HI ABSORPTION TOWARD HII REGIONS AT SMALL GALACTIC LONGITUDES

C. Jones & J. M. Dickey
School of Mathematics and Physics, Private Bag 37, University of Tasmania, Hobart, 7001, Australia

J. R. Dawson
School of Mathematics and Physics, Private Bag 37, University of Tasmania, Hobart, 7001, Australia; CSIRO Astronomy and Space Science, ATNF, PO Box 76, Epping, NSW, 1710, Australia

N. M. McClure-Griffiths
CSIRO Astronomy and Space Science, ATNF, PO Box 76, Epping, NSW, 1710, Australia

L. D. Anderson
Department of Physics, West Virginia University, Morgantown, WV, 26506, USA

T. M. Bania
Institute for Astrophysical Research, Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA, 02215, USA

ABSTRACT

We make a comprehensive study of HI absorption toward HII regions located within |l| < 10°. Structures in the extreme inner Galaxy are traced using the longitude-velocity space distribution of this absorption. We find significant HI absorption associated with the Near and Far 3kpc Arms, the Connecting Arm, Bania’s Clump 1 and the HI Tilted Disk. We also constrain the line of sight distances to HII regions, by using HI absorption spectra together with the HII region velocities measured by radio recombination lines.

Subject headings: galaxy: structure, HII regions

1. INTRODUCTION

The Extreme Inner Galaxy (EIG) has long been the subject of intense astrophysical study as it provides excellent opportunities to explore dynamics, phenomena (from stellar to galactic scales) and physical environments which do not exist in the large-scale Galactic disk. Throughout this paper, we refer to the area inside of, and including, the 3kpc Arms as the EIG (i.e. $R_{\text{Gal}} \lesssim 4 \text{kpc}$). ‘Inner Galaxy’ is a term already used to describe the areas of the Milky Way inside the Solar Circle, likewise the term ‘Galactic Center’ (GC) usually refers to the relatively small area with a Galactocentric radius less than a few hundred parsecs.

Useful reviews of the EIG environment include Morris & Serabyn (1996) and Blitz et al. (1993), who discuss the interstellar medium (ISM) and structural components respectively.

Radio observations of the EIG region have been performed since the 1950s (using the Dwingeloo 26 m antenna, van Woerden et al. 1957). These early studies discovered large-scale HI features with non-circular motions (Oort 1977), and concentrated on understanding these individual structures, or particular objects.

The EIG has been extensively observed in CO. Molecular tracers probe denser material than neutral hydrogen (HI) and CO is readily observed, therefore CO observations allow for analysis of regions in which the ISM is concentrated into structures such as arms and bars (Dame et al. 2001). In contrast, observations of atomic gas trace diffuse interstellar clouds.

While HI in the EIG has been well studied at low resolutions, it is only recently that high-resolution HI data which cover the entire EIG region have become available (i.e. ATCA HI Galactic Center Survey (HIGCS) McClure-Griffiths et al. 2012). These high-resolution HI data allow an analysis of the beginnings of the spiral arms; the transition between orbits associated with the bar; a comparison to high-resolution molecular observations, dynamical models and molecular transitions; as well as investigations into the association of HI with the Galactic wind (McClure-Griffiths et al. 2012).

As a result of the variation in the temperature of interstellar hydrogen, HI emission and absorption spectra probe different phases of the ISM. In most emission spectra it is the warmer components that dominate. However, cool gas is readily observed in absorption against background continuum sources, where it may be disentangled from warmer material along the line of sight. One advantage to studying HI absorption in the EIG is that it probes this predominantly cool material, which tends to be more localised in space, and more closely confined to structural entities such as arms.

Previous HI absorption studies have been vital to our understanding of the structure, rotation and the nature of atomic gas in the EIG region. These include observations of absorption features associated with non-circular velocities, Radio Arc non-thermal filaments as well as particular objects including SgrA* (Lang et al. 2010 and references therein).

While high-resolution HI absorption measurements
have been made towards several bright, or otherwise interesting, EIG continuum sources (Uchida et al. 1992, Roy 2003, Lang et al. 2010, and references therein) a complete H I absorption study of the EIG region has not been attempted. This present H I absorption survey constitutes the most complete study of H I absorption against the continuum emission from the entire sample of H II regions known with |l| < 10°. This study is only possible due to recent H II region discovery surveys (which provide a list of target continuum regions with which to measure absorption against) and improved resolution in H I surveys that include the GC region.

In addition to providing a sample of bright continuum sources against which to measure H I absorption, H II regions also provide an important secondary tracer of Galactic structure: the H II regions themselves. Galactic H II regions are the formation sites of massive OB stars, which have a main sequence lifetime of ∼tens of millions of years. As a result, Galactic H II regions reveal the locations of current massive star formation, indicate the present state of the ISM, provide a unique probe of Galactic chemical evolution and are the archetypal tracers of Galactic spiral structure (Anderson et al. 2011).

In this work we measure HI absorption against only those HI regions with known radio recombination line (RRL) velocities. This sub-sample is discussed in Section 2 and the method of H I absorption is described in Section 3.

We then summarise the known EIG structures (Section 4.1) and their locations in Longitude-Velocity (lv) space. We plot these structures on an ‘lv crayon diagram’, and use the diagram to consider the EIG lv distribution of H I absorption, in Section 4 and later for H II regions (Section 6).

We combine the results from Sections 5 and 6 to explore the Galactic distribution of H II regions (Section 7) - through determining the lower limit of the line of sight distance to each H II region based on its H I absorption profile and systemic velocity.

Finally, a discussion of individual sources appears as Appendix A.

2. DATA & SOURCE SELECTION

Large scale, high resolution astronomical surveys are now publicly available in many wavelength regimes. This work uses large-scale H I data and radio continuum maps.

2.1. Radio Continuum

Radio continuum maps were sourced from the NRAO VLA Sky Survey (Condon et al. 1998, NVSS) and the Southern Galactic Plane Survey (McClure-Griffiths et al. 2005, SGPS).

The NVSS covers 82% of the sky (north of δ = −40°) at 1.4GHz, resulting in 2326 4x4 degree continuum cubes of Stokes parameters and a catalog of continuum emission sources. Only the Stokes I maps were used for this work. It should be noted that the NVSS maps do not include zero spacing (u,v) information and therefore many, larger, diffuse emission regions, particularly those in the Lockman et al. (1996) catalog, are not detected.

For this work, H I absorption spectra were extracted from the two SGPS datasets (5° < |l| < 10°) and the ATCA H I Galactic Center Survey (5° < |l|, HIGCS McClure-Griffiths et al. 2012). Observations for the SGPS (I & II) and ATCA HIGCS were performed with the Australia Telescope Compact Array (ATCA) and supplemented with data from the Parkes Radio Telescope. The three surveys provide continuous coverage of the inner Galactic plane (253° < l < 20°) at ∼2′ resolution.

2.3. Radio Recombination Lines

Catalogues of RRLs provide systemic velocities for H II regions. Large-scale surveys of RRLs from H II regions were performed during the 1960’s to 1980’s. More recently, the Green Bank Telescope H II Region Discovery Survey (Anderson et al. 2011, GBTHRDS) covered 343° < l < 67° and detected RRLs from 448 new H II regions, effectively doubling the number known in that longitude range. The GBTHRDS is complete to 180 mJy at 9 GHz, and is able to detect all H II regions ionised by a single O-star to a distance of 12 kpc.

In addition, the GBTHRDS also includes a catalog of known H II regions as of 2010. For the |l| < 10° region, this includes the combined works of Downes et al. (1980), Wink et al. (1982), Caswell & Haynes (1987), Lockman (1989), Lockman et al. (1996) and Sewilo et al. (2004). The GBTHRDS team carefully compiled this “known” catalog, removing duplicate sources through radio continuum and mid-infrared inspection. However they note that it is “likely to contain some residual contamination and duplicate entries”. The combination of this “known” catalog of H II regions and the GBTHRDS source list, within |l| < 10°, provided the sample list of regions for this work. Both the GBTHRDS catalog and the compilation of previous catalogs can be found at http://www.cv.nrao.edu/hrds/

2.3.1. H II Regions Selected

There are nearly 200 known H II regions in the range |l| < 10°, |b| < 1.5° with observed RRL velocities. H I absorption spectra were extracted towards a total of 151 of these H II regions (see Figure Set 1). The remaining H II regions were either not visible in the NVSS continuum maps (also used by the GBTHRDS), usually diffuse H II regions from the Lockman et al. (1996) catalog, or H II regions with coordinates that could refer to several continuum sources - see Table 1. Therefore this study obtains H I absorption spectra towards over 80% of known H II regions with |l| < 10°. The ‘name’ for each H II region is taken from the RRL catalog from which it was sourced.

3. EXTRACTION OF THE H I ABSORPTION SPECTRA

The hyperfine transition that creates the 21-cm H I line is often seen in both emission and absorption from the same region - indeed for most continuum sources a mixture of emission and absorption is observed. Therefore a method is required to separate the two.

3.1. Emission/Absorption Method
The emission/absorption method (described in detail by Kolpak et al. 2003) compares foreground cloud absorption with continuum emission from a background target. Absorption, $e^{-\tau}$, is derived by comparing the brightness temperature as a function of velocity (v) both on (T_{on}) and off (i.e., the emission spectrum, T_{off}) the continuum source. Continuum maps were inspected with the KARMA package (Goech 1996) to ascertain the pixel positions for ‘on’ and ‘off’ spectra to be extracted from the H I cubes; one ‘on’ and three ‘off’ source positions were chosen in accordance with the criteria identified in Jones & Dickey (2012).

