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ABSTRACT

It is now well-established that the elemental abundance patterns of stars hold key clues not only to their formation,
but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance
patterns as “chemical tags” to identify stars that were born in the same molecular cloud. In this paper, we assess the
prospects of chemical tagging as a function of several key underlying parameters. We show that in the fiducial case
of 104 distinct cells in chemical space and 10 105 6- stars in the survey, one can expect to detect 10 102 3~ - groups
that are 5s⩾ overdensities in the chemical space. However, we find that even very large overdensities in chemical
space do not guarantee that the overdensity is due to a single set of stars from a common birth cloud. In fact, for our
fiducial model parameters, the typical 5s overdensity is comprised of stars from a wide range of clusters with the
most dominant cluster contributing only 25% of the stars. The most important factors limiting the identification of
disrupted clusters via chemical tagging are the number of chemical cells in the chemical space and the survey
sampling rate of the underlying stellar population. Both of these factors can be improved through strategic
observational plans. While recovering individual clusters through chemical tagging may prove challenging, we
show, in agreement with previous work, that different CMFs imprint different degrees of clumpiness in chemical
space. These differences provide the opportunity to statistically reconstruct the slope and high-mass cutoff of CMF
and its evolution through cosmic time.

Key words: Galaxy: abundances – Galaxy: disk – Galaxy: evolution – Galaxy: formation – ISM: abundances –
stars: abundances

1. INTRODUCTION

Despite decades of effort, we still lack a thorough under-
standing of how galaxies assemble and evolve over cosmic
time. This is true not only for distant galaxies but also for our
own Milky Way. In the current paradigm, galaxies, such as the
Milky Way form from smaller pieces (e.g., Searle &
Zinn 1978), driven by the hierarchical growth of dark matter
structures (e.g., Peebles 1971; Press & Schechter 1974). Much
of the most exciting phases of star formation and galaxy
assembly appear to have taken place at early times, perhaps
before z 2~ . If true, this puts much of the most interesting
phases of galaxy formation beyond direct detailed study. For
this reason much effort has focused on reconstructing the past
based on present-day observations of stars, in particular in our
Galaxy. For example, studies of the Galactic stellar halo
provide clues to the assembly history of dwarf galaxies (e.g.,
Eggen et al. 1962; Searle & Zinn 1978). The properties of stars
in the thin and thick disks provide clues to the formation
history of these Galactic components. The abundance patterns
of the most metal poor stars probe star formation and
supernovae conditions during the first generation of stars. Also
the evolutionary histories of star clusters, including intact,
dissolving, and long destroyed, offer clues not only into the star
formation process (by reconstructing the CMF), but also the
dynamical history of the Galaxy (e.g., Kollmeier &
Gould 2007; Allison 2012; Webb et al. 2013).

However, reconstructing disrupted star clusters is difficult
because most star clusters dissolve quickly upon their
formation due to dynamical interactions, such as intracluster
N-body interaction and external tidal stripping from ram
pressure. In fact, most clusters are not expected to survive for
more than 10Myrs (Lada & Lada 2003). For this reason, the
study of young embedded clusters (e.g., Bica et al. 2003;

Porras et al. 2003; Koposov et al. 2008; Borissova et al. 2011)
is typically restricted to the study of star formation conditions
at the present time. Although most star clusters are quickly
disrupted, they retain their identity in kinematic phase space for
a longer period of time. Several examples of clusters identified
in phase space are known, such as HR 1614, the Argus
association and the Wolf 360 group (e.g., De Silva
et al. 2007a, 2013; Bubar & King 2010), with an age of
2–3 Gyrs. This implies that at least some clusters can maintain
their phase space identity for a few disk dynamical times.
Within a few dynamical times these groups will phase mix with
the background stars, which implies that the timescale over
which groups can be identified in phase space is still a small
fraction of the age of the Galaxy.
While dynamical information is mostly short-lived, elemen-

tal abundances are expected to leave a more permanent fossil
record of star clusters. The idea of “chemical tagging,” first
proposed by Freeman & Bland-Hawthorn (2002; also see
Bland-Hawthorn & Freeman 2014), is to use elemental
abundances to identify stars that are now widely separated in
phase space to a common birth site. If such an association
could be made, even for a small fraction of stars, it would
provide an extraordinary new view into both the early star
formation process and the subsequent dynamical history of the
Galaxy.
Observations have shown that satellite galaxies exhibit

different chemical evolution histories compared to stars either
in the disk, bulge, or halo of the Galaxy (e.g., Venn et al. 2004;
Pompéia et al. 2008; Venn & Hill 2008; Tolstoy et al. 2009;
Letarte et al. 2010). As a consequence, stars accreted into the
Galaxy from different satellite systems should show distinct
chemistry from e.g., disk stars. It has been proposed that these
variations could be used in chemical tagging to find the
remnants of disrupted satellite galaxies (Freeman & Bland-
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Hawthorn 2002). The possibility of reconstructing disrupted
satellite galaxies via chemical tagging could for example
provide important clues to the missing satellite problem
(Moore et al. 1999).

Previous studies of high-resolution stellar spectroscopy were
limited to a few 100 stars (e.g., Barklem et al. 2005; Reddy
et al. 2006; Bensby et al. 2014). The small samples restricted
the possibility of chemical tagging for reasons that will become
clear in later sections. But this situation is rapidly changing.
Recent and on-going large-scale surveys, such as GALAH (De
Silva et al. 2015), Gaia-ESO (Randich et al. 2013) and
APOGEE (Zasowski et al. 2013) aim to observe 10 105 6- stars
with resolution R 20,000> in order to measure ∼15–30
elements for each star. These surveys were motivated, at least
in part, by the idea of chemical tagging and the prospects for
uncovering the distribution of stars in their N-dimensional
chemical space, spanned by the elemental abundances.

There are several conditions that must be met for chemical
tagging to work (see Freeman & Bland-Hawthorn 2002; Bland-
Hawthorn & Freeman 2004; Bland-Hawthorn et al. 2010a,
2010b; De Silva et al. 2015, for details). First, clusters must be
internally chemically homogeneous. Open clusters have been
found to be chemically homogeneous at the level of

0.05X[ Fe]s < dex (e.g., De Silva et al. 2007b, 2009; Ting
et al. 2012b; Friel et al. 2014; Önehag et al. 2014). Theoretical
arguments from Bland-Hawthorn et al. (2010b) showed that
the chemical signature within a protocloud should have
sufficient time to homogenize before the first supernova goes
off, for clusters with mass M10 105 7- . Simulations by Feng &
Krumholz (2014) showed that turbulent mixing, even for a
loosely bound cluster, could homogenize the elemental
abundances of a protocloud. Their simulations showed that
turbulent mixing creates an intracluster chemical dispersion at
least five times more homogenized than the protocloud. Both
observations and theory agree that clusters less massive than

M107~  should be chemical homogeneous, except perhaps for
the confounding internal abundance trends observed in the light
elements of all known globular clusters (e.g., Carretta
et al. 2009; Marino et al. 2011), though many globular clusters
show a high degree of chemical uniformity (e.g., Roederer &
Thompson 2015) in all heavy elements.

In addition to cluster homogeneity, the existence of
substantial cloud-to-cloud variation in elemental abundances
is another requirement. For example, if all star clusters shared
the same elemental abundances, it would not be possible to
separate them in chemical space. We know that this condition
is broadly satisfied given the sizable spread in abundance ratios
in existing spectroscopic samples (e.g., Edvardsson et al. 1993;
Bensby et al. 2014). Quantitatively, an important parameter is
the volume of abundance space that is available for a particular
survey. This volume depends both on Galactic chemical
evolution and on the particular survey design. The latter is
important both in determining the target sample and in the
number of elements that can be spectroscopically measured.
Combining the available chemical volume with the measure-
ment uncertainty on individual abundances allows us to define
the concept of the total number of distinct cells in chemical
space. As we will see below, this is a key concept in chemical
tagging (see also Freeman & Bland-Hawthorn 2002).

Ting et al. (2012a) presented an empirical estimate of cloud-
to-cloud variation in elemental abundances. They performed
principal component analysis and estimated that there are 7 9-

independent dimensions among the ∼25 elements that will be
measured by surveys such as GALAH and Gaia-ESO, and 4 5-
independent dimensions for an APOGEE-like survey. From
this one can estimate the number of distinguishable cloud-to-
cloud variations in the chemical space, denoted Ncells. As
discussed in detail in Section 3.5 below, the result is that
modern surveys should be able to reach N 10cells

3 4~ - , at least,
implying that there is a decent cloud-to-cloud variation.
The goal of this paper is to explore the prospects for

identifying long disrupted star clusters based on their clustering
in chemical space. We follow Freeman & Bland-Hawthorn
(2002), Bland-Hawthorn et al. (2010a), and De Silva et al.
(2015) in identifying the global survey parameters and the
shape of the CMF as key parameters. Our emphasis on the
information contained in the distribution (i.e., clumpiness) of
stars in chemical space echoes the results found in Bland-
Hawthorn et al. (2010a). In the present work we consider a
wide array of parameters in order to identify optimal regions of
parameter space for chemical tagging. In addition, for the first
time we analyze the local properties of cells in chemical space
that appear as high sigma fluctuations and find that in many
cases these high overdensities in chemical space are not the
result of a single star cluster but instead are comprised of stars
from many distinct birth sites.
The rest of this paper is organized as follows. In Section 2

we review several basic arguments relevant for chemical
tagging and in Section 3 we describe the model used in the
present work. In Section 4 we present the results and discuss
how these assumptions and survey strategies affect the
chemical tagging detections. In Section 5 we discuss various
caveats, limitations and future directions. We conclude in
Section 6. It is difficult to present the full set of results from a
multidimensional parameter space and so we urge readers to
explore the online interactive applet1 created in the course of
this project (see Appendix B for details).

