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ABSTRACT

Turbulence plays a major role in the formation and evolution of molecular clouds. Observationally, turbulent
velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the
relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained
from principal component analysis (PCA). We apply PCA to spectral maps generated from simulated density and
velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian
motion (fBm) fields with varying velocity, density spectra, and density dispersion. We examine the dependence
of the slope of the PCA pseudo-structure function, αPCA, on intermittency, on the turbulence velocity (βv) and
density (βn) spectral indexes, and on density dispersion. We find that PCA is insensitive to βn and to the log-density
dispersion σs , provided σs � 2. For σs > 2, αPCA increases with σs due to the intermittent sampling of the velocity
field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based
on fBm structures with σs � 2 and apply it to 367 13CO spectral maps of molecular clouds in the Galactic Ring
Survey. The average slope of the PCA structure function, 〈αPCA〉 = 0.62±0.2, is consistent with the hydrodynamic
simulations and leads to a turbulence velocity exponent of 〈βv〉 = 2.06 ± 0.6 for a non-intermittent, low density
dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the
GRS clouds and the hydrodynamic simulations suggests βv � 1.9, consistent with both Burgers and compressible
intermittent turbulence.
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1. INTRODUCTION

Turbulence plays a major role throughout the entire lifetime
of a molecular cloud, from its formation to its fragmentation and
collapse into clumps, cores, and stars. Supersonic turbulence is
not only responsible for most of the kinetic energy supporting
clouds against gravity (Williams et al. 2000), but is also intrinsi-
cally linked to the formation and structure of molecular clouds
(e.g., Mac Low & Klessen 2004; Elmegreen & Scalo 2004;
Audit & Hennebelle 2005; Heitsch et al. 2005; Vázquez-
Semadeni et al. 2006, 2007; Dobbs et al. 2006; Tasker & Tan
2009; Banerjee et al. 2009; Glover et al. 2010; Klessen &
Hennebelle 2010; Federrath et al. 2011). Turbulent shocks
create local, overdense regions within molecular clouds that
may collapse into sheets, filaments, and pre-stellar cores un-
der the effect of self-gravity, a phenomenon known as turbu-
lent fragmentation. In this context, the length scale of the en-
ergy source that drives turbulence can explain differences in
star formation efficiency and type—clustered versus isolated
(Klessen et al. 2000). In addition, the initial mass function
(IMF), which describes the relative probability of stars with
different masses when they form, may directly result from the
magnitude and spatial scale of turbulent fluctuations (Padoan
& Nordlund 2002; Hennebelle & Chabrier 2008, 2009). Hence,
most analytic models of star formation rely on the index of
the turbulence velocity spectrum (i.e., the Fourier spectrum of
the velocity fluctuations), and on the probability distribution

function (PDF) of the turbulent density field (e.g., Elmegreen
1997; Padoan & Nordlund 2002; Krumholz & McKee 2005;
Hennebelle & Chabrier 2008, 2009). The turbulence veloc-
ity spectrum is defined as E(k) = 4πk2 |v̂(k)|2, where v̂(k)
is the Fourier transform of the velocity field, and obeys a
power law (E(k) ∝ k−βv ), where βv = 5/3 for incompressible
(Kolmogorov) turbulence (Frisch 1995), and βv = 2 for pres-
sureless (i.e., highly supersonic) shock-dominated turbulence,
also called Burgers turbulence (Burgers 1974; Passot et al.
1988). Intermittency, characterized by fluctuations occurring
sporadically (both spatially and temporally) in the turbulent
flow, also affects the nature of the turbulent cascade from large
to small scales. Numerical simulations show that intermittency
is mainly caused by the interaction of strong shocks, causing
rare, strong density enhancements. Manifestations of intermit-
tency are observable in the PDF of the density field (Klessen
2000; Kritsuk et al. 2007; Schmidt et al. 2009; Federrath et al.
2010), and in the index βv of the turbulence velocity spectrum
(Dubrulle 1994; She & Leveque 1994; Boldyrev 2002; Boldyrev
et al. 2002; Schmidt et al. 2008).

While Kolmogorov (incompressible) turbulence does not
seem appropriate for molecular clouds, in which turbulent mo-
tions are highly supersonic (hence compressible), the applica-
tion of Burgers turbulence is limited to compressive fields for
which ∇ × v = 0 (e.g., expanding shells). Three-dimensional
numerical simulations of both decaying and driven turbulence,
however, show that the ratio of compressive to solenoidal (for
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which ∇ · v = 0) velocity dispersion is γ = 〈v2
c〉/〈v2

s 〉 = 0.1–1
(Porter et al. 1998, 1999; Federrath et al. 2010), where vc and
vs are the compressive and solenoidal parts of the velocity field,
respectively. An alternative, which includes intermittency and
compressibility effects, was proposed on the basis of the She
& Leveque (1994) model by Dubrulle (1994), Boldyrev (2002),
Boldyrev et al. (2002), and Schmidt et al. (2008). In this the-
oretical context, the turbulent energy cascade in the inertial
range exhibits properties of Kolmogorov turbulence, while close
to the dissipative range, intermittent shock structures result-
ing from compressibility effects start to dominate energy trans-
fer mechanisms. Depending on the dimension of the dominant
dissipative, intermittent structures, log-Poisson models predict
βv = 1.74–1.83.

The type of turbulence (Kolmogorov, Burgers, log-Poisson),
along with the density spectrum and density PDF, influences
the resulting stellar mass spectrum, the IMF (e.g., Padoan &
Nordlund 2002; Hennebelle & Chabrier 2008, 2009). The den-
sity PDF is better constrained with extinction data (Cambrésy
1999; Ossenkopf et al. 2001; Brunt et al. 2010a), whereas the
density spectrum has been investigated both with FIR dust emis-
sion observations (e.g., Block et al. 2010) and with H i 21 cm
spectral line observations (Stanimirovic et al. 1999; Elmegreen
et al. 2001). The index of the turbulence velocity, βv , is the sub-
ject of many spectral line studies of molecular clouds (Heyer &
Schloerb 1997; Brunt & Heyer 2002b; Ossenkopf & Mac Low
2002; Brunt 2003; Heyer & Brunt 2004; Hily-Blant et al. 2008),
including this work.

Heyer & Schloerb (1997) proposed to use principal compo-
nent analysis (PCA) to determine the index of the turbulence
velocity spectrum of molecular clouds using molecular line ob-
servations. PCA provides pairs of spatial and velocity scales, or
“PCA pseudo-structure functions,” which describe the amount
of velocity fluctuations contained within an eddy of a given
spatial scale. PCA pseudo-structure functions thus provide a
description of the turbulent energy cascade. Since knowing the
turbulence velocity spectrum of molecular clouds has great im-
plications for our understanding of fragmentation and star for-
mation, our ultimate goal is to derive the exponent of the velocity
power spectrum from the analysis (e.g., via PCA) of spectral line
maps.

PCA pseudo-structure functions, however, are based on emis-
sion, and hence on a complex convolution between the den-
sity, velocity, and temperature fields, whereas a complete de-
scription of a turbulent gas flow requires separate statistical
descriptions of the velocity and density fields. For instance,
turbulent velocity fluctuations can make two physically sep-
arated emitting elements at different distances from the ob-
server seem to overlap in velocity space (Ballesteros-Paredes
& Mac Low 2002). This would produce an element of double
the emissivity, which could be interpreted as a single emit-
ting element of double density or column density. Temperature
fluctuations also produce emissivity variations that can be in-
terpreted as column density variations. This is not only a lim-
itation of PCA, but also of all observational studies aimed at
deriving the turbulence velocity spectrum from various mathe-
matical tools, such as Centroid Velocity Increments (see, e.g.,
Hily-Blant et al. 2008; Brunt & Mac Low 2004), Velocity
Channel Analysis (Lazarian & Pogosyan 2000; Esquivel et al.
2003), and Velocity Coordinate Spectrum (Lazarian & Pogosyan
2006). Unfortunately, while observations provide column den-
sities and their PDF, the temperature, velocity, and volumetric
density fields, however, are not directly observable. In order to

determine the relation between the PCA pseudo-structure func-
tion and the Fourier spectrum of the velocity field, we therefore
need to disentangle the density, velocity, and temperature contri-
butions to the observed position–position–velocity (PPV) data
and to the shape of the PCA pseudo-structure function. This can
be done by comparing the PCA pseudo-structure function of
synthetic spectral maps obtained from simulations of molecular
clouds to the statistics of the input velocity, density, and tem-
perature fields. Here, we use isothermal simulations, and hence
neglect the molecular excitation problem and the effects of star
formation on the gas temperature to concentrate on density and
velocity fluctuations. Thus, our goal is to establish a calibration
relation between the slope of the PCA pseudo-structure func-
tion and the slope of the turbulence velocity spectrum, and to
investigate how this calibration relation varies with properties
of the density field.

Brunt et al. (2003) established a calibration relation based
on MHD simulations. Their simulations included many of the
important physical processes in the interstellar medium (ISM),
such as gravity, magnetic fields, star formation feedback, heating
and cooling. The focus of their study was to link the PCA
derived relationship between velocity differences and spatial
scale to a particular order of structure function. They were able
to show that PCA pseudo-structure functions correspond to a
low-order (�1) structure function even in the regime of strong
intermittency. The resolution of their simulation was however
too small to allow the existence of an inertial range, where the
slope of the power-law velocity spectrum can be measured. As a
result, their simulation had to be modified a posteriori in Fourier
space to create a power-law velocity spectrum. In addition to
this limitation, the turbulence in the MHD simulations by Brunt
et al. (2003) was mostly driven compressively by expanding
shells, occurring in star-forming regions.

In this paper, we investigate the statistical relation between
the PCA pseudo-structure function and the spectral index of
the velocity field for two types of forcing—compressive and
solenoidal—based on hydrodynamic simulations with a distinct
inertial range (Federrath et al. 2010), combined with fractional
Brownian motion (fBm) simulations. We examine the sensitivity
of this relation to the statistics of the density field by varying both
the exponent of the power-law density spectrum and the density
PDF of the fBm simulations. Section 2 describes PCA and the
details of the method. Section 3 describes the simulations. In
Sections 4 and 5, we present the results of PCA applied to
the hydrodynamic and fBm simulations, and provide a PCA
calibration in Section 6. We apply PCA to spectral observations
of molecular clouds taken as part of the Galactic Ring Survey
(GRS; Jackson et al. 2006) in Section 7. Section 8 consists of a
brief conclusion.

2. PRINCIPAL COMPONENT ANALYSIS (PCA)

2.1. Method

PCA, first suggested as a tool to derive turbulence velocity
spectra from spectral observations by Heyer & Schloerb (1997),
detects line profile differences due to the turbulent nature of the
flow as a function of spatial scale. The line profile differences are
represented by the eigenspectra. The spatial scales over which
those line profiles differ are detected in the integrated intensity
images (the principal components) of the eigenspectra. PCA
thus provides pairs of spatial and velocity scales detected in a
spectral map, similar to a structure function, δv = f (δ�). This
so-called PCA pseudo-structure function describes the amount
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Table 1
Turbulence Statistics Obtained for Hydrodynamic Simulations

Symbol Description Solenoidal Forcing Compressive Forcing

βn Exponent of the density spectrum 0.78 ± 0.06 1.44 ± 0.23
βv Exponent of the velocity spectrum 1.86 ± 0.05 1.94 ± 0.05
σn/〈n〉 Standard deviation of n 1.89 ± 0.09 5.86 ± 0.96
〈s〉 Mean of s = ln(n/〈n〉) −0.83 ± 0.05 −3.40 ± 0.43
σs Standard deviation of s 1.32 ± 0.06 3.04 ± 0.24
Ss Skewness of s −0.1 ± 0.11 −0.26 ± 0.20
Ks Kurtosis of s 3.03 ± 0.17 2.91 ± 0.43

of kinetic energy contained within a given spatial scale. The
details of the method have been described in Brunt & Heyer
(2002a) and are summarized below.

