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Abstract

This thesis connects two core topics in machine learning, vision and language. The
problem of choice is image caption generation: automatically constructing natural
language descriptions of image content. Previous research into image caption gen-
eration has focused on generating purely descriptive captions; I focus on generating
visually relevant captions with a distinct linguistic style. Captions with style have
the potential to ease communication and add a new layer of personalisation.

First, I consider naming variations in image captions, and propose a method for
predicting context-dependent names that takes into account visual and linguistic in-
formation. This method makes use of a large-scale image caption dataset, which
I also use to explore naming conventions and report naming conventions for hun-
dreds of animal classes. Next I propose the SentiCap model, which relies on recent
advances in artificial neural networks to generate visually relevant image captions
with positive or negative sentiment. To balance descriptiveness and sentiment, the
SentiCap model dynamically switches between two recurrent neural networks, one
tuned for descriptive words and one for sentiment words. As the first published
model for generating captions with sentiment, SentiCap has influenced a number
of subsequent works. I then investigate the sub-task of modelling styled sentences
without images. The specific task chosen is sentence simplification: rewriting news
article sentences to make them easier to understand. For this task I design a neural
sequence-to-sequence model that can work with limited training data, using novel
adaptations for word copying and sharing word embeddings. Finally, I present Sem-
Style, a system for generating visually relevant image captions in the style of an
arbitrary text corpus. A shared term space allows a neural network for vision and
content planning to communicate with a network for styled language generation.
SemStyle achieves competitive results in human and automatic evaluations of de-
scriptiveness and style.

As a whole, this thesis presents two complete systems for styled caption genera-
tion that are first of their kind and demonstrate, for the first time, that automatic style
transfer for image captions is achievable. Contributions also include novel ideas for
object naming and sentence simplification. This thesis opens up inquiries into highly
personalised image captions; large scale visually grounded concept naming; and
more generally, styled text generation with content control.
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Chapter 1

Introduction

An artificial agent needs to be able to perceive the world state and take action as a
result. One particularly useful aim is to develop an agent that perceives the physical
world and takes action through communication with human collaborators. A pow-
erful tool for perceiving the physical world is sight. The study of computer vision
aims to provide sight to artificial agents, enabling them to understand complex visual
scenes. As a core topic in artificial intelligence and machine learning it has been the
focus of extensive research, but is far from solved, with humans still outperforming
artificial vision systems in most tasks. Communication between humans is primar-
ily through language. Designing an agent that can communicate via language is an
important goal for human-agent interaction and for building agents that can learn
from the vast repositories of human knowledge. With these aims natural language
processing is a core topic in artificial intelligence and machine learning. Like com-
puter vision, natural language processing has been the focus of extensive research,
but remains an open problem. This thesis seeks to connect two core topics in machine
intelligence: vision and language. Although several topics exist at the intersection
I focus on automatic image captioning: generating natural language descriptions of
image content. Automatic captioning involves both the image understanding prob-
lem from computer vision and the natural language generation problem from natural
language processing. To improve communication I endeavour to add an extra layer to
automatic captioning in the form of linguistic style. Stylistic variations in language
have a range of useful applications, such as: reaching a broad audience, reducing
misinformation, and engaging viewers. With these applications in mind I develop
and evaluate novel methods capable of generating stylised captions for natural im-
ages.

Image captions typically consist of a range of concepts visually identified in the
image such as, objects, actions, attributes and scenes. To form natural language, these
concepts need to be woven into grammatically correct sentences e.g. “The dog runs
through the grass.”. Automatic image captioning has already be used to improve ac-
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cessibility for vision impaired users [Wu et al., 2017], and has promising applications
to news reporting [Feng and Lapata, 2010] and foreign language learning [Winke
et al., 2013].

Linguistic style can be loosely defined as how something is written rather than
what is written. Said differently, when changing style we change the textual reali-
sation without changing the semantics. However, completely preserving semantics
across different writing styles without adding or removing any content is an impos-
sible task since any suitably rich style should convey information that can shape a
readers interpretation of the content. Hence, I do not strictly apply this definition.
In the case of image captions, the key goal is generating captions in the target style
while retaining the semantics necessary for visual relevance. This is an exceedingly
broad view of style compared to its formal usage within linguistics [Simpson, 2004].
Other authors have taken similarly broad views of style [Shen et al., 2017; Fu et al.,
2018; Prabhumoye et al., 2018] as way of making progress in the task of generating
styled text. Moreover, drawing a line between changes in style as apposed to content
is a challenging problem even within linguistics, for example to achieve a particular
stylistic goal it might be necessary to change the content of a sentence. Could such
a change still be considered stylistic? It seems that there are in-fact two mutually
dependent parts to such a change, one part is a content change while the other part
is a style change. In such cases the task is to trade-off the change in style with the
change in content. In this thesis I will, among other things, cover the tasks of gener-
ating language with a particulate sentiment, and making sentences simpler. In these
tasks it is hard to argue that a change in style is not needed; however, the extent
to which each task involves changing the content depends on how you define the
border between style and content. I will avoid making a fine grained distinction,
and instead consider these as style tasks, such that changes made in pursuit of the
desired language are stylistic. For this thesis it is most important to ensure each of
these tasks are well-defined rather than make a fine grained distinction.

To fully realise the benefits of automatic image captioning, a degree of flexibility
should be built into these systems. The same description may not be appropriate or
useful for all audiences, for example, it is reasonable to describe an image differently
to a child, rather than a domain expert. Moreover, the caption style used in personal
social media posts may not be appropriate for news articles. Online product reviews
matching the writing style of the target market have a greater influence on purchas-
ing decisions that those which fail to do so [Ludwig et al., 2013]. Linguistic style is
also known to reflect personality [Pennebaker and King, 1999; Oberlander and Gill,
2006] and foster social interactions [Danescu-Niculescu-Mizil et al., 2011; Doyle et al.,
2016]. By introducing style into automatic image captions I hope to emulate skilled
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human authors who adapt their style to the audience as a way of easing commu-
nication, or forming a connection with a particular social group [West and Turner,
2010; Danescu-Niculescu-Mizil et al., 2011; Doyle et al., 2016]. This thesis is the first
to explore linguistic style for automatic image captioning.

1.1 Main Research Challenges

The primary goal of this thesis is the development of methods for describing image
contents in appropriately styled natural language. This is a complex task that I break
down into three major sub components: style and content representation, generative
models for styled captions, and methods for overcoming data scarcity. These compo-
nents align with three core parts of any machine learning solution: representation,
modelling, and training strategy.

1.1.1 Style and Content Representation

Representing both style and content is an important part of stylised caption genera-
tion. An ideal representation would separate text into independent content and style
dimensions, while accurately capturing both content and style. Separation enables
independent control over content and style and also allows new styles to be learnt
from text other than image captions. Accurate capture of content enables the genera-
tion of visually relevant captions, while accurate capture of style enables the genera-
tion of appropriately styled captions. Constructing such a representation is an open
problem, attracting interest from both psychology [Bebout, 1993; Coltheart, 1981] and
machine learning [Tausczik and Pennebaker, 2010; Gan et al., 2017a]. However, there
is no consensus. This is in part because the definition of style is itself contentious [Be-
bout, 1993; Simpson, 2004] and because compactly representing sentence content is
also a challenging problem [Le and Mikolov, 2014; Kiros et al., 2015; Conneau et al.,
2017; Cer et al., 2018] with a degree of domain dependence.

Developing a representation for style requires us to define what aspects of style
and content to encode and how they are separated. The style can be defined explic-
itly by a discreet set of attributes such as: sentiment, formality, and complexity. As
these attributes only weakly describe the style it is typically necessary to use them
as a guide to data collection so as to learn the style representation from labelled
data. Alternatively, style can be defined implicitly by a text corpus of a consistent
style (eg a particular author or genre). The separation between style and content
can be defined via manual annotation of sub-components, such as n-grams [Tausczik
and Pennebaker, 2010], or learnt using ground-truth style labels of various granu-
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larities [Tenenbaum and Freeman, 2000; Popa et al., 2009; Gan et al., 2017a]. In this
thesis I explore different representations of content and style and different meth-
ods for extracting these representations. The focus is on representations useful for
generating styled image captions, rather than generic representations. I frequently
define narrow style attributes to be considered, and then proceed to learn the reali-
sation of this style from data. The final style representation is therefore encoded in
the model parameters. When defining image-caption content, I fall back on visual
concept detectors and image-caption datasets written in a purely descriptive style.

By considering style as the variation in textual realisation when content is con-
trolled, Chapter 3 explores the distribution of names used to describe visual con-
cepts within their context. This provides insights into caption style variability and
a method for choosing names that are more natural for a given context. In Chap-
ter 6, style is defined by a binary sentiment attribute. Generic sentiment dictionaries
provide sentiment labels for adjective noun pairs. To adapt these sentiment labels
to entire image captions I develop a crowd-sourced dataset construction task. This
new dataset of sentiment captions and an existing set of descriptive captions is used
to train a neural network model with separate components for sentiment and de-
scriptive words, explicitly separating style and content. In Chapter 6 I propose a
procedure for approximately separating image-caption content from its styled real-
isation. Using these rules, I train a sequence-to-sequence model that encapsulates
different text styles. In this case the style is most appropriately described as the
distribution over sentences for a given content representation.

1.1.2 Generative Models for Styled Captions

Generated captions should reflect both content and style attributes. Captions that
lack visual relevance are not useful image descriptions, while those that lack the
target style forgo the benefits of written style. Models for stylistic captioning must
trade-off between – the not entirely separable attributes – style and content. Mod-
elling this trade-off is one of the more challenging aspects of styled caption gener-
ation. Limited styled captions means learning the whole model on a single dataset
is often impractical, so for example this trade-off might be an explicit weighting be-
tween specialised style and content components. The specific form of the generative
model can limit the types of style that can be realised in the output sentence. For
example, style can be conveyed through both word choice and sentence structure,
but developing models capable of both is a challenge – whether both are necessary
depends on the style. Modelling styled captions also has many of the same chal-
lenges as modelling descriptive captions: detecting objects, actions and attributes in
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the image; selecting what to describe in the caption; and generating fluent natural
language. Recent advances in object detection [Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; Szegedy et al., 2015; He et al., 2016] and natural language genera-
tion [Bengio et al., 2003; Mikolov et al., 2010; Graves, 2013] have made steps towards
solving these descriptive captioning challenges [Donahue et al., 2015; Karpathy et al.,
2014a; Kiros et al., 2014; Mao et al., 2015; Vinyals et al., 2015b]. I build on these ad-
vances and introduce several novel styled captioning models with varying degrees
of style control.

In Chapter 4 I develop a generative model for styled image captions with dy-
namic switching between specialised components for style and descriptive words.
The component controlling this switching explicitly balances style and content in the
output, with the optimal trade-off defined by a dataset. This generative model is
most suitable for styles expressed by small atomic changes to descriptive captions,
such as word replacement or insertion. Both positive and negative sentiment styles
can be generated by this model; however, they must be trained separately, and the
model is not capable of switching between them at test time. Chapter 5 tackles more
nuanced style generation with a sequence-to-sequence model for simplifying news
article sentences. Simplification – where sentence complexity is reduced to aid those
with limited reading ability – requires more complex style mimicry, including word
replacement, sub-string removal and sentence splitting. A custom objective helps to
balance semantic preservation – here implemented with input to output word copy-
ing – and simplification. Using news articles provides the added challenge of mod-
elling a large content domain: methods for dealing with this are proposed. Chapter 6
focuses on generating captions in a style which is learnt from a large text dataset. The
model separates the generation of style and content using a two stage pipeline, where
a purely descriptive component identifies image content and selects what to describe,
and a second component realises these concepts in the desired style. The form of the
second component and the training procedure ensure a strong connection between
the image content and the output caption. Part of the input to this second stage is a
style flag, allowing different styles to be generated from the same model.

1.1.3 Data Scarcity

A key goal of this thesis is reducing the burden of data collection for styled image-
caption generation. Existing methods for image captioning learn visual semantics
and language construction simultaneously [Donahue et al., 2015; Karpathy et al.,
2014a; Kiros et al., 2014; Mao et al., 2015; Vinyals et al., 2015b], necessitating a large
training set with coverage of both aspects. Even the collection of styled image-caption
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datasets is difficult because of the high level linguistic skills required by annotators.
In applications where individualised style matching is important, such as aiding
communication or encouraging a desired emotional response, it may not be possible
to collect a comprehensive dataset in advance. Moreover, there are a large number
of possible linguistic styles [Pavlick and Nenkova, 2015; Ficler and Goldberg, 2017;
Xu, 2017], defined by attributes such as sentiment, simplicity, formality, voice, gen-
era or author. This makes collecting image-caption datasets for every style of interest
impractical, especially since even for a single style this is an expensive task. I demon-
strate methods to ameliorate the data scarcity problem by using: transfer learning,
separate components for style and content, and external data sources. I also explore
dataset construction techniques that are less demanding of annotators.

In Chapter 3 I learn how to choose object names using a web-scale image-caption
dataset collected from social media. This technique uses raw data and requires no ad-
ditional manual annotation. Although this model does not generate full captions, it
demonstrates that social media data mining is a promising direction for uncovering
captioning styles used in the wild. Chapter 4 exploits existing descriptive image-
caption datasets with a method for explicitly merging a descriptive model with a
style model fine-tuned on a small number of styled captions. The dataset collec-
tion mixes existing descriptive captions with pre-defined word level style labels in a
rewriting task suitable for crowd-sourcing where annotators exhibit highly variable
linguistic skill. Chapter 5 presents a model for sentence re-writing, which reduces
data requirements by exploiting pre-trained word embeddings and the similarities
between the input-output sentences. Chapter 6 works towards fully separate train-
ing for style and content components in order to eliminate the dependence on train-
ing captions in the target style. The resulting model generates convincing, visually
grounded, styled captions without ever training on styled captions.

1.2 Thesis Outline

Image caption generation, and in particular styled caption generation, is a complex
task consisting of a number of moving parts and possible variations. I start simply
and then build up to more complex style generation. Chapter 3 is concerned with
generating name variations for visual concepts, but does not cover sentence genera-
tion. The following chapter (Chapter 4) tackles full sentence caption generation for
images but is tuned for styles which can be expressed as small rewrites of descrip-
tive captions. Concerned only with text, Chapter 5 explores methods for rewriting
sentences so that they conform to linguistic style objectives. The rewrites considered
go beyond word replacement, including sentence re-ordering or splitting as well as
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sub-sequence removal. Finally, Chapter 6 brings together the previous ideas and de-
velopments to demonstrate styled caption generation with a high degree of linguistic
flexibility.

In Chapter 3 I explore how people name visual objects in image-captions. Nam-
ing is key to how we interpret the physical world [Lakoff, 1987], so by understanding
and predicting naming choices I lay the ground work for accessible and attractive im-
age captions. While previous work [Ordonez et al., 2013] has looked at naming with
large image-caption collections, I take this a step further and explore the affect of
visual context and the consistency of naming choices. This verifies visual context as
an important factor in naming – a relationship previously observed though small-
scale controlled experiments [Rosch, 1999; Chaigneau et al., 2009]. Moreover, I train
a contextual naming model on a web-scale image corpus capable of naming a larger
range of objects than previous systems, while scaling easily to even more objects. As
a brief extension, I consider the case of animal naming in the highly structured Lin-
naean hierarchy. This domain allows analysis of naming specificity and consistency
across sub-trees at scale. This chapter explores naming within image captions, while
the generation of full sentence captions is covered in the following chapters.

Chapter 4 develops ideas for modelling styled image-captions when limited styled
data is available. The styles considered are positive and negative sentiment, which
is interesting in its own right because sentiment can drive decision making [Lerner
et al., 2015; Ludwig et al., 2013]. A small sentiment caption dataset was collected
specifically for this task and used alongside a large existing descriptive caption
dataset. The new dataset collection technique, involving guided sentence rewrit-
ing, could also be adapted to the collection of similar styled image-caption datasets
in the future. Human validation of the sentiment dataset reveals that a caption’s sen-
timent polarity is not strongly constrained by the image, so we have some freedom
to choose the desired polarity when generating. The captioning model, named Sen-
tiCap, employs two recurrent neural network streams joined by a learnt switching
network. One recurrent network is responsible for generic descriptive words, while
the other is tuned for words expressing a strong sentiment. SentiCap demonstrates
the ability to generate captions that are both semantically relevant and express either
positive or negative sentiment. The SentiCap modelling techniques apply to styles
that can be expressed with small localised edits to descriptive captions, such as word
replacement, insertion, and deletion. More complex stylistic changes are beyond the
scope of this chapter, but are explored in subsequent chapters.

Chapter 5 eschews caption generation to focus on developing language modelling
techniques for styled sentences. I consider text simplification: rewriting existing sen-
tences to ease understanding. The training dataset consists of parallel complex and
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simplified sentences from news articles. The model, called S4 (Sequence-to-Sequence
for Sentence Simplification), is a sequence-to-sequence recurrent neural network with
attention and word copying connecting the input and output sentences. S4 is capa-
ble of complex edits, including word replacements, structural changes and sentence
splitting. As data scarcity is a problem, I present some broadly applicable techniques
for reducing the data requirements of mono-lingual sentence-to-sentence re-writing
tasks. In particular, I use a mix of fixed pre-trained and learnable word embeddings
to overcome dataset limitations, particularly in regard to out of vocabulary words.
The loss function designed to encourage word copying helps to reduce dataset re-
quirements by focusing on sentence changes and therefore using model capacity
more efficiently.

Chapter 6 tackles the problem of generating styled image-captions when the style
is defined by a large text dataset not paired with images. In this case, I use a collec-
tion of romance novels to define the style. The model, called SemStyle, is a two stage
recurrent neural network pipeline, where the first stage handles object recognition
and content planning, while the second stage handles text realisation to meet both
content and style goals. The second stage allows a high degree of linguistic flexi-
bility by using sequence-to-sequence modelling inspired by the previous chapter. A
shared intermediate representation is used for passing information between the two
stages. I found a discreet token representation, defined by linguistic heuristics, to be
the most appropriate representation, when compared with multi-modal vector space
representations. Using this intermediate representation allows style to be learnt sep-
arately from image semantics. The complete SemStyle model shows competitive
results in human and automatic evaluations with respect to existing descriptive met-
rics and two new automated metrics for style. The other advantages of SemStyle are:
reduced dataset requirements, simultaneous style expression with visual relevance,
and the ability to learn new styles from text without additional guidance.

1.3 Main Contributions

The main contributions of Chapter 3 are:

• The large-scale verification of visual context as an important factor in object
naming.

• A new method for predicting context-dependent names taking into account
visual and linguistic information, which shows substantial improvement on
the image-to-word task.
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• Evaluations of naming on a dataset two orders of magnitude larger than prior
work [Ordonez et al., 2013].

• An analysis of the specificity of animal naming.

The main contributions of Chapter 4 are:

• A model for generating visually relevant positive and negative sentiment cap-
tions.

• A learnable switching component that reduces training data requirements by
balancing language models for style and visual relevance.

• Techniques for crowd-sourcing stylistic captions from annotators with limited
linguistic knowledge.

• An exploration of the suitability of different sentiment polarities to images.

The main contributions of Chapter 5 are:

• A sequence-to-sequence model for sentence simplification.

• A technique for dealing with sparse word usage during training which employs
both pre-trained and learned word embeddings.

• A novel loss function to encourage input to output word-copying where appro-
priate – especially effective when paired with generation-time copying.

The main contributions of Chapter 6 are:

• A system for generating visually relevant image captions in a target style with-
out paired training data.

• A concise semantic term representation for image and language semantics.

• A comparison of the semantic term representation with multi-modal vector
space representations.

• Competitive results in human and automatic evaluations with existing, and two
novel automated metrics for style.
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Chapter 2

Related Work

The generation of stylised image captions involves three key areas: image under-
standing, natural language generation, and style modelling. Image understanding
in this case refers to detecting key image concepts, such as object, actions and at-
tributes. Recent advances [Krizhevsky et al., 2012; Simonyan and Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016] in the image understanding area have enabled
more accurate image caption generation. Natural language generation involves con-
structing semantically relevant and grammatically correct sentences, such as image
captions. Neural network language models [Bengio et al., 2003; Mikolov et al., 2010;
Graves, 2013] have become a powerful tool for language generation, allowing both
long sequence memory and joint training with image understanding components.
Style modelling consists of defining style, separating style from content, and gener-
ating text in a given style. Style is loosely defined within the literature, so to ease its
application in an algorithmic setting a more specific definition is required. For exam-
ple style may be defined in terms of a document collection or a specific attribute such
as sentiment or simplicity. Separating content from style is also important because it
ensures semantics and style can be specified separately. Generating styled text is a
variation on natural language generation, which has additional stylistic objectives.

This chapter reviews the three key areas for stylised image captioning: image
understanding, natural language generation, and style modelling. I also cover de-
scriptive caption generation, which is at the intersection of image understanding and
natural language generation, and styled text generation, which is at the intersection
of natural language generation and style modelling. These areas form the basis of
styled caption generation techniques developed in later chapters. Finally, I review
the limited literature that focuses on stylised caption generation.

General image captioning concepts are covered, followed by a discussion of lin-
guistic style and its applications to text generation and image captioning. The liter-
ature reviewed here provides the background for understanding stylistic image cap-
tioning techniques. Related work sections in each chapter cover literature specifically

11
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relevant to that chapter. First, in Section 2.1, I review object recognition, which is the
form of image understanding used in this thesis. The main focus is Convolutional
Neural Networks (CNNs) which form the backbone of most modern approaches to
object detection in natural images. Language generation is reviewed in Section 2.2,
with a focus on Recurrent Neural Networks (RNNs): a flexible tool for generating
language. Putting these pieces together are the caption generation approaches re-
viewed in Section 2.3, after which, I shift focus to style, starting with definitions of
style and its importance to human interactions in Section 2.5. This leads into a re-
view of style and content separation in Section 2.5. Recent approaches for generating
stylised text are reviewed in Section 2.6. Techniques for stylised caption generation
are reviewed in Section 2.8.

2.1 Object Recognition

One of the first steps in image caption generation is identifying image contents, this is
where object recognition is relevant. Many of the models presented in this thesis rely
on object recognition to identify image contents. This section provides background
information on object recognition, and highlights some of the challenging aspects of
the problem and their affect on real world performance.

Identifying the contents of an image is a core computer vision problem. There
are many instances of this problem, such as: image classification, where the whole
image is given a single label; object detection, where multiple objects are detected
per image; object detection and localisation, where location in the image must also be
identified; and segmentation, where every pixel in the image is classified. In each of
these cases, the goal is to automatically label an image with its contents. This review
focuses on image classification and object detection as they are of key importance
to the methods developed in this thesis. Doing this simplifies the discussion by
avoiding the complex output smoothing approaches necessary for high quality image
segmentation. Since object detection is more general than image classification, and
many image classification techniques can be adapted for object detection, I adopt
the convention of referring to both as object detection except when the distinction is
pertinent to the discussion.

Object detection with and without localisation has many practical applications
including face detection for digital cameras [Viola and Jones, 2001], digit recognition
for postcodes [LeCun et al., 1998], pedestrian detection [Dalal and Triggs, 2005] and
restaurant food identification for diet tracking [Bossard et al., 2014]. Object detection
approximately meets or exceeds human performance in tasks such as face verifica-
tion [Lu and Tang, 2015] and handwritten digit recognition [Ciregan et al., 2012].
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Image classification accuracy for natural images has exceeded human level perfor-
mance [He et al., 2015], though this only applies in the special case of top-5 selection
on 1000 fine-grained classes. Most human errors were from difficulty differentiating
similar classes (eg different dog breeds) or because of a lack of class knowledge; in
general, humans are still better at object recognition.

Although humans take for granted the ability to visually recognise, it is a difficult
task to solve algorithmically. The core problem is high intra-class appearance vari-
ability: instances of a concept may be diverse in appearance, for example an office
chair looks different to a dining room chair. Even identical objects exhibit appearance
variability because of: lighting conditions, imaging noise, translation, perspective, ro-
tation, occlusion and object deformation [Pinto et al., 2008; Russell and Norvig, 2010].
Practical object recognition algorithms must model appearance in a way that is ro-
bust to these factors, and specific enough to avoid misclassification. Computational
feasibility is clearly also necessary.

Many methods have been proposed for object detection. Early techniques re-
lied on hand designed rules or model matching [Roberts, 1963]. These techniques
were difficult and costly to develop, and offered poor generalisation to appearance
variations. As a result, modern object detection algorithms are based on statistical
machine learning, allowing appearance variation to be learnt from data rather than
hard-coded into the system. Notable approaches include eigenfaces [Turk and Pent-
land, 1991], harr cascades [Viola and Jones, 2001], support vector machines [Cortes
and Vapnik, 1995; Phillips, 1999; Dalal and Triggs, 2005], neural networks [LeCun
et al., 1998] and deformable parts models [Felzenszwalb et al., 2010]. Until very re-
cently, state-of-the-art methods worked by applying a classifier to extracted features,
rather than raw pixels. The current state-of-the-art methods are based on Convolu-
tional Neural Networks (CNNs) that when provided with a large enough training
set, may learn features directly from data [Krizhevsky et al., 2012].

Designing features manually for the vision domain is challenging as ideally they
are invariant to appearance variability, without sacrificing discriminability. Well-
designed features incorporate some prior knowledge of the task, allowing simple
classifiers to be used, and giving more accurate results with less training data. Com-
mon feature choices include: colour histograms [Swain and Ballard, 1991], edges [Canny,
1986], histograms of orientation gradients (HOG) [Dalal and Triggs, 2005] and scale
invariant feature transform (SIFT) [Lowe, 2004] features.

CNNs have recently become the state-of-the-art for object detection and a num-
ber of other related vision tasks. Unlike previous approaches, which required careful
feature design, CNNs work directly with raw pixels, building up multiple layers of
features [Zeiler and Fergus, 2014] during training – this is the essence of deep learn-
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ing. The main factors contributing to the success of CNNs are: a large increase in
the volume of training data [Russakovsky et al., 2015], cheap and high performance
GPU hardware [Oh and Jung, 2004; Raina et al., 2009], and improvements in deep
neural network training [Krizhevsky et al., 2012; Srivastava et al., 2014; Kingma and
Ba, 2015; He et al., 2016; Nair and Hinton, 2010; Glorot and Bengio, 2010]. More
recent advances have been spurred on by flexible high performance automatic dif-
ferentiation libraries [Bastien et al., 2012; Abadi et al., 2016; Collobert et al., 2011],
making experimentation with new architectures more accessible and reducing itera-
tion time. Higher level libraries [Donahue et al., 2014; Chollet and Others, 2015; Jia
et al., 2014; Seide and Agarwal, 2016] have allowed CNNs to spread into other fields
such as astronomy [Dieleman et al., 2015] and biology [Ciresan et al., 2012].

2.1.1 Neural Networks for Classification

Neural network models are used extensively in this thesis for both object detection
and language generation. This section provides general background on neural net-
works, including their structure and training.

An artificial neural network [Rosenblatt, 1958] is constructed by composing non-
linear functions that act on the weighted sum of their input. This basic building block
is sometimes called a neuron, because of a crude analogy to the functioning of neu-
rons in the brain. This analogy is mostly historical, and much more powerful models
exist for simulating neurons [Hodgkin and Huxley, 1952]. We can formally define
a neuron as a function applying a non-linearity σ(.) (called the activation function)
to a weighted vector of activations ain and producing a scalar output activation aout

(some authors include an additive bias b, which we omit because it is equivalent to
appending an extra unit activation to the input of each neuron),

(2.1)aout = σ(
N

∑
i=1

wj,iain,i)

Typically neurons are arranged in layers, with the output of proceeding layers used
as input, forming what is known as a feed-forward network. In the modern neural
network literature, the term layer can mean anything from a complex chain of opera-
tions to something as simple as an activation function; however, in general they take
the tensor output of one or more previous layers, apply a function, and return a new
output tensor. We can compactly define a layer of neurons indexed by j with weight
matrix Wj by rewriting Equation 2.1 using vector notation:

(2.2)aj = σ(Wjaj−1)

The input to a neural network of depth D is a1, while the output is the activations of
the final layer aD.
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For intermediate layers, the non-linearity σ(.) was traditionally the sigmoid func-
tion σ(x) = 1

1+exp−x or σ(x) = tanh(x); however, the rectified linear unit (ReLU)
σ(x) = max(0, x) is now the dominant choice. ReLU tends to converge faster [Good-
fellow et al., 2016; Nair and Hinton, 2010], because its gradients remain linear for
large x, in comparison, for large x; the gradient of the sigmoid approaches 0. For the
last layer, the activation function tends to be more problem specific. For example in
multi-class classification the softmax function σ(x) = exp x

∑K
k=1 exp xk

is the standard choice.
For multi-class classification over C classes, a common loss function is categorical

cross-entropy between the final layer activations aD and the ground truth label ŷ:

(2.3)L = −
C

∑
i=1

I[i = ŷ] log aD,i

With I[.] the indicator function. In practice we can reduce this to:

(2.4)L = − log aD,ŷ

Minimising the categorical cross-entropy is equivalent to maximising the likelihood
of the data under the categorical distribution parameterised by the neural network [Mur-
phy, 2012, Sec.28.4.2]. The main advantage of this loss function is a numerical sta-
ble derivative that is robust to saturation when composed with the softmax activa-
tion [Goodfellow et al., 2016, Sec.6.2.2.3]. Other loss functions such as least squares
do not have this property. The derivative of the cross-entropy loss function L with
respect to the softmax activation aD,i is:

(2.5)
∂L

∂aD,i
= aD,i − I[i = ŷ]

Note that this form assumes aD,i uses a softmax activation.
The parameters of a neural network are typically learnt from data using back-

propagation [Rumelhart et al., 1986] and a gradient descent optimiser. Other learning
algorithms have been suggested [Bengio and Frasconi, 1994] but back-propagation is
the dominant method because it: is easy to apply, scales well, and generally produces
good solutions. Back-propagation calculates the adjustments to networks weights
Wj by taking the partial derivatives of the loss function with respect to each of the
weights in the network. The chain rule is used to calculate the gradients of param-
eters in earlier layers (layers closer to the input) given later layers. This allows for
efficient computation and gives rise to the name back-propagation. A gradient de-
scent optimiser such as Stochastic Gradient Descent (SGD) [Widrow and Hoff, 1960;
Bottou, 1998], RMSProp [Tieleman and Hinton, 2012] or Adam [Kingma and Ba,
2015] iteratively updates the weights using the calculated gradients. Within each it-
eration, the gradients are approximated using a small random set of examples called
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a mini-batch. The noise in this approximation helps to find flat local minima [Keskar
et al., 2017] which tend to generalise well [Smith and Le, 2018].

We formalise back-propagation by roughly following Nielsen [2015]. The error
vector δj for each layer j is defined using the weighted activations zj = Wjaj−1, as:

(2.6)δj = ∇zjL

With ∇zj = ( ∂
∂zj,0

, ... ∂
∂zj,H

) for a layer consisting of H neurons. Using the chain rule the
error of the output layer δD is:

(2.7)δD = ∇aDL � σ′(zD)

With �, point-wise multiplication and aD the activation for the last layer defined by
Equation 2.2. In the case of a softmax non-linearity ∇aDL is computed by Equa-
tion 2.5. The errors for earlier layers can be calculated using the errors from later
layers as:

(2.8)δj−1 = (WT
j δj)� σ′(zj−1)

Using Equation 2.8, we step backwards though the network calculating the errors
in a layer-wise fashion. The derivatives of the loss with respect to the weight are
calculated from the errors and stored activations:

(2.9)∇WjL = aj−1δT
j

The computed derivatives can then be used in a gradient descent optimiser such as
SGD. In the above, we assumed a particularly common form for aj (Equation 2.2).
Many neural network architectures uses different forms requiring changes to Equa-
tions 2.8& 2.9.

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the primary object detection model used
in this thesis. This section provides background on CNNs, briefly touching on the
range of architectures that have been used in this thesis. Included are some practical
considerations and tricks for designing CNNs that are also applicable to other types
of deep network. However, the design of CNNs is not a focus of this thesis, so the
discussion is kept brief.

CNNs [LeCun et al., 1998] are a type of artificial neural network using con-
volution layers; they have been applied in different domains such as text [Santos
and Gatti, 2014; Zhang et al., 2015], audio [Abdel-Hamid et al., 2012, 2014] and
video [Karpathy et al., 2014b; Ng et al., 2015], although this review focuses on object
detection applied to static images. In this case, the CNN takes raw pixels (normally
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with mean subtraction and scaling applied) as input, and outputs a categorical dis-
tribution over object classes. Techniques and ideas that apply to neural networks –
Section 2.1.1 – also apply in the special case of CNNs; however, we must also add a
number of special purpose layers such as convolution and pooling layers.

A typical CNN for classification uses stacked convolutional layers, followed by a
number of densely connected layers, and finally a softmax activation. The convolu-
tional layers are themselves composed of a convolution stage, a non-linearity, and a
pooling stage. The non-linearity is one of the activations reviewed in Section 2.1.1,
with ReLU the most common. Convolution and pooling are described below.

Convolution is the core of the CNN. We can define a convolution of a 2-d image
I and 2-d weight matrix as,

(2.10)S(i, j) =
M

∑
m=0

N

∑
n=0

I(i − m, j − n)W(m, n)

where i and j are the image row and column. Here the size of the convolution
is M × N, typically this is K × K for K = 3, 5, 7. The boundary of the image is
often padded with zeros so the convolution gives an output of the same size (a same
convolution), although other options are possible (valid and full). We can extend
convolution to colour images with 3-dimensions by taking the dot product of vectors
I(i−m, j− n) and W(m, n). In practice I(i−m, j− n) is a matrix because of the mini-
batch dimension, and W is a matrix because we apply multiple convolutions at once.
In effect the image batch is a 4-d tensor batch_size× rows× columns× colour_channels
that our set of convolutions maps into another 4-d tensor of batch_size × rows ×
columns× f eature_channels. Another way of understanding convolution in CNNs is
the application of a small fully connected layer to every offset in the image. Since
weights are shared across all offsets, the number of learn-able parameters can be
much lower than a single fully connected layer for the entire image. Moreover, the
features are both localised and invariant to translations in the original image.

Pooling replaces the activations of a region with a summary statistic such as max,
mean or l2-norm [Goodfellow et al., 2016]. In CNNs on images, it is common for
the region to be 2 × 2 over spatial dimensions, with a stride of 2 resulting in an
output of half size in both dimensions – the feature dimension is not modified. Max
pooling is the most common variant for CNNs because it has produced empirically
better results than alternatives [Scherer et al., 2010]. Pooling introduces local feature
translation invariance, which helps the network generalise to small deformations in
appearance [Boureau et al., 2010]. Although variable pooling sizes would allow the
network to be applied over variable sized input images, in practice images are resized
via bilinear or bi-cubic interpolation prior to being fed into the network.
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A large number of different CNN architectures have been published, those of
major historical importance include: LeNet [LeCun et al., 1998] which was the first
CNN and AlexNet [Krizhevsky et al., 2012] which won the ILSVRC challenge in 2012
and kicked off a frenzy of CNN architectures for image classification. More recently
VGGNet [Simonyan and Zisserman, 2015], showed that the depth of the network is
an important factor in performance. They produced models of 16 and 19 layers using
only 3× 3 convolutions and 2× 2 pooling. This extremely elegant architecture has
been used in a number of different publications [Ren et al., 2015; Fang et al., 2015;
Bernardi et al., 2016], becoming the standard CNN architecture for a time.

Currently the state-of-the-art is occupied by architectures based on ResNet [He
et al., 2016] and Inception [Szegedy et al., 2015, 2016], though these architectures are
not mutually exclusive [Szegedy et al., 2017; Xie et al., 2017]. ResNet uses residual
connections: an identity transform layer skips multiple learnt transform layers be-
fore the features are added back together. The learnt transformations in the residual
block can be seen as modelling the residual of the underlying mapping (the ideal
mapping) and the input features. Residual connections combined with batch nor-
malisation [Ioffe and Szegedy, 2015] to mitigate the problems of vanishing and ex-
ploding gradients made it possible to train networks with 152 layers – far exceeding
the depth of previous approaches. Inception architectures make use of the inception
layer composed of parallel 1× 1, 3× 3 and 5× 5 convolutions also in parallel with
3× 3 max pooling. In practice, 1× 1 convolutions are applied to reduce the size of
the feature dimensions. This allows inception layers to exploit multiple scales while
keeping the number of trainable parameters to a minimum. Employing an ensemble
of Inception and ResNet models combined with a new channel weighting layer, Hu
et al. [2017a] won the ILSVRC 2017 classification challenge with their SENet archi-
tecture. Channels are weighted by an MLP with two hidden layers applied to the
average channel value across all spatial locations: the MLP outputs one weight for
each channel.

Regularization is necessary for training CNNs except in rare cases where there is
a wealth of data – typically tens or hundreds of millions. The most common form
of regularization is early-stopping: using a validation set to assess generalisation
error during training, and terminating when this starts to increase. This is easy to
implement and comes with a computational advantage. Another popular approach
is dropout [Srivastava et al., 2014], where a randomly selected fraction of layer ac-
tivations are set to zero on each training run. This is also easy to implement, has
minimal impact on performance and is an effective regularization technique. It is
most commonly applied to fully connected layers, and rarely in convolution layers.
Dropout can be viewed as a strategy for temporarily removing nodes from the neu-
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ral network – forming a similar, but different network on each training iteration.
Using this interpretation, Srivastava et al. [2014] argue dropout is able to approxi-
mately combine exponentially many neural networks. Other dropout variants have
been proposed, such as dropping out connections [Wan et al., 2013], or entire con-
volution features [Tompson et al., 2015]. Weight decay regularisation via L2 and L1
norm are sometimes applied, but it is relatively uncommon in CNNs. Batch nor-
malisation [Ioffe and Szegedy, 2015] can also be a regularizer because it modifies
activations with statistics from the randomly selected examples in each mini-batch.
With batch normalisation, other regularisation techniques such as dropout may not
be necessary.

Neural networks require some initial choice of parameters, called weight initial-
isation. Choosing poorly can substantially slow down training, cause convergence
to a high loss local minima, or prevent convergence altogether [Glorot and Ben-
gio, 2010; Simonyan and Zisserman, 2015]. Most important is ensuring the initial
parameters break symmetry: that is, neurons with identical inputs should be ini-
tialised with different input weights to avoid redundancy [Goodfellow et al., 2016,
Sec.8.4]. A simple and quite popular initialisation approach is to sample weights
from a uniform or gaussian distribution with scale carefully chosen to avoid explod-
ing or vanishing gradients. Theoretically, grounded heuristics [Glorot and Bengio,
2010; He et al., 2015] exist for making this choice, although they are non-linearity
specific. Such heuristics have helped to train networks with hundreds of layers [He
et al., 2016]. Methods which scale weight initialisation by observing activation and
gradient scales have also been effective [Mishkin and Matas, 2016]. Alternatively, if
the network was previously trained, even for a completely different task, initialising
with the pre-trained weights can be beneficial [Yosinski et al., 2014]. In the absence
of pre-trained weights, an alternative is training a shallow network and then adding
new layers until the desired depth is reached [Simonyan and Zisserman, 2015].

To train neural networks deeper than, for example, 20 layers requires structural
changes beyond regularization, activation functions, and initialisation. The main goal
of such structural changes is to reduce the shortest path through the network from
input to output while keeping the maximal path the same length. This can produce
networks that are both end-to-end trainable and able to take advantage of the richer
function space offered by hundreds of layers. The two main techniques for achieving
this highway connections [Srivastava et al., 2015] and residual connections [He et al.,
2016] are similar. Highway connections are inspired by the gating mechanisms used
in recurrent neural networks: for each layer a neural network with sigmoid activation
learns to trade-off between skipping the layer or passing forward the layers transfor-
mation. At the start of training the network is usually biased towards skipping layers
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to avoid vanishing gradients. Residual connections are simpler than highway connec-
tions as they don’t involve adding new parameters to the network, instead a layers
input is added to its output before the non-linearity is applied. This introduces a
shortcut that effectively skips the layer entirely. With residual connections the layers
can be intuitively understood to be learning the residual of their original transforma-
tion. Here the term layer is used broadly, since residual connections often skip over
several layers, adding the input of the first layer to the output of the last layer. Both
highway connections and residual connections allow networks hundreds of layers
deep to be trained. While highway connections are a more general solution residual
connections have so far been applied more extensively [Hu et al., 2017a; Szegedy
et al., 2017; Xie et al., 2017].

Learning large CNNs from scratch is computationally expensive, often taking
weeks on multi-GPU systems [Simonyan and Zisserman, 2015; Szegedy et al., 2015].
Fortunately, the neural network architecture makes it easy to fine-tune a pre-trained
model for a related task. CNNs have been shown to construct simple features in early
layers, such as edge or corner detectors and more complex domain specific features,
such as face detectors, in later layers [Zeiler and Fergus, 2014]. This advocates fine-
tuning only the later layers, or even the last layer when the domains are similar, an
approach that works well in practice [Razavian et al., 2014; Yosinski et al., 2014]. Net-
works trained on ImageNet have been fine-tuned for tasks such as scene recognition,
fine grained animal classification, and pose estimation [Pfister et al., 2014; Donahue
et al., 2014].

2.2 Language Generation and Recurrent Neural Networks

Natural language generation is key to automatic image captioning as it constitutes
the final stage of the process: realising the selected visual concepts into a linguistic
form. For generating styled image captions, the language generation stage is the
focal point where linguistic style needs to be incorporated. The following gives a
broad overview of language generation before focusing in on the recurrent neural
network models frequently used in this thesis.

Approaches to language generation fall into two categories: template filling and
generative language modelling. We briefly discuss template filling before covering
generative language modelling – in particular neural network based generative lan-
guage modelling – in more depth.

Template filling typically involves specifying the words that fill a pre-defined sen-
tence structure; for example, the structure NP, VP, NP could be filled with “the dog”,
“ate”, “the grass.”, where NP is a noun chunk, VP is a verb chunk, and NP is a noun
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chunk. Far more complex templates are possible, but they are generally defined
by human experts. To produce grammatically correct output, a text realiser [Gatt
and Reiter, 2009] is typically applied to the filled templates. This uses rules and
or statistical techniques to choose the correct inflected word forms, enforce noun-
verb agreement, and apply appropriate orthography. Because of the structured set of
rules, generated text tends towards a similar structure, making it appear formulaic
or robotic. However, this can be an advantage in domains such as weather forecast
generation. Reiter et al. [2005] demonstrated annotators preferred computer gener-
ated weather forecasts to human generated variants, which they clam is in part due
to the consistent generation rules designed to avoid ambiguity.

Generative language modelling is a collection of statistical techniques for learn-
ing linguistic relationships. Typically, we are interested in the probability of the next
word in the sequence xi+1 given the previous words in the sequence x1, ..., xi, contex-
tual information c and parameters θ.