2. BASIC ARGUMENTS

As we will show quantitatively below, the prospects for
chemical tagging largely depend on the number of stars
sampled per cluster. This number in turn primarily depends on
the number of stars in the survey divided by the integrated star
formation rate (SFR), over cosmic history, in the volume
sampled by the survey. We will denote the former number as
N and the latter number as Mannulus. Ongoing and upcoming
surveys are targeting primarily FGK stars, which have on
average M M1á ñ » . This implies that N stars in a survey
corresponds to N in solar masses and therefore numerically
M Nannulus annulus» . The ratio of N and Nannulus defines the
sampling rate. In this section, we motivate why the sampling
rate largely defines the number of stars sampled per cluster (see
also De Silva et al. 2015).
First, let us consider a simple case where there is no radial

migration and stellar excursion, i.e., stars stay in the annulus in
which they were born. The integrated SFR in the Solar annulus,
with a survey width R 3 kpcsurveyD =  , is M2 1010~ ´ 
(see model detail in Section 3).2 For a survey of 106 stars with
M M1á ñ = , the sampling rate can thus be calculated to be

1 www.cfa.harvard.edu/∼yuan-sen.ting/chemical_tagging.html
2 The survey width RsurveyD defines the Solar annulus by R R0- <∣ ∣

RsurveyD∣ ∣. The survey width should not be confused with the line of sight depth
from the Sun, which is R R R0 survey- < D∣ ∣ ∣ ∣.
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M M(10 ) (2 10 ) 1 (2 10 )6 10 4´ = ´  . In other words,
assuming all stellar mass (including stellar mass loss) is now
fully mixed in the annulus, we would have only sampled, on
average, 1 (2 10 )4´ of the original zero age mass from each
cluster. Thus, we would expect to observe, on average, only
one star from a M2 104´  cluster. If we define the
“detection” of a cluster to include the identification of at least
10 stars, then for a survey of 106 random stars in the solar
annulus we would be able to probe clusters more massive than

M2 105´ .
In practice, the sample is affected by the process of radial

migration (e.g., Bland-Hawthorn et al. 2010b). Some stars
migrate away from their birth annulus while others that were
born outside the Solar annulus will now reside within the Solar
annulus. In other words, the number of stars that could end up
in the Solar annulus increases with radial migration (another
way of thinking of this effect is that the effective volume of the
Solar annulus increases as the strength of radial migration
increases). Given that the number of stars in the survey stays
the same, the sampling rate decreases with radial migration. For
a fixed survey strategy, the minimum cluster mass that one can
probe increases in the presence of radial migration.

We must also consider the fact that we have limited
resolution in separating groups in terms of their elemental
abundance variations due to measurement uncertainties on the
abundances. Multiple clusters might share the same cell in
chemical space (e.g., Bland-Hawthorn et al. 2010a). If we
assume a CMF over the range M50  to M106

 and a CMF
slope of −2 (see details in Section 3), the mean cluster mass is

M5 102~ ´ . Since the integrated SFR is M2 1010~ ´ , we
deduce that there are 4 107~ ´ clusters in the Solar annulus.
Fully resolving clusters in chemical space would require
roughly as many distinct chemical cells (Freeman & Bland-
Hawthorn 2002), but it was argued in the introduction that the
actual number of chemical cells spanned by the data may be
2 3- orders of magnitude lower. This suggests that most cells in
chemical space will be occupied by many clusters, each with a
small number of stars sampled per cluster. One of the key goals
of this paper is to understand the distribution of clusters in
chemical space under different scenarios.

The simple calculations in this section already demonstrate
that key parameters include the number of stars in a survey, N,
the geometry of the survey (via Mannulus), the strength of radial
migration, the shape of the CMF (which sets the typical cluster
size), and the number of cells in chemical space (Ncells).

3. MODEL DESCRIPTION

In this section we describe the ingredients of our model for
the Milky Way in some detail. The model is spatially two
dimensional (though we assume that stars are uniformly
distributed in the azimuthal angle), time-dependent, and
statistical in nature. For the present study we are only interested
in the disk; the bulge and halo are not included in the model
below. We do not follow dynamics nor do we include a
treatment of chemical evolution (these will be subjects of
future work). The present aim is to build a model that is
computationally very fast to allow the exploration of a large
multi-dimensional parameter space.

The model specifies the star formation history (SFH) and
evolution in time of the size of the Milky Way disk and the gas
mass distribution. We define the SFH to be the total SFR in the

Milky Way as a function of cosmic time. These quantities are
used to model the effects of radial migration and an evolution
in the cutoff of the CMF. The model is illustrated in a flow
chart in Figure 1. Table 1 lists observational constraints that we
employ to constrain the model. Free parameters in the model
and their adopted fiducial values are listed in Table 2. A list of
other important symbols in this paper is summarized in Table 3.
We now proceed to explain the details of the model .

3.1. SFH and Radial Size Growth of the Disk

The SFH in the Solar neighborhood, R t( , )SFR 0S , has been
estimated by analyzing the color–magnitude diagram from the
Hipparcos catalog. Results from, for example, Hernandez et al.
(2000) and Bertelli & Nasi (2001) showed a rather flat SFH
near R0, ranging from 3 to 6 M Gyr pc1 2- -

 through 0 to 8 Gyr
in lookback time. The current total SFR in the Milky Way has
been estimated to be M0.5 2 yr 1- -

 from the study of young
stellar objects (e.g., Robitaille & Whitney 2010; Chomiuk &
Povich 2011; Veneziani et al. 2013).
Compared to the Solar neighborhood, the Galactic global

SFH is less well understood. We therefore adopt cosmological
semi-empirical modeling from Behroozi et al. (2013), assum-
ing a Milky Way halo virial mass of M M M10halo 200

12º = 
(e.g., Wilkinson & Evans 1999; Klypin et al. 2002; Xue
et al. 2008; Kafle et al. 2012). Behroozi et al. (2013)
investigated the best-fitting global SFH as a function of halo
mass that is consistent with the observed galaxy stellar mass
function, specific SFR, and cosmic SFR. We fit their result for
Milky Way-like halos with a Schechter function,

M A t C t CSFR yr ( [Gyr] ) exp( [Gyr] ). (1)B1é
ëê

ù
ûú = --



Given a global SFH, the stellar mass evolution is calculated
assuming the stellar population synthesis code from Conroy
et al. (2009), with a Kroupa IMF (Kroupa 2002) from 0.08 to
125 M. The synthesis code is used to take into account secular
stellar mass loss, etc. The normalization of the global SFH is
further adjusted such that the present-day stellar mass (long-
lived stars + remnant stars) agrees with observations,
M z M( 0) 4.5 1010
 = = ´  (e.g., Binney & Tre-

maine 2008; Bovy & Rix 2013). In this study, we only trace
long-lived stars with M0.5 1.5-  because almost all FGK stars
in chemical tagging surveys are within this mass range.
We consider two SFH models in this study, with parameters

from Equation (1) as follows: (1) A = 1.4, B = 4.4, C = 1.3,
which is the best fitting SFH model from Behroozi et al.; (2)
A = 15.5, B = 2, C = 2.7, which produces better agreement
with the observed R t( , )SFR 0S . Both models are within the
uncertainty quoted by Behroozi et al. We adopt the latter as the
fiducial model and the former to be the optimistic model (see
Figure 2 and Table 4). The former coins the term “optimistic
model” as its more highly peaked SFR entails a higher total gas
mass (see Section 3.2). The higher total gas mass in turn
predicts a larger cluster high mass cutoff (see Section 3.4) than
the “fiducial model.” We emphasize that while the optimistic
and fiducial models assume different SFHs, the integrated
SFRs of these models over cosmic time are the same. Since the
total integrated SFRs are the same, they both produce the same
M z( 0) = and R z( , 0)0S = . Therefore, the sampling rate is
the same for both cases. The global SFR and R t( , )SFR 0S in
these two models are compared in the upper panels in Figure 2.
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The main differences of these models are summarized in
Table 4 (the “quiescent model” will be defined in Section 3.4).

With the stellar mass evolution in hand, we then derive the
radial size growth of the Milky Way using the empirical
relation from van Dokkum et al. (2013). By studying the
evolution of galaxies at a fixed comoving number density at

different redshifts, van Dokkum et al. (2013) found that the
effective radius R of Milky Way-like galaxies grow with the
total stellar mass according to the relation R M 0.27

 µ .
Finally, to fully specify the star formation at different radii,

we also require the star formation scale length, RSFR, and its
evolution. Unfortunately, determining RSFR for the Milky Way
is observationally challenging. Therefore, we resort to RSFR
from extragalactic studies where the external vantage point
provides an easier measurement of scale lengths. NGC 6946
has long been thought to be a Milky Way counterpart (e.g.,
Kennicutt & Evans 2012). We find the SFR and the (atomic
and molecular) gas mass of NGC 6946 from Schruba et al.
(2011) can be fitted with an exponential model. We find scale
lengths R z( 0) 2.6 kpcSFR = = and R z( 0) 4.2 kpcgas = = ,
which we adopt in our model of the Milky Way. To compute
the evolution R z( )SFR and R z( )gas through cosmic time, we
assume all scale lengths trace the stellar effective radius. We
find that this adopted R z( )SFR leads to a stellar disk scale length
of R z( 0) 2.2 kpc = = and R z M( , 0) 38 pc0

2
S = = -

 .

