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Abstract 

Magmatism happening on the earth and other planets mainly involves SiO2, 

TiO2, Al2O3, Cr2O3, Fe2O3, FeO, MgO, CaO, N~O, K2O, H2O and CO2• It is reasonably 

approximated by the partial melting behaviour of the system CaO-MgO-Al2O3-SiO2 

(CMAS) which has been extensively studied. The effectsof FeO and N~O on this 

process have been studied in the systems CMAS-FeO* and CMAS-Na2O, respectively. 

The geochemical behaviour of other oxides in the partial melting process, however, 

has not been rigorously studied so far. The current study is intended to partially 

address this issue, and my attention has been mainly focused on the phase assemblage 

of spinel lherzolite plus melt ( olivine (01) + spinel (Sp) + orthpyroxene (Opx) + 

clinopyroxene (Cpx) + melt (Melt)). 

In this PhD study, high temperature-high pressure experiments have been carried 

out in the systems CMAS + K2O (Chapter 2), CMAS-Cr2O3-KiO (Chapter 3) and 

CMAS-H2O-CO2 (Chapter 4) at 11 kbar and from 1200 °C to 1380 °C using piston­

cylinder apparatus. Due to the inaccuracy of literature data in the system CMAS-N~O 

(CMASN), some experiments have also been conducted in this system. During this 

study, new experimental techniques have been developed and successfully applied. 

The major analytical techniques used in this study are electron microprobe, infrared 

spectroscopy, scanning electron microprobe, X-ray diffraction and laser-ablation ICP­

MS. 

The study in the system CMAS + K2O (Chapter 2) at 11 kbar suggests that 

partial melting for a spinel lherzolite occurs over a wide temperature range (,...., 60 

degrees from ,...., 1260 °C to ,...., 1320 °C), produces a wide range of melt composition 

(from quartz tholeiite at low temperatures to olivine basalt at high temperatures) and 

occurs according to different melting reactions. The major changes of the partial 

melting reaction caused by the addition of K2O into the system CMAS are that spinel 

joins olivine to be in a reaction relationship with melt, and Opx replaces Cpx to be the 

number one contributor tq the partial melting process at high K2O concentrations. 

The extrapolated result at O wt% K2O (i. e., the isobarically invariant point of the 

system CMAS), a temperature of~ 1319 °C with a melt composition of 49.09 wt% 

SiO2, 20.14 wt% Al2O3, 15.45 wt% MgO and 15.33 wt% CaO, from the experiments 

displaying a spinel-lherzolite phase assemblage in the system CMAS + KiO, is fully 

confirmed by reversal experiments using the extrapolated melt composition, with and 
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without the addition of olivine. This identifies a new experiment method (the K2O­

method) which potentially can be applied to indirectly determine melt compositions in 

low variance phase assemblages. 

The study in the system CMAS + KiO has also been extended to locate several 

other isobarically invariant points at 11 kbar, namely Sp + Opx + Cpx + anorthite (An) 

+ Melt at ~ 1320 °C in the system CMAS, Fo + Sp + Opx + Cpx + sanidine (San) 

+Melt at ~ 1240 °C, Sp + Opx + Cpx + An + San + Melt at ~ 1230 °C and Opx + Sp + 

An+ San+ sapphh-ine (Sapph) + Melt at~ 1230 °C in the system CMAS-K2O. The 

coexisting of An with San observed here provides valuable data for the 

thermodynamic modelling of plagioclase, which has only had limited success. 

The K2O method designed and justified in the study in the system CMAS + K2O 

has been successfully applied in my study in the system CMAS + Cr2O3 (Chapter 3). 

This technique not only helps to overcome the isobarically pseudo-invariant nature of 

the partial melting process of spinel lherzolite in this system, but also helps to modify 

the melt so that it becomes quenchable. In order to ensure most chromium is Cr3+, 

Fe2O3 is used as external hydrogen fugacity buffer in the experiments. With these 

experimental techniques, the effect of Cr2O3on partial melting is successfully studied 

for the first time. 

During the partial melting process Cr2O3 tends to retain in the solid phases and 

the distribution coefficient of Cr2Q3 observed here is 0.84 between 01 and Melt, 165.8 

between Sp and Melt, 7.2 between Opx and Melt, and 8.7 between Cpx and melt. 

These numbers suggest that Cr3
+ is extremely compatible during partial melting 

process. The effect of chromium on the melt compositions, therefore, is not readily 

apparent from the melts themselves. 

My experiments in the system CMAS + Cr2Q 3 indicate that Cr2O3 increases the 

solidus of the system. Interestingly, this effect is not linear with the Cr2Q 3 content of 

the bulk composition but is very strong at low Cr2O3 contents, very weak at median 

Cr2O3 contents and very strong again at high Cr2Q 3 contents. This phenomenon is 

comparable to the effect of Cr2Q 3 on the subsolidus phase transformation between 

spinel lherzolite and garnet lherzolite. 

The phase relationship of pyroxenes in the system CMAS-Cr2Q3 at 11 kbar is 

very different to that of the system CMS. In the CMAS-Cr2O3 system, low Ca-Cpx and 

high Ca-Cpx can not coexist at high temperatures, and the stable pyroxene 

combination is Opx and a supercritical Cpx, the latter of which decreases its Ca 

content rapidly but continuously, as temperature increases. 
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Cr2O3 also changes the melt composition. It substantially decreases the Al2O3 

content but strongly increases the MgO content. It increases the SiO2 content at a 

relatively weaker level. Its effect on the CaO content, however, is negligible. As Cr2O3 

increases, thus, the CaO/ Al2O3 ratio of the melt increases sharply and the melt 

progressively becomes more Di-normative. Another interesting effect of Cr2O3 on the 

melt composition is that a small amount of Cr2O3 makes the melt Qz-normative but 

more Cr2O3 does not make the melt more Qz-normative. Instead, the melt moves 

towards Hy and remains only marginally Qz-normative. 

The excellent agreement (high Si 0 2, high CaO/ Al2O3, high Di component and 

Hy-normative) between the experimentally produced melts at high Cr2O3 conditions in 

the system CMAS-Cr2O3 and the melt inclusions in Sp and 01 from mid-ocean ridge 

basalt and oceanic island basalt suggests that the upper mantle from which magma is 

generated is very refractory. The much lower Di component of the most primitive 

MORBs documented to date possibly indicates that these melts might have been 

modified by high pressure fractional crystallisation of Cpx. The much lower Di 

component of the experimentally produced melts using natural rock compositions in 

the literature, however, suggests that the starting compositions used in the experiments 

were too fertile (poor in Cr2O3). 

The effect of H2O and CO2 on the partial melting process of the Earth' s upper 

mantle is a long standing problem. Due to some special experimental difficulties and 

the problem associated with determining the volatile contents of small amount of melt, 

no literature data published so far provides a complete data set for a study on the effect 

of fluids. In my study in the system CMAS-H2O-CO2 (Chapter 4 ), high quality 

experimental data has been successfully obtained and the effect of H2O and CO2 can be 

rigorously parameterised. 

The study in the system CMAS-H2O-CO2 suggests that H2O has a strong effect 

on the solidus of spinel lherzolite: 1 wt% H2O depresses the solidus by ~ 38 degrees. 

The effect of CO2 on the solidus, however, is negligible. 

The effect of H2O on melt composition is 1 wt% H2O decreases MgO by 1.49 

wt% and CaO by 0.39 wt%, but increases Al2Q3 by 0.67 wt% and SiO2 by 0.11 %. This 

effect should make the melt corundum-normative and quartz--normative at high water 

contents. The literature studies at H2O-free conditions and at H2O-saturated conditions, 

therefore, have been linked together as a full picture by my study. 

The effect of CO2 on the melt composition is much stronger than and generally 

opposite to that of H2O: the increase of SiO2 caused by 5 wt% H2O, for example, can 

be fully cancelled by 1 wt% CO2• The effect of CO2 on the melt composition, however, 
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is not constant but increases with the H20 content of the melt. At CO2-rich conditions, 

nepheline-normative melt may be produced. 
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Remarks on the structure of the thesis 

The chapters of this thesis have been structured as separate scientific papers with 

the exception of Chapter 1 and Chapter 5, the former being an introduction to this 

thesis and the latter a concluding section summarising the most important results of 

this thesis. As a result, repetitions may occur, especially in the introductory sections 

and in the reference sections. 
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Chapter 1 

Introduction 

Basaltic magmatism is a fundamental geological process on the Earth and other 

terrestrial planets. In the case of the Earth, the major source of the basaltic magma is the 

upper mantle, which consists, at successive depths, of plagioclase lherzolite ( olivine, 

orthopyroxene, clinopyroxene and plagioclase) at low pressure, spinel lherzolite 

( olivine, orthopyroxene, clinopyroxene and spinel) at medium pressure, and garnet 

lherzolite ( olivine, orthopyroxene, clinopyroxene and garnet) at high pressure. When 

mantle lherzolite ascends due to mantle convection, adiabatic decompression is 

expected to produce magma over a range of pressures by a near-fractional melting 

process. 

Potentially, the product magma provides a valuable probe of the earth's deep 

interior which can not be directly sampled. Unfortunately, the magma-generating 

process is highly complicated. The major components involved are SiO2, TiO2, AhO3, 

Cr2O3, Fe2O3, FeO, MgO, CaO, Na2O, K2O, H2O and CO2. Due to the large number of 

components involved and the range of pressures and temperatures, compared to the 

small number of participating minerals and melt, the magma-generating process has a 

large number of degrees of freedom. Further complications are caused by processes 

such as magma-mixing, fractional crystallisation and crustal contamination (Hess, 

1989). Direct observation made on the natural igneous rock in the field, therefore, can 

only provide ambiguous results about the initial magma-generating process. 

Partial melting experiments at high temperatures and high pressures, however, 

provide a powerful method of studying the magma-generating process. In principle, 

there are two ways to undertake the experiments. 

Partial melting experiments can be conducted with complex multi-component 

compositions intended to simulate the composition of the upper mantle (Table 1 ). These 

experiments have the advantage of being close to compositions found in natural 

lherzolites, so that the experimental results may be directly comparable to the 

observations made in the nature, without significant extrapolation. There are, however, 

disadvantages. With such natural rock compositions, there are so many degrees of 
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Table 1 Experimental partial melting study in complex systems 

Ref. P(kbar) T(°C) ComQositions Notes 

Green, 1973 10-20 900-1200 pyrolite-40* + H2O forward 

Nicholls & Ringwood, 1973 0.001-30 1000-1400 01 tholeiite/SiOi-saturated tholeiite ± H2O mverse 

Millhollen et al. , 1974 10-36 950-1550 peridotite mylonite containing 5.7% H2O forward 

Mysen & Boettcher, 1975a, b 7.5-30 700-1220 4 lherzolites ± H2O ± CO2 forward 

Nehru & Wylle, 1975 20 900-1250 peridotite containing 5.7% H2O forward 

Green, 1976 10-20 1060-1200 Calculated melt composition from Green (1973) mverse 

Mysen & Kushiro, 1977 20-35 1350-1750 2 peridotites forward 

Bender et al. , 1978 0.001-15 1205-1350 basalt 572-1-1 mverse 

Jaques & Green, 1980 0-15 1100-1550 HP*/TP*-40 forward 

Stolper, 1980 10-20 1250-1450 basalt AL V-519-4-1 + 01 + Opx mverse 

Wendlandt & Mysen, 1980 15-30 1100-1600 PHN 1611 +CO2 forward 

Sen, 1982 9 1210-1350 77PAII-1 forward 

Fujii & Bougault, 1983 0.001-15 1150-1350 basalt ARP74 10-16 mverse 

Takahashi & Kushiro , 1983 0.001-30 1050-1600 HK66 forward 

Elthon & Scarfo, 1984 10-30 1170-1500 basalt NT-23 mverse 

Fujii & Scarfo, 1985 10 1250-1310 3 peridotites and 3 basalts forward 

Takahashi & Scarfo, 1985 0.001-70 1200-1800 KLB-1 and PHNl 611 forward 

Takahashi, 1986 0.001-140 1100-2150 KLB-1 forward 

Falloon & Green, 1987 10 1230-1420 4 peridotites forward 

Longhi & Pan, 1987 0.001 1025-1245 16 melt compositions mverse 

Tormey et al. , 1987 0.001-2 1152-1243 3 MORBs mverse 

Falloon et al. , 1988 2-30 1180-1450 HP, TP and 10 melts from Jaques & Green (1980) both 

Kushiro, 1990 12-20 1100-1250 lherzolite + tholeiitic basalt/boninite forward 

Foden & Green, 1992 0.001-10 950-1260 basalt 41632 ± H2O mverse 

Grove et al. , 1992 0.001-10 1126-1265 6 basalts± 01 mverse 

Kinzler & Grove, 1992 9-16 1220-1360 10 basalts + Opx/O1 addition mverse 

Gaetani & Grove, 1993 0.001-2 ? basalt 135-839b-15R-2 ±H2O mverse 

Sisson & Grove, 1993a 2 925-1132 5 natural mafic rocks + mineral addition + H2O mverse 

Sisson & Grove, 1993b 1 1020-1100 volcanic rocks 79-35g, 82-66, 1140 mf and H2O mverse 

Baker & Stolper, 1994 10 1270-1390 MM3 forward 

Baker et al. , 1994 0.001-10 1140-1360 basalts 82-94A, 75SH-70, and 85-44 ± H2O mverse 

Gaetani et al. , 1994 0.001-2 1005-1210 basalts 135-839b-15R-2 and 63-67cm ± H2O mverse 

Zhang & Herzberg, 1994 50-225 1650-2375 KLB-1 forward 

Baker et al. , 199 5 10 1150-1330 MM3 forward 

Hirose & Kawamoto, 1995 10 1100-1350 KLB-1 +H2O forward 

Herzberg & Zhang, 1996 50-225 1650-2375 KLB-1 forward 

Klingenberg & Kushiro, 1996 0.001-5 1242-1405 2 peridotitic compositions forward 

Kushiro, 1996 5-30 1175-1500 PHN1611 forward 

Falloon et al. , 1997 10 1220-1315 4 peridotites + 2 melts from Baker et al. (1995) both 

Hirose, 1997 10 950-1050 KLB-1+ H2O forward 

Kawamoto & Holloway, 1997 50-11 O 950-1100 KLB-1 + H2O forward 

Kinzler, 1997 15-23 1355-1511 6 synthetic peridotites forward 

Gaetani & Grove, 1998 12-20 1100-1345 4 basalts + 3 peridotites ± H2O forward 

Hirose & Kushiro, 1998 5-20 1240-1350 PHN1611 forward 

Robinson et al. , 1998 15 1264-1388 MORB-pyrolite; Tinaquillo peridotite forward 

Walter, 1998 25-70 1415-1950 KR4003 forward 

Wagner & Grove, 1998 10-22 1350-1500 estimated primitive tholeiite for Kilauea mverse 

Falloon et al. , 1999a 10-15 1250-1550 MM3 and 4 melt compositions both 

Falloon et al. , 1999b 0.001-27 1160-1540 8 melt compositions, MM3 and TP-40 both 
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Table 1 continued 

Niida & Green, 1999 4-32 925-1100 MPY-40 +H2O forward 

Falloon & Danyushevsky, 2000 15-25 1350-1600 harzburgite, TP-40, boninite, 1 melt composition forward 

Herzberg et al. , 2000 50-97 1650-2000 KLB-1 forward 

Pickering-Witter & Johnston, 200010 1270-1390 4 peridotitic compositions forward 

Falloon et al. , 2001 10 1310-1500 TP, TP-40, MPY and 6 melt compositions both 

Muntener & Grove, 2001 12 1030-1250 basalt 85-44 and 85-41 c + H2O inverse 

Schwab & Johnston, 2001 10 1245-1390 5 peridotitic compositions forward 

Longhi, 2002 24-34 ? 8 melt compositions inverse 

Pichavant et al. 2002 7.5-18 1200-1290 basalt STV 301 inverse 

pyrolite-40* : pyrolite - 40% 01; HP*, Hawaii peridotite; TP*, Tinaquillo peridotite. TP-40, Tinaquillo peridotite - 40% 01; MPY-

40, MPY - 40% 01. ?: no details available. inverse : crystallising approach; forward, melting approach. References lists are from 

1973 on. 

Table 2 Experimental partial melting study in simple systems 

Ref. PiliJ!ar) T(°C) Com~ositions Notes 

Kushiro, 1969 20 975-1715 CMS±H2O inverse 

Yoder, 1971 10 ? CMAS-H2O H2O-saturated 

Kushiro, 1972a 0.001 1365-1530 CMS inverse 

Kushiro, 1972b 8-60 900-1590 CMAS-Na2O ± H2O H2O-saturated 

Kushiro, 1972c 10-20 1325-1535 CMAS ±Na2O lherzolite 

Kushrio, 1974 15 ? CMAS-Na2O-H2O ± K2O inverse 

Presnall, 197 6 8.7-14 1302-1400 CMAS inverse 

Presnall, 1978 0.001-20 1263-1690 CMAS inverse 

Eggler, 1978 <30 ? CMAS-Na2O-CO2 inverse 

Presnall et al. , 1979 0.001-20 1240-1443 CMAS lherzolite 

Longhi & Boudreau, 1980 0.001 1378-1455 CMS inverse 

Sen & Presnall, 1984 10 1260-1570 CMAS inverse 

Longhi, 1987 0.001 1240-1371 CMAS inverse 

Liu & Presnall, 1989 0.001 1361-1377 CMAS inverse 

Liu & Presnall, 1990 20 1350-1770 CMAS inverse 

. Libourel, 1991 0.001-15 ? CMAS-Cr2O3 inverse 

Shi & Libourel, 1991 0.001 1160-1275 CMAS-FeO different-fO2 

Walter & Presnall, 1994 7-35 1225-1594 CMAS-Na2O lherzolite 

Gudfinnsson & Presnall, 1996 24-34 1495-1615 CMAS lherzolite 

Sisson et al. , 1997 12-28 ? CMAS-Na2O-H2O Arn-lherzolite? 

Herzberg & Zhang, 1997 50 1750-1850 CMAS and CMAS-Fe* inverse 

Milholland & Presnall, 1998 30 1400-1820 CMAS inverse 

Herzberg & Zhang, 1998 30-150 1800-2225 CMAS and MS inverse 

Dalton & Presnall, 1998a 60 1380-1505 CMAS-CO2 carbonated lherzolite 

Dalton & Presnall, 1998b 30-70 1245-1430 CMAS-CO2 carbonated lherzolite 

Gudfinnsson & Presnall, 2000 7-28 1260-1530 CMAS-FeO lherzolite 

Conceicao & Green, 2000 5-20 1200-1400 MAS-FeO-K2O inverse 

Liu & Presnall, 2000 20 1340-1540 CMAS inverse 

Weng & Presnall, 2001 51 1850-1930 CMS inverse 

inverse, crystallising approach to bracket the targets; lherzolite, melting approach. Fe* , Fe 0, Fe2
+ and Fe3

+. ?: no details 

available . References listed here are from 1969 on. 
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freedom that it is difficult to relate an effect to a particular component. Also it is not 

possible to rigorously extrapolate the experimental results to different temperatures, 

pressures or compositions. 

Alternatively, partial melting experiments can be conducted with simplified 

compositions (Table 2). These experiments have the advantage of simplicity. It is 

usually easy to determine the effect of a particular component on the partial melting 

process. These experiments also produce valuable thermodynamic data for the 

participating phases. There are, however, disadvantages associated with this approach. 

The simplified compositions may be sufficiently different from the compositions of 

natural lherzolites, so that application of the experimental results to nature may require 

substantial extrapolation which may not be valid, especially when components which 

are absent in the simple systems have a strong effect on the melting phase relationships. 

Another disadvantage is that the large number of phases in a desired phase assemblage 

may not be easy to experimentally observe due to the low variability of the simplified 

system. 

This study follows the second experimental approach, and includes partial melting 

experiments in the systems CaO-MgO-AhO3-SiO2 (CMAS), CMAS-K2O, CMAS­

Cr2O3 (-K2O) and CMAS-H2O-CO2 (-trace Na2O) at 11 kbar. It also contains a couple 

of partial melting experiments in the system CMAS-Na2O and a few reversal 

experiments in the system CMAS. My main effort has been directed to the partial 

melting behaviour of the phase assemblage of spinel lherzolite. 

An experimental pressure of 11 kbar was chosen due to several reasons. First, 11 

kbar closely approximates the lowest pressure at which primary melt is in equilibrium 

with the upper mantle (Presnall et al., 1979; Sen, 1982; Presnall & Hoover, 1984, 1987; 

Melt Seismic Team, 1998; Dunn & Forsyth, 2001). Second, spinel lherzolite is a stable 

phase assemblage in all the chemical systems studied here and comparison among these 

systems is simple. Third, numerous partial melting studies have been carried out with 

natural lherzolite compositions at r--.; 11 kbar and comparison between the simplified and 

the natural systems is facilitated (see Table 1 for references). 

The CaO-MgO-AhO3-SiO2 (CMAS) system closely matches the composition and 

mineralogy of both the upper mantle source and the product magma. The magma­

generating process, therefore, can be closely approximated by the partial melting 

behaviour of the CMAS system. Literature data on this topic shows some discrepancies 

(solidus temperature and melt composition; Kushiro, 1972c; Presnall et al., 1979; 

Walter & Presnall, 1994), so that partial melting experiments in the system CMAS were 
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firstly conducted to resolve these discrepancies. It was found that the desired spinel 

lherzolite phase assemblage plus melt can not be experimentally produced due to the 

isobarically invariant nature of the system at this condition. Hence a small amount of 

K2O was added to the system to split the iso barically invariant point ( the K2O method), 

allowing the spinel lherzolite phase assemblage plus melt to be successfully observed 

over a large temperature interval. The results were then regressed and extrapolated to 0 

wt% K2O to derive data for the CMAS system. The extrapolated results agree with 

some literature data but disagree with others. Reversal experiments with and without 

olivine-addition, thus, were undertaken to check the new data and established indirectly 

that the K2O method is successful. The partial melting experiments in the system 

CMAS-K2O were also extended to high K2O contents and several isobarically invariant 

points were experimentally constrained. 

In order to understand the effect of additional components, the complexity of the 

study system must be increased. 

Chromium is potentially important in the partial melting process of the upper 

mantle due to its abundance (O'Neill & Palme, 1998), its strong geochemical effect on 

subsolidus phase relationships (O'Neill, 1981; Nickel, 1986; Li et al., 1995; Klemme & 

O'Neill, 2000) and preliminary experimental results at supersolidus conditions (Irvine, 

1977; Libourel, 1991 ). Previous experimental study on the effect of Cr2O3 has been of 

limited success. Our preliminary experiments (not reported in this thesis) in the system 

CMAS-Cr2O3 suggested that the partial melting process for a spinel lherzolite phase 

assemblage is isobarically pseudo-invariant and that the melt is unquenchable. The K2O 

method hence was applied to later experiments (reported in Chapter 3 of this thesis) to 

solve these problems. An Fe2O3 sleeve was used in these experiments to ensure that 

chromium was present as Cr3+. This is the first time that the effect of chromium on the 

partial melting process has been successfully studied. 

The explosive nature of volcanoes is one of the most obvious phenomena, 

illustrating the importance of volatiles, like H2O and CO2, in the magma-generating 

process. Due to the degassing of magmas at low pressures, the geochemical behaviour 

of H2O and CO2 in the partial melting process can only be studied by high temperature­

high pressure experiments. Most previous experimental studies have been conducted 

under H2O/COroversaturated conditions which probably never occur in the nature (Pan 

et al., 1991; Bell & Rossman, 1992; Zhang & Zindler, 1993; Jambon, 1994; O'Neill & 

Palme, 1998). Further, the data sets are incomplete due to the difficulty of quantifying 

H2O and CO2. In this study, a small amount of H2O and CO2 was added into the system 
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CMAS and experiments were carried out at H2O/CO2 undersaturated conditions. Phase 

compositions were determined by electron microprobe and FTIR spectroscopy, 

allowing all components in the study system to be quantified. With this data set, the 

geochemical behaviour of H2O and CO2 in the partial melting process of a spinel 

lherzolite phase assemblage can be determined. Also, the results can be used to evaluate 

nominally H2O/COi-free partial melting experiments in the literature which were 

obviously affected by H2O and CO2, associated with the diffusion of hydrogen and 

graphite through noble metal capsules. 
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Chapter 2 

Partial melting of spinel lherzolite in the system Ca0-Mg0-

AI203-Si02±K20 at 11 kbar 

1. Introduction 

The simplest chemical system that contains all the major phases of the peridotitic 

upper mantle ( olivine, orthopyroxene, clinopyroxene. and an aluminous phase, either 

plagioclase, spinel or garnet, depending on pressure) is CaO-MgO-AhO3-SiO2 

(CMAS). This simple system has been used to investigate the basic phase relations of 

partial melting in the upper mantle (O'Hara, 1968; Kushiro, 1972; Presnall et al., 1979; 

Longhi, 1987; Gudfinnsson & Presnall, 1996; Milholland & Presnall, 1998; Herzberg & 

Zhang, 1998; Presnall, 1999; Liu & Presnall, 2000). However, with a typical four-phase 

lherzolite assemblage, the initial melting in CMAS is isobarically invariant; that is, the 

chemical potentials of all four components (CaO, MgO, AhO3 and SiO2) in the melt are 

completely defined; for example, the following four reactions specify the chemical 

potentials: 

(1) 

Melt 0px Cpx 01 

(2) 

Melt 0px 01 

SiO2+Mg2SiO4 = Mg2ShO6 (3) 

Melt 01 0px 

and, in the Sp-lherzolite stability field, 

(4) 

Melt 01 Sp 0px 

Because all chemical potentials are known, the composition of the melt in equilibrium 

with all four solid phases is particularly valuable in constructing thermodynamic models 
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of silicate melts. Unfortunately, the isobarically invariant melt composition is difficult 

to determine experimentally, because this assemblage only exists over an infinitely 

narrow temperature interval at a given pressure. 

The traditional way around this problem is to bracket the isobaric invariant point 

by varying the experimental starting composition, to produce four-phase isobarically 

univariant assemblages (i.e. three solid phases plus melt as in Fo+Opx+Sp+Melt). Not 

only does this require a large number of experiments, but it is tedious to demonstrate 

equilibrium (Presnall et al., 1978; Liu & Presnall, 1990), particularly since the solid 

phases ( especially the pyroxenes) are multicomponent solid solutions with the potential 

to be out of equilibrium as regards their compositions. This method also requires some 

extrapolation to the isobaric invariant point, since this point is only bracketed. 

Alternatively, it is possible to rely on experimental imperfections, such as 

temperature gradients or chemical impurities (e.g., some Na2O in the starting material or 

H2 diffusing through the Pt capsule to produce H2O present in the experimental charge) 

to increase the effective variance of the system and obtain melt in equilibrium or quasi­

equilibrium with four solid phases, which can then be analysed directly. This approach 

\has been adopted by Presnall and his colleagues (Presnall et al., 1979; Gudfinnsson & 

Presnall et al., 1996; Milholland & Presnall, 1998; Liu & Presnall, 2000). Although this 

seems empirically to work well for system CMAS, this may not always be the case, and 

indeed I have encountered insuperable difficulties in applying this approach to 

determining the effect of Cr2O3 on melting in system CMAS-Cr2O3. Relying on 

imperfections to obtain a result is also intellectually unsatisfying, and there is the 

question of how much the imperfections affect results. 

In this paper I report a logical improvement to this approach, which is to introduce 

. another component into the system deliberately. The system is then studied as a 

function of the concentration of this component, such that the composition of the 

CMAS isobaric invariant melt can be obtained by extrapolating to zero concentration of 

the added component. I chose K20 as the additional component (the K2O-method 

hereafter), as it is almost completely incompatible in all the solid phases (01, Opx, Cpx, 

Sp) at my chosen pressure of 11 kbar. Having the extra component entering only the 

melt phase makes the extrapolation to the pure CMAS system simple. Also, K20 is an 

important major-element constituent in several mantle-derived magma types 

(kimberlites, shoshonites and so on), so that the data generated in this study in the 

system CMAS-K2O as a by-product of my main purpose should be of some petrological 

value. 
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I show that the method produces a result in good agreement with the previous 

work of Presnall and his colleagues (Presnall, 1976; Presnall et al., 1979; Walter & 

Presnall, 1994 ), although the improved accuracy of the present method allows for some 

refinement of previous results. 

2. Experimental and analytical techniques 

Four types of experiments were performed: 

1. Conventional direct partial melting experiments (DEs) in the system CMAS 

2. Sandwich experiments using the K2O-method (KEs), in which the solid assemblage 

Fo+Opx+Cpx+Sp was placed at the top and bottom of the capsule, with a K2O­

containing melt composition as the "filling" 

3. Reversal experiments (REs-1) to study the crystallisation of the CMAS melt 

composition deduced from the KEs 

4. Reversal experiments (REs-2) with Fo added. All but one of these (C-1789) used the 

sandwich configuration 

2 .1 Starting materials 

Table 1 summarises the starting materials used in this study. Compositions were 

made from high-purity oxides (SiO2, AliO3 and MgO) and carbonates (CaCO3 and 

K2CO3). An important strategy was to use pre-synthesised Opx and Cpx with 

compositions similar to those expected in the run products. 

Mix9 was prepared by combining a crystalline mixture of pure forsterite (Fo) and 

a crystalline mixture of Sp+Opx+Cpx in a proportion of 1 :5 by weight. The Fo was 

· synthesised at 1400°C, latm for 69 hours; the mixture with Sp : Opx : Cpx in a ratio of 

1 : 2 : 2 in weight was made in a 5/8" piston-cylinder press using a 3.5mm diameter Pt 

capsule and a talc/pyrex assembly at 1280°C, 11 kbar and 48 hours. The phase 

proportion in the final Mix9 was close to 1 : 1 : 2 : 2 (Fo : Sp : Opx : Cpx). 

Crystalline mixture SEM02-1 containing Fo : Sp : Opx : Cpx = 1 : 1 : 1 : 1 (by 

weight) was made by crystallising the decarbonated oxide mix at 1300°C, 11 kbar and 

48 hours in a Pt capsule. 

Mixtures SEM02-3, SEM02-4, SEM02-8 and SEM02-6 were melted at 1400°C, 

latm and 20 minutes and then quenched to glass. 
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Table 1: Starting compositions used in this study 

Mix9 SEM02-1 SEM02-3 SEM02-4 SEM02-10 SEM02-8 SEM02-6 SEM02-13 

c_n:st. cryst. glass glass glass glass glass glass 

SiO2 
42.12 36.95 48.71 49.37 57.69 59.33 49.09 57.13 

~03 18.34 22.63 18.97 20.20 20.80 23.13 20.12 17.89 

MgO 32.46 35.06 16.60 13.52 6.20 2.57 15.45 11.72 

CaO 7.08 5.36 14.72 13.91 6.81 4.99 15.33 4.48 

~o ···~· 0.00 0.00 1.00 3.00 8.49 10.00 0.00 8.79 

Mix9 contains Fo:Sp:Opx:Cpx in the proportion 1:1 :2:2 where Fo is forsterite, Sp spinel, Opx orthopyroxene and Cpx clinopyroxene. Fo was 
synthesised at 14&C, 1 bar for 69 hrs, while Sp+Opx +Cpx were synthesised together at 1280°C, 11 kbar for 48 hrs. 
SEM02-1 contains Fo:Sp:Opx:Cpx in the proportion of 1:1:1:1, made up as for Mix9. 
SEM02-3 and SEM02-4 from 116-3 (Walter & Presnall, 1994), first normalised to 99 or 97 wt% and then 1 or 3 wt% ~O added, respectively. 
SEM02-10 is the melt composition from C-1585. 
SEM02-8 is the melt composition from earlier KEs extrapolated to 10 wt% ~O (See Fig. 4) However, it was found to contain more ~03 than that in 
the equilibrium melt, crystallizing sapphirine (see text for details). 
SEM02-6 is the melt composition from the KEs extrapolated to O wt% K2O (See Fig. 3), used as the starting material in the REs. 
SEM02-13 contains 80% melt+ 5% San+ 15% Fo in which the composition of melt and San (Sanidine) is from C-1708. 
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All mixtures were checked for compositions with electron microprobe (Ware, 

1991 ). Mix9 was later stored in an oven at 110°C while other starting materials were 

stored in another oven at l 50°C. 

2.2 Piston-cylinder assemblies 

All experiments were made in a conventional 1/2" piston-cylinder apparatus 

(Boyd & England, 1960). The salt-pyrex pressure assembly used in the preliminary DEs 

was described by Klemme & O'Neill (1997), except that, because of the generally lower 

pressure and temperature regime of this study, fired pyrophyllite replaced the MgO 

spacer underneath the capsule and mullite was used instead of high-purity alumina for 

the thermocouple tube. However, concerns about the possible effect of H2 diffusion into 

the Pt capsule causing contamination of the runs by H20 led me to make some 

modifications for the assembly used in the KEs and the REs. 

In the KEs and the REs, the Pt capsule was held in an Fe20 3 sleeve, which was in 

turn surrounded by an alumina sleeve. At each end of the alumina sleeve, a ruby disc 

(0.5 mm thick) separated the Fe20 3 sleeve from other parts of the assembly. This 

structure prevents the Fe20 3 sleeve from being reduced by the graphite heater, or 

contaminating the thermocouple. Alumina spacers and then MgO spacers were 

positioned next to both ruby discs, to enhance the mechanical stability of the assembly. 

The thermocouple was protected by a combination of high-purity alumina tubing in the 

hot part of the assembly (,..., 4 mm long), followed by mullite tubing above this. The 

Fe20 3 sleeve was made by cold pressing in a steel die and then sintered at 850°C, 1 atm 

for 3 hours, using acetone as a binder. 

These salt-pyrex assemblies have low friction and no pressure correction is 

· required, considering the high temperatures and long run times used in this study ( Green 

et al., 1966; Bose & Ganguly, 1995; Klemme & O'Neill, 1997). 

2.3 Experimental procedures 

For each experiment, 8-10 mg starting materials was loaded into a Pt capsule. The 

capsules used in the DEs were stored at 110°C for 6-8 hours before welding. The Pt 

capsules for the KEs and the REs were stored at 15 0°C for 6-8 hours and then held in a 

steel block which had been pre-heated to 750°C while they were welded (Robinson et 

al., 1998). 

All experiments were performed using the 'piston-out' method, i. e., the pressure 

was first raised to a few kilobars, then the temperature was increased to ca. 450°C to 
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soften the pyrex sleeve. The pressure was then increased up to ca. 0.5 kbar higher than 

the desired pressure, the temperature was increased to the nominal temperature of the 

run and finally the pressure was lowered to the required pressure (Johannes et al., 1971 ). 

The pressures were continuously monitored and adjusted, if necessary. The continual 

adjustment of pressure allowed each run to be controlled within ±0 .2 kbar of the 

nominal pressure. Temperature was measured and controlled with Pt94Rh6-Pt10Rh30 

thermocouple ( type B) which was previously calibrated against the melting point of 

gold at 1 atm; possible pressure effects on the emf of the thermocouple were neglected. 

The tip of the thermocouple, the upper ruby disc and the whole Pt capsule containing 

the experimental charge were all carefully placed in the approximately 5 mm long hot 

spot of the experimental assembly. Although temperature during experiments was 

controlled to ± 1 °C, the true temperature uncertainties are estimated to be approximately 

±5 to l 0°C, mainly due to slight differences in sample position and power density 

through the graphite heater. Such an uncertainty is consistent with the variations in melt 

composition and other experimental parameters observed in these experiments. For a 

discussion of the superior merits of type B thermocouples over other Pt/Rh 

thermocouples or W/Re thermocouples at temperatures near 1300°C, see Klemme and 

O'Neill (2000b ). 

2.4 Analytical methods 

At the end of a run, the sample was sectioned longitudinally, mounted in epoxy 

and polished using a series of diamond pastes. Run products were carbon-coated and 

analysed on a Cameca electron microprobe at RSES, ANU and/or on a JEOL 6400 

scanning electron microprobe in energy dispersive mode (EDS) at the Electron 

. Microprobe Unit (EMU) at ANU. Coexisting phases in all run products were carefully 

identified by back-scattered electron imaging. Beam current was ?f . nA, accelerating 

voltage was 15 keV and ZAF correction was applied in all analyses (Ware, 1991). A 

beam spot size of 1 µm was used for all crystalline phases while both 1 µm and 10 µm 

beam spot sizes were used for glass analyses. Calibration was based on optimisation to a 

large number of standards; to check this calibration and also as a monitor of any drift 

between analysing sessions, I repeatedly analysed three internationally recognised glass 

standards, GOR132G, TlG and KL2G, which have comparable compositions to the 

phases present in this study (Jochum et al., 2000). The 185 analyses over 24 analytical 

sessions are summarised in Table 2. There is excellent agreement between my electron 

probe analyses and the recommended values. 

31 



Table 2: Comparison of electron probe analyses and recommended values for 
secondary standards 

GOR132G KL2G TlG 

71* Rec. V. 57 Rec. V. 56 Rec. V. 

Si02 46.08(0.26)* 45.98(0.30) 51.33(0.20) 51.37(0.10) 5'9.56(0.22) 59.28(0.20) 

Ti02 0.32(0.08) 0.29(0.01) 2.70(0.09) 2.67(0.05) 0.77(0.07) 0.74(0.01) 

Alp3 11.10(0.22) 11.02(0.10) 13.51(0.11) 13.43(0.10) 17.17(0.12) 17.23(0.10) 

Crp3 0.38(0.08) 0.36(0.01) 0.05(0.07) 0.05(0.00) 0.04(0.05) 0.00(0.00) 

FeO 10.21(0.20) 10.21(0.10) 10.78(0.22) 10.97(0.10) 6.49(0.16) 6.51(0.04) 

MnO 0.17(0.08) 0.15(0.00) 0.18(0.10) 0.17(0.00) 0.11(0.07) 0.13(0.00) 

MgO 22.17(0.27) 22.64(0.10) 7.37(0.07) 7.44(0.06) 3.71(0.07) 3.79(0.04) 

CaO 8.57(0.13) 8.51(0.09) 11.19(0.13) 11.07(0.10) 7.13(0.10) 7.17(0.05) 

Nap 0.98(0.06) 0.81(0.01) 2.42(0.08) 2.33(0.04) 3.06(0.13) 3.18(0.03) 

KJO 0.03(0.04) 0.03(0.00) 0.46(0.05) 0.49(0.01) 1.96(0.06) 1.97(0.02) 

71 *: the number of electron probe analyses. 46.08(0.26) should be read as 46.08 ± 0.26. 
Analysis was normalised to 100 wt% before the average and the standard deviation were 
calculated. For the recommended values, Rec. V. , normalised results to 100 wt% are used to 
facilitate comparison. The standard deviation of the recommended values, however, is directly 
from Jochum et al (2000). 

Besides the major oxides CaO, MgO, AhO3, Si02 and K2O expected in the run 

products, I also routinely analysed for FeO, Cr2O3 and Na2O in all phases. Either 

diffusion of Fe through the Pt capsule from the Fe2O3 sleeve or a leak in the capsule 

could result in FeO contamination. Na2O appears to be a good indicator of the purity of 

the starting materials. It concentrates in the melt, and O .1-0 .3 wt% was found in the 

glasses in this study, depending on the proportion of melt to solid in the experiment. 

Such a concentration is close to the limit of detection by EDS, and since it has a 

minimal effect on the phase relations (Walter & Presnall, 1994; Chapter 4 of this thesis) 

this N a2O will henceforth be ignored. 

Lithium and boron have potentially been cryptic contaminants of previous piston­

cylinder studies, as these elements have not been amenable to microbeam analysis until 

recently. Li salts are sometimes used in noble-metal fabrication processes, and B could 

come from the pyrex glass (it apparently diffuses readily through Pt). To check for any 

such contamination, Li and B were measured in the glasses in runs C-1422, C-1448 and 

C-1565 (see Table 3 for experimental conditions) by LA-ICP-MS at RSES, ANU. The 

Li contents were 4.1±0.2 ppm, 4.1±0.1 ppm and 2.8±0.4 ppm, respectively. The B 

contents were slightly higher at 53±2, 54±2 and 52.3±7 ppm. Such levels should have a 

negligible effect on phase relations. 

2.5 Fe2O3 sleeve and H2O contamination 

Following Robinson et al. (1998), Fe2O3 sleeves were used as hydrogen getters 

surrounding the Pt capsule in all experiments apart from the first few reported in this 
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study (the DEs). The idea is that an oxidised substance like Fe2O3 should react with H2, 

which may be produced in the piston-cylinder assembly by contaminant moisture 

reacting with the graphite heater, for example. This should minimise the ingress of H2 

into the Pt capsule by diffusion, where it can react with silicates ( e.g. , alloying some Si 

into the Pt in FeO-free systems), thus forming H2O. According to Robinson et al. 

(1998), the use of Fe2O3 sleeves coupled with careful drying of capsules before and 

during welding can reduce the water content in experimental melts from r-.; 1 wt% to r-.; 

0.1 wt%. 

The Fe2O3 sleeves after two experiments (C-1417 and C-1566; see Table 3 for 

experimental conditions) were checked by powder X-ray diffraction at the Geology 

Department, ANU and were found to be > 99 wt% Fe2O3. This does not mean that the 

sleeves were unnecessary, however, as analysis of the Pt capsules (using the Cameca 

electron microprobe in WDS mode at RSES, ANU) showed metallic Fe diffusing into 

the capsule. An example is given in Fig. 1 (1340°C, 11 kbar, 72 hours). While Fe metal 

reached the middle point of the capsule wall, the experimental charge remained 

untouched. However, longer run times or higher temperatures would result in Fe 

reaching the inner wall of the capsule, hence the need to analyse Fe routinely in run 

products. 

0.25 

---- • ~ ..... 
0.20 ~ 

'-" 
-c -c ce 

0.15 ~ 
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Inside Outside = 'J:J. 0.10 Q. 
ce 
~ ..... 
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• 
~ 300 µm 

• 
Pt capsule wall 

Fig. 1 Profile of metal Fe diffusion into Pt capsule wall. Experimental conditions: 11 
kbar, 1340°C, 72 hours. Curve is fitted by eyes. 
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C-1621 contains only melt (see Table 3 for experimental conditions) and it is ideal 

for using transmission infrared spectroscopy to determine the water content. Details of 

this procedure as implemented in this study will be reported in Chapter 4 of this thesis. 