(2.11)P(xi+1|xi, ..., x1, c; θ)

n-gram language models [Shannon, 1951; Jurafsky and Martin, 2014] are one com-
mon choice for describing this probability distribution. Under the n-gram model
we make a Markov approximation: xi+1 ⊥⊥ xi−n, ..., x1|xi, ..., xi−n+1, with ⊥⊥ de-
noting conditional independence. With this approximation and value for n (typi-
cally 1 < n < 6), the most likely sequence can be computed efficiently with the
viterbi [Viterbi, 1967] dynamic programming algorithm. If n and the vocabulary
is large, then approximate search techniques such as beam search may be applied
for efficiency reasons [Jurafsky and Martin, 2014]. Learning the conditional prob-
ability distributions P(xi + 1|xi−n+1, ..., xi) can be performed efficiently by counting
occurrences of xi−n+1, ..., xi, xi+1 in the training data. To deal with data sparsity, it is
often necessary to smooth these counts and apply back-off [Kneser and Ney, 1995]:
where shorter n-grams are used if their longer counterparts were not seen in training.
Context c can be incorporated by changing the form of the conditional probability
distributions, although this is inefficient if c is continuous or high dimensional.

Recently, Recurrent Neural Networks (RNN) [Elman, 1990; Mikolov et al., 2010]
have been used to build state-of-the-art language modelling systems [Zilly et al.,
2016; Ha et al., 2017; Kim et al., 2016; Kuchaiev and Ginsburg, 2017]. RNNs do not
rely on the Markov approximation. Instead, the previous words in the sequence are
encoded as a continuous hidden vector. Because of the effectively infinite history,
exact decoding is intractable and approximate search must be used. Beam search,
and greedy decoding are common strategies. Context c can be incorporated by first
embedding it into a vector space, then either: using it to initialise the hidden state of
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Figure 2.1: A simple Recurrent Neural Network. The recurrent layer R is duplicated,
to match the length of the input {x1, x2...xN} and output {y1, y2...yN} sequences.

the RNN, pre-pending it to the RNN input sequence, or concatenating it with each
input word embedding. A differentiable model used to extract c (such as a CNN in
image caption generation) can easily be updated via back-propagation, allowing full
joint training of context and language model.

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [Elman, 1990] are a method of dealing with
discreet-time input and output sequences in a neural network framework. They
have been applied to domains including text generation [Wu et al., 2016; Ficler and
Goldberg, 2017], video classification [Ng et al., 2015], speech recognition [Ng et al.,
2015], and dynamic learning rate tuning for machine learning [Andrychowicz et al.,
2017]. Their applications to text generation are most important to this thesis and are
the focus of this review.

RNNs – Figure 2.1 – have an internal layer R, called the recurrent layer, that is un-
rolled via duplication to match the length L of the input sequence X = {x1, x2...xN}.
Duplicate recurrent layers share parameters, ensuring a constant parameter count
regardless of sequence length. This weight sharing eases the learning of sequential
regularities; for example common bi-grams in text are not tied to a particular index in
the sentence. Without weight sharing they would have to be learnt separately for all
indexes. Variation across time is encoded with a hidden vector ht passed between the
recurrent layers. This acts as a memory of the previously seen sequence elements.
The RNN outputs a sequence Y = {y1, y2...yN}, the same length as the input. For
variable length sequences with mini-batch training, padding may be used.

Differences in the form of an RNN’s recurrent layer lead to different RNN flavours,
the most common of which are Elman [Elman, 1990], Long Short-Term Memory
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(LSTM) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent Unit (GRU) [Cho
et al., 2014a]. Elman networks were the first proposed and have the simplest form,

(2.12)ht = σh(Wxxt + Wpht−1)
yt = σy(Whht)

Where weights Wx, Wp and Wh parameterise the recurrent layer. While it is common
to explicitly add biases, they are omitted for compactness since they can be incor-
porated into the weight matrices by appending fixed unit dimensions to ht and xt.
In practice, Elman networks suffer from vanishing and exploding gradients; recent
work mitigates this, at the expense of expressivity, by enforcing orthogonal weight
matrices [Vorontsov et al., 2017].

Another solution to the vanishing and exploding gradients problem is the Long
Short-Term Memory cell, originally proposed by Hochreiter and Schmidhuber [1997]
and further improved by other authors [Gers et al., 2000; Graves and Schmidhuber,
2005]. In its modern form [Graves, 2013], the LSTM separates the memory into
hidden ht and cell ct vectors, and controls access to this memory with gates it, ft, ot.
The basic LSTM cell can be written as (omitting bias vectors),

(2.13)
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σ

σ

σ
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)
)

ct = ft � ct−1 + it � gt,
ht = ot � tanh ct.

With weight matrices W and σ the sigmoid function. We give Equation 2.13 in block
matrix form because it is the most efficient to implement on modern hardware. The
LSTM has many different variants, such as peep-hole connections [Gers and Schmid-
huber, 2000]. For an in-depth comparison of different variants see Greff et al. [2016].

Another RNN cell that has seen widespread use is the GRU [Cho et al., 2014a,b]:
a simpler variant of the LSTM that lacks cell memory. It is an attractive model
choice because it performs similarly to the LSTM in most problems [Jozefowicz et al.,
2015], while being easier to implement and less computationally expensive [Cho
et al., 2014b]. The standard GRU can be written as,

(2.14)

rt = σ(xtWx,r + ht−1Wh,r + br)
ut = σ(xtWx,u + ht−1Wh,u + bu)
h̃t = σ(xtWx,c + rt � (ht−1Wh,c) + bc)
ht = (1− ut)� ht−1 + u � h̃t
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With weights W, biases b, reset gate r, update gate u and σ the logistic function.
We could also write Equation 2.14 in a block matrix form similar to Equation 2.13,
although the dependence between h̃t and rt makes the representation less clear.

There are a few practical considerations for implementing RNN models. RNN
can suffer from exploding gradients, so many authors clip gradients to a pre-defined
range (typically [−5, 5]) – as suggested by Graves [2013]. When run in mini-batch
mode, on variable sequence lengths, it is necessary to introduce padding and mask
the loss function. Grouping similar length sequences together can avoid un-necessary
calculations. Dropout and similar strong regularisation techniques should be applied
to the input and output of the recurrent cell but not between recurrent layers as this
can effect the memory capacity of the network [Zaremba et al., 2014]. Stacking RNN
in several layers [Fernández et al., 2007; Graves et al., 2009] has proven to be an
effective technique for improving RNN model performance by adding additional
layers of abstraction from the input sequences. When greater model complexity
is necessary it should be considered as an alternative to increasing the number of
neurons in each cell.

Other forms for the recurrent layer have been proposed [Bayer et al., 2009; Zoph
and Le, 2017], though they have not seen wide spread adoption, perhaps because
the ubiquitous LSTM and GRU give good empirical performance over a range of
different problems [Greff et al., 2016; Jozefowicz et al., 2015], and are therefore an
easily justified model choice.

The standard way to train an RNN is to use Back-Propagation Through Time
(BPTT) [Robinson and Fallside, 1987]. The recurrent cells are unrolled to the length of
the sequence and then back-propagation is used to update all copies of the recurrent
cell. Rather than defining a new set of weights for each copy, a link to the original
weights allows efficient aggregation of updates. Standard BPTT is computationally
expensive when the sequence is long; truncated BPTT [Williams and Peng, 1990]
presents a practical alternative. In this method, back-propagation is run every k1 time
steps on the last k2 time-steps – where k1 and k2 are hyper-parameters. Truncated
BPTT enables training on very long sequences without needing to split them.

RNNs have difficulty generating long sequences because generation errors com-
pound, and they forget over time. One possible solution is the hierarchical RNN [Lin
et al., 2015; Chung et al., 2017]: multiple-layers of RNNs running at different time
scales. The long time-scale units give long term stability and structure, while the
short time-scale units focus on the details such as the next word or character. These
types of models have a long history [Schmidhuber, 1992; El Hihi and Bengio, 1996;
Lin et al., 1996], but have only recently come to prominence as neural network lan-
guage models become state-of-the-art. For their Clockwork RNN, Koutnik et al.
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[2014] develop a new RNN cell where the neurons are partitioned into layers that
change at different pre-defined time scales. Lin et al. [2015] use an RNN with a sin-
gle cell for each sentence, and an RNN with a cell for each word. The word-level
RNN is trained first before being fixed and used to train the sentence-level RNN.
Chung et al. [2017] implement an RNN stack that learns how to break sequences
into hierarchical chunks, to avoid specifying the time scales of the RNNs. At each
time step, every layer selects one of three operations: UPDATE which is the standard
RNN operation, COPY which copies the unmodified hidden state from the last time
step, and FLUSH which passes the current state to the layer above and resets the
current state. Using the operations, the model appears to learn boundaries at the
word, syntactic, and semantic levels.

2.2.2 Sequence-to-Sequence Models

Sequence-to-sequence models form a core component of Chapters 5 & 6. In Chap-
ter 5, a sequence-to-sequence model is used as a means of sentence re-writing, while
in Chapter 6 a sequence-to-sequence model generates image captions from an or-
dered sequence of terms. In both cases RNN sequence-to-sequence models are em-
ployed. This section provides background on this type of model.

When a machine learning model takes one or more sequentially structured in-
puts, and generates a sequentially structured output, it can be called a sequence-
to-sequence model. This is a broad class of model, but we restrict our discussion
to sequence-to-sequence models utilising RNNs [Kalchbrenner and Blunsom, 2013;
Bahdanau et al., 2014; Wu et al., 2016]. In the language case, which we are primarily
concerned with, both sequences are typically discrete tokens such as words or parts-
of-speech tags. Sequence-to-sequence models have been applied to machine trans-
lation [Kalchbrenner and Blunsom, 2013], sentence compression [Rush et al., 2015;
Auli and Rush, 2016], captioning videos [Venugopalan et al., 2015] and dependency
parsing [Zhang et al., 2017b].

RNN based sequence-to-sequence models consist of an encoder RNN for embed-
ding the input sequence, and an RNN decoder for generating a new sequence from
this embedding. One popular option for embedding [Sutskever et al., 2014] is to use
the last hidden output from the encoder henc,M to initialise the decoder hidden state
hdec,0 = henc,M, where hdec,0 is the initial decoder hidden state. Alternatively, henc,M

can be concatenated with input word embeddings, or attention can be used – see
Section 2.2.2.1 for details.

Training a sequence-to-sequence model requires paired input and output se-
quences. Typically, the loss function is applied only to the outputs of the decoder,
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and the errors propagated back to the encoder through the copied hidden state. This
can lead to difficulty in training [Bahdanau et al., 2014] as the effective depth of the
network can be as long as the input sequence. In language tasks, reversing the input
sequence has proved beneficial [Sutskever et al., 2014] because on average it reduces
the effective depth: the last token input to the encoder will often align to the first
token output by the decoder. However, by far the most common approach is to use a
bidirectional encoder [Schuster and Paliwal, 1997a; Sundermeyer et al., 2014], which
can be seen as two encoders one running forwards over the input sequence and an-
other running backwards. This allows language to be process in the correct order
while still reducing the effective depth of the network.

2.2.2.1 Attention

Early neural network sequence-to-sequence models performed poorly on long se-
quences. Training is made difficult by a large effective network depth and requiring
that the entire sequence be embedded in a fixed size vector. Attention [Bahdanau
et al., 2014] was proposed as a solution, and has since become an integral part of
sequence-to-sequence modelling. Intuitively, attention is a soft word-level alignment
between the input and output sentences. By directly connecting the hidden outputs
of the encoder cells to the decoder, attention effectively reduces network depth. It
also avoids compressing the entire input sequence into a fixed length vector; instead,
the embedding grows to match the input sequence length [Bahdanau et al., 2014].

Several different forms of attention have been proposed for sequence-to-sequence
models [Bahdanau et al., 2014; Luong et al., 2015]; however, their many similarities
permit a concise summary. Given hidden outputs from the encoder henc,i, i ∈ 1...Lenc

and decoder hdec,j, j ∈ 1...Ldec, we can define a similarity function g(·) with trainable
parameters θ:

(2.15)ai,j =
1
k

g(henc,i, hdec,j; θ)

Where k is a normalisation constant, ensuring ∑Lenc
1 ai,j = 1. The variable ai,j is referred

to as the attention and is used to weight the encoder hidden states when calculating
the context vector cj.

(2.16)cj =
Lenc

∑
i=1

ai,jhenc,i

This context vector is then used to generate the next output term by combining it
with hdec,j, and either feeding it into the output layer hout,j = cj

⊕
henc,j [Luong et al.,

2015] or into the next cell of the RNN h̄enc,j = cj
⊕

henc,j [Bahdanau et al., 2014]. Here⊕
is either concatenation or element-wise addition.
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If the context vector is provided directly as input to the output layer, then the
attention has no effect on the hidden state of the RNN – except indirectly through
discreet output samples – and so no memory of previous alignments is retained.
This negatively impacts accuracy on some problems [Luong et al., 2015], but may be
more computationally efficient because the RNN and attention components can be
represented compactly as batched matrix multiplications.

There are three main variants for similarity function g(·). The simplest is the
dot product g(henc,i, hdec,j) = henc,i · hdec,j. An alternative is a bi-linear map, which
is effectively a weighted dot product g(henc,i, hdec,j) = henc,iWahdec,j with learnable
weight matrix Wa. The most complex of the three is a non-linear mapping, such as
a multi-layer perception [Wu et al., 2016], applied to the concatenated embeddings
g(henc,i, hdec,j) = σ(Wa[henc,i; hdec,j]), with non-linearity σ(·).

Many extensions have been proposed to improve attention models. Local atten-
tion models attempt to up-weight more likely matchings [Luong et al., 2015]. For
example, in most language translation problems the i’th input word is most likely to
match the j’th input word. We can impose soft or hard constraints by weighting and
re-normalising ai,j with the equation a′i,j = 1

k′ α(i, j)ai,j with weighting function α(i, j)
and normalisation constant k′. Local attention is not widely used because it reduces
the flexibility of the attention layer, often leading to weaker performance.

In some cases, RNN language model decoders will repeat themselves, this can be
mitigated with self attention [Paulus et al., 2018; Xia et al., 2017; Shao et al., 2017],
where attention is applied over previous decoder hidden states hdec,1, ...., hdec,j−1 in
addition to the encoder hidden states. Similarly, attention may repeat, so a soft
constraint encouraging attention over all hidden states is sometimes used to ensure
coverage of the input sentence [Paulus et al., 2018].

Attention can be used to copy words directly from the input sentence to the
output sentence [Luong et al., 2014], if we interpret it as a soft form of word-word
alignment. In a translation context, this can allow previously un-seen words, such
as proper nouns, to be copied un-translated. However, attention as an alignment
approach has been generalised and is more broadly applicable [Vinyals et al., 2015a].
In Chapter 5 I adapt this copying approach for sentence simplification.

2.3 Image-Caption Generation

This section reviews descriptive image-caption generation approaches. These ap-
proaches form a basis for the styled caption generation techniques developed in this
thesis. The neural network approaches in Section 2.3.3 are the most relevant. Other
approaches are described to give context. Section 2.3.4 defines several descriptive
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caption evaluation metrics that are used throughout this thesis. Caption descriptive-
ness metrics are used to ensure styled captions still relate to the image.

Automatically producing image captions that are both natural and relevant is a
difficult problem. Two essential components: visual concept detection, reviewed in
Section 2.1, and Natural Language Generation (NLG), reviewed in Section 2.1, are
both research problems in their own right.

Approaches to caption generation fall into three rough, and non-mutually ex-
clusive, categories: caption retrieval [Farhadi et al., 2010; Ordonez et al., 2011; Ho-
dosh et al., 2013; Karpathy et al., 2014a], object detection and generation [Li et al.,
2011; Kulkarni et al., 2011; Yang et al., 2011], and deep generative networks [Don-
ahue et al., 2015; Karpathy et al., 2014a; Kiros et al., 2014; Mao et al., 2015; Vinyals
et al., 2015b]. Caption retrieval approaches combine captions or caption segments
matching the query image. Detection and generation approaches use a multi-stage
pipeline involving object detection, content planning and language generation. Deep
generative networks are typically end-to-end trainable neural networks using both
convolutional and recurrent components. Current state-of-the-art approaches follow
this framework, though caption retrieval is surprisingly competitive [Devlin et al.,
2015].

For a comprehensive review of automatic image caption generation before 2016
see Bernardi et al. [2016].

2.3.1 Caption Retrieval

Caption retrieval is an image captioning technique that relies on the idea that similar
images will have similar captions. The general approach is to find captions rele-
vant to the target and compose them to form a new caption. Relevant captions are
retrieved by either searching for images similar to the target, and collecting their
paired captions, or defining an image-caption similarity metric. Caption retrieval is
non-parametric, potentially allowing high output diversity. Generated captions may
even sound natural, since retrieved captions were wholly or in part written by hu-
man annotators. However, retrieval is also limited by the captions available in the
retrieval set: to get precise captions composition is a necessity.

Some approaches retrieve complete captions and transfer them to the target im-
age [Farhadi et al., 2010; Ordonez et al., 2011; Mason and Charniak, 2014; Yagcioglu
et al., 2015; Devlin et al., 2015]. Farhadi et al. [2010] map images and captions to a
discrete intermediate space composed of (object, action, scene) tuples. Images are
matched to training sentences that have similar sets of predicted tuples. Ordonez
et al. [2011] match target image to similar training images using low level visual fea-
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tures, object detections and scene detections. The captions of each of the matched
images are added to a pool, then the most relevant caption is selected by matching
words with object detector scores. Even with 1 million images the captions are often
imprecise because they were transferred directly from another image. Yagcioglu et al.
[2015] find similar images in the training set using CNN features. They then calcu-
late a weighted average of word vectors from the associated captions. The closest
candidate caption to the average is transferred to the image. Mason and Charniak
[2014] find similar images in the training set and then model the probability of a
word given the query image p(w|I) using Bayes rule p(w|I) ∝ p(I|w)p(w). They es-
timate p(I|w) using density estimation on the k-nearest-neighbours, and p(w) with
global uni-gram frequency. Using p(w|I), the captions are ranked and the highest
scoring one is transferred.

Another approach to caption transfer is to learn a joint image-caption vector space
in which image embeddings are close to their caption embeddings. Given a new
image, cross-modal retrieval is performed by embedding the image and finding the
closest captions. Hodosh et al. [2013] use Kernel Canonical Correlation Analysis
(KCCA) to find a maximally correlated linear projection of images and text into
a common space. Being a kernel method only similarity functions need defining,
while the joint space is implicit. Unfortunately for large datasets, KCCA suffers
from prohibitively high memory usage. Socher et al. [2014] embed sentences using
a recursive neural network defined over automatically generated parse trees (called
DT-RNN); images are embedded as CNN features. They minimise the following
pair-wise ranking loss:

(2.17)LI ,∫ ,I ′ ,∫ ′ = max(0, ∆− (WIvI)Tvs(θ) + (WIvI′)Tvs(θ))
+ max(0, ∆− (WIvI)Tvs(θ) + (WIvI)Tvs′(θ)))

Where I, and s are a correct image caption paring – s′ and I′ are noise contrastive
samples. The margin is ∆, the parameters of the DT-RNN are θ with output em-
bedding vs(θ), WI is an image embedding projection matrix, and vI is the image em-
bedding. Karpathy et al. [2014a] expand this idea to embedding sentence fragments
and image patches into a joint space. Alignment between fragments and patches
is achieved with multiple instance learning [Andrews et al., 2003], assuming each
sentence fragment has at least one associated image patch. Their sentence fragments
are dependency parse triples embedded using a simple non-linear function, while
their image features are extracted with a Region Convolutional Neural Network (R-
CNN) [Girshick et al., 2014].

Rather than transferring entire captions to the query image, some authors [Gupta
and Mannem, 2012; Kuznetsova et al., 2012, 2014; Lebret et al., 2015] have composed
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captions from multiple candidates, with the aim of increasing caption specificity.
Gupta and Mannem [2012] combine multiple captions by distilling them into an in-
termediate representation of ((determiner, attribute, subject), verb, preposition, (de-
terminer, attribute, object)). The elements of this representation are chosen through
frequency counting token n-grams. The final text is realised using SimpleNLG [Gatt
and Reiter, 2009], which handles aspects such as syntax and morphology. Kuznetsova
et al. [2012] glue together relevant phrases using integer linear programming, and in
a later work, parse trees for handling long distance relations [Kuznetsova et al., 2014].
They also generalise captions as a pre-processing step by removing irrelevant details
or sub-strings that lack visual grounding. The results demonstrate improvement
over full caption retrieval with respect to human judgements. Lebret et al. [2015]
map CNN image features and phrases into a joint space. At test time they retrieve
phrases and compose them with a tri-gram language model.

2.3.2 Object Detectors and Text Generators

Detection and generation methods use a pipeline of individual components, the gen-
eral structure of which is similar across systems. Object and attribute detectors iden-
tify visual concepts, which are then mapped into an intermediate representation
where smoothing is applied to enhance coherency. A natural language generation
system realises the smoothed intermediate representation as text. The methods pre-
sented here bare a strong resemblance to the neural network models in Section 2.3.3;
however, unlike the neural network models they cannot be trained end-to-end.

The concept detectors used in these approaches are typically the state-of-the-art
at the time of publication. For scene and attribute concepts it is common to train
new classifiers on low level features [Li et al., 2011; Mitchell et al., 2012]. For objects,
existing classifiers [Li et al., 2011; Kulkarni et al., 2011; Yang et al., 2011; Mitchell
et al., 2012] such as deformable parts models [Felzenszwalb et al., 2010] are common.
Often a fixed set of classes is chosen based on the dataset being used, e.g the UIUC
PASCAL sentence dataset [Rashtchian et al., 2010] has 20 object classes. More recent
approaches use CNNs [Fang et al., 2015]. The choice of classes is often strongly
related to the intermediate semantic representation – typically one classifier or group
of classifiers is needed for each concept type (eg objects, actions, attributes or scenes).

The intermediate semantic representations are a key difference between models.
Yang et al. [2011] represent an image as two nouns, a verb, a preposition and a
scene, while Kulkarni et al. [2011] build a graph of adjective-noun pairs linked by
prepositions. Fang et al. [2015] use an unordered list of words with visual detection
probabilities.
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To filter out classifier errors and ensure consistent semantics, smoothing is typ-
ically applied to the intermediate semantic representation; graphical models are a
popular choice. Kulkarni et al. [2011] and Rohrbach et al. [2013] employ Conditional
Random Fields (CRFs) with potentials learnt from external text corpora; Yang et al.
[2011] use Hidden Markov Models (HMMs) trained on text and Farhadi et al. [2010]
use Markov Random Fields. Alternatively, by choosing subject-object-verb triples
as the intermediate representation, Krishnamoorthy et al. [2013] can use an n-gram
language model for ranking. With a specialised model it is also possible to generate
language without smoothing the intermediate representation [Fang et al., 2015].

Approaches to NLG are typically based on template filling or n-gram language
models [Yang et al., 2011; Kulkarni et al., 2011; Krishnamoorthy et al., 2013], though
off-the-shelf machine translation systems such as Moses [Koehn et al., 2007] have also
been used [Rohrbach et al., 2013]. Krishnamoorthy et al. [2013] use a template that
they fill with semantic tuples and additional words chosen by a language model.
Yang et al. [2011] use a set of rules to define a flexible template that they fill us-
ing semantic tuples and a language model. Their results show this model matches
ground-truth captions more accurately than less flexible template filling. Kulkarni
et al. [2011] compare simple template filling with ordered semantic words connected
via function words generated from an n-gram language model. Human evaluators
preferred the template filling variant even though it was a weaker match to the
ground-truth captions than the language model variant. Evaluations of language
model vs template filling approaches by Li et al. [2011] came to similar conclusions,
though the language model sentences were judged as more creative. Mitchell et al.
[2012] improve upon template filling by using a complex set of rules to generate,
populate, and merge syntactic trees. Fang et al. [2015] achieve results competitive
with the best end-to-end neural network systems using high accuracy CNNs for se-
lecting descriptive words, a custom maximum entropy language model with beam
search decoding and re-ranking, rigid word restrictions, and a large image-caption
dataset.

The detection and generation methods reviewed here are not yet at the level
where they compete with human annotators. One issue is the constrained concept
domain, another is the concept detectors with fixed language realisations. CNN
detectors [Krizhevsky et al., 2012] have since helped to alleviate the constrained con-
cept domain, because they can reliably identify thousands of concepts. The other
issue, constrained vocabulary for visual objects, is partially addressed in this thesis
(Chapter 3) and associated publications [Mathews et al., 2015]. Even still generated
captions can be formulaic and un-natural when they rely on rigid intermediate rep-
resentations and template surface realisation. This problem is partially addressed by



32 Related Work

the end-to-end trainable neural network models in the following section.

2.3.3 End-to-End Neural Network Models

Deep generative networks are similar to the detection and generation methods of
the previous section. We choose to make the distinction based on the degree of
end-to-end learning. The deep generative networks replace some or all of the detec-
tion and generation components with end-to-end systems. Enabling this are more
flexible models, and new datasets including hundreds of thousands of captions and
images [Hodosh et al., 2013; Young et al., 2014; Chen et al., 2015]. Previously datasets
consisted of only a few thousand images [Rashtchian et al., 2010], which is too small
for end-to-end learning to be effective, or were mined from web resources [Ordonez
et al., 2011], where latent context plays a major role in image descriptions.

Deep generative image captioning models typically consist of a CNN (Section 2.1.2)
for object detection combined with an RNN (Section 2.2.1) for text generation [Don-
ahue et al., 2015; Karpathy et al., 2014a; Kiros et al., 2014; Mao et al., 2015; Vinyals
et al., 2015b]. These two components can be composed and learnt jointly through
back-propagation. The second last layer of the CNN – which can be seen as a set of
high level visual features – is connected to the RNN, either through the RNN’s input
path [Vinyals et al., 2015b; Donahue et al., 2015], hidden state [Jin and Nakayama,
2016], or via a custom addition to the RNN cell. Mao et al. [2015] join the RNN
and CNN at the output of the RNN, which they claim reduces the demands on
the recurrent layer, allowing it to focus on language generation. Although initially
promising this design has not caught on, perhaps because larger datasets and more
computational power allows for high capacity recurrent layers. Donahue et al. [2015]
generalise the CNN+RNN model to: sequential input, single output (action recog-
nition in video); single input, sequential output (image captioning); and sequential
input, sequential output (video descriptions). Their use of the LSTM cell has become
the de-facto standard. Vinyals et al. [2015b] develop an CNN+RNN model for static
captions and present a thoughtful analysis of different CNN+RNN training and de-
coding techniques, such as curriculum learning and beam search. Their system has
had a large impact on the literature because of state-of-the-art results at publication,
publicly released code, several updates [Vinyals et al., 2017], and media exposure.

One possible problem with CNN+RNN models is the compression of all image
semantics into a fixed length vector – typically the second last layer of a CNN. Xu
et al. [2015a] demonstrated that localised features from earlier layers of the CNN
could be exploited using an RNN with attention. Their soft attention model is fully
differentiable, similar to attention in neural machine translation (Section 2.2.2.1); their
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hard attention model can be seen as a reinforcement learning approach. An extra
regularization term encourages attention to all parts of the image. This approach
improved BLEU and METEOR over CNN+RNN models, and learnt a correspondence
between parts of the caption and spatial locations in the image. Chen et al. [2017]
extend the spatial attention model by enabling channel wise attention. This allows
the model to fixate on important semantic features.

CNN+RNN models are typically trained to minimise the negative log-likelihood
of the caption given the image; evaluation then uses a metric such as BLEU, METEOR
or CIDEr. To achieve the best performance, it helps to use the final evaluation metric
to inform learning [Ranzato et al., 2015; Rennie et al., 2016; Zhang et al., 2017a],
though this does not always translate to more favourable human evaluations [Wu
et al., 2016]. Many popular metrics are non-differentiable, so cannot be used in the
loss function directly; however, reinforcement learning [Sutton and Barto, 1998] is a
potential solution. Word choices are defined as actions, and the reward is a function
of the chosen metric – evaluated once the entire sequence is generated. The space of
word choices is extremely large, making learning difficult. In response, Ranzato et al.
[2015] pre-train with log-likelihood and then with a mixed REINFORCE [Willia, 1992]
and log-likelihood objective. Building on this idea, Rennie et al. [2016] introduce self-
critical sequence training using the argmax decoding as a reward baseline, reducing
the variance of the expected gradient and leading to state-of-the-art image captioning
results. Actor-critic reinforcement learning has also proven effective [Zhang et al.,
2017a].

One line of inquiry that has recently improved image caption generation is the
use of high level concepts [Fang et al., 2015; Wu et al., 2015; Gan et al., 2017b]. In a
standard CNN+RNN model, the last fully connected layer is removed and the fea-
tures from the CNN are passed directly to the RNN – a process that discards high
level information encoded in the last layer. Retaining the high level information re-
duces the required capacity of the RNN and adds a short training path between text
concepts and image features [Liu et al., 2016]. Wu et al. [2015] use a region based
multi-label CNN fine tuned on common MSCOCO terms to define image semantics.
Proposals from different regions are max-pooled and provided to the language, gen-
erating LSTM on the first time-step. Fang et al. [2015] use a region based multi-label
CNN, fine tuned on MSCOCO via multiple instance learning [Zhang et al., 2005].
With a maximum entropy language model and sentence re-ranking they are able to
achieve comparable performance to Wu et al. [2015]. It is interesting to note that
even though LSTM models are the current trend, the more traditional maximum en-
tropy language model can perform similarly; however, tuning may be more difficult
for these model types. Gan et al. [2017b] introduce an LSTM with concept depen-
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dent weight matrices generated by weighting a weight matrix for each concept by
the probability that concept is detected. A factorised tensor representation is used to
reduce the number of parameters and achieve state-of-the-art performance.

2.3.4 Evaluating Generated Captions

For the automatic evaluation of generated image captions, the most common metrics
are BLEU [Papineni et al., 2002], Rouge-L [Lin, 2004], METEOR [Denkowski and
Lavie, 2014], CIDEr [Vedantam et al., 2015], and SPICE [Anderson et al., 2016]. These
metrics measure the similarity between generated captions and the ground truth,
and so require at least one ground truth caption for each test image – the popular
MSCOCO dataset [Chen et al., 2015] provides 5 ground-truth captions per test image.
BLEU, ROUGE and METEOR were originally designed for use in machine translation
and summarization tasks, but were adopted for image caption evaluation. CIDEr
and SPICE are both specially designed for image caption evaluation, and so tend to
correlate more strongly with human judgements of caption relevance.

BLEU [Papineni et al., 2002] is an n-gram precision metric, often denoted BLEU-1,
BLEU-2, BLEU-3, or BLEU-4 to indicate the maximum n-gram length. The calcula-
tion of BLEU has three distinct stages: calculation of the modified n-gram precisions,
averaging log n-gram precisions across different n, and applying the brevity penalty.
Modified precision is the fraction of n-grams in the generated sentence that match
n-grams in one of the test sentences, although duplicate n-grams in the generated
sentence may only match up to the maximum count in any test sentence. For exam-
ple, if “the” occurs three times in the generated sentence but at most twice in any test
sentence, then only two occurrences of “the” match. In practice, the modified n-gram
precision – denoted pn – is calculated using all generated sentences as,

(2.18)pn =

∑
C∈{Generated}

∑
gramn∈C

Countclip(gramn, C)

∑
C′∈{Generated}

∑
gram′n∈C′

Count(gram′n, C)

Where: Count(gramn, C) is the number of occurrences of each n-gram – denoted
gramn – in sentence C, and Countclip(gramn, C) is the number of occurrences of each
n-gram in the generated sentence with clipping so that it does not exceed the highest
count in any ground truth sentence.

(2.19)Countclip(gramn, C) = min(Count(gramn, C), max
G∈{GroundTruth}C

Count(gramn, G))

BLEU can then be expressed as:

(2.20)BLEU = b exp(
n

∑
i=1

1
n

log pi)
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Where b is the brevity penalty defined in Equation 2.21 by c the word count for all
generated sentences and r the effective reference length: calculated by summing the
number of words in the best matching (in terms of sentence length) ground truth
sentence for each generated sentence.

(2.21)b =

1, if c > r
e

1−r/c , if c ≤ r

ROUGE [Lin, 2004] comes in several different variants; the two most common are
ROUGE-N and ROUGE-L. ROUGE-N is an n-gram recall based metric computed be-
tween the generated sentence and the set of ground-truth sentences. ROUGE-N is not
particularly common for image caption evaluation. ROUGE-L is an f-measure, based
on the longest common subsequence (of words) between the generated and ground
truth captions. We present the variant of ROUGE-L that is used in the MSCOCO
evaluation server as it is the most relevant to image captioning [Chen et al., 2015].
First, the precision and recall are calculated for each generated caption and the cor-
responding set of ground truth captions as:

(2.22)Rlcs = max
G∈{GroundTruth}C

1
m

LCS(C, G)

(2.23)Plcs = max
G∈{GroundTruth}C

1
u

LCS(C, G)

Where C is the generated sentence of length u, G is a ground truth sentence of
length m, and LCS(C, G) is a function computing the length of the longest common
subsequence between C and G. The sentence pair ROUGE-L score is then:

(2.24)ROUGE-L =
(1 + β2)PlcsRlcs

Rlcs + β2Plcs

β is the standard parameter in the f-measure where the common F1 score has β = 1.
Values of β larger than 1 weight recall higher than precision, while the reverse is true
for values of β less than 1. The MSCOCO evaluation server has β = 1.2. The final
ROUGE-L score is the mean over all generated captions.

METEOR [Denkowski and Lavie, 2014] aligns generated captions with each of
the ground truth captions at a word or phrase level. Matching words or phrases
uses: exact string matching, word stem matching, synonym matching in WordNet,
or paraphrase matching using an external paraphrase table. The alignment between
sentences is constructed by a beam search that tries to: match each word at most
once, maximise the number of matched words, minimise the number of separate
contiguous matches. Precision and recall are calculated in a weighted fashion, with
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separate weights for content vs function words and for each of the different types of
phrase matcher (eg exact string matching or synonym matching). The precision P
and recall R are combined in a harmonic mean F parameterised by α:

(2.25)F =
PR

αP + (1− α)R

Finally the METEOR score is calculated using a chunk penalty Pen, defined in terms
of the number of contiguous matching chunks c and the total number of matches m:

(2.26)METEOR = (1− Pen)F

(2.27)Pen = γ(
c
m

)β

The parameters α, γ, β and word match weights were chosen using grid search to
best correlate with human judgements on 8 separate language translation tasks.

CIDEr [Vedantam et al., 2015] is based on cosine similarity of TF-IDF vectors of
n-grams computed on the generated sentence C and ground truth sentence G. TF-
IDF [Sparck Jones, 1972] weights gn() are computed for n-grams up to length 4, where
images – specifically the set of ground-truth captions relating to an image – are taken
as ‘documents’ in the TF-IDF weighting. The CIDER score for generated sentence C
using n-grams of length n is denoted CIDErn(C) and calculated as:

(2.28)CIDErn(C) =
1
m ∑

G∈{GroundTruth}C

gn(C).gn(G)
||gn(C)||||gn(G)||

The final CIDEr score is the average CIDEr_n score for 1 ≤ n ≤ 4.
SPICE [Anderson et al., 2016] is a metric designed for evaluating the semantic

relevance of generated image captions. It does not rely on n-gram overlap as many
other metrics do; instead, generated and ground truth captions are both mapped
to a graph-based semantic representation called a scene graph. This representation
preserves objects, attributes and relations while stripping away lexical and syntactic
details. A dependency parser is applied to establish relationships between the words
in the caption, which are then mapped into object, relation, and attribute compo-
nents. Following this, a set of rules is used to build the scene graph. To calculate the
SPICE score, both the generated caption scene graph and the joint scene graph for all
corresponding ground truth captions are decomposed into a set of tuples containing
objects, attributes, and relations – these tuples are of length one, two or three. The
precision and recall are calculated with these tuples, where matching tuple elements
have either the same lemmatized word form or belong to the same synset. SPICE is
the F1 score computed with the precision and recall.
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2.4 Defining Style

To generate image captions in a particular style, it first helps to have a solid defini-
tion of what constitutes style. This sections outlines different definitions of style in
order to clarify what style is, and to suggest how it may be concisely represented for
modelling purposes.

In common usage, the word “style” either refers to a linguistic property that all
written texts have, or to an aesthetic judgement (eg to say a text was dull and unin-
teresting one might say “the piece lacks style”). In this thesis we are concerned with
the former usage, where style is a linguistic property of all written texts.

Incorporating style into automatic systems requires a relatively concise definition;
ideally, providing clues on how to separate it out. One definition of style used in
automatic style analysis is: how something is communicated, rather than what is
communicated [Pennebaker and King, 1999; Tausczik and Pennebaker, 2010]. This
implies a clear distinction between style and content. A complementary definition
for style is: a set of consistent and distinguishable linguistic choices [Karlgren, 2005;
Khosmood and Levinson, 2008; Verdonk, 2002]. Together, these definitions suggest
style can separated by controlling for content (what is communicated) and modelling
consistent description variability (how it is communicated).

The literary discipline of stylistics takes a more nuanced view of style, recog-
nising it as an integrated property affecting every level of language, from its shape
on the page to the contextual meaning [Simpson, 2004]. Literary stylistics is mostly
concerned with interpreting strategies writers use to shape a text’s meaning within
its context [Simpson, 2004; Verdonk, 2002]. We can therefore extend the definition in
the previous paragraph to: Style is a set of consistent and distinguishable linguistic
choices that shape meaning within a context. This definition now encompasses cases
where style can be said to affect what is communicated. Simpson [2004] uses the ex-
ample “That puppy’s knocking over those potplants!” in which the speaker has chosen to
use the word “puppy” to describe a young canine, although, words such as “dog” or
“animal” would also preserve the truth of the sentence. In Simpson’s view, the choice
of the word “puppy” could have been made because of the word’s positive connota-
tions, rather than to change the semantic content. If this is the case and the word was
chosen to shape the broader contextual meaning then it is a stylistic choice. To apply
the idea of style as choice, in its entirety, requires high level understanding founded
on contextual reasoning and common-sense knowledge beyond current computa-
tional techniques. However, realising that style affect semantics and connects with
a broader context are useful insights when designing models and analysing stylistic
variation.
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While the above deals with a conceptual definition of style as a whole, a particular
instance of style can be defined with a fixed set of attributes [Pavlick and Nenkova,
2015; Ficler and Goldberg, 2017] or implicitly with a document collection. There are
many possible stylistic attributes, examples of which include: formality, complexity,
rhythm, sentiment, voice and point-of-view. Implicitly defined style uses document
collections such as those from a single author [Stamatatos, 2009], genre [Kiros, 2015]
or text-type [Khosmood and Levinson, 2008]. Xu [2017] provides a useful summary
of different types of styles, both implicit and explicit, that are of interest for automatic
generation.

It is worth noting that genre and style are not synonyms nor are they entirely
independent of one another. Genre is a type of communication with socially agreed
upon conventions [Bawarshi and Mary Jo Reiff, 2010], that typically apply to both
content and style. For example, the science fiction genre has content conventions
encouraging authors to deal with the imagined concepts of advanced technologies,
extra-terrestrials, time travel, and similar concepts. Whereas, the style conventions
of science fiction, as a narrative genre, include: using technical language, forming a
linear narrative, and using dialogue. Some of these style conventions such as forming
a linear narrative and using dialogue are shared across many genre, including the
literary genres romance and crime. Even though a subset of a genre’s conventions
may encourage or enforce particular style choices, there are often many style choices
left up to the author. This leads to authors having distinctive styles within a genre.

2.4.1 Sentiment

Sentiment can be roughly defined as an expressed affective value, opinion, or emo-
tion [Pang, 2006; Hovy, 2015]. This places sentiment firmly in the scope of subjective
judgements that cannot be objectively observer or verified [Pang, 2006]. Typically
sentiment is not considered an aspect of style as it is only an opinion or emotion.
However, the way sentiment is expressed and whether to express it at all can be con-
sidered stylistic choices. In contrast many recent works in computer science consider
sentiment polarities (ie postive, negative, and neutral) to be particular styles [Shen
et al., 2017; Fu et al., 2018; Prabhumoye et al., 2018]. Thus we briefly review aspects
of sentiment and sentiment analysis.

Sentiment is often modelled with a positive, negative or neutral valance and a
numerical indication of strength. Where positive sentiment shows support or positive
feelings towards a topic and negative sentiment shows disagreement or negative
feelings towards a topic. While this model of sentiment appears relatively crude, it
is frequently used for understanding public opinion towards products, movies, and
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political entities.

When defining sentiment it is important to consider aspects to texts that are not
considered sentiment. Often we do not consider objective statements such as “the
stock price rose” to convey sentiment even if the objective statement is overwhelm-
ingly considered positive, such as in the case of stock price rises [Pang and Lee,
2008]. Though, this is not unilaterally accepted, for example classifying news articles
as “good news” or “bad news” [Koppel and Shtrimberg, 2006] has been considered
a sentiment classification task. Moreover, without fine grained supervision it can be
difficult to distinguish between objective statements with strong connotations and
subjective statements expressing an opinion [Pang and Lee, 2004; Balahur and Stein-
berger, 2009]. Thus many practical systems do inadvertently include such objective
statements when analysing sentiment. There are a number of opinion related text
classification tasks that are not, in general, considered sentiment classification tasks,
such as classifying documents by political leaning (eg liberal vs republican), or clas-
sifying predictive opinions (eg candidate A is likely to win the election) [Pang and
Lee, 2008].

A substantial amount of work has been put into sentiment analysis in the context
of reviews [Pang and Lee, 2008], where opinions are communicated in text as well
as via ordinal (eg star rating) or binary (eg like vs dislike) attributes. This provides a
ready-made labelled data-set with the ordinal or binary attribute forming the label.
While machine learning systems trained on such data can work relatively well, they
loose fine-grained sentiment, or varying sentiment towards different aspects of the
topic eg “I think children would enjoy this film but I hated it...”. There is also the issue
of different reviewers having different rating scales [Hovy, 2015], for example one
reviewer may never give less than 3 stars while another may frequently give 1 star
reviews.

Hovy [2015] argues that current sentiment analysis research does not sufficiently
consider the nuances of sentiment. First sentiment can be classified based on whether
it corresponds to opinions, or feelings and emotions. Next, the positive, negative, and
neutral categories are too general, rather the author suggests using positive, negative,
mixed (both positive and negative sentiment expressed e.g. “Sometimes I like milk in
my coffee, other-times I hate it.”), neutral (neutrality or lack of opinion is stated e.g. “I
don’t mind if my coffee has milk or not.”), or unstated (sentiment is alluded to but not
stated e.g. “I have strong feelings about milk in coffee.”).