Figure 1. Flow chart demonstrating the main components of the model. Sections defining or describing certain components of the model are indicated in the chart.

Table 1
List of Constraints in this Study

Property Value References

Galactocentric radius of the Sun, R0 8 kpc Ghez et al. (2008), Gillessen et al. (2009), Reid et al. (2014)
Stellar surface density, R z( , 0)0S = M38 pc 2-

 Flynn et al. (2006), Bovy & Rix (2013), Zhang et al. (2013)
Gas surface density, R z( , 0)gas 0S = M13 pc 2-

 Flynn et al. (2006)

Total stellar mass in the disk, M z( 0) = M4.5 1010´  Flynn et al. (2006), Binney & Tremaine (2008), Bovy & Rix (2013)
Halo virial mass, M z( 0)halo = M1012

 Wilkinson & Evans (1999), Klypin et al. (2002), Xue et al. (2008), Kafle et al. (2012)
Global SFR (z = 0) M0.5 2 yr 1- -

 Robitaille & Whitney (2010), Chomiuk & Povich (2011), Veneziani et al. (2013)
Solar neighborhood SFR, R t( , )SFR 0S M3 6 Gyr pc1 2- - -

 Hernandez et al. (2000), Bertelli & Nasi (2001)
Stellar disk scale length, R z( 0) = 2.2 kpc Bovy & Rix (2013)
SFR scale length, R z( 0)SFR = 2.6 kpc Schruba et al. (2011) on NGC 6946

Gas scale length, R z( 0)gas = 4.2 kpc Schruba et al. (2011) on NGC 6946

Radial size growth R M 0.27
 µ van Dokkum et al. (2013)

Table 2
List of Parameters in the Model

Parameter Fiducial Range

In situ fraction, f R( 1 kpc)in situ surveyD =  50% 15% 100%-

Survey width, RsurveyD 3 kpc 0.6 5 kpc -

CMF slope, α −2.0 −1.5 to −2.5
CMF low mass cutoff, Mcluster

min M50  M10 100- 

CMF high mass cutoff, Mcluster
max See Figure 2 See Figure 2

Number of chemical cells, Ncells 104 10 103 5-
Number of stars in the survey, N 106 10 104 6-
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These values agree with existing observations (Flynn
et al. 2006; Bovy & Rix 2013; Zhang et al. 2013). Furthermore,
the model implies R z R z( 0) 2 ( 0)gas = = , agreeing with
Bovy & Rix (2013).

3.2. Gas Mass Distribution and Evolution

The mass of gas in the disk comes into play in two aspects of
the model, namely the radial migration prescription and the
CMF evolution. We assume R z M( , 0) 13 pcgas 0

2S = = -


(Flynn et al. 2006), which, when combined with
R z( 0) 4.2 kpcgas = = , yields a total gas mass of

M z M( 0) 9.7 10gas
9= = ´ . We then estimate the redshift

evolution of the gas mass M z( )gas by inverting the Kennicutt–
Schmidt relation with 1.5KSa = and the SFR evolution
described in the previous section. The distribution of gas is
fully specified by M z( )gas and R z( )gas . The total stellar mass
and the total gas mass evolution are shown in the bottom left
panel in Figure 2. For this work we do not need to specify the
disk scale height because all quantities of interest are related to
surface mass densities.

3.3. Radial Migration

Radial migration describes the phenomenon of stars in the
disk moving, either inward or outward, in radius from their
birth radius. Studies of processes giving rise to radial migration
have a long history. In the past decade, radial migration has
gained increasing attention as playing a key role in driving the
chemodynamical evolution of the Milky Way (e.g., Sellwood
& Binney 2002; Haywood 2008; Schönrich & Binney 2009;
Minchev & Famaey 2010; Bland-Hawthorn et al. 2010b; Di
Matteo et al. 2013). Due to its role in changing stellar orbiting
radii, radial migration provides tentative explanations to some
observational puzzles. For example, the upturn in the stellar
population age at the outer part of some galaxies (e.g., Bakos

et al. 2008; Zheng et al. 2015), the wide range of stellar
metallicity in the Solar neighborhood (e.g., Haywood 2008;
Schönrich & Binney 2009); and perhaps even the formation of
the thick disk (e.g., Loebman et al. 2011) can be explained by
appealing to the process of radial migration.
An important physical process giving rise to radial migration

is known as “churning” (Sellwood & Binney 2002). In the
process of churning, stars that co-rotate with transient non-
axisymmetric features can increase their angular momentum
while maintaining the ellipticity of the orbit, effectively
bumping stars from an orbiting radius to the other. Schönrich
& Binney (2009) proposed a simple analytic formula for
churning that we will adopt in this study. In this prescription,
the probability of moving from the ith to the jth annulus, Pij,
where j i 1=  , is given by

P k
M

M
, (2)ij

j
ch

max
=

where Mj denotes the total (stellar + gas) mass of the jth
annulus and kch is a free parameter governing the strength of
the churning.
In the present work we discretize the model galaxy into

annuli with width of 0.2 kpc and apply the churning exchange
every 0.5 Gyr. We define in situ fraction, fin situ, as the fraction
of stars that were born in situ in a Solar annulus with

R 1 kpcsurveyD =  . Clearly, fin situ depends on the choice of
RsurveyD . We choose R 1 kpcsurveyD =  to calculate the in situ

fraction, instead of our fiducial value 3 kpc in the model for
ease of comparing to hydrodynamics simulations (e.g., Roškar
et al. 2008). We note that the free parameter kch maps directly
into the variable fin situ, and we choose to express the effect of
radial migration in terms of the latter value. We consider a
range of kch corresponding to f 15% 100%in situ = - and we
choose f 50%in situ = to be the fiducial value, as suggested by
simulations (e.g., Roškar et al. 2008; Halle et al. 2015). To
illustrate the radial migration prescription adopted in this study,
solid lines in Figure 3 show the PDF of the final position of a
star after 13 Gyr of evolution starting from various initial
positions.
In addition to churning, scattering, e.g., from interactions

with molecular clouds, can also diffuse stars from their birth
radii. This scattering is known as “blurring” (Sellwood &
Binney 2002). For simplicity, we do not include blurring in the
model. However, we note for our purposes only the fraction
fin situ is important; the details of migration, either through
churning or blurring are largely irrelevant in this study.

3.4. Cluster Mass Function Evolution

We have discussed in Section 2 that the number of stars
sampled per cluster is governed primarily by the sampling rate
and the in situ fraction. However, knowing the detections per
cluster is insufficient. To determine the number of detectable
groups, we also need to understand the relative number of
massive clusters compared to their smaller counterparts.
Therefore, the CMF is another key factor (see also Bland-
Hawthorn et al. 2010a). In this study, we assume a CMF that is
characterized by a power law slope α, high mass cutoff Mcluster

max

and low mass cutoff Mcluster
min , where

dN

dM
M . (3)µ a-

Table 3
Meaning of Other Important Symbols in this Paper

that are not Listed in Tables 1 and 2

Symbols Meanings

kch Churning strength in the radial migration prescription

η Gas fraction; the ratio of gas mass over total dynamical mass

X[ Fe]s Elemental measurement uncertainty in [X/Fe]

σ Elemental measurement uncertainty along the chemical space
principal components

Ndim Number of independent/informative dimensions in chemical
space

Mgas Total gas mass in the Milky Way

Mcluster Zero age stellar mass of a star cluster

Mannulus Integrated SFR, over cosmic history, in the volume sampled by
the survey

Nannulus Total number of stars (including stellar mass loss) in the volume
sampled by the survey

Ni Total number of stars sampled in a chemical cell
Nmean Average number of stars sampled per chemical cell

Ncluster Number of stars sampled from a cluster

Ndominant Number of stars sampled from the most dominant cluster in a
chemical cell

local S/N Number of stars sampled from the most dominant cluster over the
total number of other stars in a chemical cell

fsub Sampling rate of a certain stellar subpopulation
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Note that cluster masses refer to zero age masses; clusters will
lose at least a factor of two mass after a Hubble time due to
stellar evolution effects and the evaporation of stars.

Lada & Lada (2003) analyzed young embedded clusters
within 2.5 kpc from the Sun and found a CMF slope

2.0a » - . We take this as the fiducial value in the model.
The fact that 2a » - is important in chemical tagging. In this
case, the total mass in a survey sample coming from clusters
within a mass bin Md , can be calculated to be

M dN dM M M dN dM M Mlog log . (4)2d d d= µ

Quantitatively, this means that the chance of sampling a star
from the logarithmic bin M M[10 , 100 ]  is the same as the

probability of sampling from the logarithmic bin
M M[100 , 1000 ]  , and so forth. Since we adopt a maximum

cluster mass M M10 10cluster
max 5 7= -  in this model, we have 4–6

Figure 2. Bottom right panel: evolution of CMF high mass cutoff. The CMF evolves according to Escala & Larson (2008). The CMF cutoff is the main property that
defines the quiescent, fiducial and optimistic models that we will discuss throughout this study. For example, the optimistic CMF allows the formation of larger
clusters (M M10cluster

7~ ). We adopt an upper limit of M M10cluster
max 7= , above which clusters are not expected to be homogeneous. Bottom left panel: stellar and

gas mass evolutions. The gas mass at z = 0 is calculated from R z M( , 0) 13 pcgas 0
2S = = -

 . The gas mass evolution is calculated from the global SFH, following a
Kennicutt–Schmidt law with 1.5KSa = . Top left panel: global SFH models in this study, assuming M M10halo

12=  adjusted to produce
M z M( 0) 4.5 1010
 = = ´ . The two SFHs have the same integrated SFR. The SFHs mainly come into play in determining the gas mass evolution and

subsequently the CMF cutoff evolution. Since the quiescent CMF cutoff is constant through cosmic time without evolution, employing the optimistic SFH or fiducial
SFH for the quiescent model does not change its results as they have the same integrated SFR. We choose to follow the fiducial SFH for the quiescent model as it fits
the R t( , )SFR 0S better. Top right panel: R t( , )SFR 0S calculated from the global SFHs.

