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ABSTRACT
At present, the principal limitation on the resolution and contrast of astronomical imaging
instruments comes from aberrations in the optical path, which may be imposed by the Earth’s
turbulent atmosphere or by variations in the alignment and shape of the telescope optics. These
errors can be corrected physically, with active and adaptive optics, and in post-processing of the
resulting image. A recently developed adaptive optics post-processing technique, called kernel-
phase interferometry, uses linear combinations of phases that are self-calibrating with respect
to small errors, with the goal of constructing observables that are robust against the residual
optical aberrations in otherwise well-corrected imaging systems. Here, we present a direct
comparison between kernel phase and the more established competing techniques, aperture
masking interferometry, point spread function (PSF) fitting and bispectral analysis. We resolve
the α Ophiuchi binary system near periastron, using the Palomar 200-Inch Telescope. This is
the first case in which kernel phase has been used with a full aperture to resolve a system close
to the diffraction limit with ground-based extreme adaptive optics observations. Excellent
agreement in astrometric quantities is found between kernel phase and masking, and kernel
phase significantly outperforms PSF fitting and bispectral analysis, demonstrating its viability
as an alternative to conventional non-redundant masking under appropriate conditions.

Key words: instrumentation: adaptive optics – instrumentation: high angular resolution –
techniques: image processing – techniques: interferometric.

1 IN T RO D U C T I O N

Kernel phase interferometry (Martinache 2010) is a powerful tech-
nique for image analysis, applicable to any observations which
both Nyquist sample all spatial frequencies, and have appropri-
ately small wavefront errors. The method is based on a linear ap-
proximation, introduced first in Martinache (2010), considering a
transfer matrix propagating small phase errors in a pupil or re-
dundant array into the corresponding space of u, v baselines. The
kernel of this matrix generates ‘kernel phases’ that are a general-
ization of the self-calibrating closure phase quantity well known
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in interferometry (Jennison 1958). These linear combinations of
phases have the property that small phase errors cancel, mean-
ing for example that the residual aberrations after adaptive op-
tics (AO) do not propagate at first order into the kernel-phase
measurements. The kernel-phase technique holds promise for de-
tecting objects at high contrast at or just inside the diffraction
limit ∼λ/D of space telescopes, or of ground-based telescopes
assisted with extreme AO. Such instruments are now present on
many of the world’s largest optical telescopes, including PALM-
3000 at Palomar (Bouchez et al. 2008), Subaru Coronagraphic
Extreme AO (SCExAO; Martinache et al. 2009), VLT-SPHERE
(Beuzit et al. 2010), and the Gemini Planet Imager (GPI; Macin-
tosh et al. 2008, 2014). Moreover, the upcoming James Webb Space
Telescope (Gardner et al. 2006) will be capable of nearly diffraction-
limited resolution at very high sensitivity, and it will be important to
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establish and benchmark the performance of kernel phase and other
image analysis approaches to best exploit the high image quality it
will provide.

Pope, Martinache & Tuthill (2013) first applied kernel-phase
interferometry to a sample of brown dwarf systems imaged by Reid
et al. (2006, 2008) using the HST-NICMOS NIC1 camera. Where
the original papers found a total of 10 binary systems out of 72
studied, Pope et al. (2013) recovered all of these and found five
additional systems with high confidence, as well as four other new
more marginal candidates at lower confidence or higher contrast.

Kernel-phase interferometry has not previously been used to re-
solve a close system with ground-based full-aperture extreme AO
observations, and a detailed discussion of kernel-phase reduction
compared to other competing techniques has not been published.
Martinache (2011) reported the extraction of kernel phases from
a Keck II NIRC image, but did not report the detection of any
companion. Ireland & Kraus (2014) have presented a kernel-phase
image reconstruction of the LkCa15 system in an M filter. In this
paper, we discuss kernel phase and NRM observations of the close
binary system α Ophiuchi (α Oph, or Rasalhague) under identical
observing conditions on the same night, with a view to using this
as a benchmark for comparing the two methods. This is the first
time such a simultaneous comparison has been made. A prelim-
inary analysis of these observations was presented in conference
proceedings by Martinache (2013) and Hinkley et al. (2015).