40 Related Work

2.4.2 Style Usage and Effect

Linguistic style is an essential part of written communication; by generating captions
with a strong linguistic style we aim to reach a broader audience, reduce misinfor-
mation, and engaging viewers. This section reviews research from psychology and
linguistics to identify the range of effects style has, and in doing so reveals the po-
tential applications for style in image captioning.

Linguistic style has been shown to reflect the personality of the author [Pen-
nebaker and King, 1999; Oberlander and Gill, 2006] and to affect the behaviour of the
readers. Oberlander and Gill [2006] analysed natural language e-mails from people
who had also taken a personality questionnaire. Part-of-speech and n-gram analysis
showed distinct differences between personality type; for instance extroversion was
correlated with frequent adjective use, while neuroticism was correlated with adverb
usage. Ludwig et al. [2013] found that style affected online purchasing behaviours.
Product reviews with a style matching the target market had a greater influence on
purchasing decisions that those which failed to do so. More broadly, linguistic style
is known to play a key role in communication accommodation theory [West and
Turner, 2010], which governs many social interactions.

Communication accommodation theory [West and Turner, 2010] states that hu-
man communication behaviours change in response to an audience. There are two
main processes that apply to style: convergence, where individuals attempt to match
style; and divergence, where they seek to differentiate themselves. Convergence in-
creases the effectiveness of communication, aids understanding, and is an indicator
of the strength of a relationship [Pardo et al., 2012]. Divergence is used to position
oneself as distinct, or to display membership of a particular social group. It is often
used by professionals meeting with clients, but can be seen as a sign of dislike within
a social setting [Ebesu Hubbard, 2009].

Much of the evidence for communication accommodation was collected through
controlled experiments on face-to-face [Bilous and Krauss, 1988] or written [Nieder-
hoffer and Pennebaker, 2002] communication. More recently, large scale exper-
iments on social media platforms have validated communication accommodation
theory [Danescu-Niculescu-Mizil et al., 2011; Doyle et al., 2016], and demonstrated
the importance of accommodation in online discussions. In a controlled study of
MBA students, Huffaker et al. [2011] demonstrates a positive correlation between
linguistic convergence and agreement in multi-party negotiations. Working with the
social-media platform twitter, Pavalanathan and Eisenstein [2015] show users mod-
ify their writing style for their audience. Posts written for small or geographically
defined audiences tend to use more non-standard terms; for broader audiences more



§2.5 Separating Style from Content 41

generic terms are preferred. An analysis of tweets about the 2014 Scottish indepen-
dence referendum by Shoemark et al. [2017b] showed a correlation between writing
style and political stance. Distinctly Scottish terms where used more frequently by
pro-independence authors. A later work [Shoemark et al., 2017a] showed audience
and topic have relatively independent effects on style. Key to these studies is mea-
suring linguistic style cohesion, frequently based on Linguistic Inquiry Word Count
(LIWC) [Pennebaker et al., 2007] categories.

It is well known that linguistic style varies with geographic region, the study of
which is called dialectology. These linguistic style variations are thought to have de-
veloped by a combination of isolation and the natural tendency of language to evolve
over time [Johnstone, 1999]. However, in a world with global high speed communi-
cation, regional differences are taking on a symbolic value that marks inclusion in a
social group. For example, adopting a regional dialect can help to make a sale [John-
stone, 1999]. Several authors have attempted to use linguistic features to predict an
author’s location [Eisenstein et al., 2010; Cheng et al., 2010].

2.5 Separating Style from Content

The separation of style from content is key to generating text in a particular style. In
this section we explore the separation of style and content used in domains such as
vision and speech, before examining techniques applicable to the text domain. For
text, we focus primarily on authorship attribution because it is a well developed area
of natural language processing that relies heavily on the ability to separate style from
content.

There are a few different ways to separate content and style. The most basic,
and the one most often used in text [Tausczik and Pennebaker, 2010], is to define
components as wholly style or content. The classification of components can be done
either manually or using a mixture of automatic and manual methods. Another
approach is to use a dataset with style and content tags to train a factorised model
that explains these two types of tags [Tenenbaum and Freeman, 2000; Popa et al.,
2009]. Models without explicit factorisation have also proven effective for generation,
but do not separate content and style [Van Den Oord et al., 2016; Gibiansky et al.,
2017]. Alternatively, if only content tags are available, then training a deep content
classifier [Gatys et al., 2016] or generator [Radford et al., 2017] can produce features
that correlate with a particular style. Identification of these features is typically a
manual process that relies on prior knowledge of the important style attributes (e.g.
sentiment) expressed in the data.

In the vision domain, separating style from content has seen strong interest
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from the literature and mainstream media. While early approaches to the prob-
lem achieved some success on human faces with bilinear models [Tenenbaum and
Freeman, 2000], newer approaches [Gatys et al., 2016] using CNNs have produced
visually striking examples of natural images in the style of famous paintings. To
achieve this, first, a CNN is used to extract a content representation from the target
image and a style representation from the painting. Next, a white noise image is
passed to the same CNN and adjusted via back-propagation to match both the con-
tent and style representations. The content is encoded in CNN features (activations
from convolutions) from each layer. The style is encoded in the dot product between
CNN feature maps for each layer. Since layers represent different levels of specificity
in terms of content and spatial extent, the relative weight given to content and style
representations must be adjusted on a per-layer basis. Typically, larger weights are
given to the style matching objective in earlier layers as these features in early layers
tend to be less content specific. This method of style transfer is specific to images
and cannot be readily applied to text style transfer.

In the speech domain, style separation can be used to adjust speech patterns to
imitate the style of a different speaker – a task called voice conversion. An early
method for voice conversion presented by Abe et al. [1988] learns a mapping be-
tween two speakers codebooks by counting correspondences in aligned training data.
Although this does not explicitly separate style, the weights of the mapping from
speaker A to speaker B can be seen as the style of speaker B expressed in terms
of the style of speaker A. Popa et al. [2009] use a bilinear model [Tenenbaum and
Freeman, 2000] to explicitly separate characteristics of the speaker’s voice from the
spectral and phonetic content. Specifically they represent the styled speech vector
ysc by a style dependent weighting ws of parameter vectors as and bc. Where s is the
style index and c is the content index.

(2.29)ysc
k = ∑

i,j
ws

i,j,kas
i b

j
c

Empirically, this gave better results than the previous gaussian mixture model ap-
proaches [Kain and Macon, 1998]. Recent approaches to generating speech with
neural networks do not explicitly model the separation of style but do show the abil-
ity to generate speech in different styles [Van Den Oord et al., 2016; Gibiansky et al.,
2017]. In these cases, discreet style attributes included in the ground truth, such as
speaker ids, are input to the network.

Techniques for separating style and content in natural language often focus on
classifying words. While this often leads to a more restricted view of style than the
one taken by this thesis, many of our approaches have a basis in classifying words
into different styles. Tausczik and Pennebaker [2010] describe natural language as
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consisting of two broad categories of words: content words including nouns, verbs,
and adjectives; and style words including prepositions, articles and conjunctions.
They note that style words, otherwise known as function words, make up 55% of all
words in natural language, despite constituting only 0.05% of the average person’s
vocabulary. The somewhat contentious [Bebout, 1993] content and function/style
word categories do not map directly to the definitions used in this thesis, while
we consider function words to be style words we also consider that words defined
by [Tausczik and Pennebaker, 2010] as content words may in-fact carry significant
style information. Nevertheless, narrowly defined style and content terms have show
application in the field of neurolinguistics to study patients with communication
difficulties. In such contexts, the main difference between the categories appears to
be their imageability (the ease with which a mental image is formed) [Bird et al.,
2002] – with function words frequently being more abstract and less imageable. The
syntactic distinction between content and style words provides a possible way of
separating content and style; however, the distinction is not perfect and the non-
syntactic imagability score [Coltheart, 1981] could also be considered.

2.5.1 Topic Models

Topic models, such as Latent Dirichlet Allocation (LDA) [Pritchard et al., 2000; Blei
et al., 2003], are a powerful tool for automatically separating content from style in
natural language. LDA is a hierarchical Bayesian model where: for each document
a multinomial distribution over topics is chosen from a Dirichlet prior, then for each
word in the document a topic is chosen from this multinomial, finally the word is
drawn from a multinomial over the vocabulary for the chosen topic. An algorithm
such as Expectation-Maximisation can be used to find the maximum a posterior es-
timates for the parameters of the Dirichlet prior and the set of multinomials for each
topic. However, as LDA is unsupervised its results are often difficult to interpret [Mc-
Farland et al., 2013], and the topics are not naturally aligned with style and content
dimensions. Here we briefly summarise some extensions to LDA that directly relate
to linguistic style.

Jin et al. [2011] develop a topic modelling approach based on Latent Dirichlet
Allocation (LDA) that uses long texts to improve the modelling, and clustering, of
short texts. Their model builds two separate distributions over topics, one tuned for
the long texts and another tuned for the short texts. A binomial random variable
decides, for each word, which topic distribution to draw from, while suitably chosen
priors and constraints encourage the two topic distributions to be representative of
their respective text sources: short or long texts. The separate topic distributions help
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to model the different styles used in short and long texts, while the binomial switch
variable allows the short texts to use topics primarily derived from the longer texts.

Titov and McDonald [2008] develop an LDA based topic model that models topics
at two different levels of granularity: local topics and global topics. A local topic
distribution is chosen for each window of T sentences around the current sentence,
while the global topic distribution is chosen for each document as per traditional
LDA. Intuitively, the local topics model text that is common across many documents
but generally localised within each document, while the global topics model text that
is typically different between documents.When applied to product reviews the global
topics tend to capture brands and product types (eg iPod, Sony Walkman) while the
local topics tend to capture rate-able qualities (eg sound quality, bass).

Brooke and Hirst [2013] attempt to separate aspects of six different styles (collo-
quial, literary, concrete, abstract, subjective, and objective) using a variant of LDA.
They align each topic with a style by seeding the word distributions with known style
words. To ensure these topics are actually aligned with these styles they consider the
number of optimisation iterations as a hyper-parameter, since convergence might not
occur until the topics have shifted away from the desired stylistic dimensions. The
best performing model, trained primarily on blog and social media posts [Burton
et al., 2009] to infer the style of held-out style words used binary word occurrences
rather than counts, and required two iterations.

2.5.2 Authorship attribution

The properties of writing style have long been studied for the purposes of authorship
attribution. The review of this literature provides important insights into separating
style from content in a machine learning context. Moreover, the semantic term space
presented in Chapter 6 takes inspiration from the features commonly used for au-
thorship attribution.

The authorship attribution task involves identifying the authors of unknown doc-
uments given a set of documents with known authors. Of course, there are many
variants to this problem, including: author verification (was the document writ-
ten by a specified author), short-text authorship attribution (for example identifying
the authors of e-mails or social-media posts) and fine-grained authorship attribution
(matching parts of a long text to its authors); however, the general structure remains
the same, identifying who wrote a document using text derived features.

Authorship attribution has a rich history stretching at least as far back as the 19th
century [Mendenhall, 1887]. This review does not attempt to cover this vast array of
work; instead, the focus is on modern statistical techniques for the English language
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and the insights they give on the nature of style. Separating style from semantics is
of primary concern in authorship attribution for establishing authorship, regardless
of topic.

Authorship attribution is frequently cast as a supervised multi-class classification
problem, where documents are classified as being authored by one of a fixed set of
individuals. Features are extracted from each document and then used in an out-
of-the-box classifier [Koppel et al., 2007] such as support vector machines or naive
Bayes. It is these features that are most relevant to modelling the styled text.

2.5.2.1 Features

Key to many authorship attribution methods is engineering features that encompass
style but not semantics, allowing author identification regardless of topic. Feature
engineering is primarily a manual process involving considerable domain and lin-
guistic knowledge [Stamatatos, 2009]. However, automatic methods are sometimes
used for selecting important features from a large number of candidates. Recent
deep learning methods – where the model generates new features from the raw data
– have shown some promise [Ding et al., 2016].

Manual feature engineering has been a major focus of the literature, with thou-
sands of different types of features being proposed [Stamatatos, 2009]. These features
fall into four broad categories: character, lexical, syntactic and semantic features.
Character features are the lowest-level, consisting of letter, digit and punctuation
statistics. Lexical features encompass word or sentence level statistics such as n-gram
frequency counts, common spelling errors or average sentence length. Syntactic fea-
tures require a higher-level of natural language processing; they typically include
POS tag counts, sentence and phrase structure, and grammatical errors. Semantic
features typically involve statistics over synonym choices and semantic dependen-
cies.

A number of authors [Argamon and Levitan, 2005] demonstrate remarkably high
performance using only character and lexical features. In fact, Argamon and Levi-
tan [2005] achieve high accuracy on a book identification corpus using only a bag of
function words. Typically, the function words are chosen by experts to be predictive
of style rather than semantics. This set varies with the text domain: for example,
when working with newsgroup texts, Argamon et al. [2003] needed to use 190 In-
ternet slang terms in addition to 303 generic function words. Van Halteren et al.
[2005] hypothesise that texts by less experienced authors are harder to identify be-
cause they have a less distinctive style. To support this they show that additional
token distribution features are required to classify texts from university students.
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2.6 Styled Text Generation

The area of styled text generation aims to develop methods for generating text in
a desired style, but is not focused on image-captions. Many styled text generation
approaches do not control for content. Instead, they aim to capture the distribution
of sentences under a particular style. Nonetheless, styled text generation techniques
are closely related to styled image-caption generation. First, this section reviews
a number of different styled text generation techniques, before considering poetry
generation. Finally, two interesting techniques for styled text generation, variational
auto-encoders (VAEs) and generative adversarial networks (GANs) are explained.
This thesis uses neither VAEs nor GANs but they are prominent methods that require
careful consideration.

Xu et al. [2012] use a collection of Shakespeare plays aligned with modern English
to benchmark style translation approaches. Methods include phrase-based transla-
tion from the machine translation literature [Koehn et al., 2007], dictionary based
translation (from human curated Shakespeare dictionaries), and unaligned transla-
tion where a phrase-based translator is learnt on a separate dataset but decoded with
a language model trained on Shakespeare. They find that a standard phrase-based
model outperforms all others except when evaluated on semantic accuracy, where
the out-of-domain phrase-based model is superior. Furthermore, they show that
compared to BLEU score, human evaluations are more correlated with a language
model for target style and a linear classifier trained to distinguish styles.

Ficler and Goldberg [2017] generate movie review fragments conforming to a
discreet set of 4 style (professionalism, length, descriptiveness, personal voice) and 2
content parameters (theme, movie rating score). Their results outperform an uncon-
ditioned model, and can generalise to unseen combinations of parameters. However,
the degree of style and content control is coarse, limiting possible applications.

Oraby et al. [2017] consider the problem of generating stylistically interesting
restaurant reviews for interactive dialogue systems. They learn sentence templates
by collating dependency parsed restaurant reviews with dictionaries of subject types
including: food, service and restaurant-type.

Jhamtani et al. [2017] translate modern English into Shakespearean English using
an attentive RNN variant of pointer networks [Merity et al., 2016]. Because of the
small quantity of sentence aligned data – only 16 Shakespeare plays aligned to mod-
ern English [Xu et al., 2012] – they made use of word-embeddings, pre-training and
a dictionary of word level replacements encoded via pre-training.

There have been a number of attempts at automatically generating poetry [Gervás,
2001; Díaz-Agudo et al., 2002; Manurung, 2004; Wong et al., 2008b; Zhang and La-
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pata, 2014; Qixin et al., 2016; Ghazvininejad et al., 2016]. This is a special case of
language generation, as poems often conform to rigid grammar, rhythm or rhyming
rules inherent to the poetic form eg Limerick, Haiku, or Sonnet [Manurung et al.,
2000; Ghazvininejad et al., 2016]. Zhang and Lapata [2014] generate Chinese poetry
with an RNN decoder conditioned on all previous lines, and with explicit decoding
constraints. Previous lines are individually embedded by a CNN, while an RNN en-
coder merges line embeddings – an alternative is to use attention over all previously
generated characters [Qixin et al., 2016]. Ghazvininejad et al. [2016] generate English
language poems using a flexible finite state model that encodes domain knowledge.
Specifically, an LSTM language model is decoded with rhythm, rhyming, and global
structural constraints encoded into a finite state machine. Automatically generated
poems can sometimes be controlled using context defined by a: word [Ghazvinine-
jad et al., 2016], set [Zhang and Lapata, 2014], or sentence [Qixin et al., 2016], to
which the resulting poems are loosely related. For poetry this is an acceptable, even
necessary trope [Manurung et al., 2000], but in many other cases content control is
important e.g. image captioning, sentence simplification and styled re-writing.

Variational auto encoders (VAE) [Kingma and Welling, 2013] for text [Bowman
et al., 2016; Hu et al., 2017c; Yang et al., 2017b; Semeniuta et al., 2017] are sequence-
to-sequence models that impose a prior on the latent embeddings; typically a mul-
tivariate Gaussian with zero mean and identity co-variance. The VAE loss function
balances reconstruction loss with the KL-divergence of the latent space from the prior.
The KL term encourages the latent embeddings to compactly fill the space around
the origin and allows random text to be generated by sampling from the multivariate-
Gaussian. Bowman et al. [2016] introduce the practical techniques of word dropout
and KL cost annealing for training VAEs. They note that the latent space is relatively
smooth: sampling from the space produces reasonable sentences, and interpolat-
ing between points in the space produces a sequence of sentences that interpolate
between the two original sentences. Hu et al. [2017c] develop a VAE method for
generating text with independent control of style attributes, such as sentiment and
tense. Discriminators used during training ensure the generated text expresses the
desired attributes. Current VAEs generate convincing sentences, but have weaker
semantic content control because of the trade-off between reconstruction loss latent
space constraints [Bowman et al., 2016; Semeniuta et al., 2017].

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014; Salimans et al.,
2016; Arjovsky et al., 2017] are an emerging method for training text generators [Gul-
rajani et al., 2017; Yu et al., 2017; Li et al., 2017; Yang et al., 2017a]. A GAN can be
thought of as a replacement for the common Kullback-Leibler (KL) divergence loss
function between real data distribution P and generative distribution Q. It is an ap-
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proximation to the Jensen-Shannon divergence: a loss which interpolates between
forward KL[P||Q] and reverse KL[Q||P] divergence [Goodfellow et al., 2014]. GANs
consist of a generator network, for generating text, and a discriminator network
which attempts to classify text as either real (human generated) or fake (network
generated). In an auto-encoding model classification in the latent feature space is
also possible [Hu et al., 2017b]. Training is typically iterative, switching between
training the generator to fool the discriminator and training the discriminator to
identify the current generator’s output. This requires computing gradients of the
discriminator’s loss function with respect to the parameters of the generator – a non-
trivial task in a discrete space such as text. One solution [Gulrajani et al., 2017; Press
et al., 2017; Hu et al., 2017b] is to feed the generators output probability distribution
directly into the discriminator, and only sample discreet tokens at test time. This en-
sures differentiability, but means there is a large difference between how the model
is trained and how it is used. To overcome this, a policy gradient method may be
used to train the generator [Yu et al., 2017; Li et al., 2017; Yang et al., 2017a], with
partial sequence rewards achieved by applying Monte Carlo search [Yu et al., 2017;
Yang et al., 2017a] or training a separate discriminator [Li et al., 2017]. GANs have
not yet seen widespread adoption for text generation since they are still relatively
difficult to train when the output space is discrete. Moreover, maximum likelihood
methods for training text generators work well.

2.7 Style Transfer for Text

A number of approaches to style transfer for natural language text have been re-
leased concurrent with, or post, the work which constitutes this thesis. These ap-
proaches fall into two main groups, those that use an adversarial loss and those that
need sentence aligned training pairs to separate content and style. There are also
a number of approaches that do not fall into these categories, instead using back-
translation [Prabhumoye et al., 2018], word frequency [Li et al., 2018], or parameter
sharing [Han et al., 2018] to separate style and content.

2.7.1 Adversarial Approaches

Shen et al. [2017] present two auto-encoding models for text style-transfer that work
without needing sentences to be aligned between the two styles. Both models utilise
a separate encoder and decoder for each style domain, which transfer to and from la-
tent space shared between the two styles. Their first model, the aligned auto-encoder
learns the shared space by incorporating, into the loss function, an adversarial dis-
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criminator that attempts to classify latent representations into their original style.
This ensures that the latent representation encodes only sentence properties that are
shared by both styles. Their second model, the cross-aligned auto-encoder also uses
an adversarial discriminator applied to latent states, but in this case a discriminator
is applied to each hidden state of the generator. Using human evaluation and auto-
matic classifier evaluation they show the applicability of these models to sentiment
modification, word substitution, and word order recovery.

Fu et al. [2018] build style transfer models for text that use an encoder-decoder
neural network structure with an adversarial classifier in the latent space. The en-
coder is shared across different styles. In their first model a separate decoder is learnt
for each style, in their second model a single decoder is used with a learn style vec-
tor concatenated to the final hidden state of the encoder. They apply their model
to paper title to news title style transfer and positive to negative review style trans-
fer. Human evaluations measured content preservation while automatic classifiers
measured style transfer strength.

Santos et al. [2018] build an encoder-decoder model for style transfer using a
combination of reconstruction loss and style classification loss. The style classi-
fier is trained along with the model: functioning as an auxiliary adversarial loss.
In addition their model has a separate backwards transfer step, where the discreet
style-transferred output words are fed back into the encoder-decoder with the goal
of optimising reconstruction of the original sentence and classification loss. This
backwards transfer step is separate as the discreet outputs of the encoder-decoder
cannot be back-propagated. Evaluation using an automatic style classifier and con-
tent preservation metric (based on mean GloVe embedding) shows that their model
outperforms the cross-aligned auto-encoder of Shen et al. [2017] in the task of trans-
lating offensive sentences into non-offensive variants.

2.7.2 Approaches Requiring Sentence Alignment

Carlson et al. [2017] build a style transfer system inspired by recent work on multi-
lingual translation [Johnson et al., 2017]. Their system requires sentences aligned
across many different styles, in this case bible versions. An RNN encoder-decoder
model is shared across all styles, with a special indicator token appended to the
input to specifying the desired output style. They do not explicitly try to remove
style in the latent space between encoder and decoder, instead relying on the large
number of different styles and a relatively small intermediate space to ensure the
latent space is compact and discards style information that doesn’t come from the
easily accessible indicator token. For evaluation they use BLEU and PINC which
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computes the fraction of n-grams in the generated sentence that are not in the original
sentence.

Rao and Tetreault [2018] benchmark a number of machine translation techniques
for style translation using a crowd-sourced dataset of paired formal and informal
sentences. They find that a traditional probabilistic machine translation approach,
based on Moses, performs the best; however, it is not significantly better than a neural
machine translation approach adapted for style translation [Jhamtani et al., 2017].
For the neural machine translation approach they extended the number of training
sentences using the Moses baseline – perhaps leading to the similar performance of
the models.

2.7.3 Other Approaches

Prabhumoye et al. [2018] approach the task of building a style independent repre-
sentation of text using back-translation. Specifically, they train two encoder-decoder
translation models, one from English to French, another from French to English. The
style independent representation is formed by translating the English into french and
then using the encoder portion of the French to English translator. By fixing the pa-
rameters of the two translation models they then train decoders in the desired style
using a loss function that is a weighted sum of reconstruction loss and likelihood
under a pre-trained style classifiers. A continuous approximation to the softmax is
used to allow gradients to be back-propagated through the decoder output layer. For
some, but not all, style domains (gender, political slant, and sentiment) their model
performs better than the cross-aligned auto-encoder of Shen et al. [2017] in classifier
evaluations of style transfer and human evaluations of meaning preservation.

Li et al. [2018] use a deletion, retrieval, generation process to create sentences
that have a particular style attribute, such as positive or negative sentiment. From
an input sentence they delete n-grams that frequently occur for a particular style,
relative to other styles, and then attempt to fill in the blanks by retrieving similar
sentences in the target style. Their best performing model, is an encoder-decoder
RNN, with two separate encoders, one for the input sentence and another for the
retrieved sentences. It is observed that this model has a strong inductive bias towards
target style attributes that are likely to fit the context of the input sentence, when
compared to an encoder-decoder baseline without retrieval.

Han et al. [2018] build an encoder-decoder model with two style switches, one
between the word embedding layer and the encoder RNN, and the other between the
output fully connected layer and the decoder RNN. This switch can be seen as a way
of separating the input and output weight matrices of the RNN into independent
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Figure 2.2: The StyleNet model [Gan et al., 2017a] for generating styled captions.

parts for each style. The model does not require paired sentences for training.

2.8 Caption Generation with Style

Only a few authors have considered the problem of generating image-captions with
style. The two most relevant systems are StyleNet, proposed by Gan et al. [2017a],
and neural-storyteller, proposed by Kiros [2015]. However, a number methods for
generating image captions with sentiment which build on our SentiCap system (de-
veloped in Chapter 4) exist. This section reviews StyleNet, neural-storyteller, senti-
ment captioning methods, and briefly touches on the related problem of multilingual
image captioning. The purpose is twofold: to show how our work fits within the
literature on styled image-caption generation, and to explore the research that our
SentiCap work has inspired.

StyleNet [Gan et al., 2017a], shown in Figure 2.2, is a recent approach for generat-
ing image captions with a particular style. It uses a CNN+RNN with an LSTM unit
where the weight matrix Wx applied to the input word embedding is factored:

(2.30)Wx = UxSxVx

With style component Sx and shared components Ux, Vx. Hidden state transition
matrices are not factored. The CNN+RNN is trained first end-to-end on the Flickr30k
dataset and then the style components Sx are trained in a language model set-up – a
random semantic vector is provided to the LSTM in the first time step. The resulting
captions are weakly styled and semantically relevant; however, the training uses
crowd sourced styled image-captions which are time consuming and expensive to
collect.

neural-storyteller [Kiros, 2015], shown in Figure 2.3, is a system for generating
short styled stories about images without an alignment between images and styled
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Figure 2.3: The neural-storyteller model [Kiros, 2015], for generating short styled
stories about images. The mean shift block subtracts off the mean skip-though vector

for captions and adds on the mean skip-thought vector for the target style.

captions. It relies on a semantic sentence embedding technique called skip-though [Kiros
et al., 2015]: RNN sentence embeddings trained to predict surrounding sentences. An
image is projected into a vector space [Kiros et al., 2014], where similar captions are
retrieved and then projected into thought-vector space. Style shifting is performed
by subtracting off the mean skip-though vector for captions, and adding the mean
skip-thought vector of the target style. This style shifted vector is decoded by a con-
ditional RNN language model trained on the target style. The resulting captions are
clearly representative of the target style, but are only loosely related to the image –
in general the semantics are lost.

2.8.1 Captions with Sentiment

The following research was released after publication of the SentiCap method in
Chapter 4. They provide a number of new solutions to generating captions with
sentiment. We briefly discuss the pros and cons of these new solutions.

Karayil et al. [2016] develop a model that generates image captions with strong
sentiment. The three components of this model are visual concept detection, graph
based sentence generation, and template filling. Visual concepts are detected by
thresholding Adjective-Noun-Pair (ANP) detector scores obtained with DeepSentiBank [Chen
et al., 2014]. The DeepSentiBank ANPs have strong sentiment polarity (eg “happy dog”,
“scary dog”). Sentence generation uses a graph where the nodes are common con-
tent words (eg adjectives, nouns, verbs) and the edges are strings of function words
(eg prepositions, conjunctions, pronouns). Edge weights are calculated by counting
the number of occurrences in the training set. Additional zero weighted edges are
added between nodes with a similar word2vec [Mikolov et al., 2013] score. The final
sentence is generated by finding a path with high total edge weight, passing through
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all activated ANPs. If no such path is found the fall-back is simple template filling of
“HUMAN with PROPERTY doing VERB on EVENT in LOCATION.” – partial fillings
are also considered. The entire model is trained on image-captions sourced from
social media and thus avoiding costly or time consuming image annotation. How-
ever, when evaluated on the manually constructed MSCOCO caption dataset, they
achieved a BLEU score an order of magnitude weaker than the state-of-the-art. Dif-
ferences between the training set and MSCOCO likely contributed to this low score,
as did the focus on adjective noun pairs with strong sentiment. It would be interest-
ing to evaluate the graph based approach against RNNs and template filling without
the domain shift between training and testing.

Andrew Shin and Harada [2016] use a CNN+RNN framework to generate cap-
tions with sentiment for images. Rather than using a single CNN trained on Ima-
geNet, they train an additional CNN on sentiment terms. Training images tagged
with sentiment terms are retrieved from online image hosting services. A CNN
model originally trained on ImageNet is then fine-tuned on this dataset in a multi-
label learning setting. The RNN is trained on descriptive datasets such as MSCOCO
or Flickr 30k, using features from both the ImageNet CNN and the sentiment CNN.
At test time, they force the RNN to output a sentiment word right before the most
likely noun. To do this the entire sentence must be generated and hidden states
recorded. Then a single RNN cell is run using the input to the cell that generated the
most likely noun, only with a vocabulary restricted to sentiment words. The result-
ing captions are descriptive of the image and introduce sentiment that is more ap-
propriate than compared methods. They do not compare with SentiCap (Chapter 4),
perhaps because the task is slightly different: they try to determine a sentiment for
the image before captioning, while SentiCap allows the user to choose the sentiment.
Their method works by encouraging the use of sentiment words already existing
in the descriptive dataset. Merging in a dataset which frequently uses sentiment
words in captions such as the one presented in Chapter 4 may improve performance.
Likewise, exploiting unary word probabilities from their fine tuned sentiment CNN
during decoding could prove beneficial.

You et al. [2018] introduce some modifications to a CNN+RNN framework to
enable positive and negative sentiment generation. The first approach appends a
sentiment unit to all input word embeddings and adds a word level sentiment loss.
The sentiment unit takes a scalar value of {−1, 0, 1} (corresponding to negative, neu-
tral and positive sentiment) set to the sentiment of the ground truth sentence during
training and the desired sentiment during generation. The word level sentiment loss
is an auxiliary loss on the log probability of the ground truth sentiment – computed
by a multilayer perceptron applied to the output of the RNN. The second approach is
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to add an additional memory cell to the LSTM RNN, with hidden state initialised by
an embedding of the sentiment value: negative, neutral, and positive. An auxiliary
loss is also used, but only applied to the last step of the sequence, rather than at
every step. This auxiliary loss helps ensure the network remembers the sentiment
polarity. Both approaches are trained using the MSCOCO dataset and the SentiCap
dataset (which as a product of this thesis is detailed in Chapter 4). In automatic
evaluations, both their methods outperform SentiCap presented in Chapter 4. How-
ever, it remains to be seen which factors contributed most to the overall quality of
the sentiment captions: the improved visual features from ResNet-152 (vs VGG-16
for SentiCap), or one of the new loss components.

2.8.2 Multilingual Captioning

Multilingual image captioning involves generating captions in different languages
or using multiple language resources to improve captioning performance. Although
related to stylistic image captioning, the multilingual task requires very different
outputs for each language, with almost every word changed. CNN+RNN models are
a common approach, for example Jaffe [2017] evaluates a number of different RNN
configurations on English and German. Their best performing model is a CNN+RNN
for German, where the last output layer of the German decoder is input to an English
decoder, with the whole structure trained jointly using English and German ground-
truth. The WMT 2016 shared task [Specia et al., 2016] involved generating German
translations of existing English captions. The best submissions were based on off-
the-shelf phrase-translation tools [Koehn et al., 2007] with re-ranking based on visual
features. This stands as a testament to the quality of modern phrase-translation tools,
and positions them as a possible baseline for style generation. In the WMT 2017
shared task [Elliott et al., 2017], the best ranked system was a CNN+RNN model
with attention over both the input image and the source sentence. WMT’17 also
included a task to generate German directly from the image, without an English
source caption; no system beat the baseline [Xu et al., 2015a] trained only on German.
This demonstrates the rapid improvement in CNN+RNN models for multilingual
captioning and the importance of aligned image-caption data in the target domain.

2.9 Summary

This thesis builds on a large base of work in computer vision and natural language
processing. In particular I build on recent advances in object detection [Krizhevsky
et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016],
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image captioning [Donahue et al., 2015; Karpathy et al., 2014a; Kiros et al., 2014;
Mao et al., 2015; Vinyals et al., 2015b], and natural language generation [Mikolov
et al., 2010; Graves, 2013; Cho et al., 2014a]. I use ideas from authorship attribution
to represent image-caption content independent from style, and adapt sequence-
to-sequence models previously used for machine translation. The overarching aim
is most similar to StyleNet [Gan et al., 2017a] and neural-storyteller [Kiros, 2015].
While research that is part of this thesis has also influenced similar works [Karayil
et al., 2016; Andrew Shin and Harada, 2016; You et al., 2018]. As each individual
chapter of this thesis focuses on a slightly different aspect of styled image-captioning,
the specifically relevant literature is reviewed in the related work sections for each
chapter.
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Chapter 3

Object Naming for Image Captions

3.1 Introduction

Object names are an essential part of image captions, communicating much of the
semantic information, and representing a stylistic choice [Simpson, 2004]. In fact, cat-
egorisation and naming is central to our interpretation of the physical world [Lakoff,
1987]. Understanding and predicting naming choices is therefore an important goal
for stylistic image captioning. In this chapter I develop name selection techniques for
visual concepts, and analyse naming patterns across a huge number of concepts. For
name selection, I focus on exploiting visual context and using image-caption pairs
mined from the web to avoid expensive data annotation. The analysis of naming
patterns focuses on the degree of naming variability ‘in the wild‘ for both concepts
and sub-trees defined in a naming hierarchy. In analysing these, I reveal the degree
of stylistic freedom in concept naming and develop a method for choosing names
that is applicable to styled caption generation.

A single concept may have multiple names: consider the concept “gala apple” (a
popular type of apple), which could equally be named as “apple” or “fruit”. In many
situations, people consistently choose the same name, called the basic-level [Rosch
et al., 1976]. In this case the basic-level name is “apple’’. We can view the basic-level
name as the default choice: if you have no other information, you should use the
basic-level name. However, visual concepts often come with contextual information
that can consistently change the names people use [Lakoff, 1987; Rosch, 1999]. For
example, in the presence of other fruit, the “gala apple” may be collectively described
as “fruit”. Alternatively, if the apple is up for sale then the specific name “gala apple”
may be more appropriate. In this chapter I develop an automatic concept naming
method that takes visual context into account.

Automatically naming objects in an image is one of the most ambitious tasks
of computerised image understanding. Progress on this task alone has important
implications, with billions of pictures on the web and in personal or professional
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collections. There are two aspects to this image-to-name problem. The first is visual
concept recognition for thousands of visual semantic categories – otherwise known
as object recognition, reviewed in Section 2.1. Systems that solve this problem have
made remarkable progress [Krizhevsky et al., 2012; Felzenszwalb et al., 2010]. The
second aspect is to mimic the human description of categories – recent work by
Ordonez et al. [2013] addressed this aspect by identifying basic-level names. There
are two key limitations of recent literature on the image-to-name problem. The first
is assuming the basic-level name for a visual category is unique, whereas cognitive
psychology acknowledges that object naming is context-dependent [Barsalou, 1982;
Mareschal and Tan, 2007; Chaigneau et al., 2009] and affected by attributes such as
typicality [Jolicoeur et al., 1984]. The second is the reliance on explicit crowd-sourced
labelling to map from categories to basic-level names. While crowd-sourcing is an
efficient way to gather one name-per category for tens of thousands of categories, it
does not scale to the context dependent case. In this chapter, I scale image-to-name
systems to millions of images to study the interplay between names and context –
both visual and language. To this end, I make use of millions of online images with
human-supplied descriptions [Deng et al., 2009; Xie and He, 2013], and large-scale
visual recognition systems [Jia et al., 2014; Krizhevsky et al., 2012].

This chapter has two classes of contribution: new methodology for selecting
names, and an analysis of naming choices. Sections 3.3 & 3.4 present both new
methodology and analysis, while Section 3.5 focuses on analysis. In Section 3.3 I ex-
amine naming patterns in the MSCOCO dataset, where both object ground truth and
human-generated natural language descriptions are available. This section develops
new methodology for choosing names for known concepts based on visual context.
It also validates context as a factor in naming and explores the types of concepts most
affected by visual context. In Section 3.4 I expand the contextual naming method to
a web-scale image-caption dataset with automatic visual concept detectors. I observe
that for many concepts with more than one frequent name, context is a strong pre-
dictor of the chosen name. In Section 3.5, I focus purely on analysing name usage
across hierarchical concept structures through an exploration of animal naming in
the Linnaean hierarchy.

3.2 Background

The study of naming and categorisation traditionally belongs to the discipline of psy-
chology. One key concept is the basic-level [Rosch et al., 1976] name: an abstraction
level appropriate for most contexts in which the object appears. Basic-level names
also tend to be used frequently in day-to-day interactions, and are relatively short,
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Figure 3.1: Different names can be given to the same concept given a different view-
point.

with few characters or syllables.

Basic-level names are a useful approximation, but there are more complex factors
that people appeal to when making naming choices. Rosch [Rosch, 1999] notes that
context affects naming, both in the level of abstraction used and even the choice of
objects to name. Similarly Chaigneau et al. [2009] demonstrate a distinct change in
naming after a situational information change. For example, knowledge of how a
previously unfamiliar object fits into a known system, in this case a catapult system,
changes the way subjects name objects as either fulcrums, levers, weights projectiles
or targets. The effect of context on categorisation has even been identified in infants
before they have a full grasp of language [Mareschal and Tan, 2007]. The diversity of
toys initially given to infants significantly affected how they categorised a subsequent
set of toys.

Visual appearance defines another set of factors affecting naming. Psycholo-
gists have identified some of these factors as typicality [Jolicoeur et al., 1984], per-
ceptual variability, familiarity [Snodgrass and Vanderwart, 1980], and kind diver-
sity [Mareschal and Tan, 2007]. In images, people tend to assign different names to
different view points. The occurrence of other objects falling into the same seman-
tic class also affects naming. Psychologists have observed a similar effect, namely
context-independent and context-dependent properties [Barsalou, 1982]. For exam-
ple, an entire field of california poppy flowers is described with the word poppy, while
a single flower is often described with the word flower (Figure 3.1 left); given an
outside photo a cathedral is likely to be named as a building, while inside it is more
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commonly a cathedral (Figure 3.1 right, second row).

Automatically associating images with natural language is a very active topic
within computer vision. Most recent systems rely on visual recognition as a com-
ponent, such as state-of-the-art approaches using convolutional neural networks
(CNN) [Krizhevsky et al., 2012; Jia et al., 2014] – see Section 2.1.2. The approaches for
associating images to words and sentences started with visual detection over a small
number of object categories, followed by language modelling [Yang et al., 2011], cap-
tion retrieval [Ordonez et al., 2011], and explicitly capturing syntactic and semantic
features [Hodosh et al., 2013]. A few approaches explicitly relate visual semantics to
their expression in words, such as studying how objects, attributes and visual rela-
tions correlate with their descriptions [Zitnick and Parikh, 2013], and learning visual
variations of object categories [Divvala et al., 2014]. In terms of capturing human de-
scriptions of natural images, our work is inspired by the studies of importance [Spain
and Perona, 2011; Berg et al., 2012] and the first work to identify basic-level categories
from images [Ordonez et al., 2013].

Part of our work is to explicitly model whether a concept is described in an
image caption. This simulates the process of writing captions, where the author
chooses, either consciously or subconsciously, if a concept will be named. Many
visual concepts, particularly those that define the setting, may not be mentioned in
the caption because they are not thought to be the focus of the image. This is an
instance of figure-ground perceptual grouping [Wagemans et al., 2012], where the
figures are the concepts mentioned in the caption while the background consists of
concepts that are not mentioned. This differs slightly from other instances of figure-
ground perceptual grouping. For example, Spain and Perona [2011] examine what
objects in natural images are foreground by asking people to annotate 10 objects
in the scene. This is different to our case since the objects people annotate do not
necessarily relate one-to-one with those named in captions. Whereas, Berg et al.
[2012] use a definition of figure-ground that mirrors our own, and find that context
is a strong predictor of importance, though features such as size and concept type are
also strongly correlated with importance. The figure-ground grouping also applies
within captions themselves, with some concepts being highlighted as the figure and
others forming the background [Talmy, 1975]. For example, given the sentence “The
car passing in front of a building.” the figure is “The car” while the background is
“a building”. This grouping may change how concepts are described, for example,
if “the building” was the figure then the caption could be “A church with traffic in
front.”. In this work we do not explicitly model the effect of focus on naming choice,
though choosing names with the aid of contextual features does capture some focus
dependent naming behaviour.
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Concept of interest: 
apple

Context:
bowl, bananna,orange

Caption: a blue dish with many types of fruits.

Predicted name: 
fruit

Ground truth name: 
fruit

Classify

Figure 3.2: We build a classifier that predicts a name for a concept of interest.
Ground-truth co-occurring objects are the features, while the caption defines the

ground-truth name.

Our system for choosing names offers two points of departure from the state-of-
the-art. First, the goal of deciding which names describe an image is different from
detecting visual objects; the focus here is the choice of description rather than visual
detection. This choice can be seen as stylistic rather than semantic in nature. Second,
a number of recent works apply context to image understanding tasks [Divvala et al.,
2014; Spain and Perona, 2011; Berg et al., 2012] or try to predict naming choices [Or-
donez et al., 2013], but these two parts have not yet been connected. By combining
them we are able to choose names more accurately.

Our analysis of image naming also departs from the current state-of-the-art. We
explore the effect of context on thousands of concepts in situ, using images with
captions generated naturally by hundreds of thousands of users. This is a major
departure from typical cognitive psychology experiments that employ a few dozen
to a hundred subjects to name or categorise a dozen isolated concepts [Rosch et al.,
1976] represented by toys or drawings [Jolicoeur et al., 1984; Mareschal and Tan,
2007].

3.3 Object Naming in Context: A Pilot Study

In this section we begin to tackle the two main aims of this chapter: to develop a
method for choosing names for images using context, and to analyse patterns in
naming choices. First, given a visual concept and the context in which it occurs,
we aim to predict the name used in the caption. In doing so, we can analyse the
importance of visual context for choosing names. This pilot study avoids the un-
certainty of using image-derived features, instead relying on a large image dataset
with manual annotations. By restricting our context to object co-occurrence defined
by ground truth image annotations, we can study visual context without using auto-
matic image-derived features.

We use the Microsoft Common Objects in Context (MSCOCO) [Lin et al., 2014]
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dataset with 82783 images, 413915 captions and ground truth object detections for
80 classes. Target names are extracted from image captions while the ground-truth
object annotations form the contextual features, see Figure 3.2. Our method considers
the name frequency for each object, and the impact of context on naming accuracy.
Using decision tree classifiers, we both predict names accurately and show concrete
interpretable cases where context affects naming.

