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ABSTRACT

Observations show that radial metallicity gradients in disk galaxies are relatively shallow, if not flat, especially at
large galactocentric distances and for galaxies in the high-redshift universe. Given that star formation and metal
production are centrally concentrated, this requires a mechanism to redistribute metals. However, the nature of this
mechanism is poorly understood, let alone quantified. To address this problem, we conduct magnetohydrodynamical
simulations of a local shearing sheet of a thin, thermally unstable, gaseous disk driven by a background stellar spiral
potential, including metals modeled as passive scalar fields. Contrary to what a simple α prescription for the gas disk
would suggest, we find that turbulence driven by thermal instability is very efficient at mixing metals, regardless
of the presence or absence of stellar spiral potentials or magnetic fields. The timescale for homogenizing randomly
distributed metals is comparable to or less than the local orbital time in the disk. This implies that turbulent mixing
of metals is a significant process in the history of chemical evolution of disk galaxies.
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1. INTRODUCTION

The spatial distribution of metals in disk galaxies is a crucial
clue for understanding how galaxies formed and evolved over
cosmic time. The past few decades have produced a wealth of
observations of this property, including in our own Milky Way
(e.g., Henry et al. 2010; Balser et al. 2011; Luck & Lambert
2011; Cheng et al. 2012; Yong et al. 2012), in nearby galaxies
(e.g., Vila-Costas & Edmunds 1992; Considère et al. 2000;
Pilyugin et al. 2004; Kennicutt et al. 2011), and in the high-
redshift universe (e.g., Cresci et al. 2010; Jones et al. 2012;
Queyrel et al. 2012). In the local universe, a variety of radial
metallicity gradients in disk galaxies are seen, but they are
generally of the order of −0.03 dex kpc−1, with the negative
sign indicating decreasing metallicity at larger galactocentric
radii. However, surprisingly, these gradients seem to disappear
in the outer parts of galactic disks, where there is little star
formation; moreover, the metal content is greater than would
be expected given the amount of star formation that has taken
place at these radii (e.g., Bresolin et al. 2009, 2012; Werk
et al. 2011). High-redshift galaxies, in comparison, are far less
regular. Their metallicity gradients range from negative ones
significantly steeper than those found locally to completely flat
or even positive. Any successful theory of galactic evolution
must be able to reproduce these observations.

Several processes play an important role in regulating the
spatial variation of metals in disk galaxies, and these have
been demonstrated by either chemical evolution models or
hydrodynamical simulations. The enrichment of metals in the
interstellar medium (ISM) is dominated by star formation and
subsequent stellar mass loss, and thus depends on the star
formation law (e.g., Phillipps & Edmunds 1991). Metals are
diluted by infalling gas from outside galaxies (e.g., Tinsley
& Larson 1978; Chiosi 1980; Matteucci & François 1989;
Chiappini et al. 1997, 2001; Prantzos & Boissier 2000). Radial
inflow of the gas within the disk of a galaxy redistributes
metals (Mayor & Vigroux 1981; Lacey & Fall 1985; Pitts &

Tayler 1989; Götz & Köppen 1992; Portinari & Chiosi 2000;
Spitoni & Matteucci 2011; Bilitewski & Schönrich 2012);
galaxy interactions are especially effective in inducing large-
scale inflow and flattening metallicity gradients (Rupke et al.
2010; Perez et al. 2011; P. Torrey et al., in preparation).
Turbulence associated with the viscous evolution of gas disks
can also redistribute metals (Clarke 1989; Sommer-Larsen &
Yoshii 1989, 1990; Tsujimoto et al. 1995; Thon & Meusinger
1998). Beyond these gas-dynamical processes, radial migration
of stars can alter stellar metallicity distributions independently
of processes affecting the gas phase (Sellwood & Binney 2002;
Roškar et al. 2008a, 2008b; Schönrich & Binney 2009).

Yet the strength and relative importance of these processes
remains very poorly understood. Semi-analytic chemical evolu-
tion models generally parameterize each process and then tune
the parameters in an attempt to provide an acceptable match
to observations. However, the large numbers of parameters in-
volved means that even a good fit to the data may not be unique,
and the need for fine-tuning means that these models have lim-
ited predictive power. Moreover, the parameterizations used in
the models may not be accurate. For example, turbulent mixing
is usually treated by adopting an α prescription for the turbulent
transport of angular momentum (Shakura & Sunyaev 1973) and
assuming that the transport coefficient for metals is the same.
Under these assumptions turbulent mixing is unimportant unless
α is so large that the viscous diffusion time becomes compara-
ble to the gas depletion time. However, neither the assumption
that turbulent transport of metals can be approximated with an α
prescription nor that α for this process is the same as that for the
angular momentum are physically well motivated. Numerical
simulations of metal transport that evolve galaxies over cosmo-
logical times are unfortunately little better because their limited
resolution means that they must also adopt parameterized treat-
ments of unresolved processes. For example, most smoothed
particle hydrodynamics (SPH) simulations allow no chemical
mixing at all between SPH particles (Wadsley et al. 2008),
or at best treat mixing approximately using a parameterized
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subgrid recipe (Shen et al. 2010). Eulerian simulations, in con-
trast, dramatically overmix when their resolution is low.

The approach we take in this paper is quite different and
complementary to chemical models and large-scale cosmolog-
ical simulations. We isolate a single process: turbulent mixing
within a galactic disk. Our goal is to provide a first-principle
calculation of this process, which can in turn provide a phys-
ically motivated, parameter-free prescription that can be used
in chemical evolution models or lower resolution simulations.
In order to achieve this goal, we simulate turbulent mixing in a
portion of a galaxy at very high resolution, including physical
processes that are too small scale to be resolved in cosmological
simulations, and we perform a resolution study to ensure that
our results are converged. The previous work that most closely
matches ours in philosophy and overall approach is that of Mac
Low & Ferrara (1999) and Fragile et al. (2004), who used high-
resolution simulations of isolated portions of galaxies to study
mixing of supernova ejecta with the ISM as galactic winds are
launched. Here we perform a similar calculation for turbulent
mixing within disks.