The average water content from seven analyses is 120 ppm, which is substantially lower 

than the 0.1 % reported by Robinson et al. (1998) and the 1100 ppm by Falloon et al. 

(1999); Baker et al (1996) and Falloon et al. (2001) estimated an even larger amount, 

0.5-1 %, in their nominally anhydrous experiments. If the same total of H2O as in run C-

1621 were concentrated into the melt phase in those runs with smaller proportions of 

melt, the H2O concentrations might be higher than in C-1621, but it seems unlikely that 

levels ofH2O in any run with the Fe2O3 sleeves would exceed 0.1 %. 

2.6 Attainment of equilibrium 

There is a fundamental dilemma to be addressed in designing experiments aimed 

at obtaining the compositions of partial melts at modest degrees of melt fraction. To 

optimise equilibration between melt and crystals, it is obviously advantageous to have 

the melt distributed between the crystals, to maximise the mutual contact. This is the 

usual texture formed in simple experiments ( the DEs of this study) with less than about 

20 to 30% melt, in the absence of a temperature gradient. However, maximising the 

contact between melt and crystals also maximises the probability of quench 

modification by precipitation on the rims of crystals. In addition, melt so distributed is 

difficult to analyse accurately since melt pockets are small and irregularly shaped. This 

latter problem becomes worse as the melt fraction decreases. The experimental solution 

to these problems has been to devise ways of separating the melt from the crystals, as in 

sandwich experiments (as in this study and Stolper, 1980; Takahashi & Kushiro, 1983; 

Fujii & Scarfe, 1985; Falloon & Green, 1987, 1988; Robinson et al., 1998) or by 

extraction into diamond aggregates or similar (Johnson & Kushiro, 1992; Kushiro & 

Hirose, 1992; Baker et al., 1992; Hirose & Kawamoto, 1995; Hirose, 1997). Another 

possible tactic is to exploit the temperature gradient present in many high pressure 

experiments, particularly in multi-anvil experiments, to separate melt towards the hot 

end of the capsule (Takahashi, 1986). However, the inevitable consequence of any 

separation must be to impair the chances of attaining equilibrium between melt and 

crystals. 

The problems that this can cause are well illustrated in this study by two 

experiments, C-1580 and C-1576 (Table 3; see Fig. 2a), in which the initial composition 

chosen for the "filling" part of the sandwich turned out not to be in equilibrium with the 
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(a) (b) 

Fig. 2 Electron back-scatter images showing the texture of experiments C-1576 (a) and C-1448. See Table 
3 for experimental conditions and Table 4 for phase compositions. 

Fo+Opx+Cpx+Sp assemblage at the ends of the sandwich (the "bread"), despite the 

long run times used in these experiments. Instead, the run products consisted of three 

zones: the initial Fo+Opx+Cpx+Sp assemblage, which in these two runs appears also 

not to have re-equilibrated completely as regards the pyroxene compositions 

(particularly Opx, see Table 4 ); the "'filling" part, which consists of melt plus 

crystallised An+Sapph+San plus, in the lower temperature experiment (C-1576), 

Sp+Opx, the latter of which has a quite different composition to the Opx in the 

Fo+Opx+Cpx+Sp assemblage; and, thirdly, a narrow reaction zone of Opx, no more 

than 20µ wide, between the two other zones (more on this topic later). These textures 

are shown in Fig. 2a; for comparison, the texture developed in a successfully 

equilibrated sandwich experiments is given in Fig. 2b. The conspicuous inability of the 

melts in the "filling" to re-equilibrate with the solid Fo+Opx+Cpx+Sp assemblage in 

these two runs may be due to their high SiO2, hence high viscosity. 

The large difference in the composition of Opx in the different zones of C-1576 is 

instructive. Since the composition of a solid solution phase depends on its chemical 

environment, it is unlikely to be the same in the two different parts of a sandwich 

experiment unless these parts are in equilibrium. I therefore paid particular attention in 

this study to analysing pyroxene compositions in the "filling" part of the sandwich 

experiment, to check that they were indeed the same within analytical error as in the 

"bread" layers. Some crystallisation in the "filling" part is inevitable unless the initial 

glass composition is exactly that expected at equilibrium; in fact, as regards attainment 
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of equilibrium, no crystallisation in the "filling" would produce an ambiguous result, in 

the same way that "no reaction" in the determination of a subsolidus univariant reaction 

could indicate either full equilibrium at the P-T condition or merely sluggish reaction 

kinetics. 

Clearly, a key aspect of any partial melting experiment in which the melt is 

separated from the crystals must be to demonstrate that the melt really is in equilibrium 

with these crystals. I will point out a few other runs in which I believe such equilibrium 

was not obtained, based on the two following criteria ( as discussed above): 1) careful 

examination of the interface between the melt-rich part and the crystal-rich part; and 2) 

comparison of compositions of solid-solution phases in the two parts. Conversely, these 

same two criteria argue that equilibrium was indeed obtained in the great majority of the 

sandwich experiments reported here. Application of these criteria may not be possible in 

diamond-aggregate or similar types of melt extraction experiments, in which case the 

results from these experiments must be viewed with a degree of caution. 

Several lines of evidence indicate that local equilibrium was approached closely in 

the experiments of this study. In addition to being the same in the different parts of the 

sandwich, the compositions of Opx and Cpx both show good homogeneity: the most 

heterogeneous oxide component, AhO3, in the most heterogeneous phase, Cpx, 

generally has a variation of< 0 .5 wt% one standard deviation, which is comparable to 

that observed in other simple-system experiments. The amounts of AhO3 in both Opx 

and Cpx show small but smooth variations with temperature, and are in good agreement 

with the results of previous studies (see below). Similarly, the average difference 

between the calculated temperatures using the geothermometer of Nickel et al (1985) 

and the nominal experimental temperatures is only 23 °C, suggesting that the CaO 

contents of Opx and Cpx are in equilibrium. 

The achievement of local equilibrium in this work is expected because the 

duration of my experiments is generally longer than that used in previous comparable 

studies. The results of previous near-liquidus experiments in the system CMAS 

(Presnall et al., 1978; Sen & Presnall, 1984; Liu & Presnall, 1990) suggested that a 

period of several hours is all that is required to establish reversals of phase boundaries. 

Walter & Presnall's (1994) experiments in the system CMAS-Na2O found that 48 hours 

was long enough for the attainment of equilibrium at solidus temperatures. Most of my 

run durations are longer than this. 
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3. Experimental results 

Table 3 summarises the starting materials, the run conditions, the techniques used, 

and the results in terms of phases present, for each experiment. The compositions of 

these phases are given in Table 4. Calculated temperatures from the two-pyroxene 

geothermometer of Nickel et al (1985) for those experiments containing both Opx and 

Cpx are shown in Table 3. There is a good correlation between calculated and 

experimental temperatures, although with a systematic offset towards the calculated 

temperatures being higher at low experimental temperatures, with a mean difference of 

23 °C (Fig. 5). 

The initial DEs bracket the solidus in the system CMAS between 1300°C (C-

1555) and 1310°C. The run at 1300°C contains a small amount of melt (too small to 

analyse). The melt may have been produced as a result of H2 diffusion into the capsule 

during the run, producing a trace of water by reducing Si02 to Si, which alloys into Pt 

(Chen & Presnall, 1975). At slightly higher temperature (1310°C, C-1556), one phase 

(Cpx) disappears in agreement with the phase rule. I did not observe the four solid 

phases coexisting with melt over a range of temperature (,.., 20 degrees), as did Presnall 

(1976) and Presnall et al (1979). This is consistent with only small amounts of chemical 

impurities (like H2O) in my run products, and also minimal temperature gradients. 

Fourteen experiments were carried out using the K2O-addition method (KEs). The 

full Sp-lherzolite assemblage coexisting with melt is observed in seven experiments 

between 1260 and 1310°C. The temperatures of these KEs are plotted against the K2O 

contents of the melts in Fig. 3. The relationship is linear, at least to 8 wt% K2O and 

1270°C. Extrapolating K2O to zero gives a solidus temperature of 1319°C for the system 

CMAS. The change of melt composition with K2O is shown in Fig.4. On a simple oxide 

· weight percent (wt%) basis, SiO2 increases linearly with K2O, MgO and CaO both 

decrease linearly, and AhO3 remains approximately constant, although in detail it 

appears to go up then down, with a maximum at,.., 6 wt% K2O. The melt composition at 

the solidus in the CMAS system is found by extrapolation to zero K2O, as for the 

solidus temperature: I obtain SiO2 49.09, AJiO3 20.14, MgO 15.45 and CaO 15.33 wt%. 

The compositions of both Opx and Cpx at the CMAS solidus can be deduced similarly 

(see Table 5). 

I then tested these results by making up a glass with this composition and locating 

its liquidus and solidus (REs-1). The experiment at 1340°C was above the 
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Table 3: Experimental conditions and phase assemblages 

Run no. Starting material Fep;i ST Temp. (°C) T (hrs) Phase assemblage ~-_melt T-NBK85 

DEs 

C-1111 Mix9 No No 1330 48 Fo+Sp+Opx+Melt 

C-1556 Mix9 No No 1310 56 Fo+Sp+Opx+Melt 

C-1555 Mix9 No No 1300 56 Fo+Sp+Opx+cpx+Melt(tr) 1316 

K.Es 

C-1417 SEM02-l+SEM02-3 Yes Yes 1330 60 Fo+Sp+Melt 0.59 

C-1423 SEM02-1 +SEM02-3 Yes Yes 1320 55 Fo+Sp+Melt 0.63 

C-1422 SEM02-1 +SEM02-3 Yes Yes 1310 55 Fo+Sp+Opx +cpx +Melt 0.73 1337 

C-1461 SEM02-1 +SEM02-4 Yes Yes 1310 75 Fo+Sp+Opx+cpx+Melt 2.31 1326 

C-1448 SEM02-1 +SEM02-4 Yes Yes 1300 70 Fo+Sp+Opx+cpx+Melt 4.08 1331 

C-1460 SEM02-1 +SEM02-4 Yes Yes 1290 75 Fo+Sp+Opx+cpx+Melt 4.76 1315 

C-1447 SEM02-1 +SEM02-4 Yes Yes 1280 70 Fo+Sp+Opx+cpx+Melt 6.20 1332 

C-1574 SEM02-1 +SEM02-8 Yes Yes 1270 93 Fo+Sp+Opx+cpx+Melt 8.35 1310 

C-1585# SEM02-1 +SEM02-8 Yes Yes 1240/1260 72/123 Fo+Sp+Opx+cpx+Melt 8.49 1300 

C-1779 SEM02-1 +SEM02-13 Yes Yes 1250 217 Sp+Opx+Cpx+San+Melt+Fo7 10.09 1251 

C-1701 SEM02-l+SEM02-10 Yes Yes 1240 117 Sp+Opx+Cpx+An+Melt+Fo7 9.17 1295 

C-1708 SEM02-1+SEM02-10 Yes Yes 1230 195 Sp+Opx+Cpx+An+San+Melt 10.12 1238 

C-1580. SEM02-1 +SEM02-8 Yes Yes 1250 159 Fo+Sp+Opx+cpx 

An+San+Sapph+Melt 9.33 

C-1576. SEM02-1 +SEM02-8 Yes Yes 1230 98 Fo+Sp+Opx+cpx 
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REs-1 

C-1621 

C-1639 

C-1565 

C-1566 

REs-2 

C-1769 

C-1767 

C-1781 

C-1768° 

C-1789 

SEM02-6 

SEM02-6 

SEM02-6 

SEM02-6 

Fo+SEM02-6 

Fo+SEM02-6 

Fo+SEM02-6 

Fo+SEM02-6 

Fo+SEM02-6 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

1340 

1320 

1320 

1310 

1340 

1320 

1315 

1315 

1300 

Fe20 3, Fe20 3 external sleeve was always used always together with hot block-welding technique. 
ST Sandwich Technique. 

24 

54 

26 

48 

24 

62 

91 

66 

104 

T-NBK85, temperature (°C) calculated from the two-pyroxene thermometer for CMAS of Nickel et al (1985). 

Sp+Opx+An+San+Sapph+Melt 8.98 

Melt 

Sp+Opx+Cpx+Melt 

Sp+Opx+Cpx+An+Melt 

Opx+cpx+An+Melt(tr) 

Fo+Melt 

Fo+Opx + Melt 

Fo+Sp+Opx+cpx+Melt 

Fo+Sp+Opx +cpx 

Sp+Opx +Cpx+ An 

F o+Sp+opx+cpx 

1337 

1336 

1318 

1326 

1356 

1321 

1305 

DEs, Direct partial melting experiments in system CMAS; KEs, partial melting experiments using the KzO-method; REs, Reversal crystallisation experiments. Fo, forsterite ; Sp, 
spinel; Opx, orthopyroxene; Cpx, clinopyroxene; An, KzO-bearing anorthite; San, sanidine; Sapph, sapphirine; tr, only trace amount present; Fo7, residual Fo only. 
* disequilibrium between the different layers of the sandwich. 
# the temperature in this experiment was first held at l 240°C for 72 hours and then adjusted to l 260°C for 123 hours. 
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Fig. 3 Relationship between nominal experimental temperature and ~O content of melt for the KEs. 
Experimental temperature uncertainty is assumed to be 10 degrees . A strong linear correlation between 
nominal experimental temperature and ~O content of the melt is observed at low ~O contents ( < 8.5 
wt%) for the Sp-lherzolite phase assemblage. Hence the experiments at low ~O content ( < 7 wt%) are 
used in the regression to derive the solidus temperature for the Sp-lherzolite phase assemblage of system 
CMAS at 1 lkbar system. By extrapolating ~Oto 0, a solidus temperature of 1319°C is derived. 

liquidus, while two runs at 1320°C (C-1639 and C-1565) crystallised Sp+Opx+Cpx±An, 

with the residual melt being close to that in the starting material (Table 4 ). The 

compositions of the pyroxenes in C-163 9 are in good agreement with the forward 

experiments, while those in C-1565, with a shorter run time and An present, have 

slightly higher AhO3 (Table 4 ). These experiments confirm directly the peritectic nature 

of the melting reaction, since Fo was not crystallised. They also imply that the solidus 

of the phase assemblage Sp+Opx+Cpx+An is only slightly lower than that of the phase 

assemblage Fo+Sp+Opx+Cpx, in agreement with Kushiro (1972). Thus the run at 

13 l 0°C (C-1566) is almost completely crystallised. Although in one experiment (C-

1565) melt coexists with four crystalline phases, the temperature interval over which 

this occurs is clearly very narrow (an infinitely narrow temperature interval is expected 

from the phase rule). 

The REs-1 demonstrate empirically that simple crystallization experiments cannot 

adequately reverse the partial melting equilibrium when this is peritectic, as here, (i.e., 

the melt is in reaction relationship with Fo ). Accordingly, I tried reversal crystallization 

experiments with added Fo. These experiments ( called REs-2) directly 
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Table 4: Composition data from electron microprobe analyses. For run 

conditions and other messages, see Table 3. 

CaO MgO AhO3 SiO2 K2O 

DEs 

C-1111 , 1330°C Fo(l0) 0.28(0.03) 57 .16(0.11) 0.00(0.00) 42.57(0 .11) 

Sp(7) 0.11(0.06) 28.43(0.10) 71.45(0 .11) 0.00(0.00) 

Opx(8) 2.16(0.16) 34.78(0.33) 9.25(0 .20) 53 .82(0.20) 

Melt(8) 13 .97(0 .28) 16.16(0.45) 20.74(0.19) 49.13(0.12) 

C-1556, 1310°C Fo(14) 0.28(0.06) 56.78(0.12) 0.17(0.05) 42.67(0.16) 

Sp(l 3) 0.10(0.06) 28.91(0.14) 70.83(0.13) 0.16(0.12) 

Opx(22) 2.10(0.14) 35.03(0.19) 8.46(0.39) 54.41(0.27) 

Melt(14) 14.34(0.27) 15.73(0.36) 20.14(0.31) 49.79(0.25) 

C-1555, 1300°C Fo(12) 0.30(0.05) 56.79(0.18) 0.20(0 .06) 42 .72(0 .14) 

Sp(14) 0.10(0.08) 28 .99(0.17) 70.70(0.18) 0.22(0.14) 

Opx(20) 2.11(0.13) 34.86(0.21) 8.48(0.39) 54.55(0.30) 

Cpx(21) 18.63(0.29) 20 .73(0.30) 8.81(0.29) 51 .84(0.26) 

Melt* 

KEs 

C-1417, 1330°C Fo(14) 0.32(0.03) 56.72(0.13) 0.00(0 .00) 42.96(0.12) 

Sp(15) 0.12(0.03) 28.46(0.09) 71.42(0 .09) 0.00(0 .00) 

Melt(24) 14.17(0.07) 15.47(0.11) 20.36(0.06) 49.41(0.14) 0.59(0.02) 

C-1423 , 1320°C Fo(12) 0.33(0.04) 56 .96(0 .11) 0.00(0.00) 42.72(0.12) 

Sp(l 7) 0.08(0.04) 28.42(0 .11) 71.51(0.11) 0.00(0 .00) 

Melt(12) 14.64(0 .07) 14.91(0 .07) 20.40(0.08) 49.43(0 .11) 0.63 (0.02) 

C-1422, 1310°C Fo(l 8) 0.31(0.03) 56.78(0.11) 0.00(0.00) 42.91(0.11) 

Sp(l 3) 0.13(0.08) 28.35(0.09) 71.52(0.10) 0.00(0.00) 

Opx(19) 2.47(0.41) 34.36(0.32) 8.60(0.34) 54.57(0.27) 

Cpx(19) 18.22(0.40) 21 .15(0.26) 8.67(0.42) 51.96(0.30) 

Melt(l 9) 14.60(0.07) 14.30(0.07) 20.39(0.10) 49.98(0.11) 0.73(0 .03) 

C-1461 , 1310°C Fo(8) 0.29(0.03) 56 .72(0.04) 0.00(0.00) 42.99(0.06) 

Sp(8) 0.08(0.04) 28.56(0.12) 71.28(0.10) 0.08(0.04) 

Opx(21 ) 2.23(0.17) 34.84(0.30) 8.34(0.42) 54 .59(0 .33) 

Cpx(21) 18.44(0.35) 21.00(0.40) 8.39(0.34) 52 .17(0.26) 

Melt(15) 12.87(0.14) 12.75(0 .13) 20.55(0.16) 51.52(0.13) 2.31 (0.07) 

C-1448, 1300°C Fo(9) 0.30(0.05) 56.71(0 .19) 0.09(0.13) 42.89(0.15) 

Sp(8) 0.14(0.06) 28.51(0.07) 71.25(0.16) 0.10(0.09) 

Opx(19) 2.19(0.30) 34.80(0.36) 8.50(0.40) 54.51 (0.37) 

Cpx(19) 18.30(0.47) 20.90(0.42) 8.58(0.43) 52.22(0.35) 

Melt(20) 11.19(0.13) 10.09(0.11) 21.47(0.12) 53 .17(0.15) 4.08(0.09) 

C-1460, 1290°c Fo(7) 0.30(0.03) 56.71(0.09) 0.03(0.06) 42.96(0.09) 

Sp(13) 0.11 (0.07) 28.45(0.12) 71.15(0.24) 0.30(0.19) 

Opx(20) 2.10(0.26) 34.99(0.32) 8.19(0.39) 54.72(0.24) 
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Table 4: continued 

Cpx(23) 18.71 (0.38) 20.76(0.45) 8.28(0.45) 52 .24(0.39) 

Melt(l 4) 10.43 (0.11) 9.36(0.23) 21.60(0.21 ) 53 .85(0.17) 4.76(0.15) 

C-1447, 1280°C Fo(6) 0.28(0.05) 57 .00(0.18) 0.00(0.00) 42 .73 (0.21 ) 

Sp(6) 0.08(0.04) 28.47(0.13) 71.32(0.21 ) 0.13(0.11) 

Opx( l5) 2.19(0.30) 34.83 (0.54) 8.33(0.58) 54.64(0.38) 

Cpx(l 5) 18.28(0.45) 21.17(0.62) 8.27(0.56) 52.29(0.38) 

Melt(ll ) 8.93(0.17) 7.33(0.14) 21.74(0.35) 55 .83 (0.28) 6.17(0.11) 

C-1574, 1270°C Fo(l l ) 0.27(0.07) 56.46(0.14) 0.36(0.11) 42 .91 (0.11) 

Sp(l2) 0.09(0.04) 29 .09(0.13) 70.43 (0.30) 0.39(0.25) 

Opx(l8) 2.19(0.29) 34.97(0.32) 8.28(0.56) 54.56(0.40) 

Cpx(l7) 18.86(0.58) 20.70(0.52) 8.31 (0.49) 52.13 (0.43) 

Melt(l3) 6.35(0.13) 5.12(0.09) 20.93 (0.12) 59 .25(0.18) 8.35(0.12) 

C-1585 , 1260°C Fo(7) 0.27(0.03) 56 .58(0.14) 0.29(0.09) 42.86(0.16) 

Sp(9) 0.05(0.03) 29 .05(0.11) 70.58(0.10) 0.31(0.07) 

Opx(15) 1.74(0.15) 35.16(0.24) 8.12(0.42) 54.98(0.32) 

Cpx(l7) 18.97(0.56) 20. 79(0 .48) 8.09(0.46) 52.16(0.34) 

Melt(l4) 6.81(0.14) 6.20(0.12) 20.80(0.09) 57.69(0.18) 8.49(0.11) 

C-1779, 1250°C Sp(l3) 0.04(0.04) 28.70(0.12) 71.04(0.18) 0.21 (0.08) 

Opx(22) 1.79(0.17) 34.62(0.22) 9.36(0.52) 54 .24(0.33) 

Cpx(l8) 20 .03 (0.45) 19.16(0.43) 9.67(0.48) 51.14(0.31) 

San(l5) 2.81(0.43) 0.00(0.00) 20.81 (0.38) 62.29(0.42) 14.08(0.40) 

Melt(22) 5.44(0.15) 4.22(0.17) 22.16(0.12) 58.08(0.30) 10.09(0.20) 

C-1701 , 1240°C Sp(l2) 0.07(0.05) 28.69(0.11) 70.99(0.27) 0.25(0.18) 

Opx(l9) 1.71 (0.10) 34.66(0.19) 9.30(0.45) 54.33(0.29) 

Cpx(3)** 18.91 (1.08) 20.21 (1.83) 9.97(1 .71) 50.78(2.22) 0.14(0.16) 

An(6) 15 .21 (0.34) 0.77(0.18) 31.14(0.38) 49.69(0.31 ) 3.20(0.28) 

Melt(l2) 6.15(0.16) 4.39(0.15) 20.77(0.18) 59.53 (0.28) 9.17(0.12) 

C-1708, 1230°C Sp(l4) 0.05(0.05) 28 .73 (0.16) 71.00(0.17) 0.22(0.13) 

Opx(22) 1.86(0.17) 34.74(0.19) 8.93 (0.45) 54.47(0.33) 

Cpx(22) 20 .27(0.42) 19.03 (0.33) 9.55 (0.38) 51.15(0.26) 

An(8) 14.09(0.65) 0.63(0.28) 30.46(0.49) 50.80(0.64) 4.02(0.54) 

San(20) 3.10(0.38) 0.00(0.00) 21.14(0.40) 61.95(0.42) 13 .81 (0.38) 

Melt(l0) 5.41(0.11) 3.90(0.09) 21.04(0.11) 59.54(0.23) 10.12(0.11) 

C-1580, 1250°C Solid region 

Fo(12) 0.24(0.08) 56.48(0.26) 0.28(0.15) 42 .99(0.20) 

Sp(l 1) 0.09(0.06) 28.63 (0.10) 71.12(0.13) 0.16(0.10) 

Opx(l6) 2.08(0.29) 34.82(0.39) 8.67(0.58) 54.53 (0.42) 

Cpx( l7) 18.94(0.69) 20.58(0.57) 8.58(0.39) 51.91 (0.39) 

Glass region 

An(9) 12.45(0.93) 0.41 (0.27) 28.59(0.67) 52 .98(0.93) 5.58(0.77) 

San(9) 2.66(0.16) 0.00(0.00) 20.38(0.14) 62.83(0.17) 13 .82(0.18) 

Sapph(9) 0.28(0.14) 23 .99(0.41) 57.14(0.64) 18.59(0 .78) 

Melt(l 4) 4.20(0.10) 3.23(0.11) 20.05(0.07) 63 .19(0.21 ) 9.33 (0.17) 
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Table 4: continued 

C-1576, 1230°C Solid region 

Fo(1 4) 0.24(0.04) 56 .49(0.19) 0.22(0.06) 43 .06(0.16) 

Sp(13) 0.10(0.04) 28 .60(0.13) 71.07(0.11) 0.23 (0.07) 

Opx-1(1 0) 2.04(0.31 ) 34.83 (0.43) 8.72(0.49) 54.41 (0.38) 

Cpx(14) 18.69(0.57) 20 .54(0.53) 8.65(0.45) 52 .12(0.43) 

Glass region 

Sp(9) 0.10(0.05) 28.70(0.11) 70.99(0.14) 0.21 (0.05) 

Opx-2(6) 0.72(0.04) 3 3 .40(0 .48) 14.11 (0.54) 51.76(0.13) 

An(5) 12.52(1.02) 0.15(0.03) 29.73 (0.89) 52.44(1.10) 5.51 (0.84) 

San(8) 3.23 (0.33) 0.05(0.06) 2 1. 18(0.31) 62.13(0.43) 13 .41 (0.26) 

Sapph(9) 0.26(0.04) 24 .51 (0.49) 54.82(0.65) 20.40(0.39) 

Melt(12) 3.47(0.11) 2.55(0.11) 18.61 (0.12) 66 .39(0.26) 8.98(0.10) 

REs-1 

C-1621 , 1340°C Melt(8) 15 .60(0.12) 15.06(0.09) 19.88(0.12) 49.46(0.16) 

C-1639, 1320°C Sp(6) 0.14(0.07) 28.84(0.14) 70.78(0.15) 0.25(0.14) 

Opx(13) 2.36(0.26) 34.31 (0.38) 9.04(0.43) 54.29(0.22) 

Cpx(16) 18.19(0.51) 21.22(0 .42) 9.07(0.41 ) 51.52(0.36) 

Melt(8) 15.42(0.16) 14.28(0.14) 20.45(0.09) 49.85(0.10) 

C-1565, 1320°C Sp(9) 0.24(0.14) 28.98(0.17) 70.31 (0.38) 0.48(0 .37) 

Opx(16) 2.35(0.21) 34.26(0.27) 9.82(0.62) 53 .57(0.48) 

Cpx(31) 18.20(0.41) 20.99(0.36) 9.78(0.46) 51.04(0.36) 

An(l 1) 20.24(0.13) 0.74(0.18) 34.65(0.35) 44.37(0.26) 

Melt(14) 15.51(0.24) 14.13(0.12) 20.76(0.08) 49.60(0.14) 

C-1566, 1310°C Opx(14) 2.33(0.07) 35.06(0.25) 7.47(0.68) 55.14(0.43) 

Cpx(15) 18.63(0 .33) 21.19(0.39) 7.99(0.64) 52.19(0.36) 

An(9) 20.26(0.14) 0.88(0.17) 34.66(0.28) 44.21 (0.26) 

Melt* 

REs-2 

C-1769, 1340°C Fo(l3) 0.30(0.04) 56.54(0.14) 0.21 (0.07) 42.95(0.17) 

Melt(16) 14.38(0.12) 16.70(0.09) 19.37(0.07) 49 .55(0.12) 

C-1767, 1320°C Fo(12) 0.29(0.05) 56 .51 (0.22) 0.14(0.09) 43 .07(0.17) 

Opx(21) 2.30(0.17) 34.82(0.33) 7.74(0.77) 55 .14(0.42) 

Melt(l9) 15.14(0.11) 15.41 (0.11) 19.90(0.11) 49.54(0.13) 

C-1781 , 1315°C Fo(13) 0.26(0.05) 56.53 (0.13) 0.18(0.08) 43 .03 (0.10) 

Sp(12) 0.10(0.06) 28 .63(0.06) 71.08(0.16) 0.19(0.10) 

Opx(22) 2.25(0.15) 34.34(0.25) 9.19((0.45) 54.22(0.25) 

Cpx(22) 18.47(0.47) 20 .87(0.43) 9.14(0.41) 51.52(0.31) 

Melt(16) 15 .35(0.12) 14.82(0.07) 20.35(0.12) 49.48(0.15) 

C-1768, 1310°C Fo(14) 0.26(0.05) 56.49(0.14) 0.14(0.06) 43 .10(0.13) 

Sp(8) 0.05(0.04) 28 .44(0.12) 71.51 (0.13) 0.00(0.00) 

Opx-1 (13) 2.26(0.14) 34.34(0.18) 9.11 (0.38) 54.28(0.19) 

Cpx-1(14)** 17.54(0.89) 21.53 (1.08) 9.47(0.83) 51.46(0.49) 
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Table 4: continued 

Glass region 

Sp(l0) 0 .20(0.07) 28.51(0.10) 70. 79(0 .26) 0.50(0 .21) 

Opx-2(22) 2.45(0.21) 34.61(0.24) 7 .87(0.44) 55 .07(0 .34) 

Cpx-2(15) 18.55 (0.36) 21.00(0.34) 8.48(0 .25) 51.96(0.23) 

An(18) 19.85(0.17) 0 .74(0.21) 35.21(0.32) 44.19(0.23) 

C-1789, 1300°C Fo(l 1) 0 .30(0.06) 56.54(0.13) 0.16(0.04) 42 .99(0.14) 

Sp* 

Opx(17) 2.19(0.46) 34.80(0.45) 8.87(0.40) 54.14(0.41) 

Cpx(l7) 18.81(0.34) 20.25(0.26) 9.70(0.53) 51.24(0.37) 

The numbers in parentheses after the name of the phase are the number of successful 
analyses performed on that phase. Data reading: 0.28(0.03) is 0.28 ± 0.03. All analyses 
were normalised to 100 wt% before averages and standard deviation were calculated. *: 
phase is confirmed but too small to analyse. ** phase is confirmed but only poor quality 
analyses are available. 

constrain the solidus of the Sp-lherzolite phase assemblage in the system CMAS at 11 

kbar to be ,..,., 1315± 10 °C. The experiment at this temperature, C-1781, produced four 

crystalline phases plus melt; however, the melt composition is slightly less magnesian 

than the composition deduced from the KEs (Table 5), and is intermediate between this 

composition and that in equilibrium with Opx+Cpx+Sp+ An. The AbO3 content of the 

pyroxenes is also slightly higher than in other comparable runs. This raises the question 

of whether equilibrium between Fo and the "filling" part of the sandwich was truly 

established. Clearly equilibrium was not established in a similar experiment at the 

slightly lower temperature of 13 l 0°C, C-1768; here the "filling" crystallized completely 

to Sp+Opx+Cpx+An, with An separated from Fo by a narrow reaction zone of 

Opx+Cpx+Sp. The further implications of this experiment for the interpretation of 

results from melt-extraction experiments (like the diamond-aggregate technique) will be 

discussed below. 

Table 5 compares the result of this study to previous work in CMAS at similar 

pressures in the literature. There is a difference of 30 degrees between the solidus as 

determined here and the solidus defined by run 116-3 in Presnall (1976), which contains 

Fo+Opx+Cpx+Sp+Melt at 1350°C and 11 kbar. However, another run with the same 

starting composition reported by Presnall et al. (1979), their 122-8 at 1327°C and 11 

kbar, contained Fo+Opx+Melt and is therefore above the solidus, which would be in 

agreement with my result. There is also good agreement as regards the solidus melt 

composition and the solidus pyroxene compositions. It may be noted that Presnall 

(1976) reported 8.4±0.2 wt% AbO3 for his Opx based on five analyses, but noted two 

outliers at 9 .6 and 5 .5 wt% Ab 0 3, indicating that his Opx was somewhat heterogenous 

in composition. The higher amount (9.49 wt%) later reported by Walter and Presnall 
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Fig. 4 Variation diagram showing oxide trends for melts in the KEs. Symbols: 
the same as in Fig. 3. One standard deviation of the oxide content is only 
occasionally larger than the symbols, as shown. The diagram suggests a strong 
linear correlation between SiOrK2O, AhOrK2O, MgO-K2O and CaO-K2O at 
low K2O contents(< 8.5 wt%). Hence the experiments at low K2O content(< 7 
wt%) are used in the regression to derive the solidus melt composition of a 
simplified spinel lherzolite in system CMAS. By extrapolating the K2O content 
to 0, a solidus melt composition, SiO2 49.09, A}iO3 20.12, MgO 15.45 and 
Cao 15.33, is derived. This melt composition was used as the starting material 
(SEM02-6 in Table 1) for the REs. By extrapolating the K2O content to 10, I 
derived a melt composition which was used as the sandwiched starting material 
(SEM02-8 in Table 1) in some experiments at high K20 content (Table 3). 

(1994) following their re-analysis of this experiment may be due to including high­

AJiO3 outliers. The solidus temperature and melt composition reported by Kushiro 

(1972) at 10 kbar agrees slightly less well, the main difference in melt composition 
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being in CaO (Table 5). Kushiro (1972) also reports data for the phase assemblage 

Sp+Opx+Cpx+An+Melt; in agreement with this study, this isobaric invariant point 

occurs at essentially the same temperature at a melt composition only ,..., 1 wt % lower in 

MgO than Fo+Sp+Opx+Cpx+Melt. 
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Brey & Kohler (1990; formula 10) is used. In order to show the data clearly, some data are slightly shifted 
horizontally. 
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Table 5: Compositions of Melt, Opx and Cpx in the system CMAS at 10 or 11 kbar in the isobaric invariant assemblages 

Fo+Sp+Opx+Cpx+Melt and Sp+Opx+Cpx+An+Melt: comparison with literature data 

Phase assembl~e F o+S12-+012x+c12x+Melt Phase assembl~e S12-+012x+C12x+An+Melt 

Run# from KEs at K20=0 C-1781 116-3 116-3 116-3 l-K72 C-1565 2-K72 

Source This study This study P76 P79 WP94 K72 This study K72 

T 1319°C 1315°C 1350°c 1350°c 1350°c 1350°C 1320°C 1345°c 

p 11 11 11 11 11 10 11 10 

Melt SiO2 49.09 49.48(0.15) 49.13(0.37) 49.30(0.1) 50.10 49.60(0.14) 50.91 

AlzO3 20.12 20.35(0.12) 19.72(0.33) 19.20(0.1) 20.93 20.76(0.08) 21.37 

MgO 15.45 14.82(0.07) 15.69(0.41) 16.80(0.1) 16.00 14.13(0.12) 14.82 

CaO 15 .33 15 .35(0.12) 15.47(0.12) 14.90(0.1) 12.98 15 .51(0.24) 12.90 

Opx SiO2 54.54 54.22(0.25) 54.00(0.3) 53 .90(0.65) 53 .57(0.48) 

AlzO3 8.57 9.19(0.45) 8.51(0.2) 9.49(0.65) 9.82(0.62) 

MgO 34.47 34.34(0.25) 35.16(0.2) 34.60(0.25) 34.26(0.27) 

CaO 2.43 2.25(0.15) 2.33(0.1) 2.17(0.1) 2.35(0.21) 

Cpx SiO2 51 .97 51.52(0.31) 51.40(0.4) 51.04(0.36) 

AlzO3 8.66 9.14(0.41) 9.50(0.65) 9.78(0.46) 

MgO 21.06 20.87(0.43) 20.20(0.5) 20.99(0.36) 

CaO 18.30 18.47(0.47) 19.30(0.25) 18.20(0.41) 

P76, Presnall (1976); P79, Presnall et al . (1979); WP94, Walter & Presnall (1994); K72, Kushiro (1972). Data from the literature have 

been renormalised to 100%. 
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I then attempted to locate the isobaric invariant point in the system CMAS-K2O, 

by exploring lower temperatures. I expected to locate an isobaric invariant point at 

which sanidine would join Fo+Opx+Cpx+Sp in equilibrium with melt. My first attempt 

consisted of two runs, C-1580 (1250°C) and C-1576 (1230°C), with the same initial 

melt composition SEM02-08 as used at 1260 and 1270°C. However, this melt 

composition crystallised An+Sapph+San at 1260°C, joined at 1250°C by Sp and Opx, 

the latter with very high AJiO3 (14 wt%). This assemblage was clearly out of 

equilibrium with the Fo+Opx+Cpx+Sp layers, with a narrow reaction zone of about 10 -

20µm separating the two assemblages (see Fig. 2a). 

FoSpOpxCpxSanMelt 
constrained to be: 

~ 1240 + 10°c 

/~ 
C-1779, 1250°c, 
SpOpxCpxSanMelt 

System CMASK 
at 11 kbar 

C-1585, 1260°C 
FoSpOpxCpxMelt 

C-1701, 1240°c, 
SpOpxCpxAnMelt 

C-1708, 1230°c, 
SpOpxCpxSanAnMelt 

Fig. 6 Defining brackets for the isobariaclly invariant point FoSpOpxCpxSanMelt of the system CMAS­
K2O at 11 kbar. The melt composition of this invariant point locates between C-1779 (on univariant line 
SpOpxCpxSanMelt) and C-15 85 ( on uni variant line FoSpOpxCpxAnMelt). Arrows show temperature 
change direction which is constrained by my experimental observation or by the method of Presnall 
(1986). The solidus of this invariant point should be lower than 1250°C but slightly higher than the 
solidus (1230°C) of another invariant point SpOpxCpxSanAnMelt. 

With this experience, I tried again with a new initial melt composition (SEM02-

10 ). This time equilibrium was approached throughout the charge, but Fo was reacted 
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out, producing Sp+Opx+Cpx+An+Melt (with a trace of residual Fo) in C-1701 at 

1240°C, and the isobarically invariant assemblage Sp+Opx+Cpx+An+San+Melt in C-

1708 at 1230°C. A third attempt with another initial melt composition (SEM02-13) 

produced Sp+Opx+Cpx+San+Melt with a trace of residual Fo in C-1779 at 1250°C. 

These and the higher-temperature results in the system CMAS-K2O are 

summarized in Fig. 6, a projection from Fo+Di onto the An-Or-Qz plane. Although I 

failed to locate the isobaric invariant point Fo+Sp+Opx+Cpx+San+Melt at 11 kbar 

directly, this point, which is eutectic-like on this projection, must occur at a melt 

composition between runs C-1585 at 1260°C and C-1779 at 1250°C, at a slightly lower 

temperature (i.e., ,_, 1240± 10 °C). 

4. Discussions 

4.1 Compositions ofOpx and Cpx 

The compositions of both Opx and Cpx in the experimental run products vary in 

two ways, namely their Cao and their A}iO3 contents. 

CaO in pyroxenes 

The partitioning of CaO between Opx and Cpx is the basis of the two-pyroxene 

geothermometry, the main means of estimating temperatures of equilibration in 

lherzolitic assemblages. To compare my data with previous work in the system CMAS, 

I have used the formulation of Nickel et al. (1985) to calculate temperatures from my 

experimental run products (Table 3 and Fig. 5(a)). The calculated temperatures are in 

good agreement with nominal experimental temperatures, although in detail there is a 

weak systematic tendency for the former to be higher at low experimental temperatures. 

The average difference be.tween the calculated temperature and the nominal 

experimental temperature for the experiments reported here is just 23 degrees with a 

standard deviation of 17 degrees. I also tested two other pyroxene geothermometers, 

equations (9) and (10) of Brey & Kohler (1990). Eqn. (9), which uses the exchange of 

Ca between Opx and Cpx, yields higher calculated temperatures, with an average 

difference of 65°C between the calculated temperatures and the experimental 

temperatures (Fig. 5(b)). Conversely, eqn. (10), which only uses the amount of Ca in 

Opx co-existing with Cpx, gives lower calculated temperatures, with an average 

difference of -3 9 degrees (Fig. 5 ( c) ). These equations were intended for use with 
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chemically complex natural systems, but were formulated as simply as possible for ease 

of use. Figs. 5b and 5c indicate that this simplicity may result in a loss of accuracy; 

consequently, more rigorous albeit tediously complicated two-pyroxene 

geothermometers could potentially give better results. 
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Fig. 7 Comparison of temperature measurement using Pt/Rh thermocouples and W/Re 
thermocouples in experiments in the system CMAS and the system CMAS-K20. Temperature is 
calculated using the Opx-Cpx geothermometer of Nickel et al. (1984). When Pt/Rh 
thermocouples used, similar temperature measurement was observed (This study; KO00a, 
Klemme & O'Neill, 2000a; L87, Longhi, 1987). The W/Re gave out higher nominal 
experimental temperature (WP94, Walter & Presnall, 1994; Gudfinnsson & Presnall, 1996). 
Apparently, the Pt/Rh thermocouples ~'r.'i independent to pressure while the W/Re thermocouples 
may be pressure-dependent. 

Shown in Fig. 7 are differences between observed and calculated temperatures 

using the geothermometer of Nickel et al (1985) for experiments in the system CMAS at 

pressures from 1 atm to 34 ·kbar, from Longhi (1987), Walter & Presnall (1994), 

Gudfinnsson & Presnall (1996) and Klemme & O'Neill (2000a), and this study 

(CMAS±K.2O). Similar diagrams using the two geothermometers of Brey & Kohler 

(1990), their eqns (9) and (10), are shown in Fig. 8, with the addition of the CMAS­

Na2O data from Walter and Presnall (1994). These plots raise a number of issues 

regarding potential problems with the experimental database on the CMAS system, in 

addition to the problem with the geothermometers. One consideration is the choice of 

thermocouple. The Nickel et al. (1985) and Brey and Kohler (1990) geothermometers 

are based on experiments by these authors using type B Pt/Rh thermocouples, as in this 
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study, whereas the data from Presnall and co-workers were obtained using W/Re 

thermocouples. Thus the discrepancy with increasing pressure seen in Fig. 7 and Fig. 8 

may be due to error in the pressure-dependence of the Brey-Kohler gethermometers, or 

to differences in the effect of pressure on the emf of Pt/Rh thermocouples compared to 

W /Re thermocouples. 
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Fig. 8 Comparison of temperature measurement using Pt/Rh thermocouples and W/Re thermocouples in 
experiments in the system CMAS and the system CMAS-Na20 : the Opx-Cpx geothermometer of Brey & 
Kohler (1990) used in (a) and the Opx geothermometer of Brey & Kohler (1990) used in (b). WP94, 
Walter & Presnall, 1994; GP96, Gudfinnsson & Presnall, 1996; L87, Longhi, 1987; KO00a, Klemme & 
O'Neill, 2000a. A protective N2 flow was used to protect the W/Re thermocouples in the low pressure 
experiments (< 11 kbar) in the system CMAS-Na20 , so that these experiments gave out similar nominal 
experimental temperatures to those using Pt/Rh thermocouples. 
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A further complicating issue is the possibility of oxidation of W/Re 

thermocouples at lower pressures. To guard against this, Walter & Presnall (1994) used 

a nitrogen flow at low pressures(< 11 kbar) for their experiments in the system CMAS­

Na2O, but this precaution does not appear to have been used in the earlier experiments 

of Presnall and co-workers in the system CMAS (re-analysed in Walter and Presnall, 

1994). (Oxidation of W/Re thermocouples is thought not to be a problem at higher 

pressures, since collapse of the alumina tubing around the thermocouple wires should 

prevent oxidation). The calculated temperatures from the lower pressure experiments 

with W/Re thermocouples with the N2 flow agree quite well with the experiments using 

Pt/Rh thermocouples. However, those low pressure experiments using W/Re 

thermocouples but without a N2 flow (system CMAS) have lower calculated 

temperatures, consistent with thermocouple drift caused by oxidation. 