3.3.1 Dataset and Pre-processing

The MSCOCO [Chen et al., 2015] training set has 82783 images, each with five cap-
tions collected from crowd-sourcing platform Amazon Mechanical Turk. Also avail-
able are manual annotations identifying which of 80 pre-defined MSCOCO concepts
are present in each image. These annotations were collected independently from the
captions and are designed to be complete: if a concept is in the image and visually
recognisable it should be annotated.

We define object concepts using WordNet [Miller, 1995] noun synsets: groups of
words with the same meaning. Noun synsets are arranged hierarchically: ancestors
(called hypernyms) are more general terms, while descendants (called hyponyms)
are more specific terms. For example the word cat in the sense of a feline mammal
has a direct hypernym feline and a direct hyponym domestic cat.

We manually matched the 80 MSCOCO concepts to unique WordNet synsets;
when paired with the existing annotations for each image this forms our concept
ground truth. The naming ground truth comes from parsing the five captions for
each image. The nouns are identified using a parts of speech tagger, then uni-grams
and bi-grams are formed from the surrounding words. Each of these n-grams is then
matched to the WordNet hierarchy and filtered down to synsets that are ancestors or
descendants of the image’s ground truth concepts. We reduce overlapping n-grams
by choosing the most specific, defined as the match to the synset in WordNet furthest
from the root. This ensures that the bi-gram tennis racquet is matched to the tennis
racquet synset, rather than the racquet synset, while the uni-gram racquet, occurring
alone, is matched to the racquet synset.

3.3.2 Model

First, we define a set of visual concepts C and a vocabulary of names for each concept
Vc, c ∈ C – see Section 3.3.1. The set of concepts represented by an image i is Ci.
Our goal is to predict the name yc,i ∈ Vc for each concept instance, given the set of



§3.3 Object Naming in Context: A Pilot Study 63

all concepts in the image. This is expressed as:

(3.1)argmax
yc,i

P(yc,i|Ci)

We cast the problem as a set of independent multinomial classifications, with one
classification task per concept. The set of concepts in an image Ci is represented by
a multi-hot vector. Since there are only 80 classes in MSCOCO this is sufficiently
compact.

First, we identify the concepts with multiple frequent names used in captions.
A concept has multiple frequent names if there exists a name with at least 10% the
frequency of the most frequent name. For these concepts we learn random forest
classifiers to predict the name yc,i, given the concept ground-truths Ci – we refer to
this method as the context-name method. This model is compared against a frequent-
name baseline, which always assigns the most common name for each concept. For
example, providing this baseline with images marked as bicycle in the concept ground
truth could lead to invariable prediction of the name bike if it is the most frequently
used in the naming ground truth.

Random forest is preferred over other classifiers for its interpretability. To re-
veal the most important contextual objects for naming we use the Gini importance
metric [Archer and Kimes, 2008], which has been used extensively by other authors
to interpret the importance of features in decision forests [Louppe et al., 2013]. In-
tuitively, Gini importance measures how cleanly a feature divides the training data
into the target classes. It is calculated by averaging the decrease in the Gini impurity
(Equation 3.2) across all uses of a feature. A feature is said to be used when it is
the decision variable for a sub-tree in the random decision forest. In order to define
the Gini impurity for a sub-tree, we denote pyc as the fraction of training examples
assigned to the current sub-tree, with ground truth name yc. Gini impurity IG (Equa-
tion 3.2) is then the probability of making a classification mistake for a randomly
sampled example from this sub-tree.

(3.2)IG = ∑
yc∈Vc

pyc (1− pyc )

3.3.3 Learning Set-up

To learn the context-name model, we train on 80% of the pre-defined MSCOCO train-
ing set. A further 10% is used for selecting hyper-parameters and the final 10%
is used for testing. Each random forest classifier consists of 100 trees, while the
minimum number of examples for splitting an internal node is 4 and the minimum
number of examples per leaf is 2.
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Figure 3.3: Improvement in name prediction accuracy when context is given com-
pared to no context. All 80 MSCOCO concepts are shown ordered by improvement.

See Fig 3.3 for raw accuracy scores.

We apply the random forest classifier in the sklearn [Pedregosa et al., 2011] li-
brary, the part-of-speech tagger from the spaCy1 library, and the WordNet [Miller,
1995] lemmatizer from nltk [Bird et al., 2009].

3.3.4 Results

Of the 80 MSCOCO concepts, 48 have at least two common names, indicating that a
single basic-level name is not an appropriate simplification for 60% of the concepts.

A comparison of the context-name method to the frequent-name method is given
by Figure 3.3. Out of the 48 concepts with at least two common names, 9 showed an
improvement in naming accuracy of greater than 5%. Figure 3.4 shows that without
context these concepts are not accurately named although, even with context, they
still, on average, exhibit slightly weaker naming accuracy than other concepts. In
fact these concepts are among the hardest to name, with multiple names in common
usage. Many of the concepts with no improvement are already named accurately be-
cause of highly skewed name frequency distributions. There are five concepts where
the frequent-name baseline outperforms the context-name method. These concepts are
characterised by relatively small testing and training sets, suggesting over-fitting is a
likely cause.

The most-improved concepts are car, ball, orange and backpack. For orange the most
common names are fruit, oranges, food, while the most important object context, as
measured by the Gini metric, are apple, dining table and bowl. Intuitively, when people
name an orange they are more likely to use the collective term fruit in the presence of
other fruit such as apples. The concept bowl likely indicates that there is a fruit bowl
in the image – which further supports this idea. In the case of ball the most common

1https://github.com/explosion/spaCy/tree/v1.9.0

https://github.com/explosion/spaCy/tree/v1.9.0
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Figure 3.4: Name prediction accuracy when context is given (top) compared to no
context (bottom). All 80 MSCOCO concepts are shown ordered by delta accuracy

improvement from including context. See Fig 3.3 for delta improvements.

names are tennis ball, baseball and ball while the most important concepts are tennis
racket, baseball bat and baseball glove. This is a case where the concept has multiple sub-
concepts each with their own basic-level name. The context allows differentiation of
the sub-concepts, which ultimately aids name selection.

This pilot study on annotated MSCOCO dataset shows many objects have con-
text dependent names. Moreover, the co-occurrence aspect of visual context plays
an important role in naming, allowing more accurate predictions of names used in
captions. This opens the door to large scale naming, which I explore in the following
sections.

3.4 Large Scale Object Naming with Visual Context

We propose a three step approach to automatically name objects in images. We first
use ImageNet [Deng et al., 2009] to learn visual concept models for more than 2,000
visual synsets (Section 3.4.1.1). We then learn a model to name detected concepts,
taking into account: visual context, object importance, and object appearance (Sec-
tion 3.4.1.3). Finally, in Section 3.4.1.4 we rank the names on a per-image basis using
a trained model that incorporates language context. This system is evaluated on
the SBU 1 Million Flickr image dataset (Section3.4.3). Our system achieves a higher
precision and recall than frequency based basic-level naming [Ordonez et al., 2013]
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on a top 5 prediction task. For 1,200+ visual synsets we see an improvement when
incorporating visual context into the name prediction task, ultimately causing more
accurate matches with human descriptions.

The main contributions of this section are:

• The large-scale verification of visual context as an important factor in object
naming.

• The first large-scale catalogue of context dependent names for thousands of cat-
egories. This is automatically constructed by analysing web-scale datasets with
natural language descriptions, and can easily scale to an order of magnitude
more concepts.

• A new method for predicting context-dependent names taking into account
visual and linguistic information. This is achieved by decomposing the problem
into a set of classification and ranking tasks.

• Benchmarking on a dataset two orders of magnitude larger than prior work [Or-
donez et al., 2013] shows our context-dependent naming system substantially
improves word selection accuracy for the image-to-word task.

We have released our catalogue of context-dependent basic-level categories, and a
word prediction benchmark of 150,000 images online 2.

3.4.1 Method

We propose a method, represented in Figure 3.5, to predict the names of objects
given an image. Our approach models the probability of using a name y to describe
an image with feature vector x, as p(y|x). To accurately model this distribution we
consider: the relationships between visual concept and images, the relationship be-
tween concepts and names, and the relationship between different names. This gives
rise to three components: detecting visual concepts in images (Section 3.4.1.1), nam-
ing visual concepts (Section 3.4.1.3), and ranking names for all detected concepts
using high level contextual image and co-occurrence features (Section 3.4.1.4).

3.4.1.1 Detecting Visual Concepts

The first steps towards deciding on descriptive names for an image are defining the
visual concepts, and then recognising these concepts in the images.

2https://github.com/computationalmedia/naming-with-visual-context

https://github.com/computationalmedia/naming-with-visual-context
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Figure 3.5: Method overview for context-dependent name prediction. See Sec-
tion 3.4.1 for details.

We define our visual concepts using WordNet. This widely-used lexical database
defines synsets that represent unique word senses [Miller, 1995]. In linguistics, a
word sense is “an element from a given set of meanings” [Miller, 1995]. WordNet
synsets have previously been used to define visual concepts for the well-known Im-
ageNet [Deng et al., 2009] database, where each visually distinct WordNet synset is
illustrated with a few hundred images. By defining our visual concepts on WordNet
we can learn a visual representation for each synset with ImageNet.

Our concept detection model uses binary logistic regression classifiers with fea-
ture vector x extracted from the second last fully-connected layer of the BVLC Ref-
erence CaffeNet [Jia et al., 2014] CNN. Equation 3.3 adapts the second last layer of
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a CNN to new synsets. In Section 3.4.1.3 we also use these CNN features for the
contextual naming task. Training a simple classifier using CNN features is compet-
itive with retraining the deep convolution network [Karayev et al., 2013; Razavian
et al., 2014; Yosinski et al., 2014]. This learning scheme is efficient enough to handle
web-scale training data and thousands of target classes.

We first learn synset classifiers to estimate the probability that a synset s appears
in an image with features x:

p(s|x) = σ(wT
s x) (3.3)

Here σ is the logistic function σ(x) = 1/(1 + e−x), and ws is a weight vector trained to
distinguish synset s from all other synsets. We learn one classifier per synset.

3.4.1.2 Defining a Concept’s Name Vocabulary

Before we can select names we must define a name vocabulary Ts for each concept.
For each synset s, we define a set Ts that contains all words that can be used as the
name for the semantic concept s. For example, Tcow would include: cattle, bovine,
and animal which are the more general categories; cow the basic-level name; and kine
an archaic plural. This makes naming an image x into a multi-class classification
problem. We estimate the probability of each choice p(ys

i |x, s, us), for i = 1, . . . , |Ts|,
such that ∑i p(ys

i |x, s, us) = 1.

We construct the name vocabulary Ts by tracing the WordNet hierarchy up to 5
hypernym (parent concept) levels and extracting lemmas at each level (e.g., riding
horse and mount are both lemmas of the same synset). The final set Ts is the union of
these lemmas. Due to its construction using the WordNet hierarchy, we will refer to
set Ts as the trace of synset s. By excluding the hyponyms (i.e. children nodes) of a
synset from the trace, we differentiate context-dependent naming from fine-grained
classification (e.g., distinguishing a male horse from a mare). Excluding names from
sibling or other related nodes outside the direct inheritance line reduces the number
of irrelevant names (e.g. zebra and mule are not acceptable names for horse).

We found that defining the name vocabulary using the WordNet hierarchy in
this manner gave fewer irrelevant names than selecting the most frequent words in
concept-caption pairs. However, this comes with a recall trade-off, one that may be
mitigated by including names close to the synset of interest, with respect to word
embedding or WordNet distance – we leave this for future work.
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3.4.1.3 Naming Visual Concepts

There are two steps to naming once we know the visual concept. The first is deciding
if the concept will be named. Many visual concepts, particularly those that define the
setting, are not named in images because they are not considered important. Other
authors have examined this problem specifically [Spain and Perona, 2011; Berg et al.,
2012], and found that context can be used to predict importance. The second step
is choosing a name for the concept, which we cast as a multinomial classification
problem. Though we could have included separate class in this multinomial classifier
to indicate that the concept was not described, we separate the two problems for
convenience and efficiency. Identifying importance is performed on all images with
a positive visual concept detection, while name selection need only be performed on
the much smaller set of images where the visual concept is considered important.

Given a detected visual concept with synset s, we use a generative process to
model the probability that the i’th name ys

i ∈ Ts is used to describe s, where Ts is the
name vocabulary described in Section 3.4.1.2. First, given the image and concept, we
generate a switch variable us that indicates whether s is described at all. If us is on,
we generate a name ys

i from the distribution p(ys
i |x, s = 1, us = 1). Here we assume

each concept contributes support to only one name; in other words, a caption names
each visual concept at most once. Overall, the probability of generating a name ys

i

given a concept and image features can be written as,

p(ys
i |x, s) = ∑

us∈{0,1}
p(ys

i |x, s, us)p(us|x, s)

= p(ys
i |x, s, us = 1)p(us = 1|x, s). (3.4)

Using this distribution we can trivially select the most likely name for each individual
concept s. To get the most likely names for the whole image, we generate name-
concept pairs based on these concept specific probabilities and globally rank them,
as described in Section 3.4.1.4.

The following describes how we model p(us = 1|x, s) and p(ys
i |x, s, us = 1).

Is the concept described? In accordance with the generative model for concept
names defined by Equation 3.4, we learn an is_described classifier to estimate the
likelihood of synset s being explicitly described, given that it is visually present.

p(us = 1|x, s) = σ(wT
us

x) (3.5)

With wus a learnable weight vector for each synset. Intuitively, the is_described classi-
fier solves a similar problem to recent models for understanding object importance in
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images [Berg et al., 2012]. We use CNN features x, as they should capture most of the
information related to concept importance, given their state-of-the-art performance
in capturing scene types and contextual factors [Krizhevsky et al., 2012]. Moreover,
CNN features can be extracted efficiently, which is necessary for scaling to large
datasets.

How to describe the concept? The remaining part of Equation 3.4, the description
classifier, is implemented as a one-vs-one linear SVC [Cortes and Vapnik, 1995] with
multi-class probability estimates [Wu et al., 2004] based on platt scaling [Platt, 1999].
The probability of a synset s being described with name ys

i rather than name ys
j is

(using the notation of Wu et al. [2004]):

p(ys
i |ys

i or ys
j , x, s, us = 1) =

1
1 + exp(Ai,j f̄ + Bi,j)

, i 6= j (3.6)

Where f̄ is the decision value from the SVM, while Ai,j and Bi,j are scalars learnt by
cross-validation over the training set. Since we are using a one-vs-one scheme, we
learn Ai,j and Bi,j for ∀i, j : i < j with multi-class corrections as specified in Wu et al.
[2004].

The three classifiers, synset, is_described, and description, are learned on succes-
sively smaller training sets increasingly tuned for finer grained descriptions, i.e. first
identifying synset s, then us = 0 versus us = 1 only when s occurs, and finally choos-
ing among ys when us = 1. In each case we use the same set of CNN features, but
different training sets and different target classes. This improves training efficiency
and allows us to train highly specialised classifiers.

For computational efficiency reasons, a concept s is considered for an image when
p(s|x) exceeds a high threshold. According to Equation 3.4, the is_described probabil-
ity p(us = 1|x, s) is a scaling factor shared across all names ys

i , so it does not affect
name selection, but does apply when ranking names across synsets (Section 3.4.1.4).

3.4.1.4 Ranking Names and Concepts

Equation 3.4 describes the probability of generating a name for each synset s, but it
does not stipulate how to rank names generated for different synsets. One way to
impose a ranking is with the confidence of the is_described classifier p(us = 1|x, s = 1).
However, we would like to take into account side information such as: description
classifier reliability, concept occurrence prior likelihood, and the context imposed by
other high-scoring name candidates.

We aim to learn a ranking score r for each triple composed of image features xi,
synset sm, word yk, referred to by their respective indexes (i, m, k). We use a linear
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ranking function with weights wr:

ri,m,k = wT
r hi,m,k.

The optimisation problem for learning the ranking weights wr follows the RankSVM
formulation [Joachims, 2002]. Training data is pairs of image-synset-word tuples
(i, m, k) and (j, q, l), where word k, synset m is associated with image i, while word l ,
synset q is not associated with image j, and ξi,m,k;j,q,l are non-negative slack variables.
C is a hyper-parameter representing the trade-off between training error and margin
width.

minimise : J(wr, ξ) =
1
2

wT
r wr + C ∑

i,m,k;j,q,l
ξi,m,k;j,q,l (3.7)

s.t. ∀(i, m, k; j, p, l)

wT
r hi,m,k ≥ wT

r hj,q,l + 1− ξi,m,k;j,q,l

ξi,m,k;j,q,l ≥ 0

We use four types of features that capture information relevant to ranking image-
synset-word tuples.

Scores from different classifiers. These include: is-described-score, the probability
that a synset is named given it is visually present Eq (3.5); direct-to-noun-score, the
probability that a word k is used to describe image xi – p(yk|xi), obtained using
logistic regression (this feature is also used as the Direct-to-noun baseline described
below); synset-score, the probability that synset sm is visually present in the image
Eq (3.3).

Aux-iliary information. This includes: in-synset-frequency, the prior of name k within
the corresponding synset m; global-noun-freq, the prior probability of word k in all
training image captions; description-accuracy, the accuracy of the description classi-
fier for this synset based on cross-validation performance; is-described-accuracy, the
accuracy of the is_described classifier from cross-validation; trace-size, the number of
words in the trace, previously denoted |Ts| in Eq (3.6).

knn-rank. We find image xi’s n-nearest neighbours in the training set and retrieve
their captions. Nouns extracted from these captions are ranked with TF-IDF. By
matching name k to a noun in the retrieved set, a rank for that name is established.
We then define knn-rank as 1/rank or zero if the name failed to match any nouns. n
is chosen to be 500 in this work.

Word2Vec features are used to capture the word context. We use a modified version
of the Word2Vec Continuous Bag of Words (CBOW) model [Mikolov et al., 2013]



72 Object Naming for Image Captions

without hierarchical softmax. Our CBOW training uses randomly selected context
words from anywhere in the caption, rather than within a window of the target
word. This applies to image caption training because the image semantically links
all caption words: longer documents typically used to train word2vec do not have
this property. Our CBOW model projects words into a 100 dimensional feature space.

We extract two different types of Word2Vec features from the set of candidate
names for each image, broadly described as similarity and score features. word2vec-
similarity-max and word2vec-similarity-avg are the maximum and average cosine simi-
larity between word k and the most likely 6 words for image i according to is_described
scores. word2vec-score-max and word2vec-score-avg are the maximum and average
probability of the target word k given by the CBOW model when the context words
are a random subset of high scoring name candidates for image i. The max and aver-
age are over 10 randomly sampled subsets. The probability estimates used here are
a standard by-product of the CBOW model, which is trained by predicting a target
word from its context.

We augment the ranking features by appending the products of all feature pairs.
Augmenting the feature vector of linear-SVM is known to produce competitive per-
formance compared to SVMs with non-linear kernels [Yuan et al., 2012]. We also
added log transformed features but found that they did not improve performance.
For each image i, we generate the final set of ranked names by removing duplicate
names from the ranked list of synset-name pairs (m, k), keeping the higher ranked
pair.

3.4.2 Experimental Setup

3.4.2.1 Training and Testing Datasets

We use the ImageNet-Flickr [Xie and He, 2013] dataset to train synset classifiers
for context-dependent naming in Section 3.4.3.1. This dataset is a subset of Ima-
geNet[Deng et al., 2009], containing over 5.7 million images sourced from Flickr. Us-
ing the intersection between ImageNet and Flickr ensures all images have WordNet
synset labels and Flickr metadata such as caption and tags.

We use the SBU dataset [Ordonez et al., 2011] to train and evaluate our is_described
and description classifiers. This dataset consists of 1 Million Flickr images with asso-
ciated captions; however, at the time of collection, only 95%, or 950K images were
still publicly available. From the images obtained we reserve 2000 images for evalu-
ation. These images are chosen because they form the two datasets, of 1000 images
each, used by Ordonez et al. [2013], here referred to as SBU-1Ka and SBU-1Kb. SBU-
1Ka contains randomly selected images, while SBU-1Kb contains images for which
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Ordonez et al. [2013] had high confidence detections. We use 80% of the remain-
ing images, or 760,000, for training the is_described and description classifiers; while
40,000, or 4% are used for training the rankSVM. The remaining 148,832 images are
used for evaluation, which we refer to as SBU-148K.
Generating ground-truth descriptions for the SBU dataset We extract lemmatized
nouns from the image captions and filter out nouns that are not part of ImageNet.
The names in the resulting set are subject to label noise since some captions do not
refer to visual content; however, they capture language use in a natural setting. In
contrast, the naming exercise used to generate SBU-1Ka and SBU-1Kb enforces a
less natural setting that explicitly strips away external image context and annotator
intent.

3.4.2.2 Model Learning

The image feature x is a 4096 dimensional vector from the second-to-last layer of
a CNN [Jia et al., 2014] pre-trained on the ImageNet ILSVRC [Russakovsky et al.,
2015] dataset. We learn 2633 new synset classifiers (Equation 3.3) on ImgNet-Flickr;
the chosen synsets have a large number of positive examples in the ImgNet-Flickr

dataset and are named in at least 100 SBU images. The threshold on the synset
classifier is chosen to be p(s|x) > 0.95.

The is_described classifier is trained on images representing the synset s according
to the synset classifier. The positive images have captions containing a word in Ts; all
other images in the subset are negative. Random sampling is used to select negative
examples. For the final ranking of names we use SVMrank [Joachims, 2006]. In all
cases hyper-parameters are set with grid-search cross-validation.

3.4.2.3 Evaluation Metrics and Baselines

We calculate a precision-recall curve to evaluate our model by sorting the output
names by confidence, before computing the precision and recall at each position in
this list. The mean and standard deviation of these precision-recall points is cal-
culated using 10 random testing set partitions. Precision and recall are the metrics
reported by Ordonez et al. [2013], although they only provide precision and recall
for the top 5 names per image rather than a full P-R curve.

The proposed image-to-name model is denoted BasicName-Visual+Lang. The pro-
posed model sans the ranking approach of Section 3.4.1.4 is denoted BasicName-
Visual; it uses is_described scores (Equation 3.5) for ranking. When performing per-
synset evaluations, BasicName-Visual is equivalent to BasicName-Visual+Lang as the
ranking only applies across synsets.
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Four baselines are compared with BasicName-Visual+Lang.

• Ngram-biased-SVM, as presented by Ordonez et al. [2013]. This baseline only
applies to the SBU-1Ka and SBU-1Kb datasets.

• Direct-to-noun, a method consisting of 2,549 separate logistic regressors predict-
ing nouns yi from CNN features x. Because of class imbalance, we trained on
a balanced dataset constructed by down-sampling negative examples, before
calibrating the probabilities using held-out data.

• Most-frequent name, a method that outputs the most-frequent name yi in each
trace Ts for synset s. Names are ranked across concepts by their frequency.

• Frequency+described, outputs the most-frequent name yi in each trace Ts for
synset s. Names are then ranked across concepts using the is_described clas-
sifier (Eq. 3.5).

3.4.3 Results

We divide our evaluation into two parts. Section 3.4.3.1 evaluates name selection per
synset, while Section 3.4.3.2 evaluates the complete image-to-name pipeline.

3.4.3.1 Name from Visual Context with a Known Concept

Multiple common names. We examine all 3,398 synsets with at least 200 captions
from ImageNet-Flickr matching the trace yi ∈ Ts. Of these synsets 1,026, have a second
common name: one used in at least 10% of image captions. Demonstrating semantic
concepts with multiple names is a common phenomena.
Name from visual context. Using BasicName-Visual to detect synsets and choose
names for images in the SBU dataset, we evaluate per-synset accuracy improvement
over the Frequency+described baseline. The accuracy delta is shown in Figure 3.6,
while Figure 3.7 gives the accuracy for each approach. Full accuracy results for each
synset are published online3. Among the 2,633 frequent synsets in the SBU dataset,
BasicName-Visual improves upon the Frequency+described baseline in 1,222 synsets, of
which 783 improved by more than 1%. No change in accuracy is measured for 1190
synsets, while a small accuracy decrease affects 221 synsets.

BasicName-Visual provides the most improvement for synsets with ambiguous
basic-level names: two or more names used with similar frequency. The fraction of
improved synsets is on par with the fraction of synsets with multiple common names
(see above). Similar to the pilot study in Section 3.3, we find the most improved
synsets tend to be hard to name by frequency alone (see top of Figure 3.7), giving

3https://github.com/computationalmedia/naming-with-visual-context

https://github.com/computationalmedia/naming-with-visual-context
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SBU-1Ka SBU-1Kb

Precision Recall Precision Recall
Ngram-biased+SVM 19.9± 1.2 10.4± 0.7 25.1± 2.4 14.4± 1.4

Direct-to-noun 20.0± 1.6 10.5± 0.9 21.5± 1.6 12.2± 0.7
Frequency+described 26.1± 1.7 12.8± 1.0 28.1± 1.3 15.2± 1.5

BasicName-Visual+Lang 26.3± 1.8 12.9± 1.1 28.9± 1.3 15.6± 1.2

Table 3.1: The precision and recall at 5, evaluated on the SBU-1Ka and the SBU-1Kb

datasets. This shows BasicName-Visual+Lang outperforming the Ordonez et al. [2013]
approach, Ngram-biased+SVM, in terms of both precision and recall.

rise to a mean accuracy of 0.65, improved to 0.73 with context. For comparison,
the synsets where context gave zero accuracy improvement have a mean accuracy
of 0.88. In these cases the basic-level name is likely a reliable approximation. The
221 synsets that exhibit an accuracy decrease are characterised by multiple names
with similar frequency and fewer than average training examples. The similar name
frequency ensures reliance on the visual context, but the visual classifiers are weak
because of the limited training examples. Given more training examples, these 221
synsets could be improved, since their name distribution is conducive to contextual
classification.

For the synsets which showed accuracy decrease with our method, a prior favour-
ing the most frequent name could be beneficial. In a hierarchical probabilistic frame-
work this prior could be learnt across all synsets, effectively deciding when the basic-
level name is appropriate. We leave this as a direction for future work.

Illustrative examples. Figure 3.8 shows results of BasicName-Visual in comparison
to labels from Mechanical Turk workers [Ordonez et al., 2013] and N-gram fre-
quency [Ordonez et al., 2013]. Figure 3.8 shows synsets for which prior work [Or-
donez et al., 2013] has not provided names. We see several aspects of visual context
come into play when choosing names – including view point variation (plant vs tree;
or bird vs heron); the presence of other object or part (apple vs fruit; door vs screen);
and the appearance variations within the category (art, sculpture vs carving).

This is the first large-scale, fully automatic, classification of names via visual
context. Our use of image collections with objects in their natural context enables
us to discern context-dependent names previously observed in controlled lab en-
vironments [Barsalou, 1982; Mareschal and Tan, 2007], and alleviates the need for
crowd-sourced labels [Ordonez et al., 2013].
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3.4.3.2 Image to Names

We evaluate the performance on the image to names task with the three SBU test
subsets described in Section 3.4.2. Precision-recall curves are generated using the
k ∈ 1, 2, . . . , |Ts| highest ranked names per image.

Figure 3.10 compares BasicName-Visual to four baselines on SBU-1Ka (left) and
SBU-1Kb (right). When predicting 5 words per image (i.e. k = 5) on SBU-1Ka,
BasicName-Visual achieves a precision of 0.26 at 0.13 recall, which is an improvement
over Ngram-biased-SVM [Ordonez et al., 2013], with a precision of 0.20 at 0.10 re-
call – see Table 3.1. BasicName-Visual also achieves better performance than both
Most-frequent name and Frequency+described. We find Ngram-biased-SVM is on par
with Direct-to-noun. The same evaluations are carried out on SBU-148K (Figure 3.11).
With two orders of magnitude more testing data – hence lower variance for perfor-
mance estimates – we can measure a significant difference between BasicName-Visual,
Most-frequent name and Frequency+described. A result demonstrating is_described and
description both contribute to naming accuracy.

Figure 3.11 shows BasicName-Visual+Lang, which uses language context and aux-
iliary information for ranking names. This approach out-performs BasicName-Visual
across the recall range. The average precision of BasicName-Visual is 0.336± 0.003, im-
proving to 0.341± 0.002 with Scores features, and further improved to 0.347± 0.002
with Knn, Word2Vec and Aux features. This result demonstrates each feature set is
important for ranking names.

Figure 3.12 shows several examples of the image to name task. In the first four
rows, BasicName-Visual+Lang correctly chooses a more specific name than the one
chosen by frequency alone, such as preferring church over building in row 3 and
sunflower over flower in row 4. Row 5 contains an example where synset classifiers
break down. Here the main objects (bikes and people) are small and subject to poor
lighting. Row 6 shows a difficult case where the scene contains several objects that
do not usually co-occur. The prediction ball can be considered correct but is not in
the ground-truth.

In the next section (Section 3.5) we continue our analysis of naming by identifying
naming patterns in a hierarchy.

3.5 Large Scale Naming Patterns in a Taxonomy

In previous sections naming was cast as a flat decision problem: once names for
each concept were identified, the hierarchical relationships were removed. This was
demonstrated as a reasonable approximation; however, hierarchical relationships are
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still valuable. They could, for example, allow naming specificity to fit an individ-
ual’s domain knowledge. Alternatively, under additional stylistic constraints such
as sentiment, a hierarchy could help to trade off stylistic conformance with visual
specificity. In general, hierarchical relationships offer a concise way of trading off
specificity with another objective.

We explore the hierarchical structure of naming using a large image-caption
dataset, and focus on understanding the specificity of animal naming. As a concrete
example, we test and refine the theory presented by Lakoff [Lakoff, 1987], stating that
animal naming at the level of genus is most common. This theory is based on the
original definition of genus as the level where subcategories are visually distinctive.
Genus sits just above species: defined by interbreeding possibilities. The species that
survive in a geographic region are those best adapted, often leaving one species per
genus per geographic region, making different genus locally distinctive.

Our analysis employs automatic visual detection of animals organised by the
Linnaean hierarchy. The presented techniques are general enough to be employed
in any object naming domain where specificity is defined in terms of depth in a
hierarchy (e.g. in the animal kingdom the genus is at the same level in the hierarchy
regardless of the subspecies) – true of many scientific domains. We further validate our
automatic method with a crowd-sourced Amazon Mechanical Turk (AMT) naming
experiment. Finally, using visualisations we explore the impact of, and potential
biases introduced by, automatic concept detectors.

Results indicate that naming patterns can be identified on a large scale, but con-
trary to the conventional wisdom in cognitive psychology [Lakoff, 1987] they are not
dominated by genus for animals. We observe that across a few hundred classes of
mammals, reptiles and birds, the level of specificity for naming differs from concept
to concept. We also note that the quality of concept detectors has a large influence
on the inferred names.

3.5.1 Datasets and Pre-processing

Concept Hierarchy We use the Integrated Taxonomic Information System (ITIS) 4 to
define the concepts in the animal kingdom. ITIS consists of a taxonomy for plants,
animals, fungi and microbes around the world and is developed and supported by
federal agencies in the United States. When this research was conducted, the system
had over 690000 scientific names and 124000 common names arranged hierarchically
by their classifications called taxa (singular, taxon) e.g. kingdom, class, genus and
species. In ITIS the depth of a taxon has a consistent interpretation (eg class, genus or

4http://www.itis.gov

http://www.itis.gov


§3.5 Large Scale Naming Patterns in a Taxonomy 79

species) which relates to the specificity. This makes it possible to draw conclusions
about the specificity of naming choices across different animal types. In contrast,
WordNet does not define specificity in a consistent way across sub-trees.

Image Captions We use the SBU 1-Million image-caption dataset [Ordonez et al.,
2011], which was sourced from Flickr and filtered for captions with linguistic features
indicative of visual relevance.

Any sub-string of the caption is a candidate name for the visual concept; how-
ever, we only use uni-grams or bi-grams that match a node in the taxonomy. When
overlapping n-grams match the taxonomy, the more specific name – as defined by
depth – is chosen. For example, in the case of eagle and bald eagle we select the more
specific bi-gram bald eagle. An n-gram is matched to a node in the taxonomy using
exact string matching to vernacular names or scientific names; word concatenation,
lemmatization and punctuation removal are used to improve recall.

3.5.2 Model

Given an image in the SBU dataset, we automatically detect the concept label with a
pre-trained classifier. Specifically, we identify the ImageNet synset labels using the
pre-trained Oxford VGG 16-layer network [Simonyan and Zisserman, 2015]. This
network is trained to classify 1000 different visual synsets. We map these synsets to
nodes in the animal taxonomy by matching strings from synset lemmas to taxonomy
vernaculars and names. The resulting mapping is many-to-many, though typically
taxonomy entries only have one synset mapped to them. We only consider the most
confident, i.e., top one, visual prediction of the VGG network for each image. We
filter out images with a top one visual concept that is not an animal.

Matching objects to names. We first select a sub-tree of the taxonomy such as
Mammalia (Mammals), Aves (Birds) or Reptilia (Reptiles). For each image we match
the highest confidence visual concept to names in the caption. We require that both
the visual concept and the possible name map to taxonomy entries in the sub-tree
of interest, and the name and the visual concept have a descendant or ancestor re-
lationship. These conditions ensure the classifier and caption agree on the concept,
providing confidence that a name actually refers to the visual concept.

3.5.3 Results

The results are divided into three subsections: large scale naming patterns (Section
3.5.3.1), human evaluations (Section 3.5.3.2), and concept detector performance (Sec-
tion 3.5.3.3). In Section 3.5.3.1 we draw conclusions about naming specificity across
different animal classes using the results of our large scale naming study on image-
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caption pairs with automatic concept detectors. In Section 3.5.3.2 we conduct a small
scale human evaluation task to validate our findings – our analysis touches on the
importance of context and motivation in naming. Finally, In Section 3.5.3.3 we use a
powerful visualisation approach to explore concept detector errors.

3.5.3.1 Large Scale Naming Patterns

Using automatically detected concepts and names matched to the ITIS taxonomy,
we explore how different classes of animals such as birds, mammals, reptiles, are
named. We count both the frequency of concept-name pairs and concept-taxon level
pairs. Name frequency per-concept gives a fine grained view of concept descriptions.
Normalising taxon counts for each concept (ie down columns in Figure 3.13) provides
an overview of naming specificity in captions.

Using the SBU 1-Million image-caption dataset, we calculate the level at which
each animal concept is named. There are over 59000 images in the SBU dataset with
an animal name in the caption that matches the visual classification via a descendant
or ancestor relationship. Figure 3.13 shows the results for the Mammalia class. For this
subset of mammals the majority are frequently named at only one level of specificity,
a result consistent with the theory of basic-level naming [Rosch et al., 1976]. Some
mammals, however, are frequently named at multiple levels of specificity – a result
that is incongruous with basic-level naming. For example black bear and bear are
used with a similar frequency when naming Ursus americanus. This supports our
findings from Sections 3.3 & 3.4, indicating that a single basic-level is not universally
appropriate.

Figure 3.13 shows that animals in the Mammalia class are commonly described at
the level of species, genus or family. Aves are typically described at the level of class
by the name bird or occasional at the level of family or genus – Figure 3.14. Reptilia
are typically described at the level of order or genus – Figure 3.15.

We observe animals in the class Mammalia are described more specifically than
birds or reptiles. Mammals, unlike birds or reptiles, often have obvious shape differ-
ences, so our results are consistent with the idea that distinctive shapes are important
in categorisation and naming [Lakoff, 1987]. Moreover, the most specifically named
classes of birds and reptiles tend to be large with a distinctive shape such as: ostrich,
black swan, alligator and iguana.

Interactive figures for Mammalia (mammals), Aves (birds) and Reptilia (reptiles)
are provided online5

5https://github.com/computationalmedia/naming-with-visual-context

https://github.com/computationalmedia/naming-with-visual-context
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Animal MTurk Names SBU Names
Dasyurus

Bos ox cattle
Canis lupus wolf, dog wolf, dog

Ursus arctos horribilis bear brown bear, bear
Cebus capucinus capuchin monkey

Marmota squirrel
Ailurus fulgens red panda red panda

Elephas maximus elephant elephant
Vulpes lagopus arctic fox, fox

Panthera leo lion lion

Table 3.2: Common names selected by AMT workers for each animal. Names are in
order from most frequent to least (left to right). The table shows names that occur in
at least 10% of cases with a matching name, and with the total count greater than 20.

As a result of this filtering some cells are empty.

3.5.3.2 Human Evaluation

We conduct a small scale animal naming experiment on Amazon Mechanical Turk
(AMT) to validate the large scale naming results in Section 3.5.3.1. We ask AMT
workers to label 30 images for each of 10 animal categories with the name they
would use to describe the animal. Three different AMT workers are assigned to each
image, giving a total of 900 judgements. These judgements are then matched to the
animal taxonomy and filtered as in Section 3.5.1.

The names chosen by turkers, shown in Table 3.2, demonstrate that some animals
have multiple names in common usage(eg arctic fox and fox). Moreover, the results
are similar to those obtained automatically from the SBU dataset. For example Canis
lupus, Panthera leo, Elephas maximus and Ailurus fulgens have the same most common
name in both the automatic and human evaluations. In the case of Ursus arctos
horribilis (brown bear), turkers tended to use more general names than those used in
the image-caption corpus. We hypothesise that photo up-loaders use more specific
names because of their additional contextual information.

The empty cells in Table 3.2 represent cases where no name was chosen more
that 10% of the time, or where names above this threshold did not match to ITIS. For
example, Cebus capucinus (white-headed capuchin monkey) and Dasyurus. Dasyurus
is a nocturnal marsupial native to Australia and New Guinea, so it is reasonable to
assume annotators failed to identify it correctly. Cebus capucinus was overwhelm-
ingly described as a monkey, though according to ITIS it is a new world monkey. This
disconnect between the ITIS vernaculars and the names being used by turkers is the
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reason Cebus capucinus did not have a name match.

Our human evaluations support the results of the large-scale automatic eval-
uation, with many names selected by annotators also identified by the automatic
method. The evaluation also highlights the differences between controlled naming
experiments and studying naming ‘in the wild’, where annotators have additional
context and latent motivations. In a Mechanical Turk setting the homogeneous con-
text and motivation triggers different naming choices.

3.5.3.3 Concept Detector Visualisations

Our concept detector is a state-of-the-art CNN (circa mid 2015), with a top-1 per-
formance of approximately 70% [Simonyan and Zisserman, 2015]. To qualitatively
observe the relationship between names and visual appearance, we build per-concept
visualisations relating visual features and names. Specifically, we employ a t-Distributed
Stochastic Neighbour Embedding (t-SNE) [der Maaten and Hinton, 2008], an un-
supervised approach for embedding feature vectors into a low dimensional space,
commonly used for visualising high-dimensional data. Our original feature space is
4096 dimensional and extracted from the second last layer of the VGG 16-layer CNN,
while our transformed feature space is the 2-dimensional x,y-plane.

The t-SNE embedding for Ursus maritimus (polar bear) shown in Figure 3.16 di-
vides the images into at least three distinct regions. In the upper right are polar bears
in icy environments, in the lower left are polar bears swimming in the water, and in
the middle are polar bears in enclosures or other environments. The name polar bear
is used relatively uniformly throughout the space, while the name bear is primarily
used in the middle section and generally not in the upper right hand corner where
the polar bears are in icy environments. This indicates that people are less likely to
name Ursus maritimus as bears when they are shown in a visually icy context.

The t-SNE embedding for Cygnus atratus (black swan), Figure 3.17, shows a num-
ber of classifier failures. All the images in this figure were classified as Cygnus atratus.
The upper right of the figure shows white swans, the lower right shows ducks, while
the left of the figure is mostly black swans. It is clear from this that the Cygnus
atratus is typically described as a black swan and that the other names duck and swan
are mostly spurious detections. The names duck and swan slipped past the caption
matching procedure because in ITIS they are different possible names for black swan.

The presented t-SNE embeddings come from the CNN features also used for clas-
sification, so the separation between correct classifications and errors is interesting.
This suggests that, although the classifier was not trained to differentiate between
these closely related animal classes, the learnt features are nevertheless discrimina-
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tive. We could eliminate some classifier errors by training new classifiers with the
existing features.

3.6 Summary

This chapter focused on selecting visual concept names that are appropriate for im-
age captions, and analysing naming choices in image captions. These focal points
relate to two key challenges in stylistic image captioning: representing style and
content, and overcoming data scarcity.

I develop a concept naming method that takes into account visual context and
works at a large scale, without manual labelling. This method uses name candidates
selected from WordNet and two separate classifiers for each concept: the name clas-
sifier and the is-described classifier. Using this solution to the concept-to-name task
I tackle the image-to-name task with a three stage pipeline: automatic concept de-
tection, concept naming, and name ranking. These approaches for concept-to-name
and image-to-name show good performance in their respective subtasks. The result
is the first catalogue of contextual names for thousands of visual concepts generated
automatically using hundreds of thousands of images.

Basic-level names are insufficient to capture the complexities of naming and cat-
egorisation. Many visual concepts have more than one name in common usage:
60% of MSCOCO concepts and 30.2% of ImageNet concepts on SBU. Visual context
helps to choose names, improving naming accuracy by more than 5% for 11.3% of
MSCOCO concepts and for 15.7% of SBU concepts. Unlike smaller scale experiments
in the cognitive psychology literature, I show that context is important in a natural
setting for thousands of concepts. Aspects of visual context identified as important
are: view point, concept co-occurrences, and category appearance variation. Pat-
terns of naming within a hierarchy were also investigated on a large scale via an
entirely automatic method. Results indicate different levels of specificity used to
name mammals, reptiles, and birds – a result consistent with ideas from cognitive
psychology. Contrary to the conventional wisdom in cognitive psychology [Lakoff,
1987], the animal names are not dominated by genus, although caution is advised
when interpreting these results due to the classification inaccuracies identified.

This chapter relates to two key challenges in stylistic image captioning: represent-
ing style and content, and overcoming data scarcity. Style was previously defined as
how text is written rather than what is communicated, and expressed through a set
of consistent and distinguishable linguistic choices. In this chapter I controlled for
the what, the visual concepts, and modelled the how, the naming choice. I showed
that this concept level representation resulted in more natural, contextually appro-
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priate names for concepts. However, only 30% of concepts have at least two common
names, so introducing easily identifiable style into image captions seems to require
structural changes beyond naming. A key advantage of the naming method pre-
sented here is its ability to learn on image-caption pairs mined from the web and
thus to avoid expensive data annotation. Learning sub-components of a styled im-
age caption generation system on data mined directly from the web has the potential
to substantially reduce the burden of data collection.