Table 4
Summary of the Three Model Variants in this Study

Property Optimistic Fiducial Quiescent

CMF cutoff M107~  M106~  M105


Global SFR Peaks in the past More flat More flat
R t( , )SFR 0S Too high in

the past
Agrees with obs. Agrees

with obs.
Integrated SFR The same The same The same

Figure 3. Probability of position of a star after evolving over 13 Gyr, assuming
f 50%in situ = . The solid lines show the final positions, whereas the dashed
lines show the corresponding initial positions.
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orders of dynamical range in the cluster mass. This large range
of cluster mass implies that clusters with M M[10 , 100 ] 
contribute only 10% 25%~ - of the total stellar mass. Lada &
Lada (2003) determined that the CMF low mass cutoff occurs
around M M50cluster = , which we will adopt as the fiducial
value.

Although not shown in this paper, we find that changing the
low mass cutoff to M10  or M100  has a negligible effect on
the results. First, as we have discussed, the small clusters only
contribute 10% 25%~ - of the population. Furthermore,
changing the low mass cutoff will alter the number of small
clusters and hence the background in each cell, however since
the signal is concentrated in 0.1% 1%~ - of the chemical cells,
as we will show in Section 4.2, only 1%< of this background
change is affecting the signal.

The high mass cutoff Mcluster
max has a dramatic effect on the

results because massive clusters dominate the signal, as shown
in later sections. We therefore consider several different
scenarios for the high mass cutoff and its evolution with
redshift (see the lower right panel of Figure 2). The largest
open clusters observed in the Milky Way appear to be
Westerlund 1 (e.g., Brandner et al. 2008), Berkeley 39 (e.g.,
Bragaglia et al. 2012) and Arches (e.g., Espinoza et al. 2009),
with a mass few times of M104

. Noting the fact that the
cluster could have gone through a period of rapid mass loss in
its formation phase (e.g., Lada & Lada 2003), we adopt
M M10cluster

max 5  at z = 0 as the nominal mass cutoff at z = 0
in the Milky Way disk.

A number of arguments suggest that the CMF high mass
cutoff could have been higher in the past. For instance, the
existence of massive globular clusters with surviving mass of

M10 104.5 6.5-  (e.g., Harris & Pudritz 1994) suggests that
early conditions in the Galaxy favored the formation of more
massive clusters. Observations of high-redshift disk galaxies
also suggests a high frequency, relative to z = 0, of very
massive gas clumps of M10 107 9-  (e.g., Genzel et al. 2006;
Förster Schreiber et al. 2009; Jones et al. 2010; Livermore
et al. 2012).

Escala & Larson (2008) provided a simple model for the
maximum cluster mass by studying gravitational instability in
disks, similar to Toomre’s classic analysis (Toomre 1964).
They calculate the maximum unstable mass to be
M ( 2)cluster

max
gas rot

2l= S , where Grot
2

gas
2l p= S W . From this

formula, they further found that the maximum cluster mass can
be determined by the gas fraction η (i.e., gas mass to the total
gravitational mass) and the total gas mass Mgas alone, where

M M . (5)cluster
max

gas
2hµ

The normalization of this formula depends on a variety of
unknown parameters and so we choose instead to fix the
normalization by hand at z = 0. The dynamics of the Milky
Way disk can be explained without appealing to dark matter, at
least within the Solar radius. We therefore ignore the influences
of dark matter when computing the upper mass cutoff, i.e., we
define M M M( )gas gas h = + . The evolution of Mgas and M

follow the discussion in Sections 3.1 and 3.2.
We consider three scenarios for the evolution of the upper

mass cutoff, which we will denote as the quiescent, fiducial and
optimistic models (see Figure 2). In the quiescent model, we
consider the fiducial SFH and fix M z M( ) 10cluster

max 5=  through
cosmic time. In the fiducial and optimistic cases, we consider

the SFHs labeled as fiducial and optimistic in Figure 2 and
allow M z( )cluster

max to evolve. We set M z M( 0) 10cluster
max 5= = 

for the fiducial case, and M z M( 0) 3 10cluster
max 5= = ´  for

the optimistic case. We use the term “optimistic” because this
model allows the formation of very massive clusters, which is
favorable for chemical tagging. Finally, we impose a maximum
upper limit of M107

. Clusters with mass larger than this cutoff
are unlikely to be homogeneous (Bland-Hawthorn et al. 2010b)
in their elemental abundances due to self-enrichment. The
evolution of M z( )cluster

max in these three cases are plotted in the
bottom right panel in Figure 2. The main differences of these
three CMF models are summarized in Table 4. The range of
CMFs we consider is similar to the range explored by Bland-
Hawthorn et al. (2010a), although the authors do not consider a
time-dependent CMF as we do here (for the optimistic and
fiducial models).

3.5. Chemical Space

The last model ingredient is multi-dimensional space of
elemental abundances, often referred to as the “chemical
space.” The chemical space is spanned by the elemental
abundances [Fe/H], [X1/Fe], K, [Xn/Fe], where X1 to Xn are n
different elements measured. Since stars that were born
together are expected to share the same abundances, they
should reside at the same location in chemical space.
As we will show below, the number of chemical cells in

chemical space Ncells is a key variable in chemical tagging. To
understand its importance, let us consider the case where we
have an infinite number of chemical cells, in other words we
have infinite resolution in the chemical space. In this case, all
clusters from various birth sites can be easily identified.
However, as the number of cells decreases, the probability that
two clusters occupy the same chemical cell increases. In this
case, the smaller clusters (in terms of the number of stars
sampled per cluster) become contaminants in the detection.
They dilute the number of genuine members of the massive
clusters.

Ncells depends on two ingredients. (a) One is the chemical
space spanned by the sample. This volume is governed by
Galactic chemical evolution and survey design, including the
number of elements of each star the survey can extract. Note
that the volume does not scale in a simple way with the number
of elements measured because of the strong correlation
between various subgroups of elements. (b) Another is the
abundance measurement uncertainty X[ Fe]s , which sets the
volume of each cell. Regarding (b), in this study, we assume
that the width of chemical cell is 1.5σ, i.e., two different
distinct groups in chemical space can be recovered if their
separation is larger than 1.5σ, where σ represents the
uncertainties along the principal components/independent
dimensions.3 Note that, given a chemical space of Ndim
(independent) dimensions, the volume of each cell is
proportional to Ndims . As a consequence, the number of cells
is extremely sensitive to the abundance measurement uncer-
tainties. We therefore stress that not only are small uncertain-
ties favorable, but also accurate measurement of the
uncertainties and their covariances are equally important.
The chemical space spanned by the sample, in principal, can

be modeled through chemodynamical simulations. However,

3 As these component vectors are comprised of various elements, the
uncertainties along these directions require the full covariance matrix of X[ Fe]s .
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we note that chemical evolution models are still rather
uncertain for many elements and are often limited to a
relatively small number of elements (e.g., Kobayashi
et al. 2006; Minchev et al. 2013). Kobayashi et al. (2011)
include more elements, but they do not include neutron capture
elements. Therefore, we are not aware of an existing chemical
evolution model that encompasses all ∼25 elements measured
by the GALAH and Gaia-ESO surveys. For these reasons, and
for simplicity, we choose here to adopt empirical results in
estimating the volume and defer a chemical modeling approach
to future work.

We make use of the estimated chemical space volume of
Milky Way disk stars from Ting et al. (2012a; also see
Andrews et al. 2012, for a similar study on bulge stars). Using
principal components analysis, Ting et al. (2012a) searched for
directions in the chemical space that are orthogonal to each
other and contain most variances of the data. These principal
components define a n-dimensional cube spanned by the data.
By definition, the number of cells is the volume of the cube
divided by the volume spanned by each cell. As for the latter,
given the assumption that the width of chemical cell is 1.5σ, the
volume of the chemical cell is (1.5 )Ndims . The volume of the n-
dimensional cube can be estimated from the width of edges in
each dimension, which can be calculated from the principal
components axial ratios. Here we use the axial ratios of the
principal components to estimate the volume that will be
spanned by the GALAH data, as an example. The axial ratios
of the first 6 dimensions are 1, 0.4, 0.25, 0.25, 0.1, and 0.1.
Apart from the obvious additional dimension from [Fe/H], Ting
et al. (2012a) speculated that there should be another
dimension associated with neutron capture elements. This last
dimension was not available in the data analyzed by Ting et al.
but will be probed by both GALAH and Gaia-ESO.

We can safely assume that the first principal component
spans at least 1.5 dex as it is the diagonal direction of the 17
dimension in study. Let us further assume that [Fe/H] and both
of the additional dimensions span 1 dex, and the uncertainties
along the independent dimensions are 0.1s = dex. A simple
calculation using the axial ratios yields: N (1.5 dex)cells

6= ´
(1 · 0.4 · 0.25 · 0.25 · 0.1 · 0.1) (1 dex)2´ (1.5 ) 108 4s =
for GALAH. The Gaia-ESO survey spans a comparable list of
elements and should therefore contain a similar number of
Ncells. An APOGEE-like survey should have 2–3 fewer
independent dimensions than GALAH (Ting et al. 2012a).
All other parameters being the same, APOGEE should have
N 10cells

3~ .
The above calculations are simple estimates for the number

of chemical cells that could easily be off by an order of
magnitude. Hence, in the analysis below, we consider a wide
range in this important parameter, from 10 to 103 5.