Hinkley et al. (2011) carried out an AO non-redundant masking
(NRM) study of this system, a nearby binary with an A5 III primary,
in order to characterize its orbital parameters. Hinkley et al. (2011)
find a contrast ratio of 27.9 ± 8.3 in the K band from resolved
Palomar-PHARO (Hayward et al. 2001) imaging. The primary is
known to be rotating at ∼89 per cent of its predicted break-up ve-
locity (Zhao et al. 2009), and asterosesimic analysis with MOST
shows rotationally modulated g-modes that probe the conditions of
the interior (Monnier et al. 2010). Establishing its mass with preci-
sion is therefore valuable for constraining models of its rotational
dynamics. Hinkley et al. (2011) predicted the companion would
pass periastron at ∼2012 April 11, and for this reason there was an
observing campaign in 2012 to track its orbit at its apparent closest
point, which is particularly critical in delivering a fully constrained
dynamical orbit. While α Oph is ordinarily a well-separated binary,
at periastron the companion is buried within the PSF of the primary.

1.1 Observations

Observations were made on 2012 June 26, two months after perias-
tron, using the PHARO camera on the 5.1-m Hale Telescope at Mt
Palomar Observatory. Data were obtained using a nine-hole aper-
ture mask, an 18-hole aperture mask and with the full aperture (with
no mask) in CH4 and Ks bands, whose filters are centred at 1.57 and
2.145 µm, respectively with bandpasses of 0.1 and 0.310 µm. The
nine-hole mask contained projected baselines ranging from 0.75
to 4.15 m with a projected hole diameter of 0.5 m, while for the
18-hole mask the projected baselines ranged from 0.37 to 4.81 m
with a projected hole diameter of 0.25 m.

In addition to α Oph, PSF reference stars ε Oph and ε Her
were observed as calibrators. These data were then reduced to a
standard FITS cube form using existing masking code. Regrettably,
the full aperture observations in the CH4 band suffered from poor
AO performance and detector saturation and were excluded from
the present study. The seeing varied between 1.5 and 2 arcsec during
the observations. By modelling the PSF, we determined the median
Strehl across the exposures to have been ∼0.51 in the Ks band.

Figure 1. Maximum entropy model-independent image reconstruction
using BSMEM for Ks band non-redundant masking data.

In the full-pupil imaging, a neutral-density filter was used to
diminish the brightness of the star, as is necessary to avoid saturating
the science camera. This introduces a ‘ghost’ (a reflection artefact),
which severely limits the maximum size of the window that can be
used in kernel-phase analysis, as discussed in Section 3. In future,
it would be beneficial to choose filters in such a way as to avoid
ghosts wherever possible, or to avoid using such filters altogether,
for example by using very short exposure times or simply observing
fainter targets.

Non-redundant 18-hole aperture masking observations with a
Brγ filter were processed to obtain the arguments of the mean bis-
pectrum, i.e. bispectral-amplitude-weighted average closure phases.
We used a Markov chain Monte Carlo (MCMC) method to fit a bi-
nary model to these closure phases, recovering a companion at
131.2 ± 1.4 mas separation, position angle 82.8 ± 0.◦7 and 27.6 ±
1.2 contrast. As we were not able to obtain Brγ observations with a
filled aperture, these are useful only for comparison with the kernel-
phase data. Non-redundant nine-hole observations with a Ks filter
found the same companion at 129.6 ± 2.2 mas separation, 83.5 ±
1.◦1 position angle and 28.7 ± 2.3 contrast. This contrast ratio is
consistent with the 27.9 ± 8.3 in the K band reported in (Hayward
et al. 2001). In addition to this, we performed a maximum entropy
model-independent image reconstruction using BSMEM (Fig. 1), in
which it is apparent that the parametric model accurately captures
the information about the source intensity distribution. These aper-
ture masking observations set the standard with which the kernel-
phase-based analyses must be compared.