There exist many sources that can drive turbulence in the
ISM (see Elmegreen & Scalo 2004; Scalo & Elmegreen 2004
and references therein). In earlier work, de Avillez & Mac
Low (2002) studied the properties of turbulent mixing driven
by supernova explosions. Here, we instead focus on turbulence
driven by thermal instability (Field 1965; Field et al. 1969). Our
motivation is twofold. First, the flat metallicity gradients seen
in outer disks presumably call for some sort of mixing process
to operate at large galactic radii, where star formation is limited
and thus supernova explosions are extremely rare. Second, even
in places where supernovae do occur, thermal instability is also
present and will drive turbulence; indeed, thermal instability
is essentially inevitable anywhere the ISM is dominated by
atomic hydrogen, which is the case for most galaxies over the
great majority of cosmic time. Supernovae will only enhance
the turbulence compared to what we find, and thus our results
should be viewed as a minimum estimate of the turbulent mixing
rate.

In the sections that follow, we describe our numerical method
and present the results of the simulations. We then quantify
the results in a form appropriate for use in chemical evolution
models and discuss their implications. Finally, we summarize
the results and conclude.

2. NUMERICAL MODELING

To study turbulent mixing, we adopt a thin-disk, local-
shearing-sheet model similar to Kim & Ostriker (2002; see also
Kim & Ostriker 2006) and equip it with approximate heating
and cooling processes (see also Kim et al. 2008, 2010) and
metal tracers. We also investigate the effects of spiral shocks
and magnetic fields on turbulent mixing in our models. In the
following sections, we describe our simulation methodology
and setup in detail.

2.1. Governing Equations

2.1.1. Magnetohydrodynamics

Using the local-shearing-sheet approximation (Goldreich &
Lynden-Bell 1965), we consider a small region distant from the
center of a vertically thin disk galaxy. This region is centered
at the potential well of a background stellar spiral arm and co-
rotating with the arm at its angular pattern speed Ωp. One can
define a coordinate system for this region by x ′ ≡ R − R0

and y ′ ≡ Rφ, where (R, φ) are the polar coordinates rotating
with the spiral arm and (R, φ) = (R0, 0) is the location of the
point of interest along the stellar spiral arm. The velocity field
of the gas flow in the rotating frame is denoted by v. Since the
differential rotation profile of a disk galaxy Ω = Ω(R) is usually
a known or given function, we are more interested in the relative
velocity of the gas u ≡ v−vc with respect to the circular velocity
vc ≡ R(Ω−Ωp)ey ′ in the rotating frame. By assuming x ′ � R0,
y ′ � R0, ux ′ � R0Ω0, and uy ′ � R0Ω0, where Ω0 ≡ Ω(R0),
and expanding the magnetohydrodynamical equations to first
order in x ′, y ′, ux ′ , and uy ′ , the continuity, the momentum, the
energy, and the induction equations become

∂Σ
∂t

+ v · ∇Σ + Σ∇ · u = 0, (1)

∂u
∂t

+ v · ∇u = q0Ω0ux ′ey ′ − 2�0 × u − 1

Σ
∇p − ∇(Φs + Φg)

+
1

Σ
J × (B0 + B), (2)

∂e

∂t
+ v · ∇e + e∇ · u = −p∇ · u + H, (3)

∂A
∂t

+ vc · ∇A = q1Ω0Ay ′ex ′ + u × (B0 + B) , (4)

respectively. The primitive variables for which we solve the
above equations are the gas surface density Σ, the gas relative
velocity u as defined above, the thermal energy density of the gas
e (i.e., internal energy per unit surface area), and the magnetic
vector potential A. The magnetic field B is then calculated by
B = ∇ × A. The remaining quantities in the above equations
are the dimensionless shear parameters

q0 ≡ − R

Ω
dΩ
dR

∣∣∣∣
R=R0

, (5)

q1 ≡ − 1

Ω
dR(Ω − Ωp)

dR

∣∣∣∣
R=R0

= q0 − 1 +
Ωp

Ω0
, (6)

the gas pressure p, the gravitational potentials due to the stellar
spiral arm and the gas itself, Φs and Φg , respectively, the electric
current density J = (∇ × B)/μ0, where μ0 is the permeability,
and the net heating rate per unit surface area H. We impose a
constant external azimuthal magnetic field B0 = B0ey ′ when we
consider a magnetized disk.1

Equations (1)–(4) are written in vectorial forms and thus
are readily transformed into different coordinate systems. One
particular choice is to rotate the (x ′, y ′) system counterclockwise
by the pitch angle i into the (x, y) system such that the new
x-axis and y-axis are perpendicular and parallel to the stellar
spiral arm at the origin, respectively (see Figure 1 of Kim &
Ostriker 2002). We employ the tightly wound approximation so
that sin i ≈ i � 1 can be deemed a small quantity. In these
considerations, Equations (1) and (3) remain unchanged while
Equations (2) and (4) become, by also retaining sin i to only
first order,

∂u
∂t

+ v · ∇u = q0Ω0uxey − 2�0 × u − 1

Σ
∇p − ∇(Φs + Φg)

+
1

Σ
J × (B0 + B), (7)

1 The induction Equation (4) requires that B0 ‖ vc; otherwise, an additional
term vc × B0 should be included.
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∂A
∂t

+ vc · ∇A = q1Ω0[(Ax sin i + Ay)ex − Ayey sin i]

+ u × (B0 + B), (8)

respectively. The circular velocity and the external magnetic
field in this tilted frame can be approximated by

vc ≈ v0ex sin i + (v0 − q1Ω0x) ey, (9)

B0 ≈ B0ex sin i + B0ey, (10)

respectively, where v0 ≡ R0(Ω0 − Ωp).

2.1.2. Forcing Driven by the Stellar Spiral Arm

The advantage of aligning our coordinate system with the
background stellar spiral arm is that the gravitational potential
of the arm in this system can be approximated as periodic in
x while weakly varying in y, to first order (Roberts 1969; Shu
et al. 1973; Kim & Ostriker 2002):

Φs(x) ≈ Φ0 cos
2πx

L
, (11)

where Φ0 < 0 is a constant,

L = 2πR0 sin i

m
(12)

is the radial spacing between adjacent spiral arms, and m is the
multiplicity of the arms. The strength of the spiral forcing is
measured in terms of the local centrifugal acceleration:

F ≡ m

sin i

( |Φ0|
R2

0Ω2
0

)
. (13)

Note that according to Equation (12), the local-shearing-sheet
approximation Lx � R0 requires that sin i/m � 1, which
is automatically satisfied by the tightly wound approximation
sin i � 1.