4. RESULTS

With the model for the Milky Way disk stars now in hand,
we turn to using that model to explore what ongoing and future
massive spectroscopic surveys of stars may expect to reveal in
the context of chemical tagging. In Section 4.1 we investigate
how many stars we expect to sample from the same cluster for
different number of stars surveyed and both with and without
the effect of radial migration. The main results are presented in
Section 4.2, where we simulate the number of detectable
groups in different scenarios. We study how observations of the
distribution of stars in chemical space may encode information

on the shape of the CMF. We also investigate whether each
detectable group in chemical space is dominated by a single
cluster or is comprised of a wide range of clusters.

4.1. Number of Stars Sampled Per Cluster

In this section we study the number of stars sampled per
cluster for several idealized surveys. In particular, we are
interested in how many stars will be sampled per cluster after
the cluster is dispersed and mixed with the background sea of
other clusters, and how the process of radial migration
influences the sampling. Note that since we consider quantities
as a function of cluster mass in this section, for a fixed

R z( , 0)0S = the results will be independent of the CMF.
However, the results do depend on RsurveyD and fin situ as these
parameters change the sampling rate and the radial migration
prescription. Here we assume R 3 kpcsurveyD =  and
f 50%in situ = .
In Figure 4, we plot the number of stars sampled per cluster

as a function of cluster mass. The solid lines show the median
of the results in each cluster mass bin and the shaded color
regions show the 1s range. In the top panels, we consider the
case without radial migration, i.e., stars stay in the orbiting radii
that they formed, while the bottom panels show the case with
radial migration. The left and right panels show results for
N 105
 = and N 106

 = . A horizontal line at N = 10 stars is
meant to serve as a reference point.
While the results in Figure 4 clearly show that the typical

sampling rate (within 1s range) per cluster is quite low,
except in the case of large N and high cluster mass, we
emphasize that the distribution of the number of stars sampled
per cluster has a long tail toward high values. We return to this
point below.
In the limit where there is no radial migration, the average

number of stars (with M M1á ñ = ) sampled per cluster can be
analytically derived (see also De Silva et al. 2015). The
number of stars sampled per cluster is simply

N M
N

M
. (6)cluster cluster

annulus

=

Recall that Mannulus is the total integrated SFR in the Solar
annulus and N Mannulus is proportional to the sampling rate.
This analytic model is shown in the top panels of Figure 4 and
clearly predicts very well the results of the simulations. The
gray shaded region demarks the 1s from this analytic model.
Although illustrative, this analytic formula is unfortunately

not applicable when radial migration is included. First, radial
migration increases the number of stars that could end up in the
Solar annulus, which has the effect of increasing the effective
volume of the survey. We can define an effective radius of the
observed annulus to be the mean distance,

R
n

R R
1

, (7)
i

n

ieffective
1

,birth 0å= -
=

where we sum over all the stars in the Solar annulus at the
present-day. This equation takes into account the fact that, with
radial migration, the actual sampled volume is larger than the
observed volume because R R Ri,birth 0 survey- D∣ ∣ ⩾ ∣ ∣. The

effective integrated SFR Mannulus¢ within this effective volume
is strictly larger than the one without radial migration due to the
migration of ex situ population, and therefore the number of
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stars per cluster will generally be lower than in the case without
radial migration.

Moreover, clusters that were born ex situ are unlikely to have
a significant number of stars migrated into the Solar annulus.
As shown in Figure 3, while stars born 5 kpc from the Galactic
center can move into the Solar annulus at R 8 kpc0 = , only a
small fraction of this population is in the Solar annulus.
Figure 3 suggests that most of the ex situ stars, even from
massive clusters, will tend to enter as “contaminants” in the
sense that they will have only (1) stars sampled per cluster. In
addition, some stars that were born in situ will migrate outside
the Solar annulus, further diluting the number of members of
in situ clusters. All of these effects work in the same direction
of reducing the number of stars per cluster compared to a
model without radial migration.

In Figure 5 we show the distribution of the number of stars
sampled per cluster for two choices of N. This figure shows
the distribution for a vertical slice in Figure 4 at a cluster mass
of M106~ . By separating the in situ and ex situ populations,
Figure 5 shows that the ex situ population has on average a
much smaller number of stars sampled per cluster, in agreement
with the arguments described above. Although not shown, we
checked that the in situ population is only marginally
influenced by radial migration—only a small fraction of

in situ stars leave the Solar annulus. The mild effect on
in situ clusters is likely due to the fact that we consider a fairly
large Solar annulus width of R 3 kpcsurveyD =  . In the radial
migration prescription in this study, a typical radial migration
length is 2 kpc~ , which is smaller than RsurveyD∣ ∣. Although
the typical radial migration length is still largely unconstrained
from observations, some studies have suggested that since R0 is
beyond the outer Limblad resonance of the Galactic bar
(Dehnen 2000), a typical radial migration length is 2 kpc<
(Halle et al. 2015).
Another feature evident in Figure 5 is the tail of clusters with

a large number of stars sampled per cluster. This highlights that
median statistics are not sufficient to capture the full variety of
expected behavior. These rare clusters may end up being the
most valuable from the standpoint of chemical tagging as they
should stand out as strong concentrations of stars in chemical
space. The following section explores this effect in detail.

4.2. Finding and Counting Groups in Chemical Space

Observational uncertainties on elemental abundances impose
a finite resolution in chemical space that can have important
consequences for chemical tagging (Bland-Hawthorn
et al. 2010a). In this section, we simulate observational results
by studying detections on a chemical cell-by-cell basis. In the

Figure 4. Number of stars sampled per cluster as a function of cluster mass, assuming R 3 kpcsurveyD =  . The left panels assume N 105
 = , whereas the right panels

assume N 106
 = . The top panels show the cases where there is no radial migration ( f 100%in situ = ), while the bottom panels illustrate the cases with radial migration

and an in situ fraction f 50%in situ = . The solid lines show the median and the shaded regions in color show the1s range of the results from simulations. In the limit of
no radial migration, the number of stars sampled per cluster can be predicted analytically from Equation (6). The predictions from the analytic formula are shown in
dashed lines and gray shaded regions. The 1s range from simulations follows very well the Poisson expectations. However, the analytic formula does not work in the
case with radial migration because ex situ clusters tend to have fewer stars sampled and bring down the number (see text and Figure 5 for details).
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following, for each generated sample, we distribute sampled
clusters uniformly (on average) into Ncells cells. We perform
Monte Carlo simulations and take the mean from 100
realizations. By jack-knife estimation, we find that the
uncertainties on the mean is 10% for N 10 105 6

 = - .
We define several terms that will be important in this section.

A cell that contains a high density of stars compared to the
mean defines a “group.” We distinguish between “group” and
“cluster” because the former can be comprised of multiple
clusters. The cluster with the most stars sampled in each cell is
referred to as the dominant cluster. Stars from the dominant
cluster define the “local signal.” The rest of the stars in the cell
are referred to as “local noise.”

4.2.1. Identifying Groups in Chemical Space

If we were to randomly distribute N stars into Ncells
chemical cells, the number of stars per cell should follow a
Poisson distribution with a mean N N Nmean cells= and a 1s

range of Nmean . Since stars are born in clusters, there will be
clumping in chemical space that is larger than Poisson
expectations. The degree of clumpiness depends on several
factors, chief among them is the form of the CMF (Bland-
Hawthorn et al. 2010a).
Operationally, we define a cell as containing a “detected”

group of stars if that cell deviates from Poisson expectations by
at least 5s and the total number of stars in that cell is 1> .
Figure 6 shows the deviations from Poisson statistics for
different CMFs and the numbers of stars in the survey. In the
right panel, we assume N 106

 = . In this case, both the fiducial
and optimistic CMFs show substantial numbers of cells
exceeding 5s from the average. By contrast, when N 105

 =
(left panel), only the optimistic CMF shows substantial
deviation from Poisson expectations.
Figure 6 demonstrates that the deviation from Poisson is

minimal for a quiescent CMF. This lack of deviation is not
unexpected because clusters with M M10cluster

5<  have (1)
stars detected per cluster even for N 106

 = (see Figure 4).
Hence, randomly distributing clusters in Ncells cells for a
quiescent CMF is close to randomly distributing N in Ncells
cells.
Figure 6 also shows that the distribution of deviations can be

a sensitive probe of the CMF. CMFs with a higher mass cutoff
produce more clumpiness in chemical space. Although not
shown, a flatter CMF also entails a larger number of massive
clusters and hence a clumpier chemical space, echoing the
results of Bland-Hawthorn et al. (2010a), Bland-Hawthorn &
Freeman (2014). The effect of the CMF on the distribution of
deviations could potentially be exploited to reconstruct the
CMF (and the physical processes that the CMF depends on,
such as the SFH) from observational samples. This will be the
subject of future work.