2 PRO CESSI NG AND RESULTS

In Sections 2.1 and 2.2, we discuss the methods used to analyse
data in this paper. In the interests of reproducibility and open
science, we have made public our code and data: .FITS files for
our raw data are stored on Figshare,1 together with the IPYTHON

1 http://figshare.com/s/4e69f7b2b30411e4bf4a06ec4bbcf141
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notebook which was used to analyse these observations; and the
PYSCO PYthon Self-Calibrating Observables package, a PYTHON mod-
ule for extracting and analyse kernel-phase data, is available in a
public GitHub repository.2 All other packages used in this analysis
are publicly distributed elsewhere. We welcome efforts by other
researchers to apply this body of analysis software to these or other
data, with appropriate citation.

In all full-frame images, the peak of the PSF pushed the detector
into its non-linear response regime. Kernel phase requires strict
linearity, being a Fourier technique, and so each frame therefore
had to be calibrated with a non-linear gain curve map in order to
restore linearity. The core of ε Oph was fully saturated in the Ks

band, and therefore ε Her was used as the sole calibrator.

2.1 Kernel-phase extraction and calibration

As discussed in Section 1, kernel phases are self-calibrating linear
combinations of phases, which are robust with respect to small
residual wavefront errors. We calculate a matrix to generate these a
priori based on an assumed discrete model of the pupil.

We obtained direct images of the PHARO ‘medium cross’ pupil,
and found the ratio of the outer radius to the central obscuration,
and of this radius to the thickness of the spiders, to differ to a small
extent from the nominal values reported in Hayward et al. (2001).
This is very important to establish carefully, as information from
longer baselines than exist in the telescope consists purely of noise
and will corrupt any kernel phases obtained. In order to establish a
precise pupil model as is necessary for kernel phase, we used the
visibility amplitudes extracted from the point-source calibrator, ε

Her, to constrain the overall scale of the pupil. This may differ from
the published values because of an error in the measured projected
pupil size, or an offset in the effective filter bandpass, which we
model as the nominal Ks band centre of 2.145µm, but may differ
from this nominal value due for example to a slope in the stellar
spectrum.

The absolute magnitude of the Fourier transform of the image
of a point source, in the case of a flat wavefront, is a map of the
optical modulation transfer function. This is itself found as the
autocorrelation of the pupil, whose magnitude is approximately
given by the redundancy of each baseline in a discrete pupil model.
We therefore varied this overall outer scale in the vicinity of the
value reported in Hayward et al. (2001), which lists a projected
radius of 2.32 m. In order to be as sensitive as possible to the outer
radius, we perform a least-squares fit by brute force between the
logarithms of the redundancy matrix elements and the magnitude of
the stacked Fourier transforms of all 100 observed frames. The fit is
best conditioned by the low visibilities, at the edge of the pupil, and
there is some discrepancy at intermediate visibilities (low spatial
frequencies), where we are sensitive to the faint binary-like signal
of the ND filter ghost and residual low-order aberrations. Ideally,
we would model this pupil cojointly with the binary model, and
marginalize over uncertainties, which in the present circumstances
we are unable to do due to the prohibitively long computational
times. The best fit is found with an outer projected radius of 2.392 m,
which we therefore adopt as fixed in the following analysis. The
discretized pupil generated with this model is shown in Fig. 2,
containing 1128 elements, and generating 3256 baselines.

Using a singular value decomposition, we find this model to
generate 2692 kernel phases. We centre each image in real space

2 https://github.com/benjaminpope/pysco

Figure 2. Hale Telescope medium-cross pupil model. Red dots represent
pupil sampling points; note that they avoid the spiders, which on the Hale
Telescope are vertical and horizontal with respect to the detector axes.

and recentre it to sub-pixel precision by subtracting a phase slope
in its Fourier transform, and apply this matrix to phases extracted
from the corresponding 3256 baselines in this Fourier transform in
order to obtain the kernel phases.

There are several differences between the application of kernel
phase to this data set and to the previously published HST sample in
Pope et al. (2013). In particular, each observation consists of a data
cube of 100 frames, yielding excellent experimental diversity so
that the statistics on each kernel phase can be readily recovered, as
opposed to the case with the HST snapshot data where an ensemble
average over many different targets was required. Kernel phases are
therefore extracted separately from each frame of data, and then
combined such that in the following Sections we take as our data
the ensemble mean of each kernel phase over the set of frames, and
the statistical uncertainties are taken to be the standard errors of the
mean (SEM).