Since the publication of the works on concept naming, there has been a shift
towards end-to-end trainable models for image captioning. While in previous models
the naming work fitted easily into captioning pipelines between object detection and
surface realisation, end-to-end models cannot be so easily adapted. However, some
recent state-of-the-art models [Fang et al., 2015; Wu et al., 2015; Gan et al., 2017b]
do use separate vision components to extract semantic labels, rather than vectors of
features. A visual concept naming pipeline such as the one developed here could fit
more easily within this type of model, bringing advantages such as straightforward
incorporation of domain knowledge and the ability to exploit incomplete or noisy
training data. Similarly, visual concept naming pipelines could be applied to out-of-
domain image captioning [Tran et al., 2016; Anderson et al., 2017; Anne Hendricks
et al., 2016], where test images contain objects not seen during training.

Other interesting directions for future work include generalised trace construction
by expanding candidate names beyond direct ancestors, and hierarchical models for
sharing parameters across concept to name classifiers.
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Figure 3.8: Examples of context-dependent naming. For each synset we display
crowd-sourced one-name-per-synset [Ordonez et al., 2013], n-gram based most fre-
quent name [Ordonez et al., 2013], context-dependent names from BasicName-Visual,
and four image examples for each name. For synsets without previous naming re-

sults see Figure 3.9.
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Synset mTurk Ngram Description Classifier
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Figure 3.9: Examples of context-dependent naming. For each synset we display
context-dependent names from BasicName-Visual and four image examples for each
name. Unlike Figure 3.8, the synsets in this figure had no previous naming results

available [Ordonez et al., 2013].
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Figure 3.10: Precision-recall curves for our method and the four baselines on SBU-
1Ka and SBU-1Kb. Error bars show one standard deviation.
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Figure 3.11: Precision-recall curves on SBU-148K. Error bars show one standard de-
viation.
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Images Labels Ngram-biased-SVM Direct-to-noun Frequency+described BasicName-
Visual+Lang
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Figure 3.12: Example images from the SBU-1Ka and SBU-1Kb datasets with Ama-
zon Mechanical Turk labels. We show the top names, predicted by our method,
BasicName-Visual, and three baselines. Words printed in green match the hand la-
belled ground-truth. Our method performs well on the first four images but fails on

the last two.
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Chapter 4

Generating Image Captions with
Strong Sentiment

4.1 Introduction

In this chapter I present SentiCap, an end-to-end stylistic caption generation system.
Techniques in this chapter directly tackle the key task of modelling styled captions.
My approach balances two models, one aimed at generating style, the other at visual
description. I also propose transfer learning to reduce the effect of data scarcity in
stylistic captioning, by learning from a large set of visually relevant captions and a
small set of stylistic captions. I show how to crowd source stylistic captions, and
elucidate the challenges faced. As part of the crowd sourced experiments I directly
explore the freedom to choose a style for image captions. This tests the hypothe-
sis that style is frequently an attribute of the image-caption pair, rather than being
inherent to the image alone.

SentiCap focuses on the single stylistic attribute of sentiment, either positive or
negative, as it simplifies data collection and evaluation. Sentiment is easily expressed
in short captions, but can elicit a powerful emotional response from the reader. It is
this response that makes generating captions with sentiment an important goal in
its own right. The expression of clear and polarised emotions influences decision-
making [Lerner et al., 2015] – from the mundane (e.g., making a restaurant menu
appealing) to major (e.g., choosing a political leader in elections). For this reason,
sentiment in natural language, has been extensively studied in the literature; how-
ever, related works focus on identifying or interpreting rather than generating sen-
timent. The methods I present for generating image captions are not tied only to
sentiment, they apply more generally to style generation.

In Section 4.2 I explore two related areas: sentiment, which forms the problem
setting; and transfer learning, which provides inspiration for the presented method.
My approach is described in Section 4.3, and provides specific ideas towards the

95
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key challenges of data scarcity and incorporating both style expression and visual
relevance. The dataset construction in Section 4.4 demonstrates how to source a
dataset consisting of stylistic captions; in doing so I further address the data scarcity
challenge. Human evaluations of this dataset test the hypothesis that sentiment is an
attribute of the image-caption pair, and is not intrinsic to most images. Experimental
settings and results are in Section 4.5. Finally, Section 4.6 summarises the chapter
and its relation to the key challenges.

4.1.1 Overview of the SentiCap System

SentiCap builds upon the CNN+RNN (Convolution Neural Network + Recurrent
Neural Network) recipe that has seen many recent successes in image captioning [Don-
ahue et al., 2015; Karpathy and Fei-Fei, 2015; Mao et al., 2015; Vinyals et al., 2015b;
Xu et al., 2015a]. However, SentiCap is the first end-to-end model capable of gener-
ating image captions with a distinct style. In essence SentiCap is a switching RNN
model which injects sentiment. Two parallel RNNs generate each sentence; one is
a factual language model, the other specialises in sentiment, both are conditioned
on the image. A novel word-level regularizer emphasises sentiment words during
training, helping to define the optimal combination of RNN streams.

We gathered a new dataset of several thousand captions with positive and neg-
ative sentiments by re-writing neutral captions (Section 4.4). Trained on 2000+ sen-
timental captions and 413K neutral captions, our switching RNN out-performs a
range of heuristic and learned baselines, generating more emotional captions, with
greater automatic and human evaluation scores. In particular, SentiCap has the high-
est fraction of successes at injecting sentiment into the caption: 88% positive (or 72%
negative) captions are perceived by crowd workers as more positive (or negative)
than the factual caption, with a similar descriptiveness rating.

4.2 Related Work

SentiCap build upon recent neural image caption generation techniques; see Sec-
tion 2.3 for a review of these, and related techniques. The Convolutional Neural
Network component is further detailed in Section 2.1, and Recurrent Neural Net-
works for language generation are reviewed in Section 2.2.

The concept of linguistic sentiment is a vital part of SentiCap. I review the rele-
vant literature in Section 4.2.2.
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4.2.1 Transfer Learning

We formally define transfer learning following the presentation of Pan and Yang
[2009]. A training set consisting of input space X and output space Y is denoted
D = {(x, y) ∈ X × Y}. In the transfer learning setting we have two datasets, the
source Ds sampled from distribution ps, and the target Dt sampled from distribution
pt. The goal is to find a function with high predictive accuracy on data drawn from pt

using both datasets Ds and Dt. This is reliant on ps and pt having similar properties,
though we allow pt(y|x) 6= ps(y|x), which is sometimes cited as a key difference
between transfer learning and domain adaptation [Pan and Yang, 2009]. However,
there is disagreement in the literature: some authors [Schweikert et al., 2008] label the
pt(y|x) 6= ps(y|x) case as domain adaptation, or present domain adaptation algorithms
that are agnostic to this property [Daumé III, 2007]. In our case of styled caption
generation we are interested in the case of fully labelled source and target data where
pt 6= ps and pt(y|x) 6= ps(y|x).

There are a number of transfer learning algorithms based around the idea of using
source examples that help to estimate the target and removing those that hinder esti-
mation. Dai et al. [2007] apply a boosting method that iteratively re-weights samples
from both the target and source. The target examples are weighted as per standard
AdaBoost, while source examples receive a lower weight if they are misclassified.
Liao et al. [2005] present a method for transfer learning in an active learning setting,
where an auxiliary variable measures the mismatch between each source example
and the target distribution. Wu and Dietterich [2004] present an SVM formulation
that selects support vectors from the source dataset while minimising total classi-
fier complexity and maximising classification accuracy on both source and target
datasets.

Another popular approach for transferring knowledge between tasks is feature
learning. This can take the form of: learning feature relevance [Lee et al., 2007],
learning a new joint feature space on the source and target data, or learning a new
feature space on only the source data. Lee et al. [2007] argue that some features
are innately more relevant for prediction across multiple related tasks. They use a
generalised linear model P(y|x) = g(wTx) where feature weights w are associated
with Gaussian priors controlled by meta-features. These meta-features summarise
the importance of each feature across all the training tasks. Raina et al. [2007] learn
high level features from the source data with sparse coding. They then express the
target data as a sparse linear combination of these features. A standard classifier
such as SVM is applied to this new representation.

For transfer learning, it is often useful to transfer or share parameters between
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models built on the source and target datasets. Taken to the extreme, models trained
on each dataset can be weighted and combined to form the new model [Schweik-
ert et al., 2008; Gao et al., 2008]. Another approach is to define a parameter prior
to share knowledge between the tasks [Bacchiani and Roark, 2003]. Bacchiani and
Roark [2003] adapt n-gram language models by using the source text to define a
Dirichlet prior which informs parameter estimation on the target text. Alternatively
parameters can be coupled in a regularisation term [Schweikert et al., 2008], such as:

(4.1)R(Θ) =
λθ

2
‖Θs −Θt‖2

With hyper-parameter λθ , parameters Θt of the model built of the target data, and
parameters Θs of the model built on the source data. In computer vision parameter
transfer has proven particularly effective for CNN architectures [Razavian et al., 2014;
Yosinski et al., 2014]. A CNN model is first trained to convergence on the source
dataset, then the learning rates are reduced and it is fine-tuned to the target dataset.
Later layers (closer to the output layer) are generally more task dependent so receive
higher learning rates during fine tuning – early layers (closer to the input layer) may
even be fixed. Similar approaches have been used for sentiment classification of
online product reviews [Glorot et al., 2011].

SentiCap uses a mixture of different ideas from transfer learning. We couple
parameters between the two language model streams using a regularisation term.
We weight words based on their importance to each language model; this is defined
via word level supervision rather than the statistical techniques common to transfer
learning. We also use pre-trained word vectors to handle unknown words.

4.2.2 Sentiment

In the literature it is common to talk about sentiment analysis [Pang, 2006], which can
be understood broadly as identifying opinions, subjectivity or emotion in texts, be
they visual, written or spoken. Most sentiment analysis applications have a far more
limited scope, for example determining if a written text portrays a product positively
or negatively. In this chapter we focus on positive and negative sentiment in the
multi-modal image-caption domain; to this end we review research on sentiment in
both language and vision.

Identifying sentiment in text is an active area of research [Pang and Lee, 2008;
Socher et al., 2013]. Several teams [Nakagawa et al., 2010; Täckström and McDonald,
2011] have designed sentence models with latent variables representing the senti-
ment.
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Sentiment lexicon construction – identifying the average sentiment contribution
of linguistic entities such as phrases or words – is a common sub-problem of sen-
timent classification. Popular approaches include: direct annotation at the phrase
level [Esuli and Sebastiani, 2006; Taboada et al., 2011; Thelwall et al., 2010], infer-
ring from document level annotations [Thelwall et al., 2010; Salvetti et al., 2006] and
extrapolating from phrase relationships’ substructure [Esuli and Sebastiani, 2006;
Hatzivassiloglou and McKeown, 1997]. SentiWordNet [Esuli and Sebastiani, 2006]
is an attempt to provide positive, negative and neutral judgements to all WordNet
synsets. Semi-supervised learning is used: the sentiment scores of un-seen words are
approximated using WordNet relations to words with known sentiment. SentiWord-
Net is commonly used in the literature to support sentiment classification due to easy
access, updates [Baccianella et al., 2010] and broad coverage. SentiStrength [Thelwall
et al., 2010] is a lexicon based sentiment classification technique for short informal
texts; it was built using MySpace comments, so the resulting lexicon contains com-
mon Internet slang and emoticons. The sentiment polarities were first specified by
annotators at a word level, before being updated by a statistical method exploiting
comment level sentiments.

The sentiment of an image is affected by context, so it helps to define different
layers of sentiment. First person sentiment corresponds to emotions elicited by the
author – often recorded for personal organisation reasons [Ames and Naaman, 2007].
Second person sentiment is expressed by individuals whom the photo is communi-
cated to, often promoted by contextual information added by the author, or through
shared experiences. Third person sentiment is expressed by an objective viewer, who
lacks additional context. In the case of SentiCap we will be using third person senti-
ment: our annotators lack personal connections with the images and were not their
original audience.

Researchers have explored how image presentation and content affects the view-
ers. Studies of image presentation and aesthetics [Murray et al., 2012; Joshi et al.,
2011] have shown a correlation between photographic technique (e.g. high dynamic
range, low depth of field) and emotional response. Machine learning models can
detect photographic technique and predict the emotional response. However, only
focusing on presentation and aesthetics misses a number of triggers, including im-
age content and context. The Visual SentiBank [Borth et al., 2013; Chen et al., 2014]
system focuses more on image content by employing a large Adjective-Noun-Pair
(ANPs) detector catalogue. The chosen ANPs are frequent in online image captions
and correlate with emotional response. This idea was further extended into the
multilingual case [Jou et al., 2015], providing fine-grained emotional response as a
function of culture. Although these systems are predictive rather than generative,
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the idea of a visual sentiment vocabulary is essential for SentiCap. Our sentiment
vocabulary used to guide annotation is built upon Visual SentiBank.

4.3 Generating Image Captions with Sentiment

The following sections describe SentiCap, a system for generating image captions
with sentiment. Section 4.3.1 lays out the overarching model incorporating both
style expression and visual relevance. The specific forms of individual components
are discussed in Section 4.3.2.

4.3.1 Model Overview

Given an image I and its Dx-dimensional visual feature x ∈ RDx , our goal is to
generate a sequence of words (i.e. a caption) Y = {y1, · · · , yT} to describe the image
with a specific style, such as expressing sentiment. Here yt ∈ {0, 1}V is 1-of-V
encoded indicator vector for the tth word; V is the size of the vocabulary; and T is
the length of the caption.

We assume sentence generation involves two underlying mechanisms, one of
which focuses on the factual description of the image while the other describes the
image content with sentiment. We formulate this caption generation process using a
switching multi-modal language model, which sequentially generates words. Intu-
itively, each generated word is ether factual or sentimental, and the model must learn
when to generate either word class; in doing so we are explicitly learning a trade off
between semantics and sentiment. Formally, we introduce a binary sentiment vari-
able st ∈ {0, 1} for every word yt to indicate which mechanism is used. At each time
step t, our model produces the probability of yt and the current sentiment variable st

given the image feature x and the previous words y1:t−1, denoted by p(yt, st|x, y1:t−1).
We generate the word probability by marginalising out the sentiment variable st:

p(yt|x, y1:t−1) = ∑
st

p(yt|st, x, y1:t−1)p(st|x, y1:t−1) (4.2)

Here p(yt|st, x, y1:t−1) is the caption model conditioned on the sentiment variable and
p(st|x, y1:t−1) is the probability of the word sentiment, with parameters Ws.

We split the conditional language model p(yt|st, x, y1:t−1) into two parts (illus-
trated in Figure 4.1), the factual model p(yt|st = 0, x, y1:t−1), with parameters Θ0, and
the sentiment model p(yt|st = 1, x, y1:t−1), with parameters Θ1. This simplifies the
underlying form and allows us to train each separately. We use a two-stage learning
approach, first learning Θ0 on a large dataset with factual captions and then learning
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Figure 4.1: An overview of the SentiCap model. The factual language model is on
top, the sentiment model is on the bottom. The switch component joins the two

models, while the CNN is shared.

Θ1 and Ws jointly on a small set of sentiment captions.

Separated training of the factual and sentiment models is the key to dealing with
limited training data. We transfer knowledge from the trained factual model to the
sentiment model in the second training stage. This knowledge transfer is via a regu-
larisation term which is discussed in Section 4.3.1.1.

4.3.1.1 Objective Functions

Our two stage learning approach requires an objective function for the factual con-
ditional language model p(yt|st = 0, x, y1:t−1), and a separate objective for the full
switching model p(yt|x, y1:t−1).

Objective for the factual conditional language model The factual conditional lan-
guage models parameters Θ0 are learned by minimising the negative log-likelihood
of the caption words given images,

L0(Θ0,D0) = −∑
i

∑
t

log p(yi
0,t|st = 0, xi

0, yi
0,1:t−1) (4.3)

The data is a large collection of factual image and caption pairs, denoted as D0 =
{(xi

0, yi
0)}N

i=1. This is a common loss function for training neural conditional language
models – see Section 2.2.1.
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Objective for the full conditional language model Utilising the trained factual lan-
guage model in Eq (4.3), we jointly learn the parameters of the switching model Ws

and sentiment language model Θ1 using a small image caption dataset with a spe-
cific sentiment polarity, denoted as D = {(xi, yi, ηi)}M

i=1, M � N. Here ηi
t ∈ [0, 1]

is the sentiment strength of the tth word in the i-th training sentence. As we train
separate models for positive and negative sentiment ηi

t represents how strongly each
word aligns with the target sentiment, with 0 being neutral and 1 indicating strong
alignment with the target sentiment.

Our training objective incorporates word-level sentiment information to learning
Θ1 and the switching weights Ws, while keeping the pre-learned Θ0 fixed. For clarity,
we denote the sentiment probability, parameterised by Ws, as:

γ0
t = p(st = 0|x, y1:t−1) (4.4)

γ1
t = 1− γ0

t (4.5)

The log likelihood of generating a new word yt given image and word histories
(x, y1:t−1) as Lt(Θ, x, y), is formed by marginalising out the sentiment variable as in
Eq (4.2). By also using Eq (4.5), we can rewrite this as:

Lt(Θ, x, y) = log p(yt|x, y1:t−1) = (4.6)

log[γ0
t p(yt|st = 0, x, y−t) + γ1

t p(yt|st = 1, x, y−t)].

The overall learning objective function for incorporating word sentiment, Eq4.8, is
a combination of a weighted log likelihood and the cross-entropy between γt and
ηt. The weighted log likelihood focuses on generating the correct word, while the
cross-entropy ensures the word is generated from the most appropriate conditional
language model, either factual or sentimental.

L(Θ,D) = −∑
i

∑
t

(1 + ληηi
t)[Lt(Θ, xi, yi) (4.7)

+ λγ(ηi
t log γ1,i

t + (1− ηi
t) log γ0,i

t )] + R(Θ),

R(Θ) =
λθ

2
‖Θ1 −Θ0‖2 (4.8)

where λη and λγ are hyper-parameters, and R(Θ) is a regularization term on the
sentiment model with hyper-parameter λθ . Intuitively, when ηt > 0, i.e. the train-
ing sentence has a sentiment word at index t, the likelihood weighting factor ληηi

t

increases the importance of Lt in the overall likelihood; at the same time, the cross-
entropy term λγ(ηi

t log γ1,i
t + (1− ηi

t) log γ0,i
t ) encourages the switching variable γ1

t to
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be > 0, emphasising the sentiment language model. The λη term controls the im-
portance of sentiment words relative to other words. λγ controls the importance of
choosing the correct language model relative to minimising the negative log likeli-
hood. This objective function captures the intuition that words have differing levels
of importance for sentiment realisation; thus, mistakes on important words incur a
larger loss than on less important words.

It is tempting to define the loss function as Equation 4.6 since it appears to trade-
off between the two models and does not require the word level supervision of Equa-
tion 4.8. In practice, when a small sentiment training set is used, the sentiment word
model p(yt|st = 1, x, y−t) quickly overfits and the broader knowledge of the factual
model becomes underutilised – γ0,i

t ≈ 0∀i, t. The cross-entropy term improves the
generalisation error by introducing a penalty for using the sentiment word model for
non-sentiment words. In place of cross-entropy, we considered using the squared dif-
ference λη

2 (γ1
t − ηt)2, but as explained in Section 2.1.1 the gradient tends to saturate,

leading to slower learning.

The regularisation term R(Θ) (Eq (4.8)) trades-off between likelihood and pa-
rameter space differences between the sentiment and factual language models. This
form of regularisation is a competitive approach to transfer learning [Schweikert
et al., 2008]. Without this regularisation, we observe over-fitting from the sentiment
language model even with the cross-entropy word level regularizer described previ-
ously.

4.3.2 Model Component Details

We adopt a joint CNN+RNN architecture [Vinyals et al., 2015b] in the conditional
caption model. Our full model combines two CNN+RNNs running in parallel: one
capturing the factual word generation, the other specialising in words with senti-
ment. The full model is a switching RNN, in which the variable st functions as a
switching gate. This model design aims to learn sentiments well, despite data spar-
sity – using only a small dataset of image description with sentiments (Section 4.5.2).
Hundreds of thousands of neutral image-sentence pairs [Chen et al., 2015] enable the
learning of visual-text relationships.

Each RNN stream consists of a series of LSTM units. Formally, we denote the
D-dimensional hidden state of an LSTM as ht ∈ RD, its memory cell as ct ∈ RD, the
input, output, forget gates as it, ot, ft ∈ RD, respectively. With k indicating the RNN
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stream, the LSTM is defined as:
ik
t

fk
t

ok
t

gk
t

 =


σ

σ

σ

tanh

Tk

(
Ekyt−1

hk
t−1

)
(4.9)

ck
t = fk

t � ck
t−1 + ik

t � gk
t ,

hk
t = ok

t � ck
t .

Here σ(χ) is the sigmoid function 1/(1 + e−χ); tanh is the hyperbolic tangent function;
Tk ∈ R4D×2D is a set of learned weights; gk

t ∈ RD is the input to the memory cell;
Ek ∈ RD×V is a learned embedding matrix in model k; and Ekyt is the embedding
vector of the word yt.

To incorporate image information, we use an image representation x̂ = Wxx as
the word embedding Ey0 when t = 1, where x is a high-dimensional image feature
extracted from a convolutional neural network [Simonyan and Zisserman, 2015], and
Wx is a learned embedding matrix. Note that the LSTM hidden state hk

t summarizes
y1:t−1 and x. The conditional probability of the output caption words depends on the
hidden state of the corresponding LSTM,

p(yt|st = k, x, y1:t−1) ∝ exp(Wk
yhk

t ) (4.10)

where Wk
y ∈ RD×V is a set of learned output weights.

The sentiment switching model generates the probability of switching between
the two RNN streams at each time t, with a single layer network taking the hidden
states of both RNNs as input:

p(st = 1|x, y1:t−1) = σ(Ws[h0
t ; h1

t ]) (4.11)

where Ws is the weight matrix for the hidden states.

An illustration of this sentiment switching model is in Figure 4.2. In summary,
the parameter set for each RNN (k = {0, 1}) is Θk = {Tk, Wk

y, Ek, Wk
x}, and that of the

switching RNN is Θ = Θ0 ∪Θ1 ∪Ws.

Out of vocabulary words. The sentiment captions contain words absent from the
factual captions. This presents two problems. First, it is unclear how to calculate the
probability of the next word under the factual language model, p(yt|st = 0, x, y1:t−1),
in cases where y /∈ V. Second, the regularisation term, Eq (4.8), requires the pa-
rameters of the two language models to have the same dimensions and underlying
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Figure 4.2: Illustration of the switching RNN model for captions with sentiment.
LSTM cells are described in Eq 4.9. γ0

t and γ1
t are probabilities of sentiment switch

defined in Eq (4.11) and act as gating functions for the two streams via the element-
wise multiply blocks.

meaning.
Augmenting the factual language model vocabulary before training is not a prac-

tical solution since embeddings of words that were never seen during training do not
get updated. The resulting embeddings would be random as per the initialisation
strategy. Moreover, the fully connected output layer would learn that the new words
are never generated and so minimise their output probability (with a cross-entropy
objective this occurs by pushing up on the log probability of all other words).

We implement an alternative approach that uses pre-trained word vectors [Mikolov
et al., 2013] to transfer knowledge from similar in-vocabulary words. Given a new
word yn /∈ V, and pre-trained word embeddings Ew2v, we find the most similar word
ŷn ∈ V in the embedding space using Eq (4.12). We then extend the vocabulary and
duplicating parameters in the learnt model corresponding to ŷn. Specifically, we set
E0

yn
:= E0

ŷn
and Wout,0

yn ,: := Wout,0
ŷn ,: , where E0 are the embeddings learnt by the factual

language model and Wout,0 are the learnt weights of the final fully connected output
layer. Empirically this technique results in previously out of vocabulary words being
generated by the switching model.

ŷn = argmin
ym∈V

Ew2v
yn

.Ew2v
ym

|Ew2v
yn
||Ew2v

ym
| (4.12)

There are other possible ways to extend the vocabulary using pre-trained word
vectors. I develop an alternative method in Section 5.3.2; however, this method is
tuned for sentence simplification.
Settings for model learning. We use stochastic gradient descent with backpropa-
gation on mini-batches to optimise the RNNs. We apply dropout to the input of
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each step, which is either the image embedding x̂ for t = 1 or the word embedding
Ekyt−1 and the hidden output hk

t−1 from time t− 1, for both the factual and sentiment
streams k = 0, 1.

We learn models for positive and negative sentiments separately, due to the obser-
vation that either sentiment could be valid for the majority of images (Section 4.4.3).
We initialise Θ1 as Θ0 and use the following gradient to minimise L(Θ,D) with re-
spect to Θ1 and Ws, holding Θ0 fixed.
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t
∂Θ are computed through differentiating across Equations (4.2)–

(4.5). During training, we set ηt = 1 when word yt is part of an ANP with the
target sentiment polarity, otherwise ηt = 0. We also include a default L2-norm reg-
ularization for neural network tuning |Θ|2 with a small weight (10−8). We auto-
matically search for the hyperparameters λθ , λη and λγ on a validation set using
Whetlab [Snoek et al., 2012].

4.4 Constructing a Dataset of Captions with Sentiment

In order to learn the association between images and captions with sentiments, we
build a novel dataset of image-caption pairs where the caption both describes an
image and conveys the desired sentiment. In this section we summarise the new
dataset and the crowd-sourcing task to collect image-sentiment caption data.

There are many ways a photo can evoke emotions. We focus on sentiments from
an objective viewer who does not know the back story of the photo and is not trying
to communicate to a particular individual – a setting also used by recent collections
of objectively descriptive image captions [Chen et al., 2015; Hodosh et al., 2013].
Sentiments expressed by the author of the photo may rely on personal or shared
context not contained in the photo itself – such contextual reasoning is out of scope.

We design a crowd-sourcing task to collect such objectively described emotional
image captions. This is done in a caption re-writing task based upon objective cap-
tions from MSCOCO [Chen et al., 2015] by asking Amazon Mechanical Turk (AMT)
workers to choose among ANPs of the desired sentiment, and to incorporate one or
more of these into any one of the five existing captions.
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4.4.1 Adjective Noun Pair Vocabulary Construction

Our ANP vocabulary comes from existing collections of ANPs associated with sen-
timent and from a large set of online image captions. For construction, we adopt a
similar methodology to Visual SentiBank [Borth et al., 2013], a database of Adjective-
Noun Pair (ANP) classifiers that are frequently applicable to online images. We take
the title and the first sentence of the description from the YFCC100M dataset [Thomee
et al., 2015], keep entries that are in English, tokenize these, and obtain all ANPs that
appear in at least 100 images. We score these ANPs using the average of SentiWord-
Net [Esuli and Sebastiani, 2006] and SentiStrength [Thelwall et al., 2010], with the
former being able to recognise common lexical variations and the latter designed to
score short informal text. We keep ANPs that contain clear positive or negative sen-
timent, i.e., that have an absolute score of 0.1 and above. This gives us 1,027 ANPs
with a positive emotion, 436 with negative emotions. This new ANP vocabulary has
a greater overlap with the visual objects in the MSCOCO images than the original
SentiBank vocabulary. We released this new ANP vocabulary online1.

Our ANP vocabulary is slightly different to SentiBank [Borth et al., 2013]. Sen-
tiBank was constructed by searching Flickr (a photo sharing website) and youtube
(a video sharing website) for adjectives from a pre-defined list. They then extract
adjective noun pairs and sub-sample them to avoid dominance by a few popular ad-
jectives. For the SentiCap vocabulary, we use a dataset of 100 million Flickr image
captions from which we extract adjective noun pairs directly without sub-sampling.
This means that the most common adjectives in our ANP vocabulary (adjectives that
apply to the most nouns) tend to be less visually specific than SentiBank – see Ta-
ble 4.1. Adjectives with low visual specificity are easy to introduce into captions and
so are appropriate for SentiCap. Moreover, the SentiCap set of ANPs is closer to the
underlying distribution of ANPs, which is a useful property for caption generation,
whereas diversity is desirable for the SentiBank classification task. The most frequent
nouns are similar between the two vocabularies, with “face”, “cat”, “dog”, and “baby”
being frequent in both ANP sets. Overall, SentiCap uses 1463 ANPs with 212 unique
adjectives and 322 unique nouns which is slightly more than SentiBank’s 1200 ANPs
with 181 unique adjectives and 286 unique nouns.

4.4.2 Collecting Image Captions with Sentiment

We collect at least 3 positive and 3 negative captions per image. Figure 4.3 contains
one example image and its respective positive and negative caption written by AMT
workers. We released these captions online1.

1http://cm.cecs.anu.edu.au/post/senticap/

http://cm.cecs.anu.edu.au/post/senticap/
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SentiBank SentiCap
Adjective Num. Nouns Adjective Num. Nouns
colorful 20 great 119

beautiful 19 beautiful 101
tiny 18 nice 94

empty 18 good 93
abandoned 18 best 60

pretty 17 interesting 38

Table 4.1: The six adjectives in the SentiBank and SentiCap vocabularies that apply
to the most nouns in the vocabulary. Num. Nouns is the number of nouns to which

each adjective applies.

The painted train drives through a lovely city with country charm.

The abandoned trains sits alone in the gloomy countryside.

Figure 4.3: One example image with both positive and negative captions written
by AMT workers.

We went through three design iterations for collecting relevant and succinct cap-
tions with the intended sentiment.

Our first attempt was to invite workers from Amazon Mechanical Turk (AMT) to
compose captions with either a positive or negative sentiment for an image – which
resulted in overly long, imaginative captions. A typical example is: “A crappy picture
embodies the total cliche of the photographer ’catching himself in the mirror,’ while it also
includes a too-bright bathroom, with blazing white walls, dark, unattractive, wood cabinets,
lurking beneath a boring sink, holding an amber-colored bowl, that seems completely pointless,
below the mirror, with its awkward teenage-composition of a door, showing inside a framed
mirror (cheesy, forced perspective,) and a goofy-looking man with a camera.”

We then asked turkers to place ANPs into an existing caption, which resulted in
rigid or linguistically awkward captions. Typical examples include: “a bear that is
inside of the great water” and “a bear inside the beautiful water”.

These results prompted us to design the following re-writing task: we take the
available MSCOCO captions, perform tokenization and part-of-speech tagging, and
identify nouns and their corresponding candidate ANPs. We provide ten candidate
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ANPs with the same sentiment polarity and asked AMT worker to rewrite any one of
the original captions about the picture using at least one of the ANPs. The form that
the AMT workers are shown is presented in Figure 4.4. We obtained three positive
and three negative descriptions for each image, authored by different Turkers. As
anecdotal evidence, several turkers emailed to say that this task is “very interesting”.

The instructions given to workers are shown in Figure 4.4. We based these in-
structions on those used by Chen et al. [2015] to construct the MSCOCO dataset.
They were modified for brevity and to provide instruction on generating a sentence
using the provided ANPs. We found that these instructions were clear to the majority
of workers.

Figure 4.4: Mechanical Turk interfaces and instructions for Collecting sentences with
a positive (top) and negative (bottom) sentiment.
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4.4.3 Dataset Validation

Figure 4.5: Mechanical Turk interface and instructions for validating the dataset.

We use a further AMT task to evaluate the quality of the collected dataset and
validate the plausibility of the sentiment captioning task. In particular, we look to
answer two questions: is the descriptiveness of the caption affected by introducing
sentiment?, Can we pair both positive and negative sentiment with a single image?

Our validation uses the two-question AMT task shown in Figure 4.5, applied to
124 images with 3 neutral captions from MSCOCO, and images with 3 positive and
3 negative captions from our dataset. We first ask AMT workers to rate the descrip-
tiveness of a caption for a given image on a four-point scale [Hodosh et al., 2013;
Vinyals et al., 2015b]. We also ask whether the sentiment of the sentence matches the
image. Each rating task is completed by 3 different AMT workers.

Results in Figure 4.6 show descriptiveness tends to decrease when the caption
contains additional sentiment – see the descriptiveness column. Ratings for the pos-
itive captions (Pos) exhibit a small decrease (by 0.08, or one-tenth of the standard
deviation), while negative captions (Neg) exhibit a large decrease (by 0.73). Review-
ing the data indicates that the smaller set of negative ANPs (436 negative ANPs
vs 1027 positive ANPs) makes it hard for annotators to produce visually congruent
sentiment. In general, this result shows sentiment can be added to a caption while
retaining descriptiveness, although it is easier with a more flexible vocabulary.

In the correct sentiment column of Figure 4.6, we record the number of votes each
caption received for bearing a sentiment that matches the image. We can see that the
vast majority of the captions are unanimously considered emotionally appropriate
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#sents with wrong sentiment by #votes

#imgs #sents desc. 0 votes 1 vote 2 votes 3 votes

COCO 124 372 3.42±081 355 16 1 0

POS 124 335 3.34±0.79 325 20 0 0

NEG 123 305 2.69±1.11 250 49 6 0

Figure 4.6: Summary of quality validation for sentiment captions. The rows are
MSCOCO [Chen et al., 2015], and captions with Positive and Negative sentiments,
respectively. Descriptiveness ± standard deviation is rated as 1–4 and averaged across
different AMT workers, higher is better. The Correct sentiment column records the
number of captions receiving 3, 2, 1, 0 votes for having a sentiment that matches the

image, from three different AMT workers.

(94%, or 315/335 for Pos; 82%, or 250/305 for Neg). Among the captions with less
than unanimous votes received, most of them (20 for Pos and 49 for Neg) still have
majority agreement for having the correct sentiment, which is on par with the level of
noise (16 for Coco captions). Frequently, images can be described with both positive
and negative sentiment. We have the freedom to choose the sentiment polarity we
wish to apply to the image caption pair.

Our results have important implications for stylistic caption generation beyond
polarised sentiment. First, we have demonstrated that the a image can be appropri-
ately described in more that one, apparently conflicting style. This suggests we have
some freedom to choose the style of the caption. Second, the descriptiveness is ad-
versely affected by a restrictive style space. With a broad sentiment style the problem
is limited, but some stylistic goals may by so restrictive as to promote inconsistencies
in image-caption pairs.

4.5 Experiments

Section 4.5.1 and Section 4.5.2 give details of the testing environment and settings,
including hyper-parameters and datasets.

4.5.1 Implementation Details

We implement RNNs with LSTM units using the Theano package [Bastien et al.,
2012]. Our implementation of CNN+RNN reproduces caption generation perfor-
mance in recent work [Karpathy and Fei-Fei, 2015]. The visual input to the switching
RNN is 4096-dimensional feature vector from the second last layer of the Oxford
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VGG-16 CNN [Simonyan and Zisserman, 2015]. These features are linearly embed-
ded into a D = 512 dimensional space. Our word embeddings Ey, LSTM hidden
state h and cell memory c also have 512 dimensions. The size of our vocabulary for
generating sentences is 8,787, and becomes 8,811 after including additional sentiment
words.

We train the model using Stochastic Gradient Descent (SGD) with mini-batching
and the momentum update rule. Mini-batches consist of 128 examples, the momen-
tum is fixed at 0.99, and the learning rate is fixed at 0.001. We clip gradient norms to
the range [−5, 5]; a standard practice to prevent exploding gradients in LSTM train-
ing [Graves, 2013]. Training is complete when the perplexity fails to improve over ten
consecutive check-points (defined as every fifth mini-batch). The entire system has
approximately 48 million parameters, and learning them on the sentiment dataset
takes about 20 minutes at 113 image-sentence pairs per second, while the original
model on the MSCOCO dataset takes around 24 hours at 352 image-sentence pairs
per second. Given a new image, we generate the caption with the highest length
normalised likelihood using a beam-search of beam-size 5. A multi-core workstation
with an Nvidia K40 GPU was used for all experiments.

4.5.2 Dataset Setup

The factual RNN is learned on the MSCOCO training set [Chen et al., 2015] of 413K+
sentences on 82K+ images. We construct an additional set of caption with sentiments
as described in Section 4.4.2 using images from the MSCOCO validation partition.
The Pos subset contains 2,873 positive sentences and 998 images for training, and
another 2,019 sentences over 673 images for testing. The Neg subset contains 2,468
negative sentences and 997 images for training, and another 1,509 sentences over 503
images for testing. Each of the test images has three positive and/or three negative
captions.

4.5.3 Baselines

Our first baseline is CNN+RNN an LSTM with CNN input [Vinyals et al., 2015b],
trained on the sentiment neutral MSCOCO dataset. This is a state-of-the-art model
for generating descriptive image captions. It also forms the basis of our SentiCap
model. Comparison with this baseline allows us to judge the relative merits of our
novel modifications.

Our next two baselines, ANP-Replace and ANP-Scoring, build on the aforemen-
tioned CNN+RNN baseline. Both modify sentences generated with an CNN+RNN
by adding an adjective with strong sentiment to a random noun. ANP-Replace adds
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the most common adjective, in the sentiment captions, for the chosen noun. ANP-
Scoring uses multi-class logistic regression to select the most likely adjective for the
chosen noun, given the Oxford VGG-16 features. This is equivalent to retraining the
last layer of the Oxford VGG-16 network for adjective prediction, keeping all other
weights fixed.

The next model, denoted as RNN-Transfer, learns a fine-tuned RNN on the senti-
ment dataset with additional regularisation from CNN+RNN [Schweikert et al., 2008],
as in R(Θ) (cf. Eq (4.8)). Unlike SentiCap, this baseline is a single RNN stream.

We name the full switching RNN system as SentiCap, which jointly learns the
RNN and the switching probability with word-level sentiments by Equation (4.7).

4.5.4 Evaluation Metrics

We evaluate our system both, with automatic metrics, and judgements crowd-sourced
through Amazon Mechanical Turk. Automatic evaluation uses the Bleu, RougeL,
Meteor, Cider metrics from the Microsoft COCO evaluation software [Chen et al.,
2015]. The Bleu metric is a corpus-level n-gram precision score between the ref-
erence sentences and the candidate sentences. RougeL is a longest common sub-
sequence based f-measure, weighted to favour high recall. Meteor calculates the
best reference-to-candidate alignment using exact matches, WordNet synonyms and
stemming; the result is the harmonic mean of precision and recall between the best
aligned match. Cider includes tf-idf weights when scoring the n-gram matches.
These metrics have become the standard for evaluating automatic image-caption gen-
erators, and are known to correlate with human evaluations [Vinyals et al., 2017]. For
further details of these metrics see Section 2.3.4.

In our crowd-sourced evaluation task, AMT workers are given an image and
two automatically generated captions displayed in a random order – the interface
is shown in Figure 4.7. Each task consists of three different types of rating: most
positive, most interesting and descriptiveness. The most positive and most interest-
ing ratings are pair-wise comparisons, with one caption from the sentiment neutral
CNN+RNN model, the other from SentiCap or a baseline. Descriptiveness is rated
from 1-4 on a per-caption basis and aggregated by taking the mean. Caption pairs
are rated by three different AMT workers; a caption is considered more positive/neg-
ative than its pair if at least two workers agree. There are 5 images per task – an
essential component because of AMT’s pricing strategy.

We found that asking Turkers to rate sentences using this method initially pro-
duced very poor results, with many Turkers selecting random options without read-
ing the sentences. We suspect bots were primarily to blame. Our first solution was
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to use more skilled Turkers, called master workers. Although this lead to cleaner
results, the smaller number of workers meant that a large batch of tasks took far too
long to complete. Instead we used workers with a 95% or greater approval rating. To
combat the quality issues we randomly interspersed the manual sentiment captions
from our dataset, and then rejected all tasks from a worker who failed to achieve 60%
accuracy for the most positive rating. This was an effective way of filtering out poor
quality workers and bots. There were few cases where workers were close to the 60%
accuracy cut-off; they were typically much higher or much lower than the threshold,
which validates the idea that some workers were not completing the task correctly.

Figure 4.7: AMT interface and instructions for comparative rating of generated senti-
ment sentences

4.5.5 Results

Table 4.2 summarises the automatic evaluations. SentiCap produces substantially
more captions with sentiment ANPs than any of the baseline methods, demonstrat-
ing an ability to consistently incorporate sentiment. In comparison, captions gener-
ated by CNN+RNN contain few sentiment ANPs, because it is trained on the pri-
marily sentiment neutral MSCOCO dataset. That SentiCap generates more sentiment
ANPs than the two insertion baselines ANP-Replace and ANP-Scoring shows SentiCap
actively drives the flow of the sentence towards sentimental ANPs.

The automatic metrics measuring similarity to the ground truth (Bleu, RougeL,
Meteor, Cider) show only small changes across methods. This is in-part because we
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sen% B-1 B-2 B-3 B-4 RougeL Meteor Cider

Pos

CNN+RNN 1.0 48.7 28.1 17.0 10.7 36.6 15.3 55.6
ANP-Replace 90.3 48.2 27.8 16.4 10.1 36.6 16.5 55.2
ANP-Scoring 90.3 48.3 27.9 16.6 10.1 36.5 16.6 55.4
RNN-Transfer 86.5 49.3 29.5 17.9 10.9 37.2 17.0 54.1
SentiCap 93.2 49.1 29.1 17.5 10.8 36.5 16.8 54.4

Neg

CNN+RNN 0.8 47.6 27.5 16.3 9.8 36.1 15.0 54.6
ANP-Replace 85.5 48.1 28.8 17.7 10.9 36.3 16.0 56.5
ANP-Scoring 85.5 47.9 28.7 17.7 11.1 36.2 16.0 57.1
RNN-Transfer 73.4 47.8 29.0 18.7 12.1 36.7 16.2 55.9
SentiCap 97.4 50.0 31.2 20.3 13.1 37.9 16.8 61.8

Table 4.2: Summary of automatic evaluations for captions with sentiment. Columns:
sen% is the percentage of output sentences with at least one ANP; B-1 . . . Ciderr are
automatic metrics as described in Section 4.5; where B-n corresponds to the BLEU-n

metric measuring the co-occurrences of n-grams.

only need to change a few important words to introduce sentiment, and since these
metrics do not weight words by importance, measured changes are small. Moreover,
to score well under these metrics a model must not only introduce sentiment at
the right location, but also choose the same word as the human annotator. This is
hard because, as we have shown in Section 4.4.3, there are multiple valid ways of
conveying sentiment about an image. SentiCap shows a strong improvement in all
automatic metrics for the negative sentences, which is because the number of valid
ways to describe an image with negative sentiment is limited – this is seen by the
smaller number of negative ANPs compared to positive ANPs and the reduced set
of ANPs chosen by human annotators.