A/203 of pyroxenes in Sp-lherzolite 

The alumina contents of Opx and Cpx in the Sp-lherzolite assemblage are 

controlled by the reactions: 

(5) 

Opx Sp Opx Fo 

and 

(6) 

Cpx Sp Cpx Fo 

Previous work has shown that these equilibria are insensitive to pressure but 

strongly dependent on temperature, AliO3 increasing with temperature (Obata, 1976; 

Fujii, 1977; Herzberg, 1978; Danckwerth & Newton, 1978; Lane & Ganguly, 1980; 

Gasparik, 1984; Sen, 1985). Recently Klemme & O'Neill (2000a) refitted existing 

experimental data for reaction ( 5) together with their new data. 

The alumina contents of Opx coexisting with Fo+Sp in the systems CMAS and 

CMAS-K2O agree well with previous work (Fig. 9(b)), except for the data of 

Gudfinnsson & Presnall ( 1996), which plot at slightly lower values. 

The AbO3 contents of Cpx show a very similar trend (Fig. 9(a)), but with a little 

more scatter. This extra scatter may be due to a slight pressure effect on this 
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equilibrium, as seen in the experiments of Gasparik (1984 ). The partitioning of Al 

between Opx and Cpx does not vary with temperature (i.e., the temperature­

dependences of the Al isopleths are similar in Opx and Cpx), as demonstrated in Fig. 

10. In experiments in the system CMAS-Na20, the Cpx might be expected to have 

additional Al from a jadeite component (NaA1Si20 6). To test this, I also plotted (Fig. 

10b) the data for the CMAS-Na20 system (Walter and Presnall, 1994) with the molar 

amount of Al associated with Na subtracted. Remarkably, this results in a greatly 

increased scatter in the plot, indicating that my expectation of increased Al associated 

with Na must be incorrect. 
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Fig. 9 The solubility of Al in Cpx (a) and Opx (b) for a Sp-lherzolite phase assemblage in system CMAS , 
CMAS-K20 and CMAS-Na20 . WP94, Walter & Presnall, 1994; KOOOa, Klemme & o rNeill, 2000a; 
GP96, Gudfinnsson & Presnall, 1996; S85 , Sen, 1985; G84, Gasparik, 1984. 

Al2O3 in pyroxenes, particularly in Cpx, is always the most heterogenous 

component 1n my experiments and anomalous Al20 3 contents are a sign of 

disequilibrium. An example is the subsolidus reversal experiment C-1789 , in which the 

53 



AhO3 of the Cpx remains similar to that in the starting material, although the Opx in 

this run has changed its AhO3 content to a lower value. 
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Fig. 10 Partitioning of Al between Cpx and Opx for a Sp-lherzolite phase assemblage in system CMAS, 
CMAS-K20 and CMAS-Na20 with Jd component (NaA1Si20 6) retained in Cpx (a) and with Jd removed 
from Cpx (b ). For data sources, see Fig. 9. 

A/i03 in pyroxenes of other phase assemblages 

Reactions (5) and (6) show that the absence of Fo would shift this equilibrium to 

the vl3-~ hand side so that the MgAhSiO6 (MgTs) component in Opx and the CaAhSiO6 

(CaTs) component in Cpx increase. Therefore, the pyroxenes in the phase assemblage 

Sp+Opx+Cpx should have higher AhO3 content than those in the phase assemblage 

Fo+Opx+Cpx+Sp, as observed in my experiments (Fig. 11 ). 
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Fig. 11 Experimentally observed changing pattern of Ah03 (wt%)-temperature (°C) in Opx (a) and in Cpx 
(b) from phase assemblage to phase assemblage. Lines are fitted by eyes. Some data are slightly shifted 
horizontally. 

A single governing reaction for the Ab03 content in both pyroxenes coexisting 

with An+Sp can be written: 

(7) 

Sp An Opx Cpx 

The absence of either Sp or An would shift this reaction to the left-hand side so that 

MgTs in Opx and CaTs in Cpx decrease. Again, this is observed in my experiments 

(Fig. 11). 

Since the Ab03 contents of pyroxenes depend on the identities of coexisting 

phases, the Ab03 contents are useful indicators of equilibrium between the different 
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parts of sandwich experiments. While this kind of disequilibrium is clearly seen in a few 

experiments, in most runs the same Ah03 contents in pyroxenes were indeed observed 

in the "filling" and the ends of the sandwich. 

4.2 The effect of K2O on melting relations of Sp-lherzolite in the system 

CMAS-K2O 

Effect of K2O on melt compositions 

Fig. 2 indicates that 1 wt% K2O in the melt depresses the solidus temperature of 

the Sp-lherzolite phase assemblage at 11 kbar by about 5.8 degrees. Fig. 3 suggests that 

1 wt% K2O decreases MgO by 1.30% and CaO by 1.03%, but increases Si02 by 1.05% 

and Ah03 by 0.28%. 
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Fig. 12 Variation diagram showing cation trends (in mol%) for melts coexisting with a Sp-lherzolite in 
system CMAS-K2O (this study) and system CMAS-Na2O (Walter & Presnall, 1994). Thick solid line: 
system CMASK at 11 kbar; thin broken line, system CMAS-Na2O at 20 kbar. Both Kand Na increase the 
Si content and the Al content, and decrease the Mg content and the Ca content in melt. The K effect on 
melt composition, however, is much stronger than that of Na. 
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In order to compare the effect of ~O on melt composition with that of Na2O, I 

plot my experimental data in mole percent in Fig. 12, together with the data of Walter & 

Presnall (1994) in the system CMAS- Na2O, at 20 kbar. (Walter and Presnall (1994) 

provided a global regression of their data to 35 kbar that shows that the difference in 

pressure between 11 and 20 kbar has a negligible effect in this context). For K, an 

increase of 1 % molar increases Si by 0.95% and Al by 0.33%, and decreases Mg by 

1.46% and Ca by 0.82%. For all cations, the effect of Na is similar in direction to that of 

K, but much weaker: a 1 % molar increase in Na only increases Si by 0.1 % and Al by 

0.1 %, and decreases Mg by 0.74% and Ca by 0.47%. 

Hence, the effect of K2O on modifying the composition of melts multiply 

saturated with FoOpxCpxSp in the system CMAS-K2O is very different to that of Na2O 

in the system CMAS-Na2O. This is illustrated in Fig. 13, in which the composition of 

multiply saturated melts are plotted in the basalt tetrahedron projected from 01 (Fig. 

13a) and Di (Fig 13b). The data for the system CMAS-Na2O were taken from Walter 

and Presnall (1994) at 20 kb, the higher pressure being used because Na2O stabilizes 

plagioclase at the expense of spinel at only,...., 2 wt% Na2O at 11 kbars. The difference in 

the behaviours ofK2O and Na2O can be summarized under three points: 1) The addition 

of K2O drives the melt composition towards the Qz-normative field ( defined by the join 

between AbAnOr-Hy in Fig. 13b), the melt becoming Qz-normative at,...., 2 wt% K2O. 

The addition of Na2O drives the melt composition towards the Ne-normative field 

(defined by the join AbAnOr-O1 in Fig. 13b), the melt becoming Ne-normative at,...., 2 

wt% Na2O; 2) K2O decreases normative Di, whereas Na2O has no effect on this 

normative component; 3) As a consequence, adding K2O eventually produces a 

Corundum-normative melt at ,...., 8 wt% K 20. Na2O-rich melts never become Corundum­

normative. 

Effect of K20 on the partitioning of MgO between Olivine and Melt 

The amount of MgO in· a basaltic magma increases strongly with temperature. 

Several authors have attempted to quantify this effect, using the partition coefficient for 

MgO between Melt and 01 (Leeman, 1978; Ford et al., 1983; Gudfinnsson and Presnall, 

2001 ). However, such single-element partition coefficients are generally expected to 

depend on other factors including the details of the melt chemistry ( e.g., 0 'Neill and 

Eggins, 2002). Fig. 14 shows that adding K2O to CMAS produces a quite different trend 

to that established by the systems CMAS, CMAS-Na2O and CMAS-FeO (cf. Fig. 2 in 

Gudfinnsson & Presnall, 2001 ). This makes a useful warning that empirical 
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Fig. 13 A comparison of the effects of K20 and Na20 in modifying melt compositions: (a) projection of 
Di-JdCaTsLc-Qz from 01 (by mole); (b) projection of 01-JdCaTsLc-Qz from Di (by mole). Plotting 
procedure is from Falloon & Green (198 8). Data in the system CMAS at both 11 kbar and 20 kbar are 
from Walter & Presnall (1994). Data in the system CMAS-Na20 (Na20) at 20 kbar are from Walter & 
Presnall (1994) as well. Data in the system CMAS-K20 at 11 kbar are from this study. 

geothermometers, with a less than rigorous thermodynamic basis, have limited 

reliability, and should never be applied to compositions outside those used in their 

formulation. 

The MgO-partitioning "magmathermometer" due to Ford et al. (1983) has been 

used recently by Danyushevsky et al., (1996), Falloon & Danyushevsky (2000), Falloon 

et al., (1999), and Falloon et al., (2001). Falloon & Danyushevsky (2000) found that this 

formulation returns progressively larger errors in the calculated liquidus temperatures of 

basaltic melts as alkalis (Na20 + K 20) exceed 3 wt%. My data can be used to check this 

phenomenon further. The result is shown in Fig. 15. Apparently the Ford et al. (1983) 

geothermometer cannot reproduce the experimental temperatures accurately both in the 

system CMAS and in the system CMAS-K2O (Fig. 15(a)). I also checked the effect of 

pressure on the geothermometer, with results shown in Fig. 15(b ). Evidently pressure 

affects the calculated temperature as well. 
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Fig. 14 K2O's effect on the molar partition of MgO between forsterite and melt. Data from: CMAS, 
Walter & Presnall (1994), Gudfinnsson & Presnall (1996) and this study; CMAS-Na2O, Walter & 
Presnall (1994 ); CMAS-FeO, Gudfinnsson & Presnall (2000); CMAS-K2O, this study. 
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Fig. 15 Tests of the geothermometer of Ford et al. (1983) against K20 content of melt (a) and pressure 
(b). In (a), data from this study in both system CMAS and system CMAS-K2O are used while in (b) data 
from this study, WP94 (Walter & Presnall, 1994) and GP96 (Gudfinnsson & Presnall, 1996) in system 
CMAS are used. The possible pressure effect on the temperature measurement in those experiments using 
W/Re thermocouples (see Fig. 7 and Fig. 8) can not fully account for the pressure dependence of the 
temperature difference observed here so that the geothermometer of Ford et al. (1983) needs to be further 
corrected against pressure. 
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4.3 Melting reactions 

Melt properties 

The CIPW norms of the experimentally observed melt compositions are 

summarised in Table 6. Melts with K2O contents below ,__, 4.1 wt% K2O are O1-

normative. The Melt becomes Qz-normative at higher K2O. Melts with > 8 wt% K2O 

are corundum-normative. 

Phase relationships 

Melt compositions observed in this study are plotted in Fig.16. In the system CMAS 

there are two isobaric invariant points of interest, A (Fo+Sp+Opx+Cpx+Melt) and A* 

(Sp+Opx+Cpx+An+Melt). Points B, C and D are isobaric invariant points in the system 

CMAS-K2O, for the phase assemblages Fo+Sp+Opx+Cpx+San+Melt, 

Sp+Opx+Cpx+An+San+Melt and Sp+Opx+An+San+Sapph+Melt, respectively. All 

these invariant points are peritectic. From point A to point B the isobarically univariant 

phase assemblage is Fo+Sp+Opx+Cpx+Melt, while from point B to point C it is 

Sp+Opx+Cpx+San+Melt. At point C, the melt composition trend is joined by another 

melt composition trend emanating from point A*, with the isobarically univariant phase 

assemblage of Sp+Opx+Cpx+An+Melt. The isobarically univariant phase assemblage 

from point C to point Dis Sp+Opx+San+An+Melt. Thermal maxima must be located 

between B and C, and between C and D. The temperature change is judged by my direct 

temperature observation or by the method of Presnall (1986). One interesting property 

of the system suggested by my experiments is that the univariant solidus curves have a 

relatively steep temperature decrease (1320-1240°C) from A to B or from A* to C, but 

the temperature interval between A and A* and the corresponding univariant solidus 

curves A-B and A *-C is very small. 

Melting reactions 

The compositions of Melt, Cpx and Opx in the experiments with the phase 

assemblage Fo+Sp+Opx+Cpx+Melt in the system CMAS-K2O were fitted by regression 

to a second-degree polynomial of the form: 

X~ = AT2+BT+C 
1 

where X T is the concentration in weight percent of oxide i in phase ~ and T is in °C. 
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Table 6: CIPW norms of melts in the CMAS and CMAS-~O systems 

CMAS CMAS-~Q 

KEs P79 WP94 C-1565 C-1422 C-1461 C-1448 C-1460 C-1447 C-1574 C-1585 C-1779 C-1701 C-1708 C-1580 C-1576 

Temp. 1320 1350 1350 1320 1310 1310 1300 1290 1280 1270 1260 1250 1240 1230 1250 1230 

Qz 0 0 0 0 0 0 0.51 0.84 2.88 6.09 1.86 1.56 4.94 3.44 13.72 20.83 

Cor 0 0 0 0 0 0 0 0 0 0.35 0 1.35 0 0.25 2.32 2.58 

Or 0 0 0 0 4.31 13.64 24.08 28.1 36.42 49.25 50.12 59.56 54.13 59.74 55.07 53.01 

An 54.87 53.78 52.36 56.61 53.45 49.22 46.51 44.86 41.08 31.48 31.67 26.97 29.85 26.82 20.82 17.2 

Di 16.49 17.88 16.78 15.82 14.77 11.38 7 5.35 2.49 0 1.63 0 0.71 0 0 0 

Hy 23.43 22.61 23.99 26.81 24.36 23.98 21.8 20.75 17.03 12.7 14.62 10.47 10.56 9.67 8.01 6.32 

01 5.14 5.68 7.01 0.66 3.03 1.69 0 0 0 0 0 0 0 - Q_ -- 0 0 

KEs: regressed melt composition at ~0=0; P79: Presnall et al (1979); WP94: Walter & Presnall (1994); for the initial data, 
see Table 5. 
I believe local equilibrium for the middle parts of C-1580 and C-1576 was achieved (see discussion in text). 
Qz, quartz; Cor, corundum; Or, orthoclase; An, anorthite; Di, diopside; Hy, hypersthene; 01, olivine. 
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Fig. 16 Projections from An+Or (a) and from Fo+Di (b) showing the melt composition of the KEs (wt%). 
See Table 6 for the original data of CIPW norm. (a) is inappropriate for the melt with high K20 content 
while (b) is inappropriate for the melt with O K20 content. In the former case, melt is 01-free and the 
missing An+Or has a very high proportion of the melt so that deflection ensues; in the latter case, melt is 
Or-free and the missing Fo+Di has a very high proportion of the melt so that deflection ensues as well. I 
combine these two diagrams to discuss the melt property. Point A and A* are the isobarically invariant 
point for FoSpOpxCpxMelt and SpOpxCpxAnMelt of system CMAS, respectively. Point B, point C and 
point D, displaying 6 coexisting phases (FoSpOpxCpxSanMelt, SpOpxCpxSanAnMelt or 
SpOpxSanAnSapphMelt), are isobarically invariant points of system CMAS-K20. Temperature decrease 
shown by arrows is based on direct experimental observation or on calculation using the phase 
composition data at the invariant point B, C or D with the method of Presnall (1986). Between point B 
and point C, and point C and point D, there are two liquidus maximums, from which temperature 
decreases towards both sides. Their accurate position has not been located. Partial melting reaction in this 
portion of system CMAS-K20 is always peritectic. See Table 7 for related information. 

To calculate the partial melting reaction along the univariant curve of 

Fo+Sp+Opx+Cpx+Melt, the method of Walter et al (1995) is used. The melting reaction 

is independent of the bulk ~omposition as long as all phases present. The calculated 

reaction coefficients are plotted against temperature in Fig. 17. The partial melting 

reactions for some special temperatures are listed in Table 8. 

Also listed in Table 8 are the partial melting reactions at the invariant points of 

system CMAS (Point A and A* in Fig. 16) and the invariant points of system CMAS­

K2O (Point B, C and Din Fig. 16) which are directly calculated from the experimentally 

observed phase compositions using the method ofKorzhinskii (1959). 

Partial melting is always peritectic along the univariant curve 

Fo+Sp+Opx+Cpx+Melt at 11 kbar in the system CMAS-K2O (Fig. 17). At high 
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temperatures (from 1320°C down to 1265°C), Fo is in reaction relationship with melt. 

From 1276°C Sp becomes in reaction relationship. 

Table 7: Regression coefficients for phases of variable compositions 

in experiments with Fo+Sp+Opx+Cpx+Melt 

CaO M~O Al1--0~ SiO~ KlO 
Melt A 0.0016925 0.0019498 -0.0006571 -0.0015076 -0.0014776 

B -4.206728 -4.848343 1.678342 3.718272 3.658458 

C 2620.00 3018.51 -1050.26 -2233.04 -2255 .22 

D 0.64 0.70 0.34 0.82 0.54 

Cpx A -0.0000256 -0.0001765 0.0008478 -0.0006457 

B 0.055271 0.460585 -2.177688 1.661832 

C -10.17 -279.40 1406.49 -1016.92 

D 0.16 0.15 0.22 0.09 

Opx A -0.0000508 -0.0002918 0.0005426 -0.0002001 

B 0.138646 0.742252 -1.392491 0.511593 

C -92.14 -437.08 901.53 -272.31 

D 0.12 0.14 0.15 0.12 

Regression equation: X t = AT2 + BT + C where X t is the concentration in weight 

percent of oxide i in phase ¢ and T is in °C. D is the average difference between 

regressed and experimentally observed values. 

Table 8: Comparison of melting reactions in the CMAS, CMAS-Na20 and CMAS­
l<zO systems at 11 kbar 

System Temp. Method1 

CMAS 1350 Korzhinskii 

CMAS 1320 Korzhinskii 

CMAS ~1320 Korzhinskii 

CMASN Walter95 

CMASK 1310 Walter95 

CMASK 1280 Walter95 

CMASK 1270 Walter95 

CMASK 1260 Walter95 

CMASK 1255 Walter95 

CMASK 1252? Korzhinskii 

CMASK 1230 Korzhinskii 

Reaction (wt.%) 

46.8 Opx + 71.4 Cpx + 11.7 Sp= 100.0 Melt+ 29.9 Fo 

40.7 Opx + 79.7 Cpx + 13.8 Sp= 100.0 Melt+ 34.2 Fo 

26.2 Opx + 26.2 Cpx + 50.1 An = 100.0 Melt + 2.5 Sp 

46 Opx + 75 Cpx + 13 Sp= 100 Melt+ 34 Fo 

41.5 Opx + 79.1 Cpx + 15.1 Sp= 100.0 Melt+ 35.7 Fo 

69.5 Opx + 58.9 Cpx + 9.4 Sp= 100.0 Melt+ 37.8 Fo 

94.8 Opx + 47.9 Cpx = 100.0 Melt+ 17.4 Fo + 25.3 Sp 

140.7 Opx + 33.0 Cpx + 36.4 Fo = 100.0 Melt+ 110.1 Sp 

181.5 Opx + 21.8 Cpx + 91.0 Fo = 100.0 Melt+ 194.2 Sp 

5.4 Sp+ 20.7 Opx + 15.4 Cpx + 71.7 San= 100.0 Melt+ 13 .2 Fo 

23.4 An+ 66.5 San+ 12.7 Opx = 100.0 Melt+ 1.7 Sp+ 0.9 Cpx 

Reference2 

GP96 

This study 

This study 

Walter95 

This study 

This study 

This study 

This study 

This study 

This study 

This study 

CMASK 1230 Korzhinskii 9.6 An+ 63 .0 San+ 122.2 Sapph. = 100.0 Melt+ 89.9 Sp+ 4.8 Opx This study 
1Method: Korzhinskii, Korzhinskii (1959); Walter95, Walter et al (1995). 
2References: GP96, Gudfinnsson & Presnall (1996); Walter95, Walter et al (1995). 

In order to calculate the reaction for the isobaric invariant point Fo + Sp + Opx + Cpx + San + 

Melt at~ 1252 °C, Fo was added to the phase assemblage observed in C-1779. 

Average composition of Fo and Sp was used in the calculation. 
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Fig. 17 Melting reaction along the univariant curve of Sp-lherzolite in system CMAS-K2O (from point A 
to point B in Fig. 16. Increasing temperature corresponds to decreasing K2O content of the melt. 
Calculating method for the coefficients of the melting reaction: Walter et al (1995). The melting reaction 
is independent to the bulk composition as long as all the phases coexist. 

4.4 Experiment C-1768: an analogue of a diamond-aggregate melt 

extraction experiment 

Run C-1768 is a crystallization experiment on the melt composition determined 

for the isobaric invariant point Fo+Sp+Opx+Cpx+Melt from the KEs, with additional 

Fo added in the sandwich geometry. Importantly, this particular run is at 1310°C, just 

below the solidus (1320°C). The experimental charge was prepared with layers of Fo 

sandwiching a layer of crushed glass of the anticipated solidus melt composition 

(synthesised at 1 atm). Initially, of course, both layers have considerable porosity. This 

porosity would not be expected to survive at 11 kbar and 13 l 0°C even in a subsolidus 

run (for example, a pure Fo charge would be expected to recrystallize to near 100% 

density in a few minutes at these conditions), and indeed it does not. However, the 

interesting observation is that the Fo layers are thoroughly impregnated with material 
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that includes the components CaO and AliO3 plus additional SiO2, leading to the 

crystallization of Cpx, Opx and Sp among the original Fo. These components must 

come from the glass layer, through the action of a metastable melt present during the 

initial stages of the run. The metastable melt is inferred because the distances involved 

( ,__, 2 mm) are too large for solid state diffusion timescales. Whereas these layers ended 

up with the assemblage Fo+Sp+Opx+Cpx, the glass layer crystallized to 

An+Sp+Opx+Cpx and is hence not in equilibrium with the Fo layers. No quenched melt 

was observed in the final run products (either Foor glass starting layers), indicating that 

the run was, as expected, thoroughly subsolidus. I believe that the scenario whereby 

material migrates into the Fo layers may be analogous to the processes occurring in 

diamond-aggregate melt-extraction experiments. 

The diamond-aggregate technique was used to study the near solidus partial 

melting of mantle peridotite (Johnson and Kushiro, 1992; Hirose & Kushiro, 1993; 

Baker & Stolper, 1994; Baker et al., 1995; Kushiro, 1996). The results of one of these 

studies (Baker et al., 1995) was questioned by Falloon et al. (1996), who drew attention 

to possible pitfalls in the technique, particularly when applied to experiments with low 

degrees of partial melting (where it is potentially most useful). Falloon et al. (1997; 

1999) then checked some of the melt compositions observed in these studies and 

concluded that the diamond aggregate technique compounds rather than solves the 

experimental problems. However, Kushiro (2001) has recently pointed out that "the 

analyses given by Baker et al. (1995) were too low in alkalies because of wrong 

correction procedures (Hirschmann et al., 1998)". Kushiro therefore concluded that the 

results of Baker et al. were "not inconsistent" with the tests of Falloon et al. (1997); but 

since Falloon et al. were evidently studying a different composition, consistency is 

difficult to judge. Although Kushiro (2001) inferred from this that "The diamond 

aggregate method can be a reliable technique for obtaining and analyzing low-degree 

partial melt", I suggest that more testing is needed. 

Full evaluation of the diamond aggregate technique is beyond the scope of this 

study, but the observations obtained on C-1768 can be used to throw further doubt on 

the reliability of the diamond aggregate technique at low melt fractions. The existence 

of the CaO, AliO3 and extra SiO2 amidst the Fo supports the argument of Falloon et al. 

(1996) that the initial intra-pore pressure can lead to metastable melt production. As 

another possible example of this, Hirose and Kushiro (1993) found melt in every single 

experiment of their diamond-aggregate study, despite several runs being at temperatures 

65 



up to 50°C below the solidi of their two compositions as previously determined 

(Takahashi and Kushiro, 1983; Takahashi, 1986). 
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Fig. 18 Composition variation longitudinally along the experiment product of C-1768 detected using a 
defocused beam ( ~ 40 *50 µm2

). (a) shows a complete profile from one end of the capsule to the other 
while (b) shows not only the complete profile (empty squares) shown in (a) but also another incomplete 
profile (solid circles), which was not extended to the glass layer and to the other end of the capsule. 

A defocussed beam of approximately 40x5 0 µm was used to analyse areas in C-

1768 from one end of the capsule to the other. The results are shown in Fig. 18. Fig. 

18(a) shows that the amount of material infiltrating the Fo layers (as monitored by CaO 

and Ah03) decreases away from the interface with the glass layer, but some still reaches 

the edge of the capsule. What is strange is the decrease of the CaO/ Ah03 ratio (Fig. 

18(b )) from that in the initial glass of 0.75, which suggests decoupling of CaO and 

Ah03. The transient melt in the Fo layers appears to have a much lower ratio than 

equilibrium melt coexisting with either Fo+Sp+Opx+Cpx or Sp+Opx+Cpx+An. A low 

CaO/ Ah03 ratio is also observed in many of the diamond aggregate studies at low 
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degrees of partial melting, although a true comparison is obscured by the high Na2O 

contents of these melts. It would be valuable to test the diamond-aggregate method 

directly in the system CMAS at 11 kbar at subsolidus and near solidus conditions. 

4.5 The anorthite-sanidine solvus 

Anorthite, al bite (Ab) and sanidine are the three main components of natural 

feldspars. At high temperatures there is complete solid solution across the joins An-Ab 

(plagioclases) and Ab-San (alkali feldspars), but the solvus between An and San extends 

to their solidus. Despite the usefulness of the An-San solvus for constraining 

thermodynamic models of ternary feldspar solid solutions (Nekvasil, 1984 ), there are 

only two experimental studies on the binary An-San join at high temperaturres (Ai & 

Green, 1989; Nekvasil & Carroll, 1993), which disagree on the compositions of the 

coexisting feldspars as well as on the temperature of the solidus. Ai & Green (1989) 

located the eutectic in the An-San binary at 10 kbar at An30San70 and 1215±15 °C, and 

found the maximum mutual solubility of 18% San in An (by mole) and 7% An in San 

(Fig. 19). Nekvasil & Carroll (1993), however, found the eutectic at 11.3 kbar at 

An19San81 and 1280±10 °C, and the maximum mutual solubility is 11 % San in An and 

9% An in San (Fig. 19). 
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Fig. 19 The mutual solubility (mol¾) of San and An at 11 kbar. AG89, Ai 
& Green, 1989; NC93, Nekvasil & Carroll, 1993). The small amount of 
MgO in An, up to ~ 0. 6 wt%, is ignored. 
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Determining the phase relations around the An-San solvus and solidus is 

experimentally more difficult than it may seem at first sight. The kinetics of the 

mixing/unmixing process at the solvus are too sluggish for direct experimental 

investigation at subsolidus conditions. The assemblage Anss+Sanss+Melt is isobarically 

invariant in the system CaAhShOs-KA1ShO8, and thus observing this assemblage 

directly is not theoretically possible in the pure system ( this is of course exactly the 

same problem I confront in this study). Indeed, the reported observations of both the Ai 

& Green (1989) and Nekvasil and Carroll (1993) on the solvus/solidus relations are 

inferences obtained by the bracketing technique. 

In the same way that adding K2O to the system CMAS enables me to constrain the 

phase relations around the Fo+Opx+Cpx+Sp+Melt invariant point, so the presence of 

MgO plus other minor CAS components in my experiments increases the variance of 

the system and enables me to observe Anss+Sanss+Melt directly. I am thus able to report 

some useful points on the solvus, and also to put some constraints on the solidus of the 

CaAhShOs-KAlShOs system at 11 kbar. 

I have three runs that produced co-existing Anss and Sanss (C-1580 at 1250°C and 

C-1708 and C-1576 at 1230°C), which are projected onto the CaAhShOs-KA1Si3Os join 

in Fig. 19 as well. The maximum mutual solubility of An and San observed here is 

higher than that in Ai & Green (1989) and much higher than that in Nekvasil & Carroll 

(1993). These new data suggest that the feldspar model calibrated by Fuhrman & 

Lindsley (1988) has the best performance at higher temperatures. As shown by Nekvasil 

(1994), all other models calculate much lower mutual solubilities of An and San. 

Since MgO concentrates in the melt relative to Anss and Sanss, the eutectic in the 

MgO-free system CaAhSi2O8-KA1ShO8 at 11 kbar must be higher than 1250 °C (run C-

1580). Allowing for a representative slope dT/dP for silicate melting of about 10°C/kb, 

my results are not consistent with the solidus temperature of 1215±15 °C at 10 kbar 

found by Ai & Green (1989), but are consistent with the 1280±10 °C at 11.3 kbar 

suggested by Nekvasil & Carroll (1993). The molar Ca/(Ca+K) ratios in my three melts 

in equilibrium with An+San are 0.31, 0.27 and 0.25. On the grounds that some of the Ca 

in the melt is presumably associated with components other than An, but all the K can 

be assigned to a San component, I surmise that the composition of the solidus (eutectic) 

melt in the binary CaAhShO8-KA1ShOs would lie at lower molar Ca/(Ca+K), again 

consistent with the phase diagram of Nekvasil and Carroll (1993) (eutectic at 

An19Sans1), rather than that of Ai & Green (1989) (An30San70). 
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4. 6 S apphirine 

In two of the sandwich experiments (C-1580 and C-1576), the middle melt-rich 

regions produced an assemblage containing sapphirine (Sapp); the phase assemblage 

consisted of An+San+Sapp\Melt at 1250°C (C-1580), which was joined by Opx and Sp 

at 1230°C to form the isobarically invariant assemblage An+San+Sapph+Sp+Opx+Melt. 

Neither assemblage is in equilibrium with the end regions, which consisted of the usual 

Fo+Opx+Cpx+Sp with no apparent melt, and with a texture showing minimal 

recrystallization, also indicative of no melt. However, the compositions of the 

pyroxenes in these regions are consistent with local equilibrium. Sapph is incompatible 

with Fo at 11 kbar and ,_, 1250°C, reacting to form Opx+Sp ( e.g., Liu and Presnall, 

2000). A semi-schematic phase diagram showing the subsolidus phase relations in the 

system MgO-AliO3-SiO2 at,..__, 1250°C and 11 kbar is shown in Fig. 20. 

AIOt.5 

MgO Fo En 

Fig. 20 Phase relationship of system MgO-AlOu -SiO2 at 11 kbar and ~ 
1230°C. Small amount of CaO either in Opx or in Fo is ignored. 

In C-1576, the Opx in the two regions was very different in composition; that in 

the subsolidus peridotitic assemblage had the usual 8.5 wt% AhO3 ( consistent with 

other experiments), while that in the sapphirine-bearing middle region had 14 wt%. The 

regions are separated by a thin band of orthopyroxene ,..__, 10 µm in width (Fig. 2a). 

Remarkably, the composition of the orthopyroxene changes across this narrow band, 
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from the 14 wt% of the An+San+Sapph+Sp+Opx+Melt assemblage on that side, to the 

8.5 wt% on the other (see Fig. 2a). 

The solubility of AhO3 in Opx in equilibrium with Sapph+Qz (quartz) has 

recently been studied by Hollis and Harley (2002) at P-T conditions close to that of this 

study. The controlling reaction can be written: 

(8) 

Opx Sapph 

Thus lowering the activity of SiO2 should move equilibrium (8) towards the right 

hand side, lowering AhO3 in Opx (see also Fig. 20). However, the AhO3 content of the 

Opx in equilibrium with Sapph+Sp in my experiment C-1576 is significantly higher 

than found by Hollis and Harley (2002) at similar temperatures and pressures ( e.g., their 

experiments R50a,b at 1250°C and 12 kbar only has 9.5 to 10.5 wt% AhO3 in Opx). My 

experiment, unlike those of Hollis and Harley (2002), is unreversed, so that it is possible 

that I am observing metastable Opx, rapidly crystallized from melt at the start of the 

experiment. However, the Opx and Sapph in this experiment are both homogenous and 

euhedral (Fig. 2a). 

The compositional variation of sapphirine in the MgO-AhO3-SiO2 system can be 

considered by starting with the basic formula Mg4Al4ShO20 (called 2:2:1 sapphirine). 

Most natural sapphirines are more aluminous than this, due to substitution of 2Al for 

Mg+Si (i.e., solid solution towards the 7:9:3 composition, Mg7Al9ShO20; (e.g., Liu and 

Presnall, 2000; Hollis and Harley, 2002); here, by contrast, the reverse substitution of 

Mg+Si for 2Al occurs, to produce sapphirines with less alumina than in 2:2:1, as found 

by Liu and Presnall (2000). Thus if the formula is represented as Mg4_xAl4+2xSh-xO20, x 

is usually in the range O to 0.5 (Hollis and Harley, 2002), but here xis approximately -

0.15 in C-1580 and -0.3 in C-1576. Fig. 20 confirms that Sapphss in equilibrium with 

Opx should contain the minimum Al2O3 at a given P and T. 

5. Conclusions 

In this study I made forward partial melting experiments to determine the phase 

relations at the solidus of the spinel-lherzolite assemblage in the system CMAS both 

with and without K 2O. I also made reversal crystallization experiments. The K 2O 
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method, thus, can be fully assessed both by internal consistency and by reference to the 

previous literature data (Presnall, 1976; Presnall et al., 1979; Walter & Presnall, 1994). 

Compositions of all phases, including both pyroxene solid solutions and the melt 

compositions in the system CMAS derived from the KEs by extrapolating to zero K2O 

all agree reasonably well with previous studies. The melt composition of Presnall et al 

(1979) is almost the same as my extrapolated result from the KEs. 

Agreement on the solidus temperature for a Sp-lherzolite phase assemblage in the 

system CMAS at 11 kbar is consistent between the KEs and the REs and it is around 

1320°C, with a probable uncertainty of less than ±10°C. The slightly higher temperature 

of 1350°C determined by Presnall (1976), later used in Presnall et al (1979), Walter & 

Presnall (1994) and Gudfinnsson & Presnall (1996, 2000 and 2001), may be due to the 

W /Re thermocouples used in that study, either from oxidation or from calibration errors. 

The oxidation problem of the W /Re thermocouples farced Walter & Presnall ( 1994) to 

use a nitrogen flow down the thermocouple insulator for their experiments at lower 

pressures. Recently, Falloon et al (2001) reported drift of W /Re thermocouples at 10 

kbar to higher apparent temperature in the temperature range 1300-1400°C caused by 

oxidation. Commercially available W/Re thermocouples vary widely in their deviation 

from theoretical emf-temperature relations, requiring careful calibration of each batch 

(see Klemme & O'Neill 2000b). 

The obvious agreement on the pyroxene composition, the melt composition and 

the solidus among the extrapolation result from the KEs, the result of the REs and the 

literature data argues that the K2O method is generally successful. I will report on the 

application of this method to the determination of partial melting at the solidus in the 

system CMAS-Cr2O3 in Chapter 3 of this thesis. 

Comparison with previous work on the system CMAS-N a2O shows that the effect 

of K2O on melting equilibria is much stronger than that of Na2O, both as regards 

temperature and melt composition. Increasing K2O causes the multiply-saturated solidus 

melt composition to trend towards silica enrichment, becoming quartz-normative above 

4 wt% K2O. By contrast, the effect ofNa2O at 11 kbar is for multiply-saturated melts to 

trend towards becoming more silica undersaturated; high Na2O melts are nepheline 

normative. Note, however, that the activity of SiO2 in both systems remains nearly the 

same, being buffered by Fo+Opx (reaction (3)). 
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Chapter 3 

The effect of Cr2O3 on the partial melting of spinel lherzolite 

in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 11 kbar 

1. Introduction 

Most if not all basaltic magmas are produced by the partial melting of mantle 

peridotite. From the chemical perspective, partial melting involves a reaction between 

melt and residual solid phases, but igneous petrologists have traditionally taken a 

magmacentric view of the process, because it is the magma that emerges at the Earth's 

surface for examination. This view has led to the assumption regarding basalt 

petrogenesis that all the necessary information about the partial melting process is 

contained in the magma composition. Such an assumption would not be valid if there 

were a component of the system that was completely absent from the magma, occurring 

only in the residue - i.e., a completely compatible component. 

Chromium as Cr20 3 is a highly compatible component that is present in magmas 

only in minor to trace amounts. Thus its importance in determining the chemical 

composition of basaltic magmas may not be obvious from the chemistry of the magmas 

themselves. However, Cr20 3 substitutes for Ah03 in the solid phases of the mantle, 

reducing the activity of Ah03 in the system, hence in derived partial melts. 

Chromium is the 7th most abundant element by weight in the Earth's primitive 

mantle, after 0, Si, Mg, Fe, Al, and Ca ( e.g., O'Neill & Palme, 1998). The Cr 

abundance in mantle peridotites is on average about 2600 ppm (O'Neill & Palme, 1998) 

and it occurs as Cr3+ ( or Cr20 3 as an oxide component) in minerals in the terrestrial 

environment. This study aims to evaluate the effect of Cr on partial melting of mantle 

peridotite, by systematic additions of Cr20 3 to the model system CaO-MgO-Ah03-Si02 

(CMAS). The CMAS system is the simplest system in which four phases (olivine, 

orthopyroxene, clinopyroxene and an aluminous phase, plagioclase, spinel or garnet, 

depending on pressure), as typically developed in the upper mantle composition, are 

stable. It therefore provides an excellent starting point from which to understand mantle 

phase equilibria. 
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Partial melting of a four-phase assemblage in the system CMAS is isobarically 

invariant, and the chemical potentials of all four components (CaO, MgO, AhO3 and 

SiO2) of the melt are completely defined, as, for example, by the following reactions: 

CaO + l .5Mg2ShO6 = CaMgShO6 + Mg2SiO4 (1) 

Melt 0px Cpx 0 1 

(2) 

Melt 0px 01 

SiO2 + Mg2SiO4 = Mg2Si2O6 (3) 

Melt 01 0px 

and in the spinel stability field, 

(4) 

Melt 01 Sp 0px 

Reaction ( 4) encapsulates the pivotal point of this study. As Cr2O3 substitutes for AhO3 

in Sp, the activity of AhO3 in the melt is correspondingly reduced. Since molar 

Cr/(Cr+Al) in spinel can vary from 0.1 to 0.8 in mantle peridotites (e.g., with depletion 

by previous melt extraction; Dick & Bullen (1984) and Barnes & Roeder (2001)), the 

effect is very large. The other melt components (CaO, MgO and SiO2) do not depend 

directly on the activities of aluminous components (reactions 1 to 3 ), hence their 

activities remain nearly constant as Cr2O3 is increased. It is important to note that the Cr 

effect does not depend on the presence of spinel, although it does depend on the 

pressure regime. For example, the reaction controlling AhO3 in the melt could be 

written: 

(5) 

Melt 0px 0px 

Cr2O3 substituting in orthopyroxene in the pressure regime of the spinel-lherzolite 

facies diminishes the activity of the MgAhSiO6 component (see Klemme and O'Neill, 

2000), reducing the AhO3 in the melt similarly. Reaction (5) becomes equivalent to 

reaction ( 4) at spinel saturation, the two reactions being linked by the reaction: 
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(6) 

Sp Opx Opx 01. 

Experimentally it is convenient to study the phenomenon at spine! saturation since 

the thermodynamic properties of the melt are most rigorously constrained when it is 

saturated in all four solid phases. 

2. Previous work 

Previous work on the effect of Cr2O3 on the phase relationships of system CMAS 

at supersolidus conditions is limited. Irvine (1977) showed that Sp can be stabilised in 

all melts in the join Fo-Di-An-Qz by adding a small amount of Cr2O3 into the CMAS 

system. Libourel ( 1991) found that the addition of Cr2O3 to the system CMAS stabilises 

spine! in equilibrium with plagioclase lherzolite at 1 bar, and the melt ( containing only 

0.15 wt% Cr2O3) coexisting with five solid phases at the isobaric invariant point (i.e., 

01, Opx, Cpx, Sp and Pl) is enriched in SiO2 to 56.5 wt%, compared to 55.8 wt% SiO2 

for melt coexisting with 01, Opx, Cpx and Pl in CMAS (Walter & Presnall, 1994). 

However, Libourel's study appears only as a conference abstract, and the effect of 

Cr2O3 on the content of other oxides of the melt was not specified. I am not aware of 

any studies at higher pressure. 

The effect of Cr2O3 on subsolidus equilibria is better known. O'Neill (1981) and 

Nickel (1986) demonstrated the importance of Cr2O3 on the transition between garnet 

lherzolite and spine! lherzolite. Klemme & O'Neill (2000) studied the equilibrium 

between Opx and Sp coexisting with Fo in the system MAS-Cr2O3; these phase 

relations are the key to understanding the controls on the activity of A}iO3 (reactions 4 
to 6). Li et al. (1995) studied the system MgO-SiOi-Cr-O in equilibrium with metallic 

Cr, in which most of the Cr occurs as Cr2+. They showed that cr2+ readily substitutes for 

Mg in 01 and Opx solid solutions. 