The simplest radiative transfer situation gives:

$$T_{on}(v) = (T_{bg} + T_{cont})e^{-\tau}(v) + T_s(v)(1 - e^{-\tau(v)})$$ \hspace{1cm} (1)

where T_{cont} is the continuum source brightness temperature, T_s is the spin temperature of the foreground cloud, and T_{bg} represents any other background contribution. Assuming that both the on and off spectra sample the same gas, subtraction of one from the other removes the common $T_s(v)(1 - e^{-\tau(v)})$ and T_{bg} terms allowing optical depth to be measured directly. The absorption is then given by:

$$e^{-\tau} = \frac{T_{on} - T_{off}}{T_{cont}}$$ \hspace{1cm} (2)

Table 1

<table>
<thead>
<tr>
<th>H II Region</th>
<th>Reference</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>G351.265+01.019</td>
<td>GBTHRDS (2011)</td>
<td>NV</td>
</tr>
<tr>
<td>G351.590+00.183</td>
<td>Lockman (1989)</td>
<td>MS</td>
</tr>
<tr>
<td>G353.035+00.748</td>
<td>Lockman (1989)</td>
<td>MS</td>
</tr>
<tr>
<td>G353.083+00.358</td>
<td>Lockman (1989)</td>
<td>MS</td>
</tr>
<tr>
<td>G357.998−00.159</td>
<td>Lockman (1989)</td>
<td>DC</td>
</tr>
<tr>
<td>G358.319−00.414</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G358.623−00.066</td>
<td>Caswell & Haynes (1987)</td>
<td>DC</td>
</tr>
<tr>
<td>G358.661−00.575</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G358.664−00.575</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G358.974−00.021</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G359.186−00.026</td>
<td>Caswell & Haynes (1987)</td>
<td>DC</td>
</tr>
<tr>
<td>G359.730−00.407</td>
<td>Downes et al. (1980)</td>
<td>NV</td>
</tr>
<tr>
<td>G359.783+00.040</td>
<td>GBTHRDS (2011)</td>
<td>NV</td>
</tr>
<tr>
<td>G359.929+00.045</td>
<td>GBTHRDS (2011)</td>
<td>NV</td>
</tr>
<tr>
<td>G400.394−00.540</td>
<td>Downes et al. (1980)</td>
<td>NV</td>
</tr>
<tr>
<td>G400.521+00.178</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G400.605+00.325</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G400.656−00.058</td>
<td>Downes et al. (1980)</td>
<td>NV</td>
</tr>
<tr>
<td>G400.829+00.193</td>
<td>Downes et al. (1980)</td>
<td>NV</td>
</tr>
<tr>
<td>G401.323+00.086</td>
<td>Caswell & Haynes (1987)</td>
<td>DC</td>
</tr>
<tr>
<td>G402.303+00.243</td>
<td>Lockman (1989)</td>
<td>MS</td>
</tr>
<tr>
<td>G405.049+00.254</td>
<td>Lockman (1989)</td>
<td>NV</td>
</tr>
<tr>
<td>G405.332+00.081</td>
<td>Lockman et al. (1996)</td>
<td>MS</td>
</tr>
<tr>
<td>G406.616−00.545</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G406.667−00.247</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G406.797−00.250</td>
<td>Lockman et al. (1989)</td>
<td>NV</td>
</tr>
<tr>
<td>G407.002−00.015</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G407.299−00.116</td>
<td>Lockman (1989)</td>
<td>NV</td>
</tr>
<tr>
<td>G407.347+00.668</td>
<td>Lockman (1989)</td>
<td>NV</td>
</tr>
<tr>
<td>G408.415+00.033</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G408.786−00.034</td>
<td>Lockman et al. (1996)</td>
<td>NV</td>
</tr>
<tr>
<td>G409.176+00.936</td>
<td>Lockman et al. (1996)</td>
<td>DC</td>
</tr>
</tbody>
</table>

The NVSS continuum maps are biased towards smaller continuum temperatures (see §2.1) as they do not include all diffuse continuum emission. However, as T_{cont} acts as a scaling factor for $e^{-\tau}$ (see Equation 2), $\sigma_{e^{-\tau}}$ and $\sigma_{rms_{e^{-\tau}}}$ will also scale proportionately with any change in continuum temperature.

Emission and absorption spectrum pairs toward each H II region appear in Figure Set 1.

4. Longitude-Velocity Overview of the Extreme Inner Galaxy

Absorption spectra along lines of sight through the Galactic disk within the longitude range $|l| < 10^\circ$ are complex and difficult to interpret. This longitude region includes structures associated with the GC and EIG.
structures in the Extreme Inner Galaxy

4.1. Structures in the Extreme Inner Galaxy

Structures in the EIG include a long, thin bar, a shorter, boxy-bulge bar, the Near and Far 3 kpc arms, tilted H\textsc{i} inner disk or ring, central molecular zone, and thin twisted 100 pc ring (McClure-Griffiths et al. 2012). In addition to these more prominent structures, recent \(lv\) diagrams from H\textsc{i} and CO observations show many ‘clumpy’ sub-structures, not seen in previous EIG models (Baba et al. 2010).

The angular extent of some of these EIG features is quite large: the Near 3 kpc Arm is observed to \(l < 348^\circ\), and to surround all H\textsc{i} emission associated with the EIG region, a latitude range of at least \(|b| \leq 8^\circ\) is required (Burton & Liszt 1983) - well beyond the range of known H\textsc{ii} regions (\(|b| < \sim 2^\circ\)).

Many of these features are not often explicitly discussed in the literature and precise distances are usually unknown (Fux 1999). A summary of the EIG gas structures, many of which are visible in H\textsc{i} absorption spectra appears below. Often these objects have several names in the literature, or several distinct features have been given the same name by different authors.

For a discussion of the evolution of the understanding of H\textsc{i} and CO \(lv\) models in the EIG see Baba et al. (2010). Burton & Liszt (1983) provide a series of \(lv\) diagrams with prominent features identified.

4.1.1. Near and Far 3 kpc Arms

Near 3 kpc Arm — The Near 3 kpc Arm or Expanding 3 kpc Arm was discovered in the late 1950’s and is known to lie in front of the GC (van Woerden et al. 1957). However, it is not yet agreed whether the Near 3 kpc Arm is a lateral arm surrounding the bar, or a small arm extending from the end of the bar, or an arm located where the bar meets its co-rotation radius (Rodríguez-Fernández 2011). Stretching over 35° in longitude, the Near 3 kpc Arm exists at ‘forbidden’ velocities and its discovery provided vital early support for a Galactic bar (Dame & Thaddeus 2008, and references therein). The Near 3 kpc Arm appears as the pink line in Figure 2.

Far 3 kpc Arm — Despite the tendency for major anomalous velocity features in the GC to occur in positive and negative velocity pairs (Burton & Liszt 1983), it was originally thought that there was no far side counterpart to the Near 3 kpc Arm (Dame & Thaddeus 2008, and references therein). Fux (1999) supposed the 135 km s\(^{-1}\) Arm (discussed below) was the feature symmetric to the Near 3 kpc Arm - however Fux also noted compositional differences between the +135 km s\(^{-1}\) and Near 3 kpc Arm, attributing these to an asymmetric spiral structure. Dame & Thaddeus (2008) reported the detection (in CO and then followed up in H\textsc{i}) of the far side counterpart to the Near 3 kpc Arm, named the Far 3 kpc Arm. The Far 3 kpc Arm appears as the cyan line in Figure 2.

4.1.2. H\textsc{i} Tilted/Nuclear Disk

\(H_2\) traces denser material than H\textsc{i} and therefore picks out the densest features. In the inner Galaxy, atomic gas often acts to shield associated regions of molecular gas from photodissociation (Dickey & Lockman 1990). Therefore H\textsc{i} absorption features may be identified with known EIG molecular emission features using correlations in velocity structure (Lang et al. 2010).

As a result, this plot provides a useful reference, which we use to consider the \(lv\) distribution of H\textsc{i} absorption, (and later H\textsc{ii} region RRL velocities, §).

\(\text{Fig. 2.} - \text{Longitude-velocity ‘crayon’ diagram for } l < 10^\circ, b < 1.5^\circ. \text{ Top panel - the ‘crayon’ features overlaid on CO emission map (Dame et al. 2001). Bottom panel - the ‘crayon’ features (each with a velocity width of 20 km s\(^{-1}\)). The ‘crayon’ color system is as follows: yellow - circular rotation allowed velocity envelope; green - Connecting Arm; purple - +135 km s\(^{-1}\); Expanding Arm; grey - Bania’s Clump 1; red - Tilted Disk; cyan - Far 3 kpc Arm; yellow - velocities allowed by circular disk rotation; pink - Near 3 kpc Arm; blue - Looping Ridge. While not explicitly labeled in the crayon diagram, Bania’s Clump 2 can be seen as the thick vertical CO feature at } l \sim 3^\circ, 0 \leq v \leq 200 \text{ km s}^{-1} \text{ in the top panel.} (\text{A color version of this figure is available in the online journal.})
The H\textsc{i} inner tilted disk, proposed by Liszt & Burton (1980), was the result of a full 3D analysis of all known H\textsc{i} emission in the inner kiloparsec of the Galaxy. It was modeled by a series of closed elliptical gas orbits. The disk is oriented at 23.7° with respect to the Galactic plane and accounts for positive velocity H\textsc{i} emission at $b < 0^\circ, l > 0^\circ$ and negative velocity gas at $b > 0^\circ, l < 0^\circ$ (HIGCS). In Figure 2 the Tilted Disk appears as the red line crossing through $(l, v) = (0, 0)$.

4.1.3. The Expanding Arm(s)

+135\text{km s}^{-1} \text{ Arm} — The location of the $+135\text{km s}^{-1}$ Arm, or Expanding Arm, is contentious throughout the literature: Fux (1999) assumes it is the far side counterpart to the Near 3kpc Arm (see Section 4.1.1). Bania (1980) argues that the 3kpc and $+135\text{km s}^{-1}$ Arms cannot be described together as a kinematic ring, and Baba et al. (2010) model the $+135\text{km s}^{-1}$ Arm as part of the end of the bar on the far side.

The $+135\text{km s}^{-1}$ Arm is more clumpy than the Near 3kpc Arm (Fux 1999) and extends nearly 30° in longitude and spans 3° in latitude near the GC ($-1^\circ < b < 2^\circ$ at $l = 359^\circ$) (Uchida et al. 1992). Distance estimates for the $+135\text{km s}^{-1}$ Arm vary; Simonson & Mader (1972) and Bania (1980) give galactocentric radii only (3.4 kpc and 2.8-3.5kpc respectively), whereas Uchida et al. (1992) give a distance estimate of about 2kpc behind the GC (i.e. $D_{\text{gc}} > 10$ kpc).

In Figure 2 the $+135\text{km s}^{-1}$ Expanding Arm appears as the purple curve.

Bania’s Clumps — The individual emission clumps that comprise the $+135\text{km s}^{-1}$ Arm probably either include Bania’s Clumps 1 and 2 (Bania 1980; Bania et al. 1986), or the two molecular cloud complexes entering the dust lane shock (Liszt 2008). A detailed discussion of the H\textsc{i} properties of Bania’s Clump 2 can be found in McClure-Griffiths et al. (2012).

Bania’s Clump 1 is seen as the grey line in Figure 2 whereas Bania’s Clump 2 is seen as the thick vertical CO feature at $l \approx 3^\circ, \sim 0 < v < \sim 200 \text{ km s}^{-1}$ in the CO emission map (top panel of Figure 2).

-135km s^{-1} Feature — Just as the Near 3kpc Arm has a nearly symmetrical velocity and spatial counterpart a -135km s^{-1} Feature is thought to be located in the foreground of the GC, but behind the Near 3kpc Arm, as it is seen in OH absorption (Uchida et al. 1992). This feature is much less distinct than the $+135\text{km s}^{-1}$ Arm, indeed Bania (1980) did not detect it. This feature is not included in Figure 2.