The observational data obtained from spectral line mapping
of molecular clouds can be represented as PPV cubes, which
consist of an ensemble of Nr spectra T (r, v) = T (xi, yi, vj ) =
Tij (i = 1... Nr, j= 1... Nv) of a molecular spectral line at different
positions r on the sky. Nv is the number of velocity channels.
The identified line profile differences are the eigenvectors (or
eigenspectra) of the covariance matrix S (Heyer & Schloerb
1997; Brunt & Heyer 2002a), such that Su(n) = λ(n)u(n), where
n is an index that labels the eigenvectors in order of decreasing
corresponding eigenvalue (n = 1... Nv). The projection of the
eigenvectors u(n) onto the PPV cube ordered by decreasing
eigenvalue λ(n) yields the Nv principal components PC(n) of
the PPV cube, such that PC(n) = tTu(n) (of size Nr).

The spatial and velocity scales characteristic of the principal
components and eigenvectors are computed from their auto-
correlation function (ACF). The spatial scale δ� at which
the ACF of the nth principal component falls by one e-fold
defines the nth characteristic spatial scale. In a similar way, the
corresponding nth velocity scale δv is determined from the e-
fold of the ACF of the nth eigenvector. In the end, PCA provides
Nv pairs of increasingly smaller spatial (δ�) and velocity (δv)
scales, similar to a structure function. This relationship can be
approximated by a power law, δv = v0δ�

αPCA , where v0 and αPCA
are the amplitude and the slope of the PCA pseudo-structure
function.

2.2. Definition of Spatial Scales

The spatial and velocity scales are chosen to be the scales
at which the normalized ACF falls by one e-fold. In numerous
cases, the ACF of the 0th principal component does not fall
below one e-fold because of the overall correlation of the bulk
of the emission. In such instances, the 0th principal component
was excluded from the PCA structure function.

Furthermore, the determination of the velocity scales is
straightforward because the ACF of the eigenvectors is one-
dimensional. However, the ACF of the principal component
images is two-dimensional. Because of the intrinsic shape
of molecular clouds, the ACFs of the 1st and 2nd principal
components are often elliptical, such that the spatial scales
depend on the direction along which they are calculated.
To measure spatial scales consistently, independently of the
geometry of the cloud, the ACFs of the principal components
were fitted to an ellipse. The ACFs were then rotated such that
their long axes are horizontal, and the one e-fold spatial scales
δx and δy were computed along the x and y cardinal directions.
The spatial scales of the PCA pseudo-structure function are
then defined as δ� =

√
(δx2 + δy2)/2, to stay consistent with

previous PCA studies (e.g., Heyer & Schloerb 1997; Brunt &
Heyer 2002a, 2002b; Brunt et al. 2003).

3. SIMULATIONS

3.1. Hydrodynamic Simulations

We numerically modeled isothermal driven turbulence on
a periodic uniform grid with 10243 grid cells. We refer the
reader to Federrath et al. (2008, 2009, 2010) for the details
of the simulations. Two kinds of forcing were implemented:
solenoidal (or divergence-free) forcing for which ∇ · f = 0, and
compressive (curl-free) forcing for which ∇ × f = 0. These
two types of forcing mimic actual mechanisms responsible for
driving turbulence in the ISM. For instance, galactic shear
corresponds to solenoidal forcing and supernova explosions
are a compressive way to drive turbulence. For each forcing
case, 81 snapshots of the velocity and density fields, spanning
eight large-scale turbulent crossing times were recorded in the
regime of fully developed, supersonic turbulence. To facilitate
the computation of structure functions and PCA, all snapshots
were resampled on a 2563 grid. The resampling from 10243 to
2563 did not affect the inertial range scaling (Federrath et al.
2009). The simulations, originally with a mean density of unity
and an rms Mach number, M = 5.5, were rescaled to a velocity
standard deviation of 1 km s−1 (T = 10 K, assuming that the gas
is composed of pure molecular hydrogen) and a mean density
of 500 cm−3.

The statistics of the solenoidally and compressively forced
simulations (in particular, velocity and density power spectra
and density PDFs) were computed in Federrath et al. (2008,
2009, 2010) and are summarized in Table 1. The inertial range
of the hydrodynamic simulations only extends between k = 5
and k = 15 due to numerical viscosity. In addition to the average
statistics summarized in Table 1, we computed the inertial
range exponent βv of the turbulence velocity spectrum for each
snapshot. An important point for the upcoming analysis is that
the density PDFs of the simulated fields are only approximately
lognormal (Federrath et al. 2008, 2010) due to significant
intermittency. Deviations from a lognormal density PDF can be
estimated via the skewness Ss and kurtosis Ks of the logarithm
of the density, s = ln(n/〈n〉), where 〈n〉 in the mean density.
For a perfectly lognormal distribution, Ss = 0 and Ks = 3. For
the HD simulations, the deviations of the skewness and kurtosis
from these fiducial values are higher in the compressive forcing
case than in the solenoidal forcing case (Federrath et al. 2010,
and Table 1). We characterize the width of the density PDF by
the density dispersion, σn/〈n〉, and the log-density dispersion,
σs , which is the standard deviation of the logarithm of the
density. The density PDF of the compressively forced field
has a roughly three times higher standard deviation than the
solenoidally forced counterpart at the same rms Mach number,
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emphasizing the importance of studying different turbulent
injection mechanisms. The values of σn/〈n〉 and σs for the HD
simulations are also given in Table 1.

3.2. Fractional Brownian Motion

The hydrodynamic simulations have a unique velocity power
spectrum, which cannot be varied. In other words, the compres-
sively and solenoidally forced hydrodynamic simulations each
provide one point in the calibration relation. In contrast, we
aim to establish a relation between the PCA pseudo-structure
function and the slope of the turbulence velocity spectrum over
a range of exponents for the velocity spectrum, which reflects
different types of turbulence in the ISM (e.g., compressible, in-
compressible, intermittent, non-intermittent, etc.). This can be
accomplished by varying the exponent of the turbulence velocity
spectrum, of the density spectrum, and the dispersion of the den-
sity PDF of fractional Brownian motion structures (fBms; see,
e.g., Stutzki et al. 1998), and by comparing the turbulence veloc-
ity spectrum of the fBms to the PCA pseudo-structure function
obtained from the corresponding simulated spectral map.

A comprehensive study of fBms by Stutzki et al. (1998)
summarizes the current knowledge of fBms, and we do not
repeat it here. The details of the method we use to generate
such fields are presented in Ossenkopf et al. (2006), and are
summarized by the following. An fBm can be generated in
Fourier space by creating an isotropic amplitude following a
power law, A(k) = A0 k−γ . A phase φ(k) is randomly generated,
using a uniform distribution between −π and π to obtain the
final Fourier transform of the desired field (velocity or density),
f̂ (k) = A(k)eiφ(k). To ensure that the final field, obtained
by taking the inverse Fourier transform of f̂ (k), is real, the
condition φ(k) = −φ(−k) is imposed.

Twelve velocity fields and fifteen density fields were created
on a 2573 grid with a power-law Fourier spectrum of exponents
ranging between βv = 1.2 and βv = 3.4 for the velocity field,
and βn = 0.6–3.4 for the density field. The exponents of the
density and velocity fields were varied independently. This range
of values for the velocity spectrum covers different types of
turbulence, including Kolmogorov, Burgers, and log-Poisson
turbulence models. It also covers the case of systematic motions,
such as infall, for which βv > 3 (Brunt & Heyer 2002a). Note
that an amplitude A0 = 1 was used, and the final velocity and
density fields were rescaled to a velocity standard deviation
of 1 km s−1 and a mean density of 500 cm−3 a posteriori,
as for the hydrodynamic simulations. For the density field, the
rescaling is not as straightforward as for the velocity field, owing
to its positivity. Hence, we subtracted from the original fBm its
minimum value. The density field was then obtained by dividing
the fbm by its mean value and multiplying it by the desired
mean density of 500 cm−3. The density fBm fields created with
this method approximately follow a Gaussian (also known as
normal) distribution, with a standard deviation of 90–180 cm−3.
The density dispersions of each fBm density field created with
a Gaussian PDF and a varying density spectrum are listed in
Table 2.

Simulations and observations show that the density PDF of
isothermal supersonic turbulent flows is better approximated
by a lognormal distribution (i.e., a Gaussian distribution in the
logarithm of the density, see Vazquez-Semadeni 1994; Padoan
et al. 1997; Passot & Vázquez-Semadeni 1998; Federrath et al.
2008; Price et al. 2011). Furthermore, we wish to examine the
dependence of the calibration relation not only on the exponent
of the density Fourier spectrum, but also on the density PDF. In

Table 2
Density Dispersion of the fBm Density Fields with Varying βn

and Gaussian Density PDF

βn σn/〈n〉 σs

0.600000 0.20 0.21
0.800000 0.18 0.19
1.00000 0.19 0.21
1.20000 0.21 0.22
1.40000 0.22 0.23
1.60000 0.23 0.25
1.80000 0.23 0.26
2.00000 0.25 0.28
2.20000 0.28 0.32
2.40000 0.27 0.33
2.60000 0.36 0.39
2.80000 0.34 0.40
3.00000 0.34 0.40
3.20000 0.32 0.41
3.40000 0.30 0.41

order to create density fBms with a lognormal PDF of variable
standard deviation, the method presented in Ossenkopf et al.
(2006) and Brunt & Heyer (2002a) was followed. First, an fBm
field was created with a power spectrum of slope βn = 1. This
field represents the logarithm ln(n) of the desired density field
n. The fBm field ln(n) was then rescaled given the desired mean
〈n〉 and standard deviation σn of the desired density field. This
rescaling is based on the relation between the mean and standard
deviation of a lognormal field and its logarithm:

〈ln(n)〉 = ln(〈n〉) − 1

2
σ 2

ln(n), (1)

σln(n) =
√√√√ln

(
1 +

(
σn

〈n〉
)2

)
, (2)

where 〈ln(n)〉 and σln(n) are the mean and standard deviation of
the logarithm of the desired field. Thus, if 〈F 〉 and σF are the
mean and standard deviation of the fBm field F = ln(n), then F
is rescaled and exponentiated to produce the final density field
with the desired lognormal distribution:

n = exp

(
(F − 〈F〉) × σln(n)

σF
+ 〈ln(n)〉

)
. (3)

Six density fields with lognormal distributions were created,
with a mean of 500 cm−3 and standard deviations of 100, 1000,
2000, 3000, 4000, 5000, 6000, 7000, and 10,000 cm−3 (σn/〈n〉
� 0.2, 2, 4, 6, 8, 10, 12, 14, 20). Because of finite numerical
resolution and low number statistics, the process of exponen-
tiation may introduce small deviations from a lognormal PDF.
To check the magnitude of the deviations of our fBms’ density
PDFs from a purely lognormal PDF, we computed the skewness
and kurtosis of the logarithm of the density, which are listed in
Table 3. The skewness is of the order of 0.01–0.04, so devia-
tions from a purely lognormal distribution (Ss = 0) are much
smaller than for the HD simulations (Ss = −0.1 and −0.26 from
solenoidal and compressive forcing, respectively). The kurtosis
is also close (within 1.5%) to the value of Ks = 3 obtained from
purely lognormal distributions. Last, exponentiation changes
the index of the Fourier spectrum (Ossenkopf et al. 2006). The
spectral indices of the density spectrum of the fBm created with
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Table 3
Moments of the Density PDF and Spectral Index, βn, for the fBms with

Lognormal Density PDF and Varying Density Dispersion, σn

σn/〈n〉 〈s〉 σs Ss Ks βn

0.2 −0.02 0.20 0.03 3.02 1.04
2.00 −0.81 1.27 0.04 2.95 0.63
4.09 −1.42 1.68 0.01 2.98 0.37
5.92 −1.83 1.90 0.04 2.97 0.22
8.01 −2.11 2.04 0.02 2.97 0.16
10.02 −2.33 2.15 0.04 2.97 0.22
12.55 −2.47 2.23 −0.01 2.99 0.11
14.65 −2.62 2.30 0.00 2.97 −0.05
19.33 −3.07 2.45 0.01 3.02 −0.17

a lognormal density PDF are listed in Table 3. The PDFs of the
fBms generated via exponentiation are shown in Figure 1. The
dashed lines represent the best lognormal fits to each PDF, the
density dispersion of which is shown in the legend.