2.1.3. Self-gravity of the Gas

In this work, we are only interested in large-scale mixing of
metals and ignore self-gravity of the gas. It will be required,
though, in a subsequent paper where we investigate the metal
abundances in precursors of molecular clouds. Therefore, we
list the equation governing self-gravity of the gas in this section
for completeness.

The quantity Φg in Equations (2) and (7) represents the
gravitational potential of the gas. The potential is calculated
by solving the Poisson equation for a razor-thin disk

∇2Φg = 4πGΣδ(z), (14)

where G is the gravitational constant and δ(z) is the Dirac delta
function. We discuss the corresponding numerical method for
its solution in Section 2.3.

2.1.4. Thermodynamics

To understand the effects of thermal instability on the mixing
of metals, we compare thermally stable disks with thermally
unstable ones. For the former, we use the isothermal equation of
state p = c2

s Σ, where cs is the isothermal speed of sound, and in

this case, the energy Equation (3) is not required and we do not
solve it. For the latter, we adopt the adiabatic equation of state
p = (γ − 1)e, where γ is the two-dimensional adiabatic index,
and include the heating and cooling of the gas such that the disk
is thermally unstable.

For a prescription of the heating and cooling rates, we
start from the approximate functions suggested by Koyama &
Inutsuka (2002).2 The net rate of heat loss per unit volume
is ρL = n2Λ − nΓ, where n is the number density of gas
particles and

Γ = 2.0 × 10−26 erg s−1, (15)

Λ(T )

Γ
= 107 exp

(
−1.184 × 105

T + 1000

)

+ 1.4 × 10−2
√

T exp

(
−92

T

)
cm3, (16)

in which T is the temperature in Kelvins. To obtain the heating
rate per unit surface area H, we need to integrate ρL in
the vertical direction, and the vertical structure of the gas is
required. For simplicity, we assume that the gas is vertically
isothermal and the number density is approximated by n(z) 

n0 exp(−z2/2H 2), where n0 is the number density in the mid-
plane and H is the vertical scale height. We further assume
that the vertical motion of the gas is dominated by non-thermal
processes, at least when the gas temperature is low, such that H
is constant, instead of depending on T. Therefore,

H = −
∫

ρL dz = Γ
(

Σ
μmu

) [
1 − 1

2
√

πH

(
Σ

μmu

)
Λ(T )

Γ

]
,

(17)

where we have used
∫

n dz = Σ/μmu, and μ and mu are the
mean molecular weight and the atomic mass, respectively. To
complete the system, we use the ideal-gas law p = ΣkBT /μmu

for the temperature T, where kB is the Boltzmann constant.

2.1.5. Metal Tracers

Finally, we assume that the heavy metals in the disk follow the
velocity field of the gas component and model them as tracer
fluids. Therefore, the surface density of any given metal ΣX

satisfies
∂ΣX

∂t
+ v · ∇ΣX + ΣX∇ · u = 0. (18)

The concentration of the metal c with respect to the total local
mass can then be derived by c = ΣX/Σ.

2.2. Initial and Boundary Conditions

The computational domain we consider is a square sheet of
size L, the radial spacing between adjacent spiral arms defined
in Section 2.1.2. In the following subsections, we discuss the
initial and boundary conditions we adopt for the gas and the
metals.

2 The cooling function published in Koyama & Inutsuka (2002) contains two
typographical errors and has been corrected by Nagashima et al. (2006).
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Figure 1. Pressure–density diagram for non-isothermal gas in our models. The solid line indicates the states at thermal equilibrium, the dotted lines show the isotherms,
and the dashed lines denote constant Toomre stability parameter for the gas.

2.2.1. The Gas and the Equilibrium State

We initially set the gas to be uniform (Σ = Σ0), isothermal
(T = T0), and moving along with the galactic circular motion
(u = 0) such that it is at an equilibrium state when the spiral
forcing is not present (Φ0 = F = 0). Our adopted initial
density Σ0 can be more physically motivated by considering
the corresponding Toomre Q parameter for the gas Q0 =
κcs,0/πGΣ0, where κ is the epicycle frequency of the disk at
R = R0 and cs,0 is the initial speed of sound. The epicycle
frequency κ as well as the shear parameters q0 and q1 defined
in Equations (5) and (6) are determined by the rotation profile
Ω(R). As in Kim & Ostriker (2002), we assume a flat rotation
curve (RΩ = constant) near R = R0 and a pattern speed of
Ωp = Ω0/2 and thus κ = √

2Ω0, q0 = 1, and q1 = 1/2. In
physical units, the initial surface density is then

Σ0 = (19 M� pc−2)Q−1
0

(
Ω0

26 km s−1 kpc−1

) ( cs,0

7.0 km s−1

)
.

(19)

On top of the equilibrium state, we perturb the velocity field by
a white noise of magnitude 10−3cs,0 to seed the instabilities, if
any, of the system.

When we consider the isothermal equation of state, our
initial isothermality of the gas is automatically guaranteed
and preserved. In this case, only the constant speed of sound
cs = cs,0 needs to be specified. On the other hand, when
we consider a non-isothermal disk with heating and cooling
processes, an initial thermal equilibrium of the gas is also
required. This is equivalent to setting H = 0 at Σ = Σ0 and
T = T0, i.e., zero net heating rate at the initial state. Given
a surface density Σ, Equation (17) can be used to solve for
the corresponding temperature T such that H = 0. With the
values of the physical parameters considered in this work (see
Section 2.2.3 and Table 1), Figure 1 plots the curve for the states
at thermal equilibrium in a pressure–density diagram; note the
region in Σ/μmu ∼ 1021–1022 cm−2 where the slope of the
curve is inverted, the classical condition for thermal instability
to occur (Field 1965). Therefore, a given value of initial Toomre

Table 1
Adopted Physical Parameters

Parameter Symbol Value

Galactocentric distance R0 10 kpc
Angular circular speed Ω0 26 km s−1 kpc−1

Orbital period P 240 Myr
Spiral-arm multiplicity m 2
Spiral-arm pitch angle i 5.◦7
Inter-arm distance L 3.1 kpc
Initial Toomre stability parameter Q0 1.5
Mean molecular weight μ 1
Vertical disk scale height H 95 pc

stability parameter for the gas Q0 uniquely specifies the initial
state of the gas (Σ0, T0).