4.1.4. Connecting Arm and Looping Ridge

Two features - the Connecting Arm and Looping Ridge - are visible in CO and H\textsc{i} emission, as well as in near infrared dust extinction (Marshall et al. 2008 and HIGCS). These features lead the bar major axis and are the location of strong shearing shocks, resulting in high velocities (Fux 1999).

The extent of both structures in l,b,v has been explored in detail by Marshall et al. (2008) who use CO data to localise emission to specific lv structures.

Connecting Arm - Positive Velocity Feature — The Connecting Arm (at extreme positive velocities and longitudes), was named as it seems to link the nuclear ring/disk to the outer disk (Fux 1999). The Arm was sufficiently prominent in H\textsc{i} to be described as a distinct feature in early EIG surveys (Liszt 2008). The location of the Connecting Arm, in front of or behind the GC, was originally unclear; it has been interpreted as part of the central bar on the far side of the GC, or as an artifact due to velocity crowding along the line of sight, but it is now accepted to be a near side dust lane (Fux 1999, and references therein).

The Connecting Arm appears as the green curve in Figure 2.

Looping Ridge - Negative Velocity Feature — The corresponding feature to the Connecting Arm (at negative velocities and longitudes) is not always treated as a distinct feature (Liszt 2008) and remains unnamed, however McClure-Griffiths et al. (2012) refer to the negative feature as the “looping” ridge. Liszt (2008) suggests that the Looping Ridge may be (temporarily) starved of gas and hence more difficult to detect and analyse. In Figure 2 the Looping Ridge appears as the blue curve.

5. **LONGITUDE-VELOCITY DISTRIBUTION OF H\textsc{i} ABSORPTION TOWARD THE EXTREME INNER GALAXY**

Figure 3 displays the H\textsc{i} absorption in lv space, and compares this distribution with the EIG structures (Section 4.1). H\textsc{i} and CO emission.

Table 2 notes if significant H\textsc{i} absorption is associated with any EIG feature for each H\textsc{ii} region.

It is immediately obvious that the H\textsc{i} absorption distribution is not random, but closely follows the identified EIG features. This is not surprising as cold H\textsc{i} gas, seen in absorption, is a good tracer of Galactic structure.

H\textsc{i} absorption is associated with the allowed circular rotation velocities (as expected) as well as the Near and Far 3kpc Arms, Connecting Arm and Bania’s Clump 1.

5.1. **H\textsc{i} Absorption Associated with the 3kpc Arms**

The CO emission from both the Near and Far 3kpc Arms is contained within $|b| < 1^\circ$ (Dame & Thaddeus 2008), similar to the Galactic latitude range of the H\textsc{ii} regions in this work ($|b| \lesssim 1.5^\circ$). Furthermore, both 3kpc Arms are thought to span $|l| \lesssim 13^\circ$, which includes the whole longitude range of this work. Therefore, if an H\textsc{ii} region is located behind either of the 3kpc Arms, H\textsc{i} absorption should be visible at velocities pertaining to that arm.

Figure 3 demonstrates that significant H\textsc{i} absorption is seen toward the Near 3kpc Arm at all longitudes; although there is a conspicuous gap in absorption at longitudes $\sim 356 < l \ll 358$, consistent with a paucity of H\textsc{ii} regions for which to measure absorption towards. Indeed 67% H\textsc{ii} regions display absorption associated with the Near 3kpc Arm.

There is less absorption associated with the Far 3kpc Arm than with the Near ($\sim 1.0 : 3.3$), with the site of greatest absorption for the Far 3kpc Arm centered at $l \approx 7^\circ$ (see Figure 4). The disparity in the amount of H\textsc{i} absorption may be an effect of the smaller latitude...
TABLE 2
Presence of significant H I absorption in EIG features for each H I region. EIG features are listed in line of sight order. N3= Near 3kpc Arm, CA= Connecting Arm, TD= H I Tilted Disk, E135+= +135 km s⁻¹ Expanding Arm, BC1= Bania’s Clump 1, F3= Far 3kpc Arm.

<table>
<thead>
<tr>
<th>Region</th>
<th>N3</th>
<th>CA</th>
<th>TD</th>
<th>E135</th>
<th>BC1</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C350.004+00.438</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C350.129+00.088</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>C350.177+00.017</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C350.330+00.157</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C350.335+00.107</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C350.524+00.960</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C350.769+00.075</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C350.813+00.019</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C350.966+00.557</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C351.028+00.155</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C351.047+00.322</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C351.102+00.708</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>C351.201+00.483</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C351.358+00.666</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C351.515+00.104</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C351.467+00.462</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C351.601+00.348</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C351.691+00.166</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C352.233+00.151</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C352.313+00.440</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C352.398+00.057</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C352.521+00.144</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C352.610+00.177</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C352.617+00.172</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C352.866+00.199</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C352.896+00.878</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C352.898+00.249</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C353.381+00.114</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C353.398+00.391</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C353.557+00.014</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C353.624+00.054</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C353.418+00.036</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C353.486+00.085</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C353.584+00.007</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C354.610+00.484</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C354.664+00.470</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C354.665+00.247</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C355.711+00.173</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C355.934+00.327</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C355.979+00.528</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C356.200+00.094</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.344+00.145</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.332+00.100</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.550+00.035</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.661+00.382</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.696+00.350</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.709+00.100</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.713+00.124</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.801+00.253</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.230+00.066</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.232+00.642</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.307+00.210</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.470+00.001</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.565+00.086</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C356.650+00.129</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C357.484+00.036</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C357.970+00.169</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C357.958+00.159</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C358.319+00.414</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.379+00.840</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.530+00.056</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.552+00.025</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.616+00.076</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C358.623+00.066</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C358.633+00.062</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>C358.652+00.078</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.680+00.087</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.694+00.075</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.720+00.011</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.797+00.058</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C358.827+00.085</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C359.159+00.838</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C359.277+00.264</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C359.432+00.086</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C359.467+00.172</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
extent of the Far 3kpc Arm, which is particularly thin in the fourth quadrant (Dame & Thaddeus 2008).

Both the HIGCS and Dame & Thaddeus (2008) report a bifurcation in the velocities Far 3kpc Arm (in lv space) at $l < 6^\circ$. There is limited evidence of this bifurcation at longitudes extending to $\approx 7^\circ$, the best example of this is in the absorption spectrum of G007.176+00.087 (see Figure Set 3). The Near 3kpc Arm also displays evidence of bifurcation, in both the H I emission and absorption, near $l = 358^\circ$ (see, for example, G358.616-00.076, G358.623-00.066, G358.633+00062 and G359.432-00.086 in Figure Set 1).

5.1.1. The Longitude-Velocity Location of the 3kpc Arms

The locus of each of the 3kpc Arms, as traced by H I absorption, in lv space was also investigated. Dame & Thaddeus (2008) provide lv fits to the Near and Far 3kpc Arms and report a velocity dispersion of 21 km s$^{-1}$ for both Arms. However, they excluded large regions of longitude, within $|l| < 10^\circ$, from the computation of the physical properties of each arm.

In order to investigate the locus of each Arm in lv space, a subset of absorption channels were selected for analysis (see Figure 4). We included all channels within $1^\circ < |l| < 9^\circ$ (between $9^\circ < |l| < 10^\circ$ there is ambiguity between the 3kpc Arms and the circular rotation velocities and for $|l| < 1^\circ$ there is ambiguity with the Tilted Disk), which had velocities outside the envelope of allowed circular-rotation velocities (i.e. $V_{\text{circular-rotation}} < |V| < 110$ km s$^{-1}$) and were not associated with either of Bania’s Clumps. Linear fits to these appear as Equations 3 and 4 for the Near and Far arms respectively.

Near 3kpc Arm:

\begin{align*}
V_{N3kpc} &= -59.2 + 4.12I \pm 8.67 \\
V_{F3kpc} &= +57.7 + 4.02I \pm 15.61
\end{align*}

In both cases, the linear fits ($\pm 5\sigma$) of the structure as given by H I absorption are consistent with the Dame & Thaddeus (2008) fits from CO emission (see Figure 4).

6. Longitude-Velocity Distribution of H II Regions Toward the Extreme Inner Galaxy

H II regions provide radio continuum sources to measure H I absorption toward, but they also provide a secondary tracer of the EIG region - their own systemic velocities.

The lv distribution of known H II regions has previously been investigated by Anderson et al. (2012), however all H II regions with highly non-circular motions (i.e.
those of interest to this work) were excluded from their analysis. The lv distribution of H II region RRL velocity components used in this work is shown in Figure [5].

Just as the distribution of H I absorption was closely associated with known lv features in the EIG region (see Figure [5]), the systemic velocities of H II regions also trace these structures.

![Figure 5](https://example.com/image.png)

FIG. 5.—Longitude-velocity ‘crayon’ diagram (see Figure 4) showing the distribution of H II region RRL velocity components. (A color version of this figure is available in the online journal.)

The circular-rotation allowed velocities (yellow envelope in ‘crayon plots’) account for $\sim 85\%$ of the H II region RRL velocity components. Green et al. (2011), in a study of 6.7 GHz methanol masers, find the same velocity range accounts for $\sim 79\%$ of their sample. However, only $\sim 10\%$ of H II regions with a single RRL velocity component are associated with EIG features. A list of H II regions with RRL velocities associated with an EIG structure appears in Table 3.

6.1. H II Regions Associated with $R_{Gal} \lesssim 4$

Until recently, it was believed that there are no known H II regions inside of the 3kpc Arms, except in the Tilted Disk (Rodriguez-Fernandez 2006). Green et al. (2011) found no significant 6.7 GHz methanol maser emission towards the $+135\text{km}\text{s}^{-1}$ Expanding Arm, nor the Connecting Arm; suggesting that the features are primarily gas that is not undergoing high-mass star formation. This is in-keeping with observations of other early-type barred galaxies which show star formation in the central nuclear region and at the ends of the bar, but not in the dust lanes along the bar (Rodriguez-Fernandez et al. 2006).

Using the collated H II region catalog of Paladini et al. (2003), Rodriguez-Fernandez et al. (2006) found no H II regions associated with structures outside the Nuclear Disk within $|l| < 2^\circ$. The GBTHRDS recorded RRL velocity components from 21 previously unknown H II regions within $|l| < 2^\circ$, many (especially in Quadrant IV) with non-circular velocities - these H II regions are included in the target list of this work. However, as the Rodriguez-Fernandez et al. (2006) study found, these new H II regions are associated (in lv space) with the Nuclear Disk and Looping Ridge intersection. Rodriguez-Fernandez et al. (2006) then investigated a wider longitude range, but could not identify any dust lane associated H II regions. It should be noted that Rodriguez-Fernandez et al. (2006) did not rule out the possibility of undetected ultra-compact H II regions in the dust lanes.