3.3. Generation of the Spectral Maps

A simulated spectral map of the 13CO emission line (i.e.,
a PPV cube) was created for each simulation assuming that
the 13CO line is optically thin, and assuming an abundance
ratio n(13CO)/n(H2) = 1.7 × 10−6 (Langer & Penzias 1990;
Blake et al. 1987). Note that the abundance ratio used in these
simulations does not affect our results since it scales the CO
intensity up or down but does not change the power spectrum
of the density or velocity fluctuations. Thus, the simulated
13CO PPV cubes were constructed from the density field
n(x, y, z) and velocity fields vx(x, y, z), vy(x, y, z), vz(x, y, z)
using the following expression (which is an example along the
z-direction) along each cardinal direction (x, y, z):

Iν(r, u) =
∑

z

jν(r, u)dz, (4)

where r = (x, y, z), u is the velocity channel, αν is the absorption
coefficient at the center of the 13CO line, Bν is the Planck
function, and Iν is the specific intensity. The emissivity jν =
αν Bν has units of W m−1 str−1 Hz−1 and is expressed by

jν(r, u)dz = 3.6 × 10−8 exp

(
−5.28 K

T (r)

)
× K

0.378 T

n(r)

cm−3

dz

pc

c√
2πνσv(r)

× exp[−(u − vz(r))2/2σv(r)2],

where T is the temperature in K, n is the number density field
in cm−3, vz is the projection along the z-axis of the velocity
vector v at position (x, y, z) in m s−1, and the velocity dispersion
σv in m s−1, given by

σv(r)2 =
(

k T (r)

mCO

)2

+

(
∂vz(r)

∂z
dz

)2

. (5)

In this expression, mCO is the mass of the 13CO molecule. The
first term represents thermal motions, and the second gas flows.
Note that both the fBms and the hydrodynamic simulations are
isothermal, with a uniform temperature of 10 K. In the following,
we assume that the simulation box is L = 10 pc in size, and
therefore, dz = L/N , where N is the number of grid points on

Figure 1. PDFs, assumed to be lognormal, of the fBm density fields generated
from exponentiation. The dashed lines represent the best lognormal fit to each
PDF, the density dispersion of which is shown in the legend.

one side (N = 256 for the HD simulations, N = 257 for the fBm
simulations).

The previous equations are based on two limiting assump-
tions: (1) the CO line is optically thin, and (2) local thermody-
namic equilibrium (LTE). While the latter is true for densities
>100 cm−3, CO is sub-thermally excited for smaller densities.
Hence, the emission in the most diffuse regions of the sim-
ulations will be overestimated by our second assumption. On
the other hand, CO becomes optically thick at column densities
greater than N (CO) > 1016 cm−2, which is not accounted for by
our simple radiative transfer model. Such column densities can
be attained in the high-density regions of the simulations for a
reasonable cloud depth (a few parsecs). However the scaling of
the column density is arbitrarily set by the choice of the size of
the simulation box, so it is pointless to try to determine whether
this limit is actually reached in the simulations.

The spectral maps resulting from hydrodynamic and fBm
simulations were sampled on a 40 m s−1 grid as in Federrath
et al. (2010). To test the effects of spectral resolution on
the uncertainty in the exponent of the PCA pseudo-structure
functions derived for each snapshot of the HD simulations or
fBm field, we produced spectral maps with spectral resolution
10 m s−1 and 20 m s−1. Increasing the spectral resolution to
20 m s−1 or 10 m s−1 did not reduce the scatter in the exponent
of the PCA pseudo-structure function, and thus, we kept the
original spectral resolution of 40 m s−1 used in Federrath et al.
(2010). A total of 486 13CO PPV cubes were generated from the
hydrodynamic simulations (three lines-of-sight directions for
each of the 81 time snapshots for solenoidal and compressive
forcing) and 255 13CO cubes were generated from the fBms (180
with variable density power spectra and 75 fBms with variable
density PDFs).

4. PCA APPLIED TO HYDRODYNAMIC SIMULATIONS

PCA was applied to all 486 PPV cubes generated from hy-
drodynamic simulations and a power law was fitted to each re-
sulting PCA pseudo-structure function. Federrath et al. (2010)
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Figure 2. PCA composite structure function for the hydrodynamic simulations,
containing all spatial and velocity scales detected by PCA in all PPV cubes
corresponding to solenoidal forcing (top) and compressive forcing (bottom).
The solid line indicates the best power law fit. In the top panel (solenoidal
forcing), the dashed line shows the best-fit from the compressive forcing case.
In the bottom panel (compressive forcing), the dashed line shows the best-fit
from the solenoidal forcing case.

presented the time-averaged PCA pseudo-structure function for
the solenoidally and compressively forced hydrodynamic sim-
ulations, with slopes 0.66 ± 0.05 and 0.76 ± 0.09, respectively.
Here, we also derive the average slope of the PCA pseudo-
structure function, averaged over all time snapshots and all three
lines of sight (x, y, and z) and find 〈αPCA〉sol = 0.64 (standard
deviation 0.05) and 〈αPCA〉comp = 0.77 (standard deviation 0.07)
for the solenoidally and compressively forced simulations. Typ-
ical errors on the slope of the PCA pseudo-structure function for
individual snapshots are 0.02 and 0.04 for solenoidal and com-
pressive forcing, respectively. In addition, Figure 2 shows all the
pairs of spatial and velocity scales detected by PCA in all the
PPV cubes obtained from hydrodynamic simulations. A power-
law fit to this composite PCA pseudo-structure function yields
an exponent of αsol

PCA = 0.65±0.05 and α
comp
PCA = 0.76±0.07 for

the solenoidally and compressively forced simulations. These
results are in very good agreement with the slope of the time-
averaged PCA pseudo-structure function from Federrath et al.
(2010). The results of PCA applied to individual time snap-
shots of the hydrodynamic simulations are shown as black
crosses in Figure 3, their average being indicated by a red
triangle.

Figure 3. Calibration relation between the slope of the turbulence velocity
spectrum, βv , and the slope of the PCA pseudo-structure function, αPCA, derived
from PCA applied to fBms and hydrodynamic simulations. The top and bottom
panels correspond to solenoidal and compressive forcing, respectively. The
colored lines correspond to the relation between βv and αPCA obtained from
fBms with different density spectra, indicated in the legend. The black crosses
correspond to the calibration relation deduced from each hydrodynamic time
snapshot, the average of which is shown by the red triangle.

5. PCA APPLIED TO fBms: SENSITIVITY OF THE PCA
CALIBRATION TO THE DENSITY SPECTRUM

PCA was applied to the 180 PPV cubes generated from fBms
velocity and density fields with varying power-law Fourier
spectra. The colored lines in Figure 3 show the slope of the
PCA pseudo-structure function as a function of the exponent of

6



The Astrophysical Journal, 740:120 (16pp), 2011 October 20 Roman-Duval et al.

the velocity spectrum for different density power spectra (the
exponent of which is indicated in the legend).

The slope of the PCA pseudo-structure function, αPCA,
increases with βv , in agreement with previous calibrations based
on fBms shown by the dashed line (Brunt & Heyer 2002a). The
variation of αPCA with βv is independent of the exponent of the
density Fourier spectrum over the range βn = 0.6 to βn = 3.4.
In addition, the average relation between αPCA and βv obtained
from HD simulations is too high (by a factor 2σ–3σ ) compared
with the relation obtained from fBms with Gaussian PDFs.

There are two major differences between the HD simulations
and the fBms: (1) the HD simulations are intermittent, whereas
the fBms are not, and (2) the fBms and HD density fields have
different density PDFs, both in shape and standard deviation.
The fBms have a Gaussian density PDF of density dispersion
σn/〈n〉 � 0.2–0.3, whereas Federrath et al. (2008, 2010) showed
that the density PDFs of the HD simulations approximately
follow lognormal distributions (i.e., Gaussian in the logarithm
of n). The discrepancy between the PCA pseudo-structure
functions obtained from HD simulations and fBms therefore
suggests that the PCA calibration depends on the level of
intermittency (both in the velocity and density fields), on the
shape of the density PDF, and its density dispersion. This
hypothesis is further explored in the next section.

6. SENSITIVITY OF THE PCA CALIBRATION TO
INTERMITTENCY AND TO THE DENSITY PDF

6.1. PCA Applied to fBms with Lognormal Density PDFs of
Varying Dispersion

We have further tested the variation of the PCA calibration
relation with density PDF by applying PCA to 180 PPV
cubes generated from fBms with lognormal density PDFs of
varying standard deviations, ranging from 100 to 10,000 cm−3

(σn/〈n〉 = 0.2–20, σs = 0.2–2.45). Since the fBm velocity fields
are not intermittent, we can isolate the effects of the density
dispersion independent of the effects of intermittency in the
velocity field, manifest in the HD simulations. The fBm density
fields with varying density PDFs were created according to the
method described in Section 3.2. Although a constant spectral
index βn = 1 characterizes the logarithm of the density fields,
exponentiation changes the power spectrum (Ossenkopf et al.
2006). As a result, the spectral indices of the fBm density fields
with lognormal PDFs are not equal to βn = 1, and are listed
in Table 3. Nonetheless, we have shown in the previous section
that the calibration relation is insensitive to the index of the
density spectrum. Thus, the variations of βn in the density fields
with lognormal PDFs should not cause any variations in the
calibration relation.