For magnetized disks, we impose initial uniform azimuthal
fields through the gas by setting B0 �= 0 and A = 0 throughout.
The strength of these imposed fields can be gauged by the
corresponding plasma beta parameter, β0 ≡ 2μ0p0/B

2
0 , which

is the ratio of the initial thermal pressure p0 to the initial magnetic
pressure.

Since our system is driven by a forcing periodic in the
x-direction with a wavelength of the inter-arm spacing L
(Equation (11)), it is expected that the response of the system
also be periodic in x with the same wavelength. The system
is also sheared in the y-direction, though, which is manifested
by the term −q1Ω0xey in Equation (9). Strictly speaking, the
boundary conditions in the x-direction for the system should
be sheared periodic, which can be expressed mathematically in
the form f (x + L, y) = f (x, y + q1Ω0Lt), where f (x,y) is any
dynamical field in question (Hawley et al. 1995; Brandenburg
et al. 1995; Kim & Ostriker 2002), except the metal tracer fields
(see below). As for the y-direction, we adopt normal periodic
boundary conditions f (x, y + L) = f (x, y) for convenience.

2.2.2. The Metal Tracers

Given that we model the metals as passive scalar fields, they
effectively act like dye in a flow. We can in fact inject metals
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anywhere, anytime, and at any rate to study their diffusion
process. Since most star formation occurs along spiral arms,
constantly producing metals that drift downstream toward the
next spiral arm, we are most interested in the mixing of metals
within one passage between adjacent arms. This motivates us
to employ inflow boundary conditions at the left (x = −L/2)
and outflow boundary conditions at the right (x = +L/2) for the
metal tracer field ΣX. The boundary conditions in the y-direction
remains periodic.

The spatial distribution of the newly produced metals from
the previous generation of star formation may be arbitrary. To
be as general as possible, we constantly inject a sinusoidal dis-
tribution of unit amplitude from the left: ΣX(x = −L/2, y) =
sin(2πy/λinj), where λinj is the wavelength of the distribution.
Once the wavelength dependence of the mixing process is de-
ciphered, an arbitrary distribution of metals can be analyzed by
Fourier decomposition. In all of our models, we simultaneously
evolve four species of metal tracers with λinj = L,L/2, L/4,
and L/8, for which we denote X by 1, 2, 3, and 4, respectively.

At the equilibrium state when there exists no driving force
in the system, the gas flows azimuthally at circular velocity,
and so do the metals. Given that the azimuthal direction in our
computational domain is tilted from the y-axis by the pitch angle
i, we set the initial condition for the metal tracers as

ΣX(x, y) = sin

[
2π

λinj

(
y − x + L/2

tan i

)]
. (20)

2.2.3. Physical Parameters and the Models

The values of the physical parameters we adopt and keep
constant across different models are listed in Table 1. Most
of these values match those used by Kim & Ostriker (2002)
for comparison purposes. The additional two parameters, mean
molecular weight μ and vertical scale height H, come into
the system only via the thermodynamics. For simplicity, we
set μ = 1 throughout.3 The vertical scale height is estimated
by noting that H = cs,z/ν in a vertically isothermal gas with
effective vertical speed of sound cs,z and vertical frequency ν;
in the solar neighborhood, ν 
 2Ω (Binney & Tremaine 2008).
By assuming cs,z 
 7.0 km s−1, we calculate H 
 95 pc.

We conduct separate simulations with each combination of
three physical effects—spiral forcing, thermal instability, and
magnetic fields—to study their influence on the gas dynamics
and more importantly the mixing of metals. The eight resulting
models and their numerical resolutions are listed in Table 2.
We show in Appendix A that these resolutions are sufficient to
achieve numerically converged results. If a model includes spiral
forcing, we gradually increase its strength for a duration of 10P
to F = 3%, after which the strength remains constant. When
considering the isothermal equation of state, we use a speed of
sound of cs,0 = 7.0 km s−1 and thus an initial gas surface density
of Σ0 = 13 M� pc−2. When considering thermally unstable gas,
we adopt a two-dimensional adiabatic index of γ = 1.8, which
is taken to be the limiting value of a strongly self-gravitating
disk of monatomic gas (Gammie 2001). The initial thermal
equilibrium in this case requires that Σ0 = 12 M� pc−2 and
cs,0 = 6.4 km s−1. For magnetized disks, we set the initial
plasma beta to be β0 = 2.

3 A more realistic value should be μ 
 1.3. But this difference does not
significantly change our results.

Table 2
List of Models

Model Forcinga Equation of Stateb Magnetizedc Highest Resolution

Control No Isothermal No 1024 × 1024
F Yes Isothermal No 1024 × 1024
T No Non-isothermal No 2048 × 2048
TF Yes Non-isothermal No 2048 × 2048
M No Isothermal Yes 1024 × 1024
MF Yes Isothermal Yes 1024 × 1024
MT No Non-isothermal Yes 2048 × 2048
MTF Yes Non-isothermal Yes 1024 × 1024

Notes.
a If forcing exists, F = 3%; F = 0, otherwise.
b For isothermal disks, Σ0 = 13 M� pc−2 and cs,0 = 7.0 km s−1. For non-
isothermal disks, Σ0 = 12 M� pc−2, cs,0 = 6.4 km s−1, and γ = 1.8.
c For magnetized disks, β0 = 2.

2.3. The Pencil Code

We use the Pencil Code4 to solve our system of equations
discussed above. It is a cache-efficient, parallelized code optimal
for simulating compressible turbulent flows. It solves the MHD
equations, among others, by sixth-order finite differences in
space and third-order Runge–Kutta steps in time, attaining
high fidelity at high spectral frequencies (Brandenburg 2003).
Although the scheme is not written in conservative form,
conserved quantities are monitored to assess the quality of the
solution.

Several diffusive operations are employed in order to stabilize
the scheme. We use hyper-diffusion in all the four dynamical
Equations (1), (3), (7), and (8) to damp noise near the Nyquist
frequency while preserving power on most of the larger scales
(Haugen & Brandenburg 2004; Johansen & Klahr 2005). Shocks
are controlled with artificial diffusion of von Neumann type
(Haugen et al. 2004; Lyra et al. 2008). For both types of
operations, we fix the mesh Reynolds number to maintain
roughly the same strength of diffusion at the grid scale (see
Appendix B). Finally, all the advection terms of the form
(v0 +u)·∇Q, where v0 = v0ex sin i+v0ey (see Equation (9)) and
Q is any state variable, are treated by fifth-order upwinding to
avoid spurious oscillations near stagnation points (Dobler et al.
2006).