One diffuse H II region, G007.700-0.079 identified by Lockman et al. (1996) (but not included in the Paladini et al. 2003 catalog used in the Rodriguez-Fernandez et al. 2006 study) appears to have one of its RRL velocity components associated with the Connecting Arm. There is also evidence of two 6.7 GHz methanol masers, tracers of current high-mass star formation, in the same part of lv space (see Figure 1 of Green et al. 2011). In addition, there are four H II region RRL velocity components associated with the $+135\text{km}\text{s}^{-1}$ Expanding Arm and/or Bania’s Clump 1 (at $l, v = \sim -4^\circ, \sim 100\text{km}\text{s}^{-1}$), as well as two 6.7 GHz methanol masers from the Methanol Multibeam survey (cited in Green et al. 2011), however only two of these regions have single RRL velocity components (multi-RRL component H II regions are probably the result of blending multiple emission sources along the line of sight). Therefore there is evidence of some recent star formation in these structures.

The other H II region of note is G002.611+0.135 as it is the only H II region that distinctly lies outside the ‘crayon’ lines that delineate EIG structures in Figure [5]. Rodriguez-Fernandez et al. (2006) suggest that G002.611+0.135 could be associated with either their structure ‘J’ or Bania’s Clump 2 (see Figure 4 of Rodriguez-Fernandez et al. 2006). The latitude of the H II region suggests a stronger association with Clump 2.

6.2. H II Regions Associated with the 3kpc Arms

Only recently has there been evidence of significant star formation (Green et al. 2004) and large numbers of H II regions (Bania et al. 2010) in the 3kpc Arms. In emission from molecular clouds the signatures of the 3kpc Arms are clearly seen (Bania 1980), but the GBTHRDS was unable to discover many new H II regions, in either of the Arms. However, both arms demonstrate high-mass star formation as traced by about fifty 6.7 GHz methanol masers (Green et al. 2004).

The certainty of associating H II regions with the 3kpc Arms (in lv space) is best in the longitude range of this study ($|l| < 10^\circ$), as outside this limit the expected velocities of the 3kpc Arms overlap with circular-motion spiral arm models and the association becomes more ambiguous (Green et al. 2009). Inside $|l| < 10^\circ$ there are eleven H II region RRL velocity components consistent with the Near 3kpc Arm and two consistent with the Far 3kpc Arm. This small number of RRL components does not allow for a repetition of the analysis of Green et al. (2011) using H II region RRL components rather than H I absorption.

7. DISTANCE CONSTRAINTS FOR H II REGIONS FROM H I ABSORPTION

The analysis of an H I absorption spectrum towards a H II region can constrain the line of sight distance to the H II itself.
Due to the lack of a reliable rotation model for the inner ∼3kpc of the Milky Way, kinematic distances to objects near, or in, the EIG are the most difficult to ascertain. However, it should be possible to provide distance constraints for H II regions with allowed circular rotation systemic velocities, using H I absorption associated with EIG features as approximate distance indicators.

In the Inner Galaxy, inside the Solar Circle, each velocity corresponds to two degenerate solutions for the kinematic distance - each equidistant from the tangent (subcentral) point. This kinematic distance ambiguity can be resolved in cases where H I absorption is present at the velocity of a known structure - which indicates the H II region must be located behind the absorbing gas.

The distance arrangement of EIG features, listed in Table 3, is as follows: 1 - GBTHRDS (2011), 2 - Lockman (1984), 3 - Caswell & Haynes (1987) and 4 - Downes et al. (1990).

- Quality ‘C’ far side KDARs were awarded to H II regions with large uncertainties (> 50%) in their calculated D_{los} value (see 7.1.1).

- Quality ‘A’ far side KDARs were awarded to H II regions with statistically significant absorption in EIG features including at least the Near and Far 3kpc Arms.

- Quality ‘B’ far side KDARs were awarded to H II regions with statistically significant absorption in any EIG feature located on the far side of the GC.

- Near: If the H I absorption spectrum displays no absorption associated with any EIG features, then it must be located at the ‘near’ kinematic location. Here we assume that all the EIG features are visible within the latitude range of the target H II regions ($|b| < 1.5^\circ$). Note that the linear scale heights of the Near and Far 3kpc Arms is ∼103 pc FWHM (Dame & Thaddeus 2008); assuming that the Far 3kpc Arm is at a uniform line of sight distance of 11.5kpc, this scale height corresponds to

<table>
<thead>
<tr>
<th>H II Region</th>
<th>V_{RRL}</th>
<th>Ref.</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>G350.996 − 00.557</td>
<td>+20.5</td>
<td>2</td>
<td>Far 3kpc Arm</td>
</tr>
<tr>
<td>G351.601 − 00.348</td>
<td>−91.8</td>
<td>3</td>
<td>Near 3kpc Arm</td>
</tr>
<tr>
<td>G352.233 − 00.151</td>
<td>−88.6</td>
<td>1</td>
<td>Near 3kpc Arm</td>
</tr>
<tr>
<td>G352.398 − 00.057</td>
<td>−87.0</td>
<td>2</td>
<td>Near 3kpc Arm</td>
</tr>
<tr>
<td>G352.611 − 00.172</td>
<td>−81.9</td>
<td>2</td>
<td>Near 3kpc Arm</td>
</tr>
<tr>
<td>G354.665 + 00.247</td>
<td>+97.8</td>
<td>2</td>
<td>Bania’s Clump 1?</td>
</tr>
<tr>
<td>G354.717 + 00.293</td>
<td>+95.3</td>
<td>1</td>
<td>Bania’s Clump 1?</td>
</tr>
<tr>
<td>G355.700 − 00.100</td>
<td>−76.1</td>
<td>2</td>
<td>Near 3kpc Arm</td>
</tr>
<tr>
<td>G356.235 + 00.642</td>
<td>+116.3</td>
<td>2</td>
<td>+135 km s$^{-1}$ Arm</td>
</tr>
<tr>
<td>G358.530 + 00.056</td>
<td>−212.6</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.552 − 00.025</td>
<td>−208.5</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.616 − 00.076</td>
<td>−212.6</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.623 − 00.066</td>
<td>−212.0</td>
<td>3</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.652 − 00.078</td>
<td>−211.2</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.680 − 00.087</td>
<td>−208.3</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.694 − 00.075</td>
<td>−207.8</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.720 + 00.011</td>
<td>−206.1</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.797 + 00.058</td>
<td>−206.6</td>
<td>2</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G358.827 + 00.085</td>
<td>−193.3</td>
<td>1</td>
<td>Looping Ridge</td>
</tr>
<tr>
<td>G359.432 − 00.086</td>
<td>−60.0</td>
<td>3</td>
<td>Near 3kpc Arm</td>
</tr>
<tr>
<td>G359.437 − 00.172</td>
<td>−69.3</td>
<td>1</td>
<td>blended EIG features</td>
</tr>
<tr>
<td>G359.500 − 00.051</td>
<td>+45.0</td>
<td>4</td>
<td>Far 3kpc Arm</td>
</tr>
<tr>
<td>G003.439 − 00.349</td>
<td>−21.6</td>
<td>1</td>
<td>Near 3kpc Arm?</td>
</tr>
<tr>
<td>G004.472 + 00.090</td>
<td>−17.8</td>
<td>2</td>
<td>Near 3kpc Arm</td>
</tr>
</tbody>
</table>
a latitude range \(|b| \lesssim 0.5^\circ \). As a result, if a \({\text{H}}\alpha \) absorption spectrum towards an \(\text{HII} \) region located at \(|b| > 0.5^\circ\) displays no absorption associated with any EIG feature, it is awarded a Near KDAR, of Quality ‘C’.

- KDARs of Quality ‘A’ were given to all near side \(\text{HII} \) regions, unless
- the calculated \(D_{\text{los}} \) value had large uncertainties (\(>50\% \)), then a Quality ‘C’ KDAR was given.

- No KDAR was attempted for \(\text{HII} \) regions with multiple RRL velocity components, as multiple systemic velocities suggest several ionisation sources along the line of sight. Note: multi-RRL velocity component \(\text{HII} \) regions account for less than 10\% of the \(\text{HII} \) regions within \(|l| < 10^\circ\), compared with 30\% for the Galactic plane in general (GBTHRDS).

\(\text{HII} \) regions with calculated kinematic distances are listed in Table 4.

Four \(\text{HII} \) regions (G350.177+00.017, G350.330+00.157, G353.557-00.014 and G003.949-00.100) were deemed to lie at the far kinematic location, beyond the EIG, following the rules above. However, these four regions have \(R_{\text{Gal}} < 3 \text{kpc} \), i.e. they are outside the bounds of the McClure-Griffiths & Dickey (2007) rotation model and are therefore not included in Table 4.

If an \(\text{HII} \) region is awarded a far side KDAR, based on the above requirements, a kinematic distance can be calculated using a Galactic rotation curve model (which assumes circular rotation). The IAU Galactic Constants have been applied in these calculations: \(R_0 = 8.5 \text{kpc} \) and \(\Theta_0 = 220 \text{km s}^{-1} \).

If an \(\text{HII} \) region must be located at least as far as the subcentral point, then its location inside, or beyond, the Solar circle is given by its systemic velocity. In the Inner Galaxy, velocities are positive in the first quadrant and negative in the fourth. The signs are reversed in the Outer Galaxy, such that first quadrant sources located beyond the Solar circle will have negative velocities, and fourth quadrant sources in the Outer Galaxy will have positive velocities.

Throughout this work, the rotation curve of McClure-Griffiths & Dickey (2007) is used for regions within the Solar Circle. In the outer Galaxy, \(D_{\text{los}} \) was calculated using a flat rotation model \(\Theta_{R_{\text{Gal}}} = \Theta_0 \).

7.1.1. Kinematic Distance Uncertainties

We follow the distance uncertainty analysis method of Anderson et al (2012), investigating the effects of the choice of rotation curve, streaming motions and Solar rotation speed on kinematic distance calculations. We compare all sources of uncertainty to the distances calculated from the rotation model of McClure-Griffiths & Dickey (2007).

Firstly we compute, for a grid of \((l,v)\) positions, the kinematic distance using the rotation curves of McClure-Griffiths & Dickey (2007); Brand & Blitz (1993) and Clements (1985). The standard deviation of these distances for each \((l,v)\) is then computed and divided by the McClure-Griffiths & Dickey (2007) distance to obtain the percentage uncertainty due to choice of rotation curve. We assessed a grid of \(|l| < 10^\circ\) and \(|v| < 200 \text{km s}^{-1}\) with steps of 0.1 in each unit.