3. Experimental technique 

3 .1. Experimental strategy 

Experimentally, the aim of this study is to determine how Cr2O3 affects the 
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compositions of the melt and the solid phases, as well as the partial melting 

temperature, for the spinel lherzolite phase assemblage in the system CMAS-Cr2O3 

(CMASCr). A pressure of 11 kbar was chosen since the spinel lherzolite phase 

assemblage is stable at this pressure, and I could build on previous work in the system 

CMAS (Presnall et al., 1979, Walter and Presnall, 1994; Chapter 2 of this thesis). 

Moreover, this pressure has been identified as close to the average pressure for the 

production of MORB, both from experimental constraints (Presnall et al., 1979; Sen, 

1982; Presnall & Hoover, 1984, 1987; Presnall et al., 2002) and seismic observations 

(Melt Seismic Team, 1998; Dunn & Forsyth, 2001). 

There are five components in the system CMAS-Cr2O3; if the presence of five 

phases at the solidus is stipulated (Fo + Sp+ Opx + Cpx + Melt), the system has one 

degree of freedom, and requires one additional variable to be completely specified. In 

this study, the parameter Cr#sp, defined as molar Cr/(Cr+Al) in spinel, is used as the 

necessary variable. 

Since the system is isobarically univariant in the presence of four crystalline 

phases, it should be possible, at least theoretically, to observe the full spinel lherzolite 

phase assemblage coexisting with melt over a finite temperature interval above the 

solidus. However, preliminary experiments showed that in practice, for experimentally 

feasible bulk compositions that give reasonable amounts of all phases, this temperature 

interval was only r-.., l 0°C, which is close to the temperature resolution of the 

experiments ( r-.., ± 5°C). I therefore adopted the strategy of deliberately introducing an 

extra component into the system, in order to increase the temperature interval over 

which Fo + Sp + Opx + Cpx + Melt could coexist. I chose K2O, as this component only 

enters the melt. Previously I have found that adding K2O expands the temperature 

interval over which Fo +Sp+ Opx + Cpx + Melt is stable tor-.., 60 degrees in the system 

CMAS-K2O (Chapter 2 of this thesis). The composition of the melt in the K2O-free 

system is then obtained by extrapolating the data empirically to zero K2O. This 

procedure has been thoroughly tested for the system CMAS-K2O (Chapter 2 of this 

thesis), and produces results in good agreement with previous work. 

An experimental problem in many peridotite partial melting studies is 

crystallization from the melt during quenching. In the system CMAS-Cr2O3, the 

temperature of the solidus and the amount of MgO in the melt both increase with 

increasing Cr# sp, exacerbating the problem. In my first attempts at experiments at high-

Cr2O3 compositions in the system CMAS-Cr2O3, quench forsterite (Fo) was ubiquitous, 

and melt compositions could not be confidently determined. This problem is also 
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ameliorated by the addition of K2O, both by lowering the solidus temperature and by 

making the melt composition less picritic. The "K2O method", in conjunction with the 

"sandwich method", can produce large pools of melt in run products, in which the 

effects of quench modification are effectively eliminated except at Cr# sp = 1, at which 

quench modification is so severe that I was unable to gain any useful results. 

3.2 Starting materials 

Table 1 summarises the starting materials used in this study. 

Two types of starting materials were prepared. Crystalline mixtures SEM02-1, 

SEM05-1, SEM04-1, SEM0l-1, SEM03-1 and SEM06-1 were made with a 5/8 inch 

piston-cylinder press by crystallising the decarbonated oxide mixes at 13 00°C, 11 kbar 

and 48 hours in a 3.5mm diameter Pt capsule. Glasses SEM02-3, SEM02-4, SEM0l-4-

1, SEM0l-4-2 and SEM0l-5 were synthesised at 1400°C, one atm and 20 minutes, and 

then quenched to glass. High-purity oxides (SiO2, AhO3, Cr2O3 and MgO) and 

carbonates (CaCO3 and K2CO3) were used. All mixtures were checked for compositions 

with electron microprobe (Ware, 1991). 

In order to control experimental oxygen fugacity, RuO2 was mixed into SEM05-1 

and SEM0l-4-1. All starting materials were stored in an oven at 150°C prior to use. 

3 .3 Capsule configuration and cell arrangement 

All experiments were made in a conventional 1/2 inch piston-cylinder apparatus 

(Boyd & England, 1960), using sealed Pt capsules, and the so-called 'sandwich 

technique' (Stolper, 1980; Takahashi & Kushiro, 1983; Fujii & Scarfe, 1985; Falloon et 

al., 2001 ), in which a layer of the anticipated melt composition (powdered glass starting 

material) is placed between two layers of an appropriate crystalline assemblage of 

Fo+Opx+Cpx+Sp. The proportion of the melt part to the crystalline part was adjusted to 

keep the Cr/(Cr+Al) ratio of the bulk compositions in each set of experiments constant. 

In order to keep the Cr as Cr3
+ and prevent reduction to Cr2

+, it is critically 

important to eliminate any diffusion of H2 into the capsule. Such a precaution also 

ensures that the experiments are not contaminated by water. Therefore, based on 

Hibberson (1978) and Robinson et al. (1998), a new cell arrangement shown in Fig. 1 

was used in this study. The cell arrangement is composed of three concentric shells: a 

graphite heater, a pyrex glass tube and an outermost sleeve of NaCl, pressed to > 95% 

of the theoretical density. In the central part of the new assembly, Pt capsule is put into 
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Table 1 Compositions of starting materials used in this study 

Sandwichin art ~a,Jldw tbf1,e._,f Ptu,.'f. 
SEM02-l SEM05-l SEM04-l SEM0l-1 SEM03-l SEM06-l SEM02-3 SEM02-4 SEM0l-4-1 SEM0l-4-2 SEM0l-5 

SiO2 36.95 37.02 37.86 37.90 38.77 38.81 48.71 49.37 52.39 52.39 51 .34 

Alz03 22.63 17.49 12.76 9.73 5.90 3.61 18.97 20.20 14.66 14.66 14.37 

Cr2O3 0.00 5.64 9.59 12.40 14.86 17.18 0.00 0.00 0.48 0.48 0.47 

MgO 35.06 34.40 34.38 34.75 34.94 34.88 16.60 13.52 17.15 17.15 16.80 
CaO 5.36 5.45 5.40 5.21 5.53 5.53 14.72 13 .91 14.31 14.31 14.02 

K2O 0.00 0.00 0.00 0.00 0.00 0.00 1.00 3.00 1.00 1.00 3.00 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Cr# (by mole)* 0.00 17.78 33 .52 46.10 62.83 76.14 0.00 0.00 2.14 2.14 2.14 

Internal buff er** No No No Yes No No No No Yes No No 
Crn*, the ratio of Cr/(Cr+AI). Internal buffer**, buffer RuO2 (11.3 wt% in SEM0l-1 and 8.47 wt% in SEM0l-4-1). The ratio of Fo, Sp, Opx and Cpx in SEM02-l , SEM05-l, SEM04-l , SEM03-l and 
SEM06-1 approximates 1: 1: 1: 1. The compositions of these solid phases came from Walter & Presnall (1994) or from my priliminary experiments. 
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Fig. 1 Experimental assembly used in this study (not to scale). 

an Fe203 sleeve, which is in turn surrounded by an alumina sleeve. At each end of the 

alumina sleeve, there is a ruby disc (0.5 mm thick) which completely separates the 

Fe20 3 sleeve from other parts of the assembly. This structure can successfully prevent 

reduction of the Fe20 3 sleeve by the graphite heater, or contamination of thermocouple. 

Alumina and then MgO spacers are positioned next to the ruby discs. This enhances the 

mechanic stability of the assembly. The Fe20 3 sleeve was made by cold pressing in a 

steel die using acetone as a binder; it was then sintered at 850°C, 1 atm for 3 hours. 

Salt cells have low friction ( e.g., Green et al., 1966), and any initial friction is 

expected to decay to a negligible level during the long run times at high temperatures 

used in this study (Bose & Ganguly, 1995). Consequently, no pressure correction is 

required. 

3 .4 Experimental procedure and P-T control 

For each experiment, a total of 8-10 mg starting materials were loaded into a Pt 

capsule. The loaded Pt capsule was stored at 15 0°C for 6-8 hours and then held in a steel 

block which had been pre-heated to 750°C while it was welded (Robinson et al. , 1998; 

Chapter 2 of this thesis). 

All experiments were performed using the 'piston-out' method, i. e. the pressure 

was first raised to a few kilobars, then the temperature increased to r--- 450°C to soften 

the pyrex sleeve; the pressure was then increased up to r--, 0.5 kbar higher than the 

desired pressure, and the temperature to the nominal temperature of the run. Finally the 

pressure was lowered to the required pressure (Johannes et al. , 1971). 
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The pressures were continuously monitored and adjusted, if necessary. The 

continual adjustment of pressure allowed each run to be controlled to within ± 0 .2 kbar 

of the desired pressure of 11.0 kbar. 

Temperature was measured and controlled to the nearest degree centigrade with a 

Pt94Rh6-Pt70Rh3o thermocouple (type B); other thermocouples made from the same 

spools of wire have been several times calibrated against the melting point of gold at 1 

atm., and found to perform to within ± 1 °C of the theoretical temperature at this 

temperature. Possible pressure effects on the emf of the thermocouple have been 

neglected. The thermocouple is protected by a combination of high-purity alumina 

tubing in the hot part of the assembly ( ,___, 4 mm long), with mullite tubing above this. 

The tip of the thermocouple, the upper ruby disc and the whole Pt capsule containing 

experimental charge were all carefully placed in the approximately 5-mm-long hot spot 

of the experimental assemblage as previously determined in this laboratory (W. 0. 

Hibberson, pers. comn.). In Chapter 2 of this thesis, I argued from the reproducibility of 

their results that the precision in temperature measurement is approximately± 5°C. 

Klemme & O'Neill (2000) found that type B thermocouples were very stable 

under similar experimental conditions, and argued that their performance under these 

conditions ( < 1500°C) was likely to be superior to the more widely used W-Re 

thermocouples (e.g., type C: W97Re3-W1sR2s; type D: W9sRes-W14Re26), In order to 

compare directly the performance of type B thermocouple with type D, two experiments 

were carried out using both types simultaneously. These experiments used the type Bas 

the controlling thermocouple, such that the type D thermocouple simply monitored the 

temperature. The experimental conditions are summarised in Table 2. 

In experiment D-81, the emf of the type D thermocouple increased linearly with 

time while the power consumption ( which reflects the performance of the controlling 

type B thermocouple) remained rather constant for most of the run duration, but 

increased sharply near the end of the experiment (Fig. 2a). The temperature difference 

between the temperature iridicated by the type D thermocouple and the nominal 

experimental temperature measured by the type B thermocouple is shown as a function 

of time in Fig. 2b. If the type D thermocouple were recording the real temperature, the 

temperature at the end of D-81 would be ,___, 1600°C, which is not reasonable given the 

observed run products (Table 2). The melt composition in D-81 (51.73 wt% SiO2, 17.10 

wt% AhO3, 0.28 wt% Cr2O3, 15.47 wt% MgO, 13.60 wt% CaO and 1.82 wt% K2O) 

gives a calculated temperature of 1412°C using the olivine/melt MgO-partitioning 

geothermometer of Ford et al. (1983). Since temperatures calculated from this 
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Table 2 Experimental conditions and results 

Ex(!. Set Run# Startin2; material Tern(!. T(hrs} TIC Phase observed K7O-melt T-1 T-2 T-3 T-4 Note Experiment Set 5 C-1550 SEM05- l +SEMO 1-5 1360 51.5 B Fo+Sp+opx+Melt 1.61 
C-1527 SEM05- l +SEMO 1-4-2 1350 53 B F o+Sp+opx+cpx+Melt 0.85 1308 1352 1315 1379 
D-81 ** SEM05- l +SEMO 1-5 1340 49 B,D Fo+Sp+Melt - - - - 1412 
D-82 SEM05-l +SEM0l-5 1340 50 B,D F o+Sp+opx+cpx+Melt 2.62 1305 1347 1290 1331 
C-1511 SEM05-l +SEMO 1-5 1330 92 B F o+Sp+opx+cpx+Melt 4.08 1306 1350 1286 1296 zoned Sp and Cpx* 

Experiment Set 4 C-1499 SEM04-1 +SEMO 1-5 1360 70 B F o+Sp+opx+cpx+Melt 1.80 1357 1388 1339 1424 
C-1481 SEM04-1 +SEMO 1-5 1350 71 B F o+Sp+opx+cpx+Melt 3.06 1405 1428 1347 1397 
C-1478 SEM04-1 +SEMO 1-5 1340 70 B F o+Sp+opx+cpx+Melt 5.76 1345 1381 1302 1375 zoned Sp and Cpx 
C-1480 SEM04-1 +SEMO 1-5 1320 74 B F o+Sp+opx+cpx+Melt* * * - 1340 1378 1307 - zoned Sp and Cpx 

Experiment Set 1 C-1459 SEMO 1-1 +SEMO 1-5 1360 70 B F o+Sp+opx+Melt 1.77 
With internal buffer C-1414 SEMO 1-1 +SEMO 1-4-1 1360 72 B F o+Sp+opx+cpx+Melt 0.87 1358 1395 1362 1430 
Ru+RuO2 C-1472 SEM0l-1 +SEM0l-5 1350 70 B F o+Sp+opx+cpx+Melt 2.54 1372 1400 1327 1410 

C-1449 SEMO 1-1 +SEMO 1-5 1340 72 B F o+Sp+opx+cpx+Melt 3.26 1352 1389 1319 1392 zoned Sp and Cpx 
C-1469 SEM0l-l+SEM0l-5 1330 72 B F o+Sp+opx+cpx+Melt 4.26 1351 1390 1311 1326 zoned Sp and Cpx 

Experiment Set 3 C-1489 SEM03-1 +SEMO 1-4-2 1360 74 B F o+Sp+opx+cpx+Melt 1.19 1454 1457 1377 1451 
C-1463 SEM03-l +SEMO 1-5 1350 74 B F o+Sp+opx+cpx+Melt 2.97 1390 1419 1358 1426 zoned Sp 
C-1476 SEM03-1 +SEMO 1-5 1330 72 B F o+Sp+opx+cpx+Melt 5.11 1372 1404 1358 1407 zoned Sp and Cpx 

Experiment Set 6 C-1516 SEM06-l+SEM01-5 1380 52 B F o+Sp+opx+cpx+Melt 2.07 1561 1504 1396 1477 
C-1512 SEM06-1 +SEM0l-5 1370 56 B F o+Sp+opx+cpx+Melt 3.02 1486 1480 1381 1456 zoned Sp 
C-1515 SEM06-l+SEM01-5 1360 68.5 B F o+SQ+DQx+cQx+Melt 4.01 1448 1458 1362 1444 zoned SQ and CQX 

zoned Sp and Cpx* : only in the sandwiched layer of the experiments with low partial melting extent. Where crystals in sandwiched layer are zoned, the reported compositions (Table 3) refer to the 
compositions of the homogeneous crystals in the sandwiching layers. 

D-81 ** : probable thennocouple contamination (see text) and no phase composition data except that for melt (see text) reported here. 
Melt*** : con.firmed but cannot be properly analysed. 

T-1 , temperature calculated using the geothermometer of Nickel et al . (1985); T-2, temperature calculated using the Opx-Cpx geothermometer of Brey & Kohler (1990; equation 9); T-3, temperature 
calculated using the Ca-in-Opx geothermometer of Brey & Kohler (1990; equation 10); T-4, temperature calculated using the geothermometer ofFord et al. (1983). 
The sandwich technique was used in all experiments. 
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geothermometer are always 30 to 80 °C higher than the nominal temperature in my 

experiments (see later discussion), the real final temperature ofD-81 is possibly 1370 + 

30 °C. 
-·leA 

The thermocouples of D-81 were carefully recovered, mouni_ jn epoxy, polished 

and optically examined in reflected light. Two brownish rust-like haloes surrounding the 

legs of the type D thermocouple were observed (Fig. 3 ), indicating oxidation. This 

probably occurs because the high-purity alumina insulating ceramic is sufficiently 

strong to resist complete collapse at 11 kbar, allowing air to percolate down to the hot 

end of the wires. Recently, similar observations for type C thermocouples were reported 

by Falloon et al, (2001 ). Although I do not see any direct contact between the brownish 

halo and the type B thermocouple in this section, I believe that in this particular 

experiment the oxidation of the type D thermocouple eventually poisoned the type B 

thermocouple, thus explaining the abrupt power increase near the end of the run. 

38 31 
(a) (c) 

,,-..._ ,,-..._ 

~~ Q Q -_, 
34 

-_, 
0 6 0 e 29 

~ 
B & ~ 

s.. 0 t-c 0 oifPoo 0 
,,-..._ 30 ,,-..._ 27 = = -_, 

odP 
-_, 

s.. D s.. 
~ ~ 
~ 26 ~• ~ 25 0 0 
~ ~ • olDJ illll DID 

22 23 
(b) (d) 

250 • ,,-..._ • ,,-..._ 20 u • u 
0 

• 0 __, 200 • -_, 
,,-..._ ,,-..._ 

15 -= = -_, -_, 
E-- 150 • E--

I ., I 
,,-..._ ,,-..._ 10 • 8 100 Q -_, 
E-- • E--

50 5 

0 0 
0 20 40 60 0 20 40 60 

Time (hours) Time (hours) 

Fig. 2 A comparison of thermocouples (type B vs. type D) made in D-81 (a and b) and in D-82 ( c and d) . 
Experiments were controlled by the type B thermocouple but monitored by the type D thermocouple. See 
Table 2 for experimental details . 
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Fig. 3 Photograph of the thermocouples recovered from D-81 (under reflected light). 

D-82 is a repeat experiment under identical conditions, except that some super 

glue was placed on the top of both thermocouples to stop the air flowing down into the 

assembly. This seems to have prevented the oxidation seen in D-81 , and the 

performances of type B and type D thermocouples generally agree with each other (Fig. 

2c, 2d). Nevertheless, in detail the temperature difference between the type D 

thermocouple and the type B thermocouple increased from zero at the beginning to ,-..; 15 

~Cat the end of the experiment. 

3.5 Analysis of run products 

At the end of a run, the sample was sectioned longitudinally, mounted in epoxy 

and polished using a series of diamond pastes. Run products were carbon-coated and 

analysed on a JEOL 6400 scanning electron microprobe in energy dispersive mode 

(EDS) at the Electron Microprobe Unit (EMU) at ANU. Phases in run products were 

identified by back-scattered electron imaging and secondary electron imaging. Beam 

current was .-r, nA, accelerating voltage was 15 keV and the ZAF correction procedure 

was applied to all analyses (Ware, 1991). A beam spot size of 1 µm was used for all 

crystalline phases while both 1 µm and 10 µm beam spot sizes were used for glass 

analyses. The accumulation time was 100 seconds. As reported in Chapter 2 of this 

thesis , analytical precision was estimated by replicate measurements of three 

internationally-recognised glass standards, GOR132G, TlG and KL2G (Jochum et al. , 

2000). 
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Besides the oxides CaO, MgO, Cr2O3, AhO3, SiO2 and K2O, FeO and Na2O were 

analysed for all the phases present in the experiments. FeO contamination is a potential 

possibility from the Fe2O3 sleeve (see also Chapter 2 of this thesis). Na2O is a good 

indicator of the quality of starting materials used. It concentrates in the melt with a 

content of O .1-0 .5 wt%, depending on the proportion of melt to solids in the experiment; 

such minor amounts are close to the limit of detection ( __, 0 .1 wt%), and since they also 

have almost negligible effect (Walter & Presnall, 1994; Chapter 4 of this thesis) they 

have been ignored. Analyses were renormalised to 100 percent in order to facilitate data 

interpretation and comparison. 

Lithium and boron have potentially been cryptic contaminants of previous piston­

cylinder studies, as these elements have not been amenable to microbcam analysis until 

recently. Li salts are sometimes used in noble-metal fabrication processes, and B could 

come from the pyrex glass (it apparently diffuses readily through Pt). To check for any 

such contamination, Li and B were measured in the glasses in runs C-1472, C-1516 (see 

Table 2 for experimental conditions) by LA-ICP-MS at RSES, ANU. The Li contents 

were 2.7±0.3 ppm and 1.8±0.1 ppm, respectively. The B contents were slightly higher at 

65±4 and 60± 1 ppm. These levels are very similar to that found previously in 

experiments in the system CMAS-K2O (Chapter of this thesis), and should have a 

negligible effect on phase relations. 

The Pt capsules from two runs, C-1469 and C-1476 (See Table 2 for experimental 

conditions) were checked for Fe, Cr and Ru (from RuO2 used as an internal oxygen 

buffer in the fomer run) on a Cameca electron microprobe in WDS mode at RSES, 

ANU; the results are shown in Fig. 4. Clearly, some Fe had diffused into the Pt capsules 

from their Fe2O3 sleeves, but only to approximately the middle of the capsule. The 

presence of reduced Fe in the Pt establishes that some reduction of the Fe2O3 sleeves 

has taken place, confirming that there really was a need for them. The diffusion profile 

shows that there is a limit to the run duration possible with my experimental assembly, 

since eventually Fe would diffuse right through the capsule into the charge (I checked 

for this possibility in every experiment by including Fe in the electron microprobe 

analytical routine). The presence of Ru is also confirmed by the electron micro pro be 

analyses, indicating some reduction in the experiment. The quantity of metal Cr in the 

Pt capsules, however, is essentially negligible. This was not the case in some 

preliminary experiments run without the Fe2O3 sleeves, in which the presence of Cr in 

the Pt provided clear evidence for the reduction of Cr2O3. 
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Fig. 4 Electron microprobe analyses across two Pt capsules : (a) C-1469 with Ru+RuO2 buffer and (b) C-
1476 without Ru+RuO2 buffer. See Table 2 for experimental details. 

3.6 Oxidation state of chromium 

This study is specifically concerned with Cr as Cr3+. However, during the course 

of a typical piston-cylinder . experiment, a trace of water could be released from 

incompletely dry material in the pressure assembly and react with the graphite heater to 

produce hydrogen, which then diffuses through the Pt capsule and reduces the charge, 

also producing water inside the capsule. The suspected presence of detectable water in 

many previous "anhydrous" melting experiments argues for the probability of this 

scenario, unless extreme care is taken (e.g. , as here and in the experiments of Robinson 

et al., 1998; see Chapter 4 of this thesis). Any ingress of H2 would result in reduction of 

Cr3
+ to Cr2+. The latter has quite different chemical properties (e.g., Li et al., 1995; 

Hanson & Jones,1998); broadly speaking, whereas Cr3
+ substitutes for Al and is highly 
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;. ,eompatible, Cr2
+ substitutes for Mg and is probably mildly incompatible). Since Cr2

+ 

cannot be distinguished from Cr3+ by the analytical methods employed in this study 

( electron micro pro be), its presence as a significant proportion of total Cr would fatally 

scramble the message from the experimental results. Thus a relatively high oxygen 

fugacity is a prerequisite to success in these experiments. Consequently I attempted to 

prevent H2 from entering the capsule by means of enclosing it in the Fe203 sleeve (Fig. 

1). The effectiveness of this method in keeping H2 from entering the capsule is 

discussed more fully in Chapter 2 of this thesis. 

Initially I also buffered oxygen fugacity internally by adding Ru02 to the starting 

compositions (Table 1 ). During the course of the experiment, a small fraction of the 

Ru02 reduces to Ru metal. The oxygen fugacity of the Ru+Ru02 buffer is close to 

Fe30 4-Fe20 3 at the temperatures of this study (O'Neill and Nell, 1997). Unfortunately, 

the presence of Ru02 plus Ru in the experiment adds to the difficulty of finding melt 

pools with pristine glass (i.e., not quench modified), and in subsequent experiments I 

relied only on the external Fe20 3 sleeve to prevent reduction. The amounts of Cr in all 

phases, including Fo and Melt, in these experiments are consistent with the amounts in 

the internally buffered experiments. Moreover, there is no significant difference 

between the stoichiometries of crystalline phases in the Cr-bearing and Cr-free 

experiments, when these are calculated assuming all chromium in the former is Cr3+ 

(Figs. 5). The slightly but consistently lower cation totals in Cpx (Fig. 5d) are possibly 

related to the presence of a small amount of Na20, not reported in the analyses. 
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Fig. 5 Stoichiometric calculation for Fo (a), Sp (b), Opx (c) and Cpx (d) by assuming all chromium as 
Cr3+, on the basis of four oxygens per formula unit for Fo and Sp while 6_ o.?'Jgens per formula unit for 
Opx and Cpx. Only experiments (22 runs) displaying melt coexistingtR" full Sp lherzolite phase 
assemblage shown here (See Table 2 for experiment details) . These experiments, from the top to the 
bottom of Table 2, are re-numbered from 1 to 22 in Fig. 5. 
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3. 7 Attainment of equilibrium 

My previously reported results in the Cr-free system (CMAS-K2O) show that the 

experimental technique used in this study (i.e., the sandwich method with pre­

crystallised solid phases) is capable of attaining well equilibrated phase assemblages; 

exceptions were for melt compositions with relatively high Si02 that were not in 

equilibrium with Fo, and experiments with very low melt fractions. The evidence for 

disequilibrium is obvious ( see discussion in Chapter 2 of this thesis), and for the 

majority of the experiments, the only sign of disequilibrium was some minor zoning of 

A}iO3 in the cores of larger pyroxene crystals grown in the melt layer of the sandwich. 

However, Cr-containing systems are notoriously difficult to equilibrate (O'Neill, 

1981; Nickel, 1986; Klemme and O'Neill, 2000), and a more troublesome equilibration 

problem occurs in some of the present experiments. Particularly in those experiments 

where the extent of partial melting is relatively low, Cpx, Opx ± Sp crystallise in the 

sandwiched glass layer. Analyses show that the Cpx and Sp crystals generally have low 

and variable Cr/( Cr+ Al), being lowest in the cores of larger crystals. This is entirely 

expected, since the glass starting compositions have zero or low Cr2O3, hence any 

crystals forming from such compositions must similarly have low Cr2O3. Having once 

crystallised, interdiffusion of Cr and Al is then too sluggish to permit complete re­

equilibration. However, smaller crystals and the rims of the larger crystals both tend to 

approach the compositions of the phases in the crystalline layers of the sandwich, which 

are generally very homogenous. I therefore make the major assumption in interpreting 

these experiments, that the outermost rims of the crystals in the melt layer that are zoned 

in Cr/(Cr+Al) would be similar to the homogenous crystals in the crystalline layers, and 

it are these compositions that are in equilibrium with the melt. 

Examples of this behaviour are shown in Fig 6 for Cpx in experiments C-1476 

and C-1480 and for Sp in C-1463. Note that the Mg/(Ca+Mg) ratio of the Cpx closely 

follows the Cr/(Cr+Al) ratio. The significance of this will be discussed below. 

The experiments with high melting extent (generally also at higher temperatures) 

do not have this problem and the equilibrium compositions of the solid phases are easily 

obtained. This is important, as the good internal consistency between these experiments 

and the ones with zoned crystals at low partial melting extents is an indicator that my 

assumption regarding the latter is appropriate. 

The crystalline phases in all experiments are always euhedral (Fig. 7), and have 

good stoichiometry from the electron micro pro be analyses (Fig. 5). 
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4. Experiment results 

Fig. 7 Back-scatter images for C-1480 (a, b, c) 
and C-1463 (d, e). C-1480 has a very low melting 
extent while C-1463 has a high melting extent of 
~ 30%. (a) shows the sandwiched zone 
(Cpx+Opx+trace melt only) and the sandwiching 
zone (Fo+Sp+Opx+Cpx+trace melt). (b) shows 
the sandwiched zone. Cpx is slightly 
compositionally zoned while Opx is relatively 
homogenous. (c) shows the boundary between the 
sandwiched zone (right side) and the sandwiching 
zone (left side). The solid phases in both zones 
are euhedral. ( d) shows the sandwiched zone 
(Fo+Sp+clean melt only) and the sandwiching 
zone (Fo+Sp+Opx+Cpx+trace melt). ( e) shows 
the texture in the sandwiching zone which 
consists of euhedral solid phases and trace melt. 

Table 2 summarises the starting materials, the experimental techniques, the run 

conditions and the results of the experiments. The K2O content of the melts and the 

calculated temperature by using different geothermometers in the literature are shown in 

Table 2 as well. The experimental temperature range was 1280-1380 °C and the running 

time varied from 49 to 92 hours, much longer than 48 hours in most cases. 22 

experiments, among 26, display melt coexisting with a Sp-lherzolite phase assemblage 

while the remaining 4 experiments display melt coexisting with a phase assemblage of 
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Fo + Sp + Opx. The amount of melt in one experiment with the full Sp-lherzolite phase 

assemblage (C-1480) is too low to be properly analysed. 

The phase composition data are compiled in Table 3. 

4.1 Melt composition 

The phase assemblage Fo +Sp+ Opx + Cpx + Melt has two degrees of freedom 

in the system CMAS-Cr2O3 - K2O at a specified pressure, which I have chosen to 

describe using the two variables of K2O in the melt (here labelled [K2O]) and Cr# sp; 

consequently, the solidus temperature and the composition of the melt can all be 

described using these two variables. By fitting the data to empirical equations in [K2O] 

and Cr#sp, I can then extrapolate the data to zero [K2O] to find the main object of this 

study, the composition of melt along the spinel-lherzolite solidus as a function of Cr# sp. 

The solidus temperature is given by: 

Tsolidus = 1318 - 5.62 [K2O] + 3.25 Cr#sp -0.08 (Cr# 8p)2 + 6.72*10-4 (Cr#sp)3 (7) 

This was obtained from a fit to data in both the system CMAS-K2O (Chapter 2 of this 

thesis) with [K20] < 7 wt% and the system CMAS-Cr2O3-K2O (Fig. 8). Using Equation 

7, I recalculated the temperature in my experiments, and the average difference between 

the calculated temperature and the nominal experimental temperature is just 18 degrees. 

It is obvious in Fig. 8 that Cr3+ strongly increases the partial melting temperature. The 

increase is not linear, being strong at low Cr#sp, weak at mediate Cr#sp and strong again 

at high Cr#sp• 

For describing the melt compositions at the solidus, it is apparent from the raw 

data that the effect of K2O is rather different in the system CMAS-Cr2O3-K2O from the 

system CMAS-K2O (Fig. 9). This may be due to interactions between K2O and AhO3 in 

the melt. In any case, in order to obtain a good fit to the data, I fitted the Cr-containing 

and Cr-free experiments separately. I also found that one experiment, C-1469, has an 

anomalous melt composition, and this experiment was removed from the regression. For 

the remaining 15 data in CMAS-Cr2O3-K2O I obtained (for Cr#sp > 20): 

[SiO2] = 49.8 + 0.53 [K2O] + 0.051 Cr#sp (8) 
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Table 3 Experimentally observed phase compositions. Fo, forsterite; Sp, 
spinel; Opx, orthopyroxene; Cpx, clinopyroxene. Composition data in weight percent 
normalised to 100%. Fo(12) is phase name followed by the number of analyses. 42 .72(0.12) 
is an average followed by one standard deviation and should be read as 42 . 72 ± 0.12. 
Cations are calculated by charge-balance technique, on the basis of 4 oxygens for Fo and 
Sp and 6 oxygens for Cpx and Opx. *, 16 analyses conducted but only the one in agreement 
with other experiments in the same experiment set reported here; * *, phase confirmed but 
data with high quality unavailable. Six Cr-free experiments from chapter 2 of this thesis are 
re-reported here with cation data. 

C-1423, 1320°C Fo(12) Sp(17) Melt(22) 
SiO2 42 .72(0.12) 0.00(0.00) 49.43 (0.11) 
Ah O3 0.00(0.00) 71.51 (0.11) 20.40(0.08) 
MgO 56.96(0.11 ) 28.42(0.11) 14.91 (0.07) 
CaO 0.33(0.04) 0.08(0.04) 14.64(0.07) 
K2O 0.63 (0.02) 

Si 1.001(0.002) 0.000(0.000) 
Al 0.000(0.000) 1.996(0.003) 
Mg 1.990(0.004) 1.003(0.004) 
Ca 0.008(0.001 ) 0.002(0.001) 
Total 2.999(0.002) 3.002(0.001) 

C-1422, 1310°C Fo(18) Sp(13) Opx(19) Cpx(19) Melt(19) 
SiO2 42 .91(0.11) 0.00 (0.00) 54.57(0.27) 51. 96(0. 30) 49.98(0.11) 
AhO3 0.00(0.00) 71.52(0 .10) 8.60(0.34) 8.67(0.42) 20.39(0.10) 
MgO 56.78(0.11) 28.35(0.09) 34.36(0.32) 21.15(0.26) 14.30(0.07) 
CaO 0.31 (0.03) 0.13 (0.08) 2.47(0.41) 18.22(0.40) 14.60(0.07) 
K2O 0.73 (0.03) 

Si 1.005(0.002) 0.000(0.000) 1.837(0.008) 1.831 (0.010) 
Al 0.000(0.000) 1.997(0.002) 0.341 (0.013) 0.360(0.017) 
Mg 1.982(0.004) 1.001(0.003) 1.725(0.014) 1.111 (0.013) 
Ca 0.008(0.001) 0.003(0 .002) 0.089(0.015) 0.688(0.016) 
Total 2.995(0.002) 3.001(0 .001) 3.992(0.003) 3.989(0.006) 

C-1461, 1310°C Fo(8) Sp(8) Opx(21) Cpx(21) Melt(15) 
SiO2 42 .99(0.06) 0.08(0.04) 54.59(0.33) 52.17(0.26) 51.52(0.13) 
Al2O3 0.00(0.00) 71.28(0.10) 8.34(0.42) 8.39(0.34) 20.55(0.16) 
MgO 56.72(0.04) 28.56(0.12) 34.84(0.30) 21.00(0.40) 12.75(0.13) 
CaO 0.29(0.03) 0.08(0.04) 2.23 (0.17) 18.44(0.35) 12.87(0.14) 
K2O 2.31 (0.07) 

Si 1.007(0.001 ) 0.002(0.001) 1.837(0.011) 1.839(0.018) 
Al 0.000(0.000) 1.990(0.003) 0.331 (0.017) 0.348(0.014) 
Mg 1.980(0.002) 1.009(0.005) 1.748(0.016) 1.103 (0.021) 
Ca 0.007(0.001) 0.002(0.001) 0.080(0.006) 0.697(0.014) 
Total 2.993 (0.001) 3.003 (0.002) 3.997(0.006) 3.987(0.008) 

C-1448, 1300°C Fo(9) Sp(8) Opx(19) Cpx(19) Melt(20) 
SiO2 42 .89(0.15) 0.10(0.09) 54.51 (0.37) 52 .22(0.35) 53 .17(0.15) 
Al2O3 0.09(0.13) 71.25(0.16) 8.50(0.40) 8.58(0.43) 21.47(0.12) 
MgO 56.71 (0.19) 28 .51 (0.07) 34.80(0.36) 20 .90(0.42) 10.09(0 .11) 
CaO 0.30(0.05) 0.14(0.06) 2.19(0.30) 18.30(0.47) 11. 19(0 .13) 
K2O 4.08(0.09) 

Si 1.004(0.003) 0.002(0.002) 1.835(0.012) 1.839(0.011 ) 
Al 0.003 (0.004) 1.990(0.004) 0.337(0.016) 0.356(0.018) 
Mg 1.980(0.007) 1.007(0.003) 1.746(0.018) 1.097(0.022) 
Ca 0.008(0.001 ) 0.004(0.001) 0.079(0.011) 0.69 1(0.01 9) 
Total 2.994(0.003) 3.003 (0.001) 3.997(0.007) 3.983 (0.007) 

C-1460, 1290°C Fo(7) Sp(13) Opx(20) Cpx(23) Melt(14) 
SiO2 42.96(0.09) 0.30(0.19) 54.72(0.24) 52 .24(0.39) 53 .85 (0.17) 
Al2O3 0.03 (0.06) 7 1.15(0.24) 8.19(0.39) 8.28(0.45) 21.60(0.21) 
MgO 56.71 (0.09) 28.45 (0.12) 34.99(0.32) 20 .76(0.45) 9.36(0.23) 
CaO 0.30(0.03) 0.11 (0.07) 2.10(0.26) 18.71(0.3 8) 10.43 (0.11) 
K2O 4.76(0.15) 

Si 1.006(0.002) 0.007(0.004) 1.841 (0.018) 1. 842(0.013) 
Al 0.001 (0.002) 1.986(0.007) 0.325(0.016) 0.344(0.019) 
Mg 1.980(0.004) 1.004(0.004) 1.755(0.016) 1.092(0. 023) 
Ca 0.007(0.001) 0.003 (0.002) 0.076(0.009) 0.707(0.015) 
Total 2. 994(0. 002) 3.000(0.002) 3.997(0.005) 3.985 (0.008) 
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Table 3 continued 
C-1447, 1280°C Fo(6) Sp(6) Opx(15) Cpx(15) Melt(ll) 
SiO2 42.73 (0.21 ) 0.13(0.11) 54.64(0.38) 52.29(0 .38) 55 .83(0.28) 
Ah O3 0.00(0.00) 71.32(0.21) 8.33 (0.58) 8.27(0.56) 21.74(0.3 5) 
MgO 57.00(0.18) 28.47(0.13) 34.83 (0.54) 21.17(0.62) 7.33(0.143) 
CaO 0.28(0.05) 0.08(0.04) 2.19(0.30) 18.28(0.45) 8.93(0 .17) 
K2O 6.17(0.11) 

Si 1.003(0.005) 0.002)(0.004) 1.841 (0.011) 1.840(0.013) 
Al 0.000(0.000) 1.995(0.008) 0.331 (0.024) 0.343(0.024) 
Mg 1.997(0.005) 1.005(0.005) 1.749(0.027) 1.111 (0.033) 
Ca 0.010(0.000) 0.000(0.000) 0.079(0.012) 0.691 (0.018) 
Total 3.010(0.006) 3.002(0.004) 4.000(0.012) 3.985(0.012) 

C-1550, 1360°C Fo(l0) Sp(lO) Opx(lO) Melt(l0) 
SiO2 42.70(0.10) 0.46(0.08) 55 .26(0.15) 51 .82(0.11) 
Al2O3 0.12(0.08) 46.42(0.58) 5.67(0.15) 16.97(0.06) 
Cr2O3 0.15(0.07) 26 .85(0.74) 1.49(0.13) 0.22(0.07) 
MgO 56.67(0.11) 26.02(0.10) 35.06(0.20) 15.70(0.11) 
CaO 0.35(0.03) 0.26(0.05) 2.52(0.13) 13 .68(0.07) 
K2O 1.61 (0.03) 

Si 1.000(0.000) 0.010(0.000) 1.869(0.006) 
Al 0.002(0.004) 1.420(0.015) 0.226(0.007) 
Cr 0.000(0.000) 0.552(0.016) 0.040(0.005) 
Mg 1.978(0.006) 1.009(0.003) 1.767(0.008) 
Ca 0.010(0.000) 0.009(0.003) 0.090(0.007) 
Total 2.990(0.007) 3. 000(0. 007) 3.992(0.009) 

C-1527, 1350°C Fo(lO) Sp(14) Opx(22) Cpx(21) Melt* 
SiO2 42.72(0.14) 0.31 (0.09) 55.05(0.29) 52 .27(0.23) 51.61 
Al2O3 0.24(0.08) 52.90(0.40) 6.44(0.29) 6.36(0.23) 18.32 
Cr2O3 0.19(0.09) 19.59(0.41) 1.31 (0.11) 1.51 (0.12) 0.16 
MgO 56.47(0.09) 26 .98(0.10) 34.65(0.30) 21.03 (0.45) 14.67 
CaO 0.39(0.05) 0.21 (0.08) 2.54(0.20) 18.83 (0.52) 14.37 
K2O 0.85 

Si 1.001(0.003) 0.008(0.002) 1.862(0.009) 1.855(0.008) 
Al 0.007(0.002) 1.580(0.010) 0.257(0.012) 0.266(0.009) 
Cr 0.003 (0.002) 0.393 (0.009) 0.035(0.003) 0.042(0.003) 
Mg 1.973(0.004) 1.019(0.004) 1.749(0.015) 1.112(0.023) 
Ca 0.010(0.001) 0.006(0.002) 0.092(0.007) 0.716(0.021) 
Total 2.994(0.002) 3.006(0.001 ) 3.992(0.004) 3.991 (0.004) 

D-82, 1340°C Fo(14) Sp(18) Opx(20) Cpx(17) Melt(13) 
SiO2 42.91 (0.21) 0.37(0.15) 55.21 (0.21) 52.25(0.27) 52.38(0.20) 
Al2O3 0.19(0.07) 51.16(0.37) 6.07(0.34) 6.39(0.37) 19.90(0.35) 
Cr2O3 0.10(0.08) 21.47(0.40) 1.31 (0.11) 1.52(0.14) 0.10(0.06) 
MgO 56.41 (0.26) 26 .84(0.12) 35.04(0.28) 20.90(0.38) 11.58(0.31) 
CaO 0.39(0.09) 0.16(0.06) 2.38(0.15) 18.94(0.51 ) 13.41 (0.30) 
K2O 2.62(0.13) 

Si 1.005(0.004) 0.009(0.004) 1.866(0. 007) 1.855(0.009) 
Al 0.005 (0.002) 1. 53 8(0. 009) 0.242(0.013) 0.267(0.015) 
Cr 0.002(0.001) 0.433 (0.009) 0.035 (0.003) 0.043 (0.004) 
Mg 1.969(0.010) 1.021(0.005) 1.766(0.014) 1.106(0.019) 
Ca 0.010(0.002) 0.004(0.002) 0.086(0.005) 0.720(0.020) 
Total 2.991 (0.004) 3.005(0.002) 3.995(0.004) 3.99 1(0.004) 

C-1511, 1330°C Fo(8) Sp(16) Opx(16) Cpx(16) Melt(12) 
SiO2 42.99(0.19) 0.33(0.10) 55.13(0.29) 52.48(0.32) 52.93(0.16) 
Al2O3 0.00(0.00) 52 .88(0.33) 6.19(0.30) 6.07(0.42) 22.00(0.40) 
Cr2O3 0.12(0.05) 20 .20(0.36) 1.33 (0.12) 1.52(0.13) 0.07(0.06) 
MgO 56.53(0.21) 26.42(0.13) 35.02(0.19) 21.10(0.38) 9.22(0.36) 
CaO 0.36(0.03) 0.16(0.06) 2.34(0.10) 18.83 (0.48) 11. 71 (0 .19) 
K2O 4.08(0.16) 