The colored lines in Figure 4 show the PCA calibration
obtained for lognormal density PDFs of varying standard
deviation (indicated in the legend). At high βv , the PCA
calibration becomes unstable because it depends very strongly
on a few Fourier components. We do not take into account
values of βv > 2.6 in the following. For σs � 2, we do not find
any significant variation in the PCA calibration as a function of
log-density dispersion, but there is a sudden increase in αPCA
and its scatter for a given βv for σs > 2. Actually, the PCA
calibration becomes quite unstable for σs > 2. For σs � 2, the
average calibration is shown by the black solid line. We derive
a linear fit to the average PCA calibration obtained from fBms
with lognormal density PDF of dispersion σs � 2, valid in the

Figure 4. Calibration relation obtained from hydrodynamical simulations and
density fBm fields with lognormal distributions. The black star and triangle
represent the average result of PCA applied to each time snapshot of the
solenoidally and compressively forced simulations, respectively. The error bar
represents the 1σ dispersion. The colored lines represent the calibration obtained
from each fBm, with density PDF of standard deviation indicated in the legend.

range βv = 1.2–2.6:

βv = 0.20 ± 0.05 + (2.99 ± 0.09)αPCA. (6)

This calibration is essentially identical to the relation derived in
Brunt & Heyer (2002a), within the errors.

The increase and instability in αPCA for σs > 2 is likely the
result of the inability of the density field to properly sample the
velocity field at such high density dispersion. Extreme density
fluctuations intermittently sample the velocity field, producing
an effect similar to intermittency in the velocity field itself,
similarly to discontinuous velocity jumps. In fact, we attempted
to perform a PCA run on an fBm with σs = 3, but the field was
so extreme that no scales could be detected in the PCA pseudo-
structure function. Note that, although the density dispersion of
the compressively forced simulations (σ comp

s = 3.04) is higher
than the density dispersion of the fBm with σs = 2.45, this
effect is not as strong for the HD fields because a high dispersion
exponentiated fBm field is dominated by a few very high density
point-like structures, whereas the hydrodynamically produced
density fields are dominated by a collection of filament-like
structures. The latter are more spatially coherent, and capable
of (�uniformly) sampling the velocity field across a longer
region of space than the former. This effect, examined in more
details in the next section, also appears to be a threshold effect,
as shown by the absence of significant variations in the PCA
calibration for σs � 2.

6.2. Effects of the Density Dispersion

The PCA calibration derived from fBms with lognormal
density PDFs of varying density dispersion exhibits some
dependency to the log-density dispersion, σs , but only above
the threshold σs > 2 (see Figure 4). The comparison between

7



The Astrophysical Journal, 740:120 (16pp), 2011 October 20 Roman-Duval et al.

the PCA calibration derived from fBms with σs � 2 and HD
compressively forced simulations, which have a log-density
dispersion σ

comp
s = 3.04 above the σs � 2 threshold, also

supports the hypothesis that the PCA slope depends on σs

for a given βv . Indeed, in Figure 4, the PCA slope of the
compressively forced simulations, shown as an open diamond, is
αPCA = 0.76 ± 0.07, whereas the calibration relation obtained
from fBms of density dispersion below the threshold σs � 2
predicts αPCA = 0.58 ± 0.03 for the corresponding βv = 1.94 ±
0.05, or a factor of 3σ difference. To prove that this difference in
PCA slope is indeed the result of the higher density dispersion of
the HD compressively forced density field, we have performed
two tests.

First, we have generated spectral maps with the non-
intermittent fBm velocity field of velocity spectrum βv = 2
and the 81 snapshots of the compressively forced HD density
field. In this manner, we can isolate the effects of the HD density
field from the effects of intermittency in the HD velocity field.
The average PCA slope of all snapshots is shown as an open
square in Figure 4. This PCA run with the fBm velocity field
and the HD density field can reproduce, well within the errors,
the PCA slope of the spectral maps generated from HD density
and velocity fields with compressive forcing (open diamond),
and demonstrates that the log-density dispersion of the HD den-
sity field contributes significantly to the increase in PCA slope
compared to the average PCA calibration obtained from fBms
with σs � 2.

Second, we have rescaled both the HD compressively and
solenoidally forced density fields to several log-density disper-
sions. For the compressively forced simulations, which origi-
nally have a density dispersion above the variation threshold
of σs � 2, we have scaled the log-density dispersion down to
values (σn/〈n〉 = 0.8, 1.4, 2.0, 3.4, or σs = 0.8, 1.3, 1.7, 2.3)
below or around this threshold in order to test whether the PCA
slope can be decreased down to values consistent with the PCA
calibration obtained from lognormal fBms with σs � 2. For the
solenoidally forced simulations, which originally have a den-
sity dispersion below the variation threshold of σs � 2, we have
scaled the log-density dispersion up to values σn/〈n〉 = 3.6,
5.9, 7.1, 11.8, or σs = 1.9, 2.3, 2.4, 2.8 around or above this
threshold. In this case, we thus test whether, according to expec-
tations, the PCA slope obtained from the HD rescaled density
fields with solenoidal forcing increases up to the level of the
original compressively forced HD simulations for σs above the
variation threshold of the log-density dispersion.

The rescaling was done similarly to the fBms with lognormal
density PDF described in Equation (3), i.e., by rescaling the
log of the density (F in Equation (3)) to the desired mean and
dispersion calculated from Equations (1) and (2) and from the
desired rescaled σn/〈n〉. We then exponentiated the rescaled
log-density field. Because the HD density fields deviate from a
lognormal distribution, the resulting log-density dispersion σs

is not exactly related to the input σn by Equations (1) and (2),
but these equations nonetheless provide a good approximation.
The exact rescaled values of σn and σs cited above are derived
directly from the rescaled HD density fields.

Finally, we applied PCA to the spectral maps generated
from the rescaled HD density fields and the non-intermittent
fBm velocity field with βv = 1.9 for the solenoidally forced
density field, and βv = 2 for the rescaled, compressively forced
HD density field. Again, the HD rescaled density fields are
combined with non-intermittent fBm velocity fields in order to
isolate the effects of the density dispersion from the effects of

Figure 5. Difference between the PCA slope αPCA and the PCA slope αcal
PCA

predicted by the calibration derived from fBms with σs �2 as a function of log-
density dispersion σs . The trends were obtained from the fBms with lognormal
density PDFs and from spectral maps generated from rescaled HD density fields
combined with fBm velocity fields (see Section 6.2). The shaded area represents
the 1σ , 2σ , 3σ uncertainty in αcal

PCA from darkest to lightest.

intermittency in the HD velocity field, which can potentially
affect the calibration, as shown in Section 6.3. Figure 5 shows
the variations of the difference between the resulting PCA slope,
αPCA, and the PCA slope predicted from the calibration obtained
with fBms of density dispersion σs � 2, αcal

PCA (see Equation (6)),
as a function of σs . In this figure, we have also included the
variations of αPCA−αcal

PCA obtained from fBms with βv = 1.8 and
βv = 2.0. The shaded area indicates the 1σ , 2σ , 3σ uncertainty
in αcal

PCA from darkest to lightest. Note that αPCA − αcal
PCA is not

identically zero for fBms with σs � 2 because the calibration
derived in Equation (6) is a fit to the average trend obtained from
fBms with σs � 2. Figure 5 demonstrates that, for σs � 2, the
calibration is constant with σs within the errors, whereas αPCA
starts to increase and deviate significantly from the calibration
for σs > 2 because of the poor sampling of the velocity field by
the density field. Above σs � 2, the variations of αPCA with σs

for a given βv are steeper and more uncertain for the fBms than
for the HD rescaled fields, which is also seen in Figure 4. As
mentioned before, a probable explanation for this difference is
that the fBms are just dominated by a few point-like structures
that sample the velocity field very poorly, whereas the HD
density field structure consists of filament-like features which
are more spatially coherent than the fBm density extrema.

6.3. Effects of Intermittency in the Velocity Field and the
Operating Order of PCA

Although the log-density dispersion of the solenoidal forced
simulations (σ sol

s = 1.3) is below the threshold of σs � 2 above
which αPCA starts to increase with σs , Figure 4 shows that the
PCA slope of the solenoidally forced HD simulations still stands
out as being too high compared to the calibration derived from
fBms. Indeed, the average slope of the PCA pseudo-structure
function is 0.65 ± 0.05, whereas the average calibration obtained
from fBms with density dispersion σs � 2 predicts αPCA =
0.55 ± 0.03 for the corresponding βv = 1.86 ± 0.05. In order to
determine the cause of this discrepancy, we have first confirmed
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that the HD solenoidally forced density field was not causing
this difference by applying PCA to spectral maps generated
from a non-intermittent fBm velocity field of velocity spectrum
βv = 1.9 and the 81 snapshots of the solenoidally forced HD
density field. The result is shown by the open triangle in Figure 4
(this point is also shown in Figure 5). The average PCA slope
of the spectral maps generated from the solenoidally forced
HD density fields and fBm velocity field with βv = 1.9 is in
nearly perfect agreement with the PCA calibration derived from
fBms velocity and density fields with lognormal density PDF
of dispersion σs � 2. In Figure 5, the combination of the HD
solenoidally forced density field and the fBm velocity field with
βv = 1.9 fits well within the errors in the trend αPCA − αcal

PCA
versus σs . This demonstrates that the HD solenoidally forced
density field is not causing the PCA slope obtained for HD
solenoidally forced simulations to be too high compared to
the calibration obtained for the same range of log-density
dispersion. We conclude that, in this case, this discrepancy must
be a result of the intermittent structure of the HD velocity field.

Brunt et al. (2003) showed that the slope of the PCA pseudo-
structure function reflects the slope ζ1 of the first-order structure
function, defined as SF1(�) = 〈v(r + �) − v(r)〉, and that the
calibration between ζ (1) and αPCA is insensitive to the level
of intermittency. On the other hand, they showed that the
relation between αPCA and the slope ζ (2) of the second-order
structure function, defined as SF2(�) = 〈[v(r + �) − v(r)]2〉, or
equivalently the slope of the velocity spectrum βv = ζ (2) + 1,
depends on the level of intermittency. It was demonstrated
theoretically by Boldyrev et al. (2002) and numerically by
Schmidt et al. (2008) that the relation between the order p
of the structure function SFp(�) = 〈[v(r + �) − v(r)]p〉 and its
exponent ζ (p) is more concave as the level of intermittency in
the velocity field increases (i.e., it rises slower than linear). Thus,
the ratio of ζ (1)/ζ (2) increases as velocity fields becomes more
intermittent. Because PCA traces ζ (1), it is therefore expected
that αPCA increases with intermittency in the velocity field for a
given βv . This is confirmed by the fact that the intermittent HD
solenoidally forced velocity field (rather than the density field)
is causing the increase in αPCA compared to the fBms of same
βv (and log-density dispersion), which are not intermittent. In
the following, we quantify this effect for the HD simulations.