This procedure is then repeated, but instead of varying the Galactic rotation model, the percentage uncertainty is higher for smaller longitudes due to larger uncertainties at small longitudes due to the velocity gradient, errors are also larger in the Outer Galaxy due to the uncertainty in the outer Galaxy circular rotation models. Flat, rising and falling rotation curves have been suggested for beyond the So-
Fig. 6.—Total percentage uncertainty in the line of sight distance \(D_{\text{los}} \), caused by the choice of rotation curve, non-circular streaming motions of 15 km s\(^{-1}\) and by changing the Solar circular rotation speed to \(\Theta_0 = 255 \text{ km s}^{-1} \). Blank areas are indicative of \(|l| > 10^\circ \) (where no error analysis was carried out), or percentage uncertainties > 100%. The EIG is shaded grey (no kinematic distances were calculated for this region), and the Solar Circle and Locus of Tangent Points appear as the black circles. The percentage uncertainties are mirrored for lines of sight in the fourth quadrant, here, only \(l > 0 \) is shown for clarity. (A color version of this figure is available in the online journal.)

Uncertainties Due to Non-Circular, Streaming Motions

Large non-circular motions are ubiquitous in the Galaxy and are the result of systematic velocity fields within a source, or ordered large-scale Galactic streaming motions [Anderson et al. 2012]. Bania & Lockman (1984) suggest an uncertainty, due to non-circular motions, of 5 to 10 km s\(^{-1}\); whereas Kolpak et al. (2003) assign an estimate of cloud-cloud dispersion of 5 km s\(^{-1}\) in addition to contributions from Galactic scale streaming motions of 10 km s\(^{-1}\). Dickey et al. (2003) and Jones & Dickey (2012) find \(H_\text{i} \) absorption components extending to 10-20 km s\(^{-1}\) beyond the systemic velocity of \(H_\text{i} \) regions.

In order to promote a conservative approach to kinematic distance uncertainties, the random uncertainty due to non-circular motions is set to 15 km s\(^{-1}\). The contribution of errors due to streaming motions in relation to the total uncertainty in kinematic distance is high, especially for small longitudes. The errors due to non-circular motions are the standard deviation of the three \((l,v)\) grids, \((l,v), (l,v+15), (l,v-15)\) divided by the \((l,v)\) distance, all computed with the McClure-Griffiths & Dickey (2007) rotation model.

Uncertainties Due to Solar Rotation Parameters

The IAU values for \(R_0 = 8.5 \) kpc and \(\Theta_0 = 220 \text{ km s}^{-1} \) have been used throughout this work. However, here we investigate the significance of an altered Solar rotation speed, as suggested by Reid et al. (2009). Two \((l,v)\) grids were computed with the rotation model of McClure-Griffiths & Dickey (2007), using \(\Theta_0 = 220, 250 \text{ km s}^{-1} \). The standard deviation of these two grids, at each locus, was then divided by the standard (i.e., \(\Theta_0 = 220 \text{ km s}^{-1} \)) distance to compute the percentage uncertainty due to choice of Solar rotation parameters. Note that the Reid et al. (2009) value for \(R_0 = 8.4 \pm 0.6 \) kpc is consistent with the IAU value, and is therefore not investigated here.

7.2. Galactic Distribution of \(H_\text{i} \) Regions

In order to examine the large-scale structure of the Galaxy, \(H_\text{i} \) regions with successfully calculated kinematic distances were transformed into a face-on map of the Milky Way (left panel of Figure 7). LDG and also superimposed onto an artist’s conception of the Galaxy (right panel). The background image used in the right panel of Figure 7 was created using stellar, \(H_\text{i} \) and \(CO \) data (Churchwell et al. 2009) and was reviewed in Urquhart et al. (2012).

In addition, the kinematic distances from Jones & Dickey (2012) are also displayed. Figure 7 demonstrates the need for \(H_\text{i} \) region discovery and KDR studies for Galactic longitudes \(340^\circ < l < 350^\circ \) in order to further investigate the end of the bar and differentiate the Norma and Near 3kpc Arms, as well as the Sagittarius and Perseus Arms on the far side of the locus of subcentral points (smaller circle in Figure 7). At the end of the bar in the first quadrant, \(H_\text{i} \) region KDARs have been made by Anderson & Bania (2009) and Bania et al. (2012) - further encouragement for a fourth quadrant study.

Recently, Dame & Thaddeus (2011) identified an extension of the Scutum-Centaurus Arm at extreme distances from the Sun, in the first Galactic quadrant. However, confirmation of this discovery requires tracing the Arm over its entire longitude range. Dame & Thaddeus (2011) comment that molecular gas which constitutes the section of Scutum-Centaurus Arm behind the Galactic center will be the most difficult to deconvolve. In the longitude range of this paper, \(H_\text{i} \) regions with systemic velocities opposite in sign to circular-disk rotation must be located in the EIG or beyond the Solar circle. Using \(H_\text{i} \) absorption features to resolve this ambiguity has allowed for seven \(H_\text{i} \) regions to be unequivocally placed in the outer Galaxy. Several of these outer Galaxy regions (see Figure 7) appear to trace the Scutum-Centaurus arm.

8. SUMMARY

The EIG remains a difficult section of the Milky Way to study. In terms of Galactic structure, kinematic studies in this region are hampered by a lack of rotation model for \(R_{\text{Gal}} < 4 \text{ kpc} \) (and for the outer Galaxy). In addition, there remains a lack of consensus regarding the number, locations and nomenclature of large-scale structures near the Galactic Centre (these are discussed in Section 4).
Fig. 7.— Positions of the H II region complexes for which a kinematic distance was calculated (Quality A, B and C shown as green, orange and red markers respectively). Also shown are the Solar Circle and locus of tangent points (black circles) and kinematic distances for H II regions from Jones & Dickey (2012) (black markers). Error bars are calculated according to the analysis of §7.1.1; the large uncertainties are not shown for quality C distances. Background image credit [right panel]: Hurt & Benjamin in Churchwell et al. (2009). (A color version of this figure is available in the online journal.)
Despite this, H\textsc{i} absorption associated with EIG features was successfully used as a distance indicator, allowing for constraints on the line of sight distance for over 80% of the sample of H\textsc{ii} regions investigated, or over 60% of all known H\textsc{ii} regions with systemic velocities in $|l| < 10^\circ$.

Over 67% of the H\textsc{ii} regions demonstrate H\textsc{i} absorption associated with the Near 3kpc Arm (see Table 2) and therefore must be located at line of sight distances of at least ~ 5kpc. A further 16 H\textsc{ii} regions show absorption associated with EIG features assumed to lie further along the line of sight than the Near 3kpc Arm, therefore, over 78% of the sample H\textsc{ii} regions are located at $D_{\text{los}} \geq 5$kpc. This is in keeping with the work of [Lang et al. (2011)] who find $\sim 90\%$ of their sample of 40 EIG continuum sources must be located at least as far as the Near 3kpc Arm.

Of the 151 H\textsc{ii} regions investigated, 54 H\textsc{ii} regions display absorption from EIG features assumed to be on the far side of the GC (the $+135$ km s$^{-1}$ Expanding Arm, Bania's Clump 1 or Far 3kpc Arm). Consequently, these H\textsc{ii} regions must be located at $D_{\text{los}} \gtrsim 8.5$kpc.

After successfully resolving the near/far kinematic distance ambiguity, line of sight distances were calculated for 31 H\textsc{ii} regions. These distances suggest locations for the H\textsc{ii} regions in known Galactic structures including the Norma, Sagittarius and Perseus spiral Arms (see Figure 4). The 7 H\textsc{ii} regions beyond the Solar Circle are among the most distant Galactic H\textsc{ii} regions known to exist and could be crucial to tracing the Scutum-Centaurus Arm; where identification of star formation with molecular tracers is extremely difficult ([Dame & Thaddeus 2011]). Errors on these line of sight distances are often large - due to the uncertainty of non-circular streaming motions, and differences in Galactic rotation models - but the near/far KDAR remains both valid and significant.

Using a summary of EIG structures, and the known lv distribution of CO, we construct a ‘crayon diagram’ with which to investigate the distribution of H\textsc{i} absorption in the EIG (Figure 2 Section 4). In Section 5 we find cold H\textsc{i} clouds, signified by H\textsc{i} absorption, associated with the Near 3kpc Arm, Connecting Arm, Bania’s Clump 1, Tilted Disk and Far 3kpc Arm. There was minimal H\textsc{i} absorption associated with either the Looping Ridge or the $+135$ km s$^{-1}$ Expanding Arm. The large amount of H\textsc{i} absorption associated with each of the 3kpc Arms presented an opportunity to fit a model to the lv locus of each Arm (4.5). We find a linear fit (in lv space) that is consistent with the findings of [Dame & Thaddeus 2008], who used CO to trace the Arms.

The lv distribution of the RRL velocities of the 151 H\textsc{ii} regions was investigated in Section 6. Like the H\textsc{i} absorption distribution, the systemic velocities of the H\textsc{ii} regions trace Galactic structures including spiral arms, features located near the Galactic center and possibly the end of the bar. While most H\textsc{ii} regions posses RRL velocity components allowed by circular Galactic rotation (suggestive of a location outside the EIG), smaller numbers of H\textsc{ii} regions are found to be associated with the H\textsc{i} Tilted Disk, Near 3kpc Arm, $+135$ km s$^{-1}$ Expanding Arm, Bania’s Clump 1, Connecting Arm and Far 3kpc Arm. Using the RRL velocity and H\textsc{i} absorption spectrum of each H\textsc{ii} region, we were also able to constrain the D_{los} for a further sample of H\textsc{ii} regions using only EIG features as a distance indicator.

This research has made use of NASA’s Astrophysics Data System, the NASA/IPAC Extragalactic Database (NED) and the SIMBAD database.
APPENDIX

DISCUSSION OF INDIVIDUAL H\textsc{ii} REGIONS

\textbf{G350.004+00.438}

The \textsc{h} absorption spectrum does not give a clear indication of any absorption associated with any EIG feature. At this longitude, the velocity range of the Far 3kpc Arm is not clearly distinct from velocities expected by normal circular rotation.

\textbf{G350.129+00.088}

The \textsc{h} absorption spectra clearly demonstrates absorption either side of the velocities expected by an association with the Near 3kpc Arm. [Quireza et al. (2006)] place the H\textsc{ii} region at a line of sight distance of 6.2 kpc (i.e. on the near side of the GC).

\textbf{G350.177+00.017}

Evidence of absorption in the Far 3kpc Arms suggests a far KDAR. As with G350.330+00.157 (below), the calculated \(R_{\text{Gal}} \) and \(D_{\text{los}} \) for the region are outside the bounds of the [McClure-Griffiths & Dickey (2007)] rotation model.

\textbf{G350.330+00.157}

While the \textsc{h} absorption spectrum suffers from emission fluctuations around the RRL velocity (\(\sim -60\text{km s}^{-1} \)), there is evidence of absorption associated with the Near 3kpc Arm. Assuming a far side KDAR, the calculated \(R_{\text{Gal}} \) and \(D_{\text{los}} \) are outside the bounds of the McClure-Griffiths & Dickey (2007) rotation model.

\textbf{G350.335+00.107}

Evidence of \textsc{h} absorption is seen either side of the velocities associated with the Near 3kpc Arm (see G350.129+00.088 above), and is therefore located at least as far as the Near 3kpc Arm along the line of sight.

