\end{cases}
$$

where $\Sigma = M/(4\pi R^2)$ for a cloud of mass M and radius R.

GH15 shows that using the standard value of $\Sigma_{\text{crit}} = 5000 \text{ M}_{\odot} \text{ pc}^{-2}$ leads to a turnover mass of $\sim 0.01 \text{ M}_{\odot}$, much too low compared to the observed IMF; indeed, the mass picked out by this choice is simply the opacity limit for fragmentation (Rees 1976). For this reason, we set Σ_{crit} so that it is equal to critical surface density of the protostellar heating model (Σ_{heat}, see Section 3.3) in the standard ($T_0 = 10 \text{ K}$) scenario. This means $\Sigma_{\text{crit}} \sim 130 \text{ M}_{\odot} \text{ pc}^{-2}$. Using a higher surface density would only shift the turnover mass scale to lower values, it would not affect its sensitivity to initial conditions (see GH15 for results with such an EOS). In other words, we are giving these models their ‘best chance’ to fit the data.

Note that the value of $31/24$ was chosen to allow the comparison of models with protostellar heating and $\gamma(\Sigma)$ EOSs (see Section 3.3). The choice of this value has no effect on the sensitivity of the results to initial conditions.
The actual input parameters of the code are the sonic mass M_{sonic} and length R_{sonic}, from which more physical parameters like initial temperature (T_0), radius (R_0), Mach number (M_0), surface density (Σ_0) and number density ($n_{H_2,0}$) can be derived. All runs were performed for a large statistical ensemble (~500) of 10^5 M⊙ GMCs.

Table 1. Initial conditions of the different simulation runs presented in this paper. The actual input parameters of the code are the sonic mass M_{sonic} and length R_{sonic}, from which more physical parameters like initial temperature (T_0), radius (R_0), Mach number (M_0), surface density (Σ_0) and number density ($n_{H_2,0}$) can be derived. All runs were performed for a large statistical ensemble (~500) of 10^5 M⊙ GMCs.

<table>
<thead>
<tr>
<th>Label</th>
<th>Input parameters</th>
<th>Derived parameters</th>
<th>Thermodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_{sonic} (M⊙)</td>
<td>R_{sonic} (pc)</td>
<td>T_0 (K)</td>
</tr>
<tr>
<td>IsoTherm_T10</td>
<td>2.3</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>EOS_T10</td>
<td>2.3</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>EOS_T20</td>
<td>4.6</td>
<td>0.1</td>
<td>20</td>
</tr>
<tr>
<td>EOS_T75</td>
<td>17.25</td>
<td>0.1</td>
<td>75</td>
</tr>
<tr>
<td>EOS_hiMach</td>
<td>0.09</td>
<td>0.004</td>
<td>10</td>
</tr>
<tr>
<td>EOS_ULIRG</td>
<td>0.42</td>
<td>0.0026</td>
<td>75</td>
</tr>
<tr>
<td>EOS_Phi_T10</td>
<td>2.3</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>Heated_T10</td>
<td>2.3</td>
<td>0.1</td>
<td>10</td>
</tr>
<tr>
<td>Heated_T20</td>
<td>4.6</td>
<td>0.1</td>
<td>20</td>
</tr>
<tr>
<td>Heated_T75</td>
<td>17.25</td>
<td>0.1</td>
<td>75</td>
</tr>
<tr>
<td>Heated_hiMach</td>
<td>0.09</td>
<td>0.004</td>
<td>10</td>
</tr>
<tr>
<td>Heated_hiDens</td>
<td>0.46</td>
<td>0.01</td>
<td>20</td>
</tr>
<tr>
<td>Heated_ULIRG</td>
<td>0.42</td>
<td>0.0026</td>
<td>75</td>
</tr>
</tbody>
</table>

3 SOURCE OF INVARIANT MASS SCALE

One of the key features of the IMF is the turnover mass which appears to be close to universal. In this section, we investigate different models of turbulent fragmentation – starting from the simplest – to test whether they are capable of producing a nearly invariant turnover mass, as demanded by the observations.