Si 1.007(0.004) 0.509(0.514) 1.864(0.009) 1.862(0.011 ) 
Al 0.000(0.000) 1.631 (0.652) 0.247(0.012) 0.254(0.01 7) 
Cr 0.002(0.001) 0.357(0.367) 0.035 (0.003) 0.043 (0.004) 
Mg 1.974(0.008) 1.491 (0.499) 1.765(0.009) 1. 116(0.01 9) 
Ca 0.009(0.001) 0.008(0.002) 0.085 (0.004) 0.71 (0.01 9) 
Total 2.992(0.004) 2.996(0.006) 3.995(0.003) 3.990(0.004) 
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Table 3 continued 

C-1499, 1360°C Fo(7) Sp(17) Opx(20) Cpx(17) Melt(13) 
SiO2 42 .74(0.14) 0.52(0.11) 55.86(0.36) 53 .04(0.38) 52.75(0.23) 
AhO3 0.00(0.00) 35.03(0 .38) 4.38(0.32) 4.83 (0.27) 15.40(0.14) 
Cr2O3 0.14(0.09) 39.34(0.39) 1.79(0.17) 2.12(0.21) 0.27(0 .07) 
MgO 56.75(0.22) 24.86(0 .14) 35.28(0.28) 22 .28(0 .31) 15 .98(0 .17) 
CaO 0.37(0.04) 0.25(0.06) 2.70(0.36) 17.73(0.35) 13 .79(0.12) 
K2O 1.80(0 .05) 

Si 1.002(0.003) 0.014(0.003) 1.893(0.011) 1.879(0.011) 
Al 0.000(0.000) 1.124(0.011) 0.175(0.013) 0.202(0 .012) 
Cr 0.003(0.002) 0.847(0.010) 0.048(0 .005) 0.059(0.006) 
Mg 1.983(0.008) 1. 008(0. 006) 1.782(0.013) 1.177(0.015) 
Ca 0.009(0.001) 0.007(0.002) 0.098(0 .013) 0.673(0.014) 
Total 2.997(0.003) 3.000(0 .002) 3.996(0.005) 3.990(0 .004) 

C-1481, 1350°C Fo(8) Sp(24) Opx(21) Cpx(21) Melt (20) 
SiO2 42.68(0.17) 0.34(0.09) 55 .50(0.34) 53 .28(0.30) 53 .21(0 .17) 
Al2O3 0.00(0 .00) 37.72(0.34) 5.01(0 .38) 5.21(0.33) 17.04(0 .11) 
Cr2O3 0.22(0 .08) 36.91(0.33) 1.84(0.18) 1.99(0.16) 0.22(0 .12) 
MgO 56.76(0.15) 24 .79(0.11) 34.92(0.24) 23.43(0.34) 13 .85(0 .18) 
CaO 0.33(0.03) 0.25(0.06) 2.74(0.25) 16.08(0.37) 12.61 (0.18) 
K2O 3.06(0 .08) 

Si 1.001(0.003) 0.009(0 .002) 1.881(0.011) 1.877(0.009) 
Al 0.000(0.000) 1.199(0.009) 0.200(0 .015) 0.216(0 .014) 
Cr 0.004(0.001) 0.787(0 .008) 0.049(0.005) 0.055(0.004) 
Mg 1.984(0.006) 0.996(0.005) 1.764(0 .011) 1.231(0.017) 
Ca 0.008(0.001) 0.007(0.002) 0.100(0.009) 0.607(0 .015) 
Total 2.997(0.003) 2.998(0 .002) 3.994(0 .003) 3.987(0 .003) 

C-1478, 1340°C Fo(12) Sp(15) Opx(19) Cpx(21) Melt (21) 
SiO2 42.89(0.10) 0.45(0.20) 55.66(0.33) 52.96(0 .16) 54 .63(0.13) 
Al2O3 0.17(0.06) 39.47(0.55) 4.88(0.27) 5.10(0.15) 18.81(0.16) 
Cr2O3 0.12(0.10) 34.38(0.52) 1.71(0.20) 2.05(0 .15) 0.13(0.07) 
MgO 56.48(0.15) 25.46(0.11) 35.29(0 .18) 22.03(0.47) 10.57(0.13) 
CaO 0.34(0.06) 0.24(0.08) 2.45(0 .11) 17.87(0.49) 10.10(0.21) 
K2O 5.76(0.16) 

Si 1.004(0.002) 0.012(0.005) 1.885(0 . 009) 1.876(0.005) 
Al 0.005(0.002) 1.243(0.015) 0.195(0.011) 0.213(0 .006) 
Cr 0.002(0.002) 0.727(0 .012) 0.046(0 .005) 0.057(0.004) 
Mg 1.972(0.005) 1.014(0.004) 1.781(0.009) 1.163(0.023) 
Ca 0.009(0.002) 0.007(0 .002) 0.089(0.004) 0.679(0 .019) 
Total 2.992(0.002) 3.003(0.002) 3.995(0.005) 3.989(0.004) 

C-1480, 1320°C Fo(8) Sp(16) Opx(17) Cpx(16) Melt** 
SiO2 42 .81(0.13) 0.62(0 .27) 55 .59(0.42) 52 .834(0 .26) 
Al2O3 0.00(0 .00) 39.83(0 .57) 4.77(0.38) 5.19(0.20) 
Cr2O3 0.06(0 .04) 34.21(0.49) 1.85(0.27) 2.23(0.18) 
MgO 56.76(0.13) 25 .11(0.16) 35.30(0.36) 21.74(0.24) 
CaO 0.37(0.05) 0.23(0.07) 2.49(0.28) 18.00(0.32) 
K2O 

Si 1.003(0.003) 0.016(0 .007) 1.883(0.012) 1.874(0.008) 
Al 0.000(0.000) 1.255(0.018) 0.190(0.015) 0.2 17(0.008) 
Cr 0.001(0.001) 0.724(0 .012) 0.050(0.007) 0.063(0 .005) 
Mg 1.983(0.005) 1. 002(0. 008) 1.783(0.017) 1.149(0.012) 
Ca 0.009(0.001) 0.009(0.003) 0.090(0.010) 0.684(0.013) 
Total 2.996(0.002) 3.001(0.006) 3.997(0.005) 3.987(0 .004) 

C-1459, 1360°C Fo(6) Sp(8) Opx(15) Melt(8) 
SiO2 43 .11 (0.14) 0.27(0.13) 57.13 (0. 38) 53 .53 (0. 13) 
Al2O3 0.00(0.00) 24 . 73 (0 .48) 2.83 (0.25) 13 .38(0.06) 
Cr2O3 0.14(0.06) 50.94(0.51) 1.63(0.22) 0.58(0. 10) 
MgO 56.43(0.12) 23 .82(0.14) 35.72(0.41) 16.99(0.11) 
CaO 0.32(0.07) 0.25(0.08) 2.68(0.25) 13 . 76(0.06) 
K2O 1.77(0 .09) 

Si 1.009(0.003) 0.008(0 .003) 1.933(0.015) 
Al 0.000(0.000) 0.830(0.016) 0.113 (0.0 11) 
Cr 0.003(0.002) 1.147(0.017) 0.044(0.005) 
Mg 1.969(0.005) 1.011(0.010) 1.802(0.015) 
Ca 0.008(0.001) 0.008(0.003) 0.097(0.008) 
Total 2.989(0.003) 3.004(0.005) 3.992(0.004) 
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Table 3 continued 

C-1414, 1360°C Fo(18) Sp(20) Opx(19) Cpx(20) Melt(15) 
SiO2 42 .70(0.14) 0.33(0.08) 56.56(0.21) 53 .19(0.14) 52.83(0.19) 
AhO3 0.00(0.00) 29.05(0.36) 3.43(0.15) 4.67(0.28) 14.40(0.14) 
Cr2O3 0.37(0.11) 45 .87(0.46) 1.52(0.12) 2.03(0 .05) 0.47(0 .11) 
MgO 56.57(0.12) 24.53(0.23) 35.62(0 .17) 22 .56(0.26) 16.83(0.16) 
CaO 0.35(0.02) 0.23(0.05) 2.86(0.18) 17.55(0.47) 14.59(0 .12) 
K2O 0.87(0 .06) 

Si 1.001(0.003) 0.009(0.002) 1.916(0.006) 1.883(0.004) 
Al 0.000(0.000) 0.956(0.010) 0. 137(0.006) 0.195(0.011) 
Cr 0.007(0.002) 1.013(0.012) 0.041(0.003) 0.057(0.001) 
Mg 1.978(0.005) 1.021(0.009) 1. 798(0. 008) 1.191(0.012) 
Ca 0.009(0.001) 0.007(0.001) 0.104(0.007) 0.666(0 .019) 
Total 2.995(0.002) 3.006(0.003) 3.996(0.003) 3.991(0.004) 

C-1472, 1350°C Fo(8) Sp(17) Opx(15) Cpx(17) Melt(9) 
SiO2 42 .80(0.14) 0.35(0.09) 56.44(0.22) 53 .50(0 .26) 53.74(0.13) 
Al2O3 0.00(0.00) 29.95(0.39) 3.53(0.18) 4.12(0.24) 15 .39(0.09) 
Cr2O3 0.17(0.05) 45 .06(0 .30) 1.78(0.21) 2.17(0.26) 0.44(0.05) 
MgO 56.68(0.17) 24.36(0.18) 35.63(0.24) 22.95(0 .24) 14.75(0.04) 
CaO 0.35(0.06) 0.27(0.05) 2.62(0.10) 17.25(0 .14) 13 .14(0.10) 
K2O 2.54(0.08) 

Si 1.003(0.003) 0.010(0.002) 1.912(0.006) 1.893(0 .008) 
Al 0.000(0.000) 0.983(0.012) 0.141 (0.007) 0.172(0.010) 
Cr 0.003(0.001) 0 . 992(0. 008) 0.048(0.006) 0.061(0.007) 
Mg 1.980(0.006) 1.011(0.008) 1.799(0 .012) 1.211(0.012) 
Ca 0.009(0.002) 0.008(0.001) 0.095(0.004) 0.654(0.005) 
Total 2.995(0.003) 3.003(0.003) 3.994(0 .004) 3.991(0.004) 

C-1449, 1340°C Fo(8) Sp(16) Opx(17) Cpx(22) Melt(13) 
SiO2 42.64(0.23) 0.39(0.11) 56.49(0.20) 53 .61(0.24) 53 .13(0.16) 
Al2O3 0.00(0.00) 31.49(0.35) 3.59(0.22) 4.05(0.22) 16.30(0.18) 
Cr2O3 0.12(0.06) 43.24(0.45) 1.73(0.16) 2.22(0.18) 0.34(0.07) 
MgO 56.90(0.28) 24 .66(0.15) 35.62(0.30) 22.47(0.34) 13 .42(0 .28) 
CaO 0.34(0.05) 0.22(0.06) 2.57(0.13) 17.66(0.33) 12.55(0.12) 
K2O 3.26(0.06) 

Si 1.000(0.005) 0.011(0.003) 1.912(0.006) 1.899(0.008) 
Al 0.000(0.000) 1.026(0.010) 0.143(0.009) 0.169(0.009) 
Cr 0.002(0.001) 0.945(0.011) 0.046(0.004) 0.062(0 .005) 
Mg 1.989(0.011) 1.016(0.006) 1.797(0.015) 1.186(0.017) 
Ca 0.009(0.001) 0.007(0.002) 0.093(0.005) 0.670(0 .013) 
Total 2. 999(0. 005) 3.004(0.002) 3.993(0.005) 3. 986(0. 005) 

C-1469, 1330°C Fo(8) Sp(13) Opx(17) Cpx(23) Melt(6) 
SiO2 42 .94(0.12) 0.37(0.15) 56.56(0.29) 53.48(0.32) 55 .22(0.10) 
Al2O3 0.17(0.12) 33 .24(0.37) 3.48(0.23) 4.33(0.36) 18.45(0.16) 
Cr2O3 0.01(0.02) 41.38(0.44) 1.77(0.17) 2.19(0.22) 0.33(0.11) 
MgO 56.55(0.14) 24.80(0.22) 35.68(0.19) 22.41(0.34) 10.01(0 .17) 
CaO 0.34(0.07) 0.21(0.09) 2.52(0.18) 17.60(0.40) 11.72(0.28) 
K2O 4.26(0.11) 

Si 1.005(0.003) 0.010(0.004) 1.915(0.009) 1.893(0.010) 
Al 0.005(0.003) 1.075(0.011) 0.139(0.009) 0.181(0.015) 
Cr 0.000(0.000) 0.898(0 .011) 0.047(0.004) 0.061 (0.006) 
Mg 1.974(0.005) 1.014(0 .008) 1.800(0.010) 1.183(0.017) 
Ca 0.008(0.002) 0.006(0.003) 0.091(0 .006) 0.668(0 .016) 
Total 2.992(0.oq2) 3.003(0.003) 3.992(0 .005) 3.986(0 .005) 

C-1489, 1360°C Fo(8) Sp(20) Opx(17) Cpx(19) Melt(15) 
SiO2 42 .83(0.11) 0.44(0 .09) 56.92(0.23) 54.54(0.28) 53 .20(0 .13) 
Al2O3 0.16(0.07) 23 .71(0.31) 2.75(0 .24) 3.34(0.20) 13 .21(0.12) 
Cr2O3 0.40(0.05) 51 .97(0.42) 1.74(0 .14) 2.09(0.16) 0.44(0 .07) 
MgO 56.26(0.16) 23 .54(0 .22) 35.61 (0. 15) 25 .53(0.53) 17.61(0 .26) 
CaO 0.35(0.03) 0.34(0.05) 2.99(0 .07) 14.49(0.53) 14.36(0.26) 
K2O 1. 19(0.05) 

Si 1.004(0.002) 0.013(0.002) 1.929(0.007) 1.913(0.007) 
Al 0.004(0.002) 0. 799(0. 009) 0.110(0.010) 0. 138(0.008) 
Cr 0.007(0.001) 1.175(0.011 ) 0.047(0 .004) 0.058(0 .005) 
Mg 1.966(0.006) 1. 004(0. 009) 1.799(0 .008) 1.335(0.026) 
Ca 0.009(0.001) 0.011(0.001) 0.108(0.003) 0.545(0.021) 
Total 2.990(0.003) 3.000(0.003) 3.993(0 .003) 3.989(0 .005) 
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Table 3 continued 

C-1463, 1350°C Fo(6) Sp(14) Opx(19) Cpx(25) Melt(20) 
SiO2 42.79(0.12) 0.46(0.15) 57.10(0.38) 54 .57(0. 35) 54 .92(0.15) 
AhO3 0.00(0.00) 21 .96(0.41) 2.29(0.23) 2.75(0.29) 13 .79(0.13) 
Cr2O3 0.25 (0.17) 53 .87(0.40) 1.82(0.30) 2.20(0.32) 0.30(0.07) 
MgO 56.61 (0.14) 23 .35(0.20) 35.95 (0.24) 23 .92(0.33) 15 .16(0 .12) 
CaO 0.35(0.04) 0.37(0.06) 2.85 (0.14) 16.56(0.39) 12.85 (0.10) 
K2O 2.97(0 .09) 

Si 1.008(0.004) 0.013 (0.004) 1.938(0.010) 1.928(0.010) 
Al 0. 000(0. 000) 0.746(0.013) 0.092(0.010) 0.115(0.012) 
Cr 0. 003 (0. 005) 1.227(0.011 ) 0.049(0.008) 0.062(0.008) 
Mg 1.987(0.005) 1.003(0.008) 1.817(0.012) 1.259(0.017) 
Ca 0.010(0.000) 0.011 (0.002) 0.103(0.005) 0.627(0.015) 
Total 3.008(0.004) 3.000(0.003) 4.001 (0.008) 3.991 (0.010) 

C-1476, 1330°C Fo(7) Sp(13) Opx(16) Cpx(22) Melt(ll) 
SiO2 42 .92(0.20) 0.51 (0.18) 57.16(0.35) 54 .05(0.47) 55 .20(0.20) 
Al2O3 0.00(0.00) 27.29(0.50) 2.68(0.33) 3.38(0.51) 16.06(0 .20) 
Cr2O3 0.17(0.06) 47 .93(0 .55) 1.52(0.19) 2.09(0.22) 0.18(0.07) 
MgO 56.55(0.15) 23 .93 (0.15) 35.80(0.28) 23 .29(0.39) 12.53 (0.15) 
CaO 0.36(0.03) 0.34(0.10) 2.84(0.28) 17.19(0.47) 10.92(0.17) 
K2O 5.11 (0.09) 

Si 1.009(0.007) 0.014(0.005) 1.935(0.010) 1.911(0.015) 
Al 0.000(0.000) 0.905(0 .015) 0.107(0.013) 0.141 (0.021) 
Cr 0.000(0.000) 1.066(0.014) 0.041 (0.005) 0.059(0.006) 
Mg 1. 980(0. 008) 1.004(0.005) 1.806(0.013) 1.228(0.019) 
Ca 0.010(0.000) 0.010(0.003) 0.103(0.010) 0.651(0 .019) 
Total 2.999(0.004) 3.000(0.002) 3.991 (0.004) 3.989(0 .005) 

C-1516, 1380°C Fo(12) Sp(18) Opx(16) Cpx(16) Melt(lS) 
SiO2 42 .83 (0. 12) 0.44(0 .12) 57. 94(0 .28) 56.62(0 .16) 54 .80(0.18) 
Al2O3 0.16(0.05) 13 .74(0 .22) 1.56(0.25) 1.73(0.10) 10.23(0.17) 
Cr2O3 0.40(0.08) 63 .14(0.29) 1.27(0.19) 1.61(0.10) 0.59(0.09) 
MgO 56.23(0.16) 22.31 (0.15) 36.10(0.22) 30.73 (0.39) 18.15(0.25) 
CaO 0.39(0.04) 0.37(0.07) 3.12(0.10) 9.31(0.32) 14.15(0.16) 
K2O 2.08(0.04) 

Si 1.004(0.003) 0.013(0.004) 1.961(0.018) 1.953(0.004) 
Al 0.004(0.001) 0 .484(0 . 007) 0.062(0.010) 0.070(0.004) 
Cr 0.007(0.001) 1.494(0.008) 0.034(0 .005) 0.044(0.003) 
Mg 1.965(0.006) 0.995(0 .006) 1.821(0.011) 1.580(0.019) 
Ca 0.010(0.001) 0.012(0 .002) 0.113(0.004) 0.344(0.012) 
Total 2.990(0.003) 2.998(0.002) 3.991 (0.003) 3.990(0.005) 

C-1512, 1370°C Fo(8) Sp(20) Opx(19) Cpx(14) Melt(14) 
SiO2 42 .77(0.11 ) 0.44(0.12) 57.75(0 .24) 55 .74(0.24) 54.99(0.10) 
Al2O3 0.00(0 .00) 16.58(0.24) 1.77(0.19) 2.15(0.24) 11.74(0.17) 
Cr2O3 0.34(0.10) 60.38(0.26) 1.37(0.15) 1.80(0.17) 0.41 (0.11) 
MgO 56.50(0.18) 22 .25(0.14) 36.11(0.16) 27 .68(0.38) 16.49(0.12) 
CaO 0.39(0.06) 0.35(0.08) 3.00(0.07) 12.63(0 .38) 13 .34(0.21) 
K2O 3.02(0.05) 

Si 1.009(0.004) 0.013 (0.004) 1.954(0.007) 1.942(0.007) 
Al 0.000(0.000) 0. 579(0. 007) 0.071 (0.008) 0.088(0.010) 
Cr 0.008(0.005) 1.414(0.008) 0.037(0.004) 0.050(0 .005) 
Mg 1.983(0.007) 0. 982(0. 006) 1.822(0.008) 1.438(0.019) 
Ca 0.010(0.000) 0.011 (0.002) 0.109(0.002) 0.471(0 .015) 
Total 3.009(0.008) 2.998(0.007) 3 .992(0 .003) 3.989(0 .005) 

C-1515, 1360°C Fo(8) Sp(17) Opx(16) Cpx(12) Melt(lS) 
SiO2 41 .69(0.16) 0.71 (0.19) 56. 96(0. 32) 54.88(0 .32) 55 .34(0.14) 
Al2O3 0.00(0.00) 19.79(0.59) 1.30(0.30) 2.31(0.36) 12.93 (0 .12) 
Cr2O3 0.44(0.06) 55.32(0.59) 1.45(0.23) 1.98(0.31) 0.32(0.08) 
MgO 57.52(0.16) 23 .82(0.17) 37.43(0.34) 26.48(0.27) 15 .18(0.10) 
CaO 0.35(0.06) 0.37(0.07) 2.86(0.35) 14.36(0.40) 12.23 (0.11) 
K2O 4.01(0 .06) 

Si 0.985 (0.005) 0.020(0 .006) 1.935(0.012) 1.928(0.011) 
Al 0.000(0.000) 0.678(0.020) 0.051(0.012) 0.096(0.015) 
Cr 0.010(0.000) 1.272(0 .016) 0.039(0.008) 0.055 (0.009) 
Mg 2.025 (0.008) 1.033 (0.008) 1.896(0.015) 1.387(0.012) 
Ca 0.010(0.000) 0.011 (0.002) 0.104(0.014) 0.540(0 .015) 
Total 3.030(0.008) 3.013(0 .007) 4.026(0 .009) 4.005(0 .008) 
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Fig. 8 The Cr2O3 effect on partial melting temperature. Numbers in the figure are the K2O content in the 
experimentally observed melts. Curves indicated by the K2O content are from the regression (Equ. 7). An 
uncertainty of five degrees ( one standard deviation) for the experimental temperature measurement is 
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system CMASCr+K2O (thin broken lines). Raw experimental data are used. Lines are drawn by least­
squares regression. Symbols are the same as those in Fig. 8, with the exception that Run C-1469 with a 
K2O content of 4.26% is shown in grey. 
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[AhO3] = 25.9 + 0.62 [K2O] - 0.535 Cr#sp - 9.4lx10-3 (Cr#sp)2 + 7.09x10-5 (Cr#sp)3 

(9) 

[MgO] = 6.8 - 1.84 [K2O] + 0.685 Cr#sp - 1.42x10-2 (Cr#sp)2 + 9.84x10-5 (Cr#sp)3 + 

1.39x10-2 [K2O]Cr#sp (10) 

and 

[CaO] = 14.8 - 0.86 [K2O] + 0.012 Cr#sp (11) 

These entirely empirical equations then allow the melt composition in CMAS-Cr2O3 to 

be calculated as a function of Cr# sp. The average difference between the calculated 

melt composition using these equations and the experimentally observed melt 

composition is 0.23 wt% for Si02, 0.31 wt% for AhO3, 0.32 wt% for MgO and 0.13 

wt% for CaO. 

The regressed melt compositions are shown in Figs. 1 0a to 1 0d. With Cr2O3 

addition into the system CMAS, the SiO2 content of melt increases from 49 .1 wt% 

(Cr#sp = 0) to 54.7 wt% (Cr#sp = 80), the MgO content from 15.45 wt0/o to 21.4 wt% 

and the Cao content from 15 .3 3 wt% to 16 .0 wt% while the AhO3 content decreases 

from 20.12 wt% to 7.1 wt%. 

Melt compositions in the system CMAS-Cr2O3 derived from the experiments in 

the system CMAS-Cr2O3-K2O by equations 8 to 11 are projected from 01 onto the plane 

Di-JdCaTsLc-Qz (Fig. 1 la) and from Di onto the plane O1-JdCaTsLc-Qz (Fig. 11 b ). To 

handle Cr in these plots, the Cr2O3 contents of the melts were subtracted and other 

oxides were renormalised to 100 wt% (An alternative procedure would be to subtract a 

Mg2Cr2O4 component as this would be an early crystallizing phase. Doing this would 

make the melts slightly more Qz normative, from 0.17 mol¾ at Cr#sp=20 to 0.96 mol¾ 

at Cr#sp=80). 

The most striking features about the melt in the system CMASCr are the 

increasing Di component (Fig.11 a), the increasing Hy component and the generally 

quartz-normative nature (Fig. 11 b) at 11 kbar. 

The isobarically invariant melt produced by the Sp-lherzolite assemblage in the 

system CMAS is an olivine-normative tholeiite (Presnall et al., 1979; Walter & Presnall, 
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Fig. 10 The Cr2O3 effect on melt composition: (a) SiO2, (b) AhO3, (c) MgO and (d) CaO. Symbols are the 
same as those in Fig. 9. Run C-1469 with a K2O content of 4.26%, which does not fit in the regression 
(see text), is shown in grey. Curves are drawn according to the following procedure: 1. Calculate melt 
compositions with certain K2O content (from 0% to 6%) at Cr# sp ?:: 20 using Equation 8 to Equation 11 

in the text; 2. Calculate melt compositions with certain K20 content (from 0% to 6%) at Cr# sp = 0 using 
the regression result in the system CMAS+K2O from Chapter 2 of this thesis; 3. Regress these calculated 
melt compositions to draw the curves. 

1994; Chapter 2 of this thesis). However, the melt composition reaches the join An-Hy 

and becomes Qz-normative at Cr#sp = 20. As Cr2O3 is added to the system, the AliO3 

content of melt drops sharply, so that the An component of the melt decreases. The 

effect of less An component, coupled with the almost negligible effect of Cr2O3 on the 

CaO content of the melt (Equation 11 ), means that more CaO is available to form Di. 
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Fig. 10 continued. 

An increase in Di component in turn requires more MgO, but this is more than 

compensated for by the effect that Cr2O3 has on increasing MgO (Equation 10). The net 

result is an increase in the Hy + 01 or Qz components of the melt. An interesting point 

is that for Cr#
8P> 20, the extra MgO and SiO2 is approximately in the proportion of 1:1, 

so that the melt composition changes along a line virtually co-incident with the An-Hy 

JOln. 

4 .2 F o compositions 

Forsterite has near-endmember composition. The amount of Cr2O3 increases 

with Cr#sp , reaching 0.4 wt% at Cr# 8p=60 (Fig. 12a). The CaO, however, is very 

constant, with a content of 0.35 + 0.05 (Fig. 12b). Note that Fo in my preliminary 
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Fig. 11 Multiply-saturated melt compositions (Fo+Sp+Opx+Cpx+Melt) in the CMAS-Cr2O3 system 
projected from 01 onto the plane Di-JdCaTsLc-Qz (a) and from Di onto the plane JdCaTsLc-Qz-O1 (b). 
The projecting procedure of Falloon & Green (1988) is followed in this study. The melt composition in 
the system CMAS is from Chapter 2 of this thesis. Regressed melt compositions calculated using 
Equation 8 to Equation 11 are used. The Cr2O3 content is simply removed as Cr2O3 and melt composition 
is renormalised to 100%. Numbers in the diagram refer to Cr# sp in equilibrium. 

unbuffered experiments without Fe2O3 sleeves generally had higher Cr contents (up to,--.; 
0.8 wt% Cr2O3 at Cr#sp=60), indicative of Cr2+. 
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4.3 Sp composition 
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The spinel in the system CMASCr (+ K2O) is a simple binary solid solution 

between MgAhO4 and MgCr2O4• The electron probe analyses return small and variable 

amounts of SiO2 and CaO, which may be spurious, caused by the generally small size of 

spinel crystals (typically 3-15 µmin diameter). 

4.4 Pyroxene compositions 

Al203 and Cr203 

The relationship of Cr and Al in orthopyroxene observed in this study is shown in 

Fig. 14. For comparison, the data in system MASCr at subsolidus conditions from 

Klemme & ONeill (2000) are shown as well. 

The relationship between Cr and Al in Opx is not a mere substitution of one by 

the other. When Cr is added to the system, the Al content in Opx first decreases with 
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Fig. 13 Relationship between the temperature and the cl (1 00*Cr/(Cr+Al)) of Sp. All experiments but D-
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increasing Cr but then decreases. This behaviour was previously observed by Nagata et 

al. (1983) and Witt-Eickschen & Seek (1991) in natural peridotites. 

The data of Klemme & O'Neill (2000) agrees with my data very well and defines 

a similar relationship for Cr and Al in Opx. Furthermore, both studies suggest that 

molar Al in Opx is higher than Cr, except, according to Klemme & O'Neill (2000), at 

very high Cr# sp. The relationship between Al and Cr in Cpx shown in Fig. 15 is 

similar. 

It follows that the partitioning of Al3
+ and Cr3

+ between Opx and Cpx should also 

be similar. This is demonstrated in Fig. 16a, where all experimental data plot close to 

the 1: 1 line. 

Most experimental data from the literature at near-solidus temperatures ( which are 

all in complex multicomponent systems) plot close to the 1: 1 line, albeit with more 

scatter (Fig. 16b). The experiments in Falloon & Green (1987) at 10 kbar, however, 

define an almost horizontal line, suggesting that the Cr/ Al ratio in Cpx does not change 

with that ratio in Opx. Possibly this difference is due to the short experimental duration 

( < 24 hours in most cases) which may be long enough to make some compositional 

change in the Opx, but too short to make any composition change in the Cpx. This 

would be quite similar to the observation in this study, in which Cpx in the sandwiched 
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layer in many of the low partial melting experiments is zoned in Cr/ Al, whereas Opx is 

homogen1)us. 
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assumed to be Cr3+. 
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Fig. 16 Cr3
+ and Al partitioning between Opx and Cpx observed in this study (a) and in literature studies 

(b; complex compositions used). The average of the one standard deviations (a) observed in our study is 
plotted in (b) to facilitate the data comparison. F0l , Falloon et al. , 2001 ; F99, Falloon et al. , 1999; FG87, 
Falloon & Green, 1987 (we use the revised data by Falloon et al. , 2001); R98, Robinson et al. , 1998; 
BS94, Baker & Stolper, 1994; SJ0 1, Schwab & Johnston, 2001 ; PJ00, Pichering & Johnston, 2000. The 
pressure in all studies except Robinson et al. (1998; 15 kbar) and this study (11 kbar) is 10 kbar. Only 
experiments displaying melt plus a Sp-lherzolite phase assemblage are shown. 

CaOandMgO 

The exchange of Ca and Mg between Opx and Cpx is the basis of the two­

pyroxene geothermometer, the main means of estimating temperatures of equilibration 

in lherzolitic assemblages. Previous experimental studies have mostly been at relatively 

low temperatures (Gasparik, 1984; Sen, 1985; Nickel et al. , 1985; Brey et al, 1990) or in 

very simple chemical systems (Mori & Green, 1976; Lindsley & Dixon, 1976; Nickel & 

Brey, 1984). The experimental observations here offer an opportunity to evaluate the 
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CaO equilibrium at relatively high temperatures and 1n a chemical system of 

intermediate complexity. 

Pyroxene phase relationships in the system CMS and CMAS at 11 to 15 kbar are 

shown in Fig. 17a. Data in the system CMAS are from assemblages saturated in Fo+Sp, 

and therefore have the maximum amount of dissolved alumina. The Ca/(Ca+Mg) ratio 

of Opx is almost independent of pressure and alumina content, but strongly dependent 

on temperature. The Ca/(Ca+Mg) ratio of Cpx is also almost independent of pressure, as 

illustrated by the data of Gasparik (1984); it, however, depends on both temperature and 

alumina. The presence of AhO3 increases Ca/(Ca+Mg) in Cpx. 

The geometry of the phase relations between Opx and Cpx is greatly influenced 

by the solvus that exists (mostly metastably) between low Ca Cpx and high Ca Cpx. 

The solidus of the Fo+Opx+Cpx+Sp assemblage in the system CMAS at 11 kbar is ,..., 

1320°C (Chapter 2 of this thesis), which is much lower than the crest of the solvus in 

CMS (,..., 1450°C, from Fig. 5 of Nickel & Brey, 1984), and also lower than the 

temperature at which low Ca Cpx becomes stable(,..., 1360°C). Thus in CMAS saturated 

with Fo+Sp only Opx and high Ca Cpx exist stably. There are no experimental data in 

the literature that can be used to define phase relationships at 11 kbar at temperatures 

> 1320°C, except those in the pure CMS system. However, adding Cr2O3 to CMAS 

raises the solidus, permitting access to this temperature region, albeit at lower AhO3 

contents. 

Our experimental data are plotted in Fig. 17b. It appears that the addition of AhO3 

and Cr2O3 into the system CMS must lower the crest of the Cpx solvus, such that the 

Cpx compositions in the highest temperature experiments are decidedly subcalcic. The 

phase relationship is hence drawn as shown in Fig. 17b. 

This geometry is similar to the phase relationship observed at higher pressures (> 

,..., 18 kbar) in the system CMS (Mori & Green, 1976; Nickel & Brey, 1984; Longhi & 

Bertka, 1996). Partial melting studies using natural lherzolite compositions (Takahashi 

& Kushiro, 1983; Falloon & Green, 1988 and unpublished data) suggested that this 

solvus becomes metastable at a pressure between 15 and 18 kbar. 

Experiments with variable Cpx compositions display a remarkably tight 

correlation between Ca/(Ca+Mg) and Cr/(Cr+Al) (Fig. 6). The increase of Ca with Al in 

Cpx is similar to the difference observed in Cpx compositions in equilibrium with Opx 

between the systems CMS and CMAS, as shown in Fig. 17a. I therefore interpret these 

correlations to be due to initial differences in Cr/(Cr+Al) in Cpx being preserved due to 
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Fig. 17 Calcium partitioning between Opx and Cpx: (a) sketchy phase relationship of system CMS and 
system CMAS, and (b) sketchy phase relationship of system CMASCr. For clearance, the line for the 
CaO content in Opx in the system CMAS at 11 kbar is omitted in (a) . Big cross in (b) approximates the 
ratio of Cpx component and Opx component in the bulk compositions used in this study. The initial ratio 
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set follows the name of the experiment set. 

111 



sluggish diffusion rates for Cr and Al, with Ca and Mg adjusting to the local Cr/(Cr+Al) 

ratio to maintain metastable equilibrium with Opx. 

4.5 Geothermometry 

Ca + Mg-in-pyroxene geothermometer 

The geothermometer of Nickel et al. (1985) was constructed from data at 

relatively low temperatures in the system CMAS and it returns temperatures in good 

agreement with experimental temperatures for the lower temperature experiments ( < 

1350°C) (Fig. 18a). As might be expected, it does not give such good agreement with 

the high temperature experiments (i.e. high Cr2O3 content), in which the Cpx becomes 

subcalcic. 

The Opx-Cpx geothermometer (Equation 9 of Brey & Kohler, 1990) and the Ca­

in-Opx geothermometer (Equation 10 of Brey & Kohler, 1990) were constructed mostly 

from data obtained at relatively low temperatures, including data from natural lherzolite 

compositions. The Opx-Cpx geothermometer generally returns higher calculated 

temperatures while the Ca-in-Opx geothermometer generally returns lower temperatures 

(Fig. 18b, 18c ). 

In order to see if the performance of these geothermometers depends 

systematically on composition, I plot the difference between the calculated temperature 

and the nominal temperature against the Cr# of the Sp in Figs. 18d to 18f. It is apparent 

from these diagrams that there is indeed a systematic effect, suggesting that further fine­

tuning of these geothermometers would be profitable. 

A/203-in-Opx geothermometer 

The solubility of AhO3 in Opx in equilibrium with Fo+Sp is another temperature­

sensitive equilibrium that has been used as a geothermometer. The latest version was 

calibrated against the Ca-in-Opx geothermometer of Brey & Kohler (1990) by Witt­

Eickschen & Seek (1991). My experimental data in the system CMASCr (+ K2O) plus 

some data from Klemme & ON eill (2000) are plotted in Fig. 19. 

The calculated temperature by the geothermometer of Witt-Eickschen & Seek is 

based on one of the following cation distribution models: 1) all Cr on M1 site of Opx 

and 2) half Cr on M1 site of Opx (Klemme & O'Neill, 2000). The average differences 

between the calculated temperature using this geothermometer and the experimental 

temperature are ,...., 144 degrees for the former cation distribution model and 
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Fig. 18 Geothermometer-checking using the experimental data reported in this study: (a) and ( d), for the 
geothermometer of Nickel et al. (1985); (b) and (e) for the Opx-Cpx geothermometer of Brey & Kohler 
(1990; equation 9); (c) and (f) for the Ca-in-Opx geothermometer of Brey & Kohler (1990; equation 10). 
The average difference for these three geothermometers is ~ 44 degrees, ~ 61 degrees, and ~ 23 degrees, 
respectively. 

,...., 289 degrees for the latter cation distribution model (Fig. 19a, 19b, respectively). 

When I plot the data against the Cr# of Sp in equilibrium, a compositional dependence 

emerges (Fig. 19c, 19d). The empirical correction made by Witt-Eickschen & Seek 

(1991) is thus not entirely successful and this geothermometer should be used with 

caution. 

"Magmathermometer" of Ford et al. (1983) 

The Ford et al. (1983) geothermometer is based on the olivine/melt cation 

partitioning for Mg and others and has recently been used widely (Danyushevsky et al. , 
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Fig. 19 Effect of chromium and cation distribution model on the performance of the Witt-Eickschen & 
Seek (1991) geothermometer: (a) and (c) assuming all Cr3

+ on site M 1 in Opx while (b) and (d) assuming 
only half Cr3

+ on site M1. KO00, Klemme & O'Neill (2000). The average difference shown in (a) and (c) 
is~ 144 degrees while it is~ 289 degrees in (b) and (d). 

1996; Falloon et al., 1999; Falloon & Danyushevsky, 2000; Green et al., 2000; Falloon 

et al., 2001 ). In Chapter 2 of this thesis, I discussed a possible K2O-dependent problem 

and a possible pressure-dependent problem of this geothermometer while in Chapter 4 

of this thesis, I examine the effect of H2O. Since the Ford et al. (1983) geothermometer 

was not calibrated for the Cr2O3 content in the melt, it is instructive to use my 

experimental data to evaluate the effect of Cr2O3 on its performance. 

In Fig. 20 I plot the temperature difference between the nominal temperature of 

the experiments and the temperature calculated from this geothermometer against the 

K2O content in melt (Fig. 20a) and against the cl of Sp in equilibrium (Fig. 20b ). The 

addition of chromium into the system CMAS ( + K20) blurs the K2O-dependence of this 

geothermometer observed in Chapter 2 of this thesis. The average difference between 

the calculated temperature and the nominal temperature of my experiments is ,.._, 5 3 

degrees. In Fig. 20b, a Cr2O3-dependence of this geothermometer is suggested. This 
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illustrates well the importance of taking into account the effect of Cr2O3 on melt 

composition when using the Ford et al. (1983) geothermometer. 
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Fig. 20 Effect ofK20 (a) and Cr20 3 (b) on the performance of the Ford et al. (1983) geothermometer. The 
average difference between the calculated temperature and the nominal temperature is ~ 53 degrees. The 
partitioning of Mg between melt and olivine is used to calculate the temperature. Only those experiments 
with melt coexisting with a Sp-lherzolite phase assemblage are used here. 

5. Discussions 

5.1 Al2O3 content of melt 

The dramatic decrease in AhO3 with Cr# sp for multiply-saturated melts in the 

system CMAS-Cr2O3 is entirely expected from Equation 4. To illustrate this more 

quantitatively, consider the equilibrium constant for this reaction: 

(12) 

In Fig. 21, I plot lnx:g1.s versus 1 / 2 lna~gA1204 + 1/ 4lnaIT; 2si206 for all data from 

this study and those in Chapter 2 of this thesis, for melts multiply saturated in Fo + Sp + 
Opx + Cpx. I used the Opx and Sp models of Klemme and O'Neill (2000) to calculate 

a~gAI2 04 and aM';2 si2o6 , and assumed a~g2 sio4 = 1. The stoichiometry of Equation 4 

dictates that the data should plot on a line with a slope of -1 if they were isothermal, and 

if the activity coefficient of AlO1.s in the melt were constant. The line obtained by 
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extrapolation of the melt compositions to [K20] = 0 is a fairly good approximation to 

that expected. 
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Fig. 21 Effect of Sp and Opx on the AbO3 content in melts. The broken line (K2O-free) is approximately 
calculated by the following procedure: 1. Estimate the Cr# sp at K2O = 0 for every set of experiments 
(Fig. 13); 2. Calculate the melt composition using the regression equations (Equation 8, 9, 10, 11 and 13; 
see later discussion); 3. Finalise the calculation (Equation 12) with Opx compositions from the 
experiment containing the lowest K2O (in melt) . Thermodynamic models for Sp and Opx are from 
Klemme & O'Neill (2000). The small amount of CaO in Opx is ignored. This gives the equation: 

1 X Melt _ Q 8"7(_! l Sp _! 1 Opx ) 48 n A/Ou - • ,, 
2 

naMgA/
2
o

4 
+ 

4 
naMg

2
si

20 6 
-1. . The effect of increasing [K2O] is to 

increasf\ the AlOu in melt. 

The amount of Cr in the melt ( as Cr2O3) is given by the regression as: 

(13) 

This includes experiments buffered by Ru + RuO2 and unbuffered. That both types of 

experiments can be fit by the same equation implies that the Cr in the unbuffered 

experiments is in a similar oxidation state to the buffered experiments, i.e. , mostly as 

Cr3
+. As might be expected, the primary control on Cr in the melt is Cr# sp , provided 

conditions are sufficiently oxidizing that Cr2+ is negligible. The average difference 
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between the calculated "Cr2O3" content by Equation 13 and the experimentally 

observed "Cr2O3" content is 0.04%. 
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Fig. 22 The Cr20 3 content in melt from experiments in the system CMASCr ( +K20) and the natural 
composition system. F0l, Falloon et al., 2001; F99, Falloon et al., 1999; FG87, Falloon & Green, 1987 
(we use the revised data by Falloon et al., 2001); R98, Robinson et al., 1998; BS94, Baker & Stolper, 
1994; SJ0l, Schwab & Johnston, 2001; PJ00, Pichering & Johnston, 2000. The pressure in all studies 
except Robinson et al. (1998; 15 kbar) and this study (11 kbar) is 10 kbar. Only experiments displaying 
melt plus a Sp-lherzolite phase assemblage are shown. 

The experimentally observed "Cr2O3" contents in the melts in the current study 

are plotted in Fig. 22 versus Cr# sp, along with data from several partial melting studies 

on natural compositions in the literature. All these literature studies used an inner 

graphite capsule inside a sealed Pt capsule. This arrangement does not buffer oxygen 

fugacity, since this is given by C(graphite) + 0 2 = CO2 and pCO2 is generally not known. 