Table 4.3 presents the crowd-sourced evaluations. Sentences from SentiCap are,
on average, judged by crowd sourced workers to have stronger sentiment than any of
the three baselines. For positive SentiCap, 88.4% are judged to have a more positive
sentiment than the CNN+RNN baseline. These gains are made with only a small
reduction in the descriptiveness – further analysis shows this decrease is due to a
minority of failure cases, since 84.6% of captions ranked favourably in the pair-wise
descriptiveness comparison. Negative captions generated by SentiCap are judged to
have greater negative sentiment 72.5% of the time, which is slightly weaker than
the positive case. On the other hand automatic metrics, show SentiCap performed
better at generating negative captions than positive ones, and outperforming all three
baselines. As there are fewer new adjectives in the negative ANP set SentiCap is likely
able to learn more reliable statistics, leading to greater performance on automatic
metrics. In regard to human evaluation, it is unclear whether a cultural bias towards
positive evaluation [Heine and Lehman, 1995; Sharot, 2012] came into play. Perhaps
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Senti Desc DescCmp

Pos

CNN+RNN – 2.90±0.90 –
ANP-Replace 84.8% 2.89±0.92 95.0%
ANP-Scoring 84.8% 2.86±0.96 95.3%
RNN-Transfer 84.2% 2.73±0.96 76.2%
SentiCap 88.4% 2.86±0.97 84.6%

Neg

CNN+RNN – 2.81±0.94 –
ANP-Replace 61.4% 2.51±0.93 73.7%
ANP-Scoring 64.5% 2.52±0.94 76.0%
RNN-Transfer 68.1% 2.52±0.96 70.3%
SentiCap 72.5% 2.40±0.89 65.0%

Table 4.3: Summary of crowd-sourced evaluations for captions with sentiment.
Columns: Senti is the fraction of images for which at least two AMT workers agree
that it is the more positive/negative sentence; Desc contains the mean and std of the
4-point descriptiveness score: larger is better. DescCmp is the percentage of times
the method was judged more descriptive, or equally descriptive, as the CNN+RNN

baseline.

using workers from Japanese culture, which has been shown to be less optimistic than
some western cultures [Heine and Lehman, 1995] would yield a more balanced result.
In practice, this would be difficult due to differences in language and perceived
sentiment [Jou et al., 2015]. We do not evaluate the effects of culture on sentiment
evaluation, but rather leave it as an exciting area for future work.

SentiCap sentences with positive sentiment were judged by AMT workers as more
interesting than those without sentiment in 66.4% of cases, which shows that our
method improves the expressiveness of the image captions. On the other hand, neg-
ative sentences were judged to be less interesting than those without sentiment in
63.2% of cases. This is mostly due to negativity in the sentence being a natural
contradiction to being interesting, a positive sentiment.

It has been noted by Vinyals et al. [2015b] that RNN captioning methods tend
to exactly reproduce sentences from the training set. Our SentiCap method pro-
duces a larger fraction of novel sentences than an RNN trained on a single caption
domain. A sentence is novel if there is no match in the MSCOCO training set or the
sentiment caption dataset. Overall, SentiCap produces 95.7% novel captions; while
CNN+RNN, which was trained only on MSCOCO, produces 38.2% novel captions –
higher than the 20% observed by Vinyals et al. [2015b].

Constructing the sentiment dataset for SentiCap required a sentiment vocabulary
described in Section 4.4.1. This vocabulary is fixed but relatively broad, with 322
unique nouns and 212 unique adjectives; however, the effective size of the vocabu-
lary at generation time is much smaller. We find only 75 unique nouns and 71 unique
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Noun Adjectives
man happy(56.7%), nice(39.4%), good(3.8%)
field sunny(100.0%)
room nice(97.7%), great(2.3%)
group great(100.0%)
food tasty(92.9%), healthy(4.8%), delicious(2.4%)
building beautiful(95.1%), nice(4.9%)
street busy(55.3%), nice(18.4%), beautiful(13.2%), calm(10.5%), pleasant(2.6%)
woman beautiful(75.0%), pretty(25.0%)
cat cute(56.7%), adorable(26.7%), cuddly(16.7%)
people happy(39.1%), nice(34.8%), beautiful(21.7%), great(4.3%)

Table 4.4: ANPs for positive sentences generated by SentiCap. Nouns are ordered
from most common to least, with only the ten most common shown. Paired adjec-
tives are ordered most common (left) to least (right); only the five most common are
shown. Percentages reflect the fraction of times the adjective was paired with the

noun.

adjectives from the ANP vocabulary appear in the 1176 generated test captions (this
includes 673 positive and 503 negative captions). In part we attribute this to the lim-
ited number of concepts in MSCOCO, the limited set of test captions, and annotator
preferences for certain adjectives and nouns. However, this is not the full story as
human annotators use a broader vocabulary: matching ground-truth test captions to
the ANP vocabulary, and randomly down-sampling to 1176 captions (to match the
number of generated captions), gives 143 unique adjectives and 173 unique nouns.
This indicates that part of the problem is the dataset, but that effective vocabulary
reduction is an inherent limitation of SentiCap which requires further study. This
limitation would be most apparent when reviewing generating multiple captions for
different images: they could become repetitive and lose their effectiveness. For iso-
lated images we suspect the vocabulary limitations would be less apparent.

Table 4.4 shows the most common positive ANPs generated by SentiCap. The
common nouns “field” and “group” only have one adjective, highlighting the limited
diversity, e.g. not all “fields” are “sunny”. Other nouns such as “man”, “street”, and
“cat” have multiple different adjectives. Table 4.5 shows the most common negative
ANPs generated by SentiCap. Similar to the positive case, we see common nouns
with only one adjective “street”, “people”, and “bathroom”. In this sample the gener-
ated adjectives are more restricted for negative sentiment than for positive sentiment
– this observation holds in general, and is supported by ANP vocabulary counts
(1027 positive ANPs, 436 negative ANPs).

Table 4.6 displays, for each method, the mean number of each POS class per gen-
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Noun Adjectives
man dead(99.0%), invisible(1.0%)
street lonely(100.0%)
building ugly(83.8%), damaged(13.5%), abandoned(2.7%)
people stupid(100.0%)
bathroom dirty(100.0%)
food disgusting(57.7%), bad(42.3%)
grass dead(100.0%)
cat lazy(45.5%), annoying(18.2%), stupid(13.6%), silly(13.6%), dirty(9.1%)
train lonely(95.7%), abandoned(4.3%)
water cold(36.4%), dirty(36.4%), shallow(9.1%), troubled(9.1%), muddy(9.1%)

Table 4.5: ANPs for negative sentences generated by SentiCap. Nouns are ordered
from most common to least, with only the ten most common shown. Paired adjec-
tives are ordered most common (left) to least (right); only the five most common are
shown. Percentages reflect the fraction of times the adjective was paired with the

noun.

erated positive sentiment sentence. SentiCap and all sentiment producing baselines
generate longer sentences with substantially more adjectives than the purely descrip-
tive CNN+RNN method. ANP-Replace and ANP-Scoring produce, on average 0.9,
more adjectives per sentence than CNN+RNN and add on average 0.9 more words;
this is by construction as these baselines add an extra adjective where possible. Sen-
tiCap introduces slightly fewer adjectives than these direct replacement baselines –
at an additional 0.83 per sentence – but produces sentences that are on average only
0.28 words longer than CNN+RNN. This indicates SentiCap largely, but not exclu-
sively, functions as a sophisticated adjective insertion method. However, unlike the
baseline insertion methods SentiCap does not increase the sentence length in propor-
tion to the number of adjectives added. This is primarily achieved by generating
fewer noun phrases per sentence, as measured by noun phrase chunking [Ramshaw
and Marcus, 1999] implemented in spaCy1: SentiCap produces 3.10, CNN+RNN pro-
duces 3.26, and ANP-Replace produces 3.26. This implies more focus on generating
sentiment rather than describing all aspects of the scene. Similar conclusions can be
drawn in the negative sentiment case, which is summarised in Table 4.6.

Figure 4.8 contains a number of example image captions generated by SentiCap

– the left half are positive, the right half negative. The highlighted text shows cases
where the switch variable gives a high probability to the word being part of a senti-
ment ANP. We can see that the switch variable captures almost all sentiment phrases,

1https://github.com/explosion/spaCy/tree/v1.9.0

https://github.com/explosion/spaCy/tree/v1.9.0
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Model DET NOUN ADP ADJ VERB ADV Total
CNN+RNN 2.61 3.81 2.13 0.60 1.06 0.07 11.47
ANP-Replace 2.61 3.80 2.09 1.50 1.07 0.07 12.37
ANP-Scoring 2.61 3.80 2.10 1.49 1.08 0.08 12.37
RNN-Transfer 2.58 3.74 1.83 1.52 1.28 0.07 12.23
SentiCap 2.55 3.53 1.78 1.43 1.06 0.24 11.75

Table 4.6: The mean number of each POS class per sentence for the positive sentiment
generated sentences. Note CNN+RNN generates MSCOCO style captions all other

methods generate positive sentiment.

Model DET NOUN ADP ADJ VERB ADV Total
CNN+RNN 2.60 3.75 2.10 0.62 1.07 0.08 11.42
ANP-Replace 2.60 3.76 2.06 1.45 1.09 0.08 12.27
ANP-Scoring 2.60 3.75 2.09 1.43 1.11 0.08 12.27
RNN-Transfer 2.61 3.83 2.11 1.33 1.26 0.11 12.43
SentiCap 2.51 3.50 1.78 1.37 1.12 0.04 11.52

Table 4.7: The mean number of each POS class per sentence for the negative senti-
ment generated sentences. Note CNN+RNN generates MSCOCO style captions all

other methods generate negative sentiment.

and some of the surrounding words (e.g. “train station”, “plate”). Examples in the
first two rows are generally descriptive and accurate such as “delicious piece of cake”
(2a), “ugly car” and “abandoned buildings” (1c). Results for the other examples contain
more or less inappropriateness in either the content description or sentiment, or both.
(3b) captures the “happy” spirit correctly, but the semantic of a child in playground
is mistaken with that of a man on a skateboard due to very high visual resemblance.
(3d) interestingly juxtaposed the positive ANP “clever trick” and negative ANP “dead
man”, creating an impossible yet amusing caption.

4.6 Summary

This chapter proposed SentiCap, a switching RNN model for generating image cap-
tions with sentiments. One novel feature of this model is a specialised word-level
supervision scheme to effectively make use of a small amount of training data with
sentiments. Also designed was a crowd-sourced caption re-writing task for gen-
erating descriptive captions with sentiment. I demonstrate the effectiveness of the
proposed model using both automatic and crowd-sourced evaluations, with the Sen-
tiCap model able to generate an emotional caption for over 90% of the images. The
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a b c d
1

2

3

4

Figure 4.8: Example results from sentiment caption generation. Columns a+b: pos-
itive captions; columns c+d: negative captions. Background colour indicates the
probability of the switching variable γ1

t = p(st|·): da rk if γ1
t ≥ 0.75; med ium if

γ1
t ≥ 0.5; lig ht if γ1

t ≥ 0.25. Examples in rows 1 and 2 are successful. Examples
in rows 3 and 4 have various semantics or sentiment errors, at times with amusing

effects. See Section 4.5 for discussions.

vast majority of the generated captions were rated by crowd workers as having the
appropriate sentiment.

The approach used by SentiCap is more broadly applicable to generating im-
age captions with a stylistic component. SentiCap learns to balance two conditional
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language models, one tuned for semantics, the other for style. Switching between
these two models occurs on a word-to-word basis, giving rise to expression of a well
defined style and coherent semantics. Styles which can be presented with simple
atomic components – such as ANPs – are most suited to this approach. For exam-
ple sentiment, regional slang or different levels of object description specificity, all
fit comfortably in the SentiCap framework. Unfortunately, more complex styles that
require global sentence changes, including word re-ordering (eg language simplifica-
tion, literary style), do not fit naturally into this framework – more subtle techniques
are required, such as those I present in Chapter 5 and Chapter 6.

The SentiCap approach has a fixed trade-off between style and semantics, set at
training time by the data and hyper-parameters of the word-level regularizer. Ide-
ally this trade-off would be a test time parameter, making pre-trained models more
portable; it is unclear how to enable a test-time trade-off given the importance of the
annotator defined trade-off implicit in the data.

SentiCap overcomes data scarcity by using transfer learning from large set of
neutral image captions to a small set of stylistic captions. Word level regularization
contributes to this success by incorporating word level sentiment information from
external sentiment corpora. This approach substantially reduces the cost – both time
and money – of building stylistic caption generators, making them more applicable
in a range of scenarios. However, the barrier to entry is still high; for each style
we require human annotations over the same image domain as the neutral captions.
In Chapter 6 I introduce a novel styled image captioning model that works without
being trained on styled captions.

The proposed data collection method, which guides annotators in sentence re-
writing, allows the collection of semantically relevant styled sentences from un-
trained annotators. This method is most applicable for styles described by atomic
components, such as ANPs. Moving to styles that are not well described by atomic
components would be more challenging by would not require a complete paradigm
shift: supervised learning could still be used. Completely new approaches are
needed to deal with the case where style is difficult to describe to annotators, such
as the style of a literary genera or particular author.

SentiCap shows that it is possible to change the style of an image caption with
limited effect on the descriptiveness; however, when the style space is limited the
descriptiveness can suffer – as seen by the negative sentiment experiments. This
becomes an important consideration when attempting to generate more specific and
therefore more restrictive styles. We will lose descriptiveness unless we also increase
the range of changes the style can impose. Rather than just ANP replacement we
may also need word re-ordering, phrase insertion or phrase deletion.
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Images can be paired appropriately with both positive and negative sentiment
captions. This supports the hypothesis that the style of the caption is not tied to the
image and that we have some degree of choice. Although this was not shown in the
general style case, the fact that it holds with styles as strongly polarised as sentiment
is promising.



Chapter 5

Simplifying Sentences

5.1 Introduction

In this chapter I focus on language modelling techniques for shifting linguistic style
without modifying semantics. Working only with text, I develop techniques for ame-
liorating the data scarcity problem: the limited number of sentences of one style
aligned to another style. By exploiting pre-training and properties specific to style
translation, I work on generating sentences that are both semantically relevant and
stylistically expressive.

Specifically, I explore the task of rewriting sentences to make the language easier
to understand while preserving semantics. This task cannot be considered entirely
about style generation as content removal or addition (eg inline definitions) may be
necessary. Nevertheless, the use of simple, understandable language can certainly be
considered an aspect of style, notably used by the prolific author Ernest Hemming-
way [Müller, 2009].

Texts come in different levels of complexity, from technical pieces written for do-
main experts to simple books for children. Automated text simplification has the
potential to allow readers to quickly understand information outside their specific
background. The benefits will be even greater for new language learners or people
with language impairments. Automatic simplification could adapt complex texts for
a large audience, reduce misinformation and aid information flow between different
cultures and technical disciplines. I tackle an important sub-problem – text simplifi-
cation by sentence rewriting, for example, simplifying the sentence “Not many foods
inspire a fandom quite like Nutella.” to “Not many foods excite fans quite like Nutella.”
– a simplification requiring phrase replacement. This is in contrast to similar tasks
such as lexical simplification [Specia and Jauhar, 2012; Paetzold and Specia, 2016],
sentence compression [Cohn and Lapata, 2009; Rush et al., 2015], and text summa-
rization [Cheng and Lapata, 2016; Nallapati et al., 2017].

Sentence simplification requires complex re-writes such as phrase replacement,
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sentence restructuring or splitting [Cohn and Lapata, 2008; Zhu et al., 2010]. For
example, the complex sentence ‘‘A scientist has found the first wild alligator snapping
turtle spotted in Illinois in more than 30 years.” could be simplified to “Wild alligator
snapping turtles are hard to find in Illinois. They have not been seen in years. Until now.”.
Techniques developed for simplification could be employed to generate other types
of style text requiring complex re-writes. In Chapter 3, I explored word replacements
and in Chapter 4 I explored small free-form rewrites that were mostly adjective re-
placements or insertions. This chapter works towards richer style inclusion. Linguis-
tic simplification is also useful in its own right, for language learning, information
dispersal and text accessibility. Another factor in the decision to explore linguistic
simplification is the availability of data. Recently a high quality – but somewhat
limited in size – dataset became available [Xu et al., 2015b].

I adapt neural Sequence to Sequence models [Sutskever et al., 2014; Luong et al.,
2015] for the Sentence Simplification problem, to develop a new model called S4
(Sequence to Sequence for Sentence Simplification). There are three novel compo-
nents to S4: a large vocabulary with both pre-trained and learned word embeddings
mitigates the effects of limited training data; a word-copy feeding algorithm exploits
linguistic similarities between the original and simplified sentences with the help of
an attention mechanism; a novel loss function encourages word-copying, ensuring
the output sentences benefit from the rich input vocabulary despite having limited
training data. The combination of these components can be seen as trading off se-
mantic relevance and style expression. Copied text is semantically relevant but not
necessarily consistent with the target style, while generated words should be style
appropriate. The copying mechanism means the new word generator can focus on
generating style specific text, and avoid wasting capacity on shared linguistic prop-
erties.

Sentences generated by S4 are simpler than the input, and preserve the original
meaning. Compared to reference sentences, word-copying with the novel objective
improves BLEU-4 by 4.9 points, and using the right mixture of pre-trained and learnt
embeddings leads to a further 3.8 point improvement.

5.2 Related Work

Sentence simplification sits within a set of re-writing tasks, including: machine trans-
lation, lexical simplification, sentence compression, and summarization. However,
none of the aforementioned re-writing tasks are solved, nor are they drop in solu-
tions to sentence simplification, so they can only guide an approach. In section 5.2.1
I examine previous attempts at using machine translation for sentence simplification.
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In section 5.2.2 I consider lexical simplification, sentence compression, and summa-
rization. Section 5.2.3 explores the datasets available for sentence simplification.

5.2.1 Sentence Simplification as Machine Translation

Machine translation is similar to sentence simplification, although machine trans-
lation is a more developed area with many system designs already having been
thoroughly explored. This makes machine translation an excellent source of inspira-
tion for sentence simplification. There have been several attempts to adapt machine
translation to sentence simplification. We group these by method as: phrase trans-
lation [Coster and Kauchak, 2011; Wubben et al., 2012; Stajner and Saggion, 2015],
parse tree translation [Zhu et al., 2010; Woodsend and Lapata, 2011], and external
paraphrase corpora [Xu et al., 2016; Pavlick and Callison-Burch, 2016].

Phrase-based machine translation [Och et al., 1999; Marcu and Wong, 2002; Koehn
et al., 2007] is a class of statistical translation model [Lopez and Adam, 2008]. Statis-
tical translation models normally have two parts: a translation model and a language
model. The translation model gives the probability of the source language text given
the target language text, while the language model gives the prior probability of the
target language text. These two components are combined using Bayes rule dur-
ing text generation (called decoding) to give the probability of the target given the
source. The most likely output sentence can then be found by searching through
the space of output sentences, a task that can be non-trivial if the translation or lan-
guage models are not designed to allow efficient decoding. Decoding with phrase-
based models has the additional step of segmenting the input sentence into phrases.
Learning the parameters of the translation model requires paired sentences in the
source and target language. Word level alignments can be approximately recovered
using the IBM alignment models [Brown et al., 1993], which recover alignments by
modelling translation as set of source to target generation steps. These steps vary de-
pending on the specific model but can include, expanding source words in to many
target words (one-to-many alignment), introducing new words (aligning to null),
translating words individually, and localised re-ordering of words. Individual word
translations can be learnt by counting (or soft counting) aligned words – these then
feed back into the alignment model. Phrase translations can be learnt by searching
through the aligned words for frequently aligned sub-strings, this can be constrained
using syntactic parsers for both languages [Koehn et al., 2003].

Phrase-based machine translation is a common approach to sentence simplifica-
tion [Wubben et al., 2012; Stajner and Saggion, 2015] in part because of open source
tools such as Moses [Koehn et al., 2007]. Wubben et al. [2012] use Moses to gener-
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ate a short list of candidates that they re-rank by levenshtein distance to the input.
Stajner and Saggion [2015] evaluate the effect of training data size and quality on
simplifications generated by Moses. Both groups show that phrase-based machine
translation outperforms some simple baselines but does not consistently outperform
the unmodified input text as judged by machine translation metrics.

Another class of approaches to machine translation is parse tree translation,
where a source-language parse tree is transformed into a target-language parse tree [Lopez
and Adam, 2008]. This is designed to incorporate knowledge of language structure
into the translation task and may help when translating languages with very dif-
ferent word order (eg English to Japanese). Yamada and Knight [2001] develop a
model for parse tree translation based on stochastic operations at each node of a con-
stituency parse tree. The permitted operations are: reordering child nodes, for which
a single probability table of all possible reordering in learnt; inserting extra words,
for which constituent insertion probability and word insertion probability tables are
learnt; and translating leaf words, for which a translation table is learnt. The learning
process involves using the EM algorithm to maximise the likelihood on the training
corpus. An alternative approach to parse tree translation is Synchronous Context-
Free Grammars (SCFGs): a variant of context free grammars when the output is two
strings, namely the source and target sentences [Wu and Hong Kong, 1995; Lopez
and Adam, 2008]. For example, while a context-free grammar might have an produc-
tion rule from a noun phrase to a noun phrase and a adjective NP→ NP JJ, a SCFG
could have a rule from a noun phrase to a noun phrase and adjective in two different
orders NP→ NP JJ/JJ NP, one for each language. To learn a SCFG for translation EM
can be used, first pairs of parsed sentences in both languages are parsed under the
grammar simultaneously perhaps using top-down dynamic programming (though
other approaches may be used if the particular SCFGs cannot be applied efficiently
via this method [Gildea and Satta, 2016]), next the model parameters are updated
based on this dual parse. Decoding the model simply requires parsing a single in-
put sentence using the first half of each production rule, though additional syntactic
or linguistic knowledge may by applied on the output language by incorporating
language or syntactic model likelihood.

Parse tree approaches to sentence simplification have also shown some promise.
Zhu et al. [2010] propose a tree-based sentence simplification method that uses the
constituency parse tree to guide sentence splitting, word dropping, word reordering,
and word or phrase substitution. To decide when to perform these actions, they learn
probability tables with simple features using the sentence aligned simple wikipedia
dataset. For example, when deciding where to split a sentence, they use: the word
surface form, the word constituent (parse tree label), and integer normalised sen-
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tence length. Word substitution is likewise based on learnt translation probabilities.
The full model produces shorter sentences that are also simpler sentences as judged
by Flesch (reading ease metric), although the Moses baseline obtains a better BLEU
score. Woodsend and Lapata [2011] also implement a tree-based sentence simplifica-
tion method; they break down sentences into component phrases and clauses, sim-
plify each using a translation grammar, before constructing the simplified sentence
using an Integer Linear Programming (ILP) formulation. The translation grammar, a
Quasi-synchronous grammar [Smith and Eisner, 2006], is a generalisation of SCFGs
introduced previously. It is learnt using simple wikipedia revision history and sen-
tences aligned between simple wikipedia and standard english wikipedia. The ILP
formulation includes grammatical constraints, while a linear approximation to the
Flesch score helps to form the objective. This model outperforms the earlier model
of Zhu et al. [2010] in human evaluations of grammaticality and meaning preserva-
tion.

External paraphrase corpora are an attractive option for sentence simplification,
as they can substantially reduce the training data requirements. The most com-
mon choice of external paraphrase corpus is PPDB [Ganitkevitch et al., 2013]: a
large publicly released corpus, built using machine translation phrase alignments.
Mono-lingual paraphrases are extracted by identifying common phrase alignments
from English to another language, such as Spanish, and then alignments from Span-
ish back to English. As PPDB paraphrases are not necessarily simpler, Pavlick and
Callison-Burch [2016] attempt to identify simplifying PPDB paraphrases. First they
select a set of common paraphrases from PPDB and collect crowd-source judgements
on whether they are: simplifying, complicating, or incorrect paraphrases. Using
these judgements as training data, they employ a linear classifier to annotate the re-
maining PPDB paraphrases. Xu et al. [2016] build a sentence simplification pipeline
base on PPDB. They use a linear model implemented as part of the Moses machine
translation toolkit to choose the most appropriate simplification, based on features
such as the length in characters, number of syllables, and language model score. The
resulting Moses model outperforms the more direct Moses model of Wubben et al.
[2012], which does not use an external paraphrase corpora.

5.2.2 Related Problems

Lexical simplification is a sub-problem of sentence simplification, involving the re-
placement of a word or n-gram with a simpler alternative – re-ordering or deletion
are not permitted. The problem can be broken down into complex word identifica-
tion [Paetzold and Specia, 2016], and substitution selection [Specia and Jauhar, 2012].
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Paetzold and Specia [2015] summarise a range of feature based approaches [Szarvas
et al., 2013; Horn et al., 2014] and develop a modular toolkit named LEXenstein that
tackles both subtasks. From the surveyed approaches, they conclude that the most ac-
curate approach is to identify complex words with a binary classifier, select possible
substitutions with word2vec [Mikolov et al., 2013], and then choose the most appro-
priate with a binary classifier. The classifiers use a large number of features includ-
ing: word morphology, n-gram probabilities and document frequencies. More recent
work shows embeddings from bi-directional LSTMs outperform word2vec similar-
ity [Melamud et al., 2016] for substitution selection. While the effect of LSTMs on
the entire lexical simplification pipeline has yet to be explored, this result does sug-
gest that LSTMs are capable of capturing the broader semantic context necessary for
simplification.

Sentence compression involves reducing the length of a sentence by removing phrases,
while retaining grammatical correctness and the original meaning. This task targets
short output sentences, with no requirement that they are simpler. Although, the
resulting sentences will be shorter and are likely to by syntactically simpler, complex
words may be used as a way of conveying information compactly. Previous solutions
relied on external corpora and parse trees [Jing, 2000; Cohn and Lapata, 2009]. More
recently, large parallel corpora [Filippova and Altun, 2013] have led to interest in
end-to-end learning [Filippova et al., 2015; Rush et al., 2015; Auli and Rush, 2016].
Jing [2000] presents a sentence compression model that parses sentences into tree
structures and annotates each sub-tree with: grammatical importance (as defined by
external corpora and linguistic rules), connection to local context (as defined by local
word repetitions and similar word repetitions), and likelihood of being removed by
human annotators (as defined by a small text corpora). Phrases are then removed
in a top down fashion by thresholding the annotation scores. An alternative ap-
proach by Cohn and Lapata [2009] uses a large margin method to learn weights
for a synchronous tree-substitution grammar on a training set of a few thousand
sentences. Their tree-to-tree re-writing technique outperformed the state-of-the art
(in 2009), and is applicable to rewriting problems beyond word-deletion, such as
sentence simplification. More recently, Filippova et al. [2015] use a neural network
encoder-decoder model (see Section 2.2.2) to tackle sentence compression. They train
end-to-end on a parallel corpus of 2 million sentences built from news article head-
lines and first sentences [Filippova and Altun, 2013]. Their model beats the state-of-
the-art approach in automatic and human evaluations. Other authors [Rush et al.,
2015; Auli and Rush, 2016] extend this model to abstractive compression, where gen-
erated words are not a strict subset of the original sentence.

Text summarization involves taking a long text as input and outputting a much
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shorter text that captures the most salient information in the original text. A typi-
cal summary marks a trade-off between including information and making the text
shorter, it does not necessarily cover the entire content of original text. The sum-
maries of interest here are those written in natural language, thus language fluency
must also be traded-off against information density. To complicate matters further,
different summarization variants have different definitions of salient information.
Variants of summarization include multi-document summarization (summarising an
entire document collection), update summarization (summarising what is new in
a collection, for example new news topics), and personalised summarization (cus-
tomised summarization based on user preferences or queries). For a comprehensive
review of text summarization and its variants see Lloret and Palomar [2012]. Meth-
ods for summarization fall into two broad categories [Mani et al., 2002]. Extractive
(or surface-oriented) approaches select and join segments of the original text, while
abstractive (or knowledge-rich) approaches extract an intermediate semantic repre-
sentation that is later used to generate entirely new sentences. To identify important
text segments, surface-oriented approaches use many different properties: charac-
teristic word cues [Edmundson, 1969] (eg “in summary ...”), frequency of non-stop
words [Luhn, 1958; McCargar, 2004; Lloret and Palomar, 2009], probability under a
topic model, graph based connectivity estimates [Erkan and Radev, 2004; Mihalcea
and Tarau, 2004] (where text segments are nodes and edges represent text segment
similarity), and sentence classification and re-ranking [Li et al., 2007; Wong et al.,
2008a]. Knowledge-rich approaches often employ a knowledge base specific to a par-
ticular domain, such as: biomedicine [Fiszman et al., 2004; Rindflesch et al., 2011],
patents [Wanner et al., 2008], or toy domains [Moawad and Aref, 2012].

The more recent approaches to summarization have employed deep neural net-
works and learnt intermediate representations – often referred to in this context as
embeddings or hidden states. Enabling the use of deep learning models, which re-
quire large amounts of data, is the CNN/DailyMail corpus [Hermann et al., 2015]
with human written summaries for almost 300,000 news articles. The first use of
this dataset for summarization was by Cheng and Lapata [2016]. They employ an
encoder with a two level hierarchy: a word level CNN embeds words in each sen-
tence, while an RNN combines these into a document level embedding. Their best
performing model generates summaries by classifying input sentences – using the
learnt embedding – as either part of the summary or not part of the summary. This is
a sequence labelling problem for which they employ an LSTM. Nallapati et al. [2017]
take a similar approach, but use bi-directional GRUs to combine word embeddings
for each sentence. A separate bi-directional GRU accepts these sentence embeddings
and classifies each as either part of the summary or not part of the summary. To
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enable training of their extractive model on abstractive summaries, a GRU decoder
is connected to a weighted sum of all sentence embeddings. Training this decoder to
minimise the log probability of words in the summary is claimed to help learn better
sentence embeddings. The decoder is only used during training. Automatic evalu-
ations put this model on par with the model of Cheng and Lapata [2016]. See et al.
[2017] use an encoder-decoder model for abstractive summarization. Their encoder
and decoder are both LSTMs with the decoder outputting three different probability
distributions at each time step: Pgen a Bernoulli distribution for word generation vs
copying, Pvocab a Categorical distribution over output words in the decoder vocabu-
lary, and Pattn a Categorical distribution over input words (the attention component).
The final probability of outputting word w is:

(5.1)Pf inal(w) = PgenPvocab(w) + (1− Pgen) ∑
i:wi=w

Pattn(i)

The loss function is average log likelihood with a coverage penalty to reduce the
chance of repeatedly attending to the same words. In terms of ROUGE and METEOR
score, their method is weaker than a baseline that selects the first 3 sentence of the
article, and the best extractive only model [Nallapati et al., 2017]. However, they
outperform previous state-of-the-art abstractive methods and demonstrate the output
contains novel sequences.

5.2.3 Datasets

Many recent attempts at sentence simplification [Zhu et al., 2010; Coster and Kauchak,
2011; Horn et al., 2014] use the simple wikipedia dataset [Zhu et al., 2010]. This
dataset was constructed by aligning sentences from paired articles in English Wikipedia
and Simple English Wikipedia1. The Simple English Wikipedia is written by volun-
teers in a similar way to English Wikipedia, though they are encouraged to use only
the 1000 most common English words, simple grammar, and shorter sentences. These
are not strictly enforced, but rather considered broad guidelines. For example, us-
ing words outside the 1000 most common is permitted, and relatively frequent in
practice. The simple wikipedia dataset consists of 108,016 paired sentences extracted
from 65,133 articles; the average sentence length is 25.01 in wikipedia and 20.87 in
simple wikipedia.

Xu et al. [2015b] recently showed that simple wikipedia dataset contains a large
number of inadequate simplifications and is prone to sentence alignment errors.
They instead suggest the Newsela dataset, sourced (with permission) from the on-
line news source Newsela2, which consists of news articles re-written by professional

1https://simple.wikipedia.org/wiki/Main_Page
2https://newsela.com/

https://simple.wikipedia.org/wiki/Main_Page
https://newsela.com/
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editors to target different reading grades. These are roughly aligned with grades 3,
4, 6, 7 and 12, under the Common Core Standards in the United States. A thorough
analysis by Xu et al. [2015b] shows that compared to simple wikipedia, Newsela has
a more consistent level of quality with a higher degree of simplification. They esti-
mate that only 50% of sentences in simple wikipedia are true simplifications, while
at least 90% of Newsela sentence pairs are true simplifications. The number of true
simplifications increases to 92% when only considering alignments between the most
complex articles and the most simple articles.

5.3 Model

Section 5.3.1 provides an overview of the neural sequence-to-sequence model and its
encoder and decoder components, followed by three novel components of S4 - mix-
ing pre-trained and trainable word embeddings (Section 5.3.2), word-copy feeding
(Section 5.3.3), and a custom loss function (Section 5.3.4).

We denote the inputs to the encoder and decoder as xenc and xdec, the outputs
words as y, the attention vector for the i’th output token as ai, and the sequence state
vectors as henc

j and hdec
i . The encoder sequence is indexed by j; the decoder sequence

by i. The encoder sequence length is M and the decoder sequence length is L. We
use bold-face for vectors and upper-case for matrices.

5.3.1 Sequence to Sequence with Attention

Our base sequence to sequence model (Figure 5.1) uses two sets of Gated Recurrent
Units (GRUs) [Cho et al., 2014a,b]. The encoder GRU embeds the sentence into a set
of vectors, while the decoder GRU generates text from this set of vector embeddings.
GRUs are a popular Recurrent Neural Network (RNN) that perform similarly [Chung
et al., 2014] to the Long Short Term Memory (LSTM). For more information on GRUs
see Section 2.2.1; for more information on sequence to sequence models see 2.2.2. The
last hidden output of our encoder GRU is transformed by a fully connected linear
layer and then input to the decoder GRU as the first hidden state. Both GRUs have
two layers, each with 512 units, and act on sentences of up to 50 words. The 300
dimensional word embedding matrices Eenc, Edec are linearly projected into the 512
dimensional input space.

We implement the global attention model from Luong et al. [2015] that was origi-
nally designed for machine translation. Attention is a short circuit from the sequence
encoder to the sequence decoder output – for more details on attention models see
Section 2.2.2.1. In our formulation, the attention vector ai for the i’th output token is
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calculated as the softmax σ(z) over inner products of the current decoder state with
each of the encoder state vectors.

(5.2)ai = σ(henc
0:M.(hdec

i )T)

(5.3)σ(z) =
ez

∑M
j=0 ezj

The resulting attention ai weights the output of the encoder, which forms the context
vector ci.

(5.4)ci =
M

∑
j=0

ai,jhenc
j

The context vector is concatenated with the decoder output and input to a feed for-
ward layer with learnt parameters Wout and softmax non-linearity. The output is the
distribution over the next word p(yi|xenc, xdec

0:i ).

(5.5)p(yi|xenc, xdec
0:i ) = σ(Wout[ci, hdec

i ])

Where [ci, hdec
i ] denotes concatenation of the context and decoder hidden vectors to

form a new vector.
We train end-to-end using dropout [Srivastava et al., 2014], mini-batched adap-

tive gradient descent algorithm Adam [Kingma and Ba, 2015], and early stopping.
Dropout was applied to: the word projection layer output, the encoder hidden out-
puts, the context vector, and the decoder output. The dropout ratio was set to 0.7,
we found that such a large value (0.5 is more usual) helped to prevent over-fitting
given our relatively small dataset and large numbers of learn-able parameters. For
Adam, the learning rate was set to 0.001, β1 was 0.9 and β2 was 0.999 – β1, β2 are
exponential decay rates for the first and second moment estimates. Note that Adam
is typically insensitive to the chosen hyper-parameters [Kingma and Ba, 2015]. The
mini-batch size was 256 sentence pairs and the score on 1024 validation samples was
used for early stopping.

5.3.2 Mixing Pre-trained and Trainable Word Embeddings

A large vocabulary is necessary to represent complex sentences; however, as we show
in Section 5.5.2, learning embeddings for a large vocabulary when training data is
limited can hurt performance. Instead we extend the size of the input vocabulary
with pre-trained GloVe [Pennington et al., 2014] embeddings. Specifically, we learn
embeddings for the 5000 most frequent words, and use fixed GloVe embeddings for
an additional 640,317 words. The number of learnt embeddings was chosen with grid
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Figure 5.1: The encoder-decoder with attention for sentence simplification.

search. Words without an embedding (learnt or GloVe) are replaced with a shared
UNK token. These results are included in Section 5.5.2.

When the dataset covers a large range of different topics – such as news articles –
words not seen, or infrequently seen during training, may still be frequent in the test
set. Pre-trained word embeddings can help to cope with this disconnect; however,
using only a few learnt embeddings leads to a low variance model that cannot fit
the training data effectively. By choosing a mixture of pre-trained and trainable
embeddings we balance these two objectives. The learnt embeddings are restricted
to the more frequent words as these have the most training data.

Extending the input vocabulary does not increase the computational cost, be-
cause we only learn embeddings for the most frequent words. Unfortunately, we
cannot extend the output vocabulary without significantly increasing the computa-
tional cost of the final softmax, which is already the most expensive component for
model training.

5.3.3 Attentive Word-Copy Feeding

We design an attentive word-copy feeding mechanism to copy rare words that are
absent from the output vocabulary but are in the input vocabulary. This also takes
advantage of the similarity between the input and output sentences. A special output
token cpy is introduced to denote a copy operation. When generated at position i,
we copy the word xenc

j∗ from the input that is the most likely alignment, computed
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by attention score as j∗ = argmax
j=0:M

{ai,j}, with encoded sentence length denoted M.

This technique has been used in machine translation to deal with limited vocabulary
sizes [Luong et al., 2014], but has only been applied during post-processing. In order
to take advantage of a larger input vocabulary, we feed the copied word – rather than
the cpy token itself – as input xdec

i+1 in the next step of sentence generation. Feeding
the copied word allows the model to see more of the final sequence, which improves
performance when paired with our loss function that encourages copying. This is
especially important in the case of simplification, where a large proportion of words
are copied rather than generated as in the machine translation case.

5.3.4 Loss Function for Word-Copying

We designed a two-part loss function (Eq 5.6) to take advantage of the similarities
between the simplified and original sentences. The first term is the categorical cross-
entropy, a common loss function for encoder-decoder models [Sutskever et al., 2014;
Luong et al., 2015], minimising it increases the probability of generating the ground
truth word ŷi from the softmax output. The second term is a binary cross-entropy
(Eq 5.7). It encourages word copying at each position i when the input word with the
maximum attention xenc

j∗ agrees with the correct ground-truth word ŷi. Intuitively, the
model learns when direct copying of the input is appropriate. We first train with the
categorical cross-entropy and then fine-tune with the two-part loss function. Where
I denotes the indicator function.

(5.6)L =
1
L

(−
L

∑
i=0

log P(yi = ŷi) + bce(ŷ, y))

(5.7)bce(ŷ, y) =
L

∑
i=0
− log P(yi = cpy)I(xenc

j∗ =ŷi)

− log(1− P(yi = cpy))I(xenc
j∗ 6=ŷi)

5.4 Evaluation Settings

5.4.1 Newsela Dataset

The Newsela dataset [Xu et al., 2015b] is a collection of English news article sets,
where each article set consists of a source article at 5 levels of simplification. The
source article (considered year 12 level) was rewritten by professional linguists for
(approximate) grades 3, 4, 6, 7 under the Common Core Standards in the United
States. The Newsela dataset is only available upon request to Newsela, and the set
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of articles provided has not been standardised – they simply provide all published
articles up to the time of the request. We received 1,911 article sets, while the initial
report by Xu et al. [2015b] consisted of 1,130 article sets. We use all 1,911 article sets
to ensure maximum training data – all our baselines use this full dataset.

The Newsela articles are grouped into sets, but the sentences are not aligned. We
align sentences (as per Section 5.4.1.1) from the 4 most complex levels to the most
simple level. This choice ensures we have an approximately fixed simplification
target, and a large number of aligned sentences. While other alignment options are
possible, we found them to be more difficult to learn.

We split the Newsela dataset into 1337 training article sets, 191 validation article
sets and 383 test article sets. We remove identical aligned sentence pairs, leaving:
105,917 training sentences, 15,858 validation sentences and 28,468 test sentences. Be-
cause we split by article rather than sentence, there is a vocabulary difference between
training and testing, making our setting more challenging.

For S4 the input vocabulary has 645,317 words. For baselines which do not exploit
pre-trained embeddings, the input vocabulary constructed from Newsela has 31,630
words. In all cases the output vocabulary is restricted to the most frequent 10,000
words that occur at least 7 times in training. The size of the output vocabulary is not
crucial because word copying ensures any word in the input vocabulary can end up
in the simplified sentence.

5.4.1.1 Aligning Sentences

The Newsela dataset in its raw form is aligned only at the document level. We align
the different rewrites at the sentence level using a dynamic programming algorithm
loosely based on the work of Coster and Kauchak [2011]. Our approach allows
sentence splitting, where two simple sentences align to a single complex sentence.
We also take sentence ordering into account, which permits a low similarity score
threshold, which increases the number of matches.

The main components of any dynamic programming algorithm are the sub-
problems, which break the task into manageable chunks, and the recurrence relation-
ship, which describes how to combine solutions to sub-problems. Our sub-problem,
denoted a(i, j), is the optimal score for aligning all sentences in the complex docu-
ment after and including index i to all sentences in the simple document after and
including index j. The recurrence relation that describes how to build up these sub-
problems is defined in Equations 5.8-5.11. First, we define si as the i’th complex
sentence and sj as the j’th simplified sentence. Note that in this section, i and j de-
note sentence indices rather than word indices as was the case in Section 5.3.4. The
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similarity function between two sentences is denoted di,j and defined in Equation 5.9.
Dcomp is the number of sentences in the complex document, and Mi is the number of
words in the i’th complex sentence. Dsimp is the number of sentences in the simplified
document, and Lj is the number of words in the j’th simplified sentence.

For clarity we present the recurrence relationship in two parts: the first matches
each complex sentence with a single simple sentence; the second matches each com-
plex sentence with two simplified sentences.

For single sentence matching there are three possible cases reflected in Equa-
tion 5.8. If we choose to match the sentences, the score is the similarity of the two
sentences di,j, plus the best score for all later alignments a(i + 1, j + 1). If we choose
not to match the two sentences, the score is γ (the skip penalty) plus the best score
for all later alignments: this is a(i + 1, j) if we skip the complex sentence and a(i, j + 1)
if we skip the simple sentence.

(5.8)asingle(i, j) = max(a(i + 1, j + 1) + di,j, a(i + 1, j) + γ, a(i, j + 1) + γ)

The sentence similarity function is defined in terms of the BLEU-4 score as:

(5.9)σ(si, sj) = BLEU-4(si, sj)
di,j = min(σ(si, sj), σ(sj, si))

We use BLEU-4 because its sensitivity extends up to a four-gram overlap, but also
includes tri-gram, bi-gram and uni-gram overlap. We found BLEU-4 gave reasonable
alignments in most cases. Note that BLEU-4 varies between 0 and 100, with 100 being
the highest similarity. For more details on how BLEU is computed see Section 2.3.4.