The level of intermittency in the velocity field increases from
fBms (non-intermittent), to solenoidally forced, to compres-
sively forced HD simulations, as demonstrated in Schmidt et al.
(2008). As a result, the ratio ζ (1)/ζ (2) is lowest for the fBms
(which are not intermittent and for which ζ (p) is linear with
p, see Brunt et al. 2003), increases for solenoidally forced HD
simulations, and increases even more for compressively forced
simulations. We can estimate the ratio ζ (1)/ζ (2) using the re-
sults from Schmidt et al. (2008), who found ζ (1)/ζ (3) = 0.47 ±
0.01 and ζ (2)/ζ (3) = 0.79 ± 0.01 for the case of solenoidal forc-
ing, and ζ (1)/ζ (3) = 0.63 ± 0.01 and ζ (2)/ζ (3) = 0.90 ± 0.01
for the compressively forced HD simulations. We can then de-
rive ζ (1) for each forcing case using the following equation:

ζ (1) =
[
ζ (1)

ζ (3)

] [
ζ (3)

ζ (2)

]
(βv − 1), (7)

where we used the fact that ζ (2) = βv − 1. We find ζ (1) =
0.51 ± 0.03 for the solenoidal forcing case and ζ (1) = 0.66 ±
0.04 for the compressive forcing case. Using Equation (31) in
Brunt et al. (2003), which relates ζ (1) and αPCA, with γ = ζ (1)
(the operating order of PCA), we predict αPCA = 0.62 ± 0.03
for solenoidal forcing and αPCA = 0.75 ± 0.07 for compressive

forcing. This prediction, based on the relation between ζ (1) and
αPCA established in Brunt et al. (2003) and the characterization
of intermittency by the ζ (p) relation in the HD velocity field,
is consistent within the error bars with the PCA slopes derived
here for the HD simulations (αsol

PCA = 0.65 ± 0.05 and α
comp
PCA =

0.76 ± 0.07).
The difference between αPCA obtained for HD simulations

and fBms of similar log-density dispersion and velocity spec-
trum (see Figure 4) therefore confirms that intermittency in the
velocity field changes the relation between βv and αPCA. For a
given βv , the variations of αPCA between HD and fBms simula-
tions can then be simply explained in terms of (1) the operating
order of PCA and (2) the variations of the relation ζ (p) between
the exponents of the structure functions of different orders p
with intermittency in the velocity field. In fact, one goal of this
paper is precisely to investigate how the calibration between
αPCA and βv varies with intermittency and how to account for
it in the derivation of βv from PCA. For the solenoidal forcing
case, the difference in PCA slope between non-intermittent fBm
and intermittent HD fields is entirely due to intermittency in the
HD velocity field, since, in this case, the log-density dispersion
of the density field is below the σs � 2 threshold for which poor
sampling of the velocity field causes the PCA slope to increase at
constant βv . For the compressive forcing case, we have demon-
strated that the lack of sampling of the velocity field by the
density field due to the high log-density dispersion contributes
significantly to the difference in PCA slope between the com-
pressively forced HD simulations and the fBms of same velocity
spectrum. Nonetheless, the contribution from intermittency in
the velocity field likely plays an important role, although it is
difficult to detect it considering the larger error bars obtained
for the HD simulations with compressive forcing.

6.4. Consequence for Molecular Cloud Observations

Applying a PCA calibration obtained from the idealized
structures that are fBms to actual molecular clouds with high
levels of intermittency and very high density dispersions will
lead to an overestimation of βv . For instance, in the case of
the solenoidally forced simulations (αPCA = 0.65 ± 0.05, Ss =
−0.10 ± 0.11, Ks = 3.03 ± 0.17), the PCA calibration obtained
from fBms with σs � 2 predicts βv = 2.12 ± 0.17, whereas the
actual value of βv measured in the simulated velocity field is
βv = 1.86 ± 0.05. For the compressively forced simulations
(αPCA = 0.76 ± 0.07, Ss = −0.26 ± 0.20, Ks = 2.91 ±
0.43), the PCA calibration obtained from fBms estimates βv =
2.48 ± 0.27, but the actual value in the simulated velocity field
is βv = 1.94 ± 0.05. The difference and induced uncertainty
in these values of βv appears very large compared with the
subtle difference between, e.g., Kolmogorov turbulence (βv =
5/3) and Burgers turbulence (βv = 2). As a result, one should
explore values of βv implied by molecular line observations
based on PCA calibration relations derived for different density
dispersions and levels of intermittency in the velocity field.

7. APPLICATION TO MOLECULAR CLOUDS
IDENTIFIED IN THE GALACTIC RING SURVEY

In this section, we apply PCA to spectral maps of 750 molec-
ular clouds identified in the Five College Radio Astronomy
Observatory (FCRAO) GRS (see Jackson et al. 2006) for which
distances are available from Roman-Duval et al. (2009). Several
observational difficulties must first be overcome before PCA can
be applied to observations of molecular clouds.
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7.1. Subtraction of the Noise ACF

The noise inherent to observations of molecular clouds
contributes to the observed ACF of the principal components.
It can be shown that the noise in the principal components is
identical to the noise in the data (Brunt & Heyer 2002a). For
spectroscopic data cubes obtained from on-the-fly mapping (as
in the GRS), the noise is correlated between positions observed
with the same reference position. As a result, the ACF of the
noise contributes a powerful peak at the zero-lag, and other
peaks corresponding to different correlation lengths of the noise
(see also Jackson et al. 2006). The ACF of the noise therefore
needs to be subtracted from the observed ACF of the principal
components. The contribution of the noise to the ACF of the
principal components was estimated by averaging the ACF of
the five highest-order principal components, which should only
contain contributions from noise because they correspond to
features of spatial scales well below the resolution limit. The
ACF of the noise was then subtracted from the ACFs of all the
principal components before computing the spatial scales.

7.2. Effects of the Finite Telescope Resolution on the
Determination of Spatial Scales

The convolution of the observed 13CO data with the beam
of the telescope affects the determination of spatial scales.
The removal of the beam contribution to the observed spatial
scales has been established by Brunt (1999) and Brunt & Heyer
(2002a), using approximations. Here, we analytically derive the
exact scale correction for beam smearing, and test it using the
HD numerical simulations. Let X̃ be a two-dimensional image
observed through a telescope with a two-dimensional beam B,
and let X be the “true” image (i.e., not convolved with the
telescope beam). X̃ is the convolution of the true image with
the telescope beam: X̃ = X � B. It can be demonstrated (see,
e.g., Brunt 1999) that the ACF of the beam-smeared principal
components, ACFP̃C

(n) , is related to the ACF of the true principal
components, ACFPC(n) , by ACFP̃C

(n) = ACFPC(n) � ACFB , where
ACFB is the ACF of the beam. The FCRAO telescope beam is
well approximated by a Gaussian beam of width σB :

B(r) = 1

2πσ 2
B

exp

(
− |r|2

2σ 2
B

)
(8)

such that the corresponding normalized ACF is

ACFB(�) = exp

(
− �2

4σ 2
B

)
. (9)

The ACF of a turbulent field and its principal components
can be well approximated by an exponential ACF (Brunt 1999;
Brunt & Heyer 2002a): ACFPC(n) (�) = e

− �

λ(n) , where λ(n) is the
true spatial scale corresponding the nth principal component.
This is shown in Figure 6, where the crosses represent the (true)
ACF of the principal components of one time snapshot of the
hydrodynamic simulation (with solenoidal forcing). The solid
line indicates the exponential function with the same e-fold
length as calculated in the ACF (indicated in units of pixels in the
legend). An exponential function fits the ACF well, and seems to
be a reasonable assumption. Note that only the core of the ACF
(above the 1/e level) matters for the calculation of the e-fold
length, and thus the fact that an exponential function does not fit
the wings of the ACF is unimportant. Combining the exponential
form of the true ACF of the principal components and the

relation between the ACF of the observed principal components
and the true principal components, the unnormalized ACF of
the observed principal components is

ACFun
P̃C

(n) (�) =
∫ ∞

x=0
exp

(
− x

λ(n)

)
exp

(
− (� − x)2

4σ 2
B

)
dx

+
∫ ∞

x=0
exp

(
− x

λ(n)

)
exp

(
− (� + x)2

4σ 2
B

)
dx. (10)

The two integrands, I− and I+, can be factored as

I± = exp

[
− 1

4σ 2
B

(
x + 2

(
σ 2

B

λ(n)
± �

2

))2
]

× exp

[
1

σ 2
B

(
σ 2

B

λ(n)
− �

2

)2
]

exp

(
− �2

4σ 2
B

)
. (11)

We then make the change of variable y = (x + 2(σ 2
B/λ(n) ±

�/2))/(2σB), and we recognize the error function (erf):∫ ∞

a

e−y2
dy =

√
π

2
(1 − erf(a)) (12)

so we get:

ACFun
P̃C

(n) (�) = √
πσB

{(
1 − erf

(
σB

λ(n)
− �

2σB

))

× exp

[(
σB

λ(n)
− �

2σB

)2
]

exp

(
− �2

4σ 2
B

)
+

(
1 − erf

(
σB

λ(n)
+

�

2σB

))
× exp

[(
σB

λ(n)
+

�

2σB

)2
]

exp

(
− �2

4σ 2
B

)}
. (13)

Then we estimate ACFun
P̃C

(n) (0):

ACFun
P̃C

(n) (0) = 2
√

πσB

(
1 − erf

( σB

λ(n)

) )
exp

[( σB

λ(n)

)2
]

(14)

and finally get the ACF of the observed principal components
normalized so that ACFP̃C

(n) (0) = 1:

ACFP̃C
(n) (�) = 1

2
(
1 − erf

(
σB

λ(n)

)){(
1 − erf

(
σB

λ(n)
− �

2σB

))
× exp

(
− �

λ(n)

)
+

(
1 − erf

(
σB

λ(n)
+

�

2σB

))
× exp

(
�

λ(n)

)}
. (15)

In order to relate the observed and true spatial scales, we need
to determine for what value of � the ACF of the principal
components, ACFP̃C

(n) (�), falls by one e-fold as a function of
the true spatial scale λ(n). For true spatial scales λ(n) ranging
from 5′′ to 5000′′ (sampled every 5′′), we computed ACFP̃C

(n) (�)
according to Equation (15) and determined the corresponding
“observed” e-fold length λ

(n)
obs. We then constructed a look-up

10
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Figure 6. One-dimensional ACFs of the first nine principal components (1st to 9th) of one snapshot of the hydrodynamic simulation with solenoidal forcing (crosses).
The solid line indicates the best exponential fit to the ACF. The e-fold length (in pixels) is indicated in each panel. An exponential ACF describes the ACF of the
principal components of a turbulent field very accurately for orders � 1.

table relating λ(n) and λ
(n)
obs, which is the desired scale correction.

For every spatial scale detected in the GRS molecular clouds,
the scale correction was applied by finding the two closest λ

(n)
obs

values in the look-up table, and interpolating the corresponding
true scale λ(n) accordingly.

We used the hydrodynamic simulations presented in
Section 3.1 to test our scale correction. We convolved one of the
simulated 13CO data cubes generated from hydrodynamic simu-
lations with a Gaussian beam of FWHM width 48′′, and applied
PCA to the resulting beam-smeared simulated PPV cube, with
and without scale correction. The result is shown in Figure 7.
The black crosses represent the scales detected in the simulations
without convolution with the beam (i.e., the true scales). The
blue triangles represent the scales detected in the simulations
after convolution with the beam, but without any scale correc-
tion. Finally, the red stars indicate the scales detected in the
simulations convolved with the beam after scale correction. For

comparison, the green diamonds show the scales corrected with
the (approximate) prescription from Brunt & Heyer (2002a).
The power-law nature and the exponent of the PCA pseudo-
structure function is only recovered after correcting the spatial
scales for the convolution with the telescope beam. The exact an-
alytical scale correction presented here provides more accurate
results than the prescription from Brunt & Heyer (2002a), which
is based on an approximation. Last, we emphasize that, when
applying this scale correction to real observations of molecular
clouds, only spatial scales above the resolution limit (as de-
tected before the scale correction) must be taken into account.
Spatial scales below the resolution limit correspond to noise and
must be excluded from the analysis. In the following, we choose
to use the FWHM of the beam as the resolution limit. This is
justified in Section 7.7. The changes in PCA slopes caused by
different choices of resolution limit (e.g., 3σ , 2 × FWHM) are
also investigated in Section 7.7.