Since a local shearing sheet is considered, we need to
handle the sheared advection, the boundary conditions, and
the Poisson equation with care. The sheared advection terms
of the form −q1Ω0x∂yQ are directly integrated by Fourier
interpolations (Johansen et al. 2009) in order to relieve the
time step constraint from shearing velocity (Gammie 2001) and
eliminate the artificial radial dependence of numerical diffusion
(Johnson et al. 2008). The sheared periodic boundary conditions
discussed in Section 2.2 are similarly implemented with Fourier
interpolations. The Poisson equation (14) is solved by fast
Fourier transforms in sheared Fourier space in which the fields
are strictly periodic (Johansen et al. 2007) with the kernel for a
razor-thin disk given by Gammie (2001).

We have implemented the approximate net heating function
(Equation (17)) in the Pencil Code. Since the thermal and the
dynamical timescales can be quite different, we operator split
this term in the energy Equation (3). Because this heating
and cooling process only depends on local properties, the

4 The Pencil Code is publicly available at http://code.google.com/p/pencil-
code/.

5

http://code.google.com/p/pencil-code/
http://code.google.com/p/pencil-code/


The Astrophysical Journal, 758:48 (15pp), 2012 October 10 Yang & Krumholz

Figure 2. Snapshot of the density field for each non-magnetic model at t = 15P . Isothermal disks are in the left column, while thermally unstable disks are in the
right column. The top row has no spiral forcing, while the bottom row does. The color scales are set the same for all the panels.

(A color version of this figure is available in the online journal.)

resulting differential equation is ordinary and can be integrated
independently at each cell. For these integrations, we adopt
the fifth-order embedded Runge–Kutta method with adaptive
time steps (Press et al. 1992). Since most computational cells
are near thermal equilibrium, they require only one or two
iterations to match the hydrodynamical time step. Integration
of the remaining few cells that have shorter thermal times has
negligible computational cost.

With our highest resolution of ∼1.5 pc per cell, we are still
not able to resolve the thermally stable cold phase of the gas
(see Figure 1). Therefore, the densest cells tend to overcool and
lose pressure support to their surroundings. To ensure the Jeans
length is properly resolved and avoid artificial fragmentation
(Truelove et al. 1997) later when we include self-gravity of
the gas, we impose a floor to thermal energy density e in accord
with the local surface density Σ such that the condition of at least
four cells per Jeans length is satisfied: e � 4GΣ2h/γ (γ − 1),
where h is the cell size. This is in effect a modification to the
cooling function at low temperatures. Given that our cell size
is marginally close to resolving the stable cold phase and our
main purpose is to demonstrate if thermal instability can drive

effective chemical mixing, we omit any further consideration of
sub-scale physics and leave this compromise as a caveat.

3. STATISTICALLY STEADY STATE

All of our models attain statistically steady state within a few
local orbital periods. In this section, we report the state of our
simulations at this stage.

3.1. Gas Dynamics

Figures 2 and 3 show the snapshots of the density field for the
non-magnetic and magnetic models, respectively. For models
Control and M, since there exists no driving force in the system
(i.e., neither spiral forcing nor thermal instability), no interesting
feature occurs and these models serve as control simulations; the
initial perturbation propagates as sonic waves and remains small
in amplitude. For model F, isothermal disk with spiral forcing,
a spiral shock with little azimuthal variation forms and locates
slightly upstream of the potential well of the forcing. As can be
more clearly seen in the y-averages of the gas properties plotted
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Figure 3. Snapshot of the density field for each magnetic model at t = 15P . The arrangement is the same as in Figure 2.

(A color version of this figure is available in the online journal.)

in Figure 4, this resembles the classical solution of Roberts
(1969).

When the disk is thermally unstable, the gas spontaneously
breaks into two phases, a warm phase of diffuse gas with
high volume filling factor and a cold phase of dense gas with
filamentary structures, as evident in models T and TF shown
in Figure 2. Model T is simply the standard two-phase model
regulated by thermal instability (Field et al. 1969). The two-
phase medium is turbulent but statistically steady, in which
the two phases are in approximate pressure equilibrium. As
demonstrated by model TF, although the spiral forcing tends
to concentrate material into the potential well, the spiral shock
seen in isothermal disks is suppressed by the turbulent medium
(Figure 4).

The existence of magnetic fields creates an interesting struc-
ture in the gas. For model MF, magnetized isothermal disk with
spiral forcing, two discontinuities parallel to the spiral arm oc-
cur as shown in Figures 3 and 4. The gas remains at roughly the
initial state in between the discontinuities, where the magnetic
field lines are compressed and magnetic pressure is increased.

While the left discontinuity is quite stable, the right discontinu-
ity becomes wobbly after the spiral forcing reaches its maximum
strength. Waves are produced in the process and they propagate
throughout the disk. This behavior, however, does not continue
to develop in magnitude and drive the gas into a turbulent state.

Finally, the magnetized, two-phase, turbulent medium is
rather similar to its non-magnetized counterpart, as can be seen
by comparing model MT shown in Figure 3 with model T shown
in Figure 2. As in the non-magnetized case, the presence of
thermal instability significantly weakens the spiral shock, as
demonstrated by model MTF shown in Figures 3 and 4.

3.2. Metal Tracers

With a statistically steady state of the gas established for each
model listed in Table 2, we turn to observe how metals would
be transported in each flow. Figures 5–8 show snapshots of the
metal tracer fields with an injection wavelength of λinj = L or
L/2 for each model at time t = 15P . Since models Control
and M remain at their initial equilibrium states, as described in
Section 3.1, we expect the metal tracers do the same. In this
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Figure 4. y-averages of the density, pressure velocity, and magnetic fields as a
function of x. These profiles are also time averaged from t = 10P to t = 15P .

(A color version of this figure is available in the online journal.)

case, metals should move in the azimuthal direction (which is
tilted to the right at an angle i with respect to the y-axis) without
any noticeable diffusion,5 and our simulations have passed this
benchmark as demonstrated in the snapshots.