4.2.2. What are Groups in Chemical Space Comprised of?

In this section we investigate the properties of the “detected”
groups in chemical space (consisting of 5s> fluctuations).
Figure 7 shows the distribution of the local “signal-to-noise
ratio (S/N)” for those cells exceeding 5s from Poisson
statistics. Recall that the local S/N is defined as the ratio of
stars coming from the most massive cluster in the cell to the
remaining stars in that cell. A cell dominated by a single
massive cluster will have high local S/N. In the left panel, we
assume N 10cells

4= and consider three different CMFs. Clearly
most of the detected groups have local S/N 1< , especially for
the quiescent and fiducial CMFs.
This result is not surprising in light of the mean number of

stars per cell (100 for N 106
 = and N 10cells

4= ). In this
regime, in order for the S/N to be 1 , we would require that a
single dominant cluster contribute 100 stars in a particular
cell. However, as shown in Figure 4, the average number of
stars sampled per cluster for the most massive clusters is ∼100
for N 106

 = . The relatively low sampling rate, combined with
the high average number of stars per cell, essentially guarantees
that the local S/N will never be much larger than one. As we
discuss in Section 5.1, the prospects for finding higher local S/
N cells can be improved by searching in regions of chemical
space in which the mean number of stars per cell is low.
The result in the left panel of 7 is fairly insensitive to N.

Increasing N increases both the number of stars sampled per
cluster and the “background” comprised of stars from small

Figure 5. Distribution of the number of stars sampled per cluster for
M M(0.7 1.3) 10cluster

6= - ´ . The top panel shows the result for N 105
 =

and the bottom panel shows N 106
 = . We assume R 3 kpcsurveyD =  and

f 50%in situ = . We separate the cluster population into two—the in situ and
ex situ populations. The ex situ clusters have much smaller number of stars
sampled per cluster compared to the in situ population, indicating that ex situ
stars are mostly contaminants in chemical tagging. The red vertical line shows
the 75 percentile of the combined results from in situ and ex situ clusters.
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clusters and hence the local S/N is left largely unchanged. In
fact, the local S/N slightly decreases as we increase N. This is
not unexpected. As N decreases, it becomes more difficult to
exceed the Poisson threshold. Therefore for smaller N, the
clumping of detected groups are mostly comprised of more
massive clusters (e.g., M107~ ), which implies a better local
S/N. By contrast, for a larger N, the clumping could either be
due to a massive cluster or a few moderately massive clusters
(e.g., M10 104 6~ - ). While the S/N is somewhat negatively
impacted by increasing N, the total number of detected groups
greatly increases with increasing N, as shown in Section 4.2.3.

The right panel of Figure 7 shows the median local S/N as a
function of the number of chemical cells. Increasing Ncells
results in a dramatic (almost linear) improvement in the local
S/N. An increase in Ncells results in a decrease in the local
background while keeping the signal unchanged. This panel
also shows the effect of changing the definition of a “detected”
group from 2s to 10s. Increasing the threshold has a modest
effect on the local S/N but of course has a dramatic effect on
the total number of resulting detected clusters. Although not

shown, we have explored the effect of varying the slope of the
CMF from 2.0a = - to −1.5. This has only a modest effect on
the trends shown in Figure 7.
Note that the (5s) deviation with respect to Poisson statistics

is measurable in reality as it only requires the expected average
number of stars in each cell. On the other hand, the local S/N is
not measurable.4 In this paper we only define “detected groups”
according to a measurable parameter, and we emphasize again
that we use the term “group” rather than “cluster” when
describing clumps in chemical space because of the effect
discussed in this section. The ambiguity that can arise, even
when a cell deviates by more than 5s argues strongly that
interpretation of the data from ongoing and upcoming surveys
will require models such as the one presented in this work.

Figure 6. Standardized number of stars in each cell compared to a Poisson distribution, where the mean of Poisson distribution is N N Nmean cells= and the standard
deviation follows Nmeans = . Cells in which the number of stars sampled exceeds 5s are considered as detectable groups. The y-axis shows the probability of a
detected group having a certain deviation from the Poisson distribution, quantified by the standardized number of stars. The integral under each curve is one. Unless
stated of otherwise, we assume fiducial values for all the model parameters, as listed in Table 2. Different CMFs show different degrees of deviation from Poisson
statistics. The clumpiness of the chemical space may therefore be a useful tool to probe the underlying CMF.

Figure 7. Left panel: local S/N in chemical cells with 5s more stars than the average. The number of stars sampled from the dominant cluster is considered signal in
each cell, whereas the rest are considered noise. The y-axis shows the probability of a detected group having a certain local S/N. The integral under each curve is one.
We assume N 10cells

4= . In this case, most detectable groups have local S/N 1< , showing that at least half of the stars in the detectable groups are not from dominant
clusters. The difference between N 105

 = and 106 is small, illustrating that sampling more stars increases the number of stars per cell, but it does not change the S/N.
Right panel: median of local S/N for different Ncells. We assume a fiducial CMF in this panel. Unlike N, increasing Ncells boosts the local S/N, and hence increases the
chance of recovering individual clusters through chemical tagging.

4 For readers who want to understand the number of groups that consist
mainly a dominant cluster (e.g., having local S/N 1⩾ ), we urge readers to
explore the interactive online applet (see Appendix B for details). In the applet,
we allow users to impose a local S/N criteria.
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4.2.3. Number of Detectable Groups as a
Function of Model Parameters

In this section we present the total number of detected
groups in chemical space as a function of a variety of model
parameters, including the in situ fraction, fin situ, CMF slope, α,
survey width, RsurveyD , number of chemical cells, Ncells, and
number of stars in the survey, N. We vary one of these model
parameters at a time while adopting the fiducial values for the
other model parameters (see Table 2); modifying more than

one parameters at once is allowed in the online applet. The
results are presented in Figures 8 and 9.
Number of chemical cells—as the number of chemical cells

increases, more moderately massive (e.g., M10 104 6~ - )
clusters start to occupy different cells instead of sharing the
same cell. The total number of detectable groups thus increases
approximately linearly for the fiducial and optimistic CMFs.
However, the gain is more drastic for CMFs with a smaller high
mass cutoff. This trend is due to the fact that, given the same
N, moderately massive clusters are more abundant for CMFs

Figure 8. Total number of cells that exceed 5s from Poisson statistics as a function of a variety of model parameters. We vary each of these model parameters while
fixing the rest to the fiducial values as listed in Table 2. The three different solid lines show results from three CMF evolutions as illustrated in Figure 2. The dashed
lines show linear relations for reference. The solid symbols show the results assuming fiducial values for all model parameters. See text for discussion.

Figure 9. Total number of cells exceeding 5s from Poisson statistics as a function of the number of stars in the survey. We assume a survey width of
R 3 kpcsurveyD =  and f 50%in situ = . The red solid lines in both panels represent the reference results assuming a fiducial CMF and N 10cells

4= . The dashed lines
show linear relations for reference. Different solid lines in the left panel show the results assuming different CMFs, whereas the right panel shows the results for
different Ncells. See text for discussion.
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with a smaller high mass cutoff. These clusters might not be
detected with a smaller Ncells. Including more cells benefits
these moderate clusters the most.

Since both the number of detectable groups and the local S/N
(see Section 4.2.2) are sensitive to Ncells, it is clear that Ncells is
one of the most important parameters in the context of chemical
tagging. Recall that the number of cells scales as Ndims- , where
N 8dim ~ is the number of independent dimensions in the
chemical space we can expect for upcoming optical surveys
(GALAH and Gaia-ESO). Therefore, if we improve the
abundance measurement uncertainties by a factor of two, the
number of chemical cells is improved by a factor of 2 2508 ~ .
On the other hand, this also means that the number of chemical
cells decreases by a factor of ∼2 for every 10% increase in the
measurement uncertainties. Substantial effort should therefore
go into decreasing (and characterizing!) the uncertainties in
abundance measurements in upcoming spectroscopic surveys.

Survey width—as RsurveyD increases the number of detect-
able groups decreases. To understand this trend, it suffices to
note that as we increase RsurveyD there are more stars in the
annulus. As a result, the chance that we sample from the same
cluster decreases (i.e., the sampling rate decreases). Since each
cluster is sampled with fewer stars, the chance to observe signal
spikes in chemical space also decreases. Therefore, the total
number of detectable groups decreases as the survey width
widens. In fact, since the volume of the Solar annulus is
proportional to RsurveyD , the number of stars in the annulus is
also roughly proportional to RsurveyD . Therefore, the sampling
rate is, to first order, inversely proportional to RsurveyD .

Interestingly, the survey width has less effect on CMFs with
a larger higher mass cutoff. This trend is due to the fact that as
we increase the survey width, we also increase the number of
clusters, roughly in proportion to RsurveyD . The most massive
clusters are the least susceptible to change in sampling rate
because a large number of stars from such clusters are already
sampled in the fiducial case. For CMFs with a larger high mass
cutoff, the decrease in sampling rate caused by an increase in

RsurveyD is partly compensated by the increase in the number of
massive clusters, resulting in a weak dependence of the number
of detected groups on RsurveyD .

In situ fraction—as the in situ fraction decreases, the number
of cells exceeding 5s decreases because there are more
contaminants from ex situ clusters (see Figure 5). However,
the effect of in situ fraction is rather marginal for CMFs with a
larger high mass cutoff. This effect is best understood from
Figure 6. Most of the detectable groups for a quiescent CMF or
a fiducial CMF are at the edge of the detection level of 5s.
Hence adding in additional background noise in the form of
ex situ stars can have a much larger effect for model with a
quiescent CMF compared to an optimistic CMF, in which
many of the cells far exceed the 5s detection threshold.
CMF slope—as we vary the CMF slope, we are essentially

redistributing mass between smaller clusters and massive
clusters. This has two effects that act in tandem: a shallower
CMF results in more massive clusters, which will have more
stars sampled per cluster. In addition, a shallower CMF results
in fewer low mass clusters that contribute primarily to the
“noise” in a cell. The chemical space becomes much clumpier
as α increases (also see Bland-Hawthorn et al. 2010a), and as a
result there are many more detected groups.
Number of stars in the survey—since the number of stars

sampled for massive clusters is roughly proportional to N
while the Poisson threshold only grows as N Nmean µ ,
increasing N improves the number of detectable groups, as
shown in Figure 9. In the left panel, the gain is approximately
linear in N for the optimistic and fiducial CMFs. The right
panel shows the gain in the number of detected groups as a
function of N and Ncells. The stochasticity at N 104

 ~ is likely
due to the uncertainties in our Monte Carlo procedures.