\textbf{G350.524+00.960}

G350.524+00.960 does not demonstrate any \textsc{h} absorption outside the velocities expected by normal circular rotation. If the near kinematic distance is therefore assumed, the H\textsc{ii} region has a calculated \(D_{\text{los}} \approx 1.9\text{kpc} \).

\textbf{G350.769-00.075}

The \textsc{h} absorption spectrum of G350.769-00.075 does not give conclusive evidence for either a near, nor far, KDAR.

\textbf{G350.813-00.019}

As the \textsc{h} absorption spectrum of G350.813-00.019 demonstrates absorption in velocities associated with the Far 3kpc Arm, the H\textsc{ii} region must be on the far side of the GC. The positive (small) RRL velocity then locates the H\textsc{ii} region at a line of sight distance beyond (but close to) the Solar Circle.

\textbf{G350.996-00.557}

Strong absorption is seen in the Far 3kpc Arm, but not in the Near 3kpc Arm. The RRL velocity suggests a location within the Far 3kpc Arm.

\textbf{G350.028+00.155}

The \textsc{h} absorption spectrum of G350.028+00.155 demonstrates significant absorption at velocities corresponding to both the Near and Far 3kpc Arms, and therefore must be located at least as far as the Far 3kpc Arm along the line of sight. The positive RRL velocity then requires that G350.028+00.155 is located in the outer Galaxy.

\textbf{G350.047-00.322}

The \textsc{h} absorption spectrum of G350.047-00.322 does not give conclusive evidence for either a near, nor far, KDAR.

\textbf{G351.192+00.708}

\textsc{h} absorption is evident in circular rotation allowed velocities only. If the near kinematic distance is therefore assumed, the H\textsc{ii} region has a calculated \(D_{\text{los}} \approx 0.3\text{kpc} \). [Moisès et al. (2011)] assumes the near kinematic distance, however [Quireza et al. (2006)] place the H\textsc{ii} region at a line of sight distance of 17.1 kpc.

\textbf{G351.201+00.483}

The \textsc{h} absorption spectrum of G351.201+00.483 does not give conclusive evidence for either a near, nor far, KDAR. [Quireza et al. (2006)] place the object at 1.4 kpc, at the near kinematic location.

\textbf{G351.358+00.666}

[Quireza et al. (2006)] give a near KDAR for G351.358+00.666, but \textsc{h} absorption associated with velocities expected of the Far 3kpc Arm suggest that the H\textsc{ii} region is located at the far kinematic location.

\textbf{G351.359+01.014}

The \textsc{h} absorption spectrum of G351.359+01.014 does not give conclusive evidence for either a near, nor far, KDAR.

\textbf{G351.467-00.462}

[Quireza et al. (2006)] give G351.467-00.462 a near side KDAR, but the \textsc{h} absorption spectrum from this paper does not give conclusive evidence for a KDAR.

\textbf{G351.601-00.348}

The RRL velocity for this H\textsc{ii} region (-91.8 km s\(^{-1}\), [Lockman (1989)]) is associated with the Near 3kpc Arm. [Green & McClure-Griffiths (2011)] also position a nearby 6.7 GHz maser (\(l, b = 351.581, -0.353 \)) in the Near 3kpc arm.

\textbf{G351.662+00.518}

G351.662+00.518 has a near zero RRL velocity (-2.9 km s\(^{-1}\), [Lockman (1989)]) which is associated with locations inside the EIG region, near the Solar Circle, or at a very small line of sight distance from the Sun. Absorption at velocities associated with the Near 3kpc Arm imply a \(D_{\text{los}} > 5\text{kpc} \). As there is no \textsc{h} absorption associated with other EIG features (only the Far 3kpc Arm is expected at this longitude), a location within \(R_{\text{Gal}} \lesssim 3\text{kpc} \) is assumed.
No H_I absorption falls outside the circular rotation envelope of allowed velocities, suggesting a near KDAR. However, the positive RRL velocity suggests a location in either the EIG or outer Galaxy.

This H_II region has an RRL velocity associated with the Near 3kpc Arm (-86.6 km s$^{-1}$, GBTHRDS). Strong absorption in the allowed circular rotation velocities and at velocities associated with the Near 3kpc Arm, reaffirm the location in the Arm.

Evidence of H_I absorption in both the Near and Far 3kpc Arms suggests a far side KDAR for G351.313-00.440.

Absorption is seen at the expected velocities of the Near 3kpc Arm, which is also where the RRL velocity for this H_II region lies (-87 km s$^{-1}$, Lockman (1989)). Absorption up to 25 km s$^{-1}$ beyond the RRL velocity of an H_II region is not uncommon (Dickey et al. 2003, Jones & Dickey 2012), therefore it is assumed that the H_II region is located in the Near 3kpc Arm.

Two RRL velocities have been recorded for G352.521-00.144 (-57.3 and -38 km s$^{-1}$, GBTHRDS), suggestive of multiple emission sources along the line of sight.

The H_I absorption spectrum for G352.610+00.177 suffers from emission fluctuations. As a result the poor quality spectrum does not give conclusive evidence for a KDAR.

G352.611-00.172 displays strong absorption at \sim 100 km s$^{-1}$, approximately 20 km s$^{-1}$ beyond the known RRL velocity of the H_II region (-81.9 km s$^{-1}$, Lockman (1989)). As with G352.398-00.057 (above), G352.611-00.172 is assumed to lie in the Near 3kpc Arm. This location, in the Near 3kpc Arm, is approximately the same as the line of sight distance given by Quireza et al. (2006) (6.7 kpc).

Evidence of absorption at velocities corresponding to the Near 3kpc Arm suggest a $D_{\text{los}} \geq 5$ kpc. Green & McClure-Griffiths (2011) position a nearby 6.7 GHz methanol maser ($l,b=354.855,-0.201$) at the far kinematic location ($D_{\text{los}} \approx 11$ kpc).

G353.186+00.887 H_I absorption is evident in circular rotation allowed velocities only, G353.186+00.887. If the near kinematic location is then assumed, the H_II region has a calculated $D_{\text{los}} \approx 0.9$ kpc. Quireza et al. (2006) provide a near side KDAR for this H_II region.

Also the source of a variable maser (Caswell et al. 2010), G353.218-00.249 has a small RRL velocity (-8.3 km s$^{-1}$, GBTHRDS) and absorption present at Near 3kpc Arm, but not Far 3kpc Arm, velocities. These are evidence for a location near the EIG, and at such $D_{\text{los}} \geq 5$ kpc, $R_{\text{gal}} < 3$ kpc is assumed.

The H_I absorption spectrum of G353.381-00.114 displays strong H_I absorption associated with the Near 3kpc Arm, suggesting that the H_II region must lie behind the feature.

HI absorption is evident in circular rotation allowed velocities only, if, therefore, a near side KDAR is assumed, the calculated $D_{\text{los}} \approx 5.2$ kpc.

Strong absorption is centered at velocities to the negative side of those expected for the Near 3kpc Arm (see G352.611-00.172 and G352.398-00.057 above) (Green & McClure-Griffiths 2011) were unable to determine a KDAR for a nearby 6.7 GHz methanol maser ($l,b=354.206, -0.038$). Due to the H_I absorption associated with the Near 3kpc Arm $D_{\text{los}} \geq 5$ kpc is assumed.

The H_I absorption spectrum of G354.418+0.036 does not give conclusive evidence for either a near, nor far, KDAR.

Caswell et al. (2010) places a nearby 6.7 GHz methanol maser ($l,b=354.496, 0.083$) in the Far 3kpc Arm. The RRL velocity of the H_II region (15.8 km s$^{-1}$, Lockman (1989)) is slightly smaller than that expected for the Far 3kpc Arm, but the absorption indicates the H_II region must be located at least as far along the line of sight as the feature. Due to the positive RRL velocity, we assume that G354.486+00.085 is located beyond the Solar Circle (see Table 4).

A line of sight along the longitude of 354.588$^\circ$ intersects the Near and Far 3kpc Arms as well as the assumed position of Bania’s Clump 1. The H_I absorption spectrum of G354.588+00.007 does not give conclusive evidence for either a near, nor far, KDAR; but absorption associated with the Near 3kpc Arm suggests $D_{\text{los}} \geq 5$ kpc.
G354.610+00.484

Significant H\textsc{i} absorption is present before and after the velocities expected of the Near 3kpc Arm, as well as at Far 3kpc Arm velocities. A known strong 6.7 GHz methanol maser is also in the region (Caswell et al. 2010), with a velocity equivalent to the RRL velocity (maser velocity: -23 km s-1, RRL velocity: -23.4 km s-1 (GBTHRDS)). Green & McClure-Griffiths (2011) suggest a poor quality near side KDAR for the associated maser, but a far kinematic distance is assumed here.

G354.664+00.470

H\textsc{i} absorption is evident in circular rotation allowed velocities only, assuming a near side KDAR the calculated $D_{\text{los}} \approx 4.5$ kpc.

G354.665+00.247

No absorption is seen at the RRL velocity of the H\textsc{ii} region (97.8 km s-1, Lockman 1989), nor at velocities corresponding to the Near 3kpc Arm. However, significant absorption is seen at ~ 70 km s-1, possibly associated with Bania’s Clump 1. No KDAR is given here, however the high RRL velocity is suggestive of a location in the EIG (Caswell et al. 2010).

G354.717+00.293

As with G354.665+00.247, the high RRL velocity of G354.717+00.293 suggests a location in the EIG. The H\textsc{i} absorption spectrum suffers from emission fluctuations at the RRL velocity (95.3 km s-1, GBTHRDS) and no absorption is present at Near 3kpc Arm velocities. At least two masers with high velocities (~ 100 km s-1) are known to exist in the area (Caswell et al. 2010).

G354.934+00.327

G354.934+00.327 shares a similar absorption profile to that of G354.717+00.293 and G354.665+00.247, however it does not share a highly non-circular RRL velocity (14 km s-1, Caswell & Haynes 1987). Absorption velocities corresponding to all expected EIG features requires the H\textsc{ii} region to be located at least as far along the line of sight as the Far 3kpc Arm. Due to the positive RRL velocity, the H\textsc{ii} region must then be located in the outer Galaxy, beyond the Solar circle along the line of sight.

G354.979-00.528

The H\textsc{i} absorption spectrum of G354.979-00.528 does not give conclusive evidence for either a near, nor far, KDAR.

G355.242+00.096

H\textsc{i} absorption is present at velocities corresponding to the Near 3kpc Arm on the near side of the GC, and there is evidence of absorption on the far side of the GC due to the Far 3kpc Arm and $+135$ km s-1 Expanding Arm. A far side KDAR is given, but due to the positive RRL velocity, the H\textsc{ii} region must be located beyond the Solar Circle.