When the spiral forcing is present in our non-magnetized
isothermal disk (model F), the tracer field is deformed in the
x-direction, which is perpendicular to the spiral arm. In accord
with the velocity field shown in Figure 4, the metal distribution
is first rarified and its wavelength is increased, as the gas
approaches the spiral shock. As the gas passes through the
shock, the metal tracer amplitude is increased to ∼5.5 and the
wavelength is reduced. Finally, the metal field is rarified again
to regain the original distribution toward the right boundary. A
similar process occurs in our magnetized isothermal disk (model
MF), except that in this case there exist two discontinuities
and propagating waves generated by the wobbly shock on
the right. The waves, however, do not have enough strength
to stir the metals, and the metals again tend to retain their
original distribution after crossing the right shock. Therefore,
the spiral forcing in our isothermal disks, either non-magnetized
or magnetized, does not have a noticeable net effect on metal
distribution after one passage of the spiral arm.

A completely different scenario for transporting metals oc-
curs in thermally unstable disks. As evident in model T, the

5 We note that molecular diffusion is too small to drive metal diffusion on
galactic scale, and this process is obviously ignored in our models.

Figure 5. Snapshot of the metal tracer field with an injection wavelength of λinj = L for each non-magnetic model at t = 15P . The arrangement is the same as in
Figure 2.

(A color version of this figure is available in the online journal.)
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Figure 6. Snapshot of the metal tracer field with an injection wavelength of λinj = L for each magnetic model at t = 15P . The arrangement is the same as in Figure 3.

(A color version of this figure is available in the online journal.)

turbulence driven by thermal instability significantly churns up
the metals, and within only a few wavelengths in distance, the
original sinusoidal distribution cannot be discerned anymore.
To quantify this process, we compute the power spectra of the
metal tracer fields at our final times,

PX(k) = |Σ̃X(k)|2, (21)

where Σ̃X is the Fourier transform of a given metal tracer field.
We compute the Fourier transform and thus the power spectrum
only for gas in the downstream region, defined as the region
x > 0 for the runs without spiral arm forcing, and as the
region beyond the spiral shock for runs with forcing. For models
Control and M, the power spectrum is simply a δ function at the
injection wavelength, while for model F it is a δ function at a
wavelength smaller than the injection scale (due to compression
of the wavelength in the spiral shock). Model MF is not quite
a δ function, but is nearly one. In contrast, Figure 9 shows the
results for models T, TF, MT, and MTF. We see that the initial
large-scale variation in metal density is redistributed to many
different scales by the turbulence, and the resulting distribution
becomes in fact white noise. Furthermore, this process does
not depend on the injection wavelength, at least in the range
L/8 � λinj � L simulated in our models.

The mixing of metals driven by thermal instability is equally
effective among all of our thermally unstable disks. By com-
paring Figure 6 with Figure 5 (or Figure 8 with Figure 7), the
metal tracer fields do not exhibit noticeable differences between
models MT and T, indicating that magnetic fields play little role
in limiting the redistribution of metals by the turbulence. As
shown in the same figures, although the mixing of metals is less
effective in the pre-shock region when spiral forcing is present,
the mixing process is significantly accelerated near the shock
front, resulting again in white noise in the aftershock region
(Figure 9). Therefore, we determine the turbulence induced by
thermal instability in our models is the only major mechanism
in driving mixing of metals, and this mechanism can effectively
redistribute metals into white noise within less than inter-arm
distances.

4. QUANTIFYING THE MIXING PROCESS

4.1. Diffusion Coefficients

Having established that the turbulence driven by thermal
instability is the primary mechanism for mixing the metals,
irrespective of the existence of spiral forcing and/or magnetic
fields, we focus our attention on our model T and attempt
to quantify the mixing process. It is not clear yet if this
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Figure 7. Snapshot of the metal tracer field with an injection wavelength of λinj = L/2 for each non-magnetic model at t = 15P . The arrangement is the same as in
Figure 2.

(A color version of this figure is available in the online journal.)

turbulent mixing can be described as a diffusion process and,
if so, what diffusion coefficient describes it. In principle,
these questions could be investigated by, for instance, the
recently developed test-field method (Brandenburg et al. 2009;
Madarassy & Brandenburg 2010). However, we defer this more
comprehensive analysis and present a toy model for an order-
of-magnitude estimate of the mixing strength and timescale.

We start by considering an observer who co-moves with
the background advection (Equation (9)) and measures the
distribution of the metals in the y-direction, after the turbulent
flow has reached its statistically steady state. We define t̄ ≡
(x − x0)/vc,x as the advection time, where x0 = −L/2 is the
x coordinate of the left boundary, and at every position x and
thus advection time t̄ we compute the one-dimensional Fourier
transform Σ̃y

X of ΣX in the y-direction. From this we compute
the one-dimensional power spectrum

P
y

X(t̄ , ky) = |Σ̃y

X(t̄ , ky)|2. (22)

We plot the result at several values of t̄ for Σ1 in Figure 10. At
small t̄ the metal distribution is very close to the sinusoidal

one injected from the left boundary, and thus the power
spectrum shows that almost all the power is in a single,
long-wavelength mode. As the observer moves to the right,
turbulent mixing redistributes the metals into many different
scales while attenuating the amplitude of the initial distribution
in the process. In time, the distribution becomes white noise and
the power at all scales decays roughly synchronously while the
gas flows toward the right boundary.

If the process of redistributing metals were truly a diffusion
process in the y-direction of the observer’s frame, then the
distribution of metal tracers as a function of t̄ and y would
obey

∂ΣX

∂t̄
= ∂

∂y

(
D

∂ΣX

∂y

)
, (23)

where D is the diffusion coefficient.6 If we assume D is a
constant, the solution to Equation (23) with an initial sinusoidal

6 Note that we have not shown that turbulent mixing of metals really is a
diffusion process, and indeed it is probably more complex than that. However,
parameterizing in terms of a diffusion coefficient still provides a useful guide
to the strength of the effect.
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Figure 8. Snapshot of the metal tracer field with an injection wavelength of λinj = L/2 for each magnetic model at t = 15P . The arrangement is the same as in
Figure 3.