4.2.4. Selecting Subpopulations

As we argued in Section 2, the sampling rate, which is
proportional to the number of stars in the survey divided by the
number of stars in the survey volume, is a key parameter
determining the number of stars sampled per cluster. In the
limit where the sampling rate is 100%, the main limiting factor
for chemical tagging is the resolution in chemical space. One
way to increase the sampling rate is to increase N; this was
discussed in the previous section. A second way is to decrease
the number of stars in the survey volume. The latter will be

Figure 10. Left panel: total number of cells exceeding 5s from Poisson statistics as a function of the number of stars in the survey. We assume a fiducial CMF, with
N 10cells

4= , R 3 kpcsurveyD =  , and f 50%in situ = . Different lines in this panel show the results assuming a variety of subpopulation selections. The subpopulations
are selected through the stellar age criteria of 0 Gyr> (the lowest line), 3> , 6> , 9> , and 12 Gyr> (the highest line), respectively. The corresponding sampling rates,
fsub, for N 106

 = are stated in each line. Right panel: local S/N in each of the detected cells for different subpopulations, assuming N 106
 = and a fiducial CMF. The

number of stars sampled from the dominant cluster is considered signal in each cell, whereas the rest are considered noise. See text for discussion.
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effective only if one is able to identify a subpopulation of stars
that corresponds to a subpopulation of clusters. For example,
selecting on stellar age satisfies this criterion, while selecting a
random subsample does not.

Figure 10 considers the case where only stars above certain
stellar ages are targeted in a survey. Since the number of older
stars is smaller, there are not as many survey candidates
compared to the case where we sample all disk stars uniformly.
As a consequence, given the same N, the chance that we
sample from the same cluster improves. In addition to
improving the total number of detectable groups, as we
consider a more selective stellar subpopulation the number of
clusters is reduced. The dominant cluster therefore contributes
a greater fraction of the total stars in each detectable group
because there are not as many clusters sharing the same cell. As
shown in the right panel of Figure 10, if the survey sample is
collected randomly from all populations (the red solid line),
most of the detectable groups have a local S/N of 0.3. This
local S/N value implies that only 0.3 (0.3 1) 25%+  of the
members of detectable groups are from the dominant cluster.
However, if we only target old stars with stellar age 12 Gyr> ,
the local S/N is ∼2, indicating that 2 (2 1) 70%+  members
of each of the detectable groups are from the dominant cluster.

As a caveat, we caution that the interpretation of Figure 10 is
complicated by the fact that the selection of older clusters also
preferentially selects a population of stars forming from a CMF
with a higher mass cutoff (at least for the fiducial model used in
the figure). So not only is the sampling rate increasing but so
also is the characteristic cluster mass. Future work is required
to disentangle these effects.

5. DISCUSSION

5.1. Summary of the Key Parameters
Affecting Chemical Tagging

The key parameters governing both the ability to detect
groups in chemical space and the “purity” of those recovered
groups (i.e., the local S/N) are the number of stars in the
survey, N, the number of chemical cells, Ncells, the CMF, and
the sampling rate. Table 5 presents a summary of the key
variables and their effect on various quantities of interest.

Several of these parameters are either outside of the control
of the observer, including the form and evolution of the CMF,
or are trivially in control of the observer, such as N. Others
require further consideration. For example, the number of
chemical cells depends on both the volume of chemical space
and the size of each cell. The former depends on chemical
evolution of the stellar population(s) under consideration, and
can be influenced by the survey strategy. The latter is
proportional to Ndims- where σ is the observational uncertainty

on abundance measurements and Ndim is the number of
effective dimensions in the chemical volume.
Perhaps the most conceptually complex parameter is the

sampling rate. For a fixed N the sampling rate is inversely
proportional to the total number of stars available within the
survey design. The phrase “survey design” was chosen to
highlight not only the survey volume but also the subpopula-
tion under consideration. Moreover, with regards to the survey
volume, this must be considered in an orbit-averaged sense. For
example, a survey targeting stars within 1 kpc of the Sun has a
survey volume in this definition that encompasses the entire
annulus of the Galactic disk with a width of ±1 kpc. Likewise,
a pencil beam survey of bulge stars has a survey volume of the
entire bulge. As we showed in Section 4.2.4, selecting
subpopulations of stars can be very effective provided that
the selection picks out a subset of clusters. Selecting on stellar
age can achieve this, and so will effectively boost the average
number of stars sampled per cluster. On top of that, selecting
subsample reduces the number of clusters in each cell, and thus
improves the local S/N in each detectable group. In contrast, a
random subsample of stars will simply result in a smaller
number of stars per cluster.
These parameters affect different aspects of chemical

tagging. As shown in Table 5, increasing the number of stars
or reducing the survey volume increases the number of detected
groups and improves the reconstruction of the CMF because it
increases the sampling rate, but it has little effect on the local
S/N ratio. Even though the sampling rate increases in these
cases, both the local signal and noise increase in similar
proportions. In contrast, decreasing X[ Fe]s and/or selecting
subpopulation reduces the average number of stars per cell,
while maintaining the same signal. Therefore the local S/N
improves as well.
In this work we focused on idealized surveys of stars in the

Milky Way disk. In such situations the ratio of the number of
stars in the annulus, Nannulus to Ncells is 1 . However, there are
regimes in which this ratio can be closer to or less than unity.
Bland-Hawthorn et al. (2010a) considered the regime of metal
poor stars in dwarf galaxies. Such subpopulations could easily
have a total number less than Ncells. In this case the mean
number of stars per cell will be 1 and so significant
overdensities in chemical space will much more likely reflect a
single cluster, rather than a superposition of multiple clusters
(see example in Karlsson et al. 2012). As argued by Bland-
Hawthorn et al. (2010a), in this regime one can in principle
find clusters in chemical space with a relatively modest number
of stars surveyed, provided that the CMF is not too steep.
Similarly, for a survey targeting disk stars, one might imagine
the first chemical-tagging detections to come from the less
populated regime in chemical space with a smaller

Table 5
The Effects of Various Survey Strategies on Chemical Tagging Detections

Survey Design Improve the Number of Detectable Groups Improve Chance of Recovering Single Cluster Improve Reconstruction of CMF

Increase N ✓ L ✓

Decrease X[ Fe]s ✓ ✓ ✓

Reduce RsurveyD ✓ L ✓

Subpopulations ✓ ✓ ✓
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contaminated background Nmean (i.e., outliers), as discussed in
Bland-Hawthorn et al. (2015).

5.2. Strategies for Optimizing the Potential
for Chemical Tagging

The influence of key parameters on various observables
allows us to consider ways in which one could optimize a
spectroscopic survey of stars for the purposes of chemical
tagging.

A survey that could reach N 106
 ~ and N 4 10cells

4 ´
could potentially achieve three major goals: (a) producing a
sizable number ( 103~ ) of detectable groups; (b) the detected
groups would consist primarily of a single dominant cluster;
and (c) reconstructing the CMF for M M10cluster

max 5 . These
goals could be realized if the CMF is somewhere in the range
between our “fiducial” and “optimistic” scenarios. The
GALAH survey (De Silva et al. 2015) aims to observe
N 106
 = ; a key question will be whether or not the number of

chemical cells is closer to 104 or 105 (see Section 5.1 for the
key dependencies).

Even if not all three goals are realized in the context of a
massive spectroscopic survey, one could imagine a tiered
approach. A survey of 106 could be used to identify
overdensities in the chemical space. One could then follow
up those overdensities with higher quality spectroscopy to
obtain more precise abundance constraints, or one could appeal
to differential techniques to increase the relative abundance
precision. One could also use other information to separate
multiple clusters within a single cell, e.g., kinematics or color–
magnitude diagrams.

Given that both N and Ncells affect the number of detected
groups in chemical space in similar ways, is there an advantage
to spending more time collecting greater numbers of stars, or
more time obtaining higher quality spectra could lead to
smaller X[ Fe]s , more elements, and hence larger Ncells? In the
simplest scenario (assuming for example that one has not
already exhausted the input catalog at a particular apparent
magnitude), N is roughly proportional to the integration time.
On the other hand, since N N

cells
dimsµ - , there is an enormous

gain in Ncells for even a modest improvement in the abundance
uncertainties. For N 8dim ~ independent dimensions (likely
appropriate for e.g., GALAH), one could improve Ncells by a
factor of two for a 10% reduction in the abundance
uncertainties (Section 4.2.3). Therefore, if the goal is to find
as many local peaks in chemical space (i.e., detectable groups)
as possible and/or to increase the odds of those peaks being
dominated by a single massive cluster, it might be more
advantageous to seek strategies that reduce the abundance
uncertainties rather than simply acquiring more stars.

An effective way to improve chemical tagging detections is
by targeting a stellar subpopulation exclusively. As we have
shown in Section 4.2.4 and discussed in Section 5.1, targeting a
subpopulation not only improves the sampling rate but also
reduces the number of clusters per chemical cell. It improves
the chances of reconstructing the CMF because there are more
stars sampled per cluster and more significant deviations from
Poisson statistics. It also improves the local S/N and hence the
chance of recovering individual clusters within detected groups
in chemical space.