G355.344+00.145

Absorption at the Near 3kpc Arm, $+135$ km s-1 Expanding Arm and Far 3kpc Arm infer that the H\textsc{ii} region is located beyond the EIG along the line of sight. The positive RRL velocity then places the H\textsc{ii} region beyond the Solar circle. There are several masers in the region which are assumed to lie within 3 kpc of the GC (see $l, b = (355.343, +0.148), (355.344, +0.147)$ and $(355.346, +0.149)$ in [Green & McClure-Griffiths 2011]).

G355.532-00.100

This region has four known RRL velocities (3.8, -22.5, -80.6 and -41.1 km s-1, GBTHRDS), a strong indication that there are several emission sources along the line of sight. Note that the RRL velocity -80.6 km s-1 is associated with velocities expected of the Near 3kpc Arm. No KDAR is given.

G355.581+00.288

Three RRL velocities are known towards the H\textsc{ii} region ($+108.7, -76.1$ km s-1, GBTHRDS). As with G355.532+00.100 (above), this is an indication of several sources along the line of sight. No KDAR is given, however the RRL velocity -76.1 km s-1 is associated with the Near 3kpc Arm and the RRL velocity component $+108.7$ km s-1 is associated with the $+135$ km s-1 Expanding Arm.

G355.611+00.382

The near zero RRL velocity (-2.6 km s-1, GBTHRDS) is indicative of a EIG location, or a location near the Solar circle (either very close or at a great distance from the Sun). Absorption in velocities associated with the Near 3kpc Arm and $+135$ km s-1 Expanding Arm, but not at velocities corresponding to far side EIG features prompts $D_{\text{los}} \geq 8.5$ kpc, $R_{\text{gal}} < 3$ kpc to be given as a distance limit for the H\textsc{ii} region. No KDAR is given.

G355.696+0.350

Two RRL velocities (3 and -79.1 km s-1, GBTHRDS) suggest multiple emission sources along the line of sight, at least one of which is associated with the Near 3kpc Arm (-79.1 km s-1 RRL association). At this longitude, the velocities of the Near 3kpc Arm and the Looping Ridge (on the far side of the GC) overlap. No KDAR is given.

G355.700-00.100

G355.700-00.100 has an absorption profile and RRL velocity (-76.1 km s-1, Lockman 1989) suggestive of a location within the Near 3kpc Arm or Looping Ridge (as the expected velocities of these features overlap at this longitude). No KDAR is given.

G355.734+0.138

There are multiple RRL velocities associated with G355.734+0.138 (10.7 and -77.4 km s-1, GBTHRDS). No KDAR is given, but the RRL velocity component at -77.4 km s-1 is associated with the velocities expected of the Near 3kpc Arm or Looping Ridge.
The velocity ranges of the Near 3kpc Arm and Looping Ridge continue to overlap at this longitude. Two RRL velocities are known (-31.5, 3.1 km s \(^{-1}\), GBTHRDS), suggestive of multiple sources along the line of sight. No KDAR is given.

G356.230+00.066

At this longitude the expected velocities of the Near 3kpc Arm and Looping Ridge are distinct (see above). However, the H\(\text{I}\) absorption spectrum of G356.230+00.066 does not give conclusive evidence for either a near, nor far, KDAR.

G356.235+00.642

Absorption is seen at velocities corresponding to the Near 3kpc Arm and Looping Ridge. It is assumed that the H\(\text{II}\) region is located in the +135km s \(^{-1}\) Expanding Arm (due to the RRL velocity (116.3km s \(^{-1}\), Lockman (1989)). This is supported by absorption at velocities corresponding to the Looping Ridge (on the far side of the GC, but closer to the GC than the +135km s \(^{-1}\) Expanding Arm).

G356.307-00.210

A near zero RRL velocity (-4km s \(^{-1}\), Lockman (1989)) and absorption concurrent with Near 3kpc Arm velocities suggests \(R_{gal}\) < 3 kpc for this H\(\text{I}\) region.

G356.470-0.001

The H\(\text{I}\) absorption spectrum of G356.470-0.001 does not give conclusive evidence for either a near, nor far, KDAR.

G356.560-00.086

The H\(\text{I}\) absorption spectrum of G356.560-00.086 does not give conclusive evidence for either a near, nor far, KDAR.

G356.650+00.129

H\(\text{I}\) absorption is present in velocities corresponding to the Near 3kpc Arm. As such \(D_{los}\) > 5kpc is assumed.

G357.484-00.036

The H\(\text{I}\) absorption spectrum suffers from emission fluctuations in the velocity ranges associated with the Near 3kpc Arm and Looping Ridge. As such the poor quality spectrum does not allow a KDAR to be given for this H\(\text{II}\) region.

G357.970-00.169

The H\(\text{I}\) absorption spectrum of G357.970-00.169 displays absorption at velocities associated with the Near 3kpc Arm. As a result, \(D_{los}\) > 5kpc is assumed. The small RRL velocity, and lack of absorption corresponding to other EIG features suggests a further constraint, \(R_{Gal}\) < 3kpc.

G357.998-00.159

The H\(\text{I}\) absorption spectrum of G357.998-00.159 displays absorption at velocities associated with the Near 3kpc Arm. As a result, \(D_{los}\) > 5kpc is assumed. The small RRL velocity, and lack of absorption corresponding to other EIG features suggests a further constraint, \(R_{Gal}\) < 3kpc.

G358.319-00.414

The H\(\text{I}\) absorption spectrum of G358.319-00.414 does not give conclusive evidence for either a near, nor far, KDAR.

G358.379-00.840

The H\(\text{I}\) absorption spectrum of G358.379-00.840 does not give conclusive evidence for either a near, nor far, KDAR.

G358.539+00.056

This H\(\text{II}\) region has an RRL associated with the Looping Ridge or Tilted Disk(-208.5km s \(^{-1}\), GBTHRDS), however the spectrum is of poor quality and no absorption is seen at velocities pertaining to any EIG feature.

G358.552-00.025

This H\(\text{II}\) region has an RRL associated with the Looping Ridge or Tilted Disk(-208.5km s \(^{-1}\), GBTHRDS), however the spectrum is of poor quality and no absorption is seen at velocities pertaining to EIG features in front of the GC along the line of sight.

G358.616-00.076

The H\(\text{II}\) region has an RRL association with the Tilted Disk or Looping Ridge. The H\(\text{I}\) absorption spectrum confirms absorption at velocities corresponding to the Near 3kpc Arm only; further supporting a location in the EIG. Absorption is also seen at velocities either side of the expected velocity range of the Tilted Disk.

G358.623-00.066

Like G358.616-00.076 (above), G358.623-00.066 demonstrates significant absorption associated with the Near 3kpc Arm and Tilted Disk. The RRL association with the Looping Ridge/Tilted Disk suggests a location in the EIG. Note the bifurcation in the Near 3kpc Arm absorption profile, see [4].

G358.633+00.062

H\(\text{I}\) absorption is seen at velocities corresponding to the Near 3kpc Arm and the H\(\text{I}\) Tilted Disk. The positive RRL velocity suggests either a EIG or near Solar circle location: absorption corresponding to near-side EIG features discounts the near-kinematic distance; and if the H\(\text{II}\) region was located near the Solar circle on the far side, there should be evidence of absorption associated with the Far 3kpc Arm. As a result it is assumed that the H\(\text{II}\) region is located within the EIG, i.e. \(R_{Gal}\) < 3kpc, \(D_{los}\) > 8.5kpc. Note the bifurcation in the Near 3kpc Arm absorption profile (see G358.623-00.066 above).

G358.652-00.078, G358.680-00.087, G358.694-00.075, G358.720+00.011, G358.797+00.058, G358.827+00.085 AND G359.159-00.038

The H\(\text{I}\) absorption profiles of these H\(\text{II}\) regions are all similar. And all have highly non-circular RRL velocities.
which correspond to the Tilted Disk - G359.159-00.038 has two known RRL velocities (~182.5 and ~215.6 km s⁻¹). The H I absorption spectra suffer from emission fluctuations and are generally of poor quality.

G359.277-00.264

G359.277-00.264 demonstrates no absorption at velocities corresponding to EIG features, a near side KDAR is given.

G359.432-00.086

G359.432-00.086 has a known RRL velocity associated with the Near 3kpc Arm. The H I absorption spectrum towards the region demonstrates absorption associated with the Near 3kpc Arm (and also at ~120km s⁻¹).

G359.467-00.172

At this longitude the expected velocity ranges of the Near 3kpc Arm and Tilted Disk overlap. The H I absorption spectrum demonstrates absorption at velocities corresponding to the Near 3kpc Arm, but suffers from emission fluctuations at the overlap. The H II region has an RRL velocity consistent with either the Tilted Disk or Near 3kpc Arm.

G000.284-00.478

Absorption is present at velocities corresponding to the Near 3kpc Arm, but not at the expected velocities of other EIG features. It is assumed that the H II region is located in the EIG, beyond the Near 3kpc Arm; \(R_{\text{Gal}} < 3\text{kpc}, D_{\text{los}} > 8.5\text{kpc} \).

G000.361-00.780

G000.361-00.780 demonstrates H I absorption at velocities associated with the Near 3kpc Arm, but no absorption at other EIG lv features. It is therefore assumed, as with G000.284-00.478 above that the H II region is located within \(R_{\text{Gal}} < 3\text{kpc}, D_{\text{los}} > 8.5\text{kpc} \).

G000.382+00.107

With two RRL velocities (25.7 and 41.4 km s⁻¹, GBTHRDS), the absorption spectrum is likely to have contributions from at least emission two sources along the line of sight. Absorption at the Near 3kpc Arm and +135km s⁻¹ Expanding Arm velocities suggest that at least one of the emission sources is located on the far side of the GC. No KDAR is given. Note also that at this longitude, the expected velocity ranges of the H I Tilted Disk and Far 3kpc Arm are nearly indistinguishable.

G000.510-00.051

H I absorption is present at velocities corresponding to the Near 3kpc Arm, but not at the velocities of other EIG features. The RRL velocity (45km s⁻¹, Downes et al. (1980)) suggests an association with the Far 3kpc Arm.

G000.572-00.628

The H I absorption spectrum of G000.572-00.628 does not give conclusive evidence for either a near, nor far, KDAR.

G000.640+00.623

A far-side KDAR is assumed for G000.640+00.623 due to absorption at velocities corresponding to both 3kpc Arms (and the Tilted Disk).

G000.729-00.103

G000.729-00.123 has two recorded RRL velocities (105.3 and 83.2 km s⁻¹, GBTHRDS), both forbidden by circular Galactic rotation. The region was studied by Downes et al. (1980) who found an RRL velocity of 102 km s⁻¹. Caswell & Haynes (1987) discussed the H II region as being clearly located near the EIG, but not delineating the outer boundary of the Galactic bar. The GBTHRDS find that of their nine H II regions associated (in lv space) with the Nuclear Disk, G000.729-0.103 is the only source that could be located on the red-shifted side. The H I spectrum demonstrates statistically significant absorption at velocities corresponding to both 3kpc Arms, but not for the Nuclear Disk nor +135km s⁻¹ Expanding Arm. No H I absorption is present at either of the RRL velocities. No KDAR is given.