(A color version of this figure is available in the online journal.)

distribution of wavenumber kinj = 2π/λinj is

ΣX(t̄ , y) = ψ(t̄) sin(kinjy), (24)

where
ψ(t̄) = ψ0 exp(−t̄/τD), (25)

in which ψ0 ≡ 1 is the amplitude of the injected distribution
from the left boundary and τD = 1/Dk2

inj is the time constant.
Therefore, the power of the metal distribution at the injected
wavelength decays exponentially according to P

y

X(t̄ , kinj) =
ψ2(t̄) = ψ2

0 exp(−2t̄/τD).
Figure 11 plots the power of the metal distribution in the

y-direction at the injection wavenumber P
y

X(t̄ , kinj) as a function
of the advection time t̄ in our model T. Two distinct stages
of exponential decay can be seen for each metal tracer field,
the first of which is steeper than the second. The transition
time t̄0 between the two stages marks the time required for
the metal distribution to become white noise, i.e., well mixed
due to the turbulence. The shorter the wavelength of the
injected distribution λinj, the faster the metals are mixed. With

t̄0 identified for each tracer field, the decay of the power at
each stage can be fitted separately by an exponential function
as shown by the straight lines in Figure 11, and the resulting
slopes can be converted into the decay time constant τD and
the diffusion coefficient D by the formulae given above. The
numerical values of t̄0, τD , and D for each λinj in our model T
are listed in Table 3.

4.2. Implications for Chemical Evolution of Disk Galaxies

The timescales we have measured in our model T indicate that
turbulent mixing of metals driven by thermal instability is an
efficient process, especially for the first stage discussed above.
The time required to eradicate kpc-scale variations in metals,
i.e., t̄0 in Table 3, is short compared to the orbital timescale
P. As we have mentioned in Section 2.2.2, the sinusoidal
distribution of metal tracers we inject along the left boundary can
be considered as the metal enrichment powered by supernovae
along a spiral arm. If the characteristic separation between star-
forming sites along a spiral arm is of the order of 1 kpc, the
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Figure 9. Power spectra of the metal tracer fields with different injection wavelengths λinj in the downstream region of our thermally unstable disks. The downstream
region is selected as the domain x > 0 if no spiral forcing is present, or the aftershock region determined from Figure 4 if spiral forcing is present. The spectra are
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∫ |Σ̃X(k)|2dk = 1, where Σ̃X(k) is the Fourier amplitude of the tracer field ΣX at wavenumber k. The values
of k at which the power spectra begin to decrease are the Nyquist frequencies in the simulations; the turndown is at lower k in model MTF due to the lower resolution
of this model.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

metals they produce will become well mixed after ∼30 Myr of
advection.

The second stage of turbulent mixing we see in our mod-
els is probably more relevant to long-term chemical evolution

of disk galaxies. At this stage, metals are randomly distributed
in the ISM and are constantly transported by large-scale con-
vective motions of the gas. Similar to what occurs at the first
stage, the signals of the metal variations at all wavelengths decay
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(A color version of this figure is available in the online journal.)

Table 3
Properties of the Mixing Process for Different Metal Tracers in Model T

First Stage Second Stage

λinj t̄0 τD D τD D
(kpc) (Myr) (Myr) (kpc2 Gyr−1) (Gyr) (kpc2 Gyr−1)

3.1 100 48 5.2 0.20 1.2
1.6 41 18 3.5 0.16 0.38
0.78 22 8.6 1.8 0.13 0.12
0.39 12 4.0 0.96 0.11 0.037

Notes. λinj is the wavelength of the metal distribution injected from the left
boundary. t̄0 denotes the approximate advection time when the mixing process
transitions from the first stage to the second. τD and D respectively represent the
decay time constant of the injected distribution and the corresponding diffusion
coefficient at each stage.

exponentially with time, although somewhat more slowly. The
decay time constant τD is of the order of ∼100 Myr and is rel-
atively insensitive to wavelength. Therefore, if there exists any
metallicity gradient on a kiloparsec scale, the gradient should
be e-folded in roughly the same timescale, and this timescale
is comparable to but still less than the orbital timescale of the
galaxy.

In this regard, turbulent mixing of metals should be an im-
portant physical process in chemical evolution of disk galaxies,
and should be included in chemical evolution models. Although
the toy model for turbulent mixing we presented in the previ-
ous section may not quantitatively describe the full dynamics of
metal transport in turbulent ISM, we should have captured an
order-of-magnitude estimate of the mixing strength. The diffu-
sion operation along with the diffusion coefficient we have mea-
sured may serve as a simple starting point for a sub-grid recipe
in chemical evolution models and cosmological simulations.

We note that the diffusion coefficient of the second stage
we find for kpc-scale distributions is on the same order of
cs,0H 
 0.7 kpc2 Gyr−1, even though the gas disk is not self-
gravitating and presumably has a low Shakura & Sunyaev (1973)
α parameter. In fact, α ≡ 〈Σuxuy〉/Σ0c

2
s,0 in our model T is

about 10−2, where 〈〉 denotes the spatial average of the quantity
enclosed. This demonstrates that the transport of metals does
not strictly follow the viscous evolution of the gas disk. The
convective motion of the gas can actually carry the metals over
larger distances than a pure viscous stress allows. Therefore, the
assumption of the same α prescription for both the gas and the
metals in a chemical evolution model is not correct.

5. CONCLUSIONS

In this work, we simulate a local patch of a vertically thin
disk galaxy and study the transport of metals with a variety
of physical conditions. Specifically, we investigate the ability
of thermal instability, spiral shocks, and/or magnetic fields to
homogenize metals. We find that turbulence driven by thermal
instability is especially effective in mixing the metals, regardless
of the presence or absence of spiral shocks and magnetic fields.

We observe two different modes of turbulent mixing in our
thermally unstable disks. The first mode is for the turbulent gas
to stir large-scale variations of metals into a random distribution.
The timescale for this mode is short compared to the local
orbital time in the galaxy, and this mode may contribute to
obliterate the chemical inhomogeneities introduced by star-
forming activities along spiral arms. The second mode is for
randomly distributed metals to be continually homogenized over
time by the turbulence. We find the timescale for this process is
relatively insensitive to wavelength and is of the order of half
the orbital timescale. This mode of turbulent mixing, therefore,
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should be of significance in reducing the metallicity gradient in
a disk galaxy.

We find that turbulent mixing of metals driven by thermal
instability is more efficient than what a simple Shakura &
Sunyaev (1973) α prescription of viscosity for the gas would
suggest. The convective motion of the turbulent gas can in fact
transport metals over larger distances, especially for kpc-scale
variations. The dynamics is perhaps more complicated than
ordinary diffusive transport with a constant coefficient. In an
attempt to capture its qualitative behavior, however, we have
devised a toy prescription in terms of a wavelength-dependent
diffusion coefficient and measured its numerical values for our
model galactic disk. In principle, this prescription could be
adopted as a sub-grid physical process in semi-analytic chemical
evolution models as well as cosmological simulations. Doing so
should help us further constrain the dynamical history of disk
galaxies.