For multi-sentence matches we consider splitting the complex sentence into two
parts. The recurrence is described in Equation 5.10. Here p is the split index for
the complex sentence, with each fragment aligned to a different simplified sentence.
Since we consider local sentence re-ordering, there are two options for each index p.
The first option has the complex sentence prefix aligned to the first simple sentence
and the suffix aligned to the second simple sentence. The second option has the
prefix aligned to the second sentence and the suffix aligned to the first sentence. In
both cases we add the best score for all later alignments a(i + 1, j + 2).

(5.10)
amulti(i, j) = max

p<Dcomp
max(σ(si,[1:p], sj) + σ(si,[p:M], sj+1),

σ(si,[1:p], sj+1) + σ(si,[p:M], sj)) + a(i + 1, j + 2)

The notation [α : β] denotes all integer values between α and β, inclusive. Using
Equation 5.10 and Equation 5.8 we define the full recurrence as:
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(5.11)a(i, j) =


0 if i ≥ Dsimp

0 if j ≥ Dcomp

max(asingle(i, j), amulti(i, j)) otherwise

As is usual in a dynamic programming algorithm this recurrence is efficiently
computable when caching sub-problems. Once the optimal alignment score is found,
the alignments can be recovered by backtracking through the cache and choosing the
action at each i, j position that lead to the optimal score.

5.4.1.2 Manual Word Level Alignment

To evaluate the attention mechanism, we chose a subset of 512 sentence-pairs from
the validation set and created a ground-truth alignment at the word level. An auto-
matic matching approach based on longest contiguous matching subsequence (com-
monly known as diff) made an initial set of matches. One annotator – the author of
this thesis – then reviewed the sentence-pairs and corrected all misaligned or missing
alignments.

5.4.2 Moses Baseline

Many authors [Coster and Kauchak, 2011; Wubben et al., 2012; Stajner and Saggion,
2015] have applied the open source phrase translation software Moses [Koehn et al.,
2007] to sentence simplification. We adopt Moses as a baseline which we train by
following the directions of Coster and Kauchak [2011]. Specifically, we keep the
default settings for tokenization and truecasing, remove sentences longer than 80
words, and train a tri-gram language model using modified Kneser-Ney smoothing.
The hyperparameters are tuned with Minimum Error Rate Training (MERT), which
maximises the BLEU score on a sample of 400 paired sentences from the validation
set. Using a small sample from the validation set is necessary because the MERT
algorithm is computationally expensive; our sample size is consistent with Coster
and Kauchak [2011].

5.4.3 Evaluation metrics

We use three types of metrics that measure: the similarity, the amount of change,
and the simplicity of the generated sentences. The similarity metrics BLEU [Papineni
et al., 2002] (B1-B4) and Rouge [Lin, 2004] are commonly used for evaluating machine
translation – larger scores mean greater similarity to the ground-truth. For a detailed
discussion of BLEU and Rouge see Section 2.3.4. The distance to the original sentence
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B-1 B-2 B-3 B-4 Rouge Flesch Avg.Words Edit Dist.
ground-truth - - - - - 74.69 15.72 7.30
original 69.84 62.76 57.57 53.10 75.07 64.75 17.12 0.0

moses 65.43 56.45 49.94 44.50 69.99 74.19 17.08 1.56
S4-attn 23.35 13.54 8.77 5.95 30.69 91.68 9.70 13.46
S4-feed 61.94 51.94 45.14 39.71 64.75 75.49 15.49 5.94
S4+gv+bce-feed 16.86 7.70 3.52 1.72 24.42 67.91 27.54 26.08
S4 63.04 53.60 46.96 41.51 65.91 77.90 15.26 5.53
S4+gv 67.51 59.01 52.90 47.75 70.28 73.41 15.34 3.82
S4+bce 65.28 57.23 51.36 46.43 68.03 74.72 15.94 4.70
S4+gv+bce 68.71 60.80 55.11 50.28 71.02 68.71 15.80 3.51

Table 5.1: Results for the end-to-end sentence simplification task. Our complete
model is S4+gv+bce. Section 5.4.1 details the metrics. Values in bold are closest to the
ground-truth. For BLEU or Rouge the largest value is closest to the ground-truth, for
Flesch or Average Words the closest has the smallest delta from a Flesch of 74.69 or

a Average Words of 15.72.

is measured by edit distance (Edit Dist.), the number of word insertions, deletions or
substitutions to turn the original sentence into the generated sentence. Sentence sim-
plicity is measured by average words per sentence (Avg.Words) and Flesch-Kincaid
reading ease (Flesch). Flesch score is a widely used open-source metric for simplifi-
cation tasks [Zhu et al., 2010; Narayan and Gardent, 2014]. It weights average words
per sentence and average syllables per word – simpler sentences have higher scores.

5.5 Results

Table 5.1 summarises the performances of the model variants and baselines. We
use suffixes to show the components added or removed to each S4 model variant:
-attn for removing attention, -feed for removing word-copy, +gv for allowing a mix of
trainable and pre-trained embeddings, and +bce for training with the loss function
for word-copying. The base model for S4 is an encoder-decoder model with attention
and word-copy feeding.

5.5.1 Sequence to Sequence Performance

Our model S4+gv+bce outperforms phrase translation trained with open source soft-
ware Moses [Koehn et al., 2007] and used by earlier simplification work [Coster and
Kauchak, 2011; Wubben et al., 2012; Stajner and Saggion, 2015]. The sentences gen-
erated by S4+gv+bce have higher BLEU and Rouge scores than Moses, indicating
greater similarity to the simplified sentences. The Moses baseline achieves a good
Flesch score; however, coupled with the lack of similarity to the simplified sentences,
this could indicate a loss of semantics.
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We find that the original sentences achieve high BLEU and Rouge scores despite
being longer and more complex than the generated sentences – this is consistent with
previous observations [Coster and Kauchak, 2011; Wubben et al., 2012; Stajner and
Saggion, 2015]. The dataset construction is partially responsible: using BLEU-4 for
aligning ground truth sentences (see Section 5.4.1.1) means there is a large overlap
between original and simplified sentences. The content domain is also responsible
as there is not much change between complex sentences and those simplified by
linguists. For example, in the manually aligned section of the dataset only 6.1%
of aligned words were changed going from the complex to simple sentences – the
remaining 93.9% were copied. It is also likely that the BLEU and Rouge metrics eval-
uation have a hand in the high performance of the original sentences. These metrics
penalise sentences shorter than the ground-truth – BLEU explicitly and Rouge im-
plicitly. Generated simplifications will be penalised more frequently as they tend to
be shorter than the original sentences.

5.5.2 Ablation Study

Each component in the S4 model contributes to the performance, as shown in Ta-
ble 5.1. Removing either the attention (S4-attn) or the feeding (S4-feed) causes a drop
in BLEU and Rouge, indicating that the generated sentences are further from the
simplified ground-truth. The attention is the more important of the two, with re-
moval leading to an enormous 35.56 BLEU-4 point drop – we also observed semantic
divergence from the input sentence after three to four words. Attention not only
enables word copying but also reduces the effective depth of the network and avoids
compressing the entire encoded sentence into a single fixed size vector. Adding ei-
ther the pre-trained word-vectors or the custom loss function improves the BLEU
and Rouge scores. S4+bce has a higher BLEU-4 by 4.9 points, and S4+gv+bce leads to
a further 3.8 increase. Compared to the ground-truth sentences, S4+gv+bce is closest
in sentence length, while S4+bce is closest in Flesch score.

The custom loss and word-copy feeding are designed to be paired. If we keep
the custom loss function but remove feeding (S4+gv+bce-feed), performance degrades
drastically, because the cpy token, which provides little information by itself, is used
frequently – 87.7% (up from 9.0%).

By extending the vocabulary with pre-trained word-vectors (S4+gv), we mitigate
the affects of data scarcity. Figure 5.2 shows that using 5000 trainable embeddings
gives the best validation performance. If instead we use too many fixed embed-
dings (left of Figure 5.2), the model lacks the flexibility necessary to learn accurate
simplifications; likewise, too many trainable embeddings means the model lacks the
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Figure 5.2: The validation performance of S4+gv+bce with different numbers of train-
able and pre-trained embeddings. Higher BLEU-4 scores indicate greater simplifica-

tion precision.

information to deal with uncommon words (right of Figure 5.2). This is a classic bias
vs variance trade-off.

5.5.3 Simplification Examples

Table 5.2 shows two examples from the S4+gv+bce model. The first has “massive”
changed to “huge”, which is semantically correct and subjectively simpler, and “grain”
changed to “vegetable”, syntactically correct but a semantic mistake. The second ex-
ample correctly splits a noun clause into two sentences, but the ground truth sentence
uses additional information from article context, and is not shorter. These examples
demonstrate that S4 can learn to perform multiple simplification operations, includ-
ing word replacement, sub-string removal and sentence splitting. They also illustrate
the limitations of the available ground-truth. Having only one ground-truth sim-
plification per original sentence can lead to penalising correctly simplified outputs.
Moreover, the dataset was constructed with additional article level and local context
not provided to the sentence simplifier.

5.5.4 Attention Alignment Performance

A direct evaluation of the attention alignments is presented in Table 5.3. To separate
the effects of attention and word copying from imperfect word substitutions, we
employ a word substitution oracle which always outputs the correct word from the
ground-truth at test time. However, the correct word is only output if the alignment
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Orig The increase would put massive strains on the world’s water and
grain supplies.

Simp The increase would put huge strains on the world’s water and veg-
etable supplies.

GT The increase would strain the world’s water and grain supplies.
Orig Obama, who has not said when he’ll make a final decision, is under

heavy pressure to approve the project.
Simp Obama has not said when he’ll make a decision. he is under heavy

pressure to approve the project.
GT President Obama has not said when he’ll decide what to do about

the pipeline. but, he is under pressure to say yes to the project.

Table 5.2: Simplification examples from the S4+gv+bce model. Bold-face highlights
changes from the original complex sentence to the simplified sentence. Insertions and
replacements are bold-face in the simplified sentence, while deletions are bold-face
in the complex sentence. Orig is the original complex sentence, Simp is the output of

the S4+gv+bce model, and GT is the ground truth simplified sentence.

B-1 B-4 Rouge
S4 80.91 65.09 82.81

S4+bce 79.49 63.01 81.27
S4+gv 83.16 68.81 84.77

S4+gv+bce 81.92 66.83 83.50

Table 5.3: BLEU and Rouge scores when an oracle word simplifier is used: when
the correct alignment is made the chosen word is guaranteed to be correct. This

measures the performance of the attention layer alone.

given by the argmax attention is in the hand-aligned ground-truth (dataset details in
Section 5.4.1). Words unaligned in the ground truth may have any argmax alignment.

Compared to Table 5.1, having a word replacement oracle boosts S4 BLEU-4 by
23.58 points and Rouge by 16.9 points – setting a theoretical upper bound on per-
formance with the current attention model. The base model S4 with oracle achieves
65.1 in BLEU-4, while the model variants using pre-trained word embeddings (+gv)
perform slightly better, with S4+gv at 68.8 in BLEU-4. This demonstrates that both at-
tention and word replacement components have a margin for improvement – future
work focusing on either one would not be wasted effort.

5.5.5 Word Replacement Performance

We examine the performance of word replacement in isolation from the attention by
using the hand-aligned data (Section 5.4.1.2). The goal of the decoder becomes com-
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Generated Ground Truth
Copy Word Change Word

Copy Word 5359 259
Change Word 227 106

Table 5.4: Confusion matrix for choosing to change or copy a word. The rows are
the actions chosen by the S4+gv+bce model when fed ground-truth alignments. The

columns are the ground truth actions.

puting the most likely next word given: the original sentence, all previously gener-
ated words, and the known alignment for the next word. To incorporate ground-truth
alignments into the model, we replace the attention ai,j with the count normalised

ground-truth alignments âi,j =
agt

i,j

∑L
m=0 agt

i,m
. Where agt

i,j is a ground-truth alignment indi-

cator, with unit value if the j’th input word is aligned to the i’th output word, zero
otherwise. Normalisation is necessary because multi-word alignments are permitted,
and occur frequently in practice.

Table 5.4 is the confusion matrix for S4+gv+bce, showing changed words (words
undergoing substitution) and copied words (words copied directly from the input).
S4+gv+bce frequently chooses to copy words, mirroring the high similarity between
ground-truth sentences. However, in only 32% of cases does S4+gv+bce correctly
choose to change a word. Even when S4+gv+bce correctly decides to change a word,
it only chooses the same word as the ground-truth 46% of the time. Word replace-
ment itself does not perform well. Better word replacement may be achieved with
significantly more training data, though new ideas seem necessary for further im-
provement in the more common case of data scarcity.

5.6 Summary

I present S4, a sequence-to-sequence model for simplifying sentences. The new loss
function encourages word copying, reducing the requirements on the word generator,
and thereby narrowing the models to focus to the changes necessary for simplifica-
tion. Word-copy feeding ensures the model sees an accurate word history even when
copying is used extensively. The tune-able method for incorporating pre-trained
word embeddings into the pipeline allows efficient use of external data – although
much work in this area remains.

The remaining obstacles include low reliability of word substitutions, and the
lack of aligned data. Future work includes exploiting datasets from related tasks.
Attention alignment performance may also benefit from the coverage mechanisms
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used in some recent sequence to sequence models [Tu et al., 2016; See and Manning,
2017].

Although this chapter deals entirely with text, the techniques developed are more
broadly applicable to generating visually relevant styled captions, for example gen-
erating image captions with existing techniques, and then using the proposed style
shifting model. This sidesteps the issue of finding image-caption pairs in the target
style; however, since semantic pairs of sentences in different styles are scarce, this
does not solve the data scarcity problem. In Chapter 6, I build on the idea of us-
ing sequence-to-sequence models for styled caption generation, but take tackling the
data scarcity problem further by learning from an unaligned style corpus.
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Chapter 6

Captioning Images with Style
Transfer from Unaligned Text
Corpora

6.1 Introduction

In this chapter I address three main challenges. The first is human-like style transfer
– using large amounts of unrelated text in a given style to compose styled image
captions. The second is designing an intermediate space that separates the seman-
tics from the linguistic style. The third is ensuring generated stylistic text remains
descriptive and relevant to the image.

I develop a model, called SemStyle, for generating stylistically interesting and
semantically relevant image captions by learning from a large corpus of stylised text
without aligned images. Descriptive image captioning models are not applicable
to this case because images are not aligned with styled captions. Central to my
approach is separating semantic relevance and style. To this end, I propose a novel
semantic terms representation that is concise and promotes flexibility in word choice.

train_NOUN
Placing_FRAME 
station_NOUN

I stopped short when I saw the 
train sitting at the station.

A train that stopped at a 
train station.

Semantic Terms
Caption Style: Story

Caption Style: Factual

Figure 6.1: SemStyle distills an image into a set of semantic terms, which are then
used to form captions of different styles.

145
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Terms consist of normalised nouns with their part-of-speech tags, along with verbs
generalised with the lexical database FrameNet. Further, I develop a term generator for
obtaining a list of terms related to an image, and a language generator that decodes the
ordered set of semantic terms into a stylised sentence. The term generator is trained on
images and terms derived from factual captions. The language generator is trained on
sentence collections and conditioned to generate the desired style. As illustrated in
Figure 6.1, the term generator produces train_NOUN, Placing_Frame, station_NOUN
from the image, and language generator produces sentences of different styles from
this set of terms.

Evaluated on both MSCOCO [Chen et al., 2015] and a corpus of romance nov-
els [Zhu et al., 2015], the SemStyle system produced distinctively styled captions in
58.8% of cases, while retaining visual semantics as judged by the SPICE metric [An-
derson et al., 2016], and producing fluent sentences in the target style as judged
by two different language models. Evaluated subjectively by the crowd, SemStyle
achieved an average descriptiveness of 2.97 (out of 4, where larger is more descrip-
tive) which is competitive with state-of-the-art purely descriptive baseline at 2.95.
Since this baseline is the underlying method used by the semantic term generator
component I demonstrate SemStyle does not significantly reduce caption relevance
with respect to its underlying semantic model. Moreover, 41.9% of captions from
SemStyle were judged to be telling a story about the associated image. The main
contributions of this chapter are as follows:

• A concise semantic term representation for image and language semantics, im-
plemented with a neural-network based term generator.

• A system for generating stylistic image captions without paired training data,
using the semantic term generator and a stylistic language generator.

• A comparison with multi-modal vector space models.

• Competitive results in human and automatic evaluations with existing, and two
novel, automated metrics for style.

6.2 Model

We propose a novel encoder-decoder model for generating semantically relevant
styled captions. First, this model maps the image into a semantic term represen-
tation via the term generator, then the language generator uses these terms to generate
a caption in the target style. This is illustrated in Figure 6.2.
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Figure 6.2: An overview of the SemStyle model. The term generator network (in green)
is shown in the lower left. The language generator network is in the upper right (in

blue) .

The lower left of Figure 6.2 describes the term generator, which takes an image
as input, extracts features using a CNN (Convolutional Neural Network), and then
generates an ordered term sequence, summarising the image semantics. The upper
right of Figure 6.2 describes the language generator, which takes the term sequence
as input, encodes it with an RNN (Recurrent Neural Network) and then, using an
attention based RNN, decodes it into natural language with a specific style. We
design a two-stage learning strategy enabling us to learn the term generator network
using only a standard image caption dataset, such as MSCOCO [Chen et al., 2015],
and learn the language generator network on styled text data, such as romantic novels.

The remainder of this section introduces our semantic representation and encoder-
decoder neural network, while the learning method is discussed in Section 6.3.

6.2.1 Semantic Term Representation

To generate image captions that are both semantically relevant and appropriately
styled, our structured semantic representation should capture visual semantics and
be independent of linguistic style. When extracted from an image by the term gener-
ator, the representation should describe the contents of the image relevant to gener-
ating captions. We also need a representation that can be extracted from text alone
so it can be used to train the language generator without images. Ideally, when ex-
tracted from text the semantic recall should be high to prevent the language generator
from learning to invent semantics. However, this needs to be balanced with freedom
for the language generator to choose language constructs that are stylistic in nature.
In Section 6.5, we show our semantic term representation preserves the majority of
real-world image and text semantics, while allowing the freedom to introduce style.

We opt to use discreet terms to form our semantic term representation, as it has
some major advantages. Language itself is a discreet term space capable of accurately
describing a huge variety of concepts; by staying close to a linguistic representation
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we are able to describe a diversity of concepts. This also enables us to use ideas from
the field of Natural Language Processing (NLP) – which has long been associated
with extracting meaning from text. As the styled text should not effect the identifi-
cation and selection of concepts from images we do not need to compute gradients
from the language generator back to the term generator, allowing us to easily employ
a discreet representation. In contrast a vector representation for terms has two main
drawbacks. First, it would require learning a space that separates content and style,
an unsolved task that is especially challenging in the case of romance novels and
image captions which have substantially different content as well as style. Second,
vector representations typically allow for greater variability in the final text realisa-
tion, whereas we aim to give the term generator direct control over the content words.
Our discreet term space is a shared domain which naturally encompasses both the
content of styled text and images.

Formally, given a sentence w = {w1, w2, · · · , wn} with wi ∈ V in, we define a set
of rules mapping it to our ordered semantic terms x = {x1, x2, · · · , xM}, xi ∈ V term.
Our goal is to define a set of semantic terms and mapping rules broad enough to
encompass the semantics of both images and stylistic texts, and yet specific enough
to avoid encoding style. Inspired by computational stylistics we construct three sets
of rules:

A. Filtering non-semantic words. Function words are known to encode style rather
than semantics, and are often used in authorship identification models [Argamon
and Levitan, 2005; Van Halteren et al., 2005; Argamon et al., 2003]. Here we remove
function words in order to encode semantics and strip out style. From input sentence
s, we filter English stop-words and a small list of additional terms, either informal e.g.
“nah”, the result of tokenization e.g. “nt” or numbers e.g. “one”, “two”. Using Parts
Of Speech (POS) tags, we further remove: punctuation, adverbs, adjectives, pronouns
and conjunctions. The importance ordering of POS types is derived from a data-
driven perplexity evaluation described in Section 6.2.2. Throughout this process we
preserve the common collocation “hot dog”. This collocation was manually specified
for our data set, but automatic approaches [Wehrli et al., 2010] could also be used to
identify a more extensive list automatically. In most cases collocations are preserved
without special exceptions, in the case of “hot dog”, the word “hot” was tagged as an
adjective and so was filtered out.

B. Lemmatization and Tagging. Words from a sentence are converted to semantic
terms to remove common surface variations. For most words we choose to lem-
matize and concatenate with the POS (Part-Of-Speech) tag, e.g. “rock” becomes
“rock_NOUN”. Lemmatization allows terms to be used more freely by the language
generator, enabling stylistic choices such as tense and active/passive voice. POS tags
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distinguish among different senses of the same word, for example the verb “rock”
and the noun “rock” are disparate. We use the spaCy1 natural language toolkit for
lemmatization and POS tagging – the POS tagging method is based on Collins [2002].
C. Verb abstraction. To fully separate style and semantics it is necessary to remove
word surface forms and reduce them down to semantic tokens. For example the
words “walk”,“stroll”, and “stride” all have similar semantic content but different
surface forms, where the choice of surface form is primarily stylistic. We rely on the
concept of frame semantics when removing verb surface forms.

Frame semantics [Baker et al., 1998] is a conceptual framework for understand-
ing semantics in language, where word meaning is based on contextual information
called the semantic frame. This contextual information can come from surround-
ing words, in which case they are said to evoke a frame. For example the frame
Apply_heat could be evoked by the words “fry”, “bake” and “boil”, and help us to
distinguish the agent as a Cook and the subject as the Food. A large lexical database
called FrameNet [Baker et al., 1998] defines over 1200 semantic frames and more
than 13000 word senses. FrameNet provides the basis for a number [Johansson and
Nugues, 2007; Das et al., 2014; Roth and Lapata, 2015; Swayamdipta et al., 2017]
of frame-semantic role labelling techniques: where text is automatically annotated
with semantic frames. A recent state-of-the-art approach named SEMAFOR [Das
et al., 2014; Kshirsagar et al., 2015] is trained – via supervised and unsupervised
techniques – to identify frame evocations, and collectively predict all arguments. We
can use frame-semantic role labelling as a principled way of separating content from
style.

We replace verbs with FrameNet [Baker et al., 1998] frames, preserving much of
the semantics without enforcing a particular word choice. Table 6.1 displays the five
most common verb frames in both the MSCOCO and Romantic Novel datasets. For
instance, the lemmas: sitting, laying and parking all map to the Placing semantic frame.
We use the semantic role labelling tool SEMAFOR [Kshirsagar et al., 2015] for sense
disambiguation and frame annotation. We then map these frames into a reduced
frame vocabulary, consisting of frames that occur over 200 times in the MSCOCO
training set. Out-of-vocabulary frames are mapped to an in-vocabulary ancestor via
the FrameNet hierarchy. Failing this, the frame is filtered out. Intuitively, frames
not occurring frequently in the MSCOCO set, and with no frequent ancestors, are
unlikely to be visually grounded – for example the frame Certainty with word lemmas
“believe” and “trust” is a frame with no obvious visual grounding.

We choose not to use frames for other parts of speech as they are too broad,
eg “dog”, “cat” and “cow” all map to the Animal frame and some common nouns

1https://github.com/explosion/spaCy/tree/v1.9.0

https://github.com/explosion/spaCy/tree/v1.9.0


150 Captioning Images with Style Transfer from Unaligned Text Corpora

were frequently labelled incorrectly e.g. “grass” labelled as an Intoxicant. We expect
retraining SEMAFOR on visually grounded text such as image captions rather than
books, letters and news articles would improve accuracy – though to our knowledge
no such annotated dataset exists.

We do not explicitly determine word senses (other than for verbs), instead we
rely on the language generator network to implicitly identify sense based on the con-
text of other terms. Our early attempts to use word sense disambiguation explicitly
were not fruitful due the tested systems making a large number of mistakes on the
caption dataset. We found that our system works relatively well without explicit
disambiguation, except in cases where there is a strong prior imposed by the styled
text on the sense, for example a character in a romance novel called “Cat” could lead
to confusion with the animal “cat”. To accurately use word sense disambiguation for
styled image captioning it seems necessary to consider sense priors over the source
and target domains, this is left as future work.

We preserve the ordering of the semantic terms from the original sentences, be-
cause results (Section 6.5) show ordering helps performance. For example, given the
original sentence “A train that is stopped at a station.”, then the ordered set of seman-
tic terms is “train_NOUN, placing_FRAME, station_NOUN”, where “placing_FRAME”
is the frame for “stopped”. This allows the representation to distinguish between
sentences such as “The dog bit the man.” and the “The man bit the dog.”.

SEMAFOR provides semantic roles for parts of the sentence which relate to the
verb frame, for example “a train” could be annotated with the role Theme while “at a
station” could be annotated by Goal. We do not use this role information in our sys-
tem because it tends to be noisy (the incorrect roles are assigned) and sparse (there
are a large number of possible role object pairs). Moreover, our method for mapping
infrequent verb frames to more general and more frequent frames means that the
roles relating to the original frame would appear out of their original context. How-
ever, across many different sentences terms with similar roles tend to be located in
the same place relative to the verb, so retaining the ordering of semantic terms will
tend to preserve role information. This is not universally true, consider the two sen-
tences “The man who was bitten by the dog.” and “The man bit the dog.” which have the
same term ordering but reversed roles. Designing a structured term representation
that can differentiate between these cases, while being relatively dense and noise free
is left as future work.
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Frame (count) Common Verbs
MSCOCO Dataset

Placing (86,262) sitting, parked, laying, hanging, leaning
Posture (45,150) standing, lying, seated, kneeling, bends
Containing (32,040) holding, holds, held, hold
Motion (22,378) flying, going, swinging, fly, floating
Self motion (21,118) walking, walks, walk, swimming

Romantic Novels Dataset
Arriving (33781) get, got, came, reached, come
Intentionally_act (33659) do, did, does, doing, done
Self_motion (32911) walked, walking, stepped, walk, slipped
Statement (32771) said, told, say, says, talking
Placing (28986) sitting, leaned, parked, hanging, placed

Table 6.1: The most common frames in the MSCOCO (596K training captions) and
Romantic Novels Dataset (578K training sentences) with their frequency count and

most common verbs.

6.2.2 Importance Ordering for Parts-of-Speech

We defined the set of semantic terms by incorporating our domain knowledge, e.g.
nouns are semantically important while determiners are not. Alternatively, we can
learn which word classes carry semantic information.

We would like to know which word classes (adjectives, nouns, verbs , etc.) carry
the most visually semantic information per occurrence. To do this we seek the word
classes which, when removed, lead to the largest increase in entropy after balancing
for their frequency. The implicit assumption here is that semantic words more new
information that style words and are therefore both the most difficult to predict and
the most useful for predicting other words in the sentence. In practice we calculate
the contribution of POS classes using the perplexity of the ground truth sentence after
conditioning on input words belonging to different classes. For example, remove
all nouns from the conditioning set of semantic terms and measure the change in
perplexity. Balancing for class frequency is necessary to avoid bias towards the most
frequent words.

It is not clear how to directly balance for class in this setup, instead we insure all
conditioning sentences have a fixed fraction of their original number of words. For
example, when removing nouns we also remove other types of words uniformly at
random until the conditioning sentence has reached the desired length. This ensures
that the perplexity score captures the predictability of words in the POS class and
the importance of the POS class for predicting other words, rather than the number
of occurrences.
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Our approach requires a probabilistic model with a domain including the word
classes of interest and a range including possible output sentences. One computa-
tionally expensive solution is to train the language generation model for each possi-
ble word class. Instead, we use a single language generation model trained on input
sentences with 66% of the input words randomly removed. We train this model
once and then selectively drop out words during testing. This approach is effectively
a de-noising auto-encoder, where noise takes the form of removed words. Using
this trained auto-encoder we plan to search for a simple part-of-speech removal sen-
tence compression scheme, so that when a fixed fraction of tokens are removed the
reconstruction loss is minimised. This compression is inherently lossy, and the com-
pressed text need not make grammatical sense making this task distinct from the
human readable sentence compression task reviewed in Section 5.2.2.

Our search for the most important word classes starts with uniform random re-
moval of all words down to the 33% level and thereby establishes a baseline. From
there, each possible word class is given a rank; higher ranked word classes are al-
ways completely removed before lower ranked word classes; removal stops when
only 33% of words remain. Words from classes of the same rank are chosen uni-
formly at random. For example, if the input sentence is “the cat on the mat .” and the
removal order had nouns ranked 2 and all other parts of speech ranked 1, then nouns
“cat” and “mat” would both be removed. Remaining words would be randomly re-
moved until only 2 out of the 6 remain. Using this method we should see the lowest
perplexity when the words are ordered from least important to most important.

Our forward selection approach tries to set each word type to the highest non-
occupied rank or the lowest non-occupied rank. The selection which minimises the
perplexity is then fixed and the search proceeds until all classes are ranked. The fi-
nal ordering was adjective, adverb, coordinating conjunction, particle, determiner,
preposition or subordinate conjunction, verb, pronoun and noun, with adjective
judged the least useful and noun the most useful. Adjectives lack importance per-
haps because they have only a local effect on a sentence and are often poorly detected
by the CNN+RNN systems [Anderson et al., 2016; Vinyals et al., 2015b]. This order-
ing is in line with our term space construction rules presented in Section 6.2.1.

While our approach involves removing all occurrences of a particular POS class,
this is clearly not the ideal scenario, since words within each class carry a variable
amount of visual information. For example the adjectives, “tall”, “red”, and “reflec-
tive” all have a sense with a clear visual grounding, while the adjectives “happy”,
“honest”, and “angry” have a less clear visual grounding. While previous work has
looked at identifying visual vs non-visual attributes [Yanai and Barnard, 2005; Berg
et al., 2010; Xie and He, 2013], to use these methods in practice would require ac-
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curate word sense disambiguation. As we previously noted existing models seem
to work poorly on image captions perhaps due to data mismatch. The range of at-
tributes that the CNN can detect reliably is another constraint, for instance Anderson
et al. [2016] calculate F-scores for different attribute classes produced by numerous
state-of-the-art image captioning techniques (trained on MSCOCO). While the best
methods could reliably detect colour attributes, all methods where relatively poor at
identifying attributes in general, and especially poor at counting objects. As stan-
dard captioning methods continue to improve, developing a flexible representation
for attributes will become more important for styled caption generation, but we leave
this for future investigation.

6.2.3 Generating semantic sequences from images

We design a term generator network that maps an input image, denoted I, to an
ordered sequence of semantic terms x = {x1, x2, xi, ..., xM}, xi ∈ V term. The term
generator is responsible for all semantic content; it must identify important concepts
and provide a self consistent list of semantic terms. For example, term lists should
not contain duplicate concepts “cow”, “cattle”, “livestock” unless they each need to be
described separately, nor should they be missing important concepts. The following
language generator assumes all semantic terms are correct and necessary for forming
a caption.

Our term generator network is a CNN+RNN structure inspired by Show and
Tell [Vinyals et al., 2015b], and illustrated in the lower left of Figure 6.2. The im-
age features are extracted from the second last layer of the Inception-v3 [Szegedy
et al., 2016] CNN trained on ImageNet [Russakovsky et al., 2015]. They then pass
through a densely connected layer before being provided as input to an RNN with
Gated Recurrent Unit (GRU) cells. The term list x is shorter than a full sentence,
which speeds up training and alleviates the effect of forgetting long sequences.

At each time-step i, there are two inputs to the GRU cell. The first is the previous
hidden state hi−1 summarising the image I and term history x1, ..., xi−1; the second is
the embedding vector Exi of the current term. A fully connected layer with softmax
non-linearity takes the output hi and produces a categorical distribution for the next
term in the sequence xi+1. Argmax decoding can be used to recover the entire term
sequence from the conditional probabilities:

(6.1)xi+1 = argmax
j∈V term

P(xi+1 = j|I, xi...x1)

We set x1 to be a beginning-of-sequence token and terminate when the sequence
exceeds a maximum length or the end-of-sequence token is generated.
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6.2.4 Generating styled descriptions

The language generator, shown in the upper right of Figure 6.2, maps from a list of
semantic terms to a sentence with a specific style. For example, given the term
list “man_NOUN”, “Competition_FrameNet”, “football_NOUN”, a suitable target can
be “The handsome man played football like there was no tomorrow.”. Given the list of
semantic terms x, we generate an output caption y = {y1, y2, yt, ..., yL}, yt ∈ V out –
where V out is the output word vocabulary. To do so, we learn an RNN sequence-to-
sequence language generator network with attention over the input sequence, using
styled text without corresponding paired images.

The encoder component for sequence x consists of a Bidirectional RNN [Schuster
and Paliwal, 1997b] with GRU cells and a learn-able term to vector embedding. The
Bidirectional RNN is implemented as two independent RNNs running in opposite
directions with shared term embeddings. Hidden outputs from the forward RNN
h f wd,i and the backward RNN hbak,i are concatenated to form the hidden outputs of
the encoder henc,i = [h f wd,i, hbak,i]. The last of these hidden outputs is used to initialise
the hidden state of the decoder hdec,0 = henc,M. The decoder itself is a unidirectional
RNN (only a single forwards RNN) with GRU cells, learn-able word embeddings, an
attention layer, and a softmax output layer.

The attention layer connects selectively weighted encoder hidden states directly to
decoder cells, using weightings defined by a learnt similarity (Equations 6.2 & 6.3).
This avoids compressing the entire sequence into a single fixed length vector, which
improves performance in sequence-to-sequence modelling [Wu et al., 2016; Sutskever
et al., 2014; Luong et al., 2015]. Attention vector at = (at,1, ..., at,i, ..., at,M) quantifies
the importance of the input term i to the current output time-step t. We compute the
attention vector as a softmax over similarity vt with learnt weight matrix Wa, defined
as:

(6.2)
vt,i = h>enc,iW

ahdec,t

at,i = exp(vt,i)/
M

∑
j=1

exp(vt,j)

Using the attention vector, we compute a context vector that summarises the impor-
tant hidden outputs of the encoder for the current decoder time step. The context
vector at step t is defined as a weighted sum of the hidden outputs:

(6.3)ct =
M

∑
i=1

at,ihenc,i

To produce the output distribution, we concatenate the context vector ct with the
hidden output of the decoder component hdec,t, and apply a fully connected layer
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with softmax non-linearity:

(6.4)
hout,t = Wout[ct, hdec,t] + bout

p(yt = k|x) = exp(hout,t,k)/
|V out|

∑
j=1

exp(hout,t,j)

Here |V out| denotes the output vocabulary size; [ct, hdec,t] denotes vector concatena-
tion; Wout, bout are both learnt parameter of the output layer; and t is an index to the
current element of the decoded sequence.

The sequence x is input to the language generator in reverse order because this is
known to improve performance [Sutskever et al., 2014] by reducing the minimum
number of steps between input and loss function – effectively reducing the depth.
Masking is applied in both the encoder and decoder component to allow for variable
length sequences during training. End-of-sequence tokens enable variable length
outputs at generation time.

6.3 Learning with Unpaired Styled Texts

To learn SemStyle, we train term generator and language generator separately on dif-
ferent datasets. An existing image-caption dataset with factual descriptions is used
for training the term generator, while a large set of styled sentences without aligned
images in addition to factual captions are used for training the language generator.
Our intermediate representation does not need to be learnt because it is defined by
the steps in Section 6.2.1.

6.3.1 Training the term generator

We train the term generator network on an image caption dataset with factual de-
scriptions, such as MSCOCO. The ground truth semantic sequence for each image is
constructed from the corresponding ground truth descriptive captions by following
the steps in Section 6.2.1.

For each image, the loss function is the mean categorical cross entropy over se-
mantic terms in the sequence:

(6.5)L = − 1
M

M

∑
i=1

log p(xi = x̂i|I, x̂i−1...x̂1)

Here x̂ denotes ground truth terms. At training time the input terms x̂i−1...x̂1 are
ground truth – this is the common teacher forcing technique [Williams and Zipser,



156 Captioning Images with Style Transfer from Unaligned Text Corpora

1989]. We found that schedule sampling [Bengio et al., 2015] – where sampled out-
puts are fed as inputs during training – did not improve performance, despite recent
work on longer sequences achieving small gains [Vinyals et al., 2017].

6.3.2 Training the language generator

The language generator described in Section 6.2.4 takes a semantic term sequence x as
input and generates a sentence y in the desired style. To create training data, we take
a training sentence y and map it to a semantic sequence x according to the steps in
Section 6.2.1. The loss function is categorical cross entropy.

We train the language generator with both styled and descriptive sentences. This
produces a richer language model able to use descriptive terms that are infrequent in
styled sentences. Training only requires text, making it adaptable to many different
datasets.

Concatenating both datasets leads to two possible output styles; however, we
wish to specify the style. Our solution is to provide a target-style term during training
and testing. Specifically, our language generator network is trained on both the de-
scriptive captions and the styled text with a target-style term, indicating provenance,
appended to each input sequence. As our encoder is bidirectional we expect it is not
sensitive to term placement at the beginning or end of the sequence, while a term
at every time step would increase model complexity. This technique has previously
been used is sequence-to-sequence models for many-to-many translation [Johnson
et al., 2017]. In Section 6.5 we demonstrate that purely descriptive or styled captions
can be generated from a single trained model by changing the target-style term.

6.4 Evaluation Setting

Both the term generator and language generator use separate 512 dimensional GRUs
and term or word embedding vectors. Since the term generator uses a bidirectional
RNN, each direction uses 256 dimensions. The maximum sequence length in both
the term generator and the language generator is 22, including beginning and end of
sequence tags. The vocabularies used by the language generator and the term generator
are the most frequent terms or words in the training set, with separate vocabularies
for the input words, semantic terms and output words. The term generator uses a
vocabulary of 10000 terms, while the language generator uses a vocabulary of 20000
terms or words to account for a broader semantic scope: it must apply to both styled
and descriptive sentences. With joint training the overlap between the term generator
output terms and the language generator input is 8266 terms, without joint training
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this falls to 6736 terms. Mismatches are replaced with the special “<unk>” token.
The image input to the term generator is represented by 2048 dimensions from the
second last layer of the Inception-v3 CNN [Szegedy et al., 2016]. We do not fine-tune
Inception-v3, but doing so would likely improve semantic accuracy [Vinyals et al.,
2015b; Gan et al., 2017b] equally for SemStyle and the baselines.

Learning uses mini-batch stochastic gradient descent method Adam [Kingma and
Ba, 2015] with learning rate 0.001. We clip gradients to [−5, 5] and apply dropout
to image and sentence embeddings. The mini-batch size is 128 for both the term
generator and the language generator. For the language generator each mini-batch is
composed of 64 styled sentences and 64 image captions. To achieve this one-to-one
ratio, we randomly down-sample the larger of the two datasets at the start of each
epoch.

At test time both the term generator and the language generator use greedy decod-
ing: the most likely word is chosen as input for the next time step. The code and
trained models are released online.

6.4.1 Datasets

Descriptive image captions come from the MSCOCO dataset [Chen et al., 2015] of
82783 training images and 40504 validation images, with 5 descriptive captions each.
It is common practice [Vinyals et al., 2015b] to merge a large portion of this validation
set into the training set to improve captioning performance. We reserve 4000 images
in the validation set as a test set, the rest we merged into training set. The resulting
training set has 119287 images and 596435 captions.

The styled text consists of 1567 romance novels from bookcorpus [Zhu et al., 2015]
– comprising 596MB of text and 9.3 million sentences. We filter out sentences with
less than 10 characters, less than 4 words or more than 20 words. We further fil-
ter sentences not containing any of the 300 most frequent non stop-words from the
MSCOCO dataset – leaving 2.5 million sentences that are more likely to be rele-
vant for captioning images. Our stop-word list is from NLTK [Bird et al., 2009] and
comparisons are on stemmed words (using porter stemmer). Stemming is used for
efficiency rather than lemmatization as rough equivalence classes are sufficient for fil-
tering the dataset. As a convenience for faster training time, we further down-sample
to 578,717 sentences, with preference given to sentences containing the most frequent
MSCOCO words. We remove all but the most basic punctuation (commas, full stops
and apostrophes), convert to lower-case, tokenise and replace numbers with a special
token.

The StyleNet [Gan et al., 2017a] test set was not released publicly at the time of
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writing, so we could not use it for comparisons.

6.4.2 Baselines

Our evaluations included 6 state-of-the-art baselines.

CNN+RNN-coco is based on the Show+Tell model [Vinyals et al., 2015b] and
trained on only the MSCOCO dataset. We use a GRU cell in place of an LSTM cell
for a fairer comparison with our model. In fact, this baseline is just the term gener-
ator component of SemStyle trained to output full sentences. All hyper-parameter
settings are the same as for term generator.

TermRetrieval uses the term generator to generate a list of terms – in this case the
term vocabulary is words rather than lemmas with POS tags. These terms are used
in an OR query of the Romance text corpus and scored with BM25 [Jones et al., 2000]
using hyper-parameters b = 0.75, k1 = 1.2. Our query engine is Whoosh2, which
includes a tokenizer, lower-case filter, and porter stem filter. This model cannot
generate captions that are not part of the romance text corpus and the same set of
terms always gives the same sentence.

StyleNet is our re-implementation of the method proposed by Gan et al. [2017a] –
the original code was not released at the time of writing. We train it on the MSCOCO
dataset and the Romantic text dataset. We followed Gan et al. [2017a] and made the
following implementation choices to ensure a fair comparison with other baselines.
We use Inception-v3 [Szegedy et al., 2016] features rather than ResNet152 [He et al.,
2016] features, and a batch size of 128 for both datasets. When training on styled
text, StyleNet requires random input noise from some unspecified distribution. We
tried a few variations and found Gaussian noise with µ = 0 and σ = 0.01 worked
reasonably well. Gan et al. [2017a] suggested a training scheme where the training
set alternates between descriptive and styled at the end of every epoch. We found this
fails to converge, perhaps because our datasets are larger and more diverse compared
with FlickrStyle10k used in the original implementation. FlickrStyle10k contains styled
captions rather than sentences sampled from novels; however, it is not released at the
time of writing. To ensure StyleNet converges on our dataset we alternate between
the MSCOCO dataset and Romantic text dataset after every mini-batch – a strategy
suggested by Luong et al. [2016] for multi-task sequence-to-sequence learning.

neural-storyteller consists of pre-trained models released by Kiros [2015] for gen-
erating styled image captions. This model first retrieves descriptive captions using
k-nearest neighbours in a multi-modal space [Kiros et al., 2014]. This space is learnt
by minimising projected distances between CNN image features (from VGG-19 [Si-

2https://pypi.python.org/pypi/Whoosh/

https://pypi.python.org/pypi/Whoosh/
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monyan and Zisserman, 2015]) and caption embeddings from a GRU. Retrieved cap-
tions are encoded into skip-thought vectors [Kiros et al., 2015], averaged, and then
shifted by the mean skip-thought vector of the target style. The skip-though vec-
tors are trained on the entirety of bookcorpus [Zhu et al., 2015]. A skip-thought
vector decoder learnt on the romance genre subset of bookcorpus (the same subset
we have used for our models) generates the caption. neural-storyteller generates pas-
sages by repeatedly sampling the decoder. We use only the first sentence because
long passages would be disadvantaged by the evaluation criteria. For more details
of neural-storyteller see Section 2.8.