As is standard practice in NRM interferometry, the PSF refer-
ence stars ε Oph and ε Her were processed in the same way. By
subtracting the kernel phases measured on these point sources, it is
therefore possible to calibrate systematic offsets in the instrumental
kernel-phase measurements. The uncertainties on each of the cal-
ibrator’s kernel phases, again taken to be the standard error of the
mean, are added in quadrature to the uncertainties on the science
target’s kernel phases.

In addition to this, we also add in quadrature a second error
term of 1.◦35 to account for uncalibrated systematic errors. We fit
a parametric binary model to the data as described in Section 2.2,
and iteratively adjust the magnitude of this additional error term so
that the reduced χ2 of the best-fitting parameters is approximately
unity.

2.2 Bayesian parameter estimation

The next steep is to fit a parametric model to these kernel-phase
data, defined by the binary parameters separation (mas), position
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Table 1. Binary parameter estimates for α Ophiuchi at JD 2456104.847025.

Mode Separation Position angle Contrast
(mas) (◦) (Ks)

Kernel Phase 129.3 ± 1.2 83.6 ± 0.3 34.2 ± 1.1
PSF Fitting 131.9 ± 0.5 84.3 ± 0.4 19 ± 2.4
Aperture Masking 129.6 ± 2.2 83.5 ± 1.1 28.7 ± 2.3
Bispectral Phase 140.9 ± 1.0 86.7 ± 0.7 15.4 ± 0.7

Figure 3. Correlation diagram for α Ophiuchi kernel phases in the Ks band.
We plot model kernel phases on the x-axis and the observed signal on the
y-axis, such that for a good fit we expect the data to lie on a straight line of
gradient unity (overplotted green line).

angle (◦) and contrast, proceeding in a similar fashion to Pope
et al. (2013). We estimate these parameters using two Bayesian in-
ference algorithms, namely MULTINEST (Feroz, Hobson & Bridges
2009), an implementation of multimodal nested sampling, and
EMCEE (Foreman-Mackey et al. 2013), an affine-invariant ensem-
ble MCMC sampler. We used both approaches first as a check for
consistency, but also because they have complementary strengths
(Allison & Dunkley 2014): on the one hand, MULTINEST efficiently
and reliably converges on the global peak of a posterior distribu-
tion without significant sensitivity to an initial guess and avoids
being trapped in local likelihood maxima. On the other hand, EMCEE

is more effective at exploring and characterizing potentially non-
Gaussian, curving degeneracies in the shape of the posterior mode;
as noted in Pope et al. (2013), there is typically significant degener-
acy between separation and contrast in kernel phase fits to systems
at close to the diffraction limit, and it is important to explore the
shape of this curve.

We began by running MULTINEST, obtaining the parameter esti-
mates listed in Table 1. The corresponding correlation diagram is
displayed in Fig. 3. After our first attempt with no additional uncer-
tainty added in quadrature, we iteratively re-ran the MCMC adding
an additional error term in quadrature until the fit of the posterior
mean achieved a reduced χ2 of approximately unity. This term was
found to be ∼1.◦35 in the kernel-phase case, and 7.◦0 in the case of
the bispectral phases.

As discussed above, interferometric determinations of binary pa-
rameters at close to the diffraction limit often suffer from degeneracy
between contrast and separation. As a result, we used the MULTINEST

output to initialize an EMCEE run with 100 walkers and 200 burn-in
steps and recorded 1000 subsequent steps to sample from the pos-

terior. From this, it is apparent that there is only a small degree of
covariance between these parameters, and we find good agreement
between the MULTINEST and EMCEE estimates of the posterior mean
and standard deviation.