This work was supported by the Alfred P. Sloan Founda-
tion, the NSF through grant CAREER-0955300, and NASA
through Astrophysics Theory and Fundamental Physics Grant
NNX09AK31G, and a Chandra Space Telescope Grant. The
simulations presented in this paper were conducted using the
supercomputing system Pleiades at the University of Califor-
nia, Santa Cruz.

APPENDIX A

RESOLUTION STUDY

In this section, we demonstrate that our simulations are
numerically converged. The diagnostic we choose to present
is the y-power P

y

X(t̄ , ky) defined in Equation (22), which is
arguably the most important measurement from our simulations
made in this paper. Figure 12 plots the power P

y

X(t̄ , kinj) as a
function of the advection time t̄ for λinj = L and λinj = L/8
from model T at different resolutions. For the case of λinj = L,
the curves from resolutions 128 × 128 to 2048 × 2048 are
roughly on top of each other, and thus they all exhibit almost the
same behavior on the two stages of turbulent mixing discussed
in Section 4. For the case of λinj = L/8, significant amounts
of power are lost in the low-resolution simulations due to
their inability to resolve the short wavelength of the injected
metal distribution. However, one can see in Figure 12 that
the difference between each pair of adjacent curves decreases
with higher resolutions, and the curves for the highest two
resolutions, 1024 × 1024 and 2048 × 2048, roughly coincide,
indicating numerical convergence. Therefore, turbulent mixing
of metals in our simulations should not be dominated by
numerical dissipation, and the values listed in Table 3 should be
robust.

APPENDIX B

HYPER-DIFFUSION AND SHOCK DIFFUSION WITH
FIXED MESH REYNOLDS NUMBER

Depending on the system of interest, the Pencil Code requires
artificial terms in all dynamical equations, except those describ-
ing the passive scalar fields, to stabilize the scheme. To simu-
late transonic turbulence with formation of shocks, we include
hyper-diffusion and shock diffusion terms in our simulations.
The hyper-diffusion terms use sixth-order derivatives to damp
numerical noise at high wavenumber but preserve power on
larger scales (Haugen & Brandenburg 2004; Johansen & Klahr
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Figure 12. Power of the metal tracer field at the injection wavelength λinj for
λinj = L (top) and λinj = L/8 (bottom) as a function of the advection time
t̄ in model T. The power is averaged over 10 snapshots at regular (physical)
time interval from t = 6P to 15P . Different lines are the power from the same
model at different resolutions, and the lines are smoothed by running averages
to emphasize their general trend with respect to t̄ .

(A color version of this figure is available in the online journal.)

2005), while the shock diffusion terms are of von Neumann type
(Haugen et al. 2004; Lyra et al. 2008). The usual approach is
to set the diffusion coefficients to constant values (ν3 and as
defined below). However, we have implemented a new strategy
to dynamically adjust them so that the mesh Reynolds num-
ber remains nearly constant. We briefly describe the underlying
concept of this implementation in this section.

The hyper-diffusion terms are of the form

ν3

(
∂6Q
∂x6

+
∂6Q
∂y6

+
∂6Q
∂z6

)
, (B1)

where Q is the primitive variable to be solved for and ν3 is
the hyper-diffusion coefficient. The strength of this operation
can in fact be evaluated by comparing Equation (B1) with the
advection term u · ∇Q. Consider a specific signal (or rather,
noise) in Q at wavenumber k. It is damped faster than being
advected away if

|u · k| � ν3
(
k6
x + k6

y + k6
z

)
. (B2)

Since |u · k| � uk � umaxk and k6
x + k6

y + k6
z ∼ k6, where umax

is the maximum magnitude of velocity u in the computational
domain, Equation (B2) implies umax � ν3k

5. We define the
mesh Reynolds number for hyper-diffusion as

Reh ≡ umax

ν3k
5
Nyq

, (B3)
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where kNyq ≡ π/ max(δx, δy, δz) is the Nyquist wavenumber,
and δx, δy, and δz are grid spacing in the x, y, and z directions,
respectively. The aforementioned criterion for damping signals
at Nyquist frequency then becomes Reh � 1.

Motivated by this criterion, we invert Equation (B3) to find
the value of a time-dependent, spatially uniform hyper-diffusion
coefficient ν3 with a fixed mesh Reynolds number Reh:

ν3 = ν3(t) = umax(t)

k5
NyqReh

. (B4)

In other words, we determine the maximum magnitude of the
velocity field umax at the beginning of each time step, and use this
information to assign for this step the value of the diffusion coef-
ficient ν3 calculated from Equation (B4). This way, we maintain
the artificial diffusion at Nyquist frequency with roughly the
same strength. Due to the high-order dependence of the hyper-
diffusion operator on wavenumber (∼k6), the damping of noise
is then concentrated at and near the Nyquist frequency while
quickly diminishing toward longer wavelengths.

Similarly, we can control the strength of shock diffusion by
fixing the appropriately defined corresponding mesh Reynolds
number. The shock diffusion terms are of the form ∇ · (νs∇Q)
except the one for the momentum equation, which is written as
a bulk viscosity ρ−1∇(ρνs∇ · u). The diffusion coefficient νs

is of the form νs = as max(−∇ · u, 0), where as is a positive
constant; νs is thus spatially variable and is proportional to the
local convergence of the flow. Consider again a signal in Q with
wavenumber k and compare the strength of shock diffusion with
that of the advection. One obtains

|u · k| � νs

(
k2
x + k2

y + k2
z

) = νsk
2. (B5)

Note that this criterion is only meaningful near shock fronts.
We therefore define the mesh Reynolds number for shock
diffusion as

Res ≡ max((|uxkx | + |uyky | + |uzkz|)/k2)

as max(−∇ · u)
, (B6)

which is the most conservative measurement of the Reynolds
number at the strongest local convergence of the flow.7 With
this definition, then, we solve Equation (B6) for the value of the
constant as with a fixed Reynolds number Res at the beginning
of each time step.

In all of our simulations, we use Reh = Res = 1/4 except for
model MTF, in which we use Res = 1/6.
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