JointEmbedding, shown in Figure 6.3, uses a learnt multi-modal vector space as
the intermediate representation. The image embedder is a projection of pre-trained
Inception-v3 [Szegedy et al., 2016] features hI , while the sentence embedder is a projec-
tion of the last hidden state of an RNN with GRU units henc. Formally the projections
are:

vI = tanh(WI .hI)
vs = tanh(Ws.henc)

Denoting the projections as, vI for images and vs for captions, and the learnt projec-
tion weights as WI for images and Ws for captions. Agreement between image and
caption embedding is defined as the cosine similarity:

g(vI , vs) =
vI .vs

|vI ||vs|

To construct the space we use a noise contrastive pair-wise ranking loss suggested
by Kiros et al [Kiros et al., 2014]. Intuitively, this loss function encourages greater
similarity between embeddings for paired image-captions than for un-paired images
and captions.

L = max(0, m − g(vI , vs) + g(vI′ , vs)) + max(0, m − g(vI , vs) + g(vI , vs′))

Where s is the input caption pared with image I, while s′ is a randomly sampled
noise contrastive caption and I′ the noise contrastive image. The margin m is fixed
to 0.1 in our experiments.

The sentence generator is an RNN with GRU units that decodes from the joint
vector space. The loss function is categorical cross entropy given in Equation 6.5.

Training is a two stage process. First, we define the joint space by learning the
image embedder and the sentence embedder on MSCOCO caption-image pairs. From
here on the parameters of image embedder and the sentence embedder are fixed. The
sentence generator is learnt separately by embedding styled sentences from the ro-
mantic novel dataset with the sentence embedder into the multi-modal space and then
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Figure 6.3: An overview of the JointEmbedding model. The two embedding compo-
nents image embedder (in yellow) and sentence embedder (in red) are shown on the

left while the sentence generator (in grey) is on the right.

attempting to recover the original sentence. This model has not been published pre-
viously, but is based on existing techniques for descriptive captioning [Kiros et al.,
2014].

6.4.3 Model Variants

Our full model is denoted SemStyle. We use the following variants to assess several
modelling choices in Section 6.5.4.

SemStyle-unordered is a variant of SemStyle with a randomised semantic term
ordering. This model helps us to quantify the effect of ordering in the term space.

SemStyle-words is a variant where the semantic terms are raw words – they are
not POS tagged, lemmatized or mapped to FrameNet frames.

SemStyle-lempos is a variant where the semantic terms are lemmatized and POS
tagged, but verbs are not mapped to FrameNet frames. This helps us to quantify the
degree to which verb abstraction affects the model performance.

SemStyle-romonly is SemStyle without joint training – the language generator
was trained only on the romantic novel dataset. This model helps to quantify the
effect of joint training.

SemStyle-cocoonly is the SemStyle model trained only on MSCOCO. The output
of this model should be purely descriptive.

SemStyle-coco is the SemStyle model trained jointly on MSCOCO and the ro-
mance corpus. A MSCOCO target-style term used at test time indicates the output of
this model should be purely descriptive.

6.4.4 Evaluation Metrics

Our evaluations use automatic metrics and human judgements for both content rel-
evance and style. For human judgements we provide a detailed task description to
ensure repeatability.
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6.4.4.1 Automatic Metrics

Automatic content relevance metrics. Widely-used captioning metrics BLEU [Pa-
pineni et al., 2002], METEOR [Denkowski and Lavie, 2014] and CIDEr [Vedantam
et al., 2015], which are based on n-gram overlap, have less relevance to the style
generation. Using different wording is the goal of styled text generation, something
these metrics punish heavily. The SPICE [Anderson et al., 2016] metric computes
an f-score over semantic tuples extracted from MSCOCO reference sentences [Chen
et al., 2015]. This is less dependent on exact n-gram overlap, and is strongly cor-
related with human judgements of descriptiveness. In our evaluation we include
n-gram metrics for completeness, but refer mostly to the SPICE metric.

Automatic style metrics.

To the best of our knowledge, there are no well-recognised metrics for measuring
image-captions conformance to a target style. We propose three metrics: two use a
language model in the target style, the last is a high-accuracy style classifier. Similar
metrics have been used for text only style generation, although the details are differ-
ent [Xu et al., 2012]. Our first language model metric LM is a 4-gram model [Heafield
et al., 2013] built on the styled text corpus – romance novels or COCO captions for
this work. We report the average log2 perplexity per word (ie the average number
of bits per word), with lower scores indicating stronger style. Our second language
model metric GRULM is a GRU language model, also built on the style text corpus
and reporting the average perplexity per word. Using both types of language model
we hope to avoid unfairly biasing particular types of decoders. Moreover, these two
language models help to assess the fluency of the generated text. The CLassifier
Fraction (CLF) metric is the fraction of generated captions classified as styled by a bi-
nary classifier. This classifier is logistic regression with 1,2-gram occurrence features
trained on styled sentences and MSCOCO training captions. We use feature hashing,
L2 regularization and grid-search cross-validation to choose hyper-parameters. The
model’s cross-validation precision is 0.992 at a recall of 0.991. In Section 6.5.3 we
calculate the correlation between each of these metrics and human style judgements.
Models for all three evaluation metrics have been released.

Human evaluations of content and style. Automatic evaluation does not give a full
picture of captioning systems performance [Chen et al., 2015]; human evaluation can
help us to better understand their strengths and weaknesses with the end user in
mind. We evaluate each image-caption pair with two crowd-sourced tasks on the
CrowdFlower3 platform. The first measures how descriptive a caption is to an image
on a four point scale – from unrelated (1) to clear and accurate (4). Figure 6.4 shows

3https://www.crowd�ower.com

https://www.crowdflower.com
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the instructions given to workers, while Figure 6.5 is an example question. The sec-
ond task evaluates the degree of style transfer. We ask the evaluator to choose from
three mutually exclusive options – that the caption: is likely to be part of a story re-
lated to the image (story), is from someone trying to describe the image to you (desc),
or is completely unrelated to the image (unrelated). Figure 6.6 shows the instructions
given to workers, while Figure 6.7 is an example question. Note that most sentences
in a romance novel are not identifiably romantic once taken out of context. Being
part of a story is a identifiable property for a single sentence. To judge style genera-
tion, Gan et al. [2017a] asked annotators to select the most attractive captions given
the scenario of sharing on social media. We use our story question rather than the
shareability question, as it more concisely captures the literary quality of the styled
text. We separate the descriptiveness and story aspects of human evaluation, after pi-
lot runs found that the answer to descriptiveness interferes with the judgement about
being part of a story.

Using each method, we caption the same 300 random test images, and evaluated
each with n ≥ 3 workers, giving a total of at least 900 judgements per method. In
most cases n = 3, typically being greater than 3 when a worker successfully chal-
lenges a hidden test question (as explained below). We aggregate these judgements
by assigning each one a weight 1/n, and calculating the weight normalised sum for
each possible answer. In the case of descriptiveness judgements, a further summary
statistic is calculated as the average descriptiveness score, with 1.0 being the least
descriptive and 4.0 being the most descriptive.

To ensure reliable results we inject questions with known ground-truth, and re-
quire workers to maintain at least 70% accuracy on these questions. For our initial
ground-truth, we manually labelled a small selection of questions judged to be clear
exemplars. On a limited number of our ground-truth questions workers consistently
made mistakes, so we revised the answers or removed these questions from the
ground-truth. Because ground-truth is never re-used for the same worker, it acts as
a limit on the number of tasks they can complete, so expanding the ground-truth is
essential for large jobs. To expand our ground-truth, we followed the procedure sug-
gested in the CrowdFlower documentation: manually review and then add questions
that all three annotators agree upon.

6.5 Results

Table 6.2 summarises measurements of content relevance against factual (MSCOCO)
captions. Table 6.3 and Figure 6.8 report automatic and human evaluations on cap-
tion style learned from romance novels.
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Figure 6.4: A screen-shot of the instructions provided to workers when evaluating
the relevance of a caption to an image.

Figure 6.5: A screen-shot of a single question put to workers during the relevance
evaluation task.
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Figure 6.6: A screen-shot of the instructions provided to workers when evaluating
the conformance of a caption to the desired style.

Figure 6.7: A screen-shot of a single question asked of workers in the style evaluation
task.
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Model BLEU-1 BLEU-4 METEOR CIDEr SPICE CLF LM GRULM
CNN+RNN-coco 0.667 0.238 0.224 0.772 0.154 0.001 6.591 6.270
StyleNet-coco 0.643 0.212 0.205 0.664 0.135 0.0 6.349 5.977
SemStyle-cocoonly 0.651 0.235 0.218 0.764 0.159 0.002 6.876 6.507
SemStyle-coco 0.653 0.238 0.219 0.769 0.157 0.003 6.905 6.691

Table 6.2: Evaluating caption descriptiveness on MSCOCO dataset. For metrics see
Sec. 6.4.4, for approaches see Sec. 6.4.2.

Model BLEU-1 BLEU-4 METEOR CIDEr SPICE CLF LM GRULM
StyleNet 0.272 0.099 0.064 0.009 0.010 0.415 7.487 6.830

TermRetrieval 0.322 0.037 0.120 0.213 0.088 0.945 3.758 4.438
neural-storyteller 0.265 0.015 0.107 0.089 0.057 0.983 5.349 5.342
JointEmbedding 0.237 0.013 0.086 0.082 0.046 0.99 3.978 3.790

SemStyle-unordered 0.446 0.093 0.166 0.400 0.134 0.501 5.560 5.201
SemStyle-words 0.531 0.137 0.191 0.553 0.146 0.407 5.208 5.096
SemStyle-lempos 0.483 0.099 0.180 0.455 0.148 0.533 5.240 5.090

SemStyle-romonly 0.389 0.057 0.156 0.297 0.138 0.770 4.853 4.699
SemStyle 0.454 0.093 0.173 0.403 0.144 0.589 4.937 4.759

Table 6.3: Evaluating styled captions with automated metrics. For SPICE and CLF
larger is better, for LM & GRULM smaller is better. For metrics and baselines see

Sec. 6.4.4 and Sec. 6.4.2.
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Figure 6.8: Human evaluations for SemStyle and selected baselines, with error bars
showing 0.95 confidence intervals over 10 random splits. (a) descriptiveness mea-
sured on a four point scale, reported as percentage of generated captions at each
level. (b) style conformity as a percentage of captions: unrelated to the image con-

tent, a basic description of the image, or part of a story relating to the image.
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6.5.1 Evaluating Relevance

SemStyle-coco has the descriptive target-style term appended to the input, conditioning
it to generate descriptive captions. It achieves semantic relevance scores comparable
to CNN+RNN-coco, with a SPICE of 0.157 vs 0.154, and BLEU-4 of 0.238 for both. As
the term generator is based on the CNN+RNN-coco the similar SPICE scores demon-
strate that our semantic term representation is a competitive way to distil image
semantics, and that the term generator and language generator constitute an effective
vision-to-language pipeline.

When SemStyle is conditioned to generate styled sentences using the romance
target-style term, it still retains a high degree of relevance as judged by the SPICE score
of 0.144 in Table 6.3. This is a higher SPICE score than achieved by other methods of
styled caption generation, with the next best method TermRetrival achieving a SPICE
of only 0.088. It is also in-line with other SemStyle variants; however, the SemStyle-
words and SemStyle-lempos) variants which keep intermediate terms closer to their
surface form have slightly higher SPICE. As expected, the n-gram overlap metrics
BLEU, METEOR, and CIDEr show a large disparity between styled and descriptive
captions because of a sensitivity to the surface form.

6.5.2 Evaluating Style

SemStyle succeeds in generating styled captions in 58.9% of cases, as judged by CLF,
and receives a SPICE score of 0.144. The baselines TermRetrieval, neural-storyteller and
JointEmbedding have significantly higher CLF scores, but much lower SPICE scores.
TermRetrieval produces weakly descriptive sentences (SPICE of 0.088) because it is
limited to reproducing the exact text of the styled dataset, which yields lower recall
for image semantics. Both neural-storyteller (SPICE 0.057) and JointEmbedding (SPICE
0.046) decode from a single embedding vector, allowing less control over semantics
than SemStyle. This leads to weaker caption relevance. StyleNet-coco produces factual
sentences with comparable BLEU and SPICE scores. However, StyleNet produces
styled sentences less frequently (CLF 41.5%) and with significantly lower semantic
relevance – SPICE of 0.010 compared to 0.144 for SemStyle. We observe that the
original StyleNet dataset [Gan et al., 2017a] mostly consists of factual captions re-
written by adding or editing a few words. The romance novels in the book corpus,
on the other hand, have very different linguistic patterns to COCO captions. We
posit that the factored input weights in StyleNet work well for small edits, but have
difficulty capturing richer and more drastic changes. For SemStyle, the semantic term
space and a separate language generator make it amenable to larger stylistic changes.

Language model perplexity scores, LM and GRULM, generally agree with CLF
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Story:  A man who water skiing on the lake is skiing by 
himself, he sobered.
Desc:  A man water skiing on a lake while skiing on a 
lake.

Story:  I had a display case of dairy cows.
Desc:  A display case with a dairy cow.

Story:  The woman stepped underneath her umbrella 
and walked in the rain.
Desc:  A woman walking with an umbrella in the rain.

Story: He pulled out a horse carriage and charged 
down the street.
Desc:  A horse drawn carriage down a street.

Story: I'll be in the juicer with a glass of orange juice.
Desc:  A juicer is poured into a glass of juice.

Story:  The clock tower was ticking under the sky.
Desc:  A large clock tower towering over a blue sky.

(a) (b) (e)

(c) (d) (f)

Figure 6.9: Example results, including styled (Story) output from SemStyle and de-
scriptive (Desc) output from SemStyle-coco. Four success cases are on the left (a,b,c,d),

and two failures on the right (e,f).

scores, such that a high CLF is commonly paired with a low perplexity. The result
for neural-storyteller is a notable exception, with high CLF and perplexity relative
to other methods. Inspecting the generated sentences suggests this could be the
result of poor sentence construction and grammar usage, to which the language
model is sensitive. We also find that the perplexity of the 4-gram language model
(LM) mostly agrees with the GRU language model (GRULM). One case where LM
and GRULM are markedly different is for the TermRetrieval method, having LM of
3.758 and GRULM of 4.438. TermRetrieval retrieves captions rather than generating
statistically likely captions: a process which tends to restrict vocabulary usage (for
example see the Unique Verbs in Table 6.7). The more diverse word usage appears
to be handled better by the n-gram based LM rather than the GRULM.

SemStyle can reliably generate multiple output styles without retraining. SemStyle-
coco in Table 6.2 and SemStyle in Table 6.3 share the same parameters but have a
different target-style term added at test time. This leads to purely descriptive text
from SemStyle-coco, and romance style text from SemStyle. Judged by the CLF metric,
SemStyle-coco produces romance styled text 0.3% of the time, while SemStyle produces
romance styled text 58.9% of the time.
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6.5.3 Human Evaluations

The crowd-sourced experiments are summarised in Figure 6.8. Figure 6.8(a) shows
image-caption relevance judged on a scale of 1 (unrelated) to 4 (clear and accurate).
StyleNet was not included in the human evaluations since it scored significantly
worse than others in the automatic metrics, especially SPICE and LM. SemStyle has
a mean relevance of 2.97, while CNN+RNN-coco has 2.95. In addition, only 12.2%
of SemStyle captions are judged as unrelated, the lowest among all approaches. Sem-
Style produces clear and accurate captions 43.8% of the time, while CNN+RNN-coco
produces them 43.4% of the time – both of these scores are significantly higher than
other approaches, see Table 6.5 for significance tests. As the CNN+RNN architecture
is the basis of the term generator, this indicates our semantic term mapping and sep-
arate styled language generator do not reduce the relevance of the generated captions.
TermRetrieval has mean relevance 2.50, and neural-storyteller 2.02 – both significantly
lower than SemStyle, see Table 6.5. neural-storyteller generates a large fraction of
completely unrelated captions (42.3%) while TermRetrieval avoids doing so (24.4%).
SemStyle-romonly produces significantly fewer clear and accurate captions than Sem-
Style (34.7% vs 43.8%), which demonstrates improved caption relevance when both
training datasets are combined and the target-style term used.

Figure 6.8(b) summarises crowd-worker choices from the options story-like, de-
scriptive, or unrelated. The two SemStyle variants have the lowest (< 25%) fraction of
captions that are judged unrelated. SemStyle generates story-like captions 41.9% of the
time, which is far more frequently than the CNN+RNN-coco trained on MSCOCO at
6.2% – significance tests for story-like judgements are provided in Table 6.4. neural-
storyteller produces captions that are judged as story-like 52.6% of the time, but at
the expense of 44.2% completely unrelated captions. TermRetrieval produces captions
that are story-like 55.5% of the time and unrelated only 26.0% of the time; however, as
shown in Figure 6.8(a), they are consistently rated as having a low degree of relevance
to images.

We follow the methodology of Anderson et al. [2016] to measure correlation be-
tween human judgements and captioning metrics; however, our metrics measure
style conformity rather than descriptiveness. Specifically we calculate Kendall’s τ

correlation co-efficient between the human story-like judgements and the automatic
metrics: CLF, LM, and GRULM. Human judgements are averaged across the three
annotators before correlation. Anderson et al. [2016] use captions sourced from a se-
lection of high performing captioning methods – those that do well in the MSCOCO
captioning competition [Chen et al., 2015]. Since no such competition exists for styled
captions, we instead use captions generated by the five methods listed in Figure 6.8
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CNN+RNN-coco neural-storyteller TermRetrieval SemStyle-
romonly

CNN+RNN-coco - - - -
neural-storyteller 5.6e-09* - - -
TermRetrieval 1.2e-08* 0.88 - -
SemStyle-romonly 2.1e-12* 0.18 0.13 -
SemStyle 1.4e-06* 0.27 0.34 0.014

Table 6.4: X 2 tests on method pairs for human story judgements. We combine
counts for “unrelated” with “purely descriptive”, while “story” is kept as its own
class. Those marked with a * indicate rejection of the null hypothesis (H0: the two
methods give the same multinomial distribution of scores) at p-value of 0.005 – this

is p-value of 0.05 with bonferroni correction of 10 to account for multiple tests.

CNN+RNN-coco neural-storyteller TermRetrieval SemStyle-
romonly

CNN+RNN-coco - - - -
neural-storyteller 1e-56* - - -
TermRetrieval 4.1e-18* 9.3e-14* - -
SemStyle-romonly 0.00032* 2.3e-35* 3.4e-07* -
SemStyle 0.18 2.1e-48* 1.7e-13* 0.023

Table 6.5: X 2 tests on method pairs for human descriptiveness judgements. We
combine counts for “clear and accurate” with “only a few mistakes”, and “some
correct words” with “unrelated”. Those marked with a * indicate rejection of the null
hypothesis (H0: the two methods give the same multinomial distribution of scores)
at p-value of 0.005 – this is p-value of 0.05 with bonferroni correction of 10 to account

for multiple tests.

– all those for which we have human judgements. CLF has a correlation of 0.434
with human judgements, which is significantly more than the correlation of 0.150
for the LM metric and 0.091 for the GRULM metric. This suggests discriminative
methods such as CLF can be a fairly effective proxy for human judgements of image
caption style. However, we advise caution since the correlations may be affected by
the methods used to generate the pool of captions.

6.5.4 Evaluating Modelling Choices

The last 5 rows of Table 6.3 highlight trade-offs among variants of SemStyle. Ran-
domly ordering the semantic terms during training and testing – as in SemStyle-
unordered – leads to captions with lower semantic relevance, shown by a SPICE of
0.134 compared to 0.144 for the full model. They also conform less to the target style
with a CLF of 0.501 compared to 0.589.

Using a raw word term space SemStyle-words (without FrameNet, lemmatization
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or POS tags) gives similar semantic relevance, SPICE of 0.146 to the full models
0.144, but less styling with CLF at 0.407. Using verb lemmas rather than FrameNet
terms as in SemStyle-lempos has a similar effect, with a slight increase in SPICE to
0.148 and a decrease in style to a CLF of 0.533. This clearly demonstrates the three
components FrameNet, lemmatization and POS tags all contribute to remove style
from the intermediate representation, and thus lead to output in the target style.

Learning from both datasets improves caption relevance. If we only train on the
romantic novel corpus as in SemStyle-romonly, we find strong conformity to the target
style (CLF 0.770) but less semantic relevance, SPICE 0.138. Without the joint training,
some semantics terms from the MSCOCO dataset are never seen by the language
generator at training time – meaning their semantic content is inaccessible at test
time. Our joint training approach avoids these issues and allows style selection at
test time.

6.5.5 Example Captions

Figure 6.9 shows four success cases on the left (a,b,c,d) outlined in green, and two
failure cases (e,f) on the right outlined in red. The success cases are story-like, such
as (c) “The woman stepped underneath her umbrella and walked in the rain.” rather than
“A woman walking with an umbrella in the rain.”. Case (c) also demonstrates the use
of past tense and definite articles, which is a property of romance dataset but not
MSCOCO – see Section 6.5.8. SemStyle captions also tend to use more interesting
verbs due to FrameNet verb abstraction. For example (a) “He pulled out a horse carriage
and charged down the street”. Usage of first person perspective is demonstrated in
(e,f). The failures are caused by: the term generator incorrectly identifying cows in
the image (e), and the language generator using the word “juicer” in a way that is
grammatically correct, but contradicts common-sense (f). In caption (f) it is also
apparent that there is additional information about the actor or speaker “I’ll be in”
that has been invented. This occurs because, during training on romance novels
(where this utterance is frequent), none of the words in “I’ll be in” are included in the
list of input semantic term, thus the language generator learns to generate these words
without specific conditioning. The definition of the term space has an effect on what
content is preserved from the images, and also what can be invented by the language
generator.

6.5.6 Coverage of Semantic Terms

The language generator is trained to generate text that includes all semantic input
terms. This is not implemented as a specific constraint but as a property of the train-



§6.5 Results 171

Model BLEU-1 ROUGE-1
CNN+RNN-coco 0.561 0.517

StyleNet-coco 0.506 0.468
SemStyle-cocoonly 0.636 0.531

SemStyle-coco 0.631 0.532
StyleNet 0.027 0.028

TermRetrieval 0.505 0.336
neural-storyteller 0.234 0.225
JointEmbedding 0.340 0.177

SemStyle-unordered 0.597 0.501
SemStyle-words 0.611 0.517
SemStyle-lempos 0.593 0.504

SemStyle-romonly 0.624 0.511
SemStyle 0.626 0.517

Table 6.6: Precision (BLEU-1) and recall (ROUGE-1) in our semantic term space.

ing data: by construction, all input terms are reflected in the output. We can evaluate
how much use the trained language generator makes of this term space by matching
the input terms (the output of the term generator) to the POS tagged, lemmatized, and
SEMAFOR parsed output captions. For SemStyle, all non-FrameNet input terms were
used, and had the correct POS tag, 94% of the time, while all FrameNet terms were
used 96% of the time. This strong relationship between the semantic input terms and
the output sentence helps to ensure caption relevance.

We can extend this analysis to other methods by matching semantic terms in the
output sentence with semantic terms in the caption ground truth. Unlike the previ-
ous evaluation, the results will depend on the efficacy of the visual concept detection
pipeline (eg the term generator for SemStyle). As we are evaluating with respect to
our term space, we expect a bias that favours models also using our terms space.
The primary purpose of this analysis is therefore to confirm SemStyle accurately pro-
duces captions with term representations similar to the ground truth. Precision is
reported as BLUE-1 without length penalty on terms, while recall is reported as
ROUGE-1 on terms. Both BLEU-1 and ROUGE-1 are multi-reference metrics, allow-
ing us to measure precision and recall against the 5 ground truth captions. Results
in Table 6.6 show that the four variants of SemStyle (SemStyle-cocoonly, SemStyle-coco,
SemStyle-romonly, SemStyle) that use our semantic term space perform better than
methods that do not use our term space. This demonstrates SemStyle focuses on
accurate reproduction of the semantic term space. The best performing models are
SemStyle-cocoonly with the largest BLEU-1 and SemStyle-coco with the largest ROUGE-
1 – though both models score highly in BLEU-1 and ROUGE-1. This is in line with
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the other automatic metrics shown in Table 6.2, although these metrics also show
CNN+RNN-coco is competitive. Of the baselines the best performing is TermRetrieval,
which retrieves romance sentences using query words from a term generator (trained
only on raw words in this case).

6.5.7 Diversity

Generating a diverse set of captions, is an important goal as it keeps captions interest-
ing and can be seen as an aspect of model flexibility. Using exact string comparisons
between captions we find SemStyle generates a relatively diverse range of captions.
From the 4000 test images SemStyle generates 2308 unique captions. For reference,
the descriptive baseline CNN+RNN-coco generates 2704 unique captions on the same
set. The diversity of SemStyle is limited by the diversity of the term generator: an
identical term list leads to an identical output sentence. In comparison, models
which use vector intermediate representations generate more unique captions, with:
JointEmbedding at 3711 unique captions, and neural-storyteller at 3975 unique captions.
However, as noted previously, these models produce captions that are significantly
less relevant to the image. If additional output diversity is required from SemStyle,
sampling rather than argmax decoding may be used in either the term generator or
the language generator– possibly at the expense of relevance and grammar.

6.5.8 Exploring the Generated Style

The style of the text is difficult to define in its entirety, but we can look at a few
easily identifiable style attributes to better understand the style introduced into the
captions. As a basis for comparison we randomly sample 4000 captions or sentences
from the MSCOCO and romance dataset. We then generate captions for 4000 images
using SemStyle and CNN+RNN-coco. On these four datasets we count: the percent-
age of sentences with past or present tense root verbs (to identify the tense used
in the captions), the percentage of sentences with first person pronouns (to identify
sentences using first person perspective), the number of unique verbs used in the
4000 samples (to identify verb diversity). The results are summarised in Table 6.7.
Part-Of-Speech(POS) tags and syntactic dependency relationships are obtained auto-
matically with the spaCy4 library. For counting purposes, past tense verbs are those
tagged with Penn Treebank tags VBD, while present tense verbs are those tagged
with VBZ or VBP. For VBN and VBG we adopt the tense of the auxiliary if one exists,
failing that the sentence is marked as neither past nor present. To avoid cases where
multiple tenses are present in a single sentence we count only the tense of the root

4https://github.com/explosion/spaCy/tree/v1.9.0

https://github.com/explosion/spaCy/tree/v1.9.0
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Sentences with
Present Tense
Root Verbs

Sentences
with Past
Tense Root
Verbs

Sentences
with First
Person
Pronouns

Unique
Verbs

MSCOCO ground-
truth

32.2% 0.9% 0.2% 497

romance ground-
truth

20.2% 59.3% 31.2% 1286

CNN+RNN-coco 34.1% 0.2% 0.0% 181
SemStyle 8.58% 64.6% 24.4% 348

Table 6.7: Style attribute statistics based on 4000 random ground-truth sentences for
MSCOCO and romance styles and 4000 test captions generated by the descriptive
only model (CNN+RNN-coco) and our SemStyle model. We measure the percentage
of sentences or captions with present tense root verbs, past tense root verbs, and first
person pronouns. We also count the number of unique verbs used in the sampled

sentences.

verb identified by the syntactic dependency parse. Sentences without a root verb are
marked as neither past nor present.

As shown in Table 6.7, captions generated by SemStyle have a past tense verb as
the root verb in 64.6% of sentences, which is close to the romance ground-truth level
of 59.3% and far greater than the descriptive method (CNN+RNN-coco) at 0.2%. This
corresponds to a reduction in present tense verb usage; however, the ground-truth
romance sentences include a greater fraction of sentences with present tense root
verbs. SemStyle includes first person pronouns in 24.4% of captions, compared to
0.0% for CNN+RNN-coco. The romance ground-truth has personal pronouns in 31.2%
of sentences, which is higher than SemStyle – we expect that describing images limits
the applicability of first person pronouns. SemStyle has an effective verb vocabu-
lary almost twice as large (92.3% larger) as CNN+RNN-coco, which suggests more
interesting verb usage. However, both SemStyle and CNN+RNN-coco have lower verb
diversity than either ground-truth dataset. In part this can be explained by argmax
decoding tending to generate more common words. Additionally, we expect many
of the verbs used in the romance ground-truth cannot be readily applied to image cap-
tioning. Overall, we find that the SemStyle model reflects the ground-truth romance
style, generating more captions in past tense, first person, and with greater verb
diversity.

To further explore the differences between styles we include Table 6.8, presenting
the most common lemmas for each dataset stratified by POS tag. The most common
nouns generated by SemStyle have a greater overlap with the MSCOCO ground-truth
than the romance ground-truth. This is the desired behaviour since nouns are a key
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Word Source Most Common Lemmas
MSCOCO ground-truth

NOUN man(3.7%), people(1.9%), woman(1.8%), street(1.5%), table(1.4%)
VERB be(20.0%), sit(9.3%), stand(6.4%), hold(4.4%), ride(3.1%)

ADJ white(6.8%), large(5.4%), black(4.1%), young(4.0%), red(3.8%)
DET a(81.8%), the(14.9%), some(1.7%), each(0.6%), this(0.4%)

romance ground-truth
NOUN man(2.7%), hand(1.5%), eye(1.4%), woman(1.3%), room(1.2%)

VERB be(15.5%), have(4.6%), do(2.5%), would(2.4%), can(1.9%)
ADJ small(2.3%), other(2.0%), little(2.0%), black(2.0%), white(1.9%)
DET the(60.5%), a(26.5%), that(3.2%), this(2.8%), no(1.3)%

CNN+RNN-coco
NOUN man(6.9%), group(3.0%), people(2.6%), table(2.6%), field(2.3%)

VERB be(29.4%), sit(15.4%), stand(10.2%), hold(5.6%), ride(4.6%)
ADJ large(15.0%), white(10.9%), green(4.7%), blue(4.5%), next(4.5%)
DET a(91.9%), the(7.7%), each(0.2%), some(0.1%), an(0.1%)

SemStyle
NOUN man(5.5%), table(2.8%), street(2.7%), woman(2.6%), who(2.4%)

VERB be(24.5%), sit(10.3%), stand(4.8%), have(3.6%), hold(3.2%)
ADJ sure(14.7%), little(9.4%), hot(5.6%), single(4.7%), white(3.9%)
DET the(68.6%), a(30.8%), no(0.2%), any(0.2%), an(0.1%)

Table 6.8: The most common words per part-of-speech category in the two ground-
truth datasets and in the sentences generated by the descriptive model (CNN+RNN-
coco) and SemStyle. For each word we display the relative frequency of that word in

the POS category – represented as a percentage.

component of image semantics and so nouns generated by the term generator should
be included in the output sentence. The most common verbs generated by SemStyle
are also similar to the MSCOCO ground-truth; we expect this is a result of a similar set
of common verbs in both ground-truth datasets. The use of determiners in SemStyle
more closely matches the romance ground-truth, in particular the frequent use of the
definite article “the” rather than the indefinite “a”. The most common adjectives in
all word sources typically relate to colour and size, and vary little across the different
sources.

6.6 Summary

I propose SemStyle, a method to learn visually grounded style generation from texts
without paired images. I develop a novel semantic term representation to disentangle
content and style in descriptions. Since this term representation captures content
from either captions or styled sentences, we are able to learn a mapping from an
image to a sequence of semantic terms that preserves visual content, and a decoding
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scheme that generates a styled description. Key to this model is the separation of
concerns: the term generator focuses on visual concept detection and content planning,
while the language generator focuses on style and language.

One significant obstacle encountered during this work was the domain difference
between image captions and sentences from romance novels. Image captions are rich
in visual concepts, while sentences from romance novels are not visually grounded
and often refer to abstract concepts. However, when trying to generate captions in
a romantic style, frequent use of visual concepts is necessary. In effect, the target
captions should not conform exactly to the romantic text or the descriptive captions,
but instead be a coherent mixture of the two. Without aligned images and styled
text it is difficult to define how this mixture should be constructed. In the case of
SemStyle the mixture is primarily defined by the shared term space, although the
language generator has veto power when the input terms cannot be easily formed into
a styled sentence. A better result could possibly be achieved by learning to mix the
descriptive captions with the styled text using a small number of aligned images and
styled captions.

Other future work includes learning from a richer set of styles, and developing a
recognised set of automated and subjective metrics for styled captions.
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Chapter 7

Conclusion

In this chapter I summarise the contributions made by this thesis with regard to the
three core challenges identified in Chapter 1. I suggest some interesting directions
for future work on styled image caption generation and related problems.

7.1 Summary

This thesis has presented novel methods for generating styled natural language de-
scriptions for images as well as novel approaches to related tasks. Chapter 3 intro-
duced a novel approach to selecting names for visual concepts using context. This
approach shows promise for choosing names that match a particular context or style.
Moving from words to full sentences, Chapter 4 presents SentiCap: the first pub-
lished system capable of automatically generating image captions in distinct styles.
SentiCap generates both positive and negative sentiment captions, while requiring
only a small set of styled training captions. Chapter 5 then specifically considered
the language generation sub-task, introducing the S4 model with novel ideas for sen-
tence simplification. This informed the development of linguistic components of a
new styled caption generation approach called SemStyle, which was presented in
Chapter 6. Unlike previous work, SemStyle generates visually relevant captions in
a style defined by a large text corpus, with no styled captions required for training.
Judged by crowd-sourced and automatic metrics, SemStyle captions have a recognis-
able style component and are descriptive of images.

At the start of this thesis I broke down styled image captioning into three core
components: style and content representation, generative models for styled captions,
and methods for overcoming data scarcity. Here I briefly summarise the contribu-
tions of this thesis towards these goals.

Representing style and content is a problem specific task. Throughout this thesis
I tackle the problem in a number of different ways. Chapter 3 considers naming
choice: style is encoded in the choice of names, while content is defined by the object
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detectors. I show that this separation of content and style allows more natural names
to be chosen; even allowing visual context to play a role. In Chapter 4 I consider
positive and negative sentiment as stylistic variations, and design a data collection
task for collecting captions aligned with these sentiment dimensions. A novel neural
network model is then trained with this dataset, encapsulating the properties of
the style within the parameters. The switching structure of the network allows for
separate style and descriptive components. Chapter 6 introduces a novel term space
that effectively captures the image content required for captioning. Compared to
a vector representation of image content (CNN features), this term space leads to
no significant loss in caption relevance as judged by both automatic and human
evaluations. Moreover, the term space demonstrates a degree of style invariance that
allows it to be used as an intermediate space for styled text generation, where the
style is encoded in the parameters of the language generator.

Seamlessly incorporating both content and style attributes is pivotal to designing
generative models for styled image captions. To achieve this goal I develop several
conditional neural network language model variants that generate styled text when
conditioned on semantic content. SentiCap (Chapter 4) balances two conditional
language models with a novel switching component and loss function, allowing a
trade-off between style and content to be learnt from data. It is also the first published
model for explicitly generating image captions in a distinct style. S4 (Chapter 5)
is a sentence simplification model with a number of novel adaptations to enhance
parameter usage efficiency by encouraging input-output word copying. By learning
when to copy and when to make changes I trade-off correct semantics (from the
original sentence) with simplification and the chance of a semantic error. SemStyle
(Chapter 6) generates captions from an ordered list of semantic terms; it is trained
to use all semantic terms to generate the caption. At its core, SemStyle consists of
a term generator and a language generator joined by these shared semantic terms.
The term generator is responsible for detecting and choosing concepts to go into
the caption, while the language generator realises these concepts in an appropriately
styled sentence. I show, through extensive evaluations, that SemStyle frequently
generates captions that both relate to the image and express the target style.

Data for styled image captioning is typically scarce because of the difficulty ob-
taining image-captions in each possible style. I took a multi-faceted approach to data
scarcity, developing techniques for: using noisy image captions from social media,
crowd-sourced data collection, fine-tuning existing models, and exploiting word em-
beddings. In Chapter 3 I describe how to name concepts with the help of image
captions extracted from social media. Noise reduction was achieved by matching
visual detections to captions via external resources, such as WordNet and ITIS, that
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define semantic categories. To develop SentiCap, in Chapter 4, I tackle data scarcity
by developing a crowd-sourcing method that guides annotators in the editing of fac-
tual captions to meet style objectives. SentiCap also fine-tunes descriptive only mod-
els to reduce the required volume of new data. S4, in Chapter 5, uses a novel loss
function to exploit common similarities between input and output sentences, which
reduces data requirements; however, pre-trained word vectors for uncommon words
also play a role. SemStyle from Chapter 6 is trained without aligned image styled
caption pairs; in many cases this vastly reduces the data collection effort required to
generate styled captions.

Styled image captioning and, more generally, styled text generation with seman-
tic content control is still in its infancy. As techniques for generating semantically
relevant text advance, we are likely to see a shift of focus towards generating styled
sentences. Such styled generation could personalise digital content, improving com-
munication and easing information access. Just as current search engines return
personalised results with high individual relevance, styled text generation could be
used to adjust text to make it more accessible on an individual level. To realise this
long-term goal, a significant number of challenges must be overcome. In the next
section I briefly outline some of these challenges and make specific suggestions for
future work.

7.2 Future Work

Context and visualy grounded naming. In Chapter 3 I demonstrated that visual
context is an important factor in object naming. There are many other forms of
context that are not visual, for example: geographic region, whether the image is
being tagged or captioned, and specialised knowledge. Exploring the effect of these
forms of context on naming is an important direction for future work. While previous
works have looked at the relationship between contextual factors and words used in
posts [Pavalanathan and Eisenstein, 2015; Shoemark et al., 2017b] they did so without
visual grounding. By using visual grounding, we can uncover contextual naming
changes rather than word usage changes.

Captions with fine-grained emotion. The presented version of SentiCap model is
limited to positive or negative sentiment, although using a richer set of emotions
could be possible. There has been some work on mapping adjective noun pairs to
emotions such as joy, anger, sadness and trust. These relationships could be used
in much the same way as the sentiment vocabularies used in the SentiCap data
collection process. However, the large number of different emotions would intro-
duce an even more challenging data sparsity problem. This compounds even further
when mixing different attributes (eg to convey both joy and trust). Some recent
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techniques [Ficler and Goldberg, 2017; Oraby et al., 2017] (also see Section 2.6) train
unified models that are able to mix attributes, even in ways not seen during training.
To the best of our knowledge, these approaches have not been applied to image cap-
tioning, nor do they enforce the degree of semantic control required for captioning.

Sequence-to-Sequence with external dictionaries. The S4 model for simplifying
sentences was not able to learn a broad range of word substitutions, primarily be-
cause of the limited aligned data and large vocabulary. As high quality sentence
aligned data is not available in vast quantities, it would be particularly helpful to
exploit word substitution dictionaries from other tasks. Some authors have already
attempted this [Napoles et al., 2016; Xu et al., 2016], with the machine translation
defined paraphrase database PPDB [Pavlick and Callison-burch, 2013] being a key
component. Integrating such external databases into neural network language mod-
els is still an open problem. Progress in this area has been made by models for out-
of-domain image captioning [Tran et al., 2016; Anderson et al., 2017; Anne Hendricks
et al., 2016]; however, applications to text simplification needs further exploration.

Metrics for caption style.Evaluating styled image captions remains a challenging
problem. In similar problems, such as image captioning, the gold standard is hu-
man annotation, though for styled image captions there is no consensus on how to
perform such evaluations. Even describing the target style to annotators is difficult,
a problem compounded by the limited linguistic knowledge of many annotators on
crowd-sourcing platforms. Standardising approaches to human evaluation of styled
captions, as done in descriptive image captioning [Chen et al., 2015], is an important
direction for future work. Automatic evaluations for styled captions are also neces-
sary as they can be run during development and have lower experimental variability
than human evaluators. I suggested automatic metrics in Chapter 6, but more work
needs to be done to standardise the approach and to develop metrics that simultane-
ously measure style and content.

Learning to extract semantic terms.The SemStyle system in Chapter 6 uses a discrete
intermediate semantic representation defined by a set of rules. This was necessary
to ensure the intermediate representation would apply to any style dataset, and to
allow content planning decisions to be made by the visual components of the model.
This intermediate representation may not adapt well to other semantic domains, or
improved classifier accuracy. For example, the decision to exclude adjectives from
the intermediate representation was influenced by the poor attribute identification
performance of CNN+RNN caption generators [Vinyals et al., 2017]. Stronger at-
tribute identification performance would necessitate inclusion in the intermediate
representation to preserve semantic relevance. Ideally, each term in this semantic
representation is mapped to its equivalence class, defined by both genera semantic
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similarity and by the capacity of the vision system. For example if “fury” cannot be
visually separated from “hairy”, they should be part of the same class even though
in general they have different semantics.
Learning style attributes from document collections. In this thesis I have considered
two approaches for defining style, with an attribute such as sentiment polarity, or
with a document collection such as romance novels. An alternative is to learn a
collection of style attributes from a collection of documents in different styles – an
approach which bears resemblance to topic models. Doing so would open up some
interesting avenues in terms of clustering styles and interpreting them for users. Such
discrete style attributes could also be used to summarise the style of a document
collection, potentially requiring fewer documents to fit.
Automatic source code commenting. A related task to image captioning is automatic
source code commenting [Wong et al., 2015; Iyer et al., 2016], where comments for
source code are generated automatically. Software development teams often define
best practices for commenting source code. Differences in best practice can be con-
sidered stylistic. Ideally, an automatic source code captioning system would fit the
style used in the rest of the code, as a consistent style is known to ease communi-
cation within teams. The main differences between this task and image captioning
is source of the semantics being structured text rather than images, and the highly
contextual nature of source code.

7.3 Final Remarks
Styled text generation and image understanding both have many remaining chal-
lenges. For instance, skilled human authors can use targeted style choices to encour-
age a response from the reader, while automated systems are not yet at this level. If
automatic styled caption generation is to reach this level we need accurate models for
the effect of style on the reader, and consistent methods for introducing style while
preserving meaning. This thesis makes some progress towards the latter, but both
remain open problems. In regard to image understanding, human viewers are able
to accurately identify many different visual concepts and parse complex scenes at
different levels of granularity. Models for image understanding are improving, but
lack the higher level reasoning required to fully understand complex scenes. With in-
terest from both academia and industry, more advancements in style generation and
image understanding are likely; however, it is not yet clear if these problems can be
completely solved without the development of general artificial agents. Nonetheless,
automated systems that understand the world and communicate their conclusions
to us through clear and attractive language remain an enticing prospect worthy of
further study.
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