In order to test whether the kernel-phase processing itself intro-
duces a bias into the contrast and separation estimates, we simulated
binaries with the same parameters each as the best fit to the kernel-
phase full aperture observations and to the non-redundant nine hole
closure phase measurements. These simulations use no atmosphere,
but include a realistic Palomar ‘medium cross’ pupil model identi-
cal to that used to derive the kernel-phase relations. Model fitting is
performed with MULTINEST as in Section 2.2, with uncertainties on
each kernel phase taken to be the same as from the real observations.
For an input model with the parameters of the kernel-phase model
(129 mas, 83.6◦, 34.2 contrast) we retrieve 129.4 ± 1.2 mas sepa-
ration, 83.5 ± 0.3◦ position angle and contrast 34.3 ± 1.0; and for
the aperture masking parameters (129.6 mas, 83.5, 28.7 contrast),
we retrieve 129.7 ± 1.0 mas, 83.5 ± 0.3◦ and 28.8 ± 0.8 contrast.
It is evident from these fits that kernel phase fitting itself introduces
no bias towards lower contrasts.

2.3 Comparison with filled-aperture bispectral (closure) phase
analysis

Using the same full-aperture observations analysed with kernel
phase in Section 2.2, we also performed an identical analysis using
the arguments of the bispectrum, i.e. closure phases. The closure
phases are the arguments of the bispectrum or ‘triple product’ of
three complex visibilities around a closing triangle, and we there-
fore call these closure phases or bispectral phases interchangeably.
Roddier (1986) recognized bispectral analysis as being equivalent to
the existing triple-correlation method of speckle masking (Labeyrie
1970; Weigelt 1977), and it provides a more robust observable than
raw phases even on partially redundant pupils (Haniff & Buscher
1992).

For a redundant pupil, there are a combinatorically large number
of baselines, and for reasons of hardware memory we are not able to
use a pupil model as dense as in the above kernel phase analysis. We
instead use a pupil model with the same dimensions but only 508
pupil samples. Using this coarser model we conduct a kernel phase
fit, finding good agreement with the denser model, with a separation
of 127 ± 1.8 mas, a position angle of 83.2 ± 0.4◦, and a contrast
ratio of 32.2 ± 1.4. We see that this is in reasonable agreement with
the denser model and aperture masking observations.

We then find all possible combinations of triangles and test for
closure, finding 378 662 closing triangles in our redundant pupil
model. As there are only 1456 independent u, v baselines, the infor-
mation in the raw bispectrum is extremely redundant, and unless we
model our data in a reduced-dimensionality representation, we will
both encounter unnecessary computational cost, and underestimate
our uncertainties. We therefore first construct the 378 662 × 1456
matrix containing the full set of closure relations, and find a rank-
reduced operator with the same range using a sparse SVD. Using
this, we find that the space of closure phases is spanned by the
expected Nbaseline − 2 = 1454 orthonormal vectors, and use these as
our bispectral observables. These are therefore linearly-independent
closure phases (Sallum et al. 2015), but we do not have a sufficiently
large number of observations to re-diagonalize these as statistically
independent closure phases as in Kraus & Ireland (2012) and Ire-
land (2013). It is important to note that in the general non-redundant
cases these orthonormal closure phases do not span the same space
as kernel phases, and that only in the case of a non-redundant pupil
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Figure 4. Correlation diagram for bispectral phases for α Ophiuchi in the
Ks band. We plot model phases on the x-axis and the observed signal on the
y-axis, such that for a good fit we expect the data to lie on a straight line of
gradient unity.

are these two spaces of observables expected to be the same. Ide-
ally, we would for each triangle average the complex bispectrum
across all frames, extract the phase of the resulting mean complex
bispectrum, and then project these on to the minimal spanning set
of orthonormal closure phases. Due to the combinatorically large
number of triangles this is not possible, and we instead average the
orthonormal closure phases themselves.

Data are processed as for the kernel phases in Section 2.1, except
using this orthonormalized matrix of closure phase relations instead
of the kernel phase matrix. We recover the binary at a separation
of 140.9 ± 1.0 mas, 86.7 ± 0.7◦ position angle and a contrast of
15.4 ± 0.7. A correlation diagram for the best-fitting parameters
is displayed in Fig. 4. The very small uncertainty quoted on this
fit is statistical, and clearly the dominant error here is systematic.
The position angle and separation are roughly similar to that de-
termined in Section 2.2 with kernel phase, but offset by ∼10 mas
in separation, and the best-fitting contrast is much lower, at 15.4 ±
0.7, which is approximately two times lower than the best kernel
phase or masking estimate and similar to that from PSF fitting. This
is consistent with the effects of a speckle introduced by a phase
aberration perturbing all the full-frame images, while kernel phase
and aperture masking are by construction resilient against this form
of aberration.