The maximum fO2 occurs when pCO2 = Ptotal• Thus fO2 in such experiments could be 

relatively oxidizing when pCO2 is near saturation, but proportionally lower if pCO2 is 

low. Since fO2 in experiments on natural systems affects the behaviour of Fe, and near­

saturation levels of CO2 also has an effect on phase relations ( small but not entirely 

negligible at r-v 10 kbar; see Chapter 4 of this thesis), it is instructive to use the 

partitioning of Cr between spinel and melt (buffered by olivine + orthopyroxene, see 

Equation 4 ), to infer something about fO2 and pCO2 in these experiments. Differences 

in fO2/pCO2 might account for some of the differences in results. 
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Fig 22 shows that Cr partitioning is variable in many studies, suggesting a lack of 

consistency in fO2/pCO2 even within one study. 

5.3 Cr partitioning 

The partition coefficients of "Cr2O3" (i.e., total Cr as Cr2O3) between the various 

solid phases and melt (D~/ melt etc.) are shown as a function of Cr#sp in Figs. 23a-23d. 

Partition coefficients are approximately constant over the range of conditions of this 

study. For a typical mantle peridotite, the bulk distribution coefficient (D~~-sidue / melt) is 

about 5-10 (depending on the exact proportion of spinel at the solidus), confirming the 

compatible nature of Cr in its oxidized state. 

Liang and Elthon (1990) pointed out that, empirically, the Cr content of mantle 

peridotites does not change as a function of MgO content, where the latter is a proxy for 

melt extracted. This implies that is nisidue / melt ,_, 1. Liang and Elthon (1990) explained 

this by postulating that the melt extracted from the mantle peridotites was picritic to 

komatiitic (with> 15 wt% MgO). It is true that if Sp± Cpx were melted out, the value 

of D~ersidue / melt must drop to a value intermediate between D~/ melt and D6rx /melt for a 

harzburgite residue, but this is still likely to be > 1, at least in the pressure regime of the 

spinel lherzolite facies. Moreover, this does not explain the flat trend of Cr vs. MgO 

seen in the mantle peridotites. The discrepancy is likely to be due to Cr2+ in the melt 

during partial melting of the mantle, assuming that Cr2+ behaves moderately 

incompatibly. 

5.4 CaO/Al203 ratio ofMORBs 

The CaO/AhO3 ratio of the Earth ' s mantle is the chondritic ratio of 0.79 (e.g. , O 'Neill 

and Palme, 1998). The commonest basaltic magmas coincidentally have a very similar 

ratio, e.g. , primitive MORB has CaO/AhO3 = 0.77 ± 0.05 (mean and standard deviation 

of 42 glass analyses compiled by Presnall and Hoover, 1987; see also Hess, 1992). The 

mantle ratio is the solar system ratio, whereas the basaltic ratio is controlled by phase 

equilibrium considerations (Equations 1 and 4 ). However, Cr2O3 must have an effect on 

this latter ratio through Equation 4. Clearly, increasing the Cr2O3/ AhO3 ratio in the 

system must result in a decrease in AhO3 in the melt, hence elevation of CaO/AhO3. 

From a database of about 1700 analyses of abyssal basalt (MORB) glasses, 

Presnall & Hoover (1987) identified 42 primitive-looking compositions that they 

suggested were close to primary magma from the upper mantle. These primitive MORB 
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glasses are shown in Fig. 24. They plot close to the melt composition produced at the 

multiply saturated spinel-lherzolite solidus in the system CMAS at 11 kbar, but in detail 

are dispersed along vectors appropriate to the effect of small amounts of Na2O ( <3 

wt%), and Cr#sp of between 20 and 30. The inferred range of Na2O contents is 

consistent with that observed in the glasses (1.6 to 2.4 wt%). Considering that the effect 

of FeO as quantified recently by Gudfinsson and Presnall (2000) on diagrams of this 

type is small, and that the other components in the primitive MORB glasses are 

negligible or almost so, the general conclusion is that the primitive MORB glasses of 

Presnall and Hoover (1987) are indeed compatible with multiply-saturated melting of a 

peridotite source at an average pressure near 11 kbar. 

Falloon et al. (1988) argued against the primitiveness of the MORB glasses 

assembled by Presnall & Hoover (1987) on the grounds of their high normative Di, 

compared to the experimentally produced melt in equilibrium with a Sp-lherzolite (Fig. 

25). This is because the experimental database available to Falloon et al. (1988) was 

biased towards systems with high AhO3/Cr2O3. In part, this may be because the use of 

graphite capsules reduces much of the Cr3+ to Cr2+ in the melt (cf. The high "Cr2O3" 

reported in melt compositions of Fallo on et al., 1988). 

5.5 Melt inclusions with high CaO/Al2O3 ratios 

Recent studies of melt inclusions in phenocrysts from mid-ocean ridge (Kamenetsky, 

1996; Kamenetsky & Crawford, 1998; Kamenetsky et al., 1998; Sours-Page et al., 

1999), volcanic arc (Schiano et al., 2000), back-arc basin (Kamenetsky et al., 1997) and 

oceanic island (Sigurdsson et al., 2000; Slater et al., 2001) have documented glasses 

with unusually high CaO/AhO3 ratios (up to 1.77; Kogiso & Hirschmann, 2001). High 

CaO/ AhO3 compositions have also been found in volcanic arcs (Barsdell, 1988; 

Barsdell & Berry, 1990). Generally the high CaO/AhO3 silicate melts can be subdivided 

into two groups: SiO2-poor nepheline-normative compositions from volcanic arcs and 

SiO2-rich Hy-normative compositions from all other localities (Fig. 26). 

The origin of these high CaO/ AhO3 silicate melts has not been satisfactorily 

explained to date. The modelling carried out by Barsdell & Berry ( 1990) using the 

program SILMIN of Ghiorso & Carmichael (1985) suggested that partial melting of 

typical upper mantle lherzolite cannot produce melt compositions found in volcanic 

arcs, but partial melting of a wehrlite source with < 10% normative (mole) Opx can. 

Although this argument was supported by Schiano et al. (2000), it has recently been 
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Fig. 24 Comparison of primitive MORE glass (Presnall & Hoover, 1987), multiply-saturated melt in the 
system CMAS (11 kbar; the 2nd chapter of this thesis), multiply-saturated melt in the system 
CMAS+Na20 (11 kbar; the 4th chapter of this thesis) and melt in the system CMASCr (11 kbar; this 
chapter). 

refuted by Kogiso & Hirschmann (2001) from a direct experimental study of the partial 

melting of a wehrlite. The experiments of Kogiso & Hirschman (2001) clearly 

demonstrated that the SiO2-poor signature in those melt inclusions could not be 

produced by a CaO-rich pyroxenite. They suggested that partial melting of a depleted 

harzburgite may be important in the genesis of these unusual melts in these latter 

tectonic environments. 

The strong AhO3 decrease caused by the addition of Cr2O3 into the system 

CMAS (Fig. 10b) causes the CaO/AhO3 of the melt to increase from,..., 0.7 at Cr#sp = 0 
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Fig. 25 Comparison of multiply-saturated (Ol+Sp+Opx+Cpx) melts from experiments in natural, complex 
upper mantle compositions with multiply-saturated melts in the system CMAS (11 kbar; the 2nd chapter of 
this thesis), multiply-saturated melts in the system CMAS+Na2O (11 kbar; the 4th chapter of this thesis) 
and melts in the system CMASCr (11 kbar; this chapter). Experimental melt composition data for the 
complex upper upper mantle compositions are from Falloon et al. (1999), Baker & Stolper (1994), 
Pickering-Witter & Johnston (2000), Falloon et al. (2001) and Schwab & Johnston (2001). The 
experimental pressure in all these studies is 10 kbar. 

to ,__, 1.7 at Cr#sp = 75 (Fig. 27). As discussed previously, the SiO2 content and the Hy 

component of the melt also increase with Cr# sp. It follows that the SiO2-rich, Hy 

normative and high CaO/ AhO3 melt inclusions found in nature can be explained by a 

decreasing Al/Cr ratio , which is an obvious consequence of depletion of the source 

peridotite by previous melt extraction, given that Al is incompatible while Cr is 

compatible. In a broad sense, this explanation agrees with the suggestion of Kogiso & 

Hirschmann (2001) that partial melting of a depleted source rock may be important in 

the genesis of these melts. I will examine this explanation further. 
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Fig. 26 Comparison of melt inclusion observed in nature, near solidus melt in the system CMAS (11 kbar; 
the 2nd chapter of this thesis), near solidus melt in the system CMAS+Na2O (11 kbar; the 4th chapter of 
this thesis) and melt in the system CMAS-Cr2O3 (11 kbar; this chapter). Melt inclusions in Sp are from 
Donaldson & Brown (1977), Kamenetsky (1996) , Kamenetsky & Crawford (1998), Kamenetsky et al. 
(1998), Sigurdsson et al. (2000), Kamenetsky et al. (2001 ). The tectonic environment for the melt 
inclusions in Sp is either mid-ocean ridge or oceanic island. The melt inclusions in 01 in the mid-ocean 
ridge region are from Danyushevsky et al. (1987), Kamenetsky & Crawford (1998) and Kamenetsky et al. 
(1998). The Fo component of the host 01 is 2 89. The melt inclusions in 01 (plus some special lavas with 
unusual high CaO/ Al2O3) in island-arc region are from Schiano et al. (2000; Table 1 and Table 2) and the 
Fo component of the host 01 is 2 89. Some melt compositions from the island-arc region are plotted out 
of (b ), as indicted by the arrow. It should be noted that the trapping pressures of these melt inclusions are 
unknown. The cotectics of OlSpOpxCpxMelt at different pressures shown as thin broken curves are for 
pyrolite (Green & Falloon, 1998). 
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Fig. 27 The relationship of CaO/ Ah03 ratio of melt to Cr#sp in equilibrium. Experimental data in natural 
composition systems are from Falloon et al. (2001), Falloon et al. (1999), Robinson et al. (1998), Baker & 
Stolper (1994), Schwab & Johnston (2001) and Pichering & Johnston (2000). The pressure in all these 
experimental studies except Robinson et al. (1998; 15 kbar) is 10 kbar. Only experiments displaying melt 
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The data for primitive MORBs is from Presnall & Hoover (1987). 

In Fig. 27 I also plot the Ca0/Ab03 ratio of experimental multiply saturated 

melts in systems with natural lherzolitic compositions. Due to the presence of Na20 , the 

CaO/ Ab03 ratio of the melt produced by the natural systems at low degrees of melting 

(i.e. , multiply saturated by Ol+Opx+Cpx±Sp) is always lower than that in the system 

CMAS-Cr203. 

The Si02-rich, Hy-normative and high CaO/ Ab03 melt inclusions hosted in 

spinel are shown in Fig. 27 as well. Remarkably, the CaO/ Ab03 of the melt inclusions 

are very similar to the experimental melts from the natural peridotitic compositions at 

similar Cr20 3 activity ( which is indicated by Cr# sp ). The implication is that these melt 

inclusions are produced from previously depleted sources. 

5 .6 The effect of pressure on the behaviour of Cr2O3 

The behaviour of Cr20 3 in peridotites depends on the pressure. In the spinel 

lherzolite facies , Cr20 3 substitutes for Ab03 in spinel and pyroxenes, and thus has a 

great effect on the activity of Ab03 in the system. It behaves as a major element. But at 
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lower pressures plagioclase becomes stable, and the activity of AhO3 in the system is 

given by: 

(14) 

Melt Cpx Plag Opx 

Since Cr3+ does not substitute significantly for the tetrahedrally coordinated Al in 

plagioclase, this reaction is nearly completely independent of the amount of Cr2O3 in the 

system. Hence at very low pressures, Cr2O3 does not behave so much like a major 

element component, but a minor element that forms its own accessory phase ( that is, 

chromite), a bit like Zr forming zircon or S fanning sulfide. At higher pressures, garnet 

becomes stable, and the activity of AhO3 is given by: 

(15) 

Melt Opx Gt 

The amount of Cr3+ substituting into garnet is much less than in spinel, both 

because of the relative instability of Cr3+-containing garnet components like 

Mg3Cr2SbO12, but also because a larger fraction of the total AhO3 in the peridotite 

composition is partitioned into garnet relative to pyroxenes, as compared to spinel 

relative to pyroxenes (because the solubility of AhO3 in pyroxenes decreases with 

increasing pressure in the garnet stability field). Hence at higher pressures the effect of 

Cr2O3 on the activity of AhO3, although not negligible, tends to become less significant, 

and the behaviour of Cr is more like a trace element. There is nothing anomalous in all 

this: the transitions in these contrasting styles of behaviour are smoothed out by the 

effect that Cr2O3 has on the phase boundaries between both plagioclase-lherzolite and 

spinel-lherzolite, and spinel-lherzolite and garnet-lherzolite ( e.g., 0 'Neill, 1981 ). But 

the important point is that the Cr effect as described in this study has its maximum 

influence in the pressure regime where spinel lherzolite is stable; this is also the 

pressure regime at which partial melting in the mantle is most frequent. 

5. 7 Implications for the "Inverse Approach" in experimental petrology 

In experimental petrology, the investigation of the origins of basalts has 

historically used two approaches, "Forward" and "Inverse". In the "Forward Approach", 

an assumed bulk composition is melted, and the phase relations studied. This is the 
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approach used in this study. One perceived problem with this approach is that the bulk 

composition of the system must be assumed, whereas in many situations it is only the 

composition of the derived partial melt (i.e., the basalt) that is known, or, more 

truthfully, thought to be known - this raises the issue of whether "primary magmas", 

which are defined as magmas sampled at the Earth's surface having undergone minimal 

low pressure crystal fractionation, really exist. This is controversial ( e.g., Herzberg and 

O'Hara, 1998). Nevertheless, a theoretical "primary magma" composition might in 

principle be reconstructed. 

The "Inverse Approach" takes the existence of a suitable primary magma 

composition as a given, and then seeks to ascertain the conditions under which it was 

produced by examining its crystallization behaviour as a function of pressure, 

temperature and other pertinent variables such as volatile content and redox state. There 

appears to be some misconceptions as regards this approach. For example, in one 

textbook, it is stated that "A basic tenet of experimental petrology is that primary 

magmas, produced by partial fusion of lherzolite, should be saturated with the residual 

mantle phases at temperatures and pressures corresponding to the depth of 

segregation ...... Thus all primary basalts derived from an olivine-rich mantle should 

have olivine, together with the other appropriate phases, on their liquidi at pressures 

corresponding to their depth of segregation" (Wilson, 1994, pp. 67-68). This is certainly 

not the case, since low-degree partial melts are produced from lherzolite in reaction 

relationship with olivine to pressures of approximately 30 kbar, that is, melting is 

peritectic-like and not eutectic-like to this pressure (e.g., Kushiro, 1979; Gudfinsson and 

Presnall, 1996; for a direct experimental demonstration of this behaviour, see Chapter 2 

of this thesis). Thus olivine is not precipitated on the liquidi of such melts at the 

pressure of their generation, although it is in equilibrium with the melts. 

These and some other pro bl ems with the "Inverse Approach" are discussed by 

Hess (1989; pp. 109-113) and more recently by Falloon et al. (1999). Here I add a more 

fundamental item to these critiques, deriving from the behaviour of Cr2O3 during partial 

melting. 

The basic assumption underlying the "Inverse Approach" is that all the 

information needed to reconstruct the partial melting equilibrium is held in the melt 

composition. Heuristically, this would not be true were there a component of the system 

that was perfectly compatible, such that it entered only the solid phases of the partial 

melting equilibrium and not the melt. The concentration of such a component in the 

system could not be determined from the melt, but its presence in the solid phases 
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would affect the chemical potentials of other components in the system, and hence their 

concentrations in the melt. Although Cr2O3 is not quite perfectly compatible, its 

behaviour is as near to this as makes no practical difference. Although Cr2O3 does enter 

the melt, the amount is so small that it is commonly overlooked, and the role of Cr2O3 

as a major element component during basalt generation has tended to go unrecognised. 

Secondly, Cr2O3-rich spinel is commonly the first phase to fractionate from a magma at 

low pressures, thus the original Cr2O3 abundances in near-primary magmas are very 

easily obscured. Thirdly, the compatible behaviour of interest here is specifically a 

property of Cr3+ and not Cr2+, hence the proportion of total Cr as Cr3+ in the melt is what 

matters. This depends on the redox state of the system, i.e., the Fe3+ /Fe2+ ratio of the 

melt, T and P. Original Cr3+/Cr2+ ratios are modified in natural Fe-rich magmas by the 

electronic exchange reaction: Cr2+ + Fe3+ = Cr3+ + Fe2+; this reaction proceeds to the 

right hand side with cooling or crystallization ( e.g., Berry et al., 2001 ), such that all Cr2+ 

is consumed by reaction with Fe3+ in terrestrial magmas. 

It seems extremely doubtful that even a composition identified as "primary" (for 

example, on the usual grounds of high MgO and the appropriate Mg/Fe2+ ratio to be in 

equilibrium with olivine of Fo89 to Fo92) would retain exactly the right Cr3+ content to 

reproduce the partial melting equilibrium; accordingly, the fundamental assumption of 

the "Inverse Approach", that all the necessary information is held in the melt 

composition, is not valid. Inferences from the "Inverse Approach" regarding the depth 

(etc.) of origin of primary magmas are therefore unsustainable. 

The large amount of effort expended by experimental petrologists on the "Inverse 

Approach" should not be seen as wasted, however. "Inverse" experiments are a good 

means of obtaining the phase equilibrium data needed to formulate models for 

calculating melting phenomena under physically plausible conditions. In many ways, 

the simplistic answers sought originally from the "Inverse Approach", like the depth of 

melting, have become irrelevant as the physical context of partial melting has become 

better understood. Basaltic rriagmas are now recognized as being mostly, perhaps 

exclusively, produced by convective upwelling in the mantle, with partial melting 

occurring under nearly adiabatic conditions, and over an interval of pressure ( e.g. , 

McKenzie and Bickle, 1988). Melts are extracted more-or-less fractionally, resulting in 

changing bulk compositions during the melting process. The mantle may also act as an 

open system (e.g., to volatile components). These complex natural processes cannot be 

mimicked in the laboratory with any expectation that accurate phase-equilibrium data 

will result. Carrying out polybaric, adiabatic melting experiments is just too difficult. As 
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for any complex natural process, the path of modern science out of this dilemma is to 

construct a computer model for the phase equilibria that will enable this aspect of the 

partial melting process to be integrated into a holistic description of the whole process. 

Such models are being developed, notably the MEL TS algorithm ( e.g., Ghiorso et al., 

2002), and similar parameterizations (e.g., Walter et al., 1995; Herzberg and O'Hara, 

2002) The experimental petrology of basalt generation should now appropriately be 

directed towards the goal of supplying the necessary phase equilibrium information to 

improve these models. 

6. Conclusions 

The K20 method developed in Chapter 2 of this thesis has been successfully 

applied in the present study and partial melting experiments displaying a full Sp­

lherzolite have been carried out in the system CMASCr at 11 kbar. The major results 

are: 

1. The relationship of Cr and Al in pyroxene is not a simple substitution process of one 

for the other and the crystal structure might have important constraint on it. The Cr 

fraction increases with the decrease of Al at low Cr content conditions but decreases 

with the decrease of Al at high Cr content conditions after it reaches a maximum 

value. Only at extremely high Cr conditions can the Cr content in Opx overtake the 

Al content; 

2. Cr affects the Al content in pyroxenes so that the geothermometers related to the Al 

content in pyroxenes in the literature have to be used with great caution. My 

calculation suggests the performance of all these geothermometers depends to some 

extent on Cr; 

3. While the Ca/(Ca+Mg) ratio of Opx is independent of the chemical system, this 

ratio in Cpx isn't. Cpx becomes poor in Di much more rapidly in the system 

CMASCr than in the system CMS and the system CMAS as temperature increases. 

The geothermometers based on the CaO equilibrium between Opx and Cpx, 

therefore, should be used with great caution. 

4. Cr3
+ strongly increases the partial melting temperature and the increase is not linear, 

strong at low Cr#sp, weak at mediate Cr#sp and strong again at high Cr#sp• 

5. Cr3
+ has a very strong effect on melt composition in the stability field of Sp­

lherzolite. 
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6. The partitioning coefficient between the solid phase and the melt suggests that Cr3
+ 

is extremely compatible during partial melting process. The effect of chromium on 

melt compositions, therefore, is not readily apparent from the melts themselves. 
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Chapter 4 

The effects of H20 and CO2 on the partial melting of spinel 

lherzolite in the system Ca0-Mg0-Al20 3-Si02-H20-C02 at 11 

kbar 

1. Introduction 

The amounts of H2O in mantle peridotite compositions range from approximately 

250 ppm in depleted MORB-source mantle to ,...., 1160 ppm in the hypothetical primitive 

mantle (O'Neill & Palme, 1998), while the range of CO2 contents is about 230-550 ppm 

(Zhang & Zindler, 1993; Jambon, 1994). H2O and CO2 are the most abundant and 

important magmatic volatile species (Bowen, 1928; Ingerson, 1960; Gill, 1981; 

McMillan, 1994; Blank & Brooker, 1994) and have a large influence on a large number 

of first order geological processes, including the formation of the oceans and the 

atmosphere (Rubey, 19 51; Allegre et al., 1987), crust formation and evolution ( Green, 

1971; Ringwood, 1982; Hess, 1989), and the generation of basaltic magma in the upper 

mantle (Yoder & Tilley, 1962; Ringwood, 1975; Kushiro, 1975; Kushiro, 1990; Green 

& Falloon, 1998; Schmidt & Poli, 1998; Gaetani & Grove, 1998; Ulmer, 2001). 

Extensive experimental studies have been carried out to study the effect of H2O 

on mantle melting relations, both in simplified analogue systems (Kushiro et al., 1968a; 

Kushiro, 1969; Yoder, 1971; Kushiro, 1972), and with natural rock compositions 

(Kushiro et al., 1968b; Nicholls & Ringwood, 1972; Kushiro et al., 1972; Nicholls & 

Ringwood, 1973; Green, 1973; Mysen & Boettcher, 1975a, 1975b; Green, 1976; 

Kushiro, 1990; Hirose & Kawamoto, 1995; Hirose, 1997; Gaetani & Grove, 1998; 

Muntener et al., 2001 ). It is now rather clear that water substantially decreases the 

melting point of natural peridotite; as to its effect on the melt composition, however, 

there is still considerable disagreement. An early debate was whether hydrous melting 

of peridotite produced andesitic or basaltic magma (Nicholls & Ringwood, 1972; Green, 

1973; Nicholls & Ringwood, 1973; Mysen & Boettcher, 1975a, 1975b; Green, 1976); 

this debate still continues (Kushiro, 1990; Hirose & Kawamoto, 1995; Hirose, 1997; 

Gaetani & Grove, 1998; Muntener et al., 2001). The only thermodynamic analysis so 

far, performed by Gaetani & Grove (1998), indicated a positive correlation between the 
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activity coefficient of SiO2 and the H2O content of melt; this disagrees with long 

recognised SiOi-H2O mixing model (Warner, 1973; Kushiro , 1975; Stolper, 1982a). 

In experiments in the simple systems enstatite (En)-H2O (Kushiro et al., 1968a), 

forsterite (Fo )-diopside (Di)-En-H2O (Kushiro, 1969), Po-Di-Silica (Qz)-H2O 

(Kushiro, 1972) and Fo-nepheline (Ne)-Qz-H2O (Kushiro, 1972), quartz-normative 

melt rather than olivine-normative melt were produced under water-saturated condition 

at pressures up to at least 17 kbar. These results support the hypothesis that subduction­

related andesites represent primary partial melts of hydrous mantle peridotite (O'Hara, 

1965). However, there are two major shortcomings in those experiments. Firstly, no 

spin el was added into these systems and its effect on partial melting can not be assessed. 

Yoder (1971) declared that the phase assemblage of Fo+Sp+Ox+Cpx+H2O (Opx: 

Orthopyroxene; Cpx: Clinopyroxene) generated Qz-normative melts but did not report 

any experimental details or compositional data. Secondly, nearly all experiments, with 

only a few exceptions, were carried out under the extremes of either H2O-free or H2O­

saturated conditions, making the thermodynamic evaluation of the effects of 

intermediate amounts of water uncertain. Considering the rapid increase of H2O 

solubility in silicate melt with pressure (e.g., McMillan, 1994), the effect of water on 

melt composition under water-undersaturated conditions should form the most 

important part of a hydrous partial melting study. 

The effect of CO2 on partial melting in peridotites has been less extensively 

studied, either in simple systems or natural compositions. Most experimental studies 

have focused on the petrogenesis of carbonatitic - kimberlitic magmas (Mysen & 

Boettcher, 1975b; Mysen et al., 1976; Wyllie & Huang, 1976; Wyllie, 1977; Eggler, 

1978; Eggler & Wendlandt, 1979; Green & Wallace, 1988; Wallace & Green, 1988; 

Falloon & Green, 1989; Ringwood et al., 1992; Dalton & Presnall, 1998a, 1998b). Due 

to the difficulty in analysing CO2 content, experiments have been mostly carried out 

under fluid-saturated conditions. The solubility of CO2 in silicate melts increases 

strongly with pressure (reviewed by Blank & Brooker 1994 ). Experimental data at 

relatively low pressures pertinent to the genesis of mid-ocean ridge basalt and island arc 

magma rock are few. 

Only a few studies have been carried out to assess the combined effects of H2O 

and CO2 under fluid-saturated conditions (Mysen & Boettcher, 1975a, 1975b; Mysen, 

1976; Taylor & Green, 1988, 1989). The only experimental study of mantle melting of 

which I am aware that treats both CO2 and H2O under fluid-absent conditions is the 
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recent work of Gaetani & Grove (1998), in which CO2 was observed as an accidental 

contaminant in the product melt and its influence was ignored. 

It follows that a partial melting experimental study with a simplified lherzolite 

phase assemblage in system CaO-MgO-AhO3-SiOrH2O-CO2 (CMAS-H2O-CO2) at 

relatively low pressure is highly desirable. It will create a link between the anhydrous 

experimental studies and the fluid-saturated experimental studies thus potentially 

resolving some of the long-lasting discrepancies 

2. Piston-cylinder experiments 

2. I Starting materials 

Fine-grained mineral mixes adsorb moisture from the atmosphere quite readily. 

Therefore, because of the desirability of controlling the amounts of H2O loaded into the 

capsules, glass starting materials were used in this study, rather than pre-crystallized 

mineral mixes as in my study on the system CMAS-K2O (Chapter 2 of this thesis). The 

danger of using glass as the starting material is that it may crystallize initially to 

minerals with non-equilibrium compositions, for example, to pyroxenes with alumina 

contents that are too high. Once crystallised, such pyroxenes could fail to re-equilibrate. 

Here I can check for this problem rigorously, as the equilibrium compositions expected 

of the pyroxenes are well known (See Chapter 2 of this thesis). In addition, my previous 

work has shown that pyroxene compositions do change to their equilibrium values on 

the time scales used in this study, in the presence of melt (Chapter 2 and Chapter 3 of 

this thesis). 

Table 1 lists the compositions of the starting materials. High-purity oxides (SiO2, 

AhO3 and MgO), carbonates (CaCO3 and Na2CO3) and hydroxides (Mg(OH)2 and 

Al(OH)3) were used to prepare these mixtures. 

Mixture SEM02-1 was made by melting the decarbonated oxide mix at 1600°C, 1 

atm for 15 minutes. The composition was designed to crystallize to Fo:Sp:Opx:Cpx = 

1:1:1:1 (by weight), assuming that Fo and Sp have their pure end-member 

compositions, while Opx and Cpx compositions were from run 116-3 in Table 2 of 

Walter & Presnall (1994). 

SEM02-6 is the composition of the isobaric invariant melt for a simplified spinel 

lherzolite (Sp-lherzolite) in the system CMAS at 11 kbar, as obtained from the 
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Table 1 Starting materials 

SEM02-1 SEM02-6 SEM02-7* SEM02-9* SEM02-11* SEM02-12 SEM02-14 SEM02-15 

1 2 1 2 1 2 1 2 

SiO2 36.95 49.17 47.69 47.69 48.68 48.68 49.23 49.23 48.65 48.65 48.68 48.36 

AlzO3 22.63 20.14 19.54 19.54 19.94 19.94 20.25 20.22 20.80 20.68 19.94 19.81 

MgO 35.06 15.35 14.89 14.73 15.20 15.14 14.75 14.75 13.43 13.43 15.20 15.10 

CaO 5.36 15.34 14.88 14.88 15.19 15. 19 14.89 14.89 14.14 14.14 15.19 16.01 

Na2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

H2O 0.00 0.00 3.00 2.77 1.00 0.92 0.87 0.82 2.97 2.78 0.00 0.00 

CO2 0.00 0.00 0.00 0.39 0.00 0.13 0.00 0.09 0.00 0.32 0.00 0.72 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

*: 1 input; 2 calculated composition using the detected contents of H2O and CO2 in Mg(OH)z and Al(OH)3. 

Table 2 Testing experiments for starting materials and assembly arrangements at 11 kbar 

Run# SM AA T{°C} Time{h} Phase Probe# Thickness {cm} FTffi # H20 {wt%} COi{wt%} 

C-1621 * SEM02-6 AAl 1340 24 Pure glass 8 0.1009 6 0.013(0.003)** 0.000(0.000) 

C-1809 SEM02-6 AA2 1350 0.33 Pure glass 8 0.0227 6 0.058(0.005) 0.000(0.000) 

C-1810 SEM02-ll AA2 1350 0.33 Pure glass 9 0.0088 6 0.720(0.012) 0.093(0.019) 

C-1811 SEM02-9 AA2 1350 0.33 Pure glass 8 0.0080 6 0.858(0.011) 0.129(0.025) 

*: from Chapter 2 of this thesis. 0.013(0.003)** should be read as 0.013 ± 0.003 . SM: Starting materials. See Fig. 1 for assembly arrangement (AA). 
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experimental study in the system CMAS-K2O (Chapter 2 of this thesis). The glass was 

prepared at l 400°C, 1 atm for 20 minutes before quenching. In order to produce 

SEM02-7, SEM02-9, SEM02-l l and SEM02-12, volatile-free glasses with appropriate 

composition were made first (also 1400°C, 1 atm and 20 minutes) and then the required 

amounts of Mg(OH)2 or Al(OH)3, both previously dried at l 50°C for 24 hours, were 

added. SEM02-15 was generated by adding,...., 1.64% CaCO3 powder, dried at 340°C and 

stored in a desiccator, to glass SEM02-6. The reason for using hydroxides as the source 

of H2O was to control the amounts of H2O accurately, given the very low levels of H2O 

required in the experiments. Unfortunately, the subsequent analysis of the run product 

showed that these hydroxides were contaminated by considerable amount of carbonate. 

This will be discussed more fully below. In order to disentangle the effect of CO2 from 

that of H2O, some additional runs were therefore also done with H2O added as distilled 

H2O. 

In order to investigate the influence of small amounts of Na2O in the other 

compositions, apparently present as impurities in the chemicals, glass SEM02-l 4, with 

1 wt% Na2O, was synthesised at 1400°C and 1 atm for 20 minutes. 

All these mixtures were stored in an oven at 15 0°C during the time this study was 

carried out. 

2.2 Experimental procedures 

Experiments at 11 kbar were made in a conventional 12.7 mm diameter piston­

cylinder apparatus (Boyd & England, 1960), using a NaCl-pyrex assembly, either with 

or without an Fe2O3 sleeve enclosing the capsule (Fig. 1 ). These assemblies have low 

friction and no pressure correction is thought to be required for the long run times and 

high temperatures of this study (Green et al., 1966; Bose & Ganguly, 1995; Klemme & 

O'Neill, 1997). Pt was used as the capsule material. The starting materials were packed 

into the capsule as layers in the sandwich or half-sandwich geometry. 

The mass of the charge material in these experiments ranged from 11.6 mg to 19 .1 

mg. For the hydrous experiments, Pt capsules were welded immediately after loading. 

Wet tissue was used to blanket the capsule in order to prevent any water loss during the 

welding process (Hibberson, 1978). For anhydrous runs, loaded capsules were stored at 

150°C for 6-8 hours first and later held in a steel block which had been pre-heated to 

750°C while they were welded (Robinson et al., 1998; Chapter 2 and Chapter 3 of this 

thesis). 
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All experiments were performed using the 'piston-out' method, i. e. the pressure 

was first raised to a few kilobars, then the temperature was increased to 450°C to soften 

the pyrex sleeve, later the pressure was increased up to 0.5 kbar higher than the desired 

pressure, the temperature was increased to the nominal temperature of the run and 

finally the pressure was lowered to the required pressure (Johannes et al., 1971). The 

pressures were continuously monitored and adjusted, if necessary. The continual 

adjustment of pressure allowed each run to be controlled to within ± 0 .2 kbar of the 

nominal pressure. Temperature was measured and controlled with Pt94Rh6-Pt70Rh30 

thermocouple (type B) which was previously calibrated against the melting point of 

gold at 1 atm. Possible pressure effects on the emf of the thermocouple were ignored. 

The tip of the thermocouple, the upper ruby disc and at least the uppermost 2/3 of the Pt 

capsule containing the experimental charge were all carefully placed in the,...., 5 mm long 

hot spot of the experimental assembly. The systematics of the results both in this present 

study and in closely related previous work (Chapter 2 of this thesis) are consistent with 

temperature uncertainties of less than± l 0°C. 

mullite tubing 

high purity 
Al203 tubing 

AAl 

graphite disc 

AA2 

Fig. 1 Experimental assembly arrangement (AAl and AA2) used in this study (not to scale). 

2.3 Analytical conditions - Electron microprobe 

At the end of a run, the sample was sectioned longitudinally, mounted in epoxy 

and polished using a series of diamond pastes. Run products were carbon-coated and 

analysed on a JEOL 6400 scanning electron microprobe in energy dispersive mode 
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(EDS) at the Electron Microprobe Unit (EMU) at ANU. Coexisting phases in all run 

products were carefully identified by back-scattered electron imaging. Beam current 

was •:, _ nA, accelerating voltage was 15 keV and analyses were reduced using the ZAF 

correction procedure (Ware, 1991). A beam spot size of 1 µm was used for all 

crystalline phases while both 1-µm and 10-µm beam spot sizes were used for glass 

analyses. Analytical accuracy and precision was tested by replicate measurements of 

two internationally-recognised glass standards, GOR132G and KL2G which have 

comparable composition to the phases present in this study (Jochum et al., 2000), as 

reported in Chapter 2 of this thesis. 

Besides the expected major component oxides CaO, MgO, AJiO3, SiO2, all 

analyses routinely sought Na2O, FeO, Cr2O3 and K2O. The latter three oxides were 

below the limits of detection and are not considered further, but significant amounts of 

Na2O were detected in the melt in all runs (0.4 to 1.1 wt%, see Table 4 ). The origin of 

this Na2O is enigmatic. Being an incompatible component, Na2O is concentrated in the 

melt phase, so that it is below the detection limit in the analyses of the glass starting 

materials, and in various test runs designed to check for volatile contents (Table 2). It 

could be either from impurities in the oxides, hydroxides or carbonate from which the 

starting material glasses were prepared, or from contamination during the melting of 

these to glasses. To check that the Na2O was not an analytical artefact, several runs 

were also analysed by WDS using the Cameca Camebax electron microprobe, at the 

Research School of Earth Sciences, ANU. Although analysed Na2O contents were 

lowered by ""' 20%, this is likely due to the higher beam current used in WDS. Because 

of the good agreement between the EDS analyses and the recommended values of the 

secondary standards, I believe that the EDS results are more reliable. 

2.4 Attainment of equilibrium 

Several lines of evidence can be used to evaluate the approach to equilibrium of 

my experiments. These are as follows: 

(1) The result of previous work in the system CMAS (Presnall et al., 1978; Sen & 

Presnall, 1984; Liu & Presnall, 1990) suggested that a period of several hours is 

adequate for the phases observed in this study to establish reversals of phase 

boundaries at liquidus temperatures. Experiments in the system CMAS+ Na2O 

(Walter & Presnall, 1994) and in the system CMAS+FeO (Gudfinnsson & Presnall, 

2000) found that 48 hours was long enough for the attainment of equilibrium at 

temperatures close to the solidi. Most of my experiments ran for a longer time. 
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(2) Duplicate experiments at 1240°C and 1220°C demonstrate that pyroxene 

compositions are the same after 24 hours as for 94 hours, even at these relatively 

low temperatures (Table 3 ). 

(3) The solid solutions, Opx and Cpx, in all experiments except the nominally 

anhydrous experiment C-1812 and two "two-stage" experiments (C-1807 and C-

1808) show very good homogeneity in composition and demonstrate excellent 

internal consistency and consistency with previous work (Table 4 ). The 

compositions of the rims of the pyroxenes in C-1807 and C-1808 are also in 

excellent agreement with the other data, in fact only a few core compositions on 

larger crystals appear slightly anomalous. The most heterogeneous component, 

AhO3, in the most heterogeneous phase (Cpx) for most experiments has one 

standard deviation < 0 .5 wt.%, often just r--, 0 .3 wt.%. The average difference 

between the calculated temperatures using the geothermometer of Nickel et al. 

(1985) and the nominal experimental temperatures is 17 K, further suggesting that 

Opx and Cpx are in mutual equilibrium. 

( 4) Almost perfect stoichiometry was found for all the solid phases by charge-balance 

calculation. 

(5) A pair of "two-stage "reversal experiments (C-1807 and C-1808) have been 

conducted at 1295°C following the procedure of Presnall et al. (1978), Liu & 

Presnall (1990) and Baker & Stolper (1994). The melt compositions and rim 

pyroxene compositions from this pair are consistent with each other and with the 

other experiments. 

3. FTIR analyses 

Due to the availability of reliable analytical technique, the small size of 

experimentally prepared sample and the difficulty in sample preparation, the melt 

products of most hydrous experimental study were not analysed for H2O. It is a pretty 

recent thing that FTIR spectroscopy, ion probe and oxygen-evaluating method are 

applied to nominal anhydrous and hydrous experimental study (Gaetani & Grove, 1998; 

Falloon et al., 1999; Falloon & Danyushevsky, 2000; Muntener et al. , 2001; Falloon et 

al., 2001). The comparison study made by King et al. (2002) suggested that FTIR 

spectroscopy and ion probe are the best available techniques for volatile analysis. 