11
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Figure 7. PCA pseudo-structure function derived from a snapshot PPV cube
of hydrodynamic simulations (black crosses), from the same simulated cube
convolved with a Gaussian beam of FWHM 48′′ (blue triangles), and from
the beam-convolved simulated cube after scale correction (red stars). For
comparison, the scales corrected with the prescription from Brunt & Heyer
(2002a) are shown as green diamonds. The spatial and velocity scales were
rescaled to physical units assuming a 22′′ grid and a temperature of 10 K (sound
speed of 0.2 km s−1).

(A color version of this figure is available in the online journal.)

7.3. Uncertainties in the PCA Results

The uncertainty in the spatial scales detected by PCA stems
from the uncertainty in the distance. The error of the kinematic
distances of the GRS clouds were estimated in Roman-Duval
et al. (2009) and are propagated here. The finite size of

the pixels also contributes to the uncertainty on the spatial
scales. Specifically, the error on the spatial scale is given by
σ 2

δ�
= σ 2

d × δθ2 + (θpix/2 × d)2, where σd is the error on the
distance, θpix is the angular size of a pixel, and δθ is the angular
scale detected by PCA. The uncertainty on the velocity scales
was set to half the velocity resolution (0.1 km s−1 for the GRS).

7.4. Results

PCA was applied to molecular clouds identified in the GRS
for which distances are available from Roman-Duval et al.
(2009). Out of the 750 molecular clouds for which distances
were available, 383 did not exhibit a large-enough spatial
dynamic range to allow the detection of five or more spatial
and velocity scales. Consequently, a robust power law could not
be fitted to the resulting PCA pseudo-structure function for this
sample of clouds. Our sample of GRS clouds thus contains 367
objects. Figures 8 and 9 show an example of PCA results for a
particular cloud, GRSMC G053.59+00.04. In Figure 8, the 0th
principal component simply shows the integrated intensity of
the cloud and thus provides information on its overall structure.
In Figure 9, only spatial scales above the resolution limit (before
scale correction) are shown. A power law was fitted to the PCA
pseudo-structure function, yielding αPCA = 0.74 ± 0.05.

The black histogram in Figure 10 shows the histogram of the
slope of the PCA pseudo-structure function obtained from the
GRS clouds. The mean PCA slope is 〈αPCA〉 = 0.61±0.2, where
the error bar reflects the standard deviation of the distribution.
To reduce the effects of outliers, we also computed the average
of αPCA weighted by the inverse of the reduced χ2 of the power-
law fit to the PCA structure function, and obtained a weighted
average 〈αPCA〉w = 0.62 ± 0.2. This value of αPCA is in good
agreement with the PCA slope obtained for molecular clouds
located in the Outer Galaxy (Brunt & Heyer 2002b, 〈αPCA〉 =
0.62 ± 0.11). A power law of slope 0.62 also fits well the
composite structure function, composed of all the spatial and
velocity scales detected in all the clouds (see Figure 11). A

Figure 8. Nine first principal components for molecular cloud GRSMC G053.59+00.04, randomly selected from our sample of 367 molecular clouds from the Galactic
Ring Survey.
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Figure 9. PCA pseudo-structure function for molecular cloud GRSMC
G053.59+00.04. The order of the principal component for each pair of spa-
tial and spectral scales is indicated next to each data point. The vertical dashed
line shows the resolution limit. Scales detected in the 5th and 6th are smaller
than the resolution limit after scale correction, but above it before the correction
and thus need to be included in the fit. The solid line represents a power-law fit,
the slope of which is indicated in the figure.

Figure 10. Histograms of the slope of the PCA pseudo-structure function
obtained from GRS clouds, and the exponent βv of the turbulent spectrum
obtained from the calibration derived from fBms with purely lognormal PDFs.
The errors in the legend correspond to the standard deviation of the distributions.
The black histogram was derived using the FWHM of the beam as the resolution
limit (fiducial case). The purple, red, and blue histograms show the histogram
of αPCA derived with resolution limits defined as the 1σ , 3σ and 2 × FWHM
widths of the beam, respectively. The corresponding mean PCA slopes and βv

are also indicated for each case.

(A color version of this figure is available in the online journal.)

bisector fit to the PCA composite structure function shown in
Figure 11 yields αPCA = 0.60 ± 0.2.

7.5. Estimation of the Density Dispersion of
GRS Molecular Clouds

Since the measured value of αPCA is unstable above σs ≈ 2,
it is worthwhile to try to estimate plausible values of σs that

Figure 11. Composite PCA pseudo-structure function (composed of all the
spatial and velocity scales detected in all 367 GRS molecular clouds) shown as
a density of points. The dashed line indicates a power law of slope 0.62, the
average slope of the PCA pseudo-structure function in the GRS sample, and the
solid line shows a bisector fit with slope αPCA = 0.6.

(A color version of this figure is available in the online journal.)

may be present in the GRS cloud sample to gauge the possible
effects of high density dispersion on our results. Models of
driven turbulence suggest that the density dispersion is related
to the three-dimensional rms Mach number (M) as follows:
σn/〈n〉 = bM, where b is a constant depending on the nature
of the turbulent driving. For solenoidal forcing, b ≈ 1/3 (Price
et al. 2011), whereas for compressive forcing, b ≈ 1 (Federrath
et al. 2008). There are very few observationally determined
values of b, but existing measurements favor b ≈ 0.5 (Brunt
2010), indicating a mixture of solenoidal and compressive
forcing.

Assuming a lognormal PDF, so that σs =
√

ln(1 + (σn/〈n〉)2,
and with a specified kinetic temperature, T and mean molecular
mass, m, we can derive a relation between the one-dimensional
velocity standard deviation, σv,1D, and σs as follows:

σs =
√√√√ln

[
1 + 24.69

[
σv,1D

1 km s−1

]2 [
b

0.5

]2 [
T

10 K

]−1
]
. (16)

Here, we have used M = σv,3D/cs , where cs = √
kT /m is

the sound speed, and have assumed a mean molecular mass of
2.72 times the mass of a hydrogen atom (Hildebrand 1983)
and taken b = 0.5 (Brunt 2010) and T = 10 K (Roman-
Duval et al. 2010) as reference points. The choice of a kinetic
temperature of 10 K is motivated by Figure 6 in Roman-Duval
et al. (2010), where the maximum excitation temperature in a
molecular cloud occurs in the densest regions that are closest to
LTE, and should reflect the actual kinetic temperature of the gas.
We have also assumed isotropy, so that the three-dimensional
velocity standard deviation is σv,3D = √

3σv,1D.
Values of σv,1D for the GRS cloud sample have already been

measured by Roman-Duval et al. (2010). We have converted
these measurements into estimates of σs for the sample of
367 clouds analyzed here, and the histogram of the resulting
σs values is shown in Figure 12. The histogram peaks near
σs = 2.1, with a tail extending to σs ≈ 2.4. Comparison of the
σs histogram with the HD results in Figure 5 suggests that a
minor overestimation of αPCA may be present in some clouds
as a result of extreme density fluctuations (up to ∼+0.1). In
general though, as long as b = 0.5 and T = 10 K reasonably

13



The Astrophysical Journal, 740:120 (16pp), 2011 October 20 Roman-Duval et al.

Figure 12. Histogram of the log-density dispersion of GRS molecular clouds es-
timated from Equation (16), based on their one-dimensional velocity dispersion
derived in Roman-Duval et al. (2010).

represent the conditions in the GRS clouds, then we conclude
that extreme density fluctuations have a relatively minor impact
on our measured αPCA. Although it is unlikely that kinetic
temperatures are below 10 K, if extreme compressive forcing is
common then the σs values will be a little higher than represented
in Figure 12 (but note that σs varies only slowly with b due to
the square root of a logarithm dependence and this may be
countered by raised kinetic temperatures).

7.6. Turbulent Spectrum of GRS Molecular Clouds from PCA

Because of the large dispersion of αPCA, PCA provides a
coarse measurement of βv for any individual cloud; however,
when considering the ensemble average, it is a reliable statistical
measure of the exponent of the turbulent spectrum. Applying the
PCA calibration derived in Section 4 based on non-intermittent
fBms with σs � 2, the mean value of the PCA slope (0.62 ± 0.2)
corresponds to 〈βv〉 = 2.06±0.6, where the error bar reflects the
standard deviation (see Figure 10). The large standard deviation
reflects not only the uncertainty on the derivation of αPCA, but
potentially also intrinsic variations of the turbulent spectrum
between different molecular clouds caused by varying star-
formation activities, different sources of forcing (e.g., solenoidal
versus compressive) and driving scales, and a range of Mach
numbers (Klessen 2001; Ossenkopf & Mac Low 2002; Brunt
et al. 2009; Federrath et al. 2010).

As previously mentioned, intermittency and high density dis-
persion can introduce significant deviations compared with pre-
dictions from fBms. Since these effects are likely to play a
significant role in molecular clouds, as shown by the HD simu-
lations, we also need to compare the results of PCA applied to
GRS molecular clouds with HD simulations. The average slope
of the GRS PCA pseudo-structure functions (0.62 ± 0.2) is in
excellent agreement (<1σ ) with the PCA slope derived from
the spectral maps generated from solenoidally forced HD simu-
lations (〈αPCA〉 = 0.65 ± 0.05), and in marginal agreement (2σ )
with the compressively forced simulations (〈αPCA〉 = 0.76 ±
0.07), which likely exhibit a higher density dispersion than the
average GRS molecular cloud, as demonstrated in Section 7.5.
For these two cases of turbulence forcing, the exponents of the
turbulence velocity spectrum measured in the velocity fields are

βv = 1.86 ± 0.05 and βv = 1.94 ± 0.05, respectively. There-
fore, accounting for intermittency and density dispersion effects
yields a spectral energy index of βv � 1.9 for the GRS molec-
ular clouds. This range of values correspond to log-Poisson
(intermittent, compressible) turbulence (She & Leveque 1994;
Boldyrev 2002; Boldyrev et al. 2002; Schmidt et al. 2008), but
is also consistent with Burgers turbulence within the errors.

For the HD simulations used here, Schmidt et al. (2008)
showed that the relation between the scaling exponents ζ (p)
of the structure functions of orders p = 1–5 is consistent with a
log-Poisson model, for which ζ (p)/ζ (3) = (1−Δ)p

3 +C(1−(1−
Δ
C

)
p

3 ), where Δ and C are the scaling exponent (or second-order
structure function exponent) and co-dimension of the dominant
dissipative structures, respectively. Both C and Δ depend on
the degree of intermittency of the flow. For the HD simulations
discussed here, and assuming Δ = 1 (the dominant dissipative
structures are shocks that obey Burgers turbulence scaling
relations), Schmidt et al. (2008) found C = 1.1 and 1.5 for the
compressive and solenoidal forcing cases, respectively (i.e., the
dominant dissipative structures are two-dimensional shocks). In
contrast, Burgers turbulence predicts an exponent ζ (p) = 1 for
p �1, inconsistent with the scaling exponents of the structure
functions in the HD simulations. Hence, if the HD simulations
are an accurate model of molecular clouds, the coincidence
between the exponents of the PCA pseudo-structure functions
derived from the HD simulations and the GRS molecular
cloud catalog suggests that turbulence in molecular clouds
is best described by a hierarchical, intermittent log-Poisson
turbulence model with two-dimensional shocks as the singular
dissipative structures. However, we cannot formally distinguish
between log-Poisson models with two-dimensional shocks as
singular dissipative structures and Burgers turbulence in the
GRS molecular cloud sample due to (1) the large uncertainty
in the average exponent of the turbulence velocity spectrum
derived from the GRS cloud sample and (2) the fact that the
velocity field and structure functions are not observable.