While the difference in sampling density means that we do not
compare the kernel phase and bispectral methods on a level play-
ing field, we note that finding the full set of triangles generated
by the denser model was not possible due to memory constraints,
and therefore the bispectral method is inherently more limited than
kernel phase in its applicability to very dense, redundant pupils. We
are therefore restricting our comparison to methods of equivalent
computational resource usage.

2.4 Comparison with PSF fitting

In this situation, we lack the diversity of calibration images to use the
most advanced PSF analysis techniques, such as LOCI (Lafrenière
et al. 2007) or KLIP (Soummer, Pueyo & Larkin 2012), but the 100
frames of our single calibrator are sufficiently diverse to permit PSF
fitting. We adopt a maximum-likelihood approach, finding the best-

fitting incoherent sum of two shifted calibrator PSFs that minimize
a χ2 objective function for each individual frame of α Oph. The
offset and scaling between these two calibrator PSFs is then taken
to be the model parameters of the binary system. In Table 1, we
report the mean and standard error of the mean of all such fits with
a χ2 within a factor of 2 of the median χ2 across all frames, to allow
for the possibility of failing to retrieve the binary in some frames.

We note the low contrast found in the results of PSF fitting,
not found in the kernel phase analysis. We suggest that a quasi-
static speckle very close to the position of the binary companion,
or a variable incoherent second ghost at the same location, could
cause this effect, which is corrected in the kernel phase approach.
This good kernel phase correction is consistent with this being
a phase-aberration induced speckle; in the case of an amplitude-
induced speckle, it would be desirable to find an equivalent ‘kernel
amplitude’ which would be self-calibrating with respect to such an
aberration, but such a quantity is not presently known.

We note that this PSF fitting approach is enabled by the diversity
over both many calibrators and many frames on each calibrator,
whereas in principle any single image can be analysed with kernel
phase given appropriate single images of calibrators. This is an ad-
vantage for kernel phase in campaigns where many short exposures
are not feasible, or in space telescope snapshot campaigns, where
PSF diversity may otherwise be lacking.

3 C O M PA R I S O N B E T W E E N M A S K I N G A N D
K E R N E L PH A S E

For our benchmark α Oph data set, the kernel phase analysis strongly
favours a binary model over a point source, and successfully obtains
the same system configuration as found with aperture masking. The
results are displayed in Table 1. The spatial astrometric components
agree remarkably well, to much better than 1σ , and in contrast
the kernel phase is slightly higher, at 34.2 versus 28.7. As the
uncertainties on each are ∼1.1 and ∼2.3, respectively, we see these
estimates do not entirely agree, though the higher contrast value
derived from kernel phase may represent a systematic error which
may require further improvements to the method. As noted below,
the uncertainties on the kernel phase-derived contrast are probably
underestimated here, though with present software implementations
and the limited number of frames available in these observations,
this cannot be resolved at present. Nevertheless, it is clear that
kernel phase presents a realistic alternative to aperture masking
for telescopes with extreme AO, with the potential for significant
advantages in throughput and Fourier coverage.

The science target was observed in the middle of the detector,
near the corner of the four CMOS chips which tile the focal plane.
This leads to lines of noise running through the sides of the PSF.
On the other hand, the calibrators were observed in the middle of
each chip (‘dithered’), as is standard practice. The subtraction of
systematic errors from the science data was therefore imperfect,
and in future it will be important to dither the science source and
calibrators identically.

The binary astrometry from kernel phase is reasonably close
(∼1.5σ–2σ masking) to that obtained by aperture masking; this is
remarkably good agreement given that the observations were per-
formed under far from ideal conditions: as noted in Section 1.1,
on the night these observations were made, the seeing was 1.5–2
arcsec, which is substantially worse than median for Palomar. This
translated to the relatively low Strehl of 0.5 in Ks, somewhat low for
extreme-AO and towards the lower end of the kernel phase regime.
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We therefore note that we may expect improved performance under
better AO conditions in future.