3.1 Failure of isothermal fragmentation

We first examine our isothermal case, IsoTherm_T10, the results for which are shown in Fig. 1. As the Figure shows, the IMF we obtain in the isothermal case is a pure power law, with no visible turnover. Although not shown in Fig. 1, we obtain a similar scale-free result for the IMF produced by purely isothermal fragmentation independent of our choice of initial conditions. It is important to note that, in the isothermal case, the CMF does have a turnover, at the sonic mass $M_{\text{sonic}} \sim c_s^2 R_{\text{sonic}}/G$, which is set by the initial conditions (see GH15). However, this does not result in an IMF with a turnover.

This result might at first seem surprising, but we can understand it through a simple analytic argument. In a number of analytical studies (e.g. Hopkins 2012b), the IMF is inferred from the CMF by shifting the mass scale by a factor of 1/3 (rule of thumb: ‘a third of the bound mass ends up in the star’), which is not physically correct, as cores undergo gravitational collapse which takes a finite amount of time, allowing them to further fragment into a spectrum of submasses (Guszejnov & Hopkins 2015b).

This means that a single initial core forms its own subcores starting from different initial conditions, so the distribution of subfragments (CMF of ‘second generation’ fragments) will have its turnover at a different scale than the parent population. The collapse of highly supersonic clouds is self-similar so every factor of 2 contraction takes about a dynamical time (see section 9.2 in Hopkins 2013b). This means that the cloud can fragment at any scale thus there is the same ‘amount of fragmentation’ at each scale,
producing an infinite fragmentation cascade. This explains why numerical studies have been unable to get converged results, as higher resolution leads to fragmentation on even smaller scales.

We will now attempt to illustrate the qualitative behaviour we might expect from a self-similar fragmentation cascade, by calculating the IMF in a special case. First, let us assume that a self-gravitating cloud has λ chance of collapsing without fragmentation and forming a star. Because the process is self-similar, λ must be independent of cloud mass. Let us further assume that when a cloud of M mass fragments, the newly formed clouds have an average mass of αM. For convenience let us further simplify the model by assuming that a cloud either collapses to a star or breaks up into fragments of α relative mass.

In this simplified model, calculating the mass budget is very easy. The ith generation of fragmentation produces clouds of mass $M_i = \alpha^i M_0$, where M_0 is the mass of the initial cloud. The total mass of these clouds is $M_0(1 - \lambda)$, where the second factor is simply the fraction of the mass not collapsed to stars yet in the previous $i - 1$ generations. Since a fraction λ of these clouds will collapse to stars without fragmenting further, the total mass of stars of mass M_i is just $f_i = M_0 \lambda (1 - \lambda)^i$. As mentioned in Section 1, the results from numerical simulations show a large degree of fragmentation, so we expect $\lambda \ll 1$. In this limit, $f_i \approx M_0 \lambda (1 - i \lambda)$, and f_i will therefore be approximately constant for all $i \ll 1/\lambda$. Since $1/\lambda \gg 1$, this means that f_i is nearly constant over a very large number of generations of fragmentation. Further recall that, since the generations of fragments are separated logarithmically in mass (i.e. $\log (M_i/M_{i+1}) = \log \alpha$ is constant), a constant value of f_i corresponds to constant mass per logarithmic interval in object mass. In terms of number of objects per unit mass (as opposed to per unit log mass), this is $dN/dM \propto M^{-2}$, which is close to what we find. Our actual model is considerably more complex, in that clouds can produce variable numbers of fragments with variable masses, but this simple illustration captures the essence of the isothermal result.

In summary: although isothermal models like Hopkins (2012b) recover the CMF shape, they are unable to explain the shape of the IMF. In the case of isothermal fragmentation, independent of the form of the CMF, the IMF becomes a power law of M^{-2} as the initial conditions are ‘forgotten’ during the fragmentation cascade. This means that to produce an IMF that is not a pure power law, as observed, an extra physical process is required that would stop the cascade at a mass scale invariant to the initial conditions.