A variety of properties could be used to select special
subpopulations from a larger parent sample, including age,
metallicity, and kinematics. One could envision pilot surveys at

modest spectral resolution designed to select stars in a narrow
range in [Fe/H]. Kinematics from Gaia could be used to
separate hot and cold components, for example thin and thick
disk stars (e.g., Reddy et al. 2006). Stars could also be selected
according to their age once age measurements are available for
large samples of stars, e.g., from isochrone fitting and/or
asteroseismic constraints. Finally, in an optically selected
survey such as GALAH, which is biased to higher Galactic
latitudes, it preferentially observes thick disk stars (De Silva
et al. 2015). Since the total number of thick disk stars is smaller
than thin disk stars, this preference argues that the sampling
rate in these surveys could be larger than the one we assume in
this study as we adopt an uniform sampling strategy (see also
Bland-Hawthorn et al. 2015).

5.3. Caveats, Limitations, and Future Directions

A variety of assumptions and simplifications were made in
this study. Here we highlight the most important limitations
and comment on future directions.
When populating the chemical space we assumed that

clusters are (statistically) homogeneously distributed in all
Ncells chemical cells available. From both observations and
chemical evolution models we know that this assumption is not
true in detail. Of course, there are many more high metallicity
stars than low metallicity stars, but also we expect the size of
the chemical space to vary systematically with metallicity (for
example, due to certain nucleosynthetic pathways, e.g., in AGB
stars, that only become important some time after the initial
burst of star formation). Because of these complexities, the
space cannot be completely described by the parameter Ncells. A
more accurate approach would be to include a model for
chemical evolution and then to define overdensities in chemical
space with respect to a local background, either using
neighboring cells or a more sophisticated group finding
algorithm (e.g., Sharma & Johnston 2009; Mitschang
et al. 2013).
This study focused on idealized surveys targeting Milky

Way disk stars. We did not consider the bulge, stellar halo,
disrupted satellite galaxies, nor nearby dwarf galaxies. Each of
these populations offers a unique set of challenges and
opportunities. These components will be included in future
versions of the model.
We did not follow the actual orbits of stars in a live Galactic

potential, and the treatment of radial migration is quite
simplistic. One could imagine an extension to the current
model that follows the dynamical disruption of star clusters and
the sequent orbital histories of the individual stars. This would
be very valuable for exploring the potential gains of folding in
kinematic information, such as will soon be available from
Gaia and/or from the spectroscopic surveys themselves.
Mitschang et al. (2014) found that kinematics information
does not improve the detectability, but it is likely due to the
limitation of their small sample with 103< stars. As we have
demonstrated in this study, detected groups in small sample are
not likely to be co-natal, agreeing with their assessment.
The adopted model for the gas mass is fairly simplistic.

However, we emphasize that the gas mass distribution only
influences the radial migration prescription and the evolution of
the CMF. The former is parameterized via the in situ fraction,
fin situ. In both cases we consider a range of possible scenarios,
which in some sense is equivalent to exploring the effects of
varying the underlying gas mass model directly.

15

The Astrophysical Journal, 807:104 (18pp), 2015 July 1 Ting, Conroy, & Goodman



We assume that the spatial frequency of star formation
follows an exponential disk characterized by the scale length
RSFR. We are aware that this assumption might not be true in
detail. At a given time, stars might form in some large-scale
molecular rings (e.g., Block et al. 2006; Gordon et al. 2006) or
spiral arms (e.g., Rix & Rieke 1993; Bik et al. 2003). However,
we are only interested in the integrated SFR over the cosmic
history. Since these transient complexes, at least for the
molecular rings, are expected to be short lived and rapidly
dissipate ( 100< Myr; e.g., Bastian et al. 2005; Gordon
et al. 2006), the smooth star forming assumption is likely to
do fine.

6. CONCLUSIONS

In this study we explored the prospects for chemically
tagging stars in idealized spectroscopic surveys of the Solar
vicinity. We constructed a simple two-dimensional time-
dependent model of the Milky Way disk including the effects
of radial migration and evolution in the CMF. We explored a
number of important parameters affecting the detectability of
groups of stars in chemical space and we studied the
composition of the detected groups. We now summarize our
principle conclusions.

1. The key parameters affecting the number of detected
groups in chemical space, and whether or not those
groups are dominated by a single massive cluster, are: the
shape and evolution of the CMF; the number of chemical
cells; and the survey sampling rate. The sampling rate is
proportional to the number of stars in the survey divided
by the total number of stars belonging to a particular
(sub)population. The latter two parameters are strongly
influenced by observational survey design choices.

2. The clumpiness in chemical space is strongly influenced
by the CMF and by the survey sampling rate. This
implies that one can probe the CMF of long disrupted
clusters by statistically analyzing the clumpiness in
chemical space.

3. Confidently identifying individual clusters through che-
mical tagging will be challenging even for N 106

 = , if
disk stars are uniformly sampled. Fundamentally this is
because the sampling rate is inherently small in such
cases ( 10 4~ - ) implying that one expects to collect on
average 10 stars per cluster for clusters with
M M10cluster

5 . This is born out by our modeling,
where we find that even very large overdensities in
chemical space are typically not comprised of stars from a
single dominant cluster. In the fiducial case with
N 10cells

4= , the dominant cluster contributes only 25%
of the stars in the detected group. Additional follow-up of
the stars within large overdensities in chemical space may
provide additional discriminating power, either by
decreasing the measurement uncertainties on the abun-
dances, or by folding in color-magnitude diagram or
kinematic information.

The authors thank Joss Bland-Hawthorn, Ken Freeman,
Sanjib Sharma, Charlie Lada, and Eve Ostriker for helpful
discussions, and Andrea Schruba and Peter Behroozi for
sharing their data in electronic format. The computations in this
paper were run on the Odyssey cluster supported by the FAS

Division of Science, Research Computing Group at Harvard
University.

APPENDIX A
SAMPLING ALGORITHM AND

COMPUTATIONAL COST

The sampling algorithm used to create a mock sample is
illustrated in Figure 11. To summarize, given an SFH, we
obtain the stellar mass evolution through the stellar population
synthesis code and the gas mass evolution through the inverted
Kennicutt–Schmidt relation. The radial size growth is calcu-
lated using an observationally estimated mass–radius relation,
which we use to predict the evolution of the SFR scale length.
After we obtain the SFR scale length, we calculate the SFR at
different radii and different cosmic times from the SFH. We
spawn stars through cosmic time according to the radial SFR in
discrete time bins of 0.1 Gyr. We only trace stars with

M0.5 1.5- , and we assume a Kroupa IMF.
The gas and stellar masses yield the total mass distribution at

different radii and cosmic time. The mass distribution controls
the radial migration prescription. The mass distribution is also
employed to evaluate the high mass end of the CMF. The CMF
is then used to assign a cluster tag to each spawned star, and the
radial migration prescription is adopted to mix stars from their
birth radii. Note that we only assign cluster tags after spawning
stars in each time bin. We do not generate stars recursively
from the CMF although they are both equivalent. In the former
case, we avoid a recursive loop in the algorithm and therefore
create the mock sample more efficiently. Finally, a mock
sample that is within the Solar annulus, given a fixed survey
width, is saved for analysis.
Even though the sampling algorithm is straightforward, the

effect of radial migration requires us to spawn stars at all radii
in the Milky Way disk. In addition, we need to follow each
individual star. Therefore, for each set of parameters, we spawn

Figure 11. Sampling algorithm to create a mock Milky Way data set in this
study.
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1011~ stars, which is computationally expensive even for a
semi-analytic model. Each parameter set takes a full CPU day
and 50 GB of memory per CPU to evaluate. We evaluate a grid
of ∼600 different model parameters. It therefore took ∼2 CPU
years to generate the mock samples. After the mock samples
were created, we performed Monte Carlo simulations,
distributing them into chemical cells. The Monte Carlo
simulations required about the same amount of CPU time.
Hence, it took ∼4 CPU years in total to generate the results in
this study. Including a significant amount of exploratory work,
this project consumed ∼40 CPU years of computing time.
Obviously, parallelization reduced the total time from 
(graduate student lifetime) to (graduate student year).

APPENDIX B
INTERACTIVE APPLET

Since we study a large multidimensional grid of simulations,
it is challenging to include all results in this paper. We created
an online applet to demonstrate results in the multidimensional
grid. In the online applet (www.cfa.harvard.edu/∼yuan-sen.
ting/chemical_tagging.html) as shown in Figure 12, we plot
the cumulative number of detectable groups (exceeding 5s) as
a function of the zero age mass of the dominant cluster. In each
detected group, star cluster with the most stars sampled is
considered as the dominant cluster.

The applet allows users to change: the in situ fraction, fin situ
the following (i.e., the radial migration prescription); the
number of chemical cells, Ncells; the CMF cutoff, Mcluster

max , and
slope, α; the survey depth, RsurveyD ; and the number of stars in
the survey, N. As demonstrated in Section 4.2.2, these
detected groups are not necessarily comprised of co-natal
stars. The online applet also allows users to impose a local S/N
selection criteria as defined in Section 4.2.2. For instance, by
imposing the criteria local S/N > 1, we select detectable groups
that have more stars contributed by the dominant cluster over
the combined background from smaller clusters. In the case
where no local S/N criteria is imposed, the end point of the
cumulative distribution in the applet corresponds to the results
in Figures 8 and 9. Finally, there is a “save as reference” button
in the applet which allows users to save the current cumulative

distribution as a reference and compare with the other choices
of parameters
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