The retrieved binary parameters are remarkably insensitive to the
size of the super-Gaussian window used in preprocessing. By the
convolution theorem, windowing an image is equivalent to con-
volving its Fourier transform with a kernel whose dimension is
inversely proportional to that of the window. A narrower window
therefore has a wider convolution kernel, which blurs Fourier phase
information. This results in both a blurring in the Fourier plane,
which is especially significant at high spatial frequencies where
this mixes real signals from inside the support of the modulation
transfer function with noise from outside its support.

In addition to the above instrumental errors, we noted in Sec-
tion 2.4 that systematic optical aberrations are likely to remain even
after calibration. By using an ensemble of calibrators as described
in Kraus & Ireland (2012), it is possible to substantially improve
the correction of systematic errors. Residual uncalibrated system-
atics enter at first order in phase, and third order in kernel phase,
and can introduce statistical correlations between kernel phase re-
lations which are algebraically orthogonal. It is possible to diago-
nalize kernel phases and closure phases in a Karhunen-Loève basis
which properly takes into account their statistical covariance (Ire-
land 2013); such a calibration is improved significantly with greater
calibrator diversity than is available in this work. In future, it will be
valuable to include more calibrator sources, and observe these and
the science target with a range of pupil orientations to maximize
the calibration diversity. We expect that this may reduce systematic
effects, and also increase the parameter uncertainties somewhat,
given that presently we assume data to be independent which are in
fact correlated.

The issue of pupil modelling remains an outstanding problem for
kernel phase, in that at present it is not feasible to marginalize over
uncertainties in pupil scale, or to model the pupil as densely as may
be preferred for high-performance applications. There are therefore
systematic errors associated with any mismatch between the discrete
pupil model and the real effective model of the telescope, as well
as any amplitude aberrations or spatial variations in transmission.
Resolving this difficulty is beyond the scope of this paper, but will
be important for future work.

4 D ISCUSSION

The recovery of the α Oph binary system illustrates both the po-
tential of kernel phase in conjunction with extreme AO, and the
potential for improvements in future observations. It is clear that
kernel phase recovers the binary parameters with remarkable preci-
sion, and it will be a valuable tool in probing systems than cannot be
observed with aperture masking. In this test case, under ideal con-
ditions for aperture masking and more challenging conditions for
kernel phase, nevertheless kernel phase delivers comparable results.
The performance of kernel phase in this low to moderate Strehl, sin-
gle calibrator regime is not expected to be representative of higher
Strehls and multiple calibrators – an analysis of which would be
important future work.

We have also demonstrated the benefits of using kernel phases
over more standard PSF fitting and bispectrum (closure phase) ap-
proaches in parameter estimation. Deconvolving structure from an
AO-corrected PSF is significantly enhanced by the use of kernel
phase, and we expect this will enable new science to be done at and
near the diffraction limit.

As noted in Pope et al. (2013), wavelength diversity across several
filters can help alleviate the degeneracy between separation and

contrast, by jointly fitting to kernel phases extracted in several bands
and enforcing the condition that the position of a companion must
be fixed, while its flux can vary. This is a promising option for
future kernel phase work, as the extreme AO systems SPHERE and
GPI, as well as the P1640 instrument on Palomar, are equipped
with integral field spectrographs which can obtain images in many
wavelength channels simultaneously.

Given these encouraging results, we see that the best current AO
systems are already able to make use of kernel phase for high-
contrast imaging. In particular, we have shown that in the extreme-
AO regime, kernel phase obtains comparable results to those using
non-redundant masking. Where for hardware reasons or due to
throughput considerations it is not possible to use a mask, or where
very dense Fourier coverage is desired for imaging, the kernel-phase
approach may be much more effective than standard alternatives,
opening up new parameter space for high-resolution imaging of
faint companions and circumstellar environments. We have also
discussed observing strategies, and in particular the importance of
calibrator sources and wavelength diversity, which will be of use in
planning future kernel-phase work from the ground.
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