3.2 Can a universal mass scale come from the EOS?

One mechanism to imprint a mass scale on to the process of turbulent fragmentation is to have the EOS deviate from isothermality, either because the gas becomes optically thick to its own cooling radiation, or due to a change in the cooling process such as the onset of grain–gas coupling. We investigate this approach in our EOS models.

Fig. 2 shows the results of simulations using our $\gamma(\Sigma)$ (surface density dependent) EOS (EOS_{Σ} models), for a variety of initial conditions. We see that, with an appropriate choice of Σ_{crit}, one can obtain a stellar mass function that agrees reasonably well with the observed IMF. However, one can do so only for a particular choice of initial conditions. As shown in GH115, an EOS with stiffening suppresses fragmentation below mass scale $M_{\text{crit}} \sim \frac{c_s^4}{\Sigma_{\text{crit}} G T} \propto T^2 / \Sigma_{\text{crit}}$.
which is clearly shown by the figure. Also, stronger turbulence leads to more fragmentation and thus more brown dwarfs (see EOS_{HiMach} and EOS_{ULIRG}) in accordance with predictions (e.g. Hopkins 2013c). At first EOS_{Σ"hiMach"} might seem to contradict that as it has more large protostars than EOS_{T10}. This occurs because in this model the initial density starts out very close to the critical density.

Figure 3. The IMF of the volume density dependent EOS model (EOS_v) for standard (EOS_{v,T10}; T = 10 K, R_{sonic} = 0.1 pc), high temperature (EOS_{v,T20}; T = 20 K), extreme turbulence (EOS_{v,HiMach}; R_{sonic} = 0.0026 pc), extreme temperature (EOS_{v,T75}; T = 75 K), and ULIRG (EOS_{v,ULIRG}; T = 75 K, R_{sonic} = 0.0026 pc) initial conditions (see Table 1). There is a clear trend of increasing turnover mass with initial temperature, consistent with M_{crit} ∝ T_v/2. Despite having stronger turbulence EOS_{v,ULIRG} seems to produce more top heavy IMF than EOS_{v,T75}. This occurs because in this model the initial density starts out very close to the critical density.

3.3 Effects of protostellar heating

Another possible origin of a universal mass scale is stellar feedback, including protostellar heating, outflows, accretion, photoionization heating and supernovae, none of which are scale-free processes. Thus, they all have the capability to imprint a mass scale. In this paper, we only concentrate on protostellar heating as it is the earliest and strongest feedback mechanism during the evolution of protostellar cores. Most of the other mechanisms act after the stars form, which can therefore only alter the IMF of ‘second-generation’ stars.

Figure 4. The IMF of the protostellar heating model with standard (Heating_{T10}; T = 10 K, R_{sonic} = 0.1 pc), high temperature (Heating_{T20}; T = 20 K), high density and temperature (Heating_{HiDens}; T = 20 K, n = 5000 cm⁻³), extreme turbulence (Heating_{HiMach}; R_{sonic} = 0.0026 pc), extreme temperature (Heating_{T75}; T = 75 K), and ULIRG (Heating_{ULIRG}; T = 75 K, R_{sonic} = 0.0026 pc) initial conditions (see Table 1). The predicted IMF is remarkably invariant to initial conditions. The turnover point does shift slightly to lower masses for both very strong turbulence and high temperature (stronger turbulence makes fragmentation easier and a higher initial temperature means that protostellar heating becomes dominant at a smaller mass scale).

Choosing the values of Σ_{crit} or ρ_{crit} that one would naturally predict based on considerations of gas thermodynamics would make the agreement with observations very poor even in the Milky Way-like case (see EOSPhys_{T10} in Fig. 1).
case, with a peak that is shifted by a tens of percent slightly relative to $T10$. We emphasize that, unlike the $\gamma(\Sigma)$ and $\gamma(\rho)$ cases, where we explicitly tuned model parameters to produce the correct peak mass, the protostellar heating model is not tuned, and has no free parameters. Its only parameter is the value of Ψ, which is determined entirely by the physics of stellar structure and deuterium burning. Thus both the location and the invariance of the IMF peak in this model are independent predictions.