7.7. The Choice of “Resolution Limit”

Throughout Section 7, we applied a cutoff to spatial scales
detected by PCA. Only spatial scales above the “resolution
limit” as calculated before scale correction, with the resolution
limit being defined as the FWHM of the beam (48′′), were
considered in the PCA pseudo-structure functions of GRS
molecular clouds. Scales below this threshold are considered
to be the result of noise and are excluded from the analysis.
However, scales between the Nyquist sampling scale and twice
the FWHM of the beam probably contain contributions from
both astrophysical signal and noise, and our decision to use the
FWHM therefore needs to be justified.

Figure 13 shows the composite PCA structure function, with
the spatial scales left as angular scales in units of arcsecs
uncorrected for beam smearing. Different characteristic values
of the Gaussian beam (1σ , 3σ , FWHM, 2 × FWHM) are
indicated by vertical lines. The progressive loss of information
between spatial scales corresponding to Nyquist sampling
(which is equal to the 1σ width of the beam, or 20′′) and the 3σ
width of the beam (60′′) is seen in the angular composite PCA
structure function as a progressive change of slope, the slope
becoming shallower as spatial scales get closer to the Nyquist
sampling limit. For scales below the Nyquist sampling limit,
the PCA pseudo-structure function only reflects contribution
from the noise, all velocity scales are equal to the spectral
sampling (0.2 km s−1), and the PCA pseudo-structure function
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Figure 13. Composite PCA pseudo-structure function for GRS molecular clouds
identified in the GRS, with the spatial scales left as angular scales uncorrected
for beam smearing. The vertical lines indicate several characteristic values of
the Gaussian beam.

is flat (slope zero). This progressive decrease in PCA slope with
decreasing spatial scales starts between 48′′ and 60′′ (the FHWM
and 3σ width of the beam). At spatial scales corresponding to
20′′ (the Nyquist sampling scale and the 1σ width of the beam),
the PCA angular composite structure function is dominated by
the noise. Therefore, choosing the 1σ width of the beam as the
resolution limit would result in a mean PCA slope significantly
skewed by the contribution of the noise. Hence, we took a
conservative approach and excluded scales above the FWHM
of the beam.

Nonetheless, we have investigated the changes in PCA
slope incurred by different definitions of the resolution limit.
The purple, red, and blue histograms in Figure 10 show the
distributions of αPCA and βv obtained from resolution limits
of 20′′ (1σ beam width), 60′′ (3σ beam width), and 96′′
(2×FHWM), respectively. The resulting mean values of αPCA
and βv become steeper as the resolution limit increases (going
from 1σ of the beam to its FHWM to 3σ to 2 × FWHM).
This is a result of the decreasing contribution of noise as the
definition of the resolution limit becomes more conservative. As
expected, the mean PCA slope obtained from the 1σ definition
of resolution limit is significantly lower than for the three other
cases because it includes a large contribution from the noise.
Excluding this case, the mean values of αPCA and βv calculated
with different definitions of the resolution limit are within the
errors of each other, and all consistent well within the errors with
the HD simulations. We conclude that, as long as the resolution
limit is above the FWHM of the beam, the choice of resolution
limit (between FWHM, 3σ , and 2 × FWHM) does not change
the interpretations and the conclusions presented here.

8. SUMMARY AND CONCLUSION

We applied PCA to synthetic PPV spectral maps generated
from the density and velocity fields of solenoidally and com-
pressively forced hydrodynamic simulations of supersonic tur-
bulence (Federrath et al. 2008, 2009, 2010), and of fBm sim-
ulations, in order to constrain the calibration relation between

the PCA pseudo-structure function and the index of the veloc-
ity spectrum of turbulence, and to examine the dependency of
this relation on the density spectrum, intermittency, and density
dispersion.

We demonstrated that the calibration relation, the relation
between the slope of the PCA structure function αPCA and
βv , does not depend on the exponent of the power-law density
spectrum βn.

For a log-density dispersion σs � 2, we do not find any
dependence of the PCA calibration on the dispersion of the
density PDF. We derive a PCA calibration relation, βv =
0.20 ± 0.05 + (2.99 ± 0.09)αPCA valid for σs � 2 and βv =
1.2–2.6. For σs > 2, we find a strong dependence of the
calibration between αPCA and βv with σs . Extreme density
fluctuations intermittently sample the velocity field, producing
an effect similar to intermittency in the velocity field itself—i.e.,
mimicking discontinuous velocity jumps, although the detailed
mechanism is rather different. PCA is stable below a threshold
of the log-density dispersion, σs � 2, but if real molecular clouds
exceed this, then an additional overestimation factor applies to
αPCA. Without knowledge of the true three-dimensional log-
density dispersions in the cloud sample, the estimation of the
turbulent spectrum in molecular clouds remains uncertain. Brunt
et al. (2010a, 2010b) developed a method to estimate the density
PDF of molecular clouds based on the two-dimensional power
spectrum, the variance, and the PDF of the two-dimensional
column density, from which the three-dimensional density PDF
can be reconstructed, even in cases where the density PDF
is not lognormal. However, this method requires high fidelity
measures of column density such as extinction derived from Two
Micron All Sky Survey (2MASS) photometry of background
stars and high spatial dynamic range. Therefore, it is not readily
applicable to our set of data from the GRS for which the
spatial dynamic range for most clouds is limited. In addition,
numerical simulations predict a relation between the log-density
dispersion and the Mach number (Price et al. 2011), but this
relation also depends on the relative contribution of solenoidal
and compressive modes (Federrath et al. 2010). An initial
test of the log-density dispersion–Mach number relation has
been made (Brunt et al. 2010a, 2010b), and this suggests that
both solenoidal and compressive forcing are important and that
density dispersions are likely to be high enough that their effect
on PCA is not insignificant.

We demonstrated that intermittency in the velocity field also
increases the PCA slope for a given velocity spectrum. This
effect is a result of a combination of the operating order of
PCA (PCA traces the first-order structure function exponent,
ζ (1)), and the variation of the ratio between ζ (1) and βv with
intermittency. Thus, if a first-order scheme is used to measure
the second-order exponent βv , then some knowledge of the level
of intermittency is required. By accounting for the level of
intermittency, we were able to reconcile PCA measurements
between non-intermittent fBms and the HD fields.

We applied PCA to 13CO spectral maps of 367 molecular
clouds identified in the GRS (Jackson et al. 2006). We found that
the average slope of the PCA pseudo-structure function and the
slope of the composite structure function, made of all the spatial
and velocity scales derived in all the GRS clouds, are consistent
with αPCA = 0.62 ± 0.2. Applying the PCA calibration obtained
from fBms with σs � 2, the PCA slope obtained for GRS
molecular clouds corresponds to an average turbulence spectral
index of βv = 2.06 ± 0.6. However, we have shown that
intermittency and density dispersion need to be taken into
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account. The average PCA slope obtained for the GRS clouds
is in very good agreement with the PCA slope obtained from
both solenoidally and compressively forced HD simulations,
albeit in better agreement (at <1 σ ) with the solenoidally forced
HD simulations. This agreement suggests that turbulence in
molecular clouds, as in the HD simulations, obey log-Poisson
scaling relations (intermittent, compressible turbulence) with
two-dimensional shocks as the dominant dissipative structures.
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Vázquez-Semadeni, E., Gómez, G. C., Jappsen, A. K., et al. 2007, ApJ, 657,

870
Vázquez-Semadeni, E., Ryu, D., Passot, T., González, R. F., & Gazol, A.

2006, ApJ, 643, 245
Williams, J. P., Blitz, L., & McKee, C. F. 2000, in Protostars and Planets IV,

ed. V. Mannings, A. P. Boss, & S. S. Russell (Tucson, AZ: Univ. of Arizona
Press), 97