In this study, the content of H2O and CO2 in the hydrous melt is detected by FTIR 

spectroscopy. 
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Table 3 Experimental conditions and phase assemblages 

Run# T(°C) T(h) Startin2 material Assembly ML H20a co~a Phase observed T-NBK85 T-BK90-1 T-BK90-2 T-F83 

Experiment in system CMAS+H20+C02+Na20(trace) 

Experiment using Mg(OH)2 

C-1601 1310 68 SEM02- l +SEM02-9 AA2 13 .30 0.26 0.04 Fo+Sp+Melt 1395 

C-1616 1310 49 SEM02-l +SEM02-9 AA2 11 .60 0.10 0.01 F o+Sp-+Opx+cpx+Melt 1298 1339 1232 1387 

C-1602 1300 67 SEM02-1 +SEM02-9 AA2 12.20 0.31 0.04 F o+Sp-+Opx+cpx+Melt 1281 1325 1242 1381 

C-1611 1280/1290 22/48 SEM02-1 +SEM02-9 AA2 12.20 0.37 0.05 F o+Sp-+Opx+cpx+Melt 1280 1324 1223 1380 

C-1615 1280 75 SEM02-1 +SEM02-9 AA2 12.80 0.46 0.06 F o+Sp-+Opx+cpx+Melt 1270 1313 1228 1370 

C-1623 1260 90 SEM02-l +SEM02-7 AA2 12.80 0.69 0.10 F o+Sp-+Opx+cpx+Melt 1252 1296 1189 1369 

C-1622b 1240 94 SEM02-1 +SEM02-7 AA2 12.20 0.91 0.13 F o+Sp-+Opx+cpx+Melt 1219 1262 1204 1362 

C-1789 1240 24 SEM02-1 +SEM02-7 AA2 14.20 0.74 0.10 F o+Sp-+Opx+cpx+Melt 1247 1291 1204 1355 

C-1633 1220 100 SEM02-1 +SEM02-7 AA2 12.10 1.19 0.17 F o+Sp-+Opx+cpx+Melt 1200 1243 1164 1355 

C-1636 1200 117 SEM02-l +SEM02-7 AA2 12.10 1.53 0.21 F o+Sp-+Opx+cpx+Melt 1183 1224 1143 1335 

Experiment using Al(OH)3 

C-1750 1310 49 SEM02-1 +SEM02-11 AA2 15.60 0.06 0.01 Fo+Sp+Melt 1411 

C-1716 1310 63 SEM02-1 +SEM02-11 AA2 12.50 0.10 0.01 F o+Sp-+Opx+Melt 1223 1405 

C-1729 1310 70 SEM02- l +SEM02-l l AA2 15.60 0.07 0.01 F o+Sp-+Opx+Melt 1214 1403 

C-1759 1305 49 SEM02- l +SEM02-6+SEM02-l l AA2 18.40 0.02 0.00 F o+Sp-+Opx+cpx+Melt 1320 1364 1255 1393 

C-1719 1300 78 SEM02-l +SEM02- l l AA2 12.40 0.13 0.02 F o+Sp-+Opx+Melt 1232 1404 

C-1747 1300 53 SEM02- l +SEM02-1 l AA2 17.50 0.08 0.01 F o+Sp-+Opx+Melt 1228 1387 

C-1734 1295 70 SEM02- l +SEM02- l l AA2 19.10 0.10 0.01 F o+Sp-+Opx+cpx+Melt 1306 1349 1246 1394 

C-1807 1300/1295 24/33 SEM02- l +SEM02- l l AA2 13.40 0.21 0.02 F o+Sp-+Opx+cpx+Melt 1324 1363 1251 1386 
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C-1808 1280/1295 7/15 SEM02-1 +SEM02-11 AA2 15.10 0.21 0.02 F o+Sp+opx+cpx+Melt 1313 1355 1246 1392 

C-1723 1290/1280 42.5/48 SEM02-l+SEM02-11 AA2 12.00 0.20 0.02 F o+Sp+opx+cpx+Melt 1310 1352 1237 1383 

C-1724 1270 92 SEM02-1 +SEM02-11 AA2 13.00 0.25 0.03 F o+Sp+opx+cpx+Melf 1282 1326 1209 

C-1739 1260 88 SEM02-1 +SEM02-12 AA2 14.30 0.60 0.07 F o+Sp+opx+Melt 1223 1381 

C-1754 1260 94 SEM02-1 +SEM02-12 AA2 14.90 0.54 0.06 F o+Sp+opx+cpx+Melt 1285 1323 1218 1374 

C-1741 1240 95 SEM02-1 +SEM02-12 AA2 17.50 0.73 0.08 F o+Sp+opx+cpx+Melt 1231 1275 1169 1354 

C-1744b 1220 94 SEM02-1 +SEM02-12 AA2 14.20 1.00 0.11 F o+Sp+opx+cpx+Melt 1222 1264 1204 1333 

C-1803 1220 24 SEM02- l +SEM02-12 AA2 14.50 0.98 0.11 F o+Sp+opx+cpx+Melt 1241 1282 1242 1314 

C-1742 1200 117 SEM02- l +SEM02-12 AA2 13 .80 1.41 0.16 F o+Sp+opx+cpx+Melt 1197 1239 1179 1323 

Experiment using distilled H20 

C-1817 1335/1200 0 .25/65 SEM02-1 +SEM02-6+H2O AA2 14.50 2.07 0.00 F o+Sp+opx+cpx+Melt 1232 1275 1169 1353 

Experiment using CaC01 

C-1812 1317 24 SEM02-l +SEM02-15 AAl 15.70 0.00 0.23 F o+Sp+opx+cpx+Melt 1340 1385 1273 1375 

Experiment in system CMASN 

C-1780 1314 70 SEM02-l +SEM02-14 AAl - - - F o+Sp+opx+cpx+Melt 1347 1367 1286 1365 

C-1773 1310 62 SEM02- l +SEM02-14 AAl - - - F o+SQ+-OQx+cQx+Melt 1339 1359 1273 1369 

AA, assembly arrangement; ML, material loaded (mg); 8, content in weight percent; \ sample lost when making FTIR thin section; C, too small to be accurately analysed. T-NBK85, temperature calculated by 

using the geothermometer in Nickel et al ., (1985); T-BK-90-1 , temperature calculated using equation 9 in Brey & Kohler (1990); T-BK-90-2, temperature calculated using equation 10 in Brey & Kohler (1990); T-

F83, temperature calculated using the geothermometer of Ford et al . (1983). 
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Table 4 Phase composition on a volatile-free basis 

Run# Phase CaO MgO Ah03 SiOi NaiO 

Experiment in system CMAS+H2o+C02+Na20(trace) 

Experiment using Mg(OH)2 

C-1601 , 1310°C Fo(1 3) 0.28(0.04) 56.62(0.16) 0.18(0.06) 42.92(0.14) 

Sp(13) 0.08(0.03) 28.70(0.17) 70.97(0.17) 0.25(0.11) 

Melt(16) 14.02(0.14) 15.57(0.10) 20.64(0.08) 49.25(0.14) 0.51 (0.05) 

C-1616, 1310°C Fo(12) 0.29(0.09) 56 .61 (0.20) 0.22(0.08) 42.97(0.12) 

Sp(12) 0.07(0.05) 29 .03 (0.10) 70.58(0.15) 0.32(0.12) 

Opx(15) 2.03 (0.12) 34.81 (0.16) 8.68(0.21) 54.48(0.26) 

Cpx(17) 19.14(0.29) 20.46(0.26) 8.59(0.25) 51.81 (0.22) 

Melt(16) 14.13(0.15) 14.93 (0.11 ) 20.50(0.14) 49.68(0.21) 0.75(0.05) 

C-1602, 1300°C Fo(l 6) 0.25(0.05) 56 .61 (0.20) 0.18(0.06) 42.95(0.16) 

Sp(l 7) 0.10(0.06) 29.10(0.11) 70.54(0.06) 0.26(0.04) 

Opx(28) 2.07(0.14) 34.85(0.19) 8.56(0.27) 54.52(0.20) 

Cpx(24) 19.49(0.23) 20.25(0.23) 8.65(0.23) 51.61(0.18) 

Melt(16) 14.89(0.12) 14.89(0.09) 20.14(0.11 ) 49.58(0.14) 0.49(0.05) 

C-1611 , 1290°C*Fo(12) 0.28(0.04) 56.56(0.15) 0.22(0.08) 42.94(0.12) 

Sp(12) 0.08(0.05) 28.69(0.11) 70.93 (0.15) 0.30(0.09) 

Opx(21) 1.96(0.20) 35.01 (0.21) 8.49(0.38) 54 .54(0.27) 

Cpx(22) 19.49(0.28) 20 .28(0.23) 8.46(0.34) 51 .77(0.23) 

Melt(16) 14.94(0.19) 14.80(0.12) 20.32(0.11) 49.40(0.19) 0.53(0.06) 

C-1615, 1280°C Fo(l0) 0.29(0.04) 56.54(0.14) 0.20(0.10) 42.97(0.13) 

Sp(12) 0.15(0.04) 29.04(0.18) 70.50(0.20) 0.32(0.13) 

Opx(14) 1.99(0.11) 35 .13(0.24) £.37(0.31 ) 54 .51 (0.33) 

Cpx(22) 19.75(0.37) 20.23 (0.33) 8.30(0.32) 51.73(0.24) 

Melt(16) 15 .10(0.10) 14.40(0.11 ) 20.39(0.12) 49.62(0.13) 0.49(0.04) 

C-1623 , 1260°C Fo(12) 0.22(0.04) 56 .72(0.10) 0.16(0.07) 42.89(0.16) 

Sp(12) 0.07(0.03) 28.69(0.10) 71.00(0.10) 0.25(0.07) 

Opx(20) 1.78(0.19) 35 .17(0.20) 8.25 (0.37) 54 .80(0.24) 

Cpx(22) 20 .06(0.30) 19.90(0.31) 8.19(0.36) 51.85(0.28) 

Melt(16) 14.39(0.11) 14.30(0.13) 20.94(0.10) 49.72(0.16) 0.64(0.07) 

C-1622, 1240°C Fo(12) 0.23 (0.06) 56 .78(0.20) 0.12(0.06) 42 .87(0.17) 

Sp(14) 0.07(0.05) 29 .08(0.12) 70.66(0.14) 0.18(0.08) 

Opx(16) 1.85(0.36) 35 .33 (0.35) 8.07(0.35) 54.75(0.31 ) 

Cpx(17) 20.74(0.45) 19.58(0.25) 7.88(0.32) 51.80(0.20) 

Melt(16) 14.86(0.14) 13 .93 (0.14) 20.64(0.13) 49.81 (0.20) 0.76(0.12) 

C-1789, 1240°C Fo(9) 0.22(0.04) 56.67(0.17) 0.36(0.16) 42.76(0.20) 

Sp(l2) 0.06(0.04) 28 .74(0.15) 70.83 (0.23) 0.37(0.11) 

Opx(1 9) 1.86(0.35) 35.08(0.45) 8.65(0.46) 54 .4 1(0.49) 

Cpx(23) 20 .20(0.47) 19.58(0.32) 8.49(0.59) 51 .73 (0.38) 

Melt(1 2) 14.27(0.12) 13 .76(0.17) 21.33 (0.10) 20.03 (0.18) 0.61 (0.04) 

C-1633 , 1220°c Fo(12) 0.21 (0.05) 56.62(0.12) 0.17(0.08) 42.99(0.14) 
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Table 4 continued 

Sp(14) 0.10(0.06) 28.61(0.14) 70.95(0.24) 0.34(0.13) 

Opx(15) 1.65(0.18) 35 .55(0.22) 7.90(0.19) 54.90(0 .19) 

Cpx(26) 21.03(0.25) 19.36(0.18) 7.72(0.42) 51.89(0 .31) 

Melt(16) 14.49(0.16) 13 .76(0.07) 21.31(0 .13) 49.84(0.16) 0.60(0 .05) 

C-1636, 1200°C Fo(l 1) 0.22(0.04) 56.68(0.06) 0.12(0.05) 42 .98(0 .16) 

Sp(l0) 0.05(0.04) 28 .68(0.10) 71.08(0 .12) 0.18(0.09) 

Opx(16) 1.53(0.06) 35.65(0 .12) 7.88(0.17) 54.94(0 .19) 

Cpx(18) 21.31 (0 .37) 19.22(0.34) 7.64(0.34) 51.83(0 .26) 

Melt(15) 14.62(0.11) 13 .08(0.10) 21.68(0.12) 50.18(0.18) 0.45(0.06) 

Experiment using Al(OH)J 

C-1750, 1310°C Fo(l 1) 0.29(0.05) 56.57(0.25) 0.30(0.24) 42 .83(0.22) 

Sp(12) 0.07(0.05) 28 .79(0.11) 70.86(0.14) 0.27(0.12) 

Melt(l 3) 12.68(0 .15) 16.20(0.10) 20.77(0.11) 49.72(0 .13) 0.62(0 .04) 

C-1716, 1310°C Fo(12) 0.27(0.04) 56 .48(0. 17) 0.23(0 .06) 43 .03(0 .16) 

Sp(14) 0.11(0.05) 28 .68(0.09) 70.93(0.10) 0.28(0.09) 

Opx(6) 1.98(0.25) 34.45(0.35) 9.10(0 .22) 54.48(0.21) 

Melt(l0) 13 .39(0.10) 15 .84(0.18) 20.46(0.12) 49 .70(0.23) 0.62(0.05) 

C-1729, 1310°C Fo(15) 0.29(0.04) 56.51(0 .09) 0.19(0.05) 43 .02(0.08) 

Sp(l 1) 0.07(0 .04) 28.77(0 .15) 70.94(0 .18) 0.22(0 .12) 

Opx(20) 1.91(0.09) 34.93(0.17) 8.48(0.32) 54.69(0 .26) 

Melt(12) 13 .36(0.07) 15 .64(0.08) 20.55(0.09) 49.72(0 .11) 0.73(0.06) 

C-1759, 1305°C Fo(14) 0.30(0.06) 56.48(0.12) 0.20(0 .08) 43.02(0.14) 

Sp(12) 0.06(0.04) 28.71(0 .12) 70.98(0.11) 0.24(0 .09) 

Opx(16) 2.15(0.14) 34.80(0.41) 8.25(0.52) 54.80(0.40) 

Cpx(22) 18.47(0.33) 20.79(0.26) 8.86(0.42) 51.88(0.31) 

Melt(16) 13 .96(0.17) 15 .25(0.09) 20.38(0.16) 49 .73(0 .19) 0.68(0.04) 

C-1719, 1300°C Fo(l 1) 0.27(0 .06) 56.42(0.14) 0.22(0.06) 43 .09(0.15) 

Sp(16) 0.08(0.05) 28.63(0 .14) 70.99(0.11) 0.29(0.08) 

Opx(8) 2.04(0.11) 34.67(0.18) 8.72(0 .19) 54.58(0 .16) 

Melt(13) 13 .59(0.16) 15 . 78(0. 09) 20.41(0.12) 49 .58(0.15) 0.64(0.03) 

C-1747, 1300°C Fo(l 1) 0.31(0 .07) 56.46(0.15) 0.22(0 .08) 43 .02(0.16) 

Sp(13) 0.06(0.05) 28 .60(0.06) 71.14(0 .11) 0.20(0.10) 

Opx(19) 1.99(0.07) 34.65(0.10) 8.76(0.23) 54.61(0 .22) 

Melt(16) 14.24(0 .20) 14.95(0.16) 20.31 (0.14) 49.79(0 .13) 0.72(0.04) 

C-1734, 1295°C Fo(15) 0.30(0.06) 56 .31(0.17) 0.19(0. 06) 43 .21 (0. 16) 

Sp(9) 0.11(0.06) 28.60(0.10) 70.96(0.11) 0.33(0 .06) 

Opx(l 7) 2.10(0.15) 34.76(0 .23) 8.38(0 .44) 54.76(0.38) 

Cpx(12) 18.88(0.43) 20.47(0.37) 8.67(0.31) 51.97(0.21) 

Melt(16) 13 .82(0. 14) 15 .16(0.10) 20.48(0 .11 ) 49 .77(0.13) 0.76(0 .05) 

C-1807, 1295°C Fo(12) 0.29(0.05) 56 .73(0.11) 0.25(0 .05) 42 .73(0 .12) 

Sp(13) 0.07(0.05) 28 .76(0 .13) 70.94(0 .09) 0.23(0 .10) 
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Table 4 continued 

Opx(17) 2.14(0.12) 34.75(0 .24) 8.66(0.46) 54.45(0 .29) 

Cpx(18) 18.47(0.28) 20.84(0.32) 8.79(0.38) 51.90(0.31) 

Melt(l 1) 14.36(0 .11) 15 .12(0.09) 20.31(0.12) 49.64(0 .13) 0.57(0.05) 

C-1808, 1295°C Fo(12) 0.30(0.04) 56 .67(0 .13) 0.24(0.08) 42 .80(0.14) 

Sp(13) 0.06(0 .03) 28.75(0.09) 70.93 (0.19) 0.25 (0.11) 

Opx(19) 2.11 (0.13) 34.90(0.25) 8.49(0.63) 54 .51(0.40) 

Cpx(19) 18.72(0.40) 20.75(0 .35) 8.65(0.41) 51.87(0.33) 

Melt(17) 14.17(0.16) 15.53(0 .10) 20.33(0.11) 49.57(0 .17) 0.41 (0.05) 

C-1723 , 1280°C Fo(14) 0.27(0.05) 56.42(0.12) 0.25(0 .12) 43 .06(0 .11) 

Sp(15) 0.11(0.06) 28.53(0 .12) 71.06(0 .13) 0.30(0.07) 

Opx(l 7) 2.06(0.09) 34.67(0 .17) 8.58(0 .38) 54.69(0.32) 

Cpx(26) 18.80(0.34) 20.33(0.27) 8.81(0.37) 52.06(0.24) 

Melt(15) 14.02(0 .17) 14.38(0.08) 20.59(0.11) 49.90(0.13) 1.11(0.05) 

C-1724, 1270°C Fo(ll) 0.31(0.12) 56.40(0.21) 0.33(0.13) 42.96(0.15) 

Sp(l 3) 0.08(0 .05) 28.65(0.13) 71.10(0.13) 0.18(0.08) 

Opx(19) 1.88(0.12) 34.89(0.15) 8.51(0 .37) 54.73(0.32) 

Cpx(25) 19.42(0.31 ) 20.09(0.27) 8.59(0.41) 51.90(0.28) 

Melt** 

C-1739, 1260°C Fo(15) 0.29(0 .03) 56.44(0 .15) 0.17(0.05) 43 .09(0 .15) 

Sp(13) 0.07(0.03) 28.61(0.09) 71.05(0.12) 0.27(0.07) 

Opx(20) 1.97(0.11) 34.64(0.18) 8.94(0.32) 54.45(0 .27) 

Melt(14) 14.15(0.11) 14.77(0.10) 20.69(0.15) 49 .80(0.17) 0.59(0.04) 

C-1754, 1260°C Fo(14) 0.25(0 .05) 56.61(0 .15) 0.16(0.06) 42.99(0 .11) 

Sp(13) 0.07(0.04) 28.75(0 .11) 71.01(0 .13) 0.17(0 .09) 

Opx(22) 1.95(0.13) 34.84(0.20) 8.71(0.32) 54.51(0.23) 

Cpx(22) 19.51(0 .23) 20.30(0.35) 7.96(0.53) 52 .23(0.36) 

Melt(16) 14.32(0.15) 14.36(0.07) 20.65(0.10) 49.88(0.16) 0.79(0.05) 

C-1741 , 1240°C Fo(12) 0.20(0.03) 56.48(0 .11 ) 0.19(0.09) 43 .13 (0.09) 

Sp(13) 0.04(0.04) 28.60(0 .10) 71.04(0 .14) 0.32(0.06) 

Opx(22) 1.67(0.09) 35 .22(0.28) 8.11 (0.42) 55 .00(0.25) 

Cpx(22) 20.47(0.38) 19.60(0.40) 7.93(0.43) 51.99(0.33) 

Melt(15) 14.04(0.12) 13 .53 (0.12) 21.31 (0.18) 50.41 (0.22) 0.71(0.05) 

C-1744, 1220°C Fo(14) 0_.26(0. 05) 56 .63(0 .10) 0.12(0.06) 43 .09(0.14) 

Sp(l 0) 0.08(0.05) 28 .65(0 .09) 71.07(0.13) 0.20(0.12) 

Opx(22) 1.86(0.21) 34.99(0.30) 8.47(0.43) 54 .68(0.27) 

Cpx(22) 20.73 (0.17) 19.35(0.27) 8.06(0.49) 51 .87(0.32) 

Melt(16) 14.39(0.14) 12.82(0.09) 21.67(0.05) 50.54(0.14) 0.58(0.06) 

C-1803 , 1220°C Fo(l 1) 0.31(0.07) 56.56(0.13) 0.21 (0.08) 42.92(0.16) 

Sp(l0) 0.12(0.09) 28.60(0.17) 71.02(0.21 ) 0.25(0.14) 

Opx(22) 2.09(0.24) 34.89(0.27) 8.51 (0.63) 54.51 (0 .41 ) 

Cpx(19) 20.42(0.35) 18.56(0.44) 8.07(0.60) 51.96(0.33) 

Melt(13) 13 .91(0 .14) 12.04(0.08) 22.38(0.08) 51 .06(0.19) 0.61(0 .05) 
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Table 4 continued 

C-1742, 1200°C Fo(l 3) 0.23(0.05) 56.58(0.14) 0.10(0.05) 43.09(0.12) 

Sp(l4) 0.07(0.03) 28.65 (0.12) 70.95 (0.18) 0.33(0.12) 

Opx(26) 1.73(0.24) 35 .20(0.36) 8.22(0.41) 54.85 (0.30) 

Cpx(26) 21.12(0.22) 19.16(0.31) 7.87(0.65) 51.85(0.40) 

Melt(l 4) 14.27(0.18) 12.50(0.09) 21.88(0.12) 50 .81 (0.18) 0.54(0.04) 

Experiment using distilled H20 

C-1817, 1200°C Fo(12) 0.18(0.06) 56.82(0.21) 0.23 (0.29) 42.77(0.14) 

Sp(l0) 0.08(0.04) 28.66(0.09) 71.18(0.09) 0.08(0.06) 

Opx(22) 1.67(0.11) 35 .55 (0.23) 8.07(0.47) 54 .71 (0.28) 

Cpx(22) 20.46(0.41) 19.73 (0.38) 7.88(0.71 ) 51.93 (0.46) 

Melt(l4) 14.26(0.14) 13 .90(0.09) 21.56(0.12) 49.87(0.13) 0.41 (0.04) 

Experiment using CaC03 

C-1812, 1317°C Fo(l0) 0.30(0.04) 56.71 (0.08) 0.47(0.15) 42.52(0.09) 

Sp(15) 0.08(0.04) 28.85(0.11) 70.74(0.18) 0.33 (0.14) 

Opx(16) 2.28(0.11) 34.76(0 .36) 8.52(0.60) 54.45(0.41) 

Cpx(20) 17.79(0.78) 21.04(0.80) 9.94(0.74) 51.23(0.67) 

Melt(l3) 14. 91 (0.31) 14.80(0.08) 20.37(0.12) 49.52(0.13) 0.40(0.04) 

Experiment in system CMASN 

C-1780, 1314°C Fo(l3) 0.30(0.05) 56.63 (0.17) 0.19(0.07) 42.87(0.14) 

Sp(13) 0.11 (0.07) 28.71 (0.11) 70.99(0.15) 0.19(0.12) 

Opx(18t 2.35(0.23) 34.34(0.38) 8.89(0.46) 54.37(0.26) 0.06(0.04) 

Cpx(21t 17.97(0.42) 21. 08(0 .40) 8.83 (0.54) 51.90(0.38) 0.22(0.06) 

Melt(l6) 14.67(0.18) 13 .79(0.24) 20.50(0.19) 50.01 (0.16) 1.03(0.04) 

C-1773 , 1310°C Fo(l 1) 0.28(0.05) 56.53 (0.16) 0.25(0.11) 42.94(0.14) 

Sp(l 1) 0.08(0.05) 28.64(0.12) 71.09(0.15) 0.19(0.14) 

Opx(21) 2.28(0.25) 34.21 (0.36) 9.15(0.51) 54.15(0.35) 0.22(0.06) 

Cpx(21) 18.12(0.43) 20 .49(0 .41) 9.17(0.50) 51.79(0.34) 0.43 (0.06) 

Melt(l5) 13 .61(0.15) 12.96(0.51) 20. 92(0 . 50) 50.44(0 .14) 2.07(0 .10) 

*, only the final experimental temperature listed here for the 11 two-stage 11 experiments; **, too small to be accurately 

analysed;#: Na2O content checked by WDS technique on a Cameca electron microprobe at RSES, ANU. The Na2O 

content given by EDS might be higher than the real value by ~ 0.1 % at high content conditions (> 1 %?) but by ~ 

0.2% at low content conditions (< 1 %?) . 

3 .1 Sample preparation 

After analysing all phases by electron probe, I made the thin sections for FTIR 

analysing. Sample was first removed from the epoxy and then sawed to appropriate 

thickness by a diamond saw. It was later mounted to a piece of glass by using crystal­

bond, reduced to desirable thickness by manually grinding against a series of silicon 

carbide abrasive films (3-9 µm) under ethanol or water, and finally polished on both 

sides using a 1 µm silicon carbide abrasive film. After removed from the glass at a 
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temperature of 125 °C, thin section was thoroughly washed in acetone for 30 minutes in 

order to dissolve away all crystal-bond. 

Sample water content and sample thickness are crucial to the success of FTIR 

analysis because they affect the absorbance of infrared light by the sample (!hinger et 

al., 1994 ). There are a number of absorbance peaks which can be used to quantify the 

fluid contents in a silicate melt. I decided to use the absorbance peak at,..., 3550 cm-1 to 

analyse H20 and the absorbance peaks at 1300-1700 cm-1 to analyse CO2 due to the 

availability of more information about them in the literature (fluid content, sample 

thickness and the absorbance ). The water content of melts in the samples was roughly 

calculated by mass-balance skills and the appropriate thickness range was estimated for 

each sample, based on Stolper (1982b) and Fine & Stolper (1985/1986). Effort was 

finally put in making the sample thickness into the estimated thickness ranges. 

26 thin sections were successfully made from the samples of the 28 hydrous 

experiments which contained large and quench-free melts. Their thickness was directly 

measured by a micrometer and ranges from 14 µm to 223 µm (Table 5) and the 

thickness uncertainty was estimated as "' ± 2 µm, similar to Stolper ( 1982b ). 

3.2 Analysing condition 

Measurements were carried out using a Bruker IFS-28 infrared spectrometer with 

attached Bruker A590 infrared microscope and Bruker Opus/IR reduction software, 

hosted in RSES, ANU. The entire system was purged with dry N2 to reduce possible 

background contributions from atmospheric H20 and CO2 . FTIR samples were directly 

put over apertures in an aluminium plate. Diameters of analysed areas varied from 30 

µm to 105 µm, dependent to the sizes of the quench-free melt pools. During each 

analysis 100 scans were collected with the resolution of four wavenumbers between 

5500 cm-1 and 600 cm-1
• 

3 .3 Infrared spectroscopy 

Transmission infrared spectra in the 5500-600 cm-1 frequency range were 

collected for all samples. All spectra were plotted as absorbance versus wavenumber 

and these plots were used for measurements of background-subtracted absorption 

intensities; the background line was determined by drawing straight line through the 

minimums at the high and low wavenumber ends of the absorption peaks (Fig. 2). The 

150 



background-subtracted spectra for those experiments displaying melt coexisting with a 

Sp-lherzolite phase assemblage are shown in Fig. 3. The heights of the related 

absorption peaks are summarised in Table 5. 

2.0------------------------. 
C-1623 

1.5 
Silicate 

0.0 ------- - -

-0.5 --------------------

6000 4000 2000 0 

Wavenumber (cm-1) 

Fig. 2 Infrared spectrum of C-1623 with background to show the background-subtraction process. For 

information about the thin section, see Table 5. 

The peak at ,...., 3550 cm-1 is caused by the fundamental OH-stretching vibration 

and used to determine the water content in melts. The peaks at,...., 1515 cm-1 and,...., 1415 

cm-1 are caused by the asymmetric stretch of distorted carbonate groups and I used these 

two peaks to measure the CO2 content in melts. 

In all cases no absorbance peak is observed for crystal-bond or epoxy, which has 

intense and characteristic absorbance bands in the C-H region. Also no peak is observed 

in the 2985-2600 cm-1 range and this agrees with Stolper (1982b ). A peak in this region 

was attributed by Scholze (1959) to strong hydrogen-bonding of Si-OH groups to non­

bridging oxygens. Only occasionally small positive or negative peak at ,...., 2350 cm-1 is 

observed and I believe that it is caused by the background CO2 in the air. Carbon should 

present in these melts entirely as carbonate (Fine & Stolper, 1985/1986; Pan et al., 

1991; Pawley et al., 1992; King & Holloway, 2002). 

Several samples are sufficiently parallel that their spectra show oscillation which 

may be used to measure the sample thickness, provided that the index of refraction of 

the melts is appropriately measured (more on this topic later). 
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Fig. 3 FTIR spectra taken on doubly-polished run products for experiments using Mg(OHh (a), for 

experiments using Al(OH)3 (b ), and for experiments using CaCO3 or distilled H2O ( c ). Spectra have been 

scaled to a constant sample thickness of 100 µm . 

152 



Three small pro bl ems are observed here. One sample ( C-163 3) has its absorbance 

peak at ,..._, 3550 cm-1 truncated and its water content can not be accurately measured. 

This sample is relatively thick and its peak at,..._, 3550 cm-1 is slightly higher ( ,..._, 1.9) than 

the detection limit (0.1-1.8; !hinger et al., 1994). Spectra taken on the sample of C-1789 

show sharp peaks at,..._, 3550 cm-1 position rather than smooth rounded curves. Sharp 

peaks usually indicate crystalline ordered structures (Pan et al., 1991 ); thus,q\ small 

amount of crystals might have been incorporated in the spectra and the water content of 

the melt in this sample may be not very accurate. The third small problem is the spectra 

of C-1616 show a strange peak at,..._, 1700 cm-1
• It is possible that this peak might be due 

to the HOH bending vibration (!hinger et al., 1994; King et al., 2002), indicating the 

presence of molecular water. 

The Beer-Lambert law is used to quantitatively relate absorbance intensity to the 

concentration of the absorbing species, here H2O and CO2: 

C = (M * A) / (D * p * E) (1) 

where C is the concentration of H2O or CO2 (weight percent), Mis molecular weight of 

H2O (18.02) or CO2 (44.01), A the height of the absorbance peak, D the thickness of 

sample (cm), p the density of melts (g/1) and Ethe calibration factor for H2O (67 from 

Stolper, 1982b) or for CO2 (375 from Fine & Stolper, 1985/1986). 

In order to use the Beer-Lambert law to determine the content of H2O and CO2 in 

melts, the density, p, must be determined first. Due to the limitation of sample size and 

the difficulty separating melt from solid phases, direct density measurement is not 

possible. Rather than assuming a density to carry on the calculation like Stolper & 

Holloway (1988), Pan et al. (1991) and Pawley et al. (1992), I used the software 

Magma2 (Wohletz, 1996) to calculate the density of the melt for each sample. Before 

conducting the calculation, I used the available density-composition data in the 

literature to check the software. Fig. 4 suggests Magma2 can accurately repro_duce the 

density of the glasses with low FeO content, regardless of their formation condition 

(pressure and temperature). The study system here contains no iron and the uncertainty 

in the density calculation is probably,..._,± 2 %. The calculation procedure is: (a) making 

an initial guess of the melt density; (b) using the Beer-Lambert law to calculate the H2O 

content of the melt; ( c) renormalising the melt composition using the calculated H2O 
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content and the electron probe data; ( d) calculating the melt density using the software 

Magma2 ( CO2 is ignored in this step). If the newly calculated density matches the initial 

guess, calculation stops; otherwise, another round of calculation is needed. The 

calculated density is summarised in Table 5. The relative difference between the 

maximum density (2776 g/1, C-1812) and the minimum density (2555 g/1, C-1636) is 

less than 10%, so that the assumption of Stolper & Holloway (1988), Pan et al. (1991) 

and Pawley et al. ( 1992) is reasonable. 

14 

12 
0 Stolper, 1982b 
• Fine & Stolper, 1985/1986 • 

Q.I 
~ 10 =----Q.I ~ s...._, 
~~ 8 •• -~ ..... 
~ -~ ~ 

Q.I = 6 0 ~ Q.I 
~~ 
~~ 

4 • 
- 0 Q.I 0 ~ 
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0 2 4 6 8 10 12 14 
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Fig. 4 Correlation of the FeO content in glasses to the relative difference of density between directly 
measured density and calculated density using software Magma2. For the technique used in direct density 
measurement, see the references cited. 

The H2O contents of melt>calculated in this procedure tire summarised in Table 5. It 

seems likely there is a linear relationship between the density and the H2O content of 

the melt (Fig. 5) and 1 wt% H2O decreases the density of the melt by,...., 56 g/1. 

With the calculated density data, the CO2 content of the melt is straightforwardly 

calculated by the Beer-Lambert law and is summarised in Table 5. 

With some simple assumptions (Table 5), the uncertainty of the concentration of 

H2O and CO2 has been assessed. The results show that the uncertainty in thickness 

measurement is very important to the accuracy of the FTIR technique when the sample 

is very thin. It would be desirable to put some independent constraints on the thickness 

measurement. 
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Table 5 FTffi data 

Run# Thickness p A.# H20 co 

(cm) (elliter) Absorbance H20 (wt%) Absorbance C02(wt%) 

Experiment using Mg(OH)i 

C-1601 0.0136 2748 5 0.843 (0.011 ) 0.61(0.02) 0.418(0.022) 0.13 (0.01) 

C-1616 0.0169 2754 4 0.685 (0.004) 0.40(0.01) 0.478(0.01 6) 0.12(0.01) 

C-1602 0.0152 2734 3 0.955 (0.005) 0.62(0.02) 0.636(0.022) 0.18(0.01) 

C-1611 0.0070 2734 4 0.633 (0.007) 0.89(0.04) 0.579(0.015) 0.35(0.02) 

C-1615 0.0068 2729 3 0.654(0.014) 0.95(0.04) 0.542(0.019) 0.34(0.02) 

C-1623 0.0067 2703 4 0.900(0.047) 1.33 (0.09) 0.589(0.026) 0.38(0.02) 

C-1789 0.0047 2630 5 1.199(0.125) 2.31 (0.30) 0.490(0.068) 0.47(0.07) 

C-1633 0.0065 2619 5 1.914(0.020) 2.98(0.13) 1.157(0.030) 0.80(0.04) 

C-1636 0.0014 2555 8 0.552(0.031 ) 4.16(0.65) 0.216(0.015) 0.71 (0.11) 

Experiment using Al(OH)J 

C-1750 0.0103 2751 3 0.490(0.008) 0.46(0.02) 0.300(0.009) 0.12(0.01) 

C-1716 0.0223 2763 4 0.638(0 .021) 0.28(0.01) 0.373(0.052) 0.07(0.01) 

C-1729 0.0124 2764 7 0.259(0.003) 0.20(0.01) 0.156(0.007) 0.05(0.00) 

C-1759 0.0222 2766 6 0.472(0.011) 0.21 (0.01 ) 0.187(0.024) 0.04(0.00) 

C-1719 0.0158 2764 6 0.556(0.012) 0.34(0.01 ) 0.382(0.021) 0.10(0.01) 

C-1747 0.0192 2763 3 0.493(0 .019) 0.25(0.01 ) 0.085(0.006) 0.02(0.00) 

C-1734 0.0164 2758 6 0.581 (0.015) 0.35(0.01) 0.443 (0.019) 0.11 (0.01) 

C-1807 0.0079 2765 5 0.248(0.005) 0.30(0.01 ) 0.451 (0.014) 0.24(0.01) 

C-1808 0.0054 2769 5 0.178(0.010) 0.33(0.02) 0.112(0.011) 0.09(0.01) 

C-1723 0.0060 2718 6 0. 546(0. 006) 0.90(0 .11) 0.696(0.007) 0.50(0.02) 

C-1739 0.0087 2725 5 0.937(0.040) 1.06(0.16) 0.543(0.017) 0.27(0.01) 

C-1754 0.0080 2726 7 0.767(0 .030) 0.94(0.05) 0.548(0.020) 0.29(0.02) 

C-1741 0.0058 2666 10 1.062(0.064) 1.85(0.14) 0.476(0.038) 0.36(0.03) 

C-1803 0.0037 2623 1 0.831 2.30 0.228(0.005) 0.28(0.02) 

C-1742 0.0025 2626 8 0._623 (0.035) 2.55(0.26) 0.225(0.017) 0.40(0.05) 

Experiment using distilled H2O 

C-1817 0.0024 2643 7 0.630(0.041) 2.67(0.29) 0.350(0.025) 0.65(0.07) 

Experiment using CaCO3 

C-1812 0.0091 2776 6 0.050(0 .006) 0.05(0 .01) 1.213(0.074) 0.56(0.04) 

0.843(0.011), average followed by one standard deviation, should be read as 0.843 ± 0.011. A #, number of analyses. The 

one standard deviation of H20 and CO2 is the square root of variance (Var), which is approximated by a Taylor expansion: 

Var( C) = ( MA )2(ar~A) + VaJDl + Varf P\ 
Dpc A p 

All these variables of the right hand side of the above equation are assumed to be independent. No uncertainty is assumed 

for the molecule weight of H20 and CO2, and for the calibration factor (s) while the one standard deviation is assumed to 

be 2 µm for thickness measurement (D), 3% for density calculation (p). The uncertainty in the content of H20 and CO2 in 

the melt of C-1636 is mainly (relatively 83%) attributed by the 2-µm uncertainty in thickness measurement. 

As shown above, several FTIR spectra display oscillation which can be used to 

measure sample thickness (C-1636 in Fig. 3a and C-1723 and C-1742 in Fig. 3b). 
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Fig. 5 Correlation of the H20 content of melt to the calculated density using software Magma2. Error bar 

in this diagram and others in this study indicates one standard deviation. 

The refractive index of the melt is calculated by the method of Church & Johnson 

(1980) which ignores H2O and CO2. Due to the missing mass of H2O and CO2, the 

calculated refractive index should be lower than the real refractive index, so that larger 

calculated thickness than real thickness should be expected and the difference between 

them should be positively correlated with the missing mass. These expectations are 

confirmed by the calculation result (Table 6 and Fig. 6). 

Table 6 Thickness of sample and refractive index of glass 

Samnle # Thickness-1 H,o+co, RI Thickness-2 

C-1636 14(2) 4.87(0.91) 1.547 18.7(1 .2) 
C-1742 25(2) 2.95(0.44) 1.556 28.2(2.4) 
C-1723 60(2) 1.40(0.17) 1.568 61 .7(0.4) 
Thickness- I: direct measurement by micrometer (µm); H20+cOz: mass of H20 and CO2 in the glass 
(weight percent; from Table 5); Thickness-2, calculated thickness (µm); RI, refractive index. 
Thickness-2 is calculated by the following equation: 

Thickness(cm) = 1/(2*n*u) 
where n is the refractive index (RI) calculated by the method of Church & Johnson (1980) and \J is 
the wave length shown by the oscillation of the spectra. 
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Fig. 6 Correlation of the difference in thickness between that determined from the interference oscillation 

using refractive index calculated from Church & Johnson (1980) and direct measurement, and the mass 

ignored in the calculation of the refractive index of the melt (H20 and CO2 in the melt from Table 5). 

4. Experimental results 

Table 3 summarises the starting materials, the piston-cylinder pressure assemblies 

used, the run conditions and the phases observed in the experiments. The mass of the 

charge loaded and the initial water and estimated carbon dioxide contents are also given. 

The temperature range covered in this study is from 1200 to 1317 °C, with run durations 

from 24 to 117 hours; most runs were longer than 48 hours. Out of 28 experiments with 

added water, 21 have melt coexisting with the Sp-lherzolite phase assemblage 

(Fo+Opx+Cpx+Sp ), five experiments display melt coexisting with Fo+Opx+Sp, and in 

the remaining two experiments_ melt coexists with Fo+Sp only. 

In order to assess the effect of Na2O impurities on the solidus, two experiments 

were carried out in the system CMAS-N a2O, and to constrain better the effect of CO2, 

one experiment with only CO2 and no initial H2O was also performed. 

The compositions of all phases from electron micro pro be analyses are presented 

in Table 4. Melt compositions are given renormalized to 100% on a volatile-free basis. 

Volatile contents from FTIR spectroscopy are given in Table 5. 
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4.1 Compositions of crystalline phases 

Fo and Sp have almost the pure end-member compositions, although Fo has,...., 0.3 

wt% CaO, approximately consistent with the amounts expected from previous work 

(e.g., Kohler & Brey, 1990; Libourel, 1999; Chapter 3 of this thesis). The amount of 

CaO held in olivine at near-solidus temperatures is an important part of the whole-rock 

budget of CaO in depleted mantle peridotites, and should not be overlooked. 

Pyroxenes were homogenous, except in two "two-stage" reversal experiments C-

1807 and C-1808, where occasionally the cores of larger pyroxene crystals returned 

anomalous compositions, and in C-1812 (CO2 only, no initial H2O), which was run for 

just 24 hours, the alumina content of the Cpx appears slightly high. Na2O in 

clinopyroxene is close to the limit of detection in most experiments (,...., 0.1 wt%), and is 

not reported except in a few experiments where it is clearly above 0.1 wt%. 

The Ca exchange geothermometer between Opx and Cpx calibrated by Nickel et 

al. (1985) reproduces the nominal experimental temperature very well, with an average 

difference of 17 degrees (Fig. 7). Of other two-pyroxene geothermometers, equation (9) 

in Brey & Kohler ( 1990) gives systematically higher and more scattering calculated 

temperatures with an average difference of 4 7 degrees, while equation 10 in Brey & 

Kohler (1990) gives systematically lower calculated temperatures, with an average 

difference of 51 degrees. These results are similar to that found in my previous study of 

the system CMAS-K2O (Chapter 2 of this thesis). 

4.2 Compositions of partial melts 

Although quench Cpx, present as overgrowths, usually 1-2 µm thick, mainly 

rimming pre-existing stable Cpx and Opx, was observed in all experiments, pockets of 

melt with a diameter commonly > 100 µm uJ~e observed in all experiments except C-

1724 and C-1773. Such pockets are sufficiently large that their middle portions are 

unaffected by this quench modification. The extent of partial melting in C-1724 is very 

low and good analysis of the melt was not possible. The melt in C-1773 was analysed 

and the result appears consistent with that from other experiments, although observed 

standard deviations are larger. All other experiments produce homogeneous m.elt, with 

typical one standard deviations ranging from ±0.04% for Na2O to ±0.20% for SiO2• 

The compositions of melts are plotted in Fig. 8 in the projection from Diopside 

(Di: CaMgShO6) onto the plane Jd+CaTs-Fo-Qz (Jd = NaA1ShO6; CaTs = CaAhSiO6) 

(Falloon & Green, 1988). The melt at the invariant point Fo+Sp+Opx+Cpx+Melt in the 

system CMAS at 11 kbar is an olivine tholeiite. The effect of Na2O is to shift the 
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composition towards the silica-undersaturated plane Di-Fo. The effect of H20 is to shift 

the composition of melts in the opposite direction in this projection, towards the 

Ab+An-En (Ab = NaAlSbOs; An = CaAliSiiOs; En = Mg2Si20 6) plane; the melts 

becoming quartz-normative at ,..., 3 % H20. It should be noted that I have not corrected 

the experimental melt compositions for the small amounts of Na20 and CO2 present. 

,-., 
u 
0 
'-' 

• 
Q. e 
~ ...... 
~ 
~ ...... 
~ = u -~ u 

1400 ---t 

1350 

1300 

1250 

1200 

1150 

e Opx-Cpx geothermometer of NKB85 
V Opx-Cpx geothermometer of BK90 
I:),,. Opx geothermometer of BK90 

V 
V V 

6. 6. 

6. 

1100 ......... -------------------------,,--------, 

1100 1150 1200 1250 1300 1350 1400 

Experimental temp. (°C) 

Fig. 7 A comparison diagram of experimental temperatures and calculated temperatures using different 
geothermometers . NKB85, Nickel et al. , 1985; BK90, Brey and Kohler (Equation 9 and Equation 10; 
1990). 

4.3 Contamination and other mass balance issues for H20 and CO2 in the 

experiments 

The diffusion rates of H2 through Pt capsules are so rapid ( e.g. , Chou, 1986) that 

the amounts of H20 in the capsule could potentially change significantly during the run. 

To minimise this , it is desirable to balance fH2 as far as possible between the inside of 

the capsule and the outside; for this reason, runs were performed without an Fe20 3 

sleeve as an H2 getter, unless they were intended to be anhydrous. 
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Fig. 8 Experimentally produced melt plotted onto the plane JdCaTsLc-01-Qz from Di. For plotting 

procedure, see Falloon & Green (1988). This plotting procedure is followed in Fig. 16, Fig. 17 and Fig. 

18 as well. The isobarically invariant melt composition for a Sp-lherzolite in the system CMAS at 11 kbar 

is from Chapter 2 of this thesis. 

The possibility of H2 entering or leaving the capsule also means that the H2O 

contents in the melt phase of the run products need:_· to be determined after the run. For 

this, I used FTIR spectroscopy, which also revealed that the melt contained CO2. The 

initial experiments, which used Mg(OH)2 as the source of H2O, showed that the 

amounts of CO2 correlated with H2O (Fig. 9), suggesting that the Mg(OH)2 was the 

source of the CO2. This appeared plausible, since finely divided MgO notoriously 

absorbs CO2 from the atmosphere. Hence I switched to Al(OH)3, on the grounds that 

aluminium carbonate, unlike MgCO3, is not stable. However, these runs also contained 

CO2 (Fig. 9), and subsequently I discovered from the Merck Index, 12th edition 

(Budavari, 1996) that Al(OH)3, like Mg(OH)2, is known to absorb CO2. Calculation 

suggests that the hydroxides contained r-., 3.98 wt% CO2 in Mg(OH)2 and 3.70 wt% in 

Al(OH)3. 