It is worth noting that this model does seem to produce too few brown dwarfs and an excess of M dwarf stars. However, it also neglects protostellar disc fragmentation and other ‘sources’ of brown dwarfs, which would reduce the excess between $0.1–1 M_\odot$ and enhance the number of objects at lower masses. Whether including these processes leads to the correct proportion of brown dwarfs remains an open question, though the radiation-hydrodynamic simulations of Bate (2009a, 2014) and Krumholz et al. (2012) suggest this is in fact the case.

It is also instructive to compare the results of the protostellar heating models to the EOS models, in order to understand why the results are so different. We use a simple model that assumes the cloud behaves ‘isothermally’ except for a global heating term. This means that $T_{\text{EOS}} = T_0$ (from equation 6), which is the initial temperature of the cloud (set by external heating like cosmic rays). At first glance the protostellar heating model proposed above seems very much like an opacity limit EOS model, as $T_{\text{heat}} \propto M^{3/8} R^{-7/8}$ $\propto \Sigma^{3/8}$ so the collapse of the cloud is isothermal until a characteristic T_{heat} is reached, where $T_{\text{heat}} = T_0$. From that point on $T \approx T_{\text{heat}}$ which means that the temperature increases as if we had a polytropic index of $\gamma = 31/24$ (see equation 2). Similar to the EOS models we can find the characteristic fragment mass M_{crit} where this transition happens. Using the above relations, the collapse threshold $M_{\text{crit}} \propto \sqrt{T_0^{15/8}} = \text{const.}$ and assuming a subsonic fragment ($M \ll 1$) we get $M_{\text{crit}} T_0^{1/4} = \text{const.}$, which means that there is remarkably weak sensitivity to the initial temperature (K11 includes a more rigorous derivation which yields $M_{\text{crit}} \propto T_0^{-1/15}$). Comparing Fig. 4 with Fig. 2 makes the difference this produces in the resulting IMF abundantly clear, as the protostellar heating model is insensitive to the initial conditions and provides a sharper cutoff at low masses.

4 CONCLUSIONS

The aim of this paper is to investigate what physical processes can explain the origin of the IMF, and in particular the fact that the IMF is not a power law, and that its characteristic mass scale is remarkably insensitive to variations in the star-forming environment. To this end, we have considered three classes of models for gas thermodynamics: purely isothermal models, models with an EOS that stiffens at a characteristic volume or surface density, and models containing a simple analytic estimate for the effects of protostellar heating.

We find that purely isothermal models categorically fail to reproduce the IMF. Although the initial conditions do imprint a mass scale (the sonic mass) which is apparent in the distribution of bound structures (i.e. the CMF), due to the lack of mass scale in the equations of motion this scale is ‘forgotten’ during the fragmentation cascade, leading to an M^{-2} power-law solution for the IMF (consistent with the lack of convergence reported thus far in numerical studies). This means that isothermal gravito-turbulent fragmentation cannot explain the existence or universality of the turnover scale in the IMF. Some other physics is needed for that.

An often invoked expansion of the fragmentation model is to have the clouds transition from an isothermal to a ‘stiff’ EOS when they reach a critical surface or volume density and become thick to their own cooling radiation. This does provide a mass scale for the system, and by tuning the parameters of the model appropriately one can reproduce the observed IMF turnover. However, we find that this approach results in a mass scale that is extremely sensitive to initial conditions ($M_{\text{crit}}[\gamma(\Sigma)] \propto T^2$ and $M_{\text{crit}}[\gamma(\rho)] \propto T^{3/2}$), rendering these models unable to provide a universal mass scale as is observed. Moreover, producing agreement with the observed mass scale even for initial conditions similar to those found in solar neighbourhood star-forming regions requires parameter choices that are very far from what one would have estimated based on any first-principles physical argument.