16

http://dx.doi.org/10.1051/0004-6361:20041474
http://adsabs.harvard.edu/abs/2005A&A...433....1A
http://adsabs.harvard.edu/abs/2005A&A...433....1A
http://dx.doi.org/10.1086/339624
http://adsabs.harvard.edu/abs/2002ApJ...570..734B
http://adsabs.harvard.edu/abs/2002ApJ...570..734B
http://dx.doi.org/10.1111/j.1365-2966.2009.15115.x
http://adsabs.harvard.edu/abs/2009MNRAS.398.1082B
http://adsabs.harvard.edu/abs/2009MNRAS.398.1082B
http://dx.doi.org/10.1086/165165
http://adsabs.harvard.edu/abs/1987ApJ...315..621B
http://adsabs.harvard.edu/abs/1987ApJ...315..621B
http://dx.doi.org/10.1088/2041-8205/718/1/L1
http://adsabs.harvard.edu/abs/2010ApJ...718L...1B
http://adsabs.harvard.edu/abs/2010ApJ...718L...1B
http://dx.doi.org/10.1086/339403
http://adsabs.harvard.edu/abs/2002ApJ...569..841B
http://adsabs.harvard.edu/abs/2002ApJ...569..841B
http://dx.doi.org/10.1086/340758
http://adsabs.harvard.edu/abs/2002ApJ...573..678B
http://adsabs.harvard.edu/abs/2002ApJ...573..678B
http://dx.doi.org/10.1086/345597
http://adsabs.harvard.edu/abs/2003ApJ...584..293B
http://adsabs.harvard.edu/abs/2003ApJ...584..293B
http://dx.doi.org/10.1051/0004-6361/200913506
http://adsabs.harvard.edu/abs/2010A&A...513A..67B
http://adsabs.harvard.edu/abs/2010A&A...513A..67B
http://dx.doi.org/10.1111/j.1745-3933.2010.00858.x
http://adsabs.harvard.edu/abs/2010MNRAS.405L..56B
http://adsabs.harvard.edu/abs/2010MNRAS.405L..56B
http://dx.doi.org/10.1111/j.1365-2966.2009.16215.x
http://adsabs.harvard.edu/abs/2010MNRAS.403.1507B
http://adsabs.harvard.edu/abs/2010MNRAS.403.1507B
http://dx.doi.org/10.1086/338031
http://adsabs.harvard.edu/abs/2002ApJ...566..276B
http://adsabs.harvard.edu/abs/2002ApJ...566..276B
http://dx.doi.org/10.1086/338032
http://adsabs.harvard.edu/abs/2002ApJ...566..289B
http://adsabs.harvard.edu/abs/2002ApJ...566..289B
http://dx.doi.org/10.1051/0004-6361/200911797
http://adsabs.harvard.edu/abs/2009A&A...504..883B
http://adsabs.harvard.edu/abs/2009A&A...504..883B
http://dx.doi.org/10.1086/377479
http://adsabs.harvard.edu/abs/2003ApJ...595..824B
http://adsabs.harvard.edu/abs/2003ApJ...595..824B
http://dx.doi.org/10.1086/381648
http://adsabs.harvard.edu/abs/2004ApJ...604..196B
http://adsabs.harvard.edu/abs/2004ApJ...604..196B
http://dx.doi.org/10.1121/1.1919776
http://adsabs.harvard.edu/abs/1974ASAJ...55...50B
http://adsabs.harvard.edu/abs/1974ASAJ...55...50B
http://adsabs.harvard.edu/abs/1999A&A...345..965C
http://adsabs.harvard.edu/abs/1999A&A...345..965C
http://dx.doi.org/10.1111/j.1365-2966.2006.10794.x
http://adsabs.harvard.edu/abs/2006MNRAS.371.1663D
http://adsabs.harvard.edu/abs/2006MNRAS.371.1663D
http://dx.doi.org/10.1103/PhysRevLett.73.959
http://adsabs.harvard.edu/abs/1994PhRvL..73..959D
http://adsabs.harvard.edu/abs/1994PhRvL..73..959D
http://dx.doi.org/10.1086/304562
http://adsabs.harvard.edu/abs/1997ApJ...486..944E
http://adsabs.harvard.edu/abs/1997ApJ...486..944E
http://dx.doi.org/10.1086/319021
http://adsabs.harvard.edu/abs/2001ApJ...548..749E
http://adsabs.harvard.edu/abs/2001ApJ...548..749E
http://dx.doi.org/10.1146/annurev.astro.41.011802.094859
http://adsabs.harvard.edu/abs/2004ARA&A..42..211E
http://adsabs.harvard.edu/abs/2004ARA&A..42..211E
http://dx.doi.org/10.1046/j.1365-8711.2003.06551.x
http://adsabs.harvard.edu/abs/2003MNRAS.342..325E
http://adsabs.harvard.edu/abs/2003MNRAS.342..325E
http://dx.doi.org/10.1086/595280
http://adsabs.harvard.edu/abs/2008ApJ...688L..79F
http://adsabs.harvard.edu/abs/2008ApJ...688L..79F
http://dx.doi.org/10.1088/0004-637X/692/1/364
http://adsabs.harvard.edu/abs/2009ApJ...692..364F
http://adsabs.harvard.edu/abs/2009ApJ...692..364F
http://dx.doi.org/10.1051/0004-6361/200912437
http://adsabs.harvard.edu/abs/2010A&A...512A..81F
http://adsabs.harvard.edu/abs/2010A&A...512A..81F
http://dx.doi.org/10.1088/0004-637X/731/1/62
http://adsabs.harvard.edu/abs/2011ApJ...731...62F
http://adsabs.harvard.edu/abs/2011ApJ...731...62F
http://adsabs.harvard.edu/abs/2010MNRAS.404....2G
http://adsabs.harvard.edu/abs/2010MNRAS.404....2G
http://dx.doi.org/10.1086/498413
http://adsabs.harvard.edu/abs/2005ApJ...633L.113H
http://adsabs.harvard.edu/abs/2005ApJ...633L.113H
http://dx.doi.org/10.1086/589916
http://adsabs.harvard.edu/abs/2008ApJ...684..395H
http://adsabs.harvard.edu/abs/2008ApJ...684..395H
http://dx.doi.org/10.1088/0004-637X/702/2/1428
http://adsabs.harvard.edu/abs/2009ApJ...702.1428H
http://adsabs.harvard.edu/abs/2009ApJ...702.1428H
http://dx.doi.org/10.1086/425978
http://adsabs.harvard.edu/abs/2004ApJ...615L..45H
http://adsabs.harvard.edu/abs/2004ApJ...615L..45H
http://dx.doi.org/10.1086/303514
http://adsabs.harvard.edu/abs/1997ApJ...475..173H
http://adsabs.harvard.edu/abs/1997ApJ...475..173H
http://adsabs.harvard.edu/abs/1983QJRAS..24..267H
http://adsabs.harvard.edu/abs/1983QJRAS..24..267H
http://dx.doi.org/10.1051/0004-6361:20078423
http://adsabs.harvard.edu/abs/2008A&A...481..367H
http://adsabs.harvard.edu/abs/2008A&A...481..367H
http://dx.doi.org/10.1086/500091
http://adsabs.harvard.edu/abs/2006ApJS..163..145J
http://adsabs.harvard.edu/abs/2006ApJS..163..145J
http://dx.doi.org/10.1086/308854
http://adsabs.harvard.edu/abs/2000ApJ...535..869K
http://adsabs.harvard.edu/abs/2000ApJ...535..869K
http://dx.doi.org/10.1086/321626
http://adsabs.harvard.edu/abs/2001ApJ...556..837K
http://adsabs.harvard.edu/abs/2001ApJ...556..837K
http://dx.doi.org/10.1086/308891
http://adsabs.harvard.edu/abs/2000ApJ...535..887K
http://adsabs.harvard.edu/abs/2000ApJ...535..887K
http://dx.doi.org/10.1051/0004-6361/200913780
http://adsabs.harvard.edu/abs/2010A&A...520A..17K
http://adsabs.harvard.edu/abs/2010A&A...520A..17K
http://dx.doi.org/10.1086/519443
http://adsabs.harvard.edu/abs/2007ApJ...665..416K
http://adsabs.harvard.edu/abs/2007ApJ...665..416K
http://dx.doi.org/10.1086/431734
http://adsabs.harvard.edu/abs/2005ApJ...630..250K
http://adsabs.harvard.edu/abs/2005ApJ...630..250K
http://dx.doi.org/10.1086/168935
http://adsabs.harvard.edu/abs/1990ApJ...357..477L
http://adsabs.harvard.edu/abs/1990ApJ...357..477L
http://dx.doi.org/10.1086/309040
http://adsabs.harvard.edu/abs/2000ApJ...537..720L
http://adsabs.harvard.edu/abs/2000ApJ...537..720L
http://dx.doi.org/10.1086/508012
http://adsabs.harvard.edu/abs/2006ApJ...652.1348L
http://adsabs.harvard.edu/abs/2006ApJ...652.1348L
http://dx.doi.org/10.1103/RevModPhys.76.125
http://adsabs.harvard.edu/abs/2004RvMP...76..125M
http://adsabs.harvard.edu/abs/2004RvMP...76..125M
http://dx.doi.org/10.1051/0004-6361:20052754
http://adsabs.harvard.edu/abs/2006A&A...452..223O
http://adsabs.harvard.edu/abs/2006A&A...452..223O
http://dx.doi.org/10.1051/0004-6361:20011324
http://adsabs.harvard.edu/abs/2001A&A...379.1005O
http://adsabs.harvard.edu/abs/2001A&A...379.1005O
http://dx.doi.org/10.1051/0004-6361:20020629
http://adsabs.harvard.edu/abs/2002A&A...390..307O
http://adsabs.harvard.edu/abs/2002A&A...390..307O
http://dx.doi.org/10.1086/341790
http://adsabs.harvard.edu/abs/2002ApJ...576..870P
http://adsabs.harvard.edu/abs/2002ApJ...576..870P
http://adsabs.harvard.edu/abs/1997MNRAS.288..145P
http://adsabs.harvard.edu/abs/1997MNRAS.288..145P
http://adsabs.harvard.edu/abs/1988A&A...197..228P
http://adsabs.harvard.edu/abs/1988A&A...197..228P
http://dx.doi.org/10.1103/PhysRevE.58.4501
http://adsabs.harvard.edu/abs/1998PhRvE..58.4501P
http://adsabs.harvard.edu/abs/1998PhRvE..58.4501P
http://dx.doi.org/10.1016/S0378-4371(98)00525-1
http://dx.doi.org/10.1016/S0378-4371(98)00525-1
http://dx.doi.org/10.1063/1.869563
http://adsabs.harvard.edu/abs/1998PhFl...10..237P
http://adsabs.harvard.edu/abs/1998PhFl...10..237P
http://dx.doi.org/10.1088/2041-8205/727/1/L21
http://adsabs.harvard.edu/abs/2011ApJ...727L..21P
http://adsabs.harvard.edu/abs/2011ApJ...727L..21P
http://dx.doi.org/10.1088/0004-637X/723/1/492
http://adsabs.harvard.edu/abs/2010ApJ...723..492R
http://adsabs.harvard.edu/abs/2010ApJ...723..492R
http://dx.doi.org/10.1088/0004-637X/699/2/1153
http://adsabs.harvard.edu/abs/2009ApJ...699.1153R
http://adsabs.harvard.edu/abs/2009ApJ...699.1153R
http://dx.doi.org/10.1051/0004-6361:200809967
http://adsabs.harvard.edu/abs/2009A&A...494..127S
http://adsabs.harvard.edu/abs/2009A&A...494..127S
http://dx.doi.org/10.1103/PhysRevLett.101.194505
http://adsabs.harvard.edu/abs/2008PhRvL.101s4505S
http://adsabs.harvard.edu/abs/2008PhRvL.101s4505S
http://dx.doi.org/10.1103/PhysRevLett.72.336
http://adsabs.harvard.edu/abs/1994PhRvL..72..336S
http://adsabs.harvard.edu/abs/1994PhRvL..72..336S
http://adsabs.harvard.edu/abs/1999IAUS..190..103S
http://adsabs.harvard.edu/abs/1998A&A...336..697S
http://adsabs.harvard.edu/abs/1998A&A...336..697S
http://dx.doi.org/10.1088/0004-637X/700/1/358
http://adsabs.harvard.edu/abs/2009ApJ...700..358T
http://adsabs.harvard.edu/abs/2009ApJ...700..358T
http://dx.doi.org/10.1086/173847
http://adsabs.harvard.edu/abs/1994ApJ...423..681V
http://adsabs.harvard.edu/abs/1994ApJ...423..681V
http://dx.doi.org/10.1086/510771
http://adsabs.harvard.edu/abs/2007ApJ...657..870V
http://adsabs.harvard.edu/abs/2007ApJ...657..870V
http://dx.doi.org/10.1086/502710
http://adsabs.harvard.edu/abs/2006ApJ...643..245V
http://adsabs.harvard.edu/abs/2006ApJ...643..245V
http://adsabs.harvard.edu/abs/2000prpl.conf...97W

	1. INTRODUCTION
	2. PRINCIPAL COMPONENT ANALYSIS (PCA)
	2.1. Method
	2.2. Definition of Spatial Scales

	3. SIMULATIONS
	3.1. Hydrodynamic Simulations
	3.2. Fractional Brownian Motion
	3.3. Generation of the Spectral Maps

	4. PCA APPLIED TO HYDRODYNAMIC SIMULATIONS
	5. PCA APPLIED TO fBms: SENSITIVITY OF THE PCA CALIBRATION TO THE DENSITY SPECTRUM
	6. SENSITIVITY OF THE PCA CALIBRATION TO INTERMITTENCY AND TO THE DENSITY PDF
	6.1. PCA Applied to fBms with Lognormal Density PDFs of Varying Dispersion
	6.2. Effects of the Density Dispersion
	6.3. Effects of Intermittency in the Velocity Field and the Operating Order of PCA
	6.4. Consequence for Molecular Cloud Observations

	7. APPLICATION TO MOLECULAR CLOUDS IDENTIFIED IN THE GALACTIC RING SURVEY
	7.1. Subtraction of the Noise ACF
	7.2. Effects of the Finite Telescope Resolution on the Determination of Spatial Scales
	7.3. Uncertainties in the PCA Results
	7.4. Results
	7.5. Estimation of the Density Dispersion of GRS Molecular Clouds
	7.6. Turbulent Spectrum of GRS Molecular Clouds from PCA
	7.7. The Choice of “Resolution Limit”

	8. SUMMARY AND CONCLUSION
	REFERENCES