G000.838+00.189

The H I absorption spectrum, which is of poor quality due to emission fluctuations, demonstrates absorption consistent with the velocities expected of each of the EIG features (Near 3kpc Arm, H I Tilted Disk, +135km s⁻¹ Expanding Arm and Far 3kpc Arm). A far-side KDAR is therefore awarded to the H II region.

G001.125-00.105

Wink et al (1982) remarked that the non-circular RRL velocity (~19.7 km s⁻¹) and H₂CO at 84 and 123 km s⁻¹ was typical of a EIG source; Quireza et al. (2006) also give \(D_{\text{los}} = 8.5\text{kpc} \). The H II region must be located within the EIG, as absorption at EIG features negates the near-side kinematic location and if the H II region must have a non-realistic \(R_{\text{Gal}} > 45\text{kpc} \).

G001.149-00.062

G001.149-00.062 displays absorption at velocities corresponding to both the Near and Far 3kpc Arms. Assuming a distance of at least the Far 3kpc Arm, G001.149-00.062 must lie in the outer Galaxy, beyond the Solar Circle (due to the negative systemic velocity). However, using a flat rotation model for the outer Galaxy, the calculated \(D_{\text{los}} \) is unrealistic (~50kpc). Therefore the H II region must lie in the EIG region, but behind the Far 3kpc Arm.

G001.324+00.104

No H I absorption is seen at velocities corresponding to EIG features, suggesting a near KDAR. However, the negative RRL velocity (~12.7 km s⁻¹, GBTHRDS) suggests a location in either the EIG or in the outer Galaxy - locations that each would imply absorption by the Near 3kpc Arm, which is not seen. No KDAR is given.

G001.330+00.088

G001.330+00.088 has a similar H I absorption profile as G001.324+00.104. A EIG location is assumed.
Caswell et al. (2010) assigns a 6.7 GHz methanol maser at the same velocity to $R_{gal} < 3$ kpc due to the negative systemic velocity. Absorption at velocities corresponding to the Near 3kpc Arm supports the $R_{gal} < 3$ kpc placement.

$D_{los} > 5$ kpc is assumed due to absorption at Near 3kpc Arm velocities.

The H I absorption spectrum of G002.404+0.068 does not give conclusive evidence for either a near, nor far, KDAR.

$D_{los} > 5$ kpc is assumed due to absorption at velocities corresponding to the Near 3kpc Arm.

For a 6.7 GHz methanol maser at the same coordinates, Caswell et al. (2010) discuss that the large positive systemic velocity is most readily attributed to a location within the Galactic bar. Absorption is seen at Near 3kpc Arm velocities, and at velocities slightly lower than the RRL velocity (102.4 km s$^{-1}$, Lockman (1989)), but not at +135 km s$^{-1}$ Expanding Arm velocities; therefore $R_{gal} < 3$ kpc is assumed. See Section 5 for a previous discussion of this H II region.

$D_{los} > 5$ kpc is assumed due to absorption at velocities corresponding to the Near 3kpc Arm.

Absorption at velocities corresponding to both 3kpc Arms suggests a KDAR.

Significant absorption is seen at both the Near and Far 3kpc Arms (and at ~ 100 km s$^{-1}$). Using this absorption as a distance indicator, G003.342-00.079 is given a far KDAR.

G003.439-0.349

G003.439-0.349 is assumed to be located in the Near 3kpc Arm, due to RRL and maser velocities (GBTHRDS, Caswell et al. (2010)), as well as H I absorption, at velocities expected of the Near 3kpc Arm.

G003.449-0.647

With H I absorption at Near 3kpc Arm velocities, $D_{los} > 5$ kpc is assumed. As the H II region has a near zero systemic velocity, and no absorption associated with the Far 3kpc Arm, then $R_{Gal} < 3$ kpc should also apply.

G003.655-00.111

Absorption at velocities corresponding to the Near 3kpc Arm and a near zero RRL velocity (4.6 km s$^{-1}$, Lockman (1989)) suggests $R_{gal} < 3$ kpc.

G003.928-00.116

Evidence of absorption is present at velocities corresponding to both the Near and Far 3kpc Arms. As a result, G003.928-00.116 is given a far side KDAR.

G003.949-00.100

The H I absorption spectrum is of poor quality, typical of the diffuse regions of the Lockman et al. (1996) catalog. No KDAR is given, however the small RRL velocity (6.5 km s$^{-1}$) suggests a possible EIG location.

G004.346+00.115

The H I absorption spectrum of G004.346+00.115 does not give conclusive evidence for either a near, nor far, KDAR.

G004.412+00.118

Absorption is present at velocities corresponding to the Near and Far 3kpc Arms. This suggests a location of $R_{gal} > 3$ kpc on the far side of the GC; i.e. a far side KDAR.

G004.527-00.136

Absorption at Near 3kpc Arm velocities and evidence of absorption at Far 3kpc Arm velocities suggests a far KDAR.

G004.568-00.118

Absorption at velocities associated with the Near 3kpc Arm suggest $D_{los} > 5$ kpc.

G005.193-00.284

Absorption at Near 3kpc and Connecting Arm velocities suggests $D_{los} > 7$ kpc; that is, the H II region must be located behind the Connecting Arm along the line of sight.
Significant absorption is present at velocities associated with both the Near and Far 3kpc Arms, resulting in a far side KDAR.

Absorption is present at velocities associated with the Near and Far 3kpc Arms, suggesting a far side KDAR.

The H\textsubscript{i} absorption spectrum of G005.633+00.240 does not give conclusive evidence for either a near, nor far, KDAR.

Absorption is not seen towards any EIG features, suggesting a near side KDAR. \cite[Downes et al. (1980)]{Downes1980} also provided a near side KDAR, however, \cite[Quireza et al. (2006)]{Quireza2006} give a line of sight distance of 14.5 kpc, placing the H\textsubscript{II} region on the far side of the GC.

There are two RRL velocities reported for G006.014-00.364 (14.2 and -31.9 km s-1, GBTHRDS) suggesting that there are multiple sources along the line of sight. No KDAR is given.

Absorption at the 3σ level is seen at velocities associated with the Near and Far 3kpc Arms, suggesting a far side KDAR. In addition, absorption at \sim +135 is present.

The H\textsubscript{i} absorption spectrum of G006.148-00.635 does not give conclusive evidence for either a near, nor far, KDAR. However, absorption is present at velocities associated with the Near 3kpc Arm; suggestive of $D_{\text{los}} > 5$ kpc.

H\textsubscript{i} absorption is present at velocities corresponding to the Connecting Arm, but not the Near 3kpc Arm (possibly due to emission fluctuations).

The H\textsubscript{i} absorption spectrum of G006.225-00.569 does not give conclusive evidence for either a near, nor far, KDAR. As with G006.160-00.608, absorption is seen at velocities corresponding with the Connecting Arm, but not the Near 3kpc Arm (which precedes the Connecting Arm along the line of sight).

Absorption is present at velocities corresponding to the Connecting Arm, but not the Near 3kpc Arm (see above).

Absorption is present at velocities corresponding to the Connecting Arm, but not the Near 3kpc Arm (see above).

Perhaps the most well behaved absorption spectrum in this work; significant absorption is seen in the Near and Far 3kpc Arms as well as the Connecting Arm, strongly indicative of a far side KDAR.

As with G006.160-00.608, absorption is seen at velocities corresponding with the Connecting Arm, but not the Near 3kpc Arm (which precedes the Connecting Arm along the line of sight).

Absorption is present at velocities corresponding to the Connecting Arm, but not the Near 3kpc Arm (see above).

Significant absorption at velocities corresponding to both the Near and Far 3kpc Arms strongly suggests a far side KDAR, however the RRL velocity (-17.8 km s-1, \cite[Lockman (1989)]{Lockman1989}) is indicative of a location in the Near 3kpc Arm. The H\textsubscript{II} region also presents significant absorption at \sim +135 km s-1 (see G006.083-00.117, above).
The H\textsc{ii} region has two observed RRL velocities, one of which is associated with the velocity expected of the Connecting Arm. No KDAR is given.

The H\textsc{i} absorption spectrum of G007.768+0.014 does not give conclusive evidence for either a near, nor far, KDAR.

Evidence of absorption at velocities corresponding to the Near 3kpc Arm, Connecting Arm implies a distance along the line of sight as least as far as the Connecting Arm.

Absorption is present at velocities consistent with the Near 3kpc and Connecting Arms, but with no other EIG features. The lower line of sight distance limit is therefore $D_{\text{los}} > 7$ kpc.

Evidence of absorption at velocities corresponding to the Near 3kpc Arm, Connecting Arm and Far 3kpc Arm strongly implies a far side KDAR.

The H\textsc{i} absorption spectrum of G008.094+0.085 does not give conclusive evidence for either a near, nor far, KDAR. However absorption is present at velocities corresponding to the Near 3kpc Arm.

The H\textsc{i} absorption spectrum of G008.103+0.340 does not give conclusive evidence for either a near, nor far, KDAR. However absorption is present at velocities corresponding to the Near 3kpc Arm.

Absorption is not seen towards any EIG features, suggesting a near side KDAR.

The H\textsc{i} absorption spectrum of G008.362-0.303 does not give conclusive evidence for either a near, nor far, KDAR. However absorption is present at velocities corresponding to the Near 3kpc Arm.

Absorption is not seen towards any EIG features, suggesting a near side KDAR.

Kinematic distance analyses can be greatly affected by velocity crowding and a decrease of cold, dense H\textsc{i} in the EIG. For example, Sanna et al. (2009) thoroughly investigated the high mass star formation region G9.62+0.20 - comprised of several H\textsc{ii} regions - and find from trigonometric parallax that it has a distance of 5.2 ± 0.6 kpc, placing it in the 3 kpc Arm. This distance is at odds with the kinematically determined distances for the region (0.36 and 16.4 kpc, based on the systemic velocity of the region, 4.1 km s$^{-1}$). Inspection of the H\textsc{i} absorption spectrum of G009.615+0.198 rules out the far kinematic distance as there is no significant absorption at the velocities of far side EIG features (i.e. the Far 3kpc Arm).

At this longitude the velocities associated with the Near 3kpc Arm and normal circular rotation overlap. No KDARs are given.

REFERENCES

Rodriguez-Fernández, N. J. 2011, Memorie della Societa Astronomica ItalianaSupplementi, 18, 195
van Woerden, H., Rougoor, G. W., & Oort, J. H. 1957, Academie des Sciences Paris Comptes Rendus, 244, 1691