In order to avoid CO2, I then tried a run in which H2O was added simply as 

distilled water (C-1817). Unfortunately, this run also contained considerable CO2; in 

fact, the ratio of CO2 to H2O is indistinguishable from the runs starting with Mg(OH)2 

or Al(OH)3 (Fig 9). The origin of this CO2 is a mystery; one possibility is that C may 

diffuse through Pt capsules in piston-cylinder experiments, as observed by Watson et al. 

(1982), Watson (1987) and Brooker et al. (1998). To test whether this might be an 

additional problem here, three ancillary experiments were then performed. Both run 

conditions and results are given in Table 2, along with a relevant experiment from 
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Fig. 9 The relationship of H20 and CO2 in the experimentally produced melts. 

Chapter 2 of this thesis. Run C-1621 shows that use of the Fe20 3 sleeve controls the 

water content to a negligible level, as found by Robinson et al. (1998), and also, not 

surprisingly, prevents Centering the experimental charge. Run C-1809 suggests that H2 

ingress is considerably higher without the Fe20 3 sleeve, even in a short run time. 

However, there is no sign of C in the experimental charge after running the experiment 

for 20 minutes. The CO2 detected in C-1810 and C-1811, which were run under the 

same conditions (pressure, temperature, duration, capsule material and assembly 

arrangement) must therefore come from the starting materials. The compositions of the 

starting materials SEM02-7, SEM02-9, SEM02-11 and SEM02-12 were recalculated 

accordingly, assuming,..., 3.98 wt% CO2 in Mg(OH)2 and 3.70 wt% in Al(OH)3 (Table 

1). 

4.4 The effect ofNa2O: partial melting in system CMAS-Na2O 

The trace of N a20 apparently present in the starting materials is concentrated into 

the melt, reaching levels as high as ,..., 1 wt% (Table 4 ). This is too high an amount to 

ignore in the present context, and it is necessary to assess what effects N a20 has on the 

partial melting process, so that an appropriate correction may be applied. Accordingly, 

two experiments were performed adding small amounts of Na20 under anhydrous 

conditions, using the sandwich technique as in my previous work on the system CMAS-
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K2O (Chapter 2 of this thesis). A much more extensive study of partial melting in 

CMAS-Na2O was undertaken by Walter & Presnall (1994), from 7 to 35 kbar. 

The results in Walter & Presnall (1994), as parameterised by them in the form of 

equations describing the effect of Na2O on temperature and melt composition, are 

compared to my data at 11 kbar in Fig 10. It may be seen that there is substantial 

agreement as regards the compositional effects, but the parameterisation of Walter and 

Presnall ( 1994) appears to show a substantially greater decrease in solidus temperature. 

This may be an experimental artefact caused by the solidus temperature of Walter and 

Presnall ( 1994) for the pure CMAS system being slightly too high, as I have previously 

argued from independent evidence (Chapter 2 of this thesis). The reason is as follows. 

The solidus temperature in CMAS of Walter and Presnall (1994) is constrained at 11 

kbar by experiment 116-3 from the earlier work of Presnall et al. (1979). This earlier 

work used W-Re thermocouples, which (amongst their other problems) may oxidize in 

the piston-cylinder apparatus at relatively low pressures, since the alumina 

thermocouple tubing does not collapse completely unless pressures are greater than 

about 10 to 15 kbar; this allows oxygen from the air to leak in and attack the hot end of 

the thermocouple (e.g., Falloon et al., 2001). Oxidation causes drift to higher apparent 

temperatures. Walter and Presnall (1994) guarded against this oxidation by flowing N2 

around the thermocouple, but this was not done in the earlier work. It is possible, 

therefore, that there is a systematic offset in temperature measurement between the new 

experiments in CMAS-Na2O reported by Walter and Presnall (1994), which appear to 

be consistent with my work, and the older experiments in the pure CMAS system from 

Presnall et al. (1979), below about 15 kbar. When the two sets of experiments are 

spliced together, this offset results in an artificially large effect of small amounts of 

Na2O on the solidus temperature. Here I find that the effect of Na2O in depressing the 

solidus at 11 kbar is r-.., 4 + 5 degrees per weight percent Na2O (Fig. 1 0a), as compared 

with r-.., 10 degrees in Walter & Presnall (1994). 

5. Discussions 

5 .1 Data fitting: deconvoluting the effects of H20 from N a20 and CO2 on 

the solidus of spinel lherzolite in CMAS at 11 kbar. 

Since the system CMAS contains four components, melt coexists with four solid 

phases at an isobaric invariant point. Adding one component to the system (such as 
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Fig. 10 A comparison diagram of Na2O effect on solidus and melt composition at 11 kbar between this 

study and WP94 (Walter & Presnall, 1994 ). The data for the isobarically invariant point of the Sp­

lherzolite in system CMAS at 11 kbar is from Chapter 2 of this thesis and used in the new regression. 
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H2O) produces just one degree of freedom, hence the depression of the temperature of 

the solidus depends only on the amount of this extra component in one of the phases 

(such as H2O in the melt). Here I need to consider three components, Na2O and CO2 as 

well H2O, but since they are present in small amounts, I assume they are independent of 

each other. I also assume, for the small amounts involved, that the relationship between 

solidus temperature and the extra components is linear, giving the equation 

(2) 

We then fit the experimental data (Tables 4 and 5) to this equation, assuming the 

compositional uncertainties given in these tables , and an uncertainty in experimental 

temperature of± 5 degrees (all uncertainties in this study are one standard deviation). I 

assumed T~~d~~ was 1319°C from Chapter 2 of this thesis. The first attempt returned a 

coefficient A co2 that was nominally positive but with a large uncertainty ( actually 7 ± 

7 degrees per wt%). Since CO2 is concentrated into the melt phase, the sign of A ~02 

must be negative. Clearly the current experimental technique is not sufficiently accurate 

to constrain A ~Oi ; previous work on the effects of CO2 on the solidi of other systems 

showed that it has only a small effect (Eggler, 1978), and therefore A ~02 is arbitrarily 

set to zero. With this , I obtained: 

(3) 

and 

AT 
O 

= -38.2 (1.2) °C/wt% 
H2 

(4) 

The reduced chi-squared (x~) for the regression is 2.65 , indicating a reasonable fit to 

the data with the assumed uncertainties. The effect of small amounts of Na2O on the 

solidus temperature is thus similar on a wt% basis to that of K2O (-5 .8 °C/wt% from 

Chapter 2 of this thesis), although it is not well constrained by the present experiments 

(note that adding higher amounts of Na2O to the system at 11 kbar would tend to cause 

plagioclase to crystallize, as shown by Walter and Presnall, 1994 ). The effect of H2O is 
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much larger ( also when considered on a molar basis), and is very well constrained by 

the experiments (Fig. 11 ). 

I adopted a similar empirical approach to disentangle the effects of H20 from 

Na20 and CO2 on the composition of the melt at the solidus, i.e., by fitting the data in 

Tables 4 and 5 to empirical equations of the type: 

(5). 

Results are given in Table 7 for the oxides on a volatile-containing basis. 

1350 ----------------------------, 

1300 

,-.. u 
0 • '-' 1250 ~ 

J,.j 

2 
~ 
J,.j 
~ 1200 • Q,. 

a 
~ 

1150 Temp = -38.2 [H20] + 1319 

1100 -+--------------------------,..------t 
0 1 2 3 4 5 6 

H20 in melt (wt%) 

Fig. 11 H20 effect on melting temperature in the simple system CMAS-H2O at 11 kbar. Line is drawn 
according to Equation 4 in the text. 

The regressed melt composition with 0% Nc½O and 0% CO2 is plotted in Fig. 12. 

When H
2
0 is regarded as a component of the melt, increase of water increases Si02 and 

Al
2
0

3
, but decrease MgO and CaO. This variation pattern supports most of the 

observations and interpretations made by Gaetani & Grove ( 1998) in natural rock 

composition systems, except for their observation that Al20 3 is unaffected by water 

addition. The effect of water is very strong on MgO ( 1.49% decrease caused by 1 % 

water increase), strong on Al20 3 (0.67% increase caused by 1 % water increase), weak 
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on CaO (0.39% decrease caused by 1 % water increase) and very weak on SiO2 (0.11 % 

decrease caused by 1 % water increase). When melt composition is plotted on a water­

free basis, however, the SiO2 content of melt increases rapidly. That is simply because 

renormalization to 100% affects the most abundant oxide, Si 0 2, the most. Similarly, the 

water effect on other oxides is also changed: its effect on Al2O3 is enhanced but its effect 

on MgO and CaO is depressed. 

In order to show the effect of CO2 on melt composition, I calculated the melt 

composition at 0% CO2, 0.5% CO2 and 1 % CO2 using the regression coefficients in 

Table 7, and the result is shown in Fig. 13. It is obvious that the CO2 effect on melt 

composition is not constant but changes with the H2O content: this effect generally 

increases as the water content increases. The CO2 effect on the MgO content even 

changes its sign at about 1.2 % H2O. At high water conditions, the CO2 effect on the 

content of all these oxides is in an opposite direction to that ofH2O. 

Table 7 Results of regression analysis of the composition of melts in equilibrium with 

Fo+Sp+Opx+Cpx in the system CMAS with small additions of Na20, H20 and CO2. 

[X]cMAs Bx Bx X X 2 
BC02 CH20/ CO2 Xv Na20 H20 

CaO 14.77(12) -0.65(12) -0.39(7) 0.90(31) 5.1 
MgO 16.27(11) -1 .01(12) -1.49(11) -1.27(22) 1.30(16) 6.5 
Ah03 19.80(12) 0.43(11) 0.67(10) -0.25(25) -0.57(16) 3.4 
Si02 49.17(15) 0.61(11) 0.11(12) -0.79(28) -0.54(19) 1.5 

For the experimentally observed melt compositions, see Table 4 and Table 5. These data were fitted to Equation 5. H20 and 
CO2 are retained as components in the melts 

The generally opposite effect of CO2 on melt composition to that ofH2O observed 

here may suggest that the experimental result in Gaetani & Grove (1998) has to be used 

with caution. Typically ,...., 1.2% CO2 was observed in their melt but its effect was 

ignored. My observation made above suggests that the most of the SiO2 decrease which 

was assigned to H2O by them was actually caused by CO2 (Fig. 13a). The H2O effect on 

AhO3 in their experiments, however, may have been essentially masked by the presence 

of CO2 so that the nominal observation is a constant AhO3 content in melts (note the 

almost horizontal line with 1 % CO2 in Fig. 13 b ). Although the CO2 effect on MgO and 

CaO is also opposite to that of H2O, the H2O effect should be preserved because its 

higher concentration and its stronger (in the case of MgO) or identical (in the case of 

CaO) effect to that of CO2. 
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Fig. 12 The effect of H2O on the contents of SiO2 (a), AbO3 (b ), MgO ( c) and CaO ( d) in silicate melt at 

COrfree conditions (Equation 5 and Table 7). Solid lines: H2O retained as a component in the melt; 

broken lines : Melt compositions renormalized to 100% on an anhydrous basis . 
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Fig. 13 The effect of CO2 on the contents of SiO2 (a), AhO3 (b), MgO (c) and CaO (d) in silicate melt at 

H2O-dominant conditions (Equation 5 and Table 7). 

5.2. Water effect on melting temperature 

It has been a long time since people recognised that water has a strong effect on 

the melting temperature of upper mantle lherzolite (Kushiro et al., 1968b; Kushiro, 
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1972; Green, 1973; Mysen & Boettcher, 1975a, 1975b; Green, 1976; Falloon & 

Danyushevsky, 2000; Ulmer, 2001). What is unknown is how much a certain amount of 

H2O in melt can affect the melting temperature. In the literature, fluid-unsaturated or 

fluid-saturated experiments are very limited (Ulmer, 2001 and references therein) and 

only Gaetani & Grove (1998), Falloon & Danyushevsky (2000), Muntener et al. (2001) 

and Pichavant et al. (2002) analysed the H2O content in melts using FTIR, ion 

microprobe, O-method or a "by-difference" method using electron microprobe. The 

different analysing methods, the presence of CO2 caused by experimental technique and 

the various phase assemblages involved prevent people making any rigorous analysis of 

the H2O effect on the melting temperature. The only model, empirical in nature, 

proposed by Falloon & Danyushevsky (2000), suggests an exponential correlation 

between H2O content and its temperature depression. In contrast, the result here 

suggests that the correlation between H2O and temperature is linear (Fig. 11 ): every 

percent of H2O increase depresses the melting temperature by,...., 3 8 degrees. 

According to my experience in different fluid-analysing techniques, the data from 

Gaetani & Grove (1998) is the most reliable data in the literature despite the CO2 in 

their melts. Hence I tentatively removed the CO2 effect on SiO2, AliO3, MgO, CaO and 

H2O in the melt in those experiments which were analysed both for H2O and for CO2, 

and plotted the corrected data in Fig. 14a. Remarkably, a linear relationship between 

H2O and temperature emerges and suggests that 1 % H2O decreases melting temperature 

by ,...., 3 9 degrees. It is noted that my correction procedure by no means is rigorous 

because of the presence of other components in their melts. 

Fig. 14b compares my model to that in Falloon & Danyushevsky (2000). At low 

H2O content, their model suggests larger temperature depression while at high H2O 

content, their model suggests smaller temperature depression. 

The Falloon & Danyushevsky (2000) model was built on the relationship between 

the H2O contents of experimentally produced melts and the differences of the 

experimental temperatures ( as hydrous temperatures) and the calculation temperatures 

(as anhydrous temperatures) with the geothermometer of Ford et al. (1983). Since the 

melt composition as input into the Ford et al. (1983) geothermometer has been affected 

by H2O, it is obvious that the calculated temperatures are hydrous melting temperatures 

rather than anhydrous melting temperatures. The above relationship on which their 

H2O-temperature model was built, therefore, is essentially just an independent 

examination on the accuracy of the Ford et al. (1983) geothermometer at hydrous 
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Fig. 14 The effect of H 20 on melting temperature in natural rock composition system at 12 kbar (a) and a 

comparison of the new model shown in Fig. 11 and the Falloon & Danyushevsky (2000) model. GG98 , 

Gaetani & Grove (1998); FDOO, Falloon & Danyushevsky (2000). In order to remove the CO2 effect on 

the H20 content, simple correction based on the preceding regression is applied to the melt compositions 

from Gaetani & Grove (1998). The CO2 content in one of the melt compositions (B-329) was not reported 

but it is assumed to be 1 %, based on the information from B305 (1.27% CO2) , which has similar 

experimental conditions, similar phase assemblage and similar water content. The high anhydrous solidus 

(~ 1362°C) of the natural rock composition at 12 kbar is partly due to the pressure difference and partly 

due to the contamination of the W-Re thermocouples at this pressure, according to Chapter 2 of this 

thesis, Chapter 3 of this thesis and Fallo on et al. (2001 ). 

condition. It follows that the Falloon & Danyushevsky (2000) model is in fact not a 

model about the effect of H20 on partial melting temperature. 

Fig. 15a shows that the Ford et al. (1983) geothermometer can not accurately 

reproduce the temperatures of my hydrous experiments, resulting in much higher 

calculated temperatures. Fig. 15b shows that the difference between the calculated 

temperature and the experimental temperature is not a simple linear function of the H20 

content. The similar curvature of the temperature difference to H20 displayed in Fig. 

15b and the "model" of Falloon & Danyushevsky (2000) displayed in Fig. 1_4b argues 

again that their model is indeed not a model about the effect of H20 on partial melting 

temperature. My model built here, which suggests a simple correlation between H20 

contents and partial melting temperatures, is the only one. 

It is suggested that great caution is necessary when the Ford et al. ( 19 83 ) 

geothermometer is applied to calculate hydrous melting temperature. 
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Fig. 15 Comparison of calculated temperature using the Ford et al. (1983) geothermometer and 

experimental temperature (a) and the relationship of the difference between calculated temperature and 

experimental temperature to water content (b ). The curve in bis hand-drawn. 

5.3. Melt property in system CMAS-H2O-CO2 

Using the regression coefficients in Table 7, I have regressed the melt 

compositions from 0% H2O to 5% H2O at conditions of 0% CO2, 0.5% CO2 and 1 % 

CO2. The regressed melt composition is shown in Fig. 16. 

When the system is H2O-free and COr free, the product melt is essentially olivine 

basalt (Presnall et al., 1979; Walter & Presnall, 1994; Chapter 2 of this thesis). As water 

adds in, AhO3 in melts increases so that melts become An-richer. That leads to less CaO 

left to form Di. Since CaO has already been decreased by the addition of H2O, Di 

should decrease rapidly, as shown by the 0% CO2 melt trend in Fig. 16a. When H2O 

increases to ,...., 5%, CaO is consumed but AhO3 is left by forming An so that melt 
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becomes Di-free and corundum-normative. Since H2O increases the SiO2 content but 

decreases the MgO content (Fig. 12), melts become more Hy-normative. With ~ 1.5% 

water in the melt, melt becomes quartz-normative (Fig. 16b ). As H2O increases to ~ 5%, 

the melt is very rich in quartz. The observation that H2O saturated melt is rich in quartz 

made by Yoder ( 1971) and Kushiro ( 1972), therefore, is confirmed by the new 

observation. 

(a) 

60(JCL) 

20(Di)40(J CL )40( Qz) 

' ' CO2 effect? 

AbAnOr 

System CMAS 

30( 01)40( Qz)30(J CL) 

System CMAS 

80(Qz) 

Jd+CaTs Ab+An+Or Qz 
+Le 

01 

Fig. 16 Melt property shown on the plane Di-JdCaTsLc-Qz from 01 (a) and the plane 01-JdCaTsLc-Qz 

from Di (b ). Melt composition data is regressed for a Sp-lherzolite phase assemblage in the system 

CMAS-H20-C02 at 11 kbar. The isobarically invariant melt composition for a Sp-lherzolite in the system 

CMAS at 11 kbar is from Chapter 2 of this thesis . 
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CO2 makes the melt Di-richer (Fig. 16a) and shifts the melt towards the AbAnOr­

O1 plane (Fig. 16b). This observation indirectly confirms the study of Eggler (1978) in 

the system CMAS-Na2O-CO2, in which the COi-saturated melt melts was observed to 

be Ne-normative. 

Fig. 16 also demonstrates the opposite effect of CO2 on melt property to that of 

H2O. At CO2-free condition, an addition of 5% H2O can cause a large shift of melt 

composition; this shift of melt composition is much counteracted by 1 % CO2. 

The possibility of forming corundum-normative melts by direct partial melting of 

the lherzolite upper mantle is interesting. Gill ( 19 81) found that ,..., 15% ! ndesites around 

the world is corundum normative. Several explanations for the origin of corundum 

normative melts in calc-alkaline magma series exist: pelite assimilation, hornblende 

fractionation at low pressure and garnet+amphibole-spinel fractionation at high pressure 

(Muntener et al. , 2001, and references therein). My study suggests that at water-rich 

conditions, direct partial melting of a lherzolite upper mantle is also a possible 

mechanism. 

5.4. Hydrous unsaturated melt in natural rock composition system 

Agreement has been consistently reached on the melt property among the hydrous 

partial melting studies in simple systems (Kushiro et al., 1968b; Kushiro, 1969; Yoder, 

1971; Kushiro, 1972; Kushiro, 1975; Sisson & Grove, 1993; this study), the hydrous 

melt property in natural rock composition system, however, is still a question open to 

debate. There were extensive discussions about the nature of the water-saturated melt 

and about the possibility of andesitic magma as a primary melt generated by direct 

partial melting of hydrous upper mantle in the 1960s and 1970s (Kushiro et al., 1968; 

Kushiro & Yoder, 1972; Nicholls & Ringwood, 1972; Green, 1973; Nicholls & 

Ringwood, 1973; Mysen et al., 1974; Mysen & Boettcher, 1975b; Green, 1976). These 

discussions have continued themselves towards today (Kushiro, 1990; Hirose & 

Kawamoto, 1995; Hirose, 1997a; Gaetani & Grove, 1998; Falloon & Danyushesky, 

2000) and no agreement has been reached so far (Ulmer, 2001). 

Fig. 17 shows the melt compositions from Hirose & Kawamoto (1995) at 10 kbar, 

Hirose (1997a) at 10 kbar and Gaetani & Grove (1998) at 12 kbar with or · without a 

simple correction for the CO2 effect on SiO2, A}iO3, MgO, CaO and H2O. For those 

experiments in Gaetani & Grove (1998) in which both H2O and CO2 data are available, 

empirical correction was directly applied to their melt composition. For those 

experiments without CO2 data, I firstly estimated the effective H2O content by using the 
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linear relationship between melting temperature and water content (Fig. 11 ), secondly 

split their analysed nominal H2O content into two parts: the effective H2O content and 

the ineffective H2O content which was counteracted by CO2, thirdly calculated the CO2 

content required to counteract the ineffective H2O, finally removed the CO2 effect on 

the melt composition. Similar correction procedure plus a new assumption, 1 % CO2 in 

the melts of the experiments using Ag-Pd l)r Au-Pd capsule, was applied to the 

experiments in Hirose & Kawamoto (1995). Hirose (1997a) used Au as capsule material 

in his experiments, so that his experimental data was not corrected for CO2. The 

graphite diffusion rate through Au at high temperature-high pressure conditions is 

unknown but, by analogy with H2, it may be significantly lower than the diffusion rate 

through Pt and Pd (Brooker et al., 1998). 

Fig. 17 suggests that the CO2 correction process does bring forth some 

differences. The most notable change is the original melt data of Gaetani & Grove 

(1998) clouding around the Di-AbAnOr-O1 plane has been spread toward Qz. The 

second change is one of the two nepheline-normative melts has crossed the Di-AnAnOr­

O1 plane while the other one (B287) has not. Gaetani & Grove (1998) showed that the 

melt in B287 contains just 0.07 wt% CO2, so that not much CO2 correction has been 

actually applied to this melt. The third change is the melts in two experiments in Hirose 

& Kawamoto (1995), marginally quartz-normative before the correction, become 

definitely quartz-normative after the correction. 

The corrected composition data define a cotectic which is completely different 

from the 10 kbar anhydrous cotectic (Falloon et al. , 1999) and also completely different 

from the 10 kbar hydrous cotectic tentatively drawn by Ulmer (2001 ), but similar to my 

observation in the simple system (Fig. 16). Similarly, Falloon & Danyushevsky (2000) 

observed a cotectic for hydrous partial melting of assemblage Ol+Opx+Sp, which is 

very different from that for anhydrous partial melting of the phase assemblage 

Ol+Opx+Sp. It must be noted that, because of the high degrees of variation in the 

hydrous or anhydrous natural rock composition system, the cotectic actually should be a 

volume in the multiple-dimension composition-temperature space and thus not unique. 

The general trend of melt composition from low temperature to high temperature or 

from high water content to low water content, however, should remain. 

It follows hydrous partial melting in the natural rock composition system is almost 

completely controlled by two factors , water content and temperature. At high 

temperatures (> ,__, 1150°C at ,__, 11 kbar), the product melt should be olivine-normative 

while at low temperatures ( < ,__, 115 0°C at ,..., 11 kbar ), the product melt should be quartz-
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normative. If a certain amount of water is kept in the system and temperature is let to 

vary, hydrous partial melting should start from a H2O-saturated point ( stable amphibole 

or fluid?) at very low temperature and produce water-rich and highly quartz-normative 

melt (with most Na2O locked in amphibole or fluid?). When temperature increases, 

partial melting extent should increase and melts move along the hydrous cotectic, 

becoming less water-rich and less quartz-normative. If temperature increases further, 

water-poor olivine-normative basaltic melt should be eventually produced. How far 

melt can move along the cotectic, how much melt can be produced and also what phase 

will be melted out first (Cpx, Opx or Sp?) are mostly dependent to how much water is in 

the bulk composition. In order to fully understand the behaviour of hydrous partial 

melting of upper-mantle, more experiments at different temperatures with different bulk 

water contents are required. 

0 0098, without correction for CO2 

20(Di) e 0098, with correction for CO2 
-----------

~1.lh 

40(01) 

• HK95, without correction for CO2 

• HK95, with correction for CO2 

fl. H97, with no correction for CO2 
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Jd+CaTs 
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Di 

01 

Fig. 17 Melt property shown on plane Di-JdCaTsLc-Qz from 01 (a) and plane O1-JdCaTsLc-Qz from Di 

(b) at water-undersaturated condition. GG98, Gaetani & Grove, 1998; HK95, Hirose & Kawamoto, 1995; 

H97, Hirose, 1997a; F99, Falloon et al., 1999; U0l, Ulmer, 2001. Only those experimental data for a Sp­

lherzolite phase assemblage are shown. Arrows point to the direction of temperature increase (e.t., H2O 

decrease) . 

5 .5. Water-saturated melt at,_, 11 kbar 

The previous subsection implies that the water-saturated melt (stable amphibole or 

fluid?) is one of the most important endmembers in the partial melting study of upper 

mantle. Although some studies have been carried out (Green, 1973; Mysen & Boettcher, 
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1975b; Green, 1976; Ulmer, 2001), no agreement about the compositions of the water­

saturated melts has been reached so far. 

Despite there is a possibility that those melts experimentally observed in Green 

(1973) and Mysen & Boettcher (1975b) were affected by CO2, I plot their original data, 

along with the calculated melt compositions from Green (1973; 1976), in Fig. 18 

without making any correction. The shown data from Mysen & Boettcher (1975b) 

cover, wide ranges of bulk composition (B, C, and D), hydrogen fugacity (buffered by 

magnetite-hematite, iron-wustite, nickel-nickel oxide or the cell) and pressure (either 

7.5 kbar or 15 kbar). The experimental pressure for those data from Green (1973; 1976) 

is 10 kbar. 

~ 
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Fig. 18 Melt property shown on plane Di-JdCaTsLc-Qz from 01 (a) and plane 01-JdCaTsLc-Qz from Di 

(b) at water-saturated condition. G73 , Green, 1973 ; G76, Green, 1976; MB75b, Mysen & Boettcher 

(1975b ). Solid curve: cotectic at water-undersaturated condition which is from Fig. 17. Arrows point to 

the direction of temperature increase ( e. t. , H20 decrease) . 

Fig. 18 illustrates that the water-saturated melts spread widely and one melt 

composition from Mysen & Boettcher (1975b) is apparently at odd. No any obvious 

dependence of the water-saturated melt composition to pressure, bulk composition and 

hydro gen fugacity is displayed by these data. 
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Compared to the water-unsaturated cotectic at ,...., 1; l kbar, these experimentally 

defined melts are poor in 01 component but rich in Di component. Green (1973 ; 1976) 

noted the O1-poor nature of these melts and argued that quench crystallising had 

affected their composition. Hence he deliberately made correction to those melts. Fig. 

18b, however, suggests that he possibly over-corrected the data and the corrected melts 

may be too rich in 01 component. The Di-richer nature of these melts, which is the first 

time to be recognised,wp0ssibly caused by those special experimental conditions: short 

run time (one to several hours) and very low temperature (950-1200°C). Close 

equilibrium in these experiments may have not been achieved and some "quenching" 

phases, like the quenching "Cpx" and "Amph" observed by Green (1973), may actually 

be crystallising phases. Due to the very short experimental time and the very low 

temperature, they were just not well crystallised. The melt, hence, should be too rich in 

those components which would be used to make these crystallising phases. Apparently, 

Di is one of those components. 

Combining all these messages, I suggest that the H2O-saturated melts at a pressure 

around 11 kbar, either coexisting with amphibole or fluid, are corundum-normative and 

contain about 20 wt% normative quartz (indicated by the broken circles in Fig. 18). 

Several melt compositions from Mysen & Boettcher (1975b) in fact are very close to the 

speculated melt compositions. 

5.6. CO2 and petrogenesis of special melt inclusions from island arcs 

Primitive melt inclusions were documented in 01 from island arcs (Schiano et al. , 

2000; and references therein) and their major features are low Si02 content (down to 

44%), nepheline-normative and high CaO contents (up to 19%). Schiano et al. (2000) 

suggested that these melt inclusions can not simply explained by melting of a 

metasomatized peridotitic mantle wedge above subducting oceanic lithosphere but they 

may be produced by 10-30% partial melting of a Cpx-rich lithology at lower crustal to 

upper mantile pressures. Recent partial melting study (Kogiso & Hirschmann, 2001) 

showed that the Si02 contents of the melt generated by partial melting of 

clinopyroxenite are much higher than those of the arc melt inclusions, and the partial 

melting temperature is much higher than that likely to be prevailing in the island arc 

region. The petrogenesis of these melt inclusions, thus, remains unsolved. 

The SiO2 content of the solidus melt of a Sp-lherzolite in the system CMAS at 11 

kbar is ,...., 49%. Studies in simple systems suggested that it can be elevated by K2O 

(Chapter 2 of this thesis), Na2O (Presnall & Hoover, 1987; Walter & Presnall, 1994; this 
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study), Cr2O3 (Chapter 2 of this thesis) and H2O (this study), but slightly depressed by 

FeO (Gudfinnsson & Presnall, 2000). The effect of TiO2 and P2O5 are not clear but 

possibly they decrease the SiO2 content (Kushiro, 1975; Hirschmann et al., 1998). 

Combining the effect of these components and their abundances in the island-arc melt 

inclusions, it is reasonable to get a SiO2 content of,...., 49% or even higher, in agreement 

with Kogiso & Hirschmann (2001). The very low SiO2 content (down to,...., 44%) in the 

island-arc melt inclusions, thus, must be caused by other missing components rather 

than by a change of lithology from lherzolite to clinopyroxenite. Schmidt et al. (2001) 

suggested that CO2 may be one important candidate. 

Previous experimental studies showed that melting of lherzolite plus CO2 ( or plus 

CO2+H2O, with X-CO2 > 0.5) produces SiO2-poor melt with high CaO contents, high 

CaO/AhO3 ratios and nepheline-normative nature (Huang & Wyllie, 1974; Eggler, 

1978; Hirose, 1997a; Dalton & Presnall, 1998a; Dalton & Presnall, 1998b). These 

signatures are well preserved in those island-arc melt inclusions. However, Schiano et 

al. (2000) argued that CO2 alone can not explain the petrogenesis of these melt 

inclusions. One argument which favours the view of Schiano et al. (2000) is that the 

CO2 solubility in anhydrous basaltic melts at low pressures is so low (,...., 0.5% at 11 kbar; 

see later discussion) that its effect on the composition of melts is not significant at all. 

Two possible mechanisms to solve these problems are CO2-dominant partial 

melting under hydrous conditions at relatively low pressures (Mechanism 1) and CO2-

bearing partial melting of peridotite at relatively high pressures (Mechanism 2). 

Mechanism] 

It is clear from Fig. 13a, Fig. 13d and Fig. 19 that the participation of CO2 in the 

H2O-dominant partial melting at relatively low pressures cannot explain the 

petrogenesis of these island-arc melt inclusions which have very low SiO2 content, but 

have very high CaO content and very high CaO/ AhO3 ratios. Thus, CO2-dominant 

conditions should be sought. 

The solubility of CO2 in nominally anhydrous basaltic melt was suggested to be ,...., 

0.85% at 11 kbar (Pan et al., 1991;,...., 0.2% H2O in their melts). My observation here (C-

1812) shows that the CO2 solubility is ,...., 0.56 + 0.07% at H2O = 0.05 + 0.01 % (Table 5). 

The real anhydrous CO2 solubility in basaltic melts multiply-saturated with 

Ol+Sp+Opx+Cpx at 11 kbar, thus, should be close to 0.5%. As H2O adds in, due to the 

opposite effect of H2O to that of CO2, more CO2 is needed in order to meet the 

requirements imposed on the melt structure and the melt composition by the solid 
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phases. Hence, the CO2 solubility has to increase. This argument is further supported by 

the much higher CO2 content observed in several hydrous experiments in this study 

(Table 5) and in Gaetani & Grove (1998). 
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Fig. 19 CaO/ AliO3 ratios of the regressed melt compositions at H2O-dominant conditions 

(Equation 5 and Table 7). 

The CO2 solubility in the multiply-saturated basaltic melts under hydrous 

conditions, thus, is directly related to the H2O content. Previous researches argued that 

the water solubility in basaltic melt ( on a water-containing basis) is in the range of 10-

15 wt% at ,_, 10 kbar (Sakuyama & Kushiro , 1979; Tatsumi, 1981; Hirose, 1997a). 

Adding H2O not only increases the CO2 solubility in the multiply-saturated 

basaltic melts, it also modifies the melt composition. Taking water into account, Fig. 7 

in Schiano et al. (2000) needs revision: the MgO content of the experimentally produced 

anhydrous melt should be reduced while the SiO2 content and the AliO3 content should 

be increased (Fig. 12 and Fig. 13). Their arguments on major elements against the CO2 

participation in the petrogenesis of these island-arc melt inclusions, thus, are not 

supported by my new experimental data. 

Mechanism2 

If these melt inclusions from the island-arc region were formed at relatively 

higher pressures (> 25 kbar?), the second argument against the possible role of CO2 (i.e. 
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the solubility limitation) doesn't exist any more. Pressure strongly increases the CO2 

solubility (Blank & Brooker, 1994; Dalton & Presnall, 1998b ). 

The first argument can also be easily solved. The melt compositions from Dalton 

& Presnall (1998a), used by Schiano et al. (2000; Fig. 7), are for near solidus melts at 

60 kbar; the melt compositions from Hirose (1997b; 30 kbar), however, are not for near 

solidus melts (DQ].ton & Presnall, 1998b ). It follows that the CO2 contents in those melts 

from Dalton & Presnall (1998a) should be much higher (14-45°/o CO2) and their 

compositions should be more severely modified by CO2. In Fig. 7 of Schiano (2000 ), a 

pattern is clearly shown for the content of MgO, Si 0 2, AliO3 in the melts, with the melt 

inclusions from island-arc region locating at one end, the melts from Hirose (1997b) in 

the middle and the melts from Dalton & Presnall (1998a) at the other end. This simply 

suggests that these melt inclusions were formed under relatively CO2-poor conditions at 

relatively low pressures. 

6. Conclusions 

The effect of H2O and CO2 on the partial melting of a Sp-lherzolite in the system 

CMAS-H2O-CO2 has been successfully studie~ here. The fluid-detecting technique, 

FTIR, was applied to analyse the content of H2O and CO2 in the melts . The major 

conclusions are: 

1. H2O has a strong effect on the partial melting temperature while CO2 has a 

negligible effect. 1 wt% H2O depresses the partial melting temperature by ,...., 38 

degrees. 

2. H2O can strongly affect the melt composition. When the system is CO2-free and 

H2O is treated as a component of the melt, 1 wt% H2O decreases MgO by 1.49 wt% 

and CaO by 0.39 wt%, but increases AJiO3 by 0.67 wt% and SiO2 by 0.11 %. 

3. CO2 also affects the melt composition. Its effect is much stronger than and generally 

opposite to that of H2O: the increase of SiO2 caused by 5 wt% H2O, for example, 

can be fully cancelled by 1 wt% CO2. The effect of CO2 on the melt composition, 

however, is not constant but changes with the H2O content in the melt. It increases 

as H2O increases. 

4. H2O affects the melt property. When the system is fluid-free, the melt is ai\ olivine 

basalt. As H2O gradually adds in, the melt gradually becomes Qz-rich and Di-poor. 

With ,...., 1.5 wt% H2O in the melt, the melt is Qz-normative; with ,...., 5 wt% in it, it is 

very Qz-rich and also corundum-normative. 
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5. The effect of CO2 the melt property is much stronger than that of H20. A shift of 

melt composition caused by 5 wt% H20 can almost be counteracted by 1 wt% CO2. 

At CO2-rich conditions, nepheline-normative melt might be produced. 
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Chapter 5 

Conclusions and future work 

1. Conclusions of this thesis 

1.1 Partial melting study in the system CMAS+K2O 

In this study, I have developed a new experimental method (the K2O method) 

which can be used to determine isobarically invariant/pseudo-invariant solidus 

temperature and solidus melt composition. This method, when applied to the system 

CMAS at 11 kbar, gives a solidus temperature and solidus phase compositions in 

agreement with most literature data. Reversal experiments with and without the addition 

of 01 justify this new approach. 

The effect of K2O on the composition of the melt generated by partial melting of a 

Sp-lherzolite in the system CMAS+K2O at 11 kbar is to increase SiO2 and AhO3 but 

decrease MgO and CaO. Thus, the effect of K2O on the melt composition is in the same 

direction to that of Na2O, but it is much stronger. Like Na2O, K2O also depresses the 

solidus, but to a greater extent. Despite these similarities between the effects of K2O and 

Na2O, there are differences: K2O decreases the Di component of the melt while Na2O 

has not any apparent effect; K2O makes the melt Qz-normative while Na2O makes it 

Ne-normative; K2O can make the melt corundum-normative while Na2O can not. 

Hence, the role of K2O and Na2O in changing the melt property is significantly 

different, in disagreement with traditional views. 

The partial melting reaction of a Sp-lherzolite in the system CMAS+K2O is 

always peritectic. At high temperatures, 01 is the only phase in reaction relationship 

with melt while it is joined by Sp at low temperatures. At high temperatures, Cpx is the 

largest contributor to the melt-generating process but is overtaken by Opx at low 

temperatures. 

1.2 Partial melting study in the system CMAS-Cr203 

The effect of Cr2O3 on the partial melting of a Sp-lherzofrte in the system CMAS­

Cr2O3 has been studied successfully. The experimental technique (the K2O method), 

designed and justified in the study in the system CMAS + K2O, was applied here. This 
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method helps to broaden the temperature interval of the phase assemblage 

Ol+Sp+Opx+Cpx+Melt and to make the melt quenchable. An external Fe2O3 sleeve 

was used in these experiments to minimise both the hydrogen fugacity and the 

likelihood of possible redox reaction which may convert Cr3+ to Cr2+ or even chromium 

metal. 

During the partial melting process Cr2O3 tends to retain in the solid phases and the 

distribution coefficient of Cr2O3 is 0.84 between 01 and Melt, 165.8 between Sp and 

Melt, 7.2 between Opx and Melt, and 8.7 between Cpx and melt. Hence, Cr2O3 is highly 

compatible in the early stages of the partial melting of a Sp-lherzolite but becomes 

incompatible when all Sp, Opx and Cpx in the source are about to melt out during the 

late stages of the partial melting. 

Cr2O3 increases the solidus in a complicated way: the temperature increase is very 

strong at low Cr2O3 contents, relatively weak at median Cr2O3 contents and strong again 

at high Cr2O3 contents. 

The temperature increase caused by Cr2O3 provides us a unique opportunity to 

assess the relationship of pyroxenes at high temperatures. The result suggests that low 

Ca-Cpx and high Ca-Cpx can not coexist in the system CMAS-Cr2O3 at 11 kbar and the 

stable pyroxene assemblage at high temperature is Opx and a supercritical Cpx, the 

latter decreasing its Ca content rapidly but continuously with increasing temperature. 

Cr2O3 also changes the melt composition. It substantially decreases the AhO3 

content but strongly increases the MgO content. It increases the SiO2 content at a 

relatively weaker level. Its effect on the CaO content, however, is negligible. As Cr2O3 

increases, thus, the CaO/ AhO3 ratio of the melt increases sharply and the melt 

progressively becomes more Di-normative. Another interesting effect of Cr2O3 on the 

melt composition is that a small amount of Cr2O3 makes the melt Qz-normative but 

more Cr2O3 does not make the melt more Qz-normative. Instead, the melt moves 

towards Hy and remains only marginally Qz-normative. 

The excellent agreement (high SiO2, high CaO/AhO3, high Di component and 

Hy-normative) between the experimentally produced melts at high Cr2O3 conditions in 

the system CMAS-Cr2O3 and the melt inclusions in Sp and 01 from mid-ocean ridge 

basalt and oceanic island basalt suggests that the upper mantle from which magma is 

generated is very refractory. The much lower Di component of the most primitive melts 

assembled by Presnall & Hoover (1987) possibly indicate that these melts might have 

been modified by high pressure fractional crystallisation of Cpx. The much lower Di 

component of the experimentally produced 1nelts using natural rock compositions in the 
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literature, however, suggests that the used starting compositions are too fertile (poor in 

Cr2O3). 

1.3 Partial melting study in the system CMAS-H2O-CO2 

Numerous experiments have been carried out to study the effect of H2O and CO2 

on the partial melting process of the upper mantle. Due to the complex inherited in this 

kind of experiments, the difficulty of determining the volatile contents of small samples, 

the H2O and CO2 contents of the product melts were unknown and the effects of these 

volatiles could not be fully determined or parameterised. 

In this study electron microprobe and Fourier transform infrared spectroscopy 

were used to analyse the melt for all components, producing the first complete set of 

melt compositional data. Hence, the effect of H2O and CO2 on partial melting of a Sp­

lherzolite can be assessed. 

H2O decreases the partial melting temperature sharply: 1 wt% H2O reduces it by,..., 

38 degrees. CO2, however, does not have any apparent effect ~ 

The effect of H2O on melt composition is 1 wt% H2O decreases MgO by 1.49 

wt% and CaO by 0.39 wt%, but increases Al2O3 by 0.67 wt% and SiO2 by 0.11 %. With 

this effect, high H2O should make melt corundum-normative and quartz normative. The 

speculation in the literature that H2O-saturated melt should be nepheline normative is 

thus not supported by the result here. 

The effect of CO2 on melt composition is much stronger than and generally 

opposite to that of H2O: the increase of SiO2 caused by 5 wt% H2O, for example, can be 

fully cancelled by 1 wt% CO2 • The effect of CO2 on the melt composition, however, is 

not constant but changes with the H2O content of the melt. It increases as H2O increases. 

At CO2-rich conditions, nepheline-normative melt might be produced. 

The strong effect of CO2 on melt composition casts doubt on partial melting 

studies using natural rock compositions in the literature. In these studies, inner graphite 

capsule was used and considerable amount of CO2 might be present in the melts and 

modify the melt composition. Since the effect of CO2 on melt composition increases as 

H2O increases, the problem would be more severe under hydrous conditions. 

2. Future work 

This work, having produced important and valuable knowledge, has been carried 

out only at 11 kbar. It is apparent that another study at different pressures is necessary in 

order to reveal how pressure functions. 
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With the completion of this study, TiO2 is the only component that remains 

unstudied but abundant enough to exert important influence on the partial melting 

process of the upper mantle. An experimental study on the partial melting behaviour of 

a lherzolite phase assemblage in the system CMAS+TiO2 is therefore desirable. 

Other important research directions suggested by this study include experimental 

evaluation of the diamond aggregate method in the system CMAS and determination of 

the effect ofH2O on the solubility of CO2 in basaltic melt buffered by a lherzoHte phase 

assemblage. 
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