We argue instead that feedback physics can provide a mass scale that is both in good agreement with observations and insensitive to the conditions in the star-forming region. As an example, based on K11, we have formulated a simple prescription for protostellar heating. This alone of all the analytical models we consider is able to provide a universal IMF turnover, despite large variations in initial gas temperature, densities, Mach number, and masses of star-forming clouds.

4.1 Caveats and future work

We close with a discussion of the limitations of our model, and how we plan to improve it in future work. We utilize the semi-analytical framework of GH15 which makes strong approximations. Motivated by Robertson & Goldreich (2012), we assume collapse at constant virial parameter as turbulence is pumped by gravity. While this assumption has empirical support, it has not been rigorously demonstrated (although simulations so far seem to confirm this, see Murray et al. 2015). Furthermore, the simulation only follows the evolution of self-gravitating structures until they reach the size scale where angular momentum becomes important (which is not treated in the current models), and, thus processes that act on the scales of discs or smaller (e.g. disc fragmentation) are neglected. This could have a significant effect on the low mass end of the resulting IMF. Also, fragments are assumed to evolve independently, so mergers and other interactions are neglected. Finally, the protostellar heating model assumes instantaneous, isotropic, steady state heating and neglects other forms of feedback (e.g. outflows).

Some of these limitations will be easier to remove than others. The assumption that collapse occurs at constant virial parameter can be investigated by simulations, as can be the fragmentation of discs, and in principle results from these calculations could be incorporated into our model. Similarly, a number of authors have proposed more complex models for the protostellar heating, including the effects of fluctuations in time (e.g. Lomax et al. 2014) that was found to have significant effect on the statistics of star formation (Stamatellos, Whitworth & Hubber 2012; Lomax et al. 2015), and these could be included as well. Furthermore, it is possible to include angular momentum (like in Hopkins 2012b) and interaction between fragments with significant extension of the model. The

This is actually a fairly good assumption. The time-scale for two clouds of R radius to merge in this framework is $t_{\text{merge}} \sim d/v$, where d is the separation between clouds and v is their relative velocity towards each other. It is easy to show that $t_{\text{merge}}/t_{\text{freefall}} \sim \sqrt{d/R} (1 + R_{\text{static}}/R) > \sqrt{d/R}$. This means that the time-scale for merging is only comparable to the freefall time if the clouds initially form right next to each other ($d \sim 2R$).
entire framework can also be checked against radiation-hydrodynamic simulations such as those of Krumholz et al. (2012) or Myers et al. (2014).

In addition to these improvements in the model itself, an obvious next step is to identify predictions of the model that can be compared with real data. We mention here two obvious, first order predictions that we plan to investigate in future work. First, using the output of cosmological simulations or semi-analytic models, we can investigate the extent to which the small amount of variation we do find in the protostellar heating model produces significant variations in the IMF of elliptical galaxies over cosmological times. These predictions can then be compared to observations (e.g. van Dokkum & Conroy 2010; Cappellari et al. 2012). Secondly, because our model retains spatial information, it makes predictions for the clustering of stars as well as for their mass distribution. This too can be checked against the spatial distribution of stars in nearby star-forming regions, a test that has been performed before using both analytic (Hopkins 2013a) and numerical (Hansen et al. 2012; Myers et al. 2014) models. It should be noted, however, that without accounting for protostellar disc fragmentation most results (e.g. correlation function, binarity) will only be valid on scales larger than the typical protostellar disc size.

ACKNOWLEDGEMENTS

Support for PFH and DG was provided by an Alfred Sloan Research Fellowship, NASA ATP Grant NNX14AH35G, and NSF Collaborative Research Grant #1411920 and CAREER grant #1455342. MRK is supported by NSF grants AST-0955300, AST-1405962, and NASA ATP grant NNX15AT06G. Numerical calculations were run on the Caltech computer cluster ’Zwicky’ (NSF MRI award #PHY-0960291) and allocation TG-AST130039 granted by the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the NSF.

